WorldWideScience

Sample records for lactis bb-12 cultures

  1. The Science behind the Probiotic Strain Bifidobacterium animalis subsp. lactis BB-12®

    Directory of Open Access Journals (Sweden)

    Mikkel Jungersen

    2014-03-01

    Full Text Available This review presents selected data on the probiotic strain Bifidobacterium animalis subsp. lactis BB-12® (BB-12®, which is the world’s most documented probiotic Bifidobacterium. It is described in more than 300 scientific publications out of which more than 130 are publications of human clinical studies. The complete genome sequence of BB-12® has been determined and published. BB-12® originates from Chr. Hansen’s collection of dairy cultures and has high stability in foods and as freeze dried powders. Strain characteristics and mechanisms of BB-12® have been established through extensive in vitro testing. BB-12® exhibits excellent gastric acid and bile tolerance; it contains bile salt hydrolase, and has strong mucus adherence properties, all valuable probiotic characteristics. Pathogen inhibition, barrier function enhancement, and immune interactions are mechanisms that all have been demonstrated for BB-12®. BB-12® has proven its beneficial health effect in numerous clinical studies within gastrointestinal health and immune function. Clinical studies have demonstrated survival of BB-12® through the gastrointestinal tract and BB-12® has been shown to support a healthy gastrointestinal microbiota. Furthermore, BB-12® has been shown to improve bowel function, to have a protective effect against diarrhea, and to reduce side effects of antibiotic treatment, such as antibiotic-associated diarrhea. In terms of immune function, clinical studies have shown that BB-12® increases the body’s resistance to common respiratory infections as well as reduces the incidence of acute respiratory tract infections.

  2. Insights into physiological traits of Bifidobacterium animalis subsp. lactis BB-12 through membrane proteome analysis

    DEFF Research Database (Denmark)

    Gilad, Ofir; Hjernø, Karin; Østerlund, Eva Christina

    2012-01-01

    Bifidobacterium animalis subsp. lactis BB-12 is a widely used probiotic strain associated with a variety of health-promoting traits. There is, however, only limited knowledge available regarding the membrane proteome and the proteins involved in oligosaccharide transport in BB-12. We applied two...

  3. Selective method for identification and quantification of Bifidobacterium animalis subspecies lactis BB-12 (BB-12) from the gastrointestinal tract of healthy volunteers ingesting a combination probiotic of BB-12 and Lactobacillus rhamnosus GG.

    Science.gov (United States)

    Poutsiaka, D D; Mahoney, I J; McDermott, L A; Stern, L L; Thorpe, C M; Kane, A V; Baez-Giangreco, C; McKinney, J; Davidson, L E; Leyva, R; Goldin, B; Snydman, D R

    2017-05-01

    To develop a novel validated method for the isolation of Bifidobacterium animalis ssp. lactis BB-12 (BB-12) from faecal specimens and apply it to studies of BB-12 and Lactobacillus rhamnosus GG (LGG) recovered from the healthy human gastrointestinal (GI) tract. A novel method for isolating and enumerating BB-12 was developed based on its morphologic features of growth on tetracycline-containing agar. The method identified BB-12 correctly from spiked stool close to 100% of the time as validated by PCR confirmation of identity, and resulted in 97-104% recovery of BB-12. The method was then applied in a study of the recovery of BB-12 and LGG from the GI tract of healthy humans consuming ProNutrients(®) Probiotic powder sachet containing BB-12 and LGG. Viable BB-12 and LGG were recovered from stool after 21 days of probiotic ingestion compared to baseline. In contrast, no organisms were recovered 21 days after baseline in the nonsupplemented control group. We demonstrated recovery of viable BB-12, using a validated novel method specific for the isolation of BB-12, and LGG from the GI tract of healthy humans who consumed the probiotic supplement. This method will enable more detailed and specific studies of BB-12 in probiotic supplements, including when in combination with LGG. © 2017 The Society for Applied Microbiology.

  4. Bifidobacterium animalis subsp. lactis BB-12 in reducing the risk of infections in infancy.

    Science.gov (United States)

    Taipale, Teemu; Pienihäkkinen, Kaisu; Isolauri, Erika; Larsen, Charlotte; Brockmann, Elke; Alanen, Pentti; Jokela, Jorma; Söderling, Eva

    2011-02-01

    The impact of controlled administration of Bifidobacterium animalis subsp. lactis BB-12 (BB-12) on the risk of acute infectious diseases was studied in healthy newborn infants. In this double-blind, placebo-controlled study, 109 newborn 1-month-old infants were assigned randomly to a probiotic group receiving a BB-12-containing tablet (n 55) or to a control group receiving a control tablet (n 54). Test tablets were administered to the infants twice a day (daily dose of BB-12 10 billion colony-forming units) from the age of 1-2 months to 8 months with a novel slow-release pacifier or a spoon. Breastfeeding habits, pacifier use, dietary habits, medications and all signs and symptoms of acute infections were registered. At the age of 8 months, faecal samples were collected for BB-12 determination (quantitative PCR method). The baseline characteristics of the two groups were similar, as was the duration of exclusive breastfeeding. BB-12 was recovered (detection limit log 5) in the faeces of 62% of the infants receiving the BB-12 tablet. The daily duration of pacifier sucking was not associated with the occurrence of acute otitis media. No significant differences between the groups were observed in reported gastrointestinal symptoms, otitis media or use of antibiotics. However, the infants receiving BB-12 were reported to have experienced fewer respiratory infections (65 v. 94%; risk ratio 0·69; 95% CI 0·53, 0·89; P = 0·014) than the control infants. Controlled administration of BB-12 in early childhood may reduce respiratory infections.

  5. Bifidobacterium animalis subsp. lactis BB-12 administration in early childhood: a randomized clinical trial of effects on oral colonization by mutans streptococci and the probiotic.

    Science.gov (United States)

    Taipale, T; Pienihäkkinen, K; Salminen, S; Jokela, J; Söderling, E

    2012-01-01

    A randomized clinical trial studied the effects of early administration of Bifidobacterium animalis subsp. lactis BB-12 (BB-12) on oral colonization of (1) mutans streptococci (MS), and (2) BB-12. In this double-blind, placebo-controlled study, infants (n = 106) received probiotic bacteria (BB-12 group), xylitol (X group), or sorbitol (S group). Test tablets were administered twice a day (from the age of 1-2 months) with a novel slow-release pacifier or a spoon (daily dose of BB-12 10(10) CFU, polyol 200-600 mg). Samples were collected from mucosa/teeth at the age of 8 months and 2 years for BB- 12 determination (qPCR) and plate culturing of MS (MSB, TYCSB), lactobacilli (Rogosa) and yeasts (Sabouraud). The MS levels of the mothers were determined (Dentocult SM Strip Mutans). The baseline characteristics of the three groups were similar. Mean duration of tablet delivery was 14.9 ± 6.7 months. In all groups, >90% of the mothers showed high MS counts (log CFU ≥5). MS colonization percentages of the children at the age of 2 years were rather low (BB-12 group: 6%; X group: 31%; S group: 10%; p < 0.05). The levels of lactobacilli and yeasts did not differ between the groups. BB-12 cell counts barely exceeding the detection limit were found in three of the oral samples of the 8-month-old children; however, the 2-year samples did not contain BB-12. The early administration of BB-12 did not result in permanent oral colonization of this probiotic or significantly affect MS colonization in the children.

  6. Safety of Bifidobacterium animalis subsp. lactis (B. lactis) strain BB-12-supplemented yogurt in healthy adults on antibiotics: a phase I safety study.

    Science.gov (United States)

    Merenstein, Daniel J; Tan, Tina P; Molokin, Aleksey; Smith, Keisha Herbin; Roberts, Robert F; Shara, Nawar M; Mete, Mihriye; Sanders, Mary Ellen; Solano-Aguilar, Gloria

    2015-01-01

    Probiotics are live microorganisms that, when administered in sufficient doses, provide health benefits on the host. The United States Food and Drug Administration (FDA) requires phase I safety studies for probiotics when the intended use of the product is as a drug. The purpose of the study was to determine the safety of Bifidobacterium animalis subsp lactis (B. lactis) strain BB-12 (BB-12)-supplemented yogurt when consumed by a generally healthy group of adults who were prescribed a 10-day course of antibiotics for a respiratory infection. Secondary aims were to assess the ability of BB-12 to affect the expression of whole blood immune markers associated with cell activation and inflammatory response. A phase I, double-blinded, randomized controlled study was conducted in compliance with FDA guidelines for an Investigational New Drug (IND). Forty participants were randomly assigned to consume 4 ounces of either BB-12 -supplemented yogurt or non-supplemented control yogurt daily for 10 d. The primary outcome was to assess safety and tolerability, assessed by the number of reported adverse events. A total of 165 non-serious adverse events were reported, with no differences between the control and BB-12 groups. When compared to the control group, B lactis fecal levels were modestly higher in the BB-12-supplemented group. In a small subset of patients, changes in whole blood expression of genes associated with regulation and activation of immune cells were detected in the BB-12-supplemented group. BB-12-supplemented yogurt is safe and well tolerated when consumed by healthy adults concurrently taking antibiotics. This study will form the basis for future randomized clinical trials investigating the potential immunomodulatory effects of BB-12-supplemented yogurt in a variety of disease states.

  7. Bifidobacterium lactis Bb12 enhances intestinal antibody response in formula-fed infants: a randomized, double-blind, controlled trial.

    Science.gov (United States)

    Holscher, Hannah D; Czerkies, Laura A; Cekola, Pamela; Litov, Richard; Benbow, Marshall; Santema, Sheryl; Alexander, Dominik D; Perez, Vanessa; Sun, Shumei; Saavedra, José M; Tappenden, Kelly A

    2012-01-01

    Addition of probiotics to infant formula may positively affect immune function in nonexclusively breastfed infants. This study aimed to investigate the effect of infant starter formula containing the probiotic Bifidobacterium animalis subspecies lactis (Bb12) on intestinal immunity and inflammation. Six-week-old healthy, full-term infants (n = 172) were enrolled in a prospective, randomized, double-blind, controlled clinical trial with 2 groups studied in parallel to a breastfed comparison group. Formula-fed (FF) infants were randomized to partially hydrolyzed whey formula (CON) or the same formula containing 10(6) colony-forming units (CFU) Bb12/g (PRO) for 6 weeks. Fecal secretory IgA (sIgA), calprotectin, lactate, and stool pH were assessed at baseline, 2 weeks, and 6 weeks. Anti-poliovirus-specific IgA and anti-rotavirus-specific IgA were assessed at 2 and 6 weeks. Among vaginally delivered FF infants, PRO consumption increased (P IgA concentration increased (P IgA tended to increase (P = .056) with PRO consumption in cesarean-delivered infants. Anthropometrics and tolerance did not differ significantly between FF infants. Infants consuming formula with Bb12 produced feces with detectable presence of Bb12 and augmented sIgA concentration. Furthermore, cesarean-delivered infants consuming Bb12 had heightened immune response, as evidenced by increased anti-rotavirus- and anti-poliovirus-specific IgA following immunization. These results demonstrate that negative immune-related effects of not breastfeeding and cesarean delivery can be mitigated by including Bb12 in infant formula, thereby providing infants a safe, dietary, immune-modulating bacterial introduction.

  8. A randomised double-blind placebo-controlled trial with Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis BB-12 for maintenance of remission in ulcerative colitis

    DEFF Research Database (Denmark)

    Nordgaard, Inge; Rumessen, Jüri Johs.; Wildt, Signe

    2011-01-01

    To investigate the clinical effect of treatment with Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis BB-12 (Probio-Tec AB-25) to maintain remission in patients with ulcerative colitis.......To investigate the clinical effect of treatment with Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis BB-12 (Probio-Tec AB-25) to maintain remission in patients with ulcerative colitis....

  9. The influence of lactulose on growth and survival of probiotic bacteria Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis BB-12 in reconstituted sweet whey

    Directory of Open Access Journals (Sweden)

    Bojan Matijević

    2009-03-01

    Full Text Available This research was examined the influence of lactulose, a well-defined prebiotic, on the growth and activity of probiotic bacteria Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis BB-12 in reconstituted sweet whey as well as their survival in fermented whey during 28 days of cool storage. Reconstituted sweet whey was supplemented with 5 and 10 g/kg lactulose. Fermentation of whey with Bifidobacterium animalis subsp. lactis BB-12 was about 1.8 h shorter (approximately 11 h in comparison to fermentation with Lactobacillus acidophilus La-5 (approximately 13 h. Lactulose addition in reconstituted sweet whey prolonged the time of fermentation in both bacteria species, but it did not influence on the viable cells count at the end of fermentation. Lactobacillus acidophilus La-5 better grew (Δlog CFU/ml = 1.25 during fermentation in comparison with Bifidobacterium animalis subsp. lactis BB-12 (Δlog CFU/ml = 0.27, regardless to the added amount of lactulose. During storage of fermented whey viable cells count of species Bifidobacterium animalis subsp. lactis BB-12 was more stable than count of Lactobacillus acidophilus La-5. The obtained results show that lactulose, as a well-defined prebiotic did not have a significant effect on fermentation and survival of Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis BB-12 in whey, regardless to the added amount.

  10. Inhibitory effect of honey-sweetened goat and cow milk fermented with Bifidobacterium lactis Bb-12 on the growth of Listeria monocytogenes

    OpenAIRE

    Mirela Lučan; Vedran Slačanac; Jovica Hardi; Krešimir Mastanjević; Jurislav Babić; Vinko Krstanović; Marko Jukić

    2009-01-01

    The aim of the study was to determine the influence of honey addition on fermentation of goat and cow milk with Bifidobacterium lactis Bb-12. Additionally, inhibitory potential of honey-sweetened fermented goat and cow milk against Listeria monocytogenes strain was examined. Two monofloral honey types, dark-colored chestnut and light-colored acacia honey were added. The basic hypothesis of this study was that addition of honey could have influence on the growth of Bifidobacterium lactis durin...

  11. Inhibitory effect of honey-sweetened goat and cow milk fermented with Bifidobacterium lactis Bb-12 on the growth of Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Mirela Lučan

    2009-06-01

    Full Text Available The aim of the study was to determine the influence of honey addition on fermentation of goat and cow milk with Bifidobacterium lactis Bb-12. Additionally, inhibitory potential of honey-sweetened fermented goat and cow milk against Listeria monocytogenes strain was examined. Two monofloral honey types, dark-colored chestnut and light-colored acacia honey were added. The basic hypothesis of this study was that addition of honey could have influence on the growth of Bifidobacterium lactis during the fermentation of goat and cow milk. Furthermore, higher inhibitory potential caused by honey addition against Listeria monocytogenes has been assumed. Compared to cow milk, higher acidity and CFU of Bifidobacterium lactis Bb-12 were noted in the fermented goat milk in all phases of the fermentation process. The results of this study show that both types of honey enhanced growth and acidity of the Bifidobacterium lactis Bb-12 in both milk types during fermentation. A disc assay has shown that development of growth inhibition zones depends on the type and concentration of honey, as well as on the milk type. The chestnut honey had generally higher inhibitory effect than acacia honey.

  12. Assessment of stress tolerance acquisition in the heat-tolerant derivative strains of Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus rhamnosus GG.

    Science.gov (United States)

    Aakko, J; Sánchez, B; Gueimonde, M; Salminen, S

    2014-07-01

    The purpose of this study was to investigate the heat-shock response at molecular level in Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. lactis BB-12 and their heat-tolerant derivatives and to characterize the changes that make the derivatives more robust in terms of heat stress. The study strains were exposed for 2 h to a heat-shock treatment, Bif. animalis subsp. lactis BB-12 and its derivative at 50°C and the Lact. rhamnosus GG and its derivative at 60°C. Protein synthesis before and after heat shock was examined using proteomics and RT-qPCR. The analysis revealed that the regulation of seven proteins in both strain pairs was modified as a response to heat or between the original and the derivative strain. The comparison of wild-type strains and the heat-tolerant derivatives suggests that the acquisition of heat tolerance in the Bif. animalis subsp. lactis BB-12 derivative is due to a slightly increased constitutive level of chaperones, while in Lact. rhamnosus GG derivative, the main reason seems to be a higher ability to induce the production of chaperones. This study revealed possible markers of heat tolerance in B. lactis and Lact. rhamnosus strains. This study increases our knowledge on how Lactobacillus and Bifidobacterium strains may acquire heat tolerance. These findings may be useful for improving the heat tolerance of existing probiotic strains as well as screening new heat-tolerant strains. © 2014 The Society for Applied Microbiology.

  13. Inhibicijski učinak kozjega i kravljega mlijeka s dodatkom meda, fermentiranog s Bifidobacterium lactis Bb-12 na rast bakterije Listeria monocytogenes

    OpenAIRE

    Lučan, Mirela; Slačanac, Vedran; Hardi, Jovica; Mastanjević, Krešimir; Babić, Jurislav; Krstanović, Vinko; Jukić, Marko

    2009-01-01

    U radu je ispitivan utjecaj dodatka meda na tijek fermentacije kozjega i kravljega mlijeka probiotičkom bakterijom Bifidobacterium lactis Bb- 12. Također, ispitivan je utjecaj medom zaslađenoga fermentiranoga kozjega i kravljeg mlijeka na inhibicijsko djelovanje rasta bakterije Listeria monocytogenes. Mlijeku su dodavane dvije vrste meda - tamna vrsta kestenova meda i svijetla vrsta bagremova meda. Osnovna pretpostavka u radu bila je da dodatak meda može utjecati na tijek fermentacije kozjega...

  14. Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 cell surface hydrophobicity and survival of the cells under adverse environmental conditions.

    Science.gov (United States)

    Shakirova, Laisana; Grube, Mara; Gavare, Marita; Auzina, Lilija; Zikmanis, Peteris

    2013-01-01

    Changes in the cell surface hydrophobicity (CSH) of probiotic bacteria Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 and the survival of these cells were examined in response to varied cultivation conditions and adverse environmental conditions. An inverse linear relationship (P acidophilus La5 and B. lactis Bb12 and survival of cells subjected to subsequent freezing/thawing, long-term storage or exposure to mineral and bile acids. The observed relationships were supported by significant correlations between the CSH and changes in composition of the cell envelopes (proteins, lipids and carbohydrates) of L. acidophilus La5 and B. lactis Bb12 examined using FT-IR spectroscopy and conventional biochemical analysis methods. The results also suggest that the estimates of hydrophobicity, being a generalized characteristic of cell surfaces, are important parameters to predict the ability of intact probiotic bacteria to endure extreme environments and therefore should be monitored during cultivation. A defined balance of cell components, which can be characterized by the reduced CSH values, apparently helps to ensure the resistance, improved viability and hence the overall probiotic properties of bacteria.

  15. Effect of yoghurt containing Bifidobacterium lactis Bb12® on faecal excretion of secretory immunoglobulin A and human beta-defensin 2 in healthy adult volunteers.

    Science.gov (United States)

    Kabeerdoss, Jayakanthan; Devi, R Shobana; Mary, R Regina; Prabhavathi, D; Vidya, R; Mechenro, John; Mahendri, N V; Pugazhendhi, Srinivasan; Ramakrishna, Balakrishnan S

    2011-12-23

    Probiotics are used to provide health benefits. The present study tested the effect of a probiotic yoghurt on faecal output of beta-defensin and immunoglobulin A in a group of young healthy women eating a defined diet. 26 women aged 18-21 (median 19) years residing in a hostel were given 200 ml normal yoghurt every day for a week, followed by probiotic yoghurt containing Bifidobacterium lactis Bb12® (10⁹ in 200 ml) for three weeks, followed again by normal yoghurt for four weeks. Stool samples were collected at 0, 4 and 8 weeks and assayed for immunoglobulin A and human beta-defensin-2 by ELISA. All participants tolerated both normal and probiotic yoghurt well. Human beta-defensin-2 levels in faeces were not altered during the course of the study. On the other hand, compared to the basal sample, faecal IgA increased during probiotic feeding (P = 0.0184) and returned to normal after cessation of probiotic yoghurt intake. Bifidobacterium lactis Bb12® increased secretory IgA output in faeces. This property may explain the ability of probiotics to prevent gastrointestinal and lower respiratory tract infections.

  16. Effect of yoghurt containing Bifidobacterium lactis Bb12® on faecal excretion of secretory immunoglobulin A and human beta-defensin 2 in healthy adult volunteers

    Directory of Open Access Journals (Sweden)

    Kabeerdoss Jayakanthan

    2011-12-01

    Full Text Available Abstract Background Probiotics are used to provide health benefits. The present study tested the effect of a probiotic yoghurt on faecal output of beta-defensin and immunoglobulin A in a group of young healthy women eating a defined diet. Findings 26 women aged 18-21 (median 19 years residing in a hostel were given 200 ml normal yoghurt every day for a week, followed by probiotic yoghurt containing Bifidobacterium lactis Bb12® (109 in 200 ml for three weeks, followed again by normal yoghurt for four weeks. Stool samples were collected at 0, 4 and 8 weeks and assayed for immunoglobulin A and human beta-defensin-2 by ELISA. All participants tolerated both normal and probiotic yoghurt well. Human beta-defensin-2 levels in faeces were not altered during the course of the study. On the other hand, compared to the basal sample, faecal IgA increased during probiotic feeding (P = 0.0184 and returned to normal after cessation of probiotic yoghurt intake. Conclusions Bifidobacterium lactis Bb12® increased secretory IgA output in faeces. This property may explain the ability of probiotics to prevent gastrointestinal and lower respiratory tract infections.

  17. Effect of Lactobacillus rhamnosus LGG® and Bifidobacterium animalis ssp. lactis BB-12® on health-related quality of life in college students affected by upper respiratory infections.

    Science.gov (United States)

    Smith, Tracey J; Rigassio-Radler, Diane; Denmark, Robert; Haley, Timothy; Touger-Decker, Riva

    2013-06-01

    College students are susceptible to upper respiratory infections (URI) due to inadequate sleep, stress and close living quarters. Certain probiotic strains modulate immune function and may improve health-related quality of life (HRQL) during URI. The present study recruited apparently healthy college students and assessed the effect of probiotics on HRQL outcomes (i.e. self-reported duration, symptom severity and functional impairment of URI) in those who developed URI. Missed school and work days due to URI were also considered. Subjects (n 231) were apparently healthy college students living on campus in residence halls at the Framingham State University (Framingham, MA, USA), and were randomised to receive placebo (n 117) or probiotic-containing powder (daily dose of minimum 1 billion colony-forming units of each Lactobacillus rhamnosus LGG® (LGG®) and Bifidobacterium animalis ssp. lactis BB-12® (BB-12®); n 114) for 12 weeks. Subjects completed The Wisconsin Upper Respiratory Symptom Survey-21 to assess HRQL during URI. The final analyses included 198 subjects (placebo, n 97 and probiotics, n 101). The median duration of URI was significantly shorter by 2 d and median severity score was significantly lower by 34% with probiotics v. placebo (P,0·001), indicating a higher HRQL during URI. Number of missed work days was not different between groups (P=0·429); however, the probiotics group missed significantly fewer school days (mean difference = 0·2 d) compared to the placebo group (P=0·002). LGG® and BB-12® may be beneficial among college students with URI for mitigating decrements in HRQL. More research is warranted regarding mechanisms of action associated with these findings and the cost-benefit of prophylactic supplementation.

  18. Discovery of proteins involved in the interaction between prebiotics carbohydrates and probiotics & whole proteome analysis of the probiotic strain Bifidobacterium animalis susp. lactis BB-12

    DEFF Research Database (Denmark)

    Gilad, Ofir

    Probiotic bacteria, which primarily belong to the genera Lactobascillus and Bifidobacterium, are live microorganisms that have been related to a variety of health-promoting effects. Prebiotics are indigestible food components that specifically stimulate the growth of probiotic organisms in the hu......Probiotic bacteria, which primarily belong to the genera Lactobascillus and Bifidobacterium, are live microorganisms that have been related to a variety of health-promoting effects. Prebiotics are indigestible food components that specifically stimulate the growth of probiotic organisms...... between the widely-used, extensively-studied probiotic strain Bifidobacterium animalis subsp. lactis BB-12 and potentially-prebiotic carbohydrates. The project was initiated with a screening phase in which more than 40 carbohydrates were tested for their ability to promote the growth of the bacterium...

  19. Salivary mutans streptococci and lactobacilli modulations in young children on consumption of probiotic ice-cream containing Bifidobacterium lactis Bb12 and Lactobacillus acidophilus La5.

    Science.gov (United States)

    Singh, Richa Polka; Damle, Satyawan Gangaram; Chawla, Amrita

    2011-11-01

    To compare the levels of mutans streptococci and lactobacilli in saliva of school children, before and after consumption of probiotic and control ice-cream. A double-blind, cross-over, placebo-controlled trial was carried out in forty, 12-14 year-old children, with no clinically detectable caries. The selected children were randomized equally into two groups I and II. Following an initial run-in period of 1 week, children in group I and II were given ice-creams 'A' and 'B', respectively, for 10 days. Being a cross-over study, the ice-creams were interchanged in the two groups after a 2-week wash-out period. Saliva samples at baseline and follow-up were assessed using Dentocult SM and Dentocult LB kits. On statistical evaluation, it was seen that probiotic ice-cream brought about a statistically significant reduction (p-value = 0.003) in salivary mutans streptococci levels with no significant effect on lactobacilli levels. In conclusion, probiotic ice-cream containing Bifidobacterium lactis Bb-12 ATCC27536 and Lactobacillus acidophilus La-5 can reduce the levels of certain caries-associated micro-organisms in saliva.

  20. Short-term effect of ice-cream containing Bifidobacterium lactis Bb-12 on the number of salivary mutans streptococci and lactobacilli.

    Science.gov (United States)

    Caglar, Esber; Kuscu, Ozgur Onder; Selvi Kuvvetli, Senem; Kavaloglu Cildir, Sule; Sandalli, Nuket; Twetman, Svante

    2008-06-01

    Probiotic bacteria are thought to reduce the risk of some infectious diseases. The aim of the present study was to examine whether or not short-term consumption of ice-cream containing bifidobacteria can affect the salivary levels of mutans streptococci and lactobacilli in young adults. A double-blind, randomized crossover study was performed and 24 healthy subjects (mean age 20 years) were followed over 4 periods. During periods 2 and 4 (10 days each), they ingested 100 ml (53 g) ice-cream containing Bifidobacterium lactis Bb-12 once daily or a control ice-cream without viable bacteria. Periods 1 and 3 were run-in and washout periods, respectively. Salivary mutans streptococci and lactobacilli were enumerated with chair-side kits at baseline and immediately after the intervention period. A statistically significant reduction (pice-cream. A decline of high mutans streptococci counts was also seen after intake of the control ice-cream, but the difference compared to baseline was not statistically significant. The salivary lactobacilli levels were unaltered after both regimes. Daily consumtion of ice-cream containing probiotic bifidobacteria may reduce the salivary levels of mutans streptococci in young adults.

  1. Biochemical and kinetic characterisation of a novel xylooligosaccharide-upregulated GH43 β-d-xylosidase/α-l-arabinofuranosidase (BXA43) from the probiotic Bifidobacterium animalis subsp. lactis BB-12

    DEFF Research Database (Denmark)

    Viborg, Alexander Holm; Sørensen, Kim Ib; Gilad, Ofir

    2013-01-01

    The Bifidobacterium animalis subsp. lactis BB-12 gene BIF_00092, assigned to encode a β-d-xylosidase (BXA43) of glycoside hydrolase family 43 (GH43), was cloned with a C-terminal His-tag and expressed in Escherichia coli. BXA43 was purified to homogeneity from the cell lysate and found to be a dual...... to xylotetraose at subsite +3 and occur only in GH43 from the Bifidobacterium genus....

  2. Effect of the probiotic strain Bifidobacterium animalis subsp. lactis, BB-12®, on defecation frequency in healthy subjects with low defecation frequency and abdominal discomfort: a randomised, double-blind, placebo-controlled, parallel-group trial.

    Science.gov (United States)

    Eskesen, Dorte; Jespersen, Lillian; Michelsen, Birgit; Whorwell, Peter J; Müller-Lissner, Stefan; Morberg, Cathrine M

    2015-11-28

    The aim of the present study was to investigate the effect of Bifidobacterium animalis subsp. lactis, BB-12®, on two primary end points - defecation frequency and gastrointestinal (GI) well-being - in healthy adults with low defecation frequency and abdominal discomfort. A total of 1248 subjects were included in a randomised, double-blind, placebo-controlled trial. After a 2-week run-in period, subjects were randomised to 1 or 10 billion colony-forming units/d of the probiotic strain BB-12® or a matching placebo capsule once daily for 4 weeks. Subjects completed a diary on bowel habits, relief of abdominal discomfort and symptoms. GI well-being, defined as global relief of abdominal discomfort, did not show significant differences. The OR for having a defecation frequency above baseline for ≥50% of the time was 1·31 (95% CI 0·98, 1·75), P=0·071, for probiotic treatment overall. Tightening the criteria for being a responder to an increase of ≥1 d/week for ≥50 % of the time resulted in an OR of 1·55 (95% CI 1·22, 1·96), P=0·0003, for treatment overall. A treatment effect on average defecation frequency was found (P=0·0065), with the frequency being significantly higher compared with placebo at all weeks for probiotic treatment overall (all PEffects on defecation frequency were similar for the two doses tested, suggesting that a ceiling effect was reached with the one billion dose. Overall, 4 weeks' supplementation with the probiotic strain BB-12® resulted in a clinically relevant benefit on defecation frequency. The results suggest that consumption of BB-12® improves the GI health of individuals whose symptoms are not sufficiently severe to consult a doctor (ISRCTN18128385).

  3. Combined Transcriptome and Proteome Analysis of Bifidobacterium animalis subsp. lactis BB-12 Grown on Xylo-Oligosaccharides and a Model of Their Utilization

    DEFF Research Database (Denmark)

    Gilad, Ofir; Jacobsen, Susanne; Stuer-Lauridsen, B.

    2010-01-01

    Recent studies have demonstrated that xylo-oligosaccharides (XOS), which are classified as emerging prebiotics, selectively enhance the growth of bifidobacteria in general and of Bifidobacterium animalis subsp. lactis strains in particular. To elucidate the metabolism of XOS in the well-documente......Recent studies have demonstrated that xylo-oligosaccharides (XOS), which are classified as emerging prebiotics, selectively enhance the growth of bifidobacteria in general and of Bifidobacterium animalis subsp. lactis strains in particular. To elucidate the metabolism of XOS in the well...

  4. Suitability of Lactococcus lactis subsp lactis ATCC 11454 as a protective culture for lightly preserved fish products

    DEFF Research Database (Denmark)

    Wessels, Stephen Wallace; Huss, Hans Henrik

    1996-01-01

    This study is part of strategy to control the human pathogen Listeria monocytogenes in lightly preserved fish products by using food-grade lactic acid bacteria. When the nisin-producing Lactococcus lactis subsp lactis ATCC 11454 was cultured in the same vessel as L-monocytogenes Scott A in brain...

  5. Use of a genetically enhanced, pediocin-producing starter culture, Lactococcus lactis subsp. lactis MM217, to control Listeria monocytogenes in cheddar cheese

    NARCIS (Netherlands)

    Buyong, N; Kok, J; Luchansky, JB

    1998-01-01

    Cheddar cheese was prepared with Lactococcus lactis subsp, lactis MM217, a starter culture which contains pMC117 coding for pediocin PA-1, About 75 liters of pasteurized milk (containing ca, 3.6% fat) was inoculated with strain MM217 (ca, 10(6) CFU per ml) and a mixture of three Listeria monocytogen

  6. Fate of Lactococcus lactis starter cultures during late ripening in cheese models.

    Science.gov (United States)

    Ruggirello, Marianna; Cocolin, Luca; Dolci, Paola

    2016-10-01

    The presence of Lactococcus lactis, commonly employed as starter culture, was, recently, highlighted and investigated during late cheese ripening. Thus, the main goal of the present study was to assess the persistence and viability of this microorganism throughout manufacturing and ripening of model cheeses. Eight commercial starters, constituted of L. lactis subsp. lactis and L. lactis subsp. cremoris, were inoculated in pasteurized milk in order to manufacture miniature cheeses, ripened for six months. Samples were analysed at different steps (milk after inoculum, curd after cutting, curd after pressing and draining, cheese immediately after salting and cheese at 7, 15, 30, 60, 90, 120, 150 and 180 days of ripening) and submitted to both culture-dependent (traditional plating on M17) and -independent analysis (reverse transcription-quantitative PCR). On the basis of direct RNA analysis, L. lactis populations were detected in all miniature cheeses up to the sixth month of ripening, confirming the presence of viable cells during the whole ripening process, including late stages. Noteworthy, L. lactis was detected by RT-qPCR in cheese samples also when traditional plating failed to indicate its presence. This discrepancy could be explain with the fact that lactococci, during ripening process, enter in a stressed physiological state (viable not culturable, VNC), which might cause their inability to grow on synthetic medium despite their viability in cheese matrix. Preliminary results obtained by "resuscitation" assays corroborated this hypothesis and 2.5% glucose enrichment was effective to recover L. lactis cells in VNC state. The capability of L. lactis to persist in late ripening, and the presence of VNC cells which are known to shift their catabolism to peptides and amino acids consumption, suggests a possible technological role of this microorganism in cheese ripening with a possible impact on flavour formation.

  7. Microencapsulation and Fermentation of Lactobacillus acidophilus LA-5 and Bifidobacterium BB-12

    Directory of Open Access Journals (Sweden)

    Maryam Yari

    2015-09-01

    Full Text Available Because of poor survival of probiotic bacteria, microencapsulation evolved from the immobilized cell culture technology used in the biotechnological industry. Two probiotic strains, Bifidobacterium (BB-12 and Lactobacillus acidophilus (LA-5 were immobilized in calcium alginate by extrusion method. Encapsulation parameters and efficacy of this method were evaluated. Growth factors of these two bacteria were also measured by culturing in 10-L fermenter. Growth curves were obtained with respect to optical density and dry biomass weight. Encapsulation yield was over than 60% in each experiment. Scanning electron microscopy (SEM of Entrapment of cells in alginate matrix and cross-sections of dried bead were obtained and illustrated. Bifidobacterium have been shown better biotechnological properties.

  8. Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation

    National Research Council Canada - National Science Library

    Yamaoka, Chizuru; Kurita, Osamu; Kubo, Tomoko

    2014-01-01

    The influence of non-Saccharomyces yeast, Kluyveromyces lactis, on metabolite formation and the ethanol tolerance of Saccharomyces cerevisiae in mixed cultures was examined on synthetic minimal medium containing 20% glucose...

  9. Coculture-inducible bacteriocin biosynthesis of different probiotic strains by dairy starter culture Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Blaženka Kos

    2011-12-01

    Full Text Available Bacteriocins produced by probiotic strains effectively contribute to colonization ability of probiotic strains and facilitate their establishment in the competitive gut environment and also protect the gut from gastrointestinal pathogens. Moreover, bacteriocins have received considerable attention due to their potential application as biopreservatives, especially in dairy industry. Hence, the objective of this research was to investigate antimicrobial activity of probiotic strains Lactobacillus helveticus M92, Lactobacillus plantarum L4 and Enterococcus faecium L3, with special focus on their bacteriocinogenic activity directed towards representatives of the same or related bacterial species, and towards distant microorganisms including potential food contaminants or causative agents of gut infections. In order to induce bacteriocin production, probiotic cells were cocultivated with Lactococcus lactis subsp. lactis LMG 9450, one of the most important starter cultures in cheese production. The presence of bacteriocin coding genes was investigated by PCR amplification with sequence-specific primers for helveticin and was confirmed for probiotic strain L. helveticus M92. All examined probiotic strains have shown bacteriocinogenic activity against Staphylococcus aureus 3048, Staphylococcus aureus K-144, Escherichia coli 3014, Salmonella enterica serovar Typhimurium FP1, Bacillus subtilis ATCC 6633, Bacillus cereus TM2, which is an important functional treat of probiotic strains significant in competitive exclusion mechanism which provides selective advantage of probiotic strains against undesirable microorganisms in gastrointestinal tract of the host. According to obtained results, living cells of starter culture Lc. lactis subsp. lactis LMG 9450 induced bacteriocin production by examined probiotic strains but starter culture itself was not sensitive to bacteriocin activity.

  10. Prebiotic Effects of Agave salmiana Fructans in Lactobacillus acidophilus and Bifidobacterium lactis Cultures.

    Science.gov (United States)

    Castro-Zavala, Adriana; Juárez-Flores, Bertha I; Pinos-Rodríguez, Juan M; Delgado-Portales, Rosa E; Aguirre-Rivera, Juan R; Alcocer-Gouyonnet, Francisco

    2015-11-01

    Agave salmiana is a fructan rich species that is widely distributed in Mexico. The aim of this investigation was to extract the fructans of A. salmiana and evaluate their prebiotic effect in 48 hours in vitro cultures of Bifidobacterium lactis and Lactobacillus acidophilus and to compare this effect with other available fructan sources. A significant difference in pH, optical density and biomass was found in the cultures depending on the source of fructans and the type of bacteria. It was possible to determine a dose-response effect of the A. salmiana fructans and the growth of the studied strains.

  11. Enhancement of nisin production by Lactococcus lactis in periodically re-alkalized cultures.

    Science.gov (United States)

    Guerra, Nelson Pérez; Castro, Lorenzo Pastrana

    2003-10-01

    Synthesis of nisin as well as biomass production by Lactococcus lactis subsp. lactis CECT (Colección Española de Cultivos Tipo) 539 on both hydrolysed mussel-processing waste and whey medium were followed in three fixed volume fed-batch fermentations, with re-alkalization cycles. The two cultures on mussel-processing waste (MPW) were fed with a 240 g/l concentrated glucose and with a concentrated MPW (about 100 g of glucose/l). The culture on whey was fed with a mixture of concentrated whey (48 g of total sugars/l) and a 400 g/l concentrated lactose. The three cultures were mainly characterized with higher nisin titres [49.7, 109.6 and 124.7 bacteriocin activity units (AU)/ml respectively] compared with the batch process on de Man, Rogosa and Sharpe [(1960) J. Appl. Bacteriol. 23, 130-135] medium (49.6 AU/ml), MPW (9.5 AU/ml) and whey (22.5 AU/ml) [1 AU/ml is the amount of antibacterial compound needed to obtain 50% growth inhibition (LD50) compared with control tubes]. In the three fed-batch cultures a shift from homolactic to mixed-acid fermentation was observed, and other products (acetic acid, butane-2,3-diol or ethanol) in addition to lactic acid were detectable in the medium. However, their contributions to the total antibacterial activity of the post-incubates (the cell-free culture supernatant obtained at the end of the fermentation process) of L. lactis CECT 539 against Carnobacterium piscicola CECT 4020 were very low.

  12. Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation.

    Science.gov (United States)

    Yamaoka, Chizuru; Kurita, Osamu; Kubo, Tomoko

    2014-12-01

    The influence of non-Saccharomyces yeast, Kluyveromyces lactis, on metabolite formation and the ethanol tolerance of Saccharomyces cerevisiae in mixed cultures was examined on synthetic minimal medium containing 20% glucose. In the late stage of fermentation after the complete death of K. lactis, S. cerevisiae in mixed cultures was more ethanol-tolerant than that in pure culture. The chronological life span of S. cerevisiae was shorter in pure culture than mixed cultures. The yeast cells of the late stationary phase both in pure and mixed cultures had a low buoyant density with no significant difference in the non-quiescence state between both cultures. In mixed cultures, the glycerol contents increased and the alanine contents decreased when compared with the pure culture of S. cerevisiae. The distinctive intracellular amino acid pool concerning its amino acid concentrations and its amino acid composition was observed in yeast cells with different ethanol tolerance in the death phase. Co-cultivation of K. lactis seems to prompt S. cerevisiae to be ethanol tolerant by forming opportune metabolites such as glycerol and alanine and/or changing the intracellular amino acid pool. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Growth kinetics and physiological behavior of co-cultures of Saccharomyces cerevisiae and Kluyveromyces lactis, fermenting carob sugars extracted with whey.

    Science.gov (United States)

    Rodrigues, B; Lima-Costa, M E; Constantino, A; Raposo, S; Felizardo, C; Gonçalves, D; Fernandes, T; Dionísio, L; Peinado, J M

    2016-10-01

    Alcoholic fermentation of carob waste sugars (sucrose, glucose and fructose) extracted with cheese whey, by co-cultures of Saccharomyces cerevisiae and Kluyveromyces lactis has been analyzed. Growth and fermentation of S. cerevisiae in the carob-whey medium showed an inhibition of about 30% in comparison with water-extracted carob. The inhibition of K. lactis on carob-whey was greater (70%) when compared with the whey medium alone, due to osmolarity problems. Oxygen availability was a very important factor for K. lactis, influencing its fermentation performance. When K. lactis was grown alone on carob-whey medium, lactose was always consumed first, and glucose and fructose were consumed afterwards, only at high aeration conditions. In co-culture with S. cerevisiae, K. lactis was completely inhibited and, at low aeration, died after 3 days; at high aeration this culture could survive but growth and lactose fermentation were only recovered after S. cerevisiae became stationary. To overcome the osmolarity and K. lactis' oxygen problems, the medium had to be diluted and a sequential fermentative process was designed in a STR-3l reactor. K. lactis was inoculated first and, with low aeration (0.13vvm), consumed all the lactose in 48h. Then S. cerevisiae was inoculated, consuming the total of the carob sugars, and producing ethanol in a fed-batch regime. The established co-culture with K. lactis increased S. cerevisiae ethanol tolerance. This fermentation process produced ethanol with good efficiency (80g/l final concentration and a conversion factor of 0.4g ethanol/g sugar), eliminating all the sugars of the mixed waste. These efficient fermentative results pointed to a new joint treatment of agro-industrial wastes which may be implemented successfully, with economic and environmental sustainability for a bioethanol industrial proposal.

  14. Development and Diversity of Lactococcus lactis and Leuconostoc Bacteriophages in Dairies Using Undefined Mesophilic DL-Starter Cultures

    DEFF Research Database (Denmark)

    Muhammed, Musemma Kedir

    complete loss of fermentation. Dairy phages have for long time been studied using traditional culture-dependent methods but not using metagenomic approaches. Part of this project was devoted to develop a method for dairy metavirome extraction and analysis. Several whey mixtures derived by defined...... mesophilic starters through induction of whole cultures. Results obtained from metavirome analysis presented evidence that the Lc. lactis P335 group of phages were the most frequently induced. Other Lc. lactis phages such as 936, 949, 1706, c2 and Leuconostoc phages were also detected in the cultures...

  15. The influence of saccharin and sorbitol upon the BB-12® activity in milk and the rheological characteristics of fermented products

    Directory of Open Access Journals (Sweden)

    Luminiţa PRICOPE

    2010-12-01

    Full Text Available studied related to the activity of the probiotic culture BB-12® in milk. Sweeteners concentrations used in the experiments were chosen based on the results of a preferential sensorial analysis. The acidity and pH dynamics monitored during bifidobacteria incubation at 37°C showed that BB-12® behaves in a similar way in milk and milk sweetened with saccharin (0.05‰ or sorbitol (1.5%. Also it was noticed that the fermentation starts without a lag phase in the presence of sorbitol. The bifidobacteria maintained their viability at a level of 109 viable count during 14 days of storage at 4°C. Sweetened fermented milk samples showed higher consistency index compared to the control sample. More than that, after 7 days of storage (4ºC it was observed an increase of the k-value for thesaccharin and sorbitol samples, while for the control sample the consistency index has a 85% decrease. After 7 days of storage the sweetened samples maintained the same viscoelastic behavior.The study was performed in order to collect scientific evidences on the possibility to obtain probiotic dairy products sweetened with alternative sweeteners.

  16. Putrescine production via the agmatine deiminase pathway increases the growth of Lactococcus lactis and causes the alkalinization of the culture medium.

    Science.gov (United States)

    del Rio, Beatriz; Linares, Daniel M; Ladero, Victor; Redruello, Begoña; Fernández, Maria; Martin, Maria Cruz; Alvarez, Miguel A

    2015-01-01

    Lactococcus lactis is the most important starter culture organism used in the dairy industry. Although L. lactis species have been awarded Qualified Presumption of Safety status by the European Food Safety Authority, and Generally Regarded as Safe status by the US Food and Drug Administration, some strains can produce the biogenic amine putrescine. One such strain is L. lactis subsp. cremoris CECT 8666 (formerly L. lactis subsp. cremoris GE2-14), which was isolated from Genestoso cheese. This strain catabolizes agmatine to putrescine via the agmatine deiminase (AGDI) pathway, which involves the production of ATP and two ammonium ions. The present work shows that the availability of agmatine and its metabolization to putrescine allows for greater bacterial growth (in a biphasic pattern) and causes the alkalinization of the culture medium in a dose-dependent manner. The construction of a mutant lacking the AGDI cluster (L. lactis CECT 8666 Δagdi) confirmed the latter's direct role in putrescine production, growth, and medium alkalinization. Alkalinization did not affect the putrescine production pattern and was not essential for increased bacterial growth.

  17. Development and Diversity of Lactococcus lactis and Leuconostoc Bacteriophages in Dairies Using Undefined Mesophilic DL-Starter Cultures

    DEFF Research Database (Denmark)

    Muhammed, Musemma Kedir

    Bacteriophages (phages) attacking strains of Lactococcus (Lc.) lactis and Leuconostoc species, used as starter cultures in mesophilic dairy productions, produce huge problems through waste of ingredients, increased processing time, reduced product quality, consistency and safety, and occasionally...... samples from a dairy using a traditional mother-bulk-cheese vat system showed the presence of 936 and P335 phages already in the mother culture stage and, consequently, in the bulk starter and in the cheese vats but not in the cheese milk. We further dealt with temperate phages associated with undefined...... binding protein-encoding gene (rbp) analysis, several of the 936-phage groups were predicted to be able to attack strains of Lc. lactis subsp. cremoris. An overpressure in the processing room and curd pressing rooms resulted in an increase in the instability of subgroups of 936 phages during the first...

  18. Probiotics [LGG-BB12 or RC14-GR1] versus placebo as prophylaxis for urinary tract infection in persons with spinal cord injury [ProSCIUTTU]: a study protocol for a randomised controlled trial.

    Science.gov (United States)

    Lee, Bonsan Bonne; Toh, Swee-Ling; Ryan, Suzanne; Simpson, Judy M; Clezy, Kate; Bossa, Laetitia; Rice, Scott A; Marial, Obaydullah; Weber, Gerard; Kaur, Jasbeer; Boswell-Ruys, Claire; Goodall, Stephen; Middleton, James; Tudehope, Mark; Kotsiou, George

    2016-04-16

    Urinary tract infections [UTIs] are very common in people with Spinal Cord Injury [SCI]. UTIs are increasingly difficult and expensive to treat as the organisms that cause them become more antibiotic resistant. Among the SCI population, there is a high rate of multi-resistant organism [MRO] colonisation. Non-antibiotic prevention strategies are needed to prevent UTI without increasing resistance. Probiotics have been reported to be beneficial in preventing UTIs in post-menopausal women in several in vivo and in vitro studies. The main aim of this study is to determine whether probiotic therapy with combinations of Lactobacillus reuteri RC-14 + Lactobacillus rhamnosus GR-1 [RC14-GR1] and/or Lactobacillus rhamnosus GG + Bifidobacterium BB-12 [LGG-BB12] are effective in preventing UTI in people with SCI compared to placebo. This is a multi-site randomised double-blind double-dummy placebo-controlled factorial design study conducted in New South Wales, Australia. All participants have a neurogenic bladder as a result of spinal injury. Recruitment started in April 2011. Participants are randomised to one of four arms, designed for factorial analysis of LGG-BB12 and/or RC14-GR1 v Placebo. This involves 24 weeks of daily oral treatment with RC14-GR1 + LGG-BB12, RC14-GR1 + placebo, LGG-BB12 + placebo or two placebo capsules. Randomisation is stratified by bladder management type and inpatient status. Participants are assessed at baseline, three months and six months for Short Form Health Survey [SF-36], microbiological swabs of rectum, nose and groin; urine culture and urinary catheters for subjects with indwelling catheters. A bowel questionnaire is administered at baseline and three months to assess effect of probiotics on bowel function. The primary outcome is time from randomisation to occurrence of symptomatic UTI. The secondary outcomes are change of MRO status and bowel function, quality of life and cost-effectiveness of probiotics in persons

  19. Lactococcus lactis and Lactobacillus sakei as bio-protective culture to eliminate Leuconostoc mesenteroides spoilage and improve the shelf life and sensorial characteristics of commercial cooked bacon.

    Science.gov (United States)

    Comi, Giuseppe; Andyanto, Debbie; Manzano, Marisa; Iacumin, Lucilla

    2016-09-01

    Cooked bacon is a typical Italian meat product. After production, cooked bacon is stored at 4 ± 2 °C. During storage, the microorganisms that survived pasteurisation can grow and produce spoilage. For the first time, we studied the cause of the deterioration in spoiled cooked bacon compared to unspoiled samples. Moreover, the use of bio-protective cultures to improve the quality of the product and eliminate the risk of spoilage was tested. The results show that Leuconostoc mesenteroides is responsible for spoilage and produces a greening colour of the meat, slime and various compounds that result from the fermentation of sugars and the degradation of nitrogen compounds. Finally, Lactococcus lactis spp. lactis and Lactobacillus sakei were able to reduce the risk of Leuconostoc mesenteroides spoilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Microbiota of Minas cheese as influenced by the nisin producer Lactococcus lactis subsp. lactis GLc05.

    Science.gov (United States)

    Perin, Luana Martins; Dal Bello, Barbara; Belviso, Simona; Zeppa, Giuseppe; de Carvalho, Antônio Fernandes; Cocolin, Luca; Nero, Luís Augusto

    2015-12-01

    Minas cheese is a popular dairy product in Brazil that is traditionally produced using raw or pasteurized cow milk. This study proposed an alternative production of Minas cheese using raw goat milk added of a nisin producer Lactococcus lactis subsp. lactis GLc05. An in situ investigation was carried on to evaluate the interactions between the L. lactis subsp. lactis GLc05 and the autochthonous microbiota of a Minas cheese during the ripening; production of biogenic amines (BAs) was assessed as a safety aspect. Minas cheese was produced in two treatments (A, by adding L. lactis subsp. lactis GLc05, and B, without adding this strain), in three independent repetitions (R1, R2, and R3). Culture dependent (direct plating) and independent (rep-PCR and PCR-DGGE) methods were employed to characterize the microbiota and to assess the possible interferences caused by L. lactis subsp. lactis GLc05. BA amounts were measured using HPLC. A significant decrease in coagulase-positive cocci was observed in the cheeses produced by adding L. lactis subsp. lactis GLc05 (cheese A). The rep-PCR and PCR-DGGE highlighted the differences in the microbiota of both cheeses, separating them into two different clusters. Lactococcus sp. was found as the main microorganism in both cheeses, and the microbiota of cheese A presented a higher number of species. High concentrations of tyramine were found in both cheeses and, at specific ripening times, the BA amounts in cheese B were significantly higher than in cheese A (pnisin producer L. lactis subsp. lactis GLc05 was demonstrated in situ, by demonstration of its influence in the complex microbiota naturally present in a raw goat milk cheese and by controlling the growth of coagulase-positive cocci. L. lactis subsp. lactis GLc05 influenced also the production of BA determining that their amounts in the cheeses were maintained at acceptable levels for human consumption.

  1. Fermented wheat aleurone enriched with probiotic strains LGG and Bb12 modulates markers of tumor progression in human colon cells.

    Science.gov (United States)

    Borowicki, Anke; Michelmann, Anke; Stein, Katrin; Scharlau, Daniel; Scheu, Kerstin; Obst, Ursula; Glei, Michael

    2011-01-01

    Fermentation of dietary fiber by the microflora enhances the levels of effective metabolites, which are potentially protective against colon cancer. The specific addition of probiotics may enhance the efficiency of fermentation of wheat aleurone, a source of dietary fiber. We investigated the effects of aleurone, fermented with fecal slurries with the addition of the probiotics LGG and Bb12 (aleurone(+)), on cell growth, apoptosis, and differentiation, as well as expression of genes related to growth and apoptosis using two different human colon cell lines (HT29: adenocarcinoma cells; LT97: adenoma cells). The efficiency of fermentation of aleurone was only slightly enhanced by the addition of LGG/Bb12, resulting in an increased concentration of butyrate. In LT97 cells, the growth inhibition of aleurone(+) was stronger than in HT29 cells. In HT29 cells, a cell cycle arrest in G(0)/G(1) and the alkaline phosphatase activity, a marker of differentiation, were enhanced by the fs aleurone(+). Treatment with all fermentation supernatants resulted in a significant increase in apoptosis and an upregulation of genes involved in cell growth and apoptosis (p21 and WNT2B). In conclusion, fs aleurone(+) modulated markers of cancer prevention, namely inhibition of cell growth and promotion of apoptosis as well as differentiation.

  2. Enhancement of Nisin Production by Lactococcus lactis subsp. lactis.

    Science.gov (United States)

    Dussault, Dominic; Vu, Khanh Dang; Lacroix, Monique

    2016-09-01

    Lactococcus lactis subsp lactis BSA (L. lactis BSA) was isolated from a commercial fermented product (BSA Food Ingredients, Montreal, Canada) containing mixed bacteria that are used as starter for food fermentation. In order to increase the bacteriocin production by L. lactis BSA, different fermentation conditions were conducted. They included different volumetric combinations of two culture media (the Man, Rogosa and Sharpe (MRS) broth and skim milk), agitation level (0 and 100 rpm) and concentration of commercial nisin (0, 0.15, and 0.30 µg/ml) added into culture media as stimulant agent for nisin production. During fermentation, samples were collected and used for antibacterial evaluation against Lactobacillus sakei using agar diffusion assay. Results showed that medium containing 50 % MRS broth and 50 % skim milk gave better antibacterial activity as compared to other medium formulations. Agitation (100 rpm) did not improve nisin production by L. lactis BSA. Adding 0.15 µg/ml of nisin into the medium-containing 50 % MRS broth and 50 % skim milk caused the highest nisin activity of 18,820 AU/ml as compared to other medium formulations. This activity was 4 and ~3 times higher than medium containing 100 % MRS broth without added nisin (~4700 AU/ml) and 100 % MRS broth with 0.15 µg/ml of added nisin (~6650 AU/ml), respectively.

  3. Effects of Nisin on the Growth of Lactobacillus acidophilus La-5 and Bifidobacterium bifidum Bb-12%Nisin 对 Lactobacillus acidophilus La-5 和 Bifidobac

    Institute of Scientific and Technical Information of China (English)

    吴正钧; 周诚

    2002-01-01

    在MRS平板上,采用琼脂扩散法测定了Nisin对Lactobacillus acidophilus la-5和Bifidobacterium bifidumBb-12生长的抑制作用.当Nisin浓度≥50ug/ml时,对Lactobacillus acidophilus la-5表现出强烈的抑制作用,而Bifidobacterium bifidum Bb-12则几乎不生长,即使Nisin的浓度仅为25ug/ml;当L.acidophilus la-5和B.bifidum Bb-12单独或两者共同在37℃发酵10%(w/w)还原脱脂奶时,脱脂奶中添加的50ug/ml Nisin对B.bifidum Bb-12表现出杀菌作用,而对L.acidophilus La-5则为抑菌作用.当延长培养时间后,L.acidophilus La-5的存在可以降低Nisin对B.bifidum Bb-12的致死作用.

  4. Draft Genome Sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a Citrate-Fermenting Strain

    Science.gov (United States)

    Zuljan, Federico; Espariz, Martín; Blancato, Victor S.; Esteban, Luis; Alarcón, Sergio

    2016-01-01

    We report the draft genome sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a natural strain isolated from artisanal cheese from northwest Argentina. L. lactis subsp. lactis bv. diacetylactis is one of the most important microorganisms used as starter culture around the world. The CRL264 strain constitutes a model microorganism in the studies on the generation of aroma compounds (diacetyl, acetoin, and 2,3-butanediol) by lactic acid bacteria. Our genome analysis shows similar genetic organization to other available genomes of L. lactis bv. diacetylactis strains. PMID:26847906

  5. Effect of yoghurt containing Bifidobacterium lactis Bb12® on faecal excretion of secretory immunoglobulin A and human beta-defensin 2 in healthy adult volunteers

    National Research Council Canada - National Science Library

    Kabeerdoss, Jayakanthan; Devi, R Shobana; Mary, R Regina; Prabhavathi, D; Vidya, R; Mechenro, John; Mahendri, N V; Pugazhendhi, Srinivasan; Ramakrishna, Balakrishnan S

    2011-01-01

    Probiotics are used to provide health benefits. The present study tested the effect of a probiotic yoghurt on faecal output of beta-defensin and immunoglobulin A in a group of young healthy women eating a defined diet...

  6. In vitro evaluation of gastrointestinal survival of Lactobacillus amylovorus DSM 16698 alone and combined with galactooligosaccharides, milk and/or Bifidobacterium animalis subsp. lactis Bb-12

    NARCIS (Netherlands)

    Martinez, R.C.R.; Anynaou, A.E.; Albrecht, S.A.; Schols, H.A.; Martinis, de E.C.P.; Zoetendal, E.G.; Venema, K.; Saad, S.M.I.; Smidt, H.

    2011-01-01

    Probiotic properties of Lactobacillus amylovorus DSM 16698 were previously demonstrated in piglets. Here, its potential as a human probiotic was studied in vitro, using the TIM-1 system, which is fully validated to simulate the human upper gastrointestinal tract. To evaluate the effect of the food m

  7. Dose-response study of probiotic bacteria Bifidobacterium animalis subsp lactis BB-12 and Lactobacillus paracasei subsp paracasei CRL-341 in healthy young adults

    DEFF Research Database (Denmark)

    Larsen, C.N.; Nielsen, S.; Kaestel, P.

    2006-01-01

    was analyzed in the 10(10) CFU/day probiotic and placebo group. Design: The study was designed as a randomized, placebo-controlled, double-blinded, parallel dose-response study. Subjects: Healthy young adults (18 - 40 years) were recruited by advertising in local newspapers. Of the 75 persons enrolled, 71 ( 46...

  8. Physiological Studies of Lactococcus lactis

    DEFF Research Database (Denmark)

    Hansen, Gunda

    industrial production by employing flow cytometry for viability assessment, cell size comparison, intracellular pH (pHi) determination and cell sorting. The physiological studies of L. lactis were complemented by examining the growth behavior, glucose consumption, lactate production, culturability on solid...... was found to facilitate the differentiation and accurate quantification of L. lactis cells in different physiological states, which agreed with the reproductive viability of reference samples and of exponential cells. The high viability of one particular L. lactis strain demonstrated its robustness during......, cell size comparison and pHi determination reflected the increasing physiological impairment during this accelerated stability test, while a preincubation in buffer led to inconsistent flow cytometric results. The comparison of reproductive and growth-independent viability suggested the presence...

  9. Minimal requirements for exponential growth of Lactococcus lactis

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Hammer, Karin

    1993-01-01

    A minimal growth medium containing glucose, acetate, vitamins, and eight amino acids allowed for growth of Lactococcus lactis subsp. lactis, with a specific growth rate in batch culture of mu = 0.3 h-1. With 19 amino acids added, the growth rate increased to mu = 0.7 h-1 and the exponential growth...

  10. Optimisation of batch culture conditions for cell-envelope-associated proteinase production from Lactobacillus delbrueckii subsp. lactis ATCC® 7830™.

    Science.gov (United States)

    Agyei, Dominic; Potumarthi, Ravichandra; Danquah, Michael K

    2012-11-01

    Using a combination of conventional sequential techniques, the batch growth conditions for the production of cell-envelope-associated proteinases have for the first time been studied and optimised in Lactobacillus delbrueckii subsp. lactis 313 (ATCC 7830; LDL 313). Concentrations of inoculum (0.1 production medium (0.2 production included an initial pH of 6.0, 45 °C incubation temperature, 2 % (v/v) inoculum size of OD(560) = 1, 150 rpm agitation speed, and growth medium carbon/nitrogen ratio of 1.0. Maximum proteinase activity obtained for whole cells was 0.99 U/ml after 8 h of incubation. The variables studied are very relevant due to their significance in improving the productivity of proteinase synthesis from LDL 313, under process and, likely, economic optimum conditions.

  11. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: characterization of the bacteriocin.

    Science.gov (United States)

    Furtado, Danielle N; Todorov, Svetoslav D; Landgraf, Mariza; Destro, Maria T; Franco, Bernadette D G M

    2014-01-01

    Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi) was isolated from goat milk, and studied for its antimicrobial activity. The bacteriocin presented a broad spectrum of activity, was sensitive to proteolytic enzymes, resistant to heat and pH extremes, and not affected by the presence of SDS, Tween 20, Tween 80, EDTA or NaCl. Bacteriocin production was dependent on the components of the culture media, especially nitrogen source and salts. When tested by PCR, the bacteriocin gene presented 100% homology to nisin Z gene. These properties indicate that this L. lactis subsp. lactis DF4Mi can be used for enhancement of dairy foods safety and quality.

  12. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: characterization of the bacteriocin

    Directory of Open Access Journals (Sweden)

    Danielle N. Furtado

    2014-12-01

    Full Text Available Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi was isolated from goat milk, and studied for its antimicrobial activity. The bacteriocin presented a broad spectrum of activity, was sensitive to proteolytic enzymes, resistant to heat and pH extremes, and not affected by the presence of SDS, Tween 20, Tween 80, EDTA or NaCl. Bacteriocin production was dependent on the components of the culture media, especially nitrogen source and salts. When tested by PCR, the bacteriocin gene presented 100% homology to nisin Z gene. These properties indicate that this L. lactis subsp. lactis DF4Mi can be used for enhancement of dairy foods safety and quality.

  13. Detection and characterization of bacteriocin-producing Lactococcus lactis strains Detecção e caracterização de Lactococcus lactis produtores de bacteriocinas

    Directory of Open Access Journals (Sweden)

    Izildinha Moreno

    1999-04-01

    Full Text Available One hundred sixty seven strains of Lactococcus lactis were screened for bacteriocin production by well diffusion assay of GM17 agar. Fourteen (8.4% produced antimicrobial activity other than organic acids, bacteriophages or hydrogen peroxide. The frequency of bacteriocin production ranged from 2% in L. lactis subsp. cremoris up to 12% in L. lactis subsp. lactis. Antimicrobial activities were not observed in any strain of L. lactis subsp. lactis var. diacetylactis. Among thirteen bacteriocin-producing strains and two nisin-producing strains (L. lactis subsp. lactis ATCC 11454 and L. lactis subsp. lactis CNRZ 150, eight (53% were characterized as lactose-positive (Lac+ and proteinase-negative (Prt-. The bacteriocin-producing cultures were also characterized on the basis of plasmid content. All strains had 2 to 7 plasmids with molecular weights varying from 0.5 to 28.1 Mdal. Four strains (ITAL 435, ITAL 436, ITAL 437 and ITAL 438 showed identical profiles and the other were quite distinct.Um total de 167 linhagens de L. lactis foi selecionado para os testes de produção de bacteriocinas pelo método de difusão em poços em agar GM17. Desse total, 14 (8.4% produziram substâncias inibidoras que não foram associadas com ácidos orgânicos, peróxido de hidrogênio e bacteriófagos. A frequência de produção de bacteriocinas variou de 2% em L. lactis subsp. cremoris a 12% em L. lactis subsp. lactis. Nenhuma das linhagens de L. lactis subsp. lactis var. diacetylactis produziu substâncias inibidoras. De 13 linhagens produtoras de bacteriocinas e duas de nisina (L. lactis subsp. lactis ATCC 11454 e L. lactis subsp. lactis CNRZ 150, 8 (53% foram caracterizadas como lactose-positivas (Lac+ e proteinase-negativas (Prt-. As linhagens produtoras de bacteriocinas também foram caracterizadas no seu conteúdo de plasmídios. Elas apresentaram de 2 a 7 plasmídios, com pesos moleculares aproximados de 0.5 a 28.1 Mdal. Quatro linhagens (ITAL 435, ITAL 436

  14. Detection and viability of Lactococcus lactis throughout cheese ripening.

    Science.gov (United States)

    Ruggirello, Marianna; Dolci, Paola; Cocolin, Luca

    2014-01-01

    Recent evidences highlighted the presence of Lactococcus lactis during late cheese ripening. For this reason, the role of this microorganism, well known as dairy starter, should be reconsidered throughout cheese manufacturing and ripening. Thus, the main objective of this study was to develop a RT-qPCR protocol for the detection, quantification and determination of the viability of L. lactis in ripened cheese samples by direct analysis of microbial nucleic acids. Standard curves were constructed for the specific quantification of L. lactis in cheese matrices and good results in terms of selectivity, correlation coefficient and efficiency were obtained. Thirty-three ripened cheeses were analyzed and, on the basis of RNA analysis, twelve samples showed 106 to 108 CFU of L. lactis per gram of product, thirteen from 103 to 105 CFU/g, and in eight cheeses, L. lactis was not detected. Traditional plating on M17 medium led to loads ranging from 105 to 109 CFU/g, including the cheese samples where no L. lactis was found by RT-qPCR. From these cheeses, none of the colonies isolated on M17 medium was identified as L. lactis species. These data could be interpreted as a lack of selectivity of M17 medium where colony growth is not always related to lactococcal species. At the same time, the absence or low abundance of L. lactis isolates on M17 medium from cheese where L. lactis was detected by RT-qPCR support the hypothesis that L. lactis starter populations are mainly present in viable but not culturable state during ripening and, for this reason, culture-dependent methods have to be supplemented with direct analysis of cheese.

  15. Detection and viability of Lactococcus lactis throughout cheese ripening.

    Directory of Open Access Journals (Sweden)

    Marianna Ruggirello

    Full Text Available Recent evidences highlighted the presence of Lactococcus lactis during late cheese ripening. For this reason, the role of this microorganism, well known as dairy starter, should be reconsidered throughout cheese manufacturing and ripening. Thus, the main objective of this study was to develop a RT-qPCR protocol for the detection, quantification and determination of the viability of L. lactis in ripened cheese samples by direct analysis of microbial nucleic acids. Standard curves were constructed for the specific quantification of L. lactis in cheese matrices and good results in terms of selectivity, correlation coefficient and efficiency were obtained. Thirty-three ripened cheeses were analyzed and, on the basis of RNA analysis, twelve samples showed 106 to 108 CFU of L. lactis per gram of product, thirteen from 103 to 105 CFU/g, and in eight cheeses, L. lactis was not detected. Traditional plating on M17 medium led to loads ranging from 105 to 109 CFU/g, including the cheese samples where no L. lactis was found by RT-qPCR. From these cheeses, none of the colonies isolated on M17 medium was identified as L. lactis species. These data could be interpreted as a lack of selectivity of M17 medium where colony growth is not always related to lactococcal species. At the same time, the absence or low abundance of L. lactis isolates on M17 medium from cheese where L. lactis was detected by RT-qPCR support the hypothesis that L. lactis starter populations are mainly present in viable but not culturable state during ripening and, for this reason, culture-dependent methods have to be supplemented with direct analysis of cheese.

  16. Lysozyme expression in Lactococcus lactis

    NARCIS (Netherlands)

    Guchte, Maarten van de; Wal, Fimme Jan van der; Kok, Jan; Venema, Gerhardus

    1992-01-01

    Three lysozyme-encoding genes, one of eukaryotic and two of prokaryotic origin, were expressed in Lactococcus lactis subsp. lactis. Hen egg white lysozyme (HEL) could be detected in L. lactis lysates by Western blotting. No lysozyme activity was observed, however, presumably because of the absence o

  17. The effect of lactose, NaCl and an aero/anaerobic environment on the tyrosine decarboxylase activity of Lactococcus lactis subsp. cremoris and Lactococcus lactis subsp. lactis.

    Science.gov (United States)

    Buňková, Leona; Buňka, František; Pollaková, Eva; Podešvová, Tereza; Dráb, Vladimír

    2011-05-27

    The aim of this work was to study, under model conditions, combined effects of the concentration of lactose (0-1% w/v), NaCl (0-2% w/v) and aero/anaerobiosis on the growth and tyramine production in 3 strains of Lactococcus lactis subsp. lactis and 2 strains of L. lactis subsp. cremoris. The levels of the factors tested were chosen with respect to the conditions which can occur during the real process of natural cheese production, including the culture temperature (10 ± 1°C). In all strains tested, tyrosine decarboxylation was most influenced by NaCl concentration; the highest production of tyramine was obtained within the culture with the highest (2% w/v) salt concentration applied. Two of the strains L. lactis subsp. lactis produced tyramine only in broth with the highest NaCl concentration tested. In the remaining 3 strains of L. lactis, tyramine was detected under all conditions applied. The tested concentration of lactose and aero/anaerobiosis had a less significant effect on tyramine decarboxylation. However, it was also found that at the same concentrations of NaCl and lactose, a higher amount of tyramine was detected under anaerobic conditions. In all strains tested, tyramine decarboxylation started during the active growth phase of the cells.

  18. Time-resolved genetic responses of Lactococcus lactis to a dairy environment

    NARCIS (Netherlands)

    Bachmann, H.; Wilt, de L.; Kleerebezem, M.; Hylckama Vlieg, van J.E.T.

    2010-01-01

    Lactococcus lactis is one of main bacterial species found in mixed dairy starter cultures for the production of semi-hard cheese. Despite the appreciation that mixed cultures are essential for the eventual properties of the manufactured cheese the vast majority of studies on L. lactis were carried o

  19. Procedure for quantifiable assessment of nutritional parameters influencing nisin production by Lactococcus lactis subsp. lactis.

    Science.gov (United States)

    Chandrapati, S; O'Sullivan, D J

    1998-08-27

    A modified rapid plate assay procedure was developed, that allowed quantifiable measurement of nisin production by Lactococcus lactis growing directly on agar media. Using this direct plate assay, several nutritional parameters were assessed for their influence on nisin production (as distinct from their influence on growth) by L. lactis subsp. lactis ATCC 11454 growing on standard M17 based media over 3 and 6 h incubation periods. Glucose was found to be the optimal carbon source tested, with glycerol having the greatest suppressive effect. The addition of salts suppressed nisin production on a per cell basis, except MnCl2. This direct plate method proved to be a good pilot assay for rapidly and quantifiably investigating the initial effects of different parameters on nisin production by L. lactis, prior to conducting more intensive broth batch culture assays. The data obtained in this study indicate that certain nutritional parameters can impose a repressive effect on nisin production. Elucidation of how these parameters control the amount of nisin produced will provide further insight into the regulation of nisin biosynthesis in L. lactis.

  20. Catabolism of glucose and lactose in Bifidobacterium animalis subsp. lactis, studied by 13C Nuclear Magnetic Resonance.

    Science.gov (United States)

    González-Rodríguez, Irene; Gaspar, Paula; Sánchez, Borja; Gueimonde, Miguel; Margolles, Abelardo; Neves, Ana Rute

    2013-12-01

    Bifidobacteria are widely used as probiotics in several commercial products; however, to date there is little knowledge about their carbohydrate metabolic pathways. In this work, we studied the metabolism of glucose and lactose in the widely used probiotic strain Bifidobacterium animalis subsp. lactis BB-12 by in vivo (13)C nuclear magnetic resonance (NMR) spectroscopy. The metabolism of [1-(13)C]glucose was characterized in cells grown in glucose as the sole carbon source. Moreover, the metabolism of lactose specifically labeled with (13)C on carbon 1 of the glucose or the galactose moiety was determined in suspensions of cells grown in lactose. These experiments allowed the quantification of some intermediate and end products of the metabolic pathways, as well as determination of the consumption rate of carbon sources. Additionally, the labeling patterns in metabolites derived from the metabolism of glucose specifically labeled with (13)C on carbon 1, 2, or 3 in cells grown in glucose or lactose specifically labeled in carbon 1 of the glucose moiety ([1-(13)Cglucose]lactose), lactose specifically labeled in carbon 1 of the galactose moiety ([1-(13)Cgalactose]lactose), and [1-(13)C]glucose in lactose-grown cells were determined in cell extracts by (13)C NMR. The NMR analysis showed that the recovery of carbon was fully compatible with the fructose 6-phosphate, or bifid, shunt. The activity of lactate dehydrogenase, acetate kinase, fructose 6-phosphate phosphoketolase, and pyruvate formate lyase differed significantly between glucose and lactose cultures. The transcriptional analysis of several putative glucose and lactose transporters showed a significant induction of Balat_0475 in the presence of lactose, suggesting a role for this protein as a lactose permease. This report provides the first in vivo experimental evidence of the metabolic flux distribution in the catabolic pathway of glucose and lactose in bifidobacteria and shows that the bifid shunt is the only

  1. Effect of Bifidobacterium upon Clostridium difficile growth and toxicity when co-cultured in different prebiotic substrates

    Directory of Open Access Journals (Sweden)

    Lorena Valdés Varela

    2016-05-01

    Full Text Available The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI which manifestation ranges from mild diarrhoea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains (Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12 in the presence of various prebiotic substrates (Inulin, Synergy and Actilight or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants.

  2. Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent.

    Science.gov (United States)

    del Rio, Beatriz; Ladero, Victor; Redruello, Begoña; Linares, Daniel M; Fernández, Maria; Martín, Maria Cruz; Alvarez, Miguel A

    2015-06-01

    Lactococcus lactis is the lactic acid bacterial (LAB) species most widely used as a primary starter in the dairy industry. However, several strains of L. lactis produce the biogenic amine putrescine via the agmatine deiminase (AGDI) pathway. We previously reported the putrescine biosynthesis pathway in L. lactis subsp. cremoris GE2-14 to be regulated by carbon catabolic repression (CCR) via glucose but not lactose (Linares et al., 2013). The present study shows that both these sugars repress putrescine biosynthesis in L. lactis subsp. lactis T3/33, a strain isolated from a Spanish artisanal cheese. Furthermore, we demonstrated that both glucose and lactose repressed the transcriptional activity of the aguBDAC catabolic genes of the AGDI route. Finally, a screening performed in putrescine-producing dairy L. lactis strains determined that putrescine biosynthesis was repressed by lactose in all the L. lactis subsp. lactis strains tested, but in only one L. lactis subsp. cremoris strain. Given the obvious importance of the lactose-repression in cheese putrescine accumulation, it is advisable to consider the diversity of L. lactis in this sense and characterize consequently the starter cultures to select the safest strains.

  3. Potencial do soro de leite líquido como agente encapsulante de Bifidobacterium Bb-12 por spray drying: comparação com goma arábica Potential of liquid whey as the encapsulating agent of Bifidobacterium Bb-12 by spray drying: comparison with arabic gum

    Directory of Open Access Journals (Sweden)

    Fabiane Picinin de Castro-Cislaghi

    2012-09-01

    Full Text Available O objetivo do trabalho foi avaliar o potencial do soro de leite líquido como agente encapsulante de Bifidobacterium Bb-12 por spray drying, comparando-o com a goma arábica, a qual é tradicionalmente utilizada na tecnologia de microencapsulação. Foram determinados o rendimento da microencapsulação e a viabilidade das microcápsulas durante o armazenamento. Quando o soro de leite foi utilizado como agente encapsulante, o rendimento da microencapsulação foi maior e a viabilidade das células manteve-se elevada e constante durante doze semanas. O soro de leite apresentou-se como um eficiente agente encapsulante de Bifidobacterium por spray drying.The objective of this study was to evaluate the potential of liquid whey as the encapsulating agent Bifidobacterium Bb-12 by spray drying, compared with arabic gum, which is typically used in microencapsulation technology. The microencapsulation yield and viability during storage were determined. When the whey was used as the encapsulating agent, the microencapsulation yield was higher, and cell viability remained high and steady for twelve weeks. The whey was shown to be an effective encapsulating agent of Bifidobacterium by spray drying.

  4. Expression of biologically active murine interleukin-18 in Lactococcus lactis.

    Science.gov (United States)

    Feizollahzadeh, Sadegh; Khanahmad, Hossein; Rahimmanesh, Ilnaz; Ganjalikhani-Hakemi, Mazdak; Andalib, Alireza; Sanei, Mohammad Hossein; Rezaei, Abbas

    2016-11-01

    The food-grade bacterium Lactococcus lactis is increasingly used for heterologous protein expression in therapeutic and industrial applications. The ability of L. lactis to secrete biologically active cytokines may be used for the generation of therapeutic cytokines. Interleukin (IL)-18 enhances the immune response, especially on mucosal surfaces, emphasizing its therapeutic potential. However, it is produced as an inactive precursor and has to be enzymatically cleaved for maturation. We genetically manipulated L. lactis to secrete murine IL-18. The mature murine IL-18 gene was inserted downstream of a nisin promoter in pNZ8149 plasmid and the construct was used to transform L. lactis NZ3900. The transformants were selected on Elliker agar and confirmed by restriction enzyme digestion and sequencing. The expression and secretion of IL-18 protein was verified by SDS-PAGE, western blotting and ELISA. The biological activity of recombinant IL-18 was determined by its ability to induce interferon (IFN)-γ production in L. lactis co-cultured with murine splenic T cells. The amounts of IL-18 in bacterial lysates and supernatants were 3-4 μg mL(-1) and 0.6-0.7 ng mL(-1), respectively. The successfully generated L. lactis strain that expressed biologically active murine IL-18 can be used to evaluate the possible therapeutic effects of IL-18 on mucosal surfaces.

  5. Fermentation-induced variation in heat and oxidative stress phenotypes of Lactococcus lactis MG1363 reveals transcriptome signatures for robustness

    NARCIS (Netherlands)

    A.R. Dijkstra; W. Alkema; M.J.C. Starrenburg; J. Hugenholtz; S.A.F.T. van Hijum; P.A. Bron

    2014-01-01

    Background: Lactococcus lactis is industrially employed to manufacture various fermented dairy products. The most cost-effective method for the preservation of L. lactis starter cultures is spray drying, but during this process cultures encounter heat and oxidative stress, typically resulting in low

  6. Short communication: Viability of culture organisms in honey-enriched acidophilus-bifidus-thermophilus (ABT)-type fermented camel milk.

    Science.gov (United States)

    Varga, L; Süle, J; Nagy, P

    2014-11-01

    The aim of this research was to monitor the survival during refrigerated storage of Lactobacillus acidophilus LA-5 (A), Bifidobacterium animalis ssp. lactis BB-12 (B), and Streptococcus thermophilus CHCC 742/2130 (T) in cultured dairy foods made from camel and, for comparison, cow milks supplemented with black locust (Robinia pseudoacacia L.) honey and fermented by an acidophilus-bifidus-thermophilus (ABT)-type culture. Two liters of dromedary camel milk and 2 L of cow milk were heated to 90 °C and held for 10 min, then cooled to 40 °C. One half of both types of milk was fortified with black locust honey at the rate of 5.0% (wt/vol), whereas the other half was devoid of honey and served as a control. The camel and cow milks with and without honey were subsequently inoculated with ABT-5 culture and were fermented at 37 °C until a pH value of 4.6 was reached. Thereafter, the probiotic fermented milks were cooled to 15 °C in ice water and were each separated into 18 fractions that were transferred in sterile, tightly capped centrifuge tubes. After 24 h of cooling at 8 °C (d 0), the samples were stored at refrigeration temperature (4 °C). Three tubes of all 4 products (i.e., fermented camel and cow milks with and without honey) were taken at each sampling time (i.e., following 0, 7, 14, 21, 28, and 35 d of storage), and the counts of characteristic microorganisms and those of certain spoilage microbes (yeasts, molds, coliforms, Escherichia coli) were enumerated. The entire experimental program was repeated twice. The results showed that addition of black locust honey at 5% to heat-treated camel and cow milks did not influence the growth and survival of starter streptococci during production and subsequent refrigerated storage of fermented ABT milks. In contrast, honey improved retention of viability of B. animalis ssp. lactis BB-12 in the camel milk-based product during storage at 4 °C up to 5 wk. No spoilage organisms were detected in any of the samples tested

  7. Lactococcus lactis as host for overproduction of functional membrane proteins

    NARCIS (Netherlands)

    Kunji, ERS; Slotboom, DJ; Poolman, B

    2003-01-01

    Lactococcus lactis has many properties that are ideal for enhanced expression of membrane proteins. The organism is easy and inexpensive to culture, has a single membrane and relatively mild proteolytic activity. Methods for genetic manipulation are fully established and a tightly controlled

  8. Lactococcus lactis as host for overproduction of functional membrane proteins

    NARCIS (Netherlands)

    Kunji, ERS; Slotboom, DJ; Poolman, B

    2003-01-01

    Lactococcus lactis has many properties that are ideal for enhanced expression of membrane proteins. The organism is easy and inexpensive to culture, has a single membrane and relatively mild proteolytic activity. Methods for genetic manipulation are fully established and a tightly controlled promote

  9. Improved viability of bifidobacteria in fermented milk by cocultivation with Lactococcus lactis subspecies lactis.

    Science.gov (United States)

    Odamaki, T; Xiao, J Z; Yonezawa, S; Yaeshima, T; Iwatsuki, K

    2011-03-01

    The poor survival of probiotic bacteria in commercial yogurts may limit their potential to exert health benefits in humans. The objective was to improve the survival of bifidobacteria in fermented milk. Cocultivation with some strains of Lactococcus lactis ssp. lactis improved the survival of bifidobacteria in fermented milk during refrigerated storage. Studies on one strain, Lc. lactis ssp. lactis MCC866, showed that the concentrations of dissolved oxygen were kept lower in the cocultivated fermented milk during storage compared with monocultured Bifidobacterium longum BB536 or samples cocultured with another noneffective Lc. lactis ssp. lactis strain. Degradation of genomic DNA was suppressed in the cocultivating system with Lc. lactis ssp. lactis MCC866. Several genes that participated in protection from active oxygen species (e.g., genes coding for alkyl hydroperoxide reductase and Fe(2+) transport system) were expressed at higher levels during refrigerated storage in Lc. lactis ssp. lactis MCC 866 compared with another noneffective Lc. lactis ssp. lactis strain. Concentration of free iron ion was also lower in supernatants of fermented milk cocultivated with B. longum BB536 and Lc. lactis ssp. lactis MCC866. These results suggest that Lc. lactis ssp. lactis MCC 866 is potentially superior in reducing oxygen damage and consequently improves the survival of bifidobacteria in the cocultivating system. This cocultivation system is of industrial interest for producing fermented milk containing viable bifidobacteria with long shelf life.

  10. Development of a rapid SNP-typing assay to differentiate Bifidobacterium animalis ssp. lactis strains used in probiotic-supplemented dairy products.

    Science.gov (United States)

    Lomonaco, Sara; Furumoto, Emily J; Loquasto, Joseph R; Morra, Patrizia; Grassi, Ausilia; Roberts, Robert F

    2015-02-01

    Identification at the genus, species, and strain levels is desirable when a probiotic microorganism is added to foods. Strains of Bifidobacterium animalis ssp. lactis (BAL) are commonly used worldwide in dairy products supplemented with probiotic strains. However, strain discrimination is difficult because of the high degree of genome identity (99.975%) between different genomes of this subspecies. Typing of monomorphic species can be carried out efficiently by targeting informative single nucleotide polymorphisms (SNP). Findings from a previous study analyzing both reference and commercial strains of BAL identified SNP that could be used to discriminate common strains into 8 groups. This paper describes development of a minisequencing assay based on the primer extension reaction (PER) targeting multiple SNP that can allow strain differentiation of BAL. Based on previous data, 6 informative SNP were selected for further testing, and a multiplex preliminary PCR was optimized to amplify the DNA regions containing the selected SNP. Extension primers (EP) annealing immediately adjacent to the selected SNP were developed and tested in simplex and multiplex PER to evaluate their performance. Twenty-five strains belonging to 9 distinct genomic clusters of B. animalis ssp. lactis were selected and analyzed using the developed minisequencing assay, simultaneously targeting the 6 selected SNP. Fragment analysis was subsequently carried out in duplicate and demonstrated that the assay yielded 8 specific profiles separating the most commonly used commercial strains. This novel multiplex PER approach provides a simple, rapid, flexible SNP-based subtyping method for proper characterization and identification of commercial probiotic strains of BAL from fermented dairy products. To assess the usefulness of this method, DNA was extracted from yogurt manufactured with and without the addition of B. animalis ssp. lactis BB-12. Extracted DNA was then subjected to the minisequencing

  11. Engineering of sugar metabolism in Lactococcus lactis

    NARCIS (Netherlands)

    Pool, Weia Arianne

    2008-01-01

    Short English Summary Lactococcus lactis is a lactic acid bacterium used in the dairy industry. This thesis decribes the genetic engineering performed on the sugar metabolism of L. lactis. Besides our fundamental interest for sugar metabolism and its regulation in L. lactis, this project had the int

  12. 乳酸乳球菌与酵母菌混合培养时菌间的相互影响%Interaction of co-cultured yeasts and Lactococcus lactis

    Institute of Scientific and Technical Information of China (English)

    王永丽; 李晓东; 姚春燕; 郭晶; 王秋宇

    2012-01-01

    研究了干酪常用发酵剂——乳酸乳球菌与干酪中两株常见酵母菌——耶罗解脂酵母及汉逊德巴利酵母混合培养时的相互影响.在营养肉汤中对三株菌单独及混合培养,比浊法测定其生长浓度,同时在脱脂乳培养基中做相同培养,然后检测活菌数、球菌产酸及菌株自溶情况.结果表明:乳酸乳球菌、耶罗解脂酵母及汉逊德巴利酵母三株菌混合培养时其菌数及自溶度,均有显著增加,表明混合培养加快了菌株生长代谢的速率.这对研究干酪促熟及风味调整具有重要意义.%In this experiment, co-cultured Lactococcus lactis and two normal yeasts in cheese, Debaryomyces. hansenii and Yarrowia .lipolytica, to define the interaction among them. Three strains were alone and co-cultured in nutrient broth, determined their turbidity. Same cultured in the skim milk medium, and then detected the number of viable cells, acidity of medium and autolysis of the strains. The results showed that: plate count and autolysis were significantly increased (p<0.05) when co-cultured three strains, accelerated the rate of the strains of growth and metabolism. There is great significance to cheese ripening and flavor .

  13. Producción de ácido láctico por una mezcla de Lactococcus lactis y Streptococcus salivarius en fermentaciones en discontinuo Lactic acid production from a mixture of cultures of Lactococcus lactis and Streptococcus salivarius using batch fermentation

    Directory of Open Access Journals (Sweden)

    Rodríguez de Stouvenel Aida

    2005-07-01

    Full Text Available Se estudió la producción de ácido láctico (AL, la conversión de sustrato (CG, y el rendimiento(Yp/s de Lactococcus lactis, Streptococcus salivarius y una mezcla 1:1 de ambas cepas en sustrato glucosado. Lactococcus lactis se seleccionó de 20 cepas homofermentativas aisladas de cultivos de caña de azúcar variedad CC85-92 y Streptococcus salivarius se aisló de un fermento láctico comercial. En fermentaciones llevadas a cabo con la mezcla microbiana, a 32 °C con 60 gL-1 de glucosa y pH 6,0 se obtuvo un máximo de 47,63 gL-1 de ácido láctico, conversión de glucosa de 95,4% y rendimiento en producto de 0,83 gg-1. Palabras clave: caña de azúcar, Lactococcus lactis, Streptococcus salivarius, mezcla de cepas.Production of lactic acid (LA, yield (Yp/s and substrate conversion (SC from Lactococcus lactis, Streptococcus salivarius and their mixtures were tested. Lactococcus lactis was selected from 20 homofermentative strains isolated from a sugar cane crop (variety CC85-92 and Streptococcus salivarius was isolated from a commercial lactic ferment. Batch fermentation experiments at 32 C with a glucose concentration of 60 gL-1 and a pH of 6,0 were carried out. A maximum of 47,63 gL-1 of lactic acid concentration, 95,4% of substrate conversion and 83 gg-1 were obtained from the mixture of strains after a fermentation of 48 h. Key words: sugar cane, Lactococcus lactis, Streptococcus salivarius, mixture of strains.

  14. Bifidobacterium lactis attenuates onset of inflammation in a murine model of colitis

    Institute of Scientific and Technical Information of China (English)

    David Philippe; Stéphanie Blum; Laurent Favre; Francis Foata; Oskar Adolfsson; Genevieve Perruisseau-Carrier; Karine Vidal; Gloria Reuteler; Johanna Dayer-Schneider; Christoph Mueller

    2011-01-01

    AIM: To assess the anti-inflammatory effect of the probiotic Bifidobacterium lactis (B. lactis ) in an adoptive transfer model of colitis. METHODS: Donor and recipient mice received either B. lactis or bacterial culture medium as control (deMan Rogosa Sharpe) in drinking water for one week prior to transfer of a mix of naive and regulatory T cells until sacrifice. RESULTS: All recipient mice developed signs of colonic inflammation, but a significant reduction of weight loss was observed in B. lactis -fed recipient mice compared to control mice. Moreover, a trend toward a diminution of mucosal thickness and attenuated epithelial damage was revealed. Colonic expression of pro-inflammatory and T cell markers was significantly reduced in B. lactis - fed recipient mice compared to controls. Concomitantly, forkhead box protein 3, a marker of regulatory T cells, was significantly up-regulated by B. lactis . CONCLUSION: Daily oral administration of B. lactis was able to reduce inflammatory and T cells mediators and to promote regulatory T cells specific markers in a mouse model of colitis.

  15. Sequencing and transcriptional analysis of the biosynthesis gene cluster of putrescine-producing Lactococcus lactis.

    Science.gov (United States)

    Ladero, Victor; Rattray, Fergal P; Mayo, Baltasar; Martín, María Cruz; Fernández, María; Alvarez, Miguel A

    2011-09-01

    Lactococcus lactis is a prokaryotic microorganism with great importance as a culture starter and has become the model species among the lactic acid bacteria. The long and safe history of use of L. lactis in dairy fermentations has resulted in the classification of this species as GRAS (General Regarded As Safe) or QPS (Qualified Presumption of Safety). However, our group has identified several strains of L. lactis subsp. lactis and L. lactis subsp. cremoris that are able to produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. Putrescine is a biogenic amine that confers undesirable flavor characteristics and may even have toxic effects. The AGDI cluster of L. lactis is composed of a putative regulatory gene, aguR, followed by the genes (aguB, aguD, aguA, and aguC) encoding the catabolic enzymes. These genes are transcribed as an operon that is induced in the presence of agmatine. In some strains, an insertion (IS) element interrupts the transcription of the cluster, which results in a non-putrescine-producing phenotype. Based on this knowledge, a PCR-based test was developed in order to differentiate nonproducing L. lactis strains from those with a functional AGDI cluster. The analysis of the AGDI cluster and their flanking regions revealed that the capacity to produce putrescine via the AGDI pathway could be a specific characteristic that was lost during the adaptation to the milk environment by a process of reductive genome evolution.

  16. Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk.

    Science.gov (United States)

    Alegría, Angel; Delgado, Susana; Roces, Clara; López, Belén; Mayo, Baltasar

    2010-09-30

    Sixty bacterial strains were encountered by random amplification of polymorphic DNA (RAPD) and repetitive extragenic palindromic (REP) typing in a series of 306 Lactococcus lactis isolates collected during the manufacturing and ripening stages of five traditional, starter-free cheeses made from raw milk. Among the 60 strains, 17 were shown to produce bacteriocin-like compounds in both solid and liquid media. At a genotypic level, 16 of the strains were identified by molecular methods as belonging to L. lactis subsp. lactis and one to L. lactis subsp. cremoris. Among the L. lactis subsp. lactis strains, phenotypic and genetic data determined that eleven produced either nisin A (nine strains) or nisin Z (two strains), and that five produced lactococcin 972. Variable levels of the two bacteriocins were produced by different strains. In addition, nisin was shown to be produced in inexpensive, dairy- and meat-based media, which will allow the practical application of its producing strains in industrial processes. Specific PCR and nucleotide and deduced amino acid sequence analysis identified the inhibitor produced by the single L. lactis subsp. cremoris isolate as a lactococcin G-like bacteriocin. Beyond the use of bacteriocins as functional ingredients for the biopreservation of foods, the newly identified bacteriocin-producing L. lactis strains from traditional cheeses may also be useful for designing starter cultures with protective properties and/or adjunct cultures for accelerating cheese ripening.

  17. Spray-drying process preserves the protective capacity of a breast milk-derived Bifidobacterium lactis strain on acute and chronic colitis in mice

    Science.gov (United States)

    Burns, Patricia; Alard, Jeanne; Hrdỳ, Jiri; Boutillier, Denise; Páez, Roxana; Reinheimer, Jorge; Pot, Bruno; Vinderola, Gabriel; Grangette, Corinne

    2017-01-01

    Gut microbiota dysbiosis plays a central role in the development and perpetuation of chronic inflammation in inflammatory bowel disease (IBD) and therefore is key target for interventions with high quality and functional probiotics. The local production of stable probiotic formulations at limited cost is considered an advantage as it reduces transportation cost and time, thereby increasing the effective period at the consumer side. In the present study, we compared the anti-inflammatory capacities of the Bifidobacterium animalis subsp. lactis (B. lactis) INL1, a probiotic strain isolated in Argentina from human breast milk, with the commercial strain B. animalis subsp. lactis BB12. The impact of spray-drying, a low-cost alternative of bacterial dehydration, on the functionality of both bifidobacteria was also investigated. We showed for both bacteria that the spray-drying process did not impact on bacterial survival nor on their protective capacities against acute and chronic colitis in mice, opening future perspectives for the use of strain INL1 in populations with IBD. PMID:28233848

  18. A comparative study between inhibitory effect of L. lactis and nisin on important pathogenic bacteria in Iranian UF Feta cheese

    Directory of Open Access Journals (Sweden)

    Saeed Mirdamadi

    2015-02-01

    Full Text Available   Introduction : In the present study, the inhibitory effect of nisin-producing Lactococcus lactis during co-culture and pure standard nisin were assessed against selected foodborne pathogenes in growth medium and Iranian UF Feta cheese. In comparison L lactis, not only proves flavor but also plays a better role in microbial quality of Iranian UF Feta cheese as a model of fermented dairy products.   Materials and method s: L. lactis subsp. lactis as nisin producer strain, Listeria monocytogenes, Escherichia coli and Staphylococcus aureus as pathogenic strains were inoculated in Ultra-Filtered Feta cheese. Growth curve of bacterial strains were studied by colony count method in growth medium and UF Feta cheese separately and during co-culture with L. lactis. Nisin production was determined by agar diffusion assay method against susceptible test strain and confirmed by RP-HPLC analysis method.   Results : Counts of L. monocytogenes decreased in cheese sample containing L. lactis and standard nisin, to 103 CFU/g after 7 days and it reached to undetectable level within 2 weeks. S. aureus counts remained at its initial number, 105 CFU/g, after 7 days then decreased to 104 CFU/g on day 14 and it was not detectable on day 28. E. coli numbers increased in both treatments after 7 days and then decreased to 104 CFU/g after 28 days. Despite the increasing number of E. coli in growth medium containing nisin, due to the synergistic effect of nisin and other metabolites produced by Lactococcus lactis and starter cultures, the number of E. coli decreased with slow rate . Discussion and conclusion : The results showed, L. monocytogenes was inhibited by L. lactis before entering the logarithmic phase during co-culture. S. aureus was also inhibited during co-culture, but it showed less sensitivity in comparison with L. monocytogenes. However, the number of E. coli remained steady in co-culture with L. lactis. Also, we found that, in all cheese samples, E

  19. Plasma mutation breeding of Lactococcus lactis in producing Nisin

    Directory of Open Access Journals (Sweden)

    Shuanli ZHANG

    2015-12-01

    Full Text Available With Nisin-producing Lactococcus lactis as the starting strain, the strain with tolerance to 10 000 IU/mL Nisin is selected on high-concentration Nisin medium. The Nisin titer of the strain is up to 1 680 IU/mL. As the starting strain, the strain is further treated by atmospheric and room temperature plasmas(ARTP and mutant strain for high yield of Nisin is quickly selected with 24 well culture plate. At a survival rate of 3%, the positive mutation rate of the Lactococcus lactis is 273% compared with the starting strain. The results of shake flask culture further confirmed that one positive mutant strains could produce 6 120 IU/mL Nisin.

  20. Modeling Lactococcus lactis using a genome-scale flux model

    Directory of Open Access Journals (Sweden)

    Nielsen Jens

    2005-06-01

    Full Text Available Abstract Background Genome-scale flux models are useful tools to represent and analyze microbial metabolism. In this work we reconstructed the metabolic network of the lactic acid bacteria Lactococcus lactis and developed a genome-scale flux model able to simulate and analyze network capabilities and whole-cell function under aerobic and anaerobic continuous cultures. Flux balance analysis (FBA and minimization of metabolic adjustment (MOMA were used as modeling frameworks. Results The metabolic network was reconstructed using the annotated genome sequence from L. lactis ssp. lactis IL1403 together with physiological and biochemical information. The established network comprised a total of 621 reactions and 509 metabolites, representing the overall metabolism of L. lactis. Experimental data reported in the literature was used to fit the model to phenotypic observations. Regulatory constraints had to be included to simulate certain metabolic features, such as the shift from homo to heterolactic fermentation. A minimal medium for in silico growth was identified, indicating the requirement of four amino acids in addition to a sugar. Remarkably, de novo biosynthesis of four other amino acids was observed even when all amino acids were supplied, which is in good agreement with experimental observations. Additionally, enhanced metabolic engineering strategies for improved diacetyl producing strains were designed. Conclusion The L. lactis metabolic network can now be used for a better understanding of lactococcal metabolic capabilities and potential, for the design of enhanced metabolic engineering strategies and for integration with other types of 'omic' data, to assist in finding new information on cellular organization and function.

  1. [Characteristics and identification of bacteriocins produced by Lactococcus lactis subsp. lactis 194-K].

    Science.gov (United States)

    Ustiugova, E A; Timofeeva, A V; Stoianova, L G; Netrusov, A I; Katrukha, G S

    2012-01-01

    The Lactococcus lactis subsp. lactis 194-K strain has been established to be able to produce two bacteriocins, one of which was identified as the known lantibiotic nisin A, and the other 194-D bacteriocin represents a polypeptide with a 2589-Da molecular mass and comprises 20 amino acid residues. Both bacteriocins were produced in varying proportions in all of the studied nutrient media, which support the growth of the producer. Depending on the cultivation medium, the nisin A content was 380- to 1123-fold lower in the 194-K stain culture fluid than that of the 194-D peptide. In comparision to to nisin A Bacteriocin 194-D possessed a wide range of antibacterial activity and suppressed the growth of both Gram-positive and Gram-negative bacteria. An optimal medium for 194-D bacteriocin synthesis was shown to be a fermentation medium which contained yeast extract, casein hydrolysate, and potassium phosphate. The biosynthesis ofbacteriocin 194-D by the 194-K strain in these media occurred parallel to producer growth, and its maximal accumulation in the culture fluid was observed at 14-20 h of the strain's growth.

  2. Genome Sequence of Lactococcus lactis subsp. lactis NCDO 2118, a GABA-Producing Strain

    DEFF Research Database (Denmark)

    Oliveira, Letícia C; Saraiva, Tessália D L; Soares, Siomar C

    2014-01-01

    Lactococcus lactis subsp. lactis NCDO 2118 is a nondairy lactic acid bacterium, a xylose fermenter, and a gamma-aminobutyric acid (GABA) producer isolated from frozen peas. Here, we report the complete genome sequence of L. lactis NCDO 2118, a strain with probiotic potential activity....

  3. Over-expressed CmbT multidrug resistance transporter improves the fitness of Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Filipić Brankica

    2013-01-01

    Full Text Available The influence of the over-expression of CmbT multidrug resistance transporter on the growth rate of Lactococcus lactis NZ9000 was studied. L. lactis is a lactic acid bacteria (LAB widely used as a starter culture in dairy industry. Recently characterized CmbT MDR transporter in L. lactis confers resistance to a wide variety of toxic compounds as well as to some clinically relevant antibiotics. In this study, the cmbT gene was over-expressed in the strain L. lactis NZ9000 in the presence of nisin inducer. Over-expression of the cmbT gene in L. lactis NZ9000 was followed by RT-PCR. The obtained results showed that the cmbT gene was successfully over-expressed by addition of sub-inhibitory amounts of nisin. Growth curves of L. lactis NZ9000/pCT50 over-expressing the cmbT gene and L. lactis NZ9000 control strain were followed in the rich medium as well as in the chemically defined medium in the presence solely of methionine (0.084 mM or mix of methionine and cysteine (8.4 mM and 8.2 mM, respectively. Resulting doubling times revealed that L. lactis NZ9000/pCT50 had higher growth rate comparing to the control strain. This could be a consequence of the CmbT efflux activity, which improves the fitness of the host bacterium through the elimination of toxic compounds from the cell.

  4. Lactococcus lactis metabolism and gene expression during growth on plant tissues.

    Science.gov (United States)

    Golomb, Benjamin L; Marco, Maria L

    2015-01-01

    Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations.

  5. The Lactococcus lactis Thioredoxin System

    DEFF Research Database (Denmark)

    Efler, Petr

    -dependent thioredoxin reductase (NTR) in order to complete its catalytic cycle. Glutathione-dependent glutaredoxin complements Trx in many organisms. This thesis focuses on disulfide reduction pathways in Lactococcus lactis, an important industrial microorganism used traditionally for cheese and buttermilk production...... ribonucleotide reductase (NrdEF). Physiological functions of LlTrxA and LlTrxD were studied using ΔtrxA, ΔtrxD and ΔtrxAΔtrxD mutant strains of L. lactis ssp. cremoris MG1363 exposed to various stress conditions and comparing them to the wild type (wt) strain. These experiments revealed that the ΔtrxA genotype...... with a previous study showing that NTR in L. lactis is not essential. Therefore, the presence of an additional thiol redox system is hypothesized. Biochemical studies demonstrated that recombinant LlTrxA, LlTrxD and LlNrdH are substrates for LlNTR, while only LlTrxA and LlNrdH are efficiently reduced by E. coli...

  6. Probiotic Lactococcus lactis: A Review

    Directory of Open Access Journals (Sweden)

    Priti Khemariya

    2017-07-01

    Full Text Available Lactococcus lactis plays a critical role in food, dairy and health sectors. In food and dairy industries, it is found in production processes of various fermented products such as sausages, pickled vegetables, beverages such as beer and wine, breads, soymilk kefir, sour milk, butter, cream, fresh cheese and different types of cheeses, like Cheddar, Colby, Cottage cheese, Camembert, cream cheese, Roquefort and Brie. Additionally, there is an increasing interest towards the possible health benefits of the probiotic activity of this organism which generally is species and strain specific and depends upon the survival in gastrointestinal tract with sufficient number. Certain strains have the ability to produce antimicrobial peptide called nisin which exhibits preservative potential. Therefore, application of bacteriocinogenic Lactococcus lactis in food and dairy sectors to preserve foods as a natural way and contributing health promoting attributes due to probiotic activity would definitely fulfil today’s consumer demands. This paper aimed to review the adaptation, antibiotic resistance, therapeutic and preservation potential of bacteriocinogenic and probiotic Lactococcus lactis.

  7. ELABORACIÓN DE QUESITO ANTIOQUEÑO REDUCIDO EN SODIO Y ADICIONADO CON Bifidobacterium lactis

    Directory of Open Access Journals (Sweden)

    EDINSON ELIÉCER BEJARANO TORO

    2017-06-01

    Full Text Available The quesito antioqueño (QA, fresh, soft, milled and salty cheese, without added bacteria. This cheese contains 2,1% of sodium chloride. Were supplemented with Bifidobacterium lactis (bb12 and It was salty with NaCl (Q1 and some mixtures of NaCl/KCl (3:1 (Q2 and 1:1 (Q3, w/w, to reduce the sodium content and give probiotic characteristics. There were no significant differences between treatments (Q1, Q2 and Q3 (P>0,05 in some compositional (moisture, MG/MS, total protein, ash, acidity, chemical (pH and physical (hardness, adhesiveness, springiness, cohesiveness, gumminess, chewiness, resilience characteristics. A significant difference was observed by storage time in moisture, pH, protein content and acidity (P<0,05. With respect to Na and K content, there was a significant differences between treatments (P<0,05 but was not in the Ca content. In Q2 the Na level was decreased 24,2% and K increased 143% in average; in Q3 the Na level was decreased 48,3% and K increased 311%. The processed QA with 50% of Na substitution maintains the traditional compositional a physicochemical characteristics, therefore, according to this investigation results, can be performed this substitution and it is an excellent matrix to include probiotics in the people diet.

  8. Genome-Wide Transcriptional Responses to Carbon Starvation in Nongrowing Lactococcus lactis

    NARCIS (Netherlands)

    Ercan,O.; Wels, M.; Smid. E.J.; Kleerebezem, M.

    2015-01-01

    This paper describes the transcriptional adaptations of nongrowing, retentostat cultures of Lactococcus lactis to starvation. Near-zero-growth cultures (μ = 0.0001 h−1) obtained by extended retentostat cultivation were exposed to starvation by termination of the medium supply for 24 h, followed by a

  9. Genome-wide transcriptional responses to carbon starvation in nongrowing Lactococcus lactis

    NARCIS (Netherlands)

    Ercan, O.; Wels, M.; Smid, E.J.; Kleerebezem, M.

    2015-01-01

    This paper describes the transcriptional adaptations of nongrowing, retentostat cultures of Lactococcus lactis to starvation. Near-zero-growth cultures (µ = 0.0001 h-1) obtained by extended retentostat cultivation were exposed to starvation by termination of the medium supply for 24 h, followed by a

  10. Glutathione protects Lactococcus lactis against oxidative stress

    NARCIS (Netherlands)

    Li, Y.; Hugenholtz, J.; Abee, T.; Molenaar, D.

    2003-01-01

    Glutathione was found in several dairy Lactococcus lactis strains grown in M17 medium. None of these strains was able to synthesize glutathione. In chemically defined medium, L. lactis subsp. cremoris strain SK11 was able to accumulate up to similar to60 mM glutathione when this compound was added t

  11. Tulum Peynirlerinden izole Edilen Lactococcus lactis subsp. lactis YBML9 ve

    Directory of Open Access Journals (Sweden)

    Yasin TUNCER

    2009-04-01

    Full Text Available Bu çalısmanın amacı tulum peynirlerinden izole edilen Lactococcus lactis suslarının fenotipik tanısı ve bu suslar tarafından üretilen bakteriyosinlerin kısmi karakterizasyonlarıdır. Bu amaçla Türkiye'nin sekiz farklı ilinden (Ankara, Antalya, Burdur, Denizli, Erzincan, Isparta, İstanbul ve İzmir yöresel pazarlardan toplanan 60 adet tulum peyniri örneginden 40 adet Lactococcus lactis susu (31 adet L. lactis subsp. lactis ve 9 adet L. lactis subsp. cremoris izole edildi. 40 adet L. lactis susu içerisinden, 2 adet L. lactis subsp. lactis (YBML9 ve YBML21 susu bakteriyosin üretme yeteneginde bulundu. L. lactis subsp. lactis YBML9 ve YBML21 susları tarafından üretilen bakteriyosinler, farklı enzim, pH ve sıcaklık uygulamaları sonucu; sırasıyla nisin ve laktisin 481 olarak tanımlandı.

  12. New Antifungal Bacteriocin-Synthesizing Strains of Lactococcus lactis ssp. lactis as the Perspective Biopreservatives for Protection of Raw Smoked Sausages

    Directory of Open Access Journals (Sweden)

    L. G. Stoyanova

    2010-01-01

    Full Text Available Problem statement: Screening for the effective bacteriocin-synthesizing strains of Lactococcus lactis as the perspective biopreservatives was performed. We used a raw milk and dairy products from different climatic regions as well as from powerful drinks of mixed lactic acid and alcoholic fermentation: kurunga, kumiss and Iranian Dough, that were widely used by local population to prevent diseases. Approach: The special interest was paid to isolates of lactococci with antagonistic activity. According to their morphological, cultural, physiological, biochemical properties and sequence of 16S rRNA gene they were identified as Lactococcus lactis ssp. lactis. Only nine from the selected 94 strains expressed a broad spectrum of activity against Gram-positive and Gramnegative bacteria including pathogens (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Salmonella gallinarum, moulds (Aspergillus, Fusarium, Penicillium genera, as well as yeasts (Rhodotorula, Candida. Results: It reveals the unique biological properties for isolated natural strains of Lactococcus lactis species. Most effective new bacteriocin-synthesizing strains 194 and K-205 were isolated from raw cow milk and kurunga from Buryatia. These strains had high antibiotic activity up to 3600 and 2700 IU mL-1 as compared to nisin and up to 2500-1700 IU mL-1 as compared to fungicidal antibiotic nistatin. In our experiments we used raw smoked sausages that were infected with fungi. The identification of this infection showed the presence of Eurotium repens de Bary on the sausages. Treatment of the raw smoked sausages with cultural broth of L.lactis ssp. lactis 194 and K-205 inhibited growth of these microorganisms. After treatment the sausages had longer shelf-life and was in accordance with basal production data (Russian State Standard Specification 16131-86. Conclusion: The results of this study indicated that the treatment with

  13. Recombinant expression of Laceyella sacchari thermitase in Lactococcus lactis.

    Science.gov (United States)

    Jørgensen, Casper M; Madsen, Søren M; Vrang, Astrid; Hansen, Ole C; Johnsen, Mads G

    2013-12-01

    Thermitase (EC 3.4.21.66) is a thermostable endo-protease with the ability to convert various food relevant substrates into low-molecular weight peptides. A thermitase produced by Laceyella sacchari strain DSM43353 was found to have a mature amino acid sequence nearly identical to that of the original thermitase isolated from Thermoactinomyces vulgaris. The DSM43353 thermitase gene sequence contains a pro-peptide including parts of an I9 inhibitor motif. Expression of the thermitase gene in the Lactococcus lactis P170 expression system allowed secretion of stable thermitase in an auto-induced fermentation setup at 30°C. Thermitase accumulated in the culture supernatant during batch fermentations and was easily activated at 50°C or by prolonged dialysis. The activation step resulted in an almost complete degradation of endogenous L. lactis host proteins present in the supernatant. Mature activated product was stable at 50°C and functional at pH values between pH 6 and pH 11, suggesting that substrate hydrolysis can be performed over a broad range of pH values. The L. lactis based P170 expression system is a simple and safe system for obtaining food compatible thermitase in the range of 100 mg/L.

  14. Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis.

    Science.gov (United States)

    Ramnath, Manilduth; Arous, Safia; Gravesen, Anne; Hastings, John W; Héchard, Yann

    2004-08-01

    Sensitivity to class IIa bacteriocins from lactic acid bacteria was recently associated with the mannose phosphotransferase system (PTS) permease, in Listeria monocytogenes. To assess the involvement of this protein complex in class IIa bacteriocin activity, the mptACD operon, encoding, was heterologously expressed in an insensitive species, namely Lactococcus lactis, using the NICE double plasmid system. Upon induction of the cloned operon, the recombinant Lc. lactis became sensitive to leucocin A. Pediocin PA-1 and enterocin A also showed inhibitory activity against Lc. lactis cultures expressing mptACD. Furthermore, the role of the three genes of the mptACD operon was investigated. Derivative plasmids containing various combinations of these three genes were made from the parental mptACD plasmid by divergent PCR. The results showed that expression of mptC alone is sufficient to confer sensitivity to class IIa bacteriocins in Lc. lactis.

  15. Stress Response in Lactococcus lactis : Cloning, Expression Analysis, and Mutation of the Lactococcal Superoxide Dismutase Gene

    NARCIS (Netherlands)

    Sanders, Jan Willem; Leenhouts, Kees J.; Haandrikman, Alfred J.; Venema, Gerard; Kok, Jan

    In an analysis of the stress response of Lactococcus lactis, three proteins that were induced under low pH culture conditions were detected. One of these was identified as the lactococcal superoxide dismutase (SodA) by N-terminal amino acid sequence analysis. The gene encoding this protein,

  16. Lactococcus lactis - a diploid bacterium

    DEFF Research Database (Denmark)

    Michelsen, Ole; Hansen, Flemming G.; Jensen, Peter Ruhdal

    In contrast to higher eukaryotes, bacteria are haploid, i.e. they store their genetic information in a single chromosome, which is then duplicated during the cell cycle. If the growth rate is sufficiently low, the bacterium is born with only a single copy of the chromosome, which gets duplicated...... before the bacterium divides. Fast-growing bacteria have overlapping rounds of replication, and can contain DNA corresponding to more than four genome equivalents. However, the terminus region of the chromosome is still present in just one copy after division, and is not duplicated until right before...... the next division. Thus, the regions of the chromosome that are the last to be replicated are haploid even in fast-growing bacteria. In contrast to this general rule for bacteria, we found that Lactococcus lactis, a bacterium which has been exploited for thousands of years for the production of fermented...

  17. RNA-Seq reveals transcriptomic interactions of Bacillus subtilis natto and Bifidobacterium animalis subsp. lactis in whole soybean solid-state co-fermentation.

    Science.gov (United States)

    Wang, Hai Kuan; Ng, Yi Kai; Koh, Eileen; Yao, Lina; Chien, Ang Sze; Lin, Hui Xin; Lee, Yuan Kun

    2015-10-01

    Bifidobacteria are anaerobes and are difficult to culture in conventional fermentation system. It was observed that Bacillus subtilis natto enhanced growth of Bifidobacterium animalis subsp. lactis v9 by about 3-fold in a whole soybean solid-state co-fermentation, in a non-anaerobic condition. For the purpose of understanding the metabolic interactions between Bif. animalis subsp. lactis v9 and Ba. subtilis natto, the transcriptome of Bif. animalis subsp. lactis v9 and Ba. subtilis natto was analyzed in single and mixed cultures using RNA-Seq. Compared with the single culture, 459 genes of Bif. animalis subsp. lactis v9 were up regulated and 21 were down regulated in the mixed culture with Ba. subtilis natto, with more than 2-fold difference. Predictive metagenomic analyses suggested that Ba. subtilis natto up regulated transport functions, complex carbohydrates and amino acid metabolism, DNA repair, oxydative stress-related functions, and cell growth of Bif. animalis subsp. lactis v9. In the mixed culture with Bif. animalis subsp. lactis v9, only 3 transcripts of Ba. subtilis natto were over-expressed and 3115 were under-expressed with more than 2-fold difference. The highest down-regulated genes were those involved in carbohydrate and amino acid metabolism. The data presented here demonstrated a parasitic-like interaction regulated at the transcription level, between Ba. subtilis natto and Bif. animalis subsp. lactis in the mixed culture. The over-expression of genes involved in substrate uptake and metabolism in Bif. animalis subsp. lactis in the mixed culture nevertheless, led to its higher cell concentration in the nutrient rich whole soybean medium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. High efficiency electrotransformation of Lactococcus lactis spp. lactis cells pretreated with lithium acetate and dithiothreitol

    Directory of Open Access Journals (Sweden)

    Filioussis George

    2007-03-01

    Full Text Available Abstract Background A goal for the food industry has always been to improve strains of Lactococcus lactis and stabilize beneficial traits. Genetic engineering is used extensively for manipulating this lactic acid bacterium, while electropolation is the most widely used technique for introducing foreign DNA into cells. The efficiency of electrotransformation depends on the level of electropermealization and pretreatment with chemicals which alter cell wall permeability, resulting in improved transformation efficiencies is rather common practice in bacteria as in yeasts and fungi. In the present study, treatment with lithium acetate (LiAc and dithiothreitol (DTT in various combinations was applied to L. lactis spp. lactis cells of the early-log phase prior to electroporation with plasmid pTRKH3 (a 7.8 kb shuttle vector, suitable for cloning into L. lactis. Two strains of L. lactis spp. lactis were used, L. lactis spp. lactis LM0230 and ATCC 11454. To the best of our knowledge these agents have never been used before with L. lactis or other bacteria. Results Electrotransformation efficiencies of up to 105 transformants per μg DNA have been reported in the literature for L. lactis spp.lactis LM0230. We report here that treatment with LiAc and DDT before electroporation increased transformation efficiency to 225 ± 52.5 × 107 transformants per μg DNA, while with untreated cells or treated with LiAc alone transformation efficiency approximated 1.2 ± 0.5 × 105 transformants per μg DNA. Results of the same trend were obtained with L. lactis ATCC 11454, although transformation efficiency of this strain was significantly lower. No difference was found in the survival rate of pretreated cells after electroporation. Transformation efficiency was found to vary directly with cell density and that of 1010 cells/ml resulted in the highest efficiencies. Following electrotransformation of pretreated cells with LiAc and DDT, pTRKH3 stability was examined

  19. The effect of probiotic bacteria (Lactobacillus acidophilus and Bifidobacterium lactis) on the accumulation of lead in rat brains.

    Science.gov (United States)

    Zanjani, Saman Yahyavi; Eskandari, Mohammad Reza; Kamali, Koorosh; Mohseni, Mehran

    2017-01-01

    Lead is a toxic metal present in different concentrations in a wide variety of food products. Exposure to lead, even to low levels, causes acute and chronic toxicities. Lead can cross the blood-brain barrier and accumulate in the nervous system. Probiotics are live microorganisms that, when used in adequate amounts, confer a health benefit on the host. Although a recent study demonstrated that the studied bacteria have a protective effect against acute lead toxicity, no research has been found that shows the long-term impact of these bacteria in vivo. The current study surveyed the protective effects of two species of probiotics, Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12, that are most widely used in many functional foods against oral lead exposure (4 weeks) in rat brains. The results revealed that, at the end of the second week of chronic exposure to lead and probiotic bacteria, the lowest level of lead belonged to the Lactobacillus group. At the end of the fourth week, the lowest amount of lead was related to the group receiving both types of probiotics. With the physiological benefits of probiotic consumption, the bacterial solution in this study did not show high efficacy in reducing brain lead concentrations.

  20. Effect of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium lactis on lipid profile in individuals with type 2 diabetes mellitus.

    Science.gov (United States)

    Ejtahed, H S; Mohtadi-Nia, J; Homayouni-Rad, A; Niafar, M; Asghari-Jafarabadi, M; Mofid, V; Akbarian-Moghari, A

    2011-07-01

    The purpose of this study was to investigate the effects of probiotic and conventional yogurt on the lipid profile in type 2 diabetic people. In a randomized double-blind controlled trial, 60 people (23 males and 37 females) with type 2 diabetes and low-density lipoprotein cholesterol (LDL-C) greater than 2.6 mmol/L were assigned to 2 groups. Participants consumed daily 300 g of probiotic yogurt containing Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 or 300 g of conventional yogurt for 6 wk. Fasting blood samples, anthropometric measurements and 3-d, 24-h dietary recalls were collected at the baseline and at the end of the trial. Probiotic yogurt consumption caused a 4.54% decrease in total cholesterol and a 7.45% decrease in LDL-C compared with the control group. No significant changes from baseline were shown in triglyceride and high-density lipoprotein cholesterol (HDL-C) in the probiotic group. The total cholesterol:HDL-C ratio and LDL-C:HDL-C ratio as atherogenic indices significantly decreased in the probiotic group compared with the control group. Probiotic yogurt improved total cholesterol and LDL-C concentrations in type 2 diabetic people and may contribute to the improvement of cardiovascular disease risk factors.

  1. Construction and Expression of β-galactosidase Genetically Engineered Lactococcus lactis

    Institute of Scientific and Technical Information of China (English)

    吕晓英; 张朝武; 裴晓方; 刘祥; 余倩; 刘衡川

    2004-01-01

    Our objective is to solve the lactose malabsorption and intolerance of human beings by combining mlcro-ecology path with genetic engineering technique. Plasmid pMG36e was used to clone and express a β-galactosidase gene from L.delbrueckii bulgaricus strain 1. 1480 in the Lactococcus lactis subsp, cremoris MG1363 and Lactococcus lactis subsp. lactis IL1403. The recombinant plasmid was preserved and proliferated in Escherichia coli ( E. coli) JM109, and transformed into MG1363 and 1L1403 by electroporation. The protein expression was studied. (1) The bifidobacterium culture medium (BBL) was suitable for the growth of the strain 1. 1480. (2) With 13 amino acids at the N-terminus from the vector, β-galactosidase fusion protein (which retained the enzyme activity) could be successfully expressed in E. coli JM109, MG1363 and IL1403, but the expression quantity was larger in the former than in the latter two. (3) The SD sequence designed could be successfully recognized by both the E. coli and the Lactococcus lactis, but the expression level of the non-fusion β-galac-tosidase protein was lower than that of the fusion protein in the same host. The β-galactosidase genetically engineered E.coli JM109 is a useful tool to produce this enzyme in vitro. The signal peptide of the usp45 protein from the Lactococcus lactis can be added before the promoter sequence to promote β-galactosidase secretion from Lactococcus lactis. The potential application of the β-galactosidase genetically engineered MG1363 and IL1403 to cure the lactose malabsorption and lactose intolerance in both health food and medicine is promising。

  2. Bioelectrochemical Mn(II) leaching from manganese ore by Lactococcus lactis SK071115.

    Science.gov (United States)

    Jeon, Bo Young; Park, Doo Hyun

    2011-02-01

    L. lactis sk071115 has been shown to grow more actively and generate lower levels of lactate in glucose-defined medium with nitrate than in medium with Mn(IV). By adding Mn(IV) to a L. lactis culture, lactate production was relatively reduced in combination with Mn(II) production, but cell mass production levels did not increase. Both cell-free extract and intact L. lactis cells reacted electrochemically with Mn(IV) but did not react with Mn(II) upon cyclic voltammetry using neutral red (NR) as an electron mediator. A modified graphite felt cathode with NR (NR-cathode) was employed to induce electrochemical reducing equivalence for bacterial metabolism. Cell-free L. lactis extract catalyzed the reduction of Mn(IV) to Mn(II) under both control and electrochemical reduction conditions; however, the levels of Mn(II) generated under electrochemical reduction conditions were approximately 4 times those generated under control conditions. The levels of Mn(II) generated by the catalysis of L. lactis immobilized in the NR-cathode (L-NR-cathode) under electrochemical reduction conditions were more than 4 times that generated under control conditions. Mn(II) production levels were increased by approximately 2.5 and 4.5 times by the addition of citrate to the reactant under control and electrochemical reduction conditions, respectively. The cumulative Mn(II) produced from manganese ore by catalysis of the L-NR-cathode for 30 days reached levels of approximately 3,800 and 16,000 mg/l under control and electrochemical reduction conditions, respectively. In conclusion, the electrochemical reduction reaction generated by the NR-cathode activated the biochemical reduction of Mn(IV) to Mn(II) by L. lactis.

  3. Secretion of biologically active interferon-gamma inducible protein-10 (IP-10 by Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Saucedo-Cardenas Odila

    2008-07-01

    Full Text Available Abstract Background Chemokines are a large group of chemotactic cytokines that regulate and direct migration of leukocytes, activate inflammatory responses, and are involved in many other functions including regulation of tumor development. Interferon-gamma inducible-protein-10 (IP-10 is a member of the C-X-C subfamily of the chemokine family of cytokines. IP-10 specifically chemoattracts activated T lymphocytes, monocytes, and NK cells. IP-10 has been described also as a modulator of other antitumor cytokines. These properties make IP-10 a novel therapeutic molecule for the treatment of chronic and infectious diseases. Currently there are no suitable live biological systems to produce and secrete IP-10. Lactococcus lactis has been well-characterized over the years as a safe microorganism to produce heterologous proteins and to be used as a safe, live vaccine to deliver antigens and cytokines of interest. Here we report a recombinant strain of L. lactis genetically modified to produce and secrete biologically active IP-10. Results The IP-10 coding region was isolated from human cDNA and cloned into an L. lactis expression plasmid under the regulation of the pNis promoter. By fusion to the usp45 secretion signal, IP-10 was addressed out of the cell. Western blot analysis demonstrated that recombinant strains of L. lactis secrete IP-10 into the culture medium. Neither degradation nor incomplete forms of IP-10 were detected in the cell or supernatant fractions of L. lactis. In addition, we demonstrated that the NICE (nisin-controlled gene expression system was able to express IP-10 "de novo" even two hours after nisin removal. This human IP-10 protein secreted by L. lactis was biological active as demonstrated by Chemotaxis assay over human CD3+T lymphocytes. Conclusion Expression and secretion of mature IP-10 was efficiently achieved by L. lactis forming an effective system to produce IP-10. This recombinant IP-10 is biologically active as

  4. Inhibition of Clostridium tyrobutyricum in Vidiago cheese by Lactococcus lactis ssp. lactis IPLA 729, a nisin Z producer.

    Science.gov (United States)

    Rilla, Natalia; Martínez, Beatriz; Delgado, Teresa; Rodríguez, Ana

    2003-08-15

    Lactococcus lactis ssp. lactis IPLA 729 is a nisin Z producer isolated from raw milk cheese able to grow and produce nisin Z in milk. The ability of this strain to inhibit the growth of Clostridium tyrobutyricum CECT 4011, a late blowing agent, in Vidiago cheese, a semi-hard farmhouse variety, manufactured in Asturias, Northern Spain, was investigated. For control purposes, cheeses were manufactured with the mesophilic mixed starter IPLA-001. In experimental cheeses, the nisin-producing strain L. lactis IPLA 729 was combined with this starter. Nisin Z activity reached a concentration of 1600 AU/ml in 1-day cheeses and this level was maintained until 15 days of ripening. Furthermore, to compare the inhibitory activity of the nisin-producing strain to nitrate, cheeses were also manufactured with a commercial starter culture and potassium nitrate as anti-blowing agent was added in accordance with Vidiago's cheesemakers. The control, experimental and commercial cheeses were contaminated with C. tyrobutyricum CECT 4011. The composition of the three different cheeses showed only slight differences with respect to total solids, protein and fat, although control and experimental cheeses showed a richer flavour-compound profile than commercial cheeses. The level of the spoilage strain C. tyrobutyricum CECT 4011 decreased from 1.2x10(6) to 1.3x10(3) cfu/g during ripening in presence of the nisin Z producer, while it increased to 1.99x10(9) cfu/g in control cheeses and to 3.5x10(7) cfu/g in commercial cheeses.

  5. Purification and partial characterization of bacteriocin produced by Lactococcus lactis ssp. lactis LL171.

    Science.gov (United States)

    Kumari, Archana; Akkoç, Nefise; Akçelik, Mustafa

    2012-04-01

    Lactic acid bacteria (LAB) are possessing ability to synthesize antimicrobial compounds (like bacteriocin) during their growth. In this regard, novel bacteriocin compound secreting capability of LAB isolated from Tulum Cheese in Turkey was demonstrated. The synthesized bacteriocin was purified by ammonium sulphate precipitation, dialysis and gel filtration. The molecular weight (≈3.4 kDa) of obtained bacteriocin was confirmed by SDS-PAGE, which revealed single peptide band. Molecular identification of LAB strain isolated from Tulum Cheese was conducted using 16S rDNA gene sequencing as Lactococcus lactis ssp. lactis LL171. The amino acid sequences (KKIDTRTGKTMEKTEKKIELSLKNMKTAT) of the bacteriocin from Lactococcus lactis ssp. lactis LL171 was found unique and novel than reported bacteriocins. Further, the bacteriocin was possessed the thermostable property and active at wide range of pH values from 1 to 11. Thus, bacteriocin reported in this study has the potential applications property as food preservative agent.

  6. Control of Brochothrix thermosphacta in pork meat using Lactococcus lactis subsp. lactis I23 isolated from beef

    Directory of Open Access Journals (Sweden)

    Olusegun A Olaoye

    2015-06-01

    Full Text Available This study evaluated the antimicrobial activities of two lactic acid bacteria (LAB Lactococcus lactis subsp. lactis I23 and L. lactis subsp. hordinae E91 against Brochothrix thermosphacta in pork during storage at ambient temperature (30oC over 7 days. Both the LAB strains and spoilage organism were inoculated on fresh pork samples at 1x106cfu/g. About 3 log reduction in the spoilage organism was obtained in LAB treated samples after 48 h of storage. The spoilage organism was confirmed to be sensitive to the bacteriocin nisin produced by Lactococcus lactis subsp. lactis I23. There were reductions in the counts of Salmonella typhimurium, Listeria monocytogenes, Enterobacteriaceae and Staphylococcus in the treated samples. Conclusively, growth of B. thermosphacta could be effectively controlled by nisin producing Lactococcus lactis subsp. lactis I23 in fresh pork during storage, thereby enhancing shelf life of the product.

  7. An evaluation and partial characterization of a bacteriocin produced by Lactococcus lactis subsp lactis ST1 isolated from goat milk

    Directory of Open Access Journals (Sweden)

    Parinaz Taheri

    2012-12-01

    Full Text Available A bacteriocin-like inhibitory substance producing Lactococcus lactis subsp lactis strain, ST1, isolated from goat milk of Iranian origin and with broad spectrum of activity and desirable technical properties was used for evaluating some futures of bacteriocin inhibitory activity. Cell growth and bacteriocin production studies were carried out in MRS medium incubated statically under uncontrolled pH condition. The antibacterial activity presented a primary metabolite pattern and showed a rapid decrease at the stationary phase. Microaerobiosis and capnophily growth conditions resulted in higher bacteriocin production while aerobiosis showed negative effect on both cell growth and bacteriocin production. Bacteriocin production, on the other hand, was favored in MRS broth (pH; 6.5 inoculated with 0.1 ml l-1 fresh culture when incubation was carried out at 30 °C. This indicated that the conditions resulted in higher levels of growth were frequently favoring bacteriocin production by ST1 as well. Decrease in activity, at the stationary growth phase, was much pronounced in favored growth condition. Nutrient depletion, deferent effect of low pH on bacteriocin production and/or protein degradation seemed more responsible for this phenomenon. The study also provided further data on new method for bacteriocin release from the cell wall of producer. It was clearly shown that both heating and ultrasound shock for 5 min at pH 2 could increase bacteriocin activity significantly. The release was more pronounced in the presence of 0.5% Tween80.

  8. Interaction of Saccharomyces cerevisiae and Lactococcus lactis in the fermentation and quality of artisanal cachaça

    Directory of Open Access Journals (Sweden)

    Fernanda Paula Carvalho

    2014-11-01

    Full Text Available Lactococcus lactis and Saccharomyces cerevisiae in co-culture were evaluated during sugar cane fermentantion for cachaça production. The inocula containing L. lactis UFLA CA 312 and S. cerevisiae UFLA CA 11 were used in the population of approximately 105 CFU mL-1 and 108 CFU mL-1,  respectively. The sugar cane medium plus 1% of yeast extract (SCM was efficient for growth of L. lactis UFLA CA 312 and S. cerevisiae UFLA CA 11 (letter b -Tukey test. In flasks and vats fermentation the growth of UFLA CA 11 was not negatively influenced by L. lactis UFLA CA 312. However, after 19 h of fermentation, bacterial population showed a slight decrease. Considering parameters higher alcohols and aldehydes, cachaça produced by pure culture of S. cerevisiae was similar to cachaça produced by mixed culture. Cachaça produced by mixed culture showed high values of volatile acidity (letter b -Scott-Knott test being characterized by this parameters in the principal component analysis. High percentage of acceptance (81.10% for the attribute aroma was observed in samples from cachaça produced by mixed culture.

  9. Heterologous Protein Expression by Lactococcus lactis

    NARCIS (Netherlands)

    Villatoro-Hernández, J.; Kuipers, O.P.; Saucedo-Cárdenas, O.; Montes-de-Oca-Luna, R.

    2012-01-01

    This chapter describes the use of Lactococcus lactis as a safe and efficient cell factory to produce heterologous proteins of medical interest. The relevance of the use of this lactic acid bacterium (LAB) is that it is a noncolonizing, nonpathogenic microorganism that can be delivered in vivo at a m

  10. Regulation of carbon catabolism in Lactococcus lactis.

    NARCIS (Netherlands)

    Aleksandrzak, T; Kowalczyk, M; Kok, J; Bardowski, J; Bielecki, S; Tramper, J; Polak, J

    2000-01-01

    The Lactococcus lactis IL1403 is a lactose negative, plasmid free strain. Nevertheless, it is able to hydrolyze lactose in the presence of cellobiose. In this work we describe identification of a gene involved in this process. The gene was found to be homologous to the sugar catabolism regulator, cc

  11. Functionality of Sortase A in Lactococcus lactis

    NARCIS (Netherlands)

    Dieye, Yakhya; Oxaran, Virginie; Ledue-Clier, Florence; Alkhalaf, Walid; Buist, Girbe; Juillard, Vincent; Lee, Chang Won; Piard, Jean-Christophe

    2010-01-01

    Lactococcus lactis IL1403 harbors a putative sortase A (SrtA) and 11 putative sortase substrates that carry the canonical LPXTG signature of such substrates. We report here on the functionality of SrtA to anchor five LPXTG substrates to the cell wall, thus suggesting that SrtA is the housekeeping so

  12. Regulation of carbon catabolism in Lactococcus lactis.

    NARCIS (Netherlands)

    Aleksandrzak, T; Kowalczyk, M; Kok, J; Bardowski, J; Bielecki, S; Tramper, J; Polak, J

    2000-01-01

    The Lactococcus lactis IL1403 is a lactose negative, plasmid free strain. Nevertheless, it is able to hydrolyze lactose in the presence of cellobiose. In this work we describe identification of a gene involved in this process. The gene was found to be homologous to the sugar catabolism regulator,

  13. Environmental stress responses in Lactococcus lactis

    NARCIS (Netherlands)

    Sanders, JW; Venema, G; Kok, J

    1999-01-01

    Bacteria can encounter a variety of physical conditions during their life, Bacterial cells are able to survive these (often adverse) conditions by the induction of specific or general protection mechanisms. The lactic acid bacterium Lactococcus lactis is widely used for the production of cheese. Bef

  14. Protein export elements from Lactococcus lactis

    NARCIS (Netherlands)

    Perez-Martinez, Gaspar; Kok, Jan; Venema, Gerhardus; Dijl, Jan Maarten van; Smith, Hilda; Bron, Sierd

    1992-01-01

    Broad-host-range plasmids carrying α-amylase or β-lactamase reporter genes lacking a signal sequence were used to select export elements from Lactococcus lactis chromosomal DNA that could function as signal sequences. Fragments containing such elements were identified by their ability to direct the

  15. Protein export elements from Lactococcus lactis

    NARCIS (Netherlands)

    Perez-Martinez, Gaspar; Kok, Jan; Venema, Gerhardus; Dijl, Jan Maarten van; Smith, Hilda; Bron, Sierd

    Broad-host-range plasmids carrying α-amylase or β-lactamase reporter genes lacking a signal sequence were used to select export elements from Lactococcus lactis chromosomal DNA that could function as signal sequences. Fragments containing such elements were identified by their ability to direct the

  16. Environmental stress responses in Lactococcus lactis

    NARCIS (Netherlands)

    Sanders, JW; Venema, G; Kok, J

    Bacteria can encounter a variety of physical conditions during their life, Bacterial cells are able to survive these (often adverse) conditions by the induction of specific or general protection mechanisms. The lactic acid bacterium Lactococcus lactis is widely used for the production of cheese.

  17. Behavior of Staphylococcus aureus in culture broth, in raw and thermized milk, and during processing and storage of traditional Greek Graviera cheese in the presence or absence of Lactococcus lactis subsp. cremoris M104, a wild, novel nisin A-producing raw milk isolate.

    Science.gov (United States)

    Samelis, John; Lianou, Alexandra; Pappa, Eleni C; Bogovič-Matijašić, Bojana; Parapouli, Maria; Kakouri, Athanasia; Rogelj, Irena

    2014-10-01

    This study was conducted to evaluate the behavior of Staphylococcus aureus during processing, ripening, and storage of traditional Greek Graviera cheese in accordance with European Union Regulation 1441/2007 for coagulase-positive staphylococci in thermized milk cheeses. Lactococcus lactis subsp. cremoris M104, a wild, novel nisin A-producing (NisA+) strain, also was evaluated as an antistaphylococcal adjunct. A three-strain cocktail of enterotoxigenic (Ent+) S. aureus increased by approximately 2 log CFU/ml when co-inoculated (at approximately 3 log CFU/ml) in thermized Graviera cheese milk (TGCM; 63°C for 30 s) with commercial starter culture (CSC) and/or strain M104 at approximately 6 log CFU/ml and then incubated at 37°C for 3 h. However, after 6 h at 37°C, significant retarding effects on S. aureus growth were noted in the order TGCM + M104 > TGCM + CSC = TGCM + CSC + M104 > TGCM. Additional incubation of TGCM cultures at 18°C for 66 h resulted in a 1.2-log reduction (P cheeses prepared from TGCM + CSC or TGCM + CSC + M104, ripened at 18°C and 90% relative humidity for 20 days, and stored at 4°C in vacuum packages for 2 months. A rapid 10-fold decrease (P cheese fermentation. Reductions of S. aureus were greater by approximately 0.4 log CFU/g in CSC + M104 than in CSC only cheeses, concomitantly with the presence of NisA + M104 colonies and nisin-encoding genes in the CSC plus M104 cheeses and their corresponding microbial consortia only. A high level of selective survival of a naturally nisin-resistant EntC z S. aureus strain from the cocktail was noted in CSC + M104 cheeses and in coculture with the NisA + M104 strain in M-17 broth. In conclusion, although S. aureus growth inhibition is assured during Graviera cheese ripening, early growth of the pathogen during milk curdling and curd cooking operations may occur. Nisin-resistant S. aureus strains that may contaminate Graviera cheese milks postthermally may be difficult to control even by the

  18. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis

    DEFF Research Database (Denmark)

    Melchiorsen, C.R.; Jokumsen, K.V.; Villadsen, John

    2002-01-01

    promoters in L. lactis MG1363 and in the PFL-deficient strain CRM40. Strains with five different PFL levels were obtained. Variation in the PFL level markedly affected the resulting end-product formation in these strains. During growth on galactose, the flux towards mixed-acid products was to a great extent......Regulation of pyruvate-formate lyase (PFL) activity in vivo plays a central role in the shift from homolactic to mixed-acid product formation observed during the growth of Lactococcus lactis on glucose and galactose, respectively. Characterisation of L lactis MG1363 in anaerobic batch cultures...... controlled by the PFL level. This demonstrates that a regulated PFL level plays a predominant role in the regulation of the metabolic shift from homolactic to mixed-acid product formation in L lactis....

  19. Production of recombinant peanut allergen Ara h 2 using Lactococcus lactis

    DEFF Research Database (Denmark)

    Glenting, J.; Poulsen, Lars K.; Kato, K.;

    2007-01-01

    of the major allergens in peanut have been described. However, for therapeutic usage more information about the individual allergenic components is needed. In this paper we report recombinant production of the Ara h 2 peanut allergen using L. lactis. Results: A synthetic ara h 2 gene was cloned into an L....... lactis expression plasmid containing the P170 promoter and the SP310mut2 signal sequence. Flask cultures grown overnight showed secretion of the 17 kDa Ara h 2 protein. A batch fermentation resulted in 40 mg/ L recombinant Ara h 2. Purification of Ara h 2 from the culture supernatant was done...... by hydrophobic exclusion and size separation. Mass spectrometry and N- terminal analysis showed a recombinant Ara h 2 of full length and correctly processed by the signal peptidase. The immunological activity of recombinant Ara h 2 was analysed by ELISA using antibodies specific for native Ara h 2...

  20. Glucose metabolism in Lactococcus lactis MG1363 under different aeration conditions: Requirement of acetate to sustain growth under microaerobic conditions

    DEFF Research Database (Denmark)

    Nordkvist, Mikkel; Jensen, N.B.S.; Villadsen, John

    2003-01-01

    Lactococcus lactis subsp. lactis MG1363 was grown in batch cultures on a defined medium with glucose as the energy source under different aeration conditions, namely, anaerobic conditions, aerobic conditions, and microaerobic conditions with a dissolved oxygen tension of 5% (when saturation...... with air was used as the reference). The maximum specific growth rate was high (0.78 to 0.91 h(-1)) under all aeration conditions but decreased with increasing aeration, and more than 90% of the glucose was converted to lactate. However, a shift in by-product formation was observed. Increasing aeration...

  1. Transcription profiling of interactions between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 during Cheddar cheese simulation.

    Science.gov (United States)

    Desfossés-Foucault, Émilie; LaPointe, Gisèle; Roy, Denis

    2014-05-16

    The starter cultures (Lactococcus sp.) and non-starter lactic acid bacteria (mostly Lactobacillus spp.) are essential to flavor development of Cheddar cheese. The aim of this study was to elucidate the transcriptional interaction between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 in mixed cultures during simulated Cheddar cheese manufacture (Pearce activity test) and ripening (slurry). Reverse transcription quantitative PCR (RT-qPCR) was used to quantify the expression of 34 genes common to both bacteria and for eight genes specific to either L. lactis subsp. cremoris SK11 or L. paracasei ATCC 334. The multifactorial analysis (MFA) performed on fold change results for each gene revealed that the genes linked to stress, protein and peptide degradation as well as carbohydrate metabolism of L. paracasei ATCC 334 were especially overexpressed in mixed culture with L. lactis subsp. cremoris SK11 during the ripening simulation. For L. lactis subsp. cremoris SK11, genes coding for amino acid metabolism were more expressed during the cheese manufacture simulation, especially in single culture. These results show how complementary functions of starter and NSLAB contribute to activities useful for flavor development.

  2. STRESS-RESPONSE IN LACTOCOCCUS-LACTIS - CLONING, EXPRESSION ANALYSIS, AND MUTATION OF THE LACTOCOCCAL SUPEROXIDE-DISMUTASE GENE

    NARCIS (Netherlands)

    SANDERS, JW; LEENHOUTS, KJ; HAANDRIKMAN, AJ; VENEMA, G; KOK, J

    1995-01-01

    In an analysis of the stress response of Lactococcus lactis, three proteins that were induced under low pH culture conditions were detected. One of these was identified as the lactococcal superoxide dismutase (SodA) by N-terminal amino acid sequence analysis. The gene encoding this protein, designat

  3. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture

    DEFF Research Database (Denmark)

    Larsen, Nadja; Werner, Birgit Brøsted; Vogensen, Finn Kvist

    2015-01-01

    was to investigate the effect of dissolved oxygen on acidification kinetics and redox potential during milk fermentation by lactic acid bacteria (LAB). Fermentations were conducted by single strains isolated from mixed DL-starter culture, including Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris...

  4. Glycosylation in secreted proteins from yeast Kluyveromyces lactis

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.V.; Passos, F.M.L. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Microbiologia. Lab. de Fisiologia de Microrganismos; Azevedo, B.R.; Pimenta, A.M.C.; Santoro, M.M. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia. Lab. de Enzimologia e Fisico-Quimica de Proteina

    2008-07-01

    Full text: The nutritional status of a cell culture affects either the expression or the traffic of a number of proteins. The identification of the physiological conditions which favor protein secretion has important biotechnological consequences in designing systems for recombinant extracellular protein industrial production. Yeast Kluyvromyces lactis has been cultured in a continuous stirring tank bioreactor (CSTR) under nitrogen limitation at growth rates (0.03 h{sup -1} and 0.09 h{sup -1}) close to either exponential or stationary batch growth phases, respectively the objective was to investigate the extracellular glycoproteins at these two level of nitrogen limitation. Proteins from free cell extracts were separated by gradient SDS-PAGE (5-15%) and two-dimensional chromatography, and were analyzed by mass spectrometry (MALDI-TOF-TOF-MS). In SDS-PAGE analysis, differences in extracellular proteome were visualized: different proteins profiles at these two growth rates. The 0.09 h-1 growth rate showed larger number of bands using colloidal Coma ssie Blue staining. Different bands were detected at these two growth rates when the PAS assay for glycoprotein detection in polyacrylamide gel was used. The two-dimensional chromatogram profiles were comparatively distinguished between the 0.03 h{sup -1} and 0.09 h{sup -1} growth rate samples. Protein peaks from the second dimension, were subjected to mass spectrometry. The mass spectrums visualized showed glycosylated proteins with N-acetylglucosamine molecules and 8, 9 or 15 hexoses molecules. Comparisons between the proteins averaged mass values with the deduced proteins masses from K. lactis secreted proteins database indicated possible post-translational modifications, such as post-translational proteolysis, acetylation, deamidation and myristoylation.

  5. Characterization of bacteriocins produced by Lactococcus lactis strains Caracterização de bacteriocinas produzidas por linhagens de Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Izildinha Moreno

    2000-09-01

    Full Text Available Bacteriocins produced by fifteen strains of Lactococcus lactis (14 L. lactis subsp. lactis and one L. lactis subsp. cremoris were heat resistant, sensitive to several proteolytic enzymes and active over a wide range of pH. Their resistance to the heating was greatly influenced by the pH. Only the strain L. lactis subsp. lactis ITAL 383 produced a bacteriocin with a wide activity spectrum, similar to nisin of L. lactis subsp. lactis ATCC 11454. This bacteriocin inhibited closely related species and other Gram-positive microorganisms including Listeria monocytogenes and Staphylococcus aureus, but it was not active against the Gram-negative bacteria tested. The identification of partially purified antimicrobial compounds by SDS-PAGE showed that bacteriocin produced by strain ITAL 383 had the same molecular weight of nisin produced by L. lactis subsp. lactis ATCC 11454.Bacteriocinas resistentes ao aquecimento produzidas por quinze linhagens de Lactococcus lactis (14 L. lactis subsp. lactis e 1 L. lactis subsp. cremoris foram sensíveis à enzimas proteolíticas e ativas em uma ampla faixa de pH. A resistência dessas bacteriocinas ao aquecimento foi fortemente influenciada pelo pH do meio. Somente a linhagem L. lactis subsp. lactis ITAL 383 produziu uma bacteriocina com um amplo espectro de atividade, semelhante ao da nisina de L. lactis subsp. lactis ATCC 11454. Esta bacteriocina inibiu as espécies relacionadas e outros microorganismos gram-positivos, inclusive Listeria monocytogenes e Staphylococcus aureus, mas não as bactérias Gram-negativas examinadas. A identificação do composto antimicrobiano parcialmente purificado por SDS-PAGE revelou um peso molecular similar entre a bacteriocina ITAL 383 e a nisina de L. lactis subsp lactis ATCC 11454.

  6. Production of Recombinant Peanut Allergen Ara h 2 using Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Frøkiær Hanne

    2007-08-01

    Full Text Available Abstract Background Natural allergen sources can supply large quantities of authentic allergen mixtures for use as immunotherapeutics. However, such extracts are complex, difficult to define, vary from batch to batch, which may lead to unpredictable efficacy and/or unacceptable levels of side effects. The use of recombinant expression systems for allergen production can alleviate some of these issues. Several allergens have been tested in high-level expression systems and in most cases show immunereactivity comparable to their natural counterparts. The gram positive lactic acid bacterium Lactococcus lactis is an attractive microorganism for use in the production of protein therapeutics. L. lactis is considered food grade, free of endotoxins, and is able to secrete the heterologous product together with few other native proteins. Hypersensitivity to peanut represents a serious allergic problem. Some of the major allergens in peanut have been described. However, for therapeutic usage more information about the individual allergenic components is needed. In this paper we report recombinant production of the Ara h 2 peanut allergen using L. lactis. Results A synthetic ara h 2 gene was cloned into an L. lactis expression plasmid containing the P170 promoter and the SP310mut2 signal sequence. Flask cultures grown overnight showed secretion of the 17 kDa Ara h 2 protein. A batch fermentation resulted in 40 mg/L recombinant Ara h 2. Purification of Ara h 2 from the culture supernatant was done by hydrophobic exclusion and size separation. Mass spectrometry and N-terminal analysis showed a recombinant Ara h 2 of full length and correctly processed by the signal peptidase. The immunological activity of recombinant Ara h 2 was analysed by ELISA using antibodies specific for native Ara h 2. The recombinant Ara h 2 showed comparable immunereactivity to that of native Ara h 2. Conclusion Recombinant production of Ara h 2 using L. lactis can offer high yields

  7. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: evaluation of the probiotic potential.

    Science.gov (United States)

    Furtado, Danielle N; Todorov, Svetoslav D; Landgraf, Mariza; Destro, Maria T; Franco, Bernadette D G M

    2014-01-01

    Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi) was isolated from goat milk, and studied for its probiotic potential. Lc. lactis DF4Mi was resistant to acidic pH and oxbile, presented co-aggregation with Listeria monocytogenes, and was not affected by several drugs from different generic groups, being sensitive to most tested antibiotics. These properties indicate that this Lc. lactis strain can be used for enhancement of dairy foods safety and quality, in combination with potential probiotic properties.

  8. Bacteriocinogenic Lactococcus lactis subsp: lactis DF04Mi isolated from goat milk: Evaluation of the probiotic potential

    Directory of Open Access Journals (Sweden)

    Danielle N. Furtado

    2014-09-01

    Full Text Available Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi was isolated from goat milk, and studied for its probiotic potential. Lc. lactis DF4Mi was resistant to acidic pH and oxbile, presented co-aggregation with Listeria monocytogenes, and was not affected by several drugs from different generic groups, being sensitive to most tested antibiotics. These properties indicate that this Lc. lactis strain can be used for enhancement of dairy foods safety and quality, in combination with potential probiotic properties.

  9. Lactobacillus casei Zhang和Bifidobacterium lactis V9在益生菌酸乳中的应用%Application of Lactobacillus casei Zhang and Bifidobacterium lactis V9 in the probiotic yoghurt

    Institute of Scientific and Technical Information of China (English)

    刘彪; 张和平

    2012-01-01

    益生菌在酸乳中的应用已非常普遍,将Lactobacillus casei Zhang单独(样品A)以及与Bifidobacterium lactis V9复合(样品B),同酸乳发酵剂(G027)共同发酵益生菌酸乳,于4℃贮藏21 d.结果表明,整个贮藏期间2组样品间的黏度和持水性差异不显著;贮藏期间2组样品间L.casei Zhang的活菌数没有差异,且L.casei Zhang和B.lactis V9的活菌数不随贮藏时间而降低;L.casei Zhang和B.lactis V9复合益生菌酸奶感官评价优于单独添加L.casei Zhang酸乳.L.casei Zhang和B.lactis V9复合添加,更适合于益生菌酸乳的生产.%Now it is common for adding probiotics in fermented yoghurt. Yoghurt was fermented by Lactobadllus casei Zhang (A) or combined with Bifidobacterium lactis V9 (B) plus with starter culture (G027) and followed with a 21 d storage at 4 t. The results showed that there was no significance between A and B concerning viscosity and syneresis. It also observed no significant difference existed in counts of L. casei 7ian% between A and B during storage and counts of two probiotics had no change as the storage passed by. However, Fermented milk by combined L. casei Zhang with B. lactis V9 possess markedly higher favorable sensory scores than L. casei Zhang fermented milk, suggesting that it is more suitable for probiotic yoghurt manufacture.

  10. Genome-wide identification of small RNAs in Bifidobacterium animalis subsp. lactis KLDS 2.0603 and their regulation role in the adaption to gastrointestinal environment.

    Directory of Open Access Journals (Sweden)

    De-Quan Zhu

    Full Text Available Bifidobacteria are one of the predominant bacterial species in the human gastrointestinal tract (GIT and play a vital role in the host's health by acting as probiotics. However, how they regulate themselves to adapt to GIT of their host remains unknown.Eighteen bifidobacterial strains were used to analyze their adaptive capacities towards simulated GIT environment. The strain with highest survival rate and adhesion ability was selected for comparative genome as well as transcriptomic analysis.The Bifidobacterium animalis subsp. lactis KLDS 2.0603 strain was demonstrated to have the highest survival rate and adhesion ability in simulated GIT treatments. The comparative genome analysis revealed that the KLDS 2.0603 has most similar whole genome sequence compared with BB-12 strain. Eleven intergenic sRNAs were identified after genomes prediction and transcriptomic analysis of KLDS 2.0603. Transcriptomic analysis also showed that genes (mainly sRNAs targeted genes and sRNAs were differentially expressed in different stress conditions, suggesting that sRNAs might play a crucial role in regulating genes involved in the stress resistance of this strain towards environmental changes.This study first provided deep and comprehensive insights into the regulation of KLDS 2.0603 strain at transcription and post-transcription level towards environmental.

  11. The study of effect bacteriocin producing Lactoco ccus lactis on Listeria monocytogenes and Bacillus cereus

    Directory of Open Access Journals (Sweden)

    M. Mirhossieni, M.Sc

    2007-01-01

    Full Text Available AbstractBackground and purpose: Dairy products often associated with problems such as short shelf life and poor hygiene control. A novel approach is to utilize bacteriocin or bacteriocin producer strains, to control undesirable micro flora as Listeria monocytogenes and Bacillus cereus in foods. Hence, we studied the effect of nisin like producing Lactococcus lactis against Listeria monocytogenes and Bacillus cereus, in order to compare the isolated strain within different countries.Materials and Methods: In this research we studied the effect of nisin like producing Lactococcus lactis, with producer spot test method. We also used supernatant from 24 h culture of Lactoccus lactis. Moreover, we studied the effect of bacteriocin on Listeria monocytogenes and Bacillus cereus growth curves.Results: The growth of both strains was inhibited by the bacteriocin. Conclusion: According to our results, the bacteriocin could be used in liquid food with bacteriocin added directly or as a starter culture in fermentation. This would inhibit the growth of Listeria monocytogenes; furthermore, Bacillus cereus is used to reduce food poisoning for fermented food products.

  12. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Blank, Lars Mathias; Solem, Christian

    2008-01-01

    Lactococcus lactis is known to be capable of respiration under aerobic conditions in the presence of haemin. In the present study the effect of respiration on ATP production during growth on different sugars was examined. With glucose as the sole carbon source, respiratory conditions in L. lactis...... MG1363 resulted in only a minor increase, 21%, in biomass yield. Since ATP production through substrate-level phosphorylation was essentially identical with and without respiration, the increased biomass yield was a result of energy-saving under respiratory conditions estimated to be 0.4 mol of ATP....../mol of glucose. With maltose as the energy source, the increase in biomass yield amounted to 51% compared with an aerobic culture that lacked haemin. This higher ATP yield was obtained by redirecting pyruvate metabolism from lactate to acetate production, and from savings through respiration. However, even after...

  13. Study of the transgalactosylation activity of ß-galactosidase from a new strain Kluyveromyces lactis 3

    Directory of Open Access Journals (Sweden)

    ILIA ILIEV

    2012-01-01

    Full Text Available Beta-galactosidase (EC.3.2.1.23 is an important enzyme industrially used for the hydrolysis of lactose from milk and milk whey for several applications. Lately, the importance of this enzyme was enhanced by its galactosyltransferase activity, which is responsible for synthesis of transgalactosylated oligosaccharides that act as prebiotics with several beneficial effects on the consumers. ß-Galactosidase production by Kluyveromyces lactis 3 was studied in shake flask culture. The highest enzymatic activity was obtained at 10-th hour of the fermentation. The optimum temperature for transferase activity was 50°C. When incubated with 30% lactose in 50 mM phosphate buffer (pH 6.0 the enzyme can synthesize up to 41% galacto-oligosaccharides (GalOS. β-Galactosidase from strain Kluyveromyces lactis 3 produces mainly oligosaccharides with degree of polymerization (DP 6 at 40°C and with DP 3 at 50°C.

  14. Genetically engineered Lactococcus lactis protect against house dust mite allergy in a BALB/c mouse model.

    Directory of Open Access Journals (Sweden)

    Chunqing Ai

    Full Text Available Mucosal vaccine based on lactic acid bacteria is an attractive concept for the prevention and treatment of allergic diseases, but their mechanisms of action in vivo are poorly understood. Therefore, we sought to investigate how recombinant major dust mite allergen Der p2-expressing Lactococcus lactis as a mucosal vaccine induced the immune tolerance against house dust mite allergy in a mouse model.Three strains of recombinant L. lactis producing Der p2 in different cell components (extracellular, intracellular and cell wall were firstly constructed. Their prophylactic potential was evaluated in a Der p2-sensitised mouse model, and immunomodulation properties at the cellular level were determined by measuring cytokine production in vitro.Der p2 expressed in the different recombinant L. lactis strains was recognized by a polyclonal anti-Der p2 antibody. Oral treatment with the recombinant L. lactis prior sensitization significantly prevented the development of airway inflammation in the Der p2-sensitized mice, as determined by the attenuation of inflammatory cells infiltration in the lung tissues and decrease of Th2 cytokines IL-4 and IL-5 levels in bronchoalveolar lavage. In addition, the serum allergen-specific IgE levels were significantly reduced, and the levels of IL-4 in the spleen and mesenteric lymph nodes cell cultures were also markedly decreased upon allergen stimulation in the mice fed with the recombinant L. lactis strains. These protective effects correlated with a significant up-regulation of regulatory T cells in the mesenteric lymph nodes.Oral pretreatment with live recombinant L. lactis prevented the development of allergen-induced airway inflammation primarily by the induction of specific mucosal immune tolerance.

  15. Genome shuffling of Lactococcus lactis subspecies lactis YF11 for improving nisin Z production and comparative analysis.

    Science.gov (United States)

    Zhang, Y F; Liu, S Y; Du, Y H; Feng, W J; Liu, J H; Qiao, J J

    2014-05-01

    Nisin has been widely used in the food industry as a safe and natural preservative to increase the shelf time of many foods. In this study, genome shuffling was applied to improve nisin Z production of Lactococcus lactis ssp. lactis YF11 (YF11) via recursive protoplast fusion. Ultraviolet irradiation and diethyl sulfate mutagenesis were used to generate parental strains for genome shuffling. After 4 rounds of genome shuffling, the best-performing strain F44 was obtained, which showed dramatic improvements in tolerance to both glucose (ranging from 8 to 15% (wt/vol) and nisin (ranging from 5,000 to 14,000 IU/mL). Fed-batch fermentation showed that the nisin titer of F44 was up to 4,023 IU/mL, which was 2.4 times that of the starting strain YF11. Field emission scanning electron microscope micrographs of YF11 and F44 revealed the apparent differences in cell morphology. Whereas YF11 displayed long and thin cell morphology, F44 cells were short and thick and with a raised surface in the middle of the cell. With the increasing glucose and nisin content in the medium, cells of both YF11 and F44 tended to become shrunken; however, alterations in YF11 cells were more pronounced than those of F44 cells, especially when cultured in tolerance medium containing both nisin and glucose. Nuclear magnetic resonance analysis demonstrated that the structure of nisin from YF11 and F44 was the same. Expression profiling of nisin synthesis related genes by real-time quantitative PCR showed that the transcription level of nisin structural gene nisZ and immunity gene nisI of F44 was 48 and 130% higher than that of the starting strain YF11, respectively. These results could provide valuable insights into the molecular basis underlying the nisin overproduction mechanism in L. lactis, thus facilitating the future construction of industrial strains for nisin production.

  16. Alternative lactose catabolic pathway in Lactococcus lactis IL1403

    NARCIS (Netherlands)

    Aleksandrzak-Piekarczyk, T; Kok, J; Renault, P; Bardowski, J

    2005-01-01

    In this study, we present a glimpse of the diversity of Lactococcus lactis subsp. lactis IL1403 beta-galactosidase phenotype-negative mutants isolated by negative selection on solid media containing cellobiose or lactose and X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside), and we identif

  17. Secretion and properties of a hybrid Kluyveromyces lactis-Aspergillus niger β-galactosidase

    Directory of Open Access Journals (Sweden)

    Becerra Manuel

    2006-12-01

    Full Text Available Abstract Background The β-galactosidase from Kluyveromyces lactis is a protein of outstanding biotechnological interest in the food industry and milk whey reutilization. However, due to its intracellular nature, its industrial production is limited by the high cost associated to extraction and downstream processing. The yeast-system is an attractive method for producing many heterologous proteins. The addition of a secretory signal in the recombinant protein is the method of choice to sort it out of the cell, although biotechnological success is not guaranteed. The cell wall acting as a molecular sieve to large molecules, culture conditions and structural determinants present in the protein, all have a decisive role in the overall process. Protein engineering, combining domains of related proteins, is an alternative to take into account when the task is difficult. In this work, we have constructed and analyzed two hybrid proteins from the β-galactosidase of K. lactis, intracellular, and its Aspergillus niger homologue that is extracellular. In both, a heterologous signal peptide for secretion was also included at the N-terminus of the recombinant proteins. One of the hybrid proteins obtained has interesting properties for its biotechnological utilization. Results The highest levels of intracellular and extracellular β-galactosidase were obtained when the segment corresponding to the five domain of K. lactis β-galactosidase was replaced by the corresponding five domain of the A. niger β-galactosidase. Taking into account that this replacement may affect other parameters related to the activity or the stability of the hybrid protein, a thoroughly study was performed. Both pH (6.5 and temperature (40°C for optimum activity differ from values obtained with the native proteins. The stability was higher than the corresponding to the β-galactosidase of K. lactis and, unlike this, the activity of the hybrid protein was increased by the presence

  18. Dual role of alpha-acetolactate decarboxylase in Lactococcus lactis subsp. lactis.

    Science.gov (United States)

    Goupil-Feuillerat, N; Cocaign-Bousquet, M; Godon, J J; Ehrlich, S D; Renault, P

    1997-10-01

    The alpha-acetolactate decarboxylase gene aldB is clustered with the genes for the branched-chain amino acids (BCAA) in Lactococcus lactis subsp. lactis. It can be transcribed with BCAA genes under isoleucine regulation or independently of BCAA synthesis under the control of its own promoter. The product of aldB is responsible for leucine sensibility under valine starvation. In the presence of more than 10 microM leucine, the alpha-acetolactate produced by the biosynthetic acetohydroxy acid synthase IlvBN is transformed to acetoin by AldB and, consequently, is not available for valine synthesis. AldB is also involved in acetoin formation in the 2,3-butanediol pathway, initiated by the catabolic acetolactate synthase, AlsS. The differences in the genetic organization, the expression, and the kinetics parameters of these enzymes between L. lactis and Klebsiella terrigena, Bacillus subtilis, or Leuconostoc oenos suggest that this pathway plays a different role in the metabolism in these bacteria. Thus, the alpha-acetolactate decarboxylase from L. lactis plays a dual role in the cell: (i) as key regulator of valine and leucine biosynthesis, by controlling the acetolactate flux by a shift to catabolism; and (ii) as an enzyme catalyzing the second step of the 2,3-butanediol pathway.

  19. Heterologous Gene Expression in Lactococcus lactis subsp. lactis : Synthesis, Secretion, and Processing of the Bacillus subtilis Neutral Protease

    NARCIS (Netherlands)

    Guchte, Maarten van de; Kodde, Jan; Vossen, Jos M.B.M. van der; Kok, Jan; Venema, Gerard

    1990-01-01

    The Bacillus subtilis nprE gene lacking its own promoter sequence was inserted in the lactococcal expression vector pMG36e. Upon introduction of the recombinant plasmid into Lactococcus lactis subsp. lactis strain MG1363, neutral protease activity could be visualized by the appearance of large clear

  20. Arginine metabolism in sugar deprived Lactococcus lactis enhances survival and cellular activity, while supporting flavour production.

    Science.gov (United States)

    Brandsma, J B; van de Kraats, I; Abee, T; Zwietering, M H; Meijer, W C

    2012-02-01

    Flavour development in cheese is affected by the integrity of Lactococcus lactis cells. Disintegrated cells enhance for instance the enzymatic degradation of casein to free amino acids, while integer cells are needed to produce specific flavour compounds from amino acids. The impact of the cellular activity of these integer cells on flavour production remains to be elucidated. In this study we investigated whether lactose-deprived L. lactis cells that use arginine as an alternative energy source can extend cellular activity and produce more specific flavours. In cheese experiments we demonstrated that arginine metabolising cells survived about 3 times longer than non-arginine metabolising cells, which suggests prolonged cellular activity. Cellular activity and flavour production of L. lactis was further studied in vitro to enable controlled arginine supplementation. Comparable with the results found in cheese, the survival rates of in vitro incubated cells improved when arginine was metabolised. Furthermore, elongated cellular activity was reflected in 3-4-fold increased activity of flavour generating enzymes. The observed prolonged cellular activity resulted in about 2-fold higher concentrations of typical Gouda cheese flavours. These findings provide new leads for composing starter cultures that will produce specific flavour compounds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Physiological adaptation of the bacterium Lactococcus lactis in response to the production of human CFTR.

    Science.gov (United States)

    Steen, Anton; Wiederhold, Elena; Gandhi, Tejas; Breitling, Rainer; Slotboom, Dirk Jan

    2011-07-01

    Biochemical and biophysical characterization of CFTR (the cystic fibrosis transmembrane conductance regulator) is thwarted by difficulties to obtain sufficient quantities of correctly folded and functional protein. Here we have produced human CFTR in the prokaryotic expression host Lactococcus lactis. The full-length protein was detected in the membrane of the bacterium, but the yields were too low (proteins) for in vitro functional and structural characterization, and induction of the expression of CFTR resulted in growth arrest. We used isobaric tagging for relative and absolute quantitation based quantitative proteomics to find out why production of CFTR in L. lactis was problematic. Protein abundances in membrane and soluble fractions were monitored as a function of induction time, both in CFTR expression cells and in control cells that did not express CFTR. Eight hundred and forty six proteins were identified and quantified (35% of the predicted proteome), including 163 integral membrane proteins. Expression of CFTR resulted in an increase in abundance of stress-related proteins (e.g. heat-shock and cell envelope stress), indicating the presence of misfolded proteins in the membrane. In contrast to the reported consequences of membrane protein overexpression in Escherichia coli, there were no indications that the membrane protein insertion machinery (Sec) became overloaded upon CFTR production in L. lactis. Nutrients and ATP became limiting in the control cells as the culture entered the late exponential and stationary growth phases but this did not happen in the CFTR expressing cells, which had stopped growing upon induction. The different stress responses elicited in E. coli and L. lactis upon membrane protein production indicate that different strategies are needed to overcome low expression yields and toxicity.

  2. Effect of composite yogurt enriched with acacia fiber and Bifidobacterium lactis

    Institute of Scientific and Technical Information of China (English)

    Yang Won Min; Sang Un Park; Yeon Sil Jang; Young-Ho Kim; Poong-Lyul Rhee; Seo Hyun Ko; Nami Joo

    2012-01-01

    AIM:To investigate whether composite yogurt with acacia dietary fiber and Bifidobacterium lactis (B.lactis)has additive effects in irritable bowel syndrome (IBS).METHODS:A total of 130 patients were randomly allocated to consume,twice daily for 8 wk,either the composite yogurt or the control product.The composite yogurt contained acacia dietary fiber and high-dose B.lactis together with two classic yogurt starter cultures.Patients were evaluated using the visual analog scale via a structured questionnaire administered at baseline and after treatment.RESULTS:Improvements in bowel habit satisfaction and overall IBS symptoms from baseline were significantly higher in the test group than in the control group (27.16 vs 15.51,P =0.010,64.2 ± 17.0 vs 50.4 ± 20.5,P < 0.001; respectively).In constipation-predominant IBS,improvement in overall IBS symptoms was significantly higher in the test group than in the control group (72.4 ± 18.4 vs 50.0 ± 21.8,P < 0.001).In patients with diarrhea-predominant IBS,improvement in bowel habit satisfaction from baseline was significantly higher in the test group than in the control group (32.90 vs 7.81,P =0.006).CONCLUSION:Our data suggest that composite yogurt enriched with acacia fiber and B.lactis has greater therapeutic effects in patients with IBS than standard yogurt.

  3. PpiA, a surface PPIase of the cyclophilin family in Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Nicolas Trémillon

    Full Text Available BACKGROUND: Protein folding in the envelope is a crucial limiting step of protein export and secretion. In order to better understand this process in Lactococcus lactis, a lactic acid bacterium, genes encoding putative exported folding factors like Peptidyl Prolyl Isomerases (PPIases were searched for in lactococcal genomes. RESULTS: In L. lactis, a new putative membrane PPIase of the cyclophilin subfamily, PpiA, was identified and characterized. ppiA gene was found to be constitutively expressed under normal and stress (heat shock, H(2O(2 conditions. Under normal conditions, PpiA protein was synthesized and released from intact cells by an exogenously added protease, showing that it was exposed at the cell surface. No obvious phenotype could be associated to a ppiA mutant strain under several laboratory conditions including stress conditions, except a very low sensitivity to H(2O(2. Induction of a ppiA copy provided in trans had no effect i on the thermosensitivity of an mutant strain deficient for the lactococcal surface protease HtrA and ii on the secretion and stability on four exported proteins (a highly degraded hybrid protein and three heterologous secreted proteins in an otherwise wild-type strain background. However, a recombinant soluble form of PpiA that had been produced and secreted in L. lactis and purified from a culture supernatant displayed both PPIase and chaperone activities. CONCLUSIONS: Although L. lactis PpiA, a protein produced and exposed at the cell surface under normal conditions, displayed a very moderate role in vivo, it was found, as a recombinant soluble form, to be endowed with folding activities in vitro.

  4. Time-resolved genetic responses of Lactococcus lactis to a dairy environment.

    Science.gov (United States)

    Bachmann, Herwig; de Wilt, Leonie; Kleerebezem, Michiel; van Hylckama Vlieg, Johan E T

    2010-05-01

    Lactococcus lactis is one of main bacterial species found in mixed dairy starter cultures for the production of semi-hard cheese. Despite the appreciation that mixed cultures are essential for the eventual properties of the manufactured cheese the vast majority of studies on L. lactis were carried out in laboratory media with a pure culture. In this study we applied an advanced recombinant in vivo expression technology (R-IVET) assay in combination with a high-throughput cheese-manufacturing protocol for the identification and subsequent validation of promoter sequences specifically induced during the manufacturing and ripening of cheese. The system allowed gene expression measurements in an undisturbed product environment without the use of antibiotics and in combination with a mixed strain starter culture. The utilization of bacterial luciferase as reporter enabled the real-time monitoring of gene expression in cheese for up to 200 h after the cheese-manufacturing process was initiated. The results revealed a number of genes that were clearly induced in cheese such as cysD, bcaP, dppA, hisC, gltA, rpsE, purL, amtB as well as a number of hypothetical genes, pseudogenes and notably genetic elements located on the non-coding strand of annotated open reading frames. Furthermore genes that are likely to be involved in interactions with bacteria used in the mixed strain starter culture were identified.

  5. Non-Fusion and Fusion Expression of β-Galactosidase from Lactobacillus bulgaricus in Lactococcus lactis

    Institute of Scientific and Technical Information of China (English)

    CHUAN WANG; CHAO-WU ZHANG; HENG-CHUAN LIU; QIAN YU; XIAO-FANG PEI

    2008-01-01

    Objective To construct four recombinant Lactococcus lactis strains exhibiting high β-galactosidase activity in fusion or non-fusion ways, and to study the influence factors for their protein expression and secretion. Methods The gene fragments encoding β-galactosidase from two strains of Lactobacillus bulgaricus, wch9901 isolated from yogurt and 1.1480 purchased from the Chinese Academy of Sciences, were amplified and inserted into lactococcal expression vector pMG36e. For fusion expression, the open reading frame of the β-galactosidase gene was amplified, while for non-fusion expression, the open reading frame of the β-galactosidase gene was amplified with its native Shine-Dalgarno sequence upstream. The start codon of the β-galactosidase gene partially overlapped with the stop codon of vector origin open reading frame. Then, the recombinant plasmids were transformed into Escherichia coli DH5α and Lactococcus lactis subsp, lactis MG1363 and confirmed by determining β-galactosidase activities. Results The non-fusion expression plasmids showed a significantly higher β-galactosidase activity in transformed strains than the fusion expression plasmids. The highest enzyme activity was observed in Lactococcus lactis transformed with the non-fusion expression plasmids which were inserted into the β-galactosidase gene from Lactobacillus bulgaricus wch9901. The β-galactosidase activity was 2.75 times as high as that of the native counterpart. In addition, β-galactosidase expressed by recombinant plasmids in Lactococcus lactis could be secreted into the culture medium. The highest secretion rate (27.1%) was observed when the culture medium contained 20 g/L of lactose. Conclusion Different properties of the native bacteria may have some effects on the protein expression of recombinant plasmids. Non-fusion expression shows a higher enzyme activity in host bacteria. There may be a ost-related weak secretion signal peptide gene within the structure gene of Lb

  6. Isolation and characterization of a nisin-like bacteriocin produced by a Lactococcus lactis strain isolated from charqui, a Brazilian fermented, salted and dried meat product.

    Science.gov (United States)

    Biscola, V; Todorov, S D; Capuano, V S C; Abriouel, H; Gálvez, A; Franco, B D G M

    2013-03-01

    A Lactococcus lactis subsp. lactis strain (L. lactis 69) capable to produce a heat-stable bacteriocin was isolated from charqui, a Brazilian fermented, salted and sun-dried meat product. The bacteriocin inhibited, in vitro, Listeria monocytogenes, Staphylococcus aureus, several lactic acid bacteria isolated from foods and spoilage halotolerant bacteria isolated from charqui. The activity of the bacteriocin was not affected by pH (2.0-10.0), heating (100 °C), and chemical agents (1% w/v). Treatment of growing cells of L. monocytogenes ScottA with the cell-free supernatant of L. lactis 69 resulted in complete cell inactivation. L. lactis 69 harbored the gene for the production of a nisin-like bacteriocin, and the amino acid sequence of the active peptide was identical to sequences previously described for nisin Z. However, differences were observed regarding the leader peptide. Besides, the isolate was able to survive and produce bacteriocins in culture medium with NaCl content up to 20%, evidencing a potential application as an additional hurdle in the preservation of charqui. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. POTENTIAL OF Lactococcus lactis subsp. lactis MTCC 3041 AS A BIOPRESERVATIVE

    Directory of Open Access Journals (Sweden)

    Neha Sharma

    2013-10-01

    Full Text Available Lactic acid bacteria especially in developing countries can be exploited against frequently occurring spoilage organisms of fresh fruits and vegetables in addition to pathogens. Keeping in views this antagonism imparted by bacteria Lactococci, the present study was taken and effectiveness of bacteriocin of Lactococci was also studied in preservatives and enzymes. Lactic acid bacteria Lactococcus lactis subs. Lactis MTCC 3041 was used as bacteriocin producer strain. Isolation of most frequently occurring spoilage organisms from spoiled Mango and Kinnow was done by microbiological procedures and were identified by microscopic studies as Isolate 1 and Isolate 2. It has limited use in processed salted food as no zone of inhibition was observed at and above 5% NaCl (w/v.0.3% (w/v is the minimum concentration of KMS that provides stress to the microorganism for the production of bacteriocin. It is not suitable for food having sodium benzoate as preservative as with increase in concentration growth of Lactococcus lactis decreases. Presence of bacteriocin hinders the growth of the isolate 1 as fresh weight of the mycelium in test sample is 7.09% less than the control. Being non-pathogenic this organism can be safely used against spoilage organisms in addition to food borne pathogens.

  8. Construction of an expression vector for Lactococcus lactis based on ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... Cryptic plasmids are extrachromosomal DNA elements that encode no ... subjected to plasmid extraction followed by RE digestion analysis and PCR .... has been shown to express in L. lactis, Bacillus. subtilis and E. coli ...

  9. Chorioamnionitis due to Lactococcus lactis cremoris: A case report

    Directory of Open Access Journals (Sweden)

    F. Azouzi

    2015-07-01

    Full Text Available Lactococcus lactis cremoris is rarely involved in human pathology. A thirty two-year old pregnant woman with premature rupture of membrane history presented with chorioamnionitis due to L. lactis cremoris. She underwent an emergency caesarian section and was treated with antibiotics including the association of amoxicillin and clavulanic acid. She was completely recovered. This is the first case to our knowledge of chorioamnionitis due to this organism.

  10. Chorioamnionitis due to Lactococcus lactis cremoris: A case report

    OpenAIRE

    F. Azouzi; C. Chahed; Marzouk, M.; A. Ferjani; N. Hannechi; M. Fekih; Y. Ben Salem; J. Boukadida

    2015-01-01

    Lactococcus lactis cremoris is rarely involved in human pathology. A thirty two-year old pregnant woman with premature rupture of membrane history presented with chorioamnionitis due to L. lactis cremoris. She underwent an emergency caesarian section and was treated with antibiotics including the association of amoxicillin and clavulanic acid. She was completely recovered. This is the first case to our knowledge of chorioamnionitis due to this organism.

  11. EFEITO DE PROTETORES E TRATAMENTOS DE ESTRESSE NA SOBREVIVÊNCIA DE LACTOCOCCUS LACTIS SUBSP LACTIS AO CONGELAMENTO Effect of protective and stress treatment on survival of Lactococcus lactis subsp. lactis to freezing

    Directory of Open Access Journals (Sweden)

    Eliana dos Santos Leandro

    2013-02-01

    Full Text Available O efeito de substâncias crioprotetoras e de tratamentos subletais de estresse foi avaliado no aumento da tolerância ao congelamento em Lactococcus lactis subsp lactis PD 6.9. Todas as substâncias crioprotetoras avaliadas aumentaram a sobrevivência de L. lactis subsp lactis PD 6.9 a estocagem de 15 dias a - 20 ºC. Entretanto, o leite desnatado reconstituído a 10 % foi o que conferiu maior proteção. Quanto à exposição da suspensão de células a tratamentos subletais de estresse, a exposição a 10 ºC por 4 horas foi capaz de manter a sobrevivência de L. lactis subsp lactis PD 6.9 estável durante 70 dias de estocagem a - 20 ºC. O tratamento a 40 ºC por 30 minutos conferiu proteção durante 70 dias de estocagem a - 20 ºC quando comparado com a suspensão de células que não recebeu nenhum tratamento antes do congelamento. A aplicação desses tratamentos é importante para assegurar a viabilidade de L. lactis subsp lactis PD 6.9 no decorrer do período de estocagem, e também de assegurar a qualidade sensorial e microbiológica de alimentos obtidos por processos de fermentação.

  12. Glutathione attenuates uranyl toxicity in Lactococcus lactis

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy, Karim; Oertel, Jana [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Obeid, M. [Technische Univ. Dresden (Germany); Solioz, M. [Bern Univ. (Switzerland)

    2017-06-01

    We investigated the role of intracellular glutathione (GSH), which in a large number of taxa plays a role in the protection against the toxicity of heavy metals. Anaerobically grown Lactococcus lactis containing an inducible GSH synthesis pathway was used as a model organism allowing the study of GSH-dependent uranyl detoxification without interference from additional reactive oxygen species. Microcalorimetric measurements of the metabolic heat showed that intracellular GSH attenuates the toxicity of uranium at a concentration in the range of 10-150 μM. Isothermal titration calorimetry revealed the endothermic binding of U(VI) to the carboxyl group(s) of GSH. The data indicate that the primary detoxifying mechanism is the intracellular sequestration of carboxyl-coordinated U(VI) into an insoluble complex with GSH.

  13. Salame tipo italiano elaborado com culturas starters nativas Fermented italian sausage elaborated with native starter cultures

    Directory of Open Access Journals (Sweden)

    Andréia Cirolini

    2010-05-01

    Full Text Available A pesquisa teve como objetivo acrescentar culturas starters nativas em salame tipo Italiano e avaliar o desempenho frente a culturas comerciais quanto às características microbiológicas, físico-químicas e sensoriais. As culturas utilizadas foram Staphylococcus xylosus, isolado de salames coloniais, e Lactococcus lactis ssp. lactis, isolado de um produto lácteo e fermentado em meio de cultura de plasma suíno. Elaboraram-se os seguintes tratamentos: T1 - adição de starters comerciais (Staphylococcus xylosus e Lactococcus lactis ssp. lactis; T2 - mistura de Staphylococcus xylosus isolado mais Lactococcus lactis ssp. lactis comercial; T3 - mistura de Lactococcus lactis ssp. lactis isolado mais Staphylococcus xylosus comercial; e T4 - Staphylococcus xylosus e Lactococcus lactis ssp. lactis, ambos isolados. Os tratamentos apresentaram uma queda de pH significativa e também uma redução na Aw, garantindo uma segurança microbiológica aos produtos. Em relação à oxidação lipídica, os tratamentos que continham Staphylococcus xylosus isolados de salames artesanais apresentaram valores menores que os outros tratamentos. Os salames elaborados com Staphylococcus xylosus e Lactococcus lactis ssp. lactis, ambos isolados, apresentaram melhores resultados sensoriais quando comparados com salames elaborados com culturas starters comerciais. Portanto, a adição de culturas starters nativas pode ser utilizada na elaboração de salames, proporcionando produtos seguros e com flavor diferenciado.The objective of this paper was to add native starter cultures in fermented Italian sausages and evaluate the performance compared to commercial cultures in terms of microbiological and physicochemical parameters and sensorial characteristics. The cultures used were Staphylococcus xylosus, isolated from colonial sausages, and Lactococcus lactis ssp. lactis isolated from a dairy product and fermented in pork plasma medium. The following treatments were

  14. Effect of bile on nisin-mediated antibacterial activity and the expression of nisin genes of Lactococcus lactis W8.

    Science.gov (United States)

    Mitra, Suranjita; Mukhopadhyay, Bidhan Chandra; Chakrabartty, Pran Krishna; Biswas, Swadesh Ranjan

    2013-12-01

    The capability of Lactococcus lactis to produce nisin in the presence of bile in the intestinal environment remains an intriguing question. The aim of this study was to determine the effects of bile on production of nisin and the mRNA expression of nisin genes of L. lactis W8. The strain L. lactis W8 was grown on glucose in the absence and presence of bile (0.005-0.08 %) and the antibacterial activities of culture supernatants were determined. In culture with 0.035 % bile, the nisin activity was significantly reduced (400 AU/mL) within 5 h compared to that in the control without bile (2000 AU/mL), while growth of the cells was only slightly affected. In the presence of 0.07 % bile no nisin activity of the strain was manifested. Consistent with these results, mRNA expression of nisin-biosynthetic genes nisZ, nisRK, nisI, and nisF was down-regulated by 7.5-, 2.5-, 1.7-, and 6.0-fold, respectively in cells grown in the presence of bile (0.07 %) as compared to control culture without bile. The present study suggested that bile inhibited transcription of nisin genes. Nisin-production in intestine by orally administered L. lactis, thus, does not occur since complete inhibition of nisin-production by bile is observed at a concentration much lower than the physiological concentration (0.3 %) of bile present in the human intestine. The molecular mechanism underlying the bile-mediated inhibition of nisin genes remains to be elucidated. This is the first report on bile-mediated inhibition of nisin genes.

  15. Cholate resistance in Lactococcus lactis is mediated by an ATP-dependent multispecific organic anion transporter

    NARCIS (Netherlands)

    Yokota, A; Veenstra, M; Kurdi, P; van Veen, HW; Konings, WN

    The cholate-resistant Lactococcus lactis strain C41-2, derived from mild-type L. lactis MG1363 through selection for growth on cholate-containing medium, displayed a reduced accumulation of cholate due to an enhanced active efflux, However, L. lactis C41-2 was not cross resistant to deoxycholate or

  16. Diversity in robustness of Lactococcus lactis strains during heat stress, oxidative stress, and spray drying stress

    NARCIS (Netherlands)

    Dijkstra, A.R.; Setyawati, M.C.; Bayjanov, J.R.; Alkema, W.; van Hijum, S.A.F.T.; Bron, P.A.; Hugenholtz, J.

    2014-01-01

    In this study we tested 39 Lactococcus lactis strains isolated from diverse habitats for their robustness under heat and oxidative stress, demonstrating high diversity in survival (up to 4 log units). Strains with an L. lactis subsp. lactis phenotype generally displayed more-robust phenotypes than s

  17. Overproduction of heterologous mannitol 1-phosphatase : a key factor for engineering mannitol production by Lactococcus lactis

    NARCIS (Netherlands)

    Wisselink, H.W.; Moers, A.P.H.A.; Mars, A.E.; Hoefnagel, M.H.N.; Vos, de W.M.; Hugenholtz, J.

    2005-01-01

    To achieve high mannitol production by Lactococcus lactis, the mannitol 1-phosphatase gene of Eimeria tenella and the mannitol 1-phosphate dehydrogenase gene mtlD of Lactobacillus plantarum were cloned in the nisin-dependent L. lactis NICE overexpression system. As predicted by a kinetic L. lactis

  18. Synergetic effects of microbial binary cultures on microbial fuel cell performance

    Science.gov (United States)

    A binary culture of Lactococcus lactis and Shewanella oneidensis was studied for an efficient conversion of glucose into electricity in a continuously-operated chemostatic electrochemical reactor. The homolactic fermentation bacterium L. lactis fermented glucose almost exclusively to lactate – the ...

  19. Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine

    Directory of Open Access Journals (Sweden)

    Beatriz del Rio

    2016-03-01

    Full Text Available The dairy strain Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14 synthesizes the biogenic amine putrescine from agmatine via the agmatine deiminase (AGDI pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC, which encodes the proteins necessary for agmatine uptake and its conversion into putrescine [1,2]. The first gene of the cluster, aguR, encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC [2]. The catabolic operon aguBDAC is transcriptionally activated by agmatine [2] and transcriptionally regulated by carbon catabolite repression (CCR via glucose, but not by other sugars such as lactose or galactose [1,3]. On the contrary, the transcription of the aguR regulatory gene is not subject to CCR regulation [1,3] nor is regulated by agmatine [2]. In this study we report the transcriptional profiling of L. lactis subsp. cremoris CECT 8666 grown in M17 medium with galactose (GalM17 as carbon source and supplemented with agmatine, compared to that of the strain grown in the same culture medium without agmatine. The transcriptional profiling data of agmatine-regulated genes were deposited in the Gene Expression Omnibus (GEO database under Accession no. GSE74808.

  20. Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine.

    Science.gov (United States)

    Del Rio, Beatriz; Redruello, Begoña; Martin, M Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P; Ladero, Victor; Alvarez, Miguel A

    2016-03-01

    The dairy strain Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) synthesizes the biogenic amine putrescine from agmatine via the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC, which encodes the proteins necessary for agmatine uptake and its conversion into putrescine [1], [2]. The first gene of the cluster, aguR, encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC[2]. The catabolic operon aguBDAC is transcriptionally activated by agmatine [2] and transcriptionally regulated by carbon catabolite repression (CCR) via glucose, but not by other sugars such as lactose or galactose [1], [3]. On the contrary, the transcription of the aguR regulatory gene is not subject to CCR regulation [1], [3] nor is regulated by agmatine [2]. In this study we report the transcriptional profiling of L. lactis subsp. cremoris CECT 8666 grown in M17 medium with galactose (GalM17) as carbon source and supplemented with agmatine, compared to that of the strain grown in the same culture medium without agmatine. The transcriptional profiling data of agmatine-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under Accession no. GSE74808.

  1. Nisin inducible production of listeriolysin O in Lactococcus lactis NZ9000

    Directory of Open Access Journals (Sweden)

    Griffin Brendan T

    2008-07-01

    Full Text Available Abstract Background Listeria monocytogenes is a well-characterized food-borne pathogen that infects pregnant women and immunocompromised individuals. Listeriolysin O (LLO is the major virulence factor of the pathogen and is often used as a diagnostic marker for detection of L. monocytogenes. In addition, LLO represents a potent antigen driving T cell-mediated immunity during infection. In the present work, Lactococcus lactis NZ9000 was used as an expression host to hyper-produce LLO under inducible conditions using the NICE (NIsin Controlled Expression system. We created a modified pNZ8048 vector encoding a six-His-tagged LLO downstream of the strong inducible PnisA promoter. Results The constructed vector (pNZPnisA:CYTO-LLO was expressed in L. lactis NZ9000 and was best induced at mid-log phase with 0.2% v/v nisin for 4 h statically at 30°C. Purification of the His-tagged LLO was accomplished by Ni-NTA affinity chromatography and functionality was confirmed through haemolytic assays. Total LLO yield (measured as total protein content was 4.43–5.9 mg per litre culture and the haemolytic activity was still detectable after 8 months of storage at 4°C. Conclusion The LLO production method described in this work provides an approach to efficient LLO production in the Gram-positive Lactococcus bacterium to yield a significant source of the protein for research and diagnostic applications. Expression of LLO in L. lactis has a number of benefits over E. coli which may facilitate both in vivo and in vitro applications of this system.

  2. LANTIBIOTIC NISIN: NATURAL PRESERVATIVE FROM LACTOCOCCUS LACTIS

    Directory of Open Access Journals (Sweden)

    Suganthi.V

    2012-01-01

    Full Text Available The increasing demand for high quality safe foods that are not extensively processed has created a niche for natural food preservative. Studies confirm that food allergies due to chemical preservatives affect as much as 2.5% of the population. Recent research had suggested bacteriocins (Nisin are the ideal biological food preservative. Nisin was proteinaceous antibacterial substances produced by Lactococcus lactis, a homofermentative bacterium. Naturally nisin occurs in two different forms nisin A and nisin Z. Nisin has wide range of inhibitory mode of action on Gram negative bacteria and food borne pathogens. Food preservation is a continuous war against the microorganisms spoiling the food or making it unsafe. So, nisin is actually the only lantibiotic bacteriocins used as a food preservative. This review paper will discuss about the Lactococcal strain used for the production of nisin, different forms of nisin, the mode of action of nisin, the cost reductive methods for the production and purification of nisin. So that it can be used in large scale industry for the high yield of nisin and the wide application of nisin in food industries.

  3. Elucidating Flux Regulation of the Fermentation Modes of Lactococcus lactis

    DEFF Research Database (Denmark)

    Chan, Siu Hung Joshua

    an important subject for basic research in cellular metabolism because L. lactis exhibits an interesting metabolic shift. Under anaerobic conditions, on fast fermentable sugars, L. lactis produces lactate as the primary product, known as homolactic fermentation but on slowly fermentable sugars, significant...... amounts of formate, acetate and ethanol are formed, known as mixed-acid fermentation. This shift is termed the mixedacid shift. This type of shift between a low-yield and a high-yield metabolism has drawn a lot of research focus and has similarly been observed in other bacteria, yeast and even tumor cells...... the expression level of certain genes in glycolysis and fermentation pathways, the levels of the cofactors NADH, NAD+, ATP and ADP, the balance between catabolism and anabolism, etc. In this project, we studied the mixed-acid fermentation of L. lactis by (i) examining the roles of the enzymes in the mixed...

  4. Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04

    DEFF Research Database (Denmark)

    Andersen, Joakim Mark; Barrangou, Rodolphe; Abou Hachem, Maher

    2013-01-01

    transcriptomes of Bifidobacterium animalis subsp. lactis Bl-04, induced by 11 potential prebiotic oligosaccharides were analyzed to identify the genetic loci involved in the uptake and catabolism of α- and β-linked hexoses, and β-xylosides. RESULTS: The overall transcriptome was modulated dependent on the type...... in the breadth and selectivity of prebiotic utilization by bifidobacteria. CONCLUSION: This study identified the differential gene expression for utilization of potential prebiotics highlighting the extensive capabilities of Bifidobacterium lactis Bl-04 to utilize oligosaccharides. Results provide insights...

  5. Estudo dos parâmetros da ultrafiltração de permeado de soro de queijo fermentado por Lactococcus lactis subsp. lactis Ultrafiltration conditions of whey permeate fermented by Lactococcus lactis subsp. lactis

    Directory of Open Access Journals (Sweden)

    Viviane BRONSTEIN

    1998-04-01

    Full Text Available Permeado de soro doce, suplementado com extrato de levedura e peptona, foi utilizado como meio de crescimento para Lactococcus lactis subsp. lactis. No final da fase exponencial de crescimento, o meio de cultura fermentado foi submetido a uma ultrafiltração com o objetivo de concentrar o microrganismo. Foram realizados 6 processamentos diferentes, nos quais variou-se as condições iniciais da ultrafiltração, tendo sido avaliados os seguintes parâmetros: porosidade da membrana, pH e número de células viáveis no permeado e no retentado, a fim de ser estudado a influência de cada parâmetro na taxa de permeação da ultrafiltração. As membranas utilizadas foram eficazes como meio de barragem para o microrganismo Lactococcus lactis subsp. lactis, ficando o retentado com uma média celular de 10(8 ufc/ml e o permeado com uma média celular de 10² ufc/ml. Membranas de diferentes porosidades tiveram taxas de fluxo semelhantes. O aumento da concentração celular provocou a diminuição do fluxo. O pH também influenciou a taxa de permeação, havendo um aumento do fluxo quando foi utilizado um pH inicial mais alto.Cheese whey permeate supplemented with yeast extract and peptone was used as a growth medium for the bacteria Lactococcus lactis subsp. lactis. At the end of the exponential growth phase, the fermented growth medium was ultrafiltered to concentrate the microorganism and to evaluate the effect of the membrane porosity, inicial UF pH and cellular concentration in permeation rate during the ultrafiltration process. The membranes used were efficient as a mean of a barrage for the Lactococcus lactis subsp. lactis. On average, the cellular concentrations were 10(8 CFU/mL and 10² CFU/mL for retentate and permeate, respectively. Membranes of different porosities had very similar flux rates. Better flow rates were obtained with inicial UF pH 6,5 and with the minors micrrorganism concentration.

  6. Transforming Lactococcus lactis into a microbial cell factory

    DEFF Research Database (Denmark)

    Petersen, Kia Vest

    Biological conversion of lignocellulosic biomass to biofuels and -chemicals is a promising technology to reduce dependency on fossil fuels. This is important considering the environmental problems associated with consumption of the fossil fuels together with the fact that the reserves are limited...... as the yield of lactate per xylose increase significantly. The pentose phosphate pathway present in L. lactis KF147 and other genome sequenced L. lactis strains is, however, a modified version of the known pentose phosphate pathway as no transaldolase gene is present in any of the these strains. A codon...

  7. Effects of mixed starter composition on nisin Z production by lactococcus lactis subsp. lactis biovar. diacetylactis UL 719 during production and ripening of Gouda cheese.

    Science.gov (United States)

    Bouksaim, M; Lacroix, C; Audet, P; Simard, R E

    2000-09-10

    A starter culture system that produced both acid and nisin at acceptable rates in milk for manufacture of Gouda cheese was developed using nisin Z-producing L. lactis subsp. lactis biovar. diacetylactis UL 719 (UL 719) and a commercial Flora Danica (FD) starter culture. Different compositions of mixed cultures (0, 0.2, 0.4, 0.6 or 0.8% UL 719 with 1.4% FD) were tested for acidification and nisin Z production in milk after 12 h incubation at 30 degrees C. The 0.6/1.4% combination, selected as the optimal mixture of starter cultures, acidified milk to a suitable pH and produced nisin Z at a high concentration of 512 IU/ml. With this optimal combination, FD numbers of citrate-fermenting and non-fermenting bacteria did not change compared with the control (1.4% FD). However, with 0.8% of L. lactis strain UL 719 and 1.4% of the FD starter culture, the numbers of citrate-fermenting and non-fermenting bacteria in fermented milk decreased compared with those obtained when milk was inoculated with 0.2, 0.4 or 0.6% of UL 719 added to 1.4% FD or control cultures (1.4% FD). Mixed starter culture ratios 0.6/1.4%, 0.4/1.4% and 0.5/1.4% (UL 719/FD) were used to manufacture nisin Z containing Gouda cheese which was ripened up to 45 weeks. The composition of control cheeses made with 1.4% FD, and nisin Z-containing Gouda cheeses were similar with respect to percent moisture, fat, salt and protein. During the ripening period, the cell counts observed were approximately two logs higher in cheese made with the 0.6/1.4% mixed starter culture than in control cheese. In experimental cheese produced with 0.6/1.4% (UL 719/FD) mixed starter culture, nisin activity increased from 256 IU/g at the end of manufacture to a maximum of 512 IU/g after 6 weeks of ripening; the levels then decreased to 128 and 32 IU/g after 27 and 45 weeks of ripening, respectively. In contrast, nisin Z was not detected in experimental cheeses made with 0.4/1.4% or 0.5/1.4% (UL 719/FD) mixed starters. Using an

  8. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates

    Directory of Open Access Journals (Sweden)

    Mariya Tarazanova

    2017-09-01

    Full Text Available Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and feed. Lactococcus lactis is broadly used for the fermentation of cheese and buttermilk and it is primarily isolated from either plant material or the dairy environment. In this study, we characterized surface hydrophobicity, charge, emulsification properties, and the attachment to milk proteins of 55 L. lactis strains in stationary and exponential growth phases. The attachment to milk protein was assessed through a newly developed flow cytometry-based protocol. Besides finding a high degree of biodiversity, phenotype-genotype matching allowed the identification of candidate genes involved in the modification of the cell surface. Overexpression and gene deletion analysis allowed to verify the predictions for three identified proteins that altered surface hydrophobicity and attachment of milk proteins. The data also showed that lactococci isolated from a dairy environment bind higher amounts of milk proteins when compared to plant isolates. It remains to be determined whether the alteration of surface properties also has potential to alter starter culture functionalities.

  9. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates.

    Science.gov (United States)

    Tarazanova, Mariya; Huppertz, Thom; Beerthuyzen, Marke; van Schalkwijk, Saskia; Janssen, Patrick; Wels, Michiel; Kok, Jan; Bachmann, Herwig

    2017-01-01

    Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and feed. Lactococcus lactis is broadly used for the fermentation of cheese and buttermilk and it is primarily isolated from either plant material or the dairy environment. In this study, we characterized surface hydrophobicity, charge, emulsification properties, and the attachment to milk proteins of 55 L. lactis strains in stationary and exponential growth phases. The attachment to milk protein was assessed through a newly developed flow cytometry-based protocol. Besides finding a high degree of biodiversity, phenotype-genotype matching allowed the identification of candidate genes involved in the modification of the cell surface. Overexpression and gene deletion analysis allowed to verify the predictions for three identified proteins that altered surface hydrophobicity and attachment of milk proteins. The data also showed that lactococci isolated from a dairy environment bind higher amounts of milk proteins when compared to plant isolates. It remains to be determined whether the alteration of surface properties also has potential to alter starter culture functionalities.

  10. Identification and functional characterisation of cellobiose and lactose transport systems in Lactococcus lactis IL1403.

    Science.gov (United States)

    Kowalczyk, Magdalena; Cocaign-Bousquet, Muriel; Loubiere, Pascal; Bardowski, Jacek

    2008-03-01

    Physiological, biochemical and macroarray analyses of Lactococcus lactis IL1403 and its ccpA and bglR single and double mutants engaged in lactose and beta-glucosides catabolism were performed. The kinetic analysis indicated the presence of different transport systems for salicin and cellobiose. The control of salicin catabolism was found to be mediated by the transcriptional regulator BglR and the CcpA protein. The transcriptional analysis by macroarray technology of genes from the PEP:PTS regions showed that several genes, like ybhE, celB, ptcB and ptcA, were expressed at higher levels both in wild type cells exposed to cellobiose and in the ccpA mutant. We also demonstrated that in L. lactis IL1403 cultured on medium with cellobiose and lactose as carbon sources, after the first phase of cellobiose consumption and then co-metabolism of the two sugars, when cellobiose is exhausted the strain uses lactose as the only carbon source. These data could indicate that lactose and cellobiose are transported by a unique system-a PTS carrier induced by the presence of cellobiose, and negatively controlled by the CcpA regulator.

  11. Characterization of Lactococcus lactis response to ampicillin and ciprofloxacin using surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Wang, Panxue; Pang, Shintaro; Zhang, Hua; Fan, Mingtao; He, Lili

    2016-01-01

    Decades of antibiotic use or misuse has resulted in antibiotic resistance in lactic acid bacteria, a group of common culture starters and probiotic microorganisms. This has urged researchers to study how lactic acid bacteria respond to antibiotics, so as to have a better strategy to identify and predict the antibiotic-resistant bacteria. This study aimed to characterize the biochemical profiles of Lactococcus lactis responding to antibiotics using surface-enhanced Raman spectroscopy (SERS). Lactococcus lactis exposed to antibiotics was mixed with 50-nm gold nanoparticles for subsequent SERS measurements. The SERS spectra analyzed by principal component analysis showed no significant change after 30 min of antibiotic treatment, whereas distinct changes were clearly observed after 60 and 90 min of antibiotic treatment. Different antibiotics induced different spectral changes, and these changes revealed the detailed biochemical information of cellular responses. This study demonstrates that the SERS method developed not only senses the changes in the bacterial cell wall, but also reveals details of the biochemical profiles, which help us to understand how lactic acid bacteria respond to antibiotics, as well as to set a base for the detection of antibiotic susceptibility of bacteria by SERS.

  12. Antiviral Effects of Lactococcus lactis on Feline Calicivirus, A Human Norovirus Surrogate.

    Science.gov (United States)

    Aboubakr, Hamada A; El-Banna, Amr A; Youssef, Mohammed M; Al-Sohaimy, Sobhy A A; Goyal, Sagar M

    2014-12-01

    Foodborne viruses, particularly human norovirus (NV) and hepatitis virus type A, are a cause of concern for public health making it necessary to explore novel and effective techniques for prevention of foodborne viral contamination, especially in minimally processed and ready-to-eat foods. This study aimed to determine the antiviral activity of a probiotic lactic acid bacterium (LAB) against feline calicivirus (FCV), a surrogate of human NV. Bacterial growth medium filtrate (BGMF) of Lactococcus lactis subsp. lactis LM0230 and its bacterial cell suspension (BCS) were evaluated separately for their antiviral activity against FCV grown in Crandell-Reese feline kidney (CRFK) cells. No significant antiviral effect was seen when CRFK cells were pre-treated with either BGMF (raw or pH 7-adjusted BGMF) or BCS. However, pre-treatment of FCV with BGMF and BCS resulted in a reduction in virus titers of 1.3 log10 tissue culture infectious dose (TCID)50 and 1.8 log10 TCID50, respectively. The highest reductions in FCV infectivity were obtained when CRFK cells were co-treated with FCV and pH 7-adjusted BGMF or with FCV and BCS (7.5 log10 TCID50 and 6.0 log10 TCID50, respectively). These preliminary results are encouraging and indicate the need for continued studies on the role of probiotics and LAB on inactivation of viruses in various types of foods.

  13. Influence of probiotic strain Bifidobacterium animalis subsp. lactis lafti® b94, inulin and transglutaminase on the properties of set- style yoghurt

    Directory of Open Access Journals (Sweden)

    Maja Benković

    2008-05-01

    Full Text Available The aim of this research was to examine the influence of probiotic strain Bifidobacterium animalis subsp. lactis LAFTI® B94, inulin and transglutaminase on quality and sensory properties of set-style yoghurt. Fresh, homogenized milk with 3,3% of milk fat was used for yoghurt production, with addition of Bifidobacterium animalis subsp. lactis LAFTI® B94, inulin and transglutaminase activated during 1h 30 min at 55 °C. Enzyme inactivation was carried out by pasteurization of milk during 15 minutes at 85 °C. Control samples were prepared without addition of probiotic culture, inulin and transglutaminase. Physico-chemical parameters and sensory properties of produced set-style yoghurt have been determined. For reliable identification of probiotic strain Bifidobacterium animalis subsp. lactis LAFTI® B94, isolated from the produced yoghurt, SDS-PAGE of whole cell proteins and PCR with species specific primers for Bifidobacterium were carried out. It has been shown that produced set-style yoghurt with probiotic strain Bifidobacterium animalis subsp. lactis LAFTI® B94, inulin and transglutaminase had higher firmness, less syneresis and better sensory properties than control yoghurt samples. After 28 days of storage the viable count of Bifidobacterium animalis subsp. lactis LAFTI® B94 was higher in samples containing inulin as prebiotic. Fermentation of yoghurt samples containing inulin and transglutaminase lasted shorter than fermentation of samples without inulin and transglutaminase. The presence of high number of probiotic culture (more than 106 cells/mL in produced set yoghurts was confirmed by SDS-PAGE of whole cell proteins and PCR with species specific primers for Bifidobacterium

  14. Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications

    Directory of Open Access Journals (Sweden)

    Mond James

    2005-05-01

    Full Text Available Abstract Background The nisin-controlled gene expression system NICE of Lactococcus lactis is one of the most widely used expression systems in Gram-positive bacteria. Despite its widespread use, no optimization of the culture conditions and nisin induction has been carried out to obtain maximum yields. As a model system induced production of lysostaphin, an antibacterial protein (mainly against Staphylococcus aureus produced by S. simulans biovar. Staphylolyticus, was used. Three main areas need optimization for maximum yields: cell density, nisin-controlled induction and protein production, and parameters specific for the target-protein. Results In a series of pH-controlled fermentations the following parameters were optimized: pH of the culture, use of NaOH or NH4OH as neutralizing agent, the addition of zinc and phosphate, the fermentation temperature, the time point of induction (cell density of the culture, the amount of nisin added for induction and the amount of three basic medium components, i.e. yeast extract, peptone and lactose. For each culture growth and lysostaphin production was followed. Lysostaphin production yields depended on all parameters that were varied. In the course of the optimization a three-fold increase in lysostaphin yield was achieved from 100 mg/l to 300 mg/l. Conclusion Protein production with the NICE gene expression system in L. lactis strongly depends on the medium composition, the fermentation parameters and the amount of nisin added for induction. Careful optimization of key parameters lead to a significant increase in the yield of the target protein.

  15. Cloning, Expression, and Chromosomal Stabilization of the Propionibacterium shermanii Proline Iminopeptidase Gene (pip) for Food-Grade Application in Lactococcus lactis

    Science.gov (United States)

    Leenhouts, Kees; Bolhuis, Albert; Boot, Johan; Deutz, Inge; Toonen, Marjolein; Venema, Gerard; Kok, Jan; Ledeboer, Aat

    1998-01-01

    Proline iminopeptidase produced by Propionibacterium shermanii plays an essential role in the flavor development of Swiss-type cheeses. The enzyme (Pip) was purified and characterized, and the gene (pip) was cloned and expressed in Escherichia coli and Lactococcus lactis, the latter species being an extensively studied, primary cheese starter culture that is less fastidious in its growth condition requirements than P. shermanii. The levels of expression of the pip gene could be enhanced with a factor 3 to 5 by using a strong constitutive promoter in L. lactis or the inducible tac promoter in E. coli. Stable replication of the rolling-circle replicating (rcr) plasmid, used to express pip in L. lactis, could only be obtained by providing the repA gene in trans. Upon the integration of pip, clear gene dosage effects were observed and stable multicopy integrants could be maintained upon growth under the selective pressure of sucrose. The multicopy integrants demonstrated a high degree of stability in the presence of glucose. This study examines the possibilities to overexpress genes that play an important role in food fermentation processes and shows a variety of options to obtain stable food-grade expression of such genes in L. lactis. PMID:9835556

  16. 13C based proteinogenic amino acid (PAA and metabolic flux ratio analysis of Lactococcus lactis reveals changes in pentose phosphate (PP pathway in response to agitation and temperature related stresses

    Directory of Open Access Journals (Sweden)

    Kamalrul Azlan Azizan

    2017-07-01

    Full Text Available Lactococcus lactis subsp. cremoris MG1363 is an important starter culture for dairy fermentation. During industrial fermentations, L. lactis is constantly exposed to stresses that affect the growth and performance of the bacterium. Although the response of L. lactis to several stresses has been described, the adaptation mechanisms at the level of in vivo fluxes have seldom been described. To gain insights into cellular metabolism, 13C metabolic flux analysis and gas chromatography mass spectrometry (GC-MS were used to measure the flux ratios of active pathways in the central metabolism of L. lactis when subjected to three conditions varying in temperature (30°C, 37°C and agitation (with and without agitation at 150 rpm. Collectively, the concentrations of proteinogenic amino acids (PAAs and free fatty acids (FAAs were compared, and Pearson correlation analysis (r was calculated to measure the pairwise relationship between PAAs. Branched chain and aromatic amino acids, threonine, serine, lysine and histidine were correlated strongly, suggesting changes in flux regulation in glycolysis, the pentose phosphate (PP pathway, malic enzyme and anaplerotic reaction catalysed by pyruvate carboxylase (pycA. Flux ratio analysis revealed that glucose was mainly converted by glycolysis, highlighting the stability of L. lactis’ central carbon metabolism despite different conditions. Higher flux ratios through oxaloacetate (OAA from pyruvate (PYR reaction in all conditions suggested the activation of pyruvate carboxylate (pycA in L. lactis, in response to acid stress during exponential phase. Subsequently, more significant flux ratio differences were seen through the oxidative and non-oxidative pentose phosphate (PP pathways, malic enzyme, and serine and C1 metabolism, suggesting NADPH requirements in response to environmental stimuli. These reactions could play an important role in optimization strategies for metabolic engineering in L. lactis. Overall

  17. Cloning and expression of a novel lactococcal aggregation factor from Lactococcus lactis subsp. lactis BGKP1

    Directory of Open Access Journals (Sweden)

    Kojic Milan

    2011-12-01

    Full Text Available Abstract Background Aggregation may play a main role in the adhesion of bacteria to the gastrointestinal epithelium and their colonization ability, as well as in probiotic effects through co-aggregation with intestinal pathogens and their subsequent removal. The aggregation phenomenon in lactococci is directly associated with the sex factor and lactose plasmid co-integration event or duplication of the cell wall spanning (CWS domain of PrtP proteinase. Results Lactococcus lactis subsp. lactis BGKP1 was isolated from artisanal semi-hard homemade cheese and selected due to its strong auto-aggregation phenotype. Subsequently, non-aggregating derivative (Agg- of BGKP1, designated as BGKP1-20, was isolated, too. Comparative analysis of cell surface proteins of BGKP1 and derivative BGKP1-20 revealed a protein of approximately 200 kDa only in the parental strain BGKP1. The gene involved in aggregation (aggL was mapped on plasmid pKP1 (16.2 kb, cloned and expressed in homologous and heterologous lactococci and enterococci. This novel lactococcal aggregation protein was shown to be sufficient for cell aggregation in all tested hosts. In addition to the aggL gene, six more ORFs involved in replication (repB and repX, restriction and modification (hsdS, transposition (tnp and possible interaction with mucin (mbpL were also located on plasmid pKP1. Conclusion AggL is a new protein belonging to the collagen-binding superfamily of proteins and is sufficient for cell aggregation in lactococci.

  18. Increased production of folate by metabolic engineering of Lactococcus lactis

    NARCIS (Netherlands)

    Sybesma, W.F.H.; Starrenburg, M.; Kleerebezem, M.; Mierau, I.; Vos, de W.M.; Hugenholtz, J.

    2003-01-01

    The dairy starter bacterium Lactococcus lactis is able to synthesize folate and accumulates large amounts of folate, predominantly in the polyglutamyl form. Only small amounts of the produced folate are released in the extracellular medium. Five genes involved in folate biosynthesis were identified

  19. Genetic Basis of Tetracycline Resistance in Bifidobacterium animalis subsp lactis

    NARCIS (Netherlands)

    Gueimonde, M.; Florez, A.B.; Hoek, van A.H.A.M.; Stuer-Lauridsen, B.; Stroman, P.; Reyes-Gavilan, de los C.G.; Margolles, A.

    2010-01-01

    All strains of Bifidobacterium animalis subsp. lactis described to date show medium level resistance to tetracycline. Screening of 26 strains from a variety of sources revealed the presence of tet(W) in all isolates. A transposase gene upstream of tet(W) was found in all strains, and both genes were

  20. Structure-function analysis of multidrug transporters in Lactococcus lactis

    NARCIS (Netherlands)

    van Veen, HW; Putman, M; Margolles, A; Sakamoto, K; Konings, WN

    1999-01-01

    The active extrusion of cytotoxic compounds from the cell by multidrug transporters is one of the major causes of failure of chemotherapeutic treatment of tumor cells and of infections by pathogenic microorganisms. A multidrug transporter in Lactococcus lactis, LmrA, is a member of the ATP-binding c

  1. Regulatory phenotyping reveals important diversity within the species Lactococcus lactis

    NARCIS (Netherlands)

    Bachmann, H.; Starrenburg, M.; Dijkstra, A.; Molenaar, D.; Kleerebezem, M.; Rademaker, J.L.W.; Hylckama Vlieg, van J.E.T.

    2009-01-01

    The diversity in regulatory phenotypes among a collection of 84 Lactococcus lactis strains isolated from dairy and nondairy origin was explored. The specific activities of five enzymes were assessed in cell extracts of all strains grown in two different media, a nutritionally rich broth and a relati

  2. Transcriptional regulation of central amino acid metabolism in Lactococcus lactis

    NARCIS (Netherlands)

    Larsen, Rasmus

    2005-01-01

    This thesis describes the functional characterisation of the transcriptional regulators GlnR, ArgR and AhrC of Lactococcus lactis, which are responsible for the control of genes involved in the metabolism of the amino acids glutamine, glutamate and arginine. A chromosomal glnR deletion mutant was ma

  3. A review on Lactococcus lactis: from food to factory.

    Science.gov (United States)

    Song, Adelene Ai-Lian; In, Lionel L A; Lim, Swee Hua Erin; Rahim, Raha Abdul

    2017-04-04

    Lactococcus lactis has progressed a long way since its discovery and initial use in dairy product fermentation, to its present biotechnological applications in genetic engineering for the production of various recombinant proteins and metabolites that transcends the heterologous species barrier. Key desirable features of this gram-positive lactic acid non-colonizing gut bacteria include its generally recognized as safe (GRAS) status, probiotic properties, the absence of inclusion bodies and endotoxins, surface display and extracellular secretion technology, and a diverse selection of cloning and inducible expression vectors. This have made L. lactis a desirable and promising host on par with other well established model bacterial or yeast systems such as Escherichia coli, Salmonella cerevisiae and Bacillus subtilis. In this article, we review recent technological advancements, challenges, future prospects and current diversified examples on the use of L. lactis as a microbial cell factory. Additionally, we will also highlight latest medical-based applications involving whole-cell L. lactis as a live delivery vector for the administration of therapeutics against both communicable and non-communicable diseases.

  4. Experimental determination of control of glycolysis in Lactococcus lactis

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Andersen, Heidi Winterberg; Solem, Christian

    2002-01-01

    ), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK) and lactate dehydrogenase (LDH) are shown to have no significant control on the glycolytic flux in exponentially growing cells of L. lactis MG1363. Introduction of an uncoupled ATPase activity results in uncoupling of glycolysis from biomass...

  5. Nisin-Producing Lactococcus lactis Strains Isolated from Human Milk

    OpenAIRE

    Beasley, Shea S.; Saris, Per E.J.

    2004-01-01

    Characterization by partial 16S rRNA gene sequencing, ribotyping, and green fluorescent protein-based nisin bioassay revealed that 6 of 20 human milk samples contained nisin-producing Lactococcus lactis bacteria. This suggests that the history of humans consuming nisin is older than the tradition of consuming fermented milk products.

  6. Autoregulation of Nisin Biosynthesis in Lactococcus lactis by Signal Transduction

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Beerthuyzen, Marke M.; Ruyter, Pascalle G.G.A. de; Luesink, Evert J.; Vos, Willem M. de

    1995-01-01

    The post-translationally modified, antimicrobial peptide nisin is secreted by strains of Lactococcus lactis that contain the chromosomally located nisin biosynthetic gene cluster nisABTCIPRKFEG. When a 4-base pair deletion is introduced into the structural nisA gene (ΔnisA), transcription of ΔnisA

  7. Multidrug transporters and antibiotic resistance in Lactococcus lactis

    NARCIS (Netherlands)

    Poelarends, GJ; Mazurkiewicz, P; Konings, WN

    2002-01-01

    The Gram-positive bacterium Lactococcus lactis produces two distinct multidrug transporters, designated LmrA and LmrP, that both confer resistance to a wide variety of cationic lipophilic cytotoxic compounds as well as to many clinically relevant antibiotics. While LmrP is a proton/drug antiporter

  8. Nucleotide metabolism in Lactococcus lactis: Salvage pathways of exogenous pyrimidines

    DEFF Research Database (Denmark)

    Martinussen, Jan; Andersen, Paal Skytt; Hammer, Karin

    1994-01-01

    By measuring enzyme activities in crude extracts and studying the effect of toxic analogs (5-fluoropyrimidines) on cell growth, the metabolism of pyrimidines in Lactococcus lactis was analyzed. Pathways by which uracil, uridine, deoxyuridine, cytidine, and deoxycytidine are metabolized in L. lact...

  9. Luciferase detection during stationary phase in Lactococcus lactis

    NARCIS (Netherlands)

    Bachmann, H.; Santos, dos F.; Kleerebezem, M.; Hylckama Vlieg, van J.E.T.

    2007-01-01

    The luminescence signal of luxAB-encoded bacterial luciferase strongly depends on the metabolic state of the host cell, which restricts the use of this reporter system to metabolically active bacteria. Here we show that in stationary-phase cells of Lactococcus lactis, detection of luciferase is sign

  10. Multidrug transporters and antibiotic resistance in Lactococcus lactis

    NARCIS (Netherlands)

    Poelarends, GJ; Mazurkiewicz, P; Konings, WN

    2002-01-01

    The Gram-positive bacterium Lactococcus lactis produces two distinct multidrug transporters, designated LmrA and LmrP, that both confer resistance to a wide variety of cationic lipophilic cytotoxic compounds as well as to many clinically relevant antibiotics. While LmrP is a proton/drug antiporter t

  11. Food Safety: Secretome of Lactococcus lactis and Listeria monocytogenes in competition.

    Directory of Open Access Journals (Sweden)

    Isabella Alloggio

    2015-07-01

    Full Text Available Listeria monocytogenes (LM is a foodborne pathogen responsible of listeriosis. In the spreading of this pathology, milk and dairy products are key reservoir for this pathogen1. Food processing represents one of the major steps that could be linked to LM growth. Inhibition of LM growth through competition of Lactococcus lactis (LAC could represent a solution to this problem. Exoproteome of LM and two different strains of Lactic Acid Bacteria in co-culture have been studied in order to highlight mechanisms of bacterial competition useful to improve food safety. Two different strains of LAC and one strain of LM were cultivated in appropriate medium cultures (BHI, also in competition. Filtrated cultures (SECRETOME were lyophilized and resuspended for proteomics analysis. Shotgun analysis on each secretome was performed on nano UPLC-MS system. Obtained data reveal, during competition, the higher production by LM of moonlighting protein Enolase and Glucose 6 Phosphate isomerase, of Septation ring formation regulator EzrA, involved into cell replication and the lower secretion of Endopeptidase P60. In parallel, L. lactis produced higher amounts of Secreted 45 kDa protein and switched from lantibiotic Nisin A production to Nisin Z production. In competition with LM, LAC strain investigated produce higher amounts of Secreted 45 kDa protein with peptidoglycan lytic activity and the selective secretion of Nisin Z probably to improve lantibiotic solubility in less acidic environment. Next step will be validation of obtained results in dairy products. These results are of interesting to design new strategies of fighting LM as contaminant in food from animal origin.Work supported by Ministry of Health-CCM “Milano EXPO 2015 Project: Garantire la sicurezza alimentare- Valorizzare le produzioni”

  12. Optimization of Fermentation Conditions for Nisin Production by Lactococcus lactis N302%Nisin生产菌株Lactococcus lactis N302的发酵优化

    Institute of Scientific and Technical Information of China (English)

    李瑞青; 轩辕铮铮; 姜德洲; 苏俊杰; 徐海津; 张秀明; 乔明强

    2011-01-01

    对一株Nisin生产菌株Lactococcus lactis N302现有培养基进行了氮源替代,并采用Plackett-Burman(PB)法和中心复合设计(Central Composite Design)对影响其发酵生产Nisin的6个培养条件进行筛选优化.PB实验表明,蔗糖、初始pH值和酵母粉是影响Nisin效价的三个关键因素.对三因素进行中心复合设计,经响应面法优化分析(RSM)确定了L.Lactis N302发酵生产Nisin的最优条件为:蔗糖13.7g.L-1,初始pH值7.74,酵母粉25.7g.L-1,大豆蛋白胨10.0g.L-1,K2HPO410.0g.L-1,接种量3%.优化后Nisin效价较优化前提高了7.2%.小试(10 L)研究表明,分批发酵18h、补碱分批发酵16h菌株L.lactis N302单位Nisin效价最高,分别为4 597.03 IU.mL-1和8 773.34 IU.mL-1.%Nisin is a bacteriocin widely used in food industry as an effective food preservative. High nisin production was aimed by optimizing the fermentation conditions of Lactococcus lactis N302. First, soybean peptone was used the main nitrogen source of the culture medium instead of peptone. Then, the Plackett-Burman design (PB) and the path of steepest ascent method were applied to investigate the main factors that affect the yield of nisin, and to find the optimum region of the response. The results indicated that sucrose, initial pH value and yeast extract were the significant factors for nisin production. Central composite experimental design and response surface methodology (RSM) were further adopted to derive a statistical model for optimizing the fermentation conditions. The optimum fermentation conditions were found to be sucrose 13. 7 g · L-1, initial pH value 7. 74, yeast extract 25. 7 g · L-1, soybean peptone 10 g · L-1, K2HPO410 g · L-1, inoculum size 3%. The nisin yield increased by 7. 2% compared to the no-optimized conditions. Finally, 10 liter batch and pH fed-batch fermentation with the optimized conditions were carried out. The maximum nisin yield was achieved at 18 h for batch fermentation and 16 h for fed

  13. Expression of Helicobacter pylori hspA Gene in Lactococcus lactis NICE System and Experimental Study on Its Immunoreactivity

    OpenAIRE

    Xiao-Juan Zhang; Shu-Ying Feng; Zhi-Tao Li; Yan-Ming Feng

    2015-01-01

    Aim. The aim of this study was to develop an oral Lactococcus lactis (L. lactis) vaccine against Helicobacter pylori (H. pylori). Methods. After L. lactis NZ3900/pNZ8110-hspA was constructed, growth curves were plotted to study whether the growth of recombinant L. lactis was affected after hspA was cloned into L. lactis and whether the growth of empty bacteria, empty plasmid bacteria, and recombinant L. lactis was affected by different concentrations of Nisin; SDS-PAGE and Western blot were a...

  14. Cell wall anchoring of the Campylobacter antigens to Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Patrycja Anna Kobierecka

    2016-02-01

    Full Text Available Campylobacter jejuni is the most frequent cause of human food-borne gastroenteritis and chicken meat is the main source of infection. Recent studies showed that broiler chicken immunization against Campylobacter should be the most efficient way to lower the number of human infections by this pathogen. Induction of the mucosal immune system after oral antigen administration should provide protective immunity to chickens. In this work we tested the usefulness of Lactococcus lactis, the most extensively studied lactic acid bacterium, as a delivery vector for Campylobacter antigens. First we constructed hybrid protein – CjaA antigen presenting CjaD peptide epitopes on its surface. We showed that specific rabbit anti-rCjaAD serum reacted strongly with both CjaA and CjaD produced by a wild type Campylobacter jejuni strain. Next, rCjaAD and CjaA were fused to the C-terminus of the L. lactis YndF containing the LPTXG motif. The genes expressing these proteins were transcribed under control of the L. lactis Usp45 promoter and their products contain the Usp45 signal sequences. This strategy ensures a cell surface location of both analysed proteins, which was confirmed by immunofluorescence assay. In order to evaluate the impact of antigen location on vaccine prototype efficacy, a L. lactis strain producing cytoplasm-located rCjaAD was also generated. Animal experiments showed a decrease of Campylobacter cecal load in vaccinated birds as compared with the control group and showed that the L. lactis harboring the surface-exposed rCjaAD antigen afforded greater protection than the L. lactis producing cytoplasm-located rCjaAD. To the best of our knowledge, this is the first attempt to employ LAB (Lactic Acid Bacteria strains as a mucosal delivery vehicle for chicken immunization. Although the observed reduction of chicken colonization by Campylobacter resulting from vaccination was rather moderate, the experiments showed that LAB strains can be considered

  15. Generation of Dipeptidyl Peptidase-IV-Inhibiting Peptides from β-Lactoglobulin Secreted by Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Suguru Shigemori

    2014-01-01

    Full Text Available Previous studies showed that hydrolysates of β-lactoglobulin (BLG prepared using gastrointestinal proteases strongly inhibit dipeptidyl peptidase-IV (DPP-IV activity in vitro. In this study, we developed a BLG-secreting Lactococcus lactis strain as a delivery vehicle and in situ expression system. Interestingly, trypsin-digested recombinant BLG from L. lactis inhibited DPP-IV activity, suggesting that BLG-secreting L. lactis may be useful in the treatment of type 2 diabetes mellitus.

  16. Lactococcus lactis-based vaccines from laboratory bench to human use: an overview.

    Science.gov (United States)

    Bahey-El-Din, Mohammed

    2012-01-17

    Developing effective vaccines is an important weapon in the battle against potential pathogens and their evolving antibiotic resistance trends. Several vaccine delivery vectors have been investigated among which the generally regarded as safe (GRAS) Lactococcus lactis has a distinguished position. In this review, different factors affecting the efficacy of L. lactis-based vaccines are discussed. In addition, the issues of biological containment and pharmaceutical quality assurance of L. lactis vaccines are highlighted. These issues are critical for the success of medical translation of L. lactis-based vaccines from research laboratories to clinical use by ensuring consistent manufacturing of safe and efficacious vaccines.

  17. Production and purification of staphylococcal nuclease in Lactococcus lactis using a new expression-secretion system and a pH-regulated mini-reactor

    Directory of Open Access Journals (Sweden)

    Duvignau Thomas

    2010-05-01

    Full Text Available Abstract Background Staphylococcal (or micrococcal nuclease or thermonuclease (SNase or Nuc is a naturally-secreted nucleic acid degrading enzyme that participates in Staphylococcus aureus spread in the infected host. Purified Nuc protein can be used as an exogenous reagent to clear cellular extracts and improve protein purification. Here, a recombinant form of Nuc was produced and secreted in a Gram-positive host, Lactococcus lactis, and purified from the culture medium. Results The gene segment corresponding to the S. aureus nuclease without its signal peptide was cloned in an expression-secretion vector. It was then fused to a lactococcal sequence encoding a signal peptide, and expressed under the control of a lactococcal promoter that is inducible by zinc starvation. An L. lactis subsp cremoris model strain (MG1363 transformed with the resulting plasmid was grown in either of two media (GM17v and CDM that are free of animal compounds, allowing GMP (Good Manufacturing Practice production. Induction conditions (concentration of the metal chelator EDTA and timing of addition in small-scale pH-regulated fermentors were optimized using LacMF (Lactis Multi-Fermentor, a home-made parallel fermentation control system able to monitor 12 reactors simultaneously. Large amounts of recombinant Nuc (rNuc were produced and secreted in both media, and rNuc was purified from GM17v medium in a single-step procedure. Conclusions In L. lactis, rNuc production and secretion were optimal after induction by 0.5 mM EDTA in small scale (200 mL GM17v exponential phase cultures (at an OD600 of 2, leading to a maximal protein yield of 210 mg per L of culture medium. Purified rNuc was highly active, displaying a specific activity of 2000 U/mg.

  18. Plasminogen-dependent proteolytic activity in Bifidobacterium lactis.

    Science.gov (United States)

    Candela, Marco; Miccoli, Giacomo; Bergmann, Simone; Turroni, Silvia; Vitali, Beatrice; Hammerschmidt, Sven; Brigidi, Patrizia

    2008-08-01

    Bifidobacteria represent one of the most important health-promoting bacterial groups of the intestinal microbiota. The binding of plasminogen to species of Bifidobacterium has been recently reported. To further explore the interaction between bifidobacteria and plasminogen, we investigated the role of Bifidobacterium lactis BI07 plasminogen-dependent proteolytic activity in the degradation of host-specific substrates. Our experimental data demonstrate that the recruitment of plasminogen on the bacterial cell surface and its subsequent conversion into plasmin by host-derived plasminogen activators provide B. lactis BI07 with a surface-associated plasmin activity effective in degradation of physiological substrates such as extracellular matrix, fibronectin and fibrinogen. The ability of bifidobacteria to intervene in the host plasminogen/plasmin system may contribute to facilitating colonization of the host gastrointestinal tract.

  19. Mobile CRISPR/Cas-mediated bacteriophage resistance in Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Anne M Millen

    Full Text Available Lactococcus lactis is a biotechnological workhorse for food fermentations and potentially therapeutic products and is therefore widely consumed by humans. It is predominantly used as a starter microbe for fermented dairy products, and specialized strains have adapted from a plant environment through reductive evolution and horizontal gene transfer as evidenced by the association of adventitious traits with mobile elements. Specifically, L. lactis has armed itself with a myriad of plasmid-encoded bacteriophage defensive systems to protect against viral predation. This known arsenal had not included CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins, which forms a remarkable microbial immunity system against invading DNA. Although CRISPR/Cas systems are common in the genomes of closely related lactic acid bacteria (LAB, none was identified within the eight published lactococcal genomes. Furthermore, a PCR-based search of the common LAB CRISPR/Cas systems (Types I and II in 383 industrial L. lactis strains proved unsuccessful. Here we describe a novel, Type III, self-transmissible, plasmid-encoded, phage-interfering CRISPR/Cas discovered in L. lactis. The native CRISPR spacers confer resistance based on sequence identity to corresponding lactococcal phage. The interference is directed at phages problematic to the dairy industry, indicative of a responsive system. Moreover, targeting could be modified by engineering the spacer content. The 62.8-kb plasmid was shown to be conjugally transferrable to various strains. Its mobility should facilitate dissemination within microbial communities and provide a readily applicable system to naturally introduce CRISPR/Cas to industrially relevant strains for enhanced phage resistance and prevention against acquisition of undesirable genes.

  20. Genes but not genomes reveal bacterial domestication of Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Delphine Passerini

    Full Text Available BACKGROUND: The population structure and diversity of Lactococcus lactis subsp. lactis, a major industrial bacterium involved in milk fermentation, was determined at both gene and genome level. Seventy-six lactococcal isolates of various origins were studied by different genotyping methods and thirty-six strains displaying unique macrorestriction fingerprints were analyzed by a new multilocus sequence typing (MLST scheme. This gene-based analysis was compared to genomic characteristics determined by pulsed-field gel electrophoresis (PFGE. METHODOLOGY/PRINCIPAL FINDINGS: The MLST analysis revealed that L. lactis subsp. lactis is essentially clonal with infrequent intra- and intergenic recombination; also, despite its taxonomical classification as a subspecies, it displays a genetic diversity as substantial as that within several other bacterial species. Genome-based analysis revealed a genome size variability of 20%, a value typical of bacteria inhabiting different ecological niches, and that suggests a large pan-genome for this subspecies. However, the genomic characteristics (macrorestriction pattern, genome or chromosome size, plasmid content did not correlate to the MLST-based phylogeny, with strains from the same sequence type (ST differing by up to 230 kb in genome size. CONCLUSION/SIGNIFICANCE: The gene-based phylogeny was not fully consistent with the traditional classification into dairy and non-dairy strains but supported a new classification based on ecological separation between "environmental" strains, the main contributors to the genetic diversity within the subspecies, and "domesticated" strains, subject to recent genetic bottlenecks. Comparison between gene- and genome-based analyses revealed little relationship between core and dispensable genome phylogenies, indicating that clonal diversification and phenotypic variability of the "domesticated" strains essentially arose through substantial genomic flux within the dispensable

  1. Therapeutic drug delivery by genetically modified Lactococcus lactis.

    Science.gov (United States)

    Steidler, Lothar; Rottiers, Pieter

    2006-08-01

    Food-grade bacteria have been consumed throughout history without associated pathologies and are, therefore, absolutely safe to ingest. Unexpectedly, Lactococcus lactis (L. lactis), known from cheese production, can be genetically engineered to constantly secrete satisfactory amounts of bioactive cytokines. Both of these features enabled the development of a new kind of topical delivery system: topical and active delivery of therapeutic proteins by genetically modified micro-organisms. The host organism's record inspired the development of applications that target intestinal diseases. In a variety of mouse models, chronic colon inflammation can be successfully treated with (interleukin) IL-10-secreting L. lactis. Trefoil factor (TFF) producer strains have also been shown to be very effective in the treatment of acute colitis. Such novel therapeutic strains are textbook examples of genetically modified (GM) organisms. There are legitimate concerns with regard to the deliberate release of GM micro-organisms. On development of these applications, therefore, we have engineered these bacteria in such a way that biological containment is guaranteed. The essential gene thyA, encoding thymidylate synthase, has been exchanged for IL-10. This makes the GM strain critically dependent on thymidine. Lack of thymidine, for example, resulting from thymidine consumption by thyA-deficient strains-will irreversibly lead to induced "thymidine-less death." This accomplishment has created the possibility of using this strategy for application in human medicine.

  2. Identification and characterization of the alpha-acetolactate synthase gene from Lactococcus lactis subsp. lactis biovar diacetylactis.

    Science.gov (United States)

    Marugg, J D; Goelling, D; Stahl, U; Ledeboer, A M; Toonen, M Y; Verhue, W M; Verrips, C T

    1994-01-01

    The conversion of 3-13C-labelled pyruvate in an acetoin-producing clone from a Lactococcus lactis subsp. lactis biovar diacetylactis strain DSM 20384 plasmid bank in Escherichia coli was studied by 13C nuclear magnetic resonance analysis. The results showed that alpha-acetolactate was the first metabolic product formed from pyruvate, whereas acetoin appeared at a much slower rate and reached only low concentrations. This alpha-acetolactate production shows that the cells express the gene for alpha-acetolactate synthase (als). Nucleotide sequence analysis identified an open reading frame encoding a protein of 554 amino acids. The deduced amino acid sequence exhibits extensive similarities to those of known alpha-acetolactate synthases from both prokaryotes and eukaryotes. The als gene is expressed on a monocistronic transcriptional unit, which is transcribed from a promoter located just upstream of the coding region. Images PMID:8017926

  3. Isolation and Characterisation of Bacteriocin and Aggregation-Promoting Factor Production in Lactococcus lactis ssp. lactis BGBM50 Strain

    Directory of Open Access Journals (Sweden)

    Nemanja Mirkovic

    2015-01-01

    Full Text Available Lactococcus lactis ssp. lactis BGBM50, a producer of lactococcin G and aggregation-promoting factor, was isolated from selected lactic acid bacteria taken from semi-hard cheese traditionally produced in the village Žanjic, Montenegro. Strain BGBM50 harbours a number of plasmids of diff erent sizes. Plasmid curing experiments showed that genes for bacteriocin production are located on pBM140, a plasmid 140 kb in length. PCR analysis with primers specifi c for lactococcin Q and G genes gave fragment of the expected size. In addition, after plasmid curing of strain BGBM50, different derivatives with altered phenotypes were obtained, among them BGBM50-34 strain, which retained bacteriocin synthesis but had enhanced aggregation ability.

  4. Catalytic activity of tripeptidase from Lactococcus lactis to which amino acid substitution was introduced according to natural mutation.

    Science.gov (United States)

    Mori, Sumiko; Kaneko, Satoshi; Kasumi, Takafumi

    2004-05-01

    Four mutations observed between tripeptidases from Lactococcus lactis subsp. lactis and subsp. cremoris were introduced one by one to the corresponding points in wild-type tripeptidase from L. lactis subsp. lactis. The k(cat) values of four resultant mutants were analyzed and discussed in stereographical terms. Change in catalytic activity appeared to be related to the sequential and steric location of mutation point within the enzyme protein, even though no drastic change was observed with one point mutation.

  5. 乳酸乳球菌同时发送外源性蛋白质/DNA到哺乳动物细胞%Co-delivery of exogenous protein and DNA into mammalian cells with Lactococcus lactis

    Institute of Scientific and Technical Information of China (English)

    李轶杰; 刘欢欢; 张富春

    2012-01-01

    AIM: To develop a co-delivery system of exogenous protein and DNA into mammalian cells using Lactococcus lactis (L lactis). METHODS: We constructed E. coli-L iactis shuttle plasmid, pMG36e-RFP/eGFP, containing a L lactis expression cassette with the cDNA of red fluorescent protein (RFP) gene and a eukaryotic expression cassette with the cDNA of enhanced green fluorescent protein (eGFP), then electrotransformated it into L lactis cells, and co-cultured with 293T cells to evaluate the role of the system in the improvement of gene delivering efficiency after L lactis cells were pretreated with glycine. RFP and GFP expressed in 293T cells was monitored by fluorescence microscopy. RESULTS: Fluorescence microscopy revealed that the RFP and GFP was expressed in 293T cells. CONCLUSION: The co-delivery system of protein and DNA into mammalian cells using L lactis was constructed successfully.%目的:建立乳酸乳球菌同时发送外源蛋白/DNA到哺乳动物细胞的系统.方法:分别将红色荧光蛋白基因、绿色荧光蛋白真核表达框整合于乳酸菌穿梭载体pMG36e中相关部位.重组质粒电转乳酸乳球菌后,经甘氨酸消弱乳酸乳球菌细胞膜后与哺乳动物细胞293T细胞共培养.结果:红色和绿色荧光蛋白均能在293T细胞表达.结论:借助乳酸乳球菌成功实现同时发送蛋白质/DNA到哺乳动物细胞.

  6. Pilus biogenesis in Lactococcus lactis: molecular characterization and role in aggregation and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Virginie Oxaran

    Full Text Available The genome of Lactococcus lactis strain IL1403 harbors a putative pilus biogenesis cluster consisting of a sortase C gene flanked by 3 LPxTG protein encoding genes (yhgD, yhgE, and yhhB, called here pil. However, pili were not detected under standard growth conditions. Over-expression of the pil operon resulted in production and display of pili on the surface of lactococci. Functional analysis of the pilus biogenesis machinery indicated that the pilus shaft is formed by oligomers of the YhgE pilin, that the pilus cap is formed by the YhgD pilin and that YhhB is the basal pilin allowing the tethering of the pilus fibers to the cell wall. Oligomerization of pilin subunits was catalyzed by sortase C while anchoring of pili to the cell wall was mediated by sortase A. Piliated L. lactis cells exhibited an auto-aggregation phenotype in liquid cultures, which was attributed to the polymerization of major pilin, YhgE. The piliated lactococci formed thicker, more aerial biofilms compared to those produced by non-piliated bacteria. This phenotype was attributed to oligomers of YhgE. This study provides the first dissection of the pilus biogenesis machinery in a non-pathogenic Gram-positive bacterium. Analysis of natural lactococci isolates from clinical and vegetal environments showed pili production under standard growth conditions. The identification of functional pili in lactococci suggests that the changes they promote in aggregation and biofilm formation may be important for the natural lifestyle as well as for applications in which these bacteria are used.

  7. Recombinant invasive Lactococcus lactis can transfer DNA vaccines either directly to dendritic cells or across an epithelial cell monolayer

    NARCIS (Netherlands)

    Azevedo, de Marcela; Meijerink, Marjolein; Taverne, Nico; Pereira, Vanessa Bastos; LeBlanc, Jean Guy; Azevedo, Vasco; Miyoshi, Anderson; Langella, Philippe; Wells, J.M.; Chatel, Jean Marc

    2015-01-01

    Lactococcus lactis (L. lactis), a generally regarded as safe (GRAS) bacterium has recently been investigated as a mucosal delivery vehicle for DNA vaccines. Because of its GRAS status, L. lactis represents an attractive alternative to attenuated pathogens. Previous studies showed that eukaryotic

  8. EXPRESSION OF A CHITINASE GENE FROM SERRATIA-MARCESCENS IN LACTOCOCCUS-LACTIS AND LACTOBACILLUS-PLANTARUM

    NARCIS (Netherlands)

    BRURBERG, MB; HAANDRIKMAN, AJ; LEENHOUTS, KJ; VENEMA, G; NES, IF

    1994-01-01

    A chitinase gene from the Gram-negative bacterium Serratia marcescens BJL200 was cloned in Lactococcus lactis subsp. lactis MG1363 and in the silage inoculum strain Lactobacillus plantarum E19b. The chitinase gene was expressed as an active enzyme at a low level in Lactococcus lactis, when cloned in

  9. Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation.

    Science.gov (United States)

    Flahaut, Nicolas A L; Wiersma, Anne; van de Bunt, Bert; Martens, Dirk E; Schaap, Peter J; Sijtsma, Lolke; Dos Santos, Vitor A Martins; de Vos, Willem M

    2013-10-01

    Lactococcus lactis subsp. cremoris MG1363 is a paradigm strain for lactococci used in industrial dairy fermentations. However, despite of its importance for process development, no genome-scale metabolic model has been reported thus far. Moreover, current models for other lactococci only focus on growth and sugar degradation. A metabolic model that includes nitrogen metabolism and flavor-forming pathways is instrumental for the understanding and designing new industrial applications of these lactic acid bacteria. A genome-scale, constraint-based model of the metabolism and transport in L. lactis MG1363, accounting for 518 genes, 754 reactions, and 650 metabolites, was developed and experimentally validated. Fifty-nine reactions are directly or indirectly involved in flavor formation. Flux Balance Analysis and Flux Variability Analysis were used to investigate flux distributions within the whole metabolic network. Anaerobic carbon-limited continuous cultures were used for estimating the energetic parameters. A thorough model-driven analysis showing a highly flexible nitrogen metabolism, e.g., branched-chain amino acid catabolism which coupled with the redox balance, is pivotal for the prediction of the formation of different flavor compounds. Furthermore, the model predicted the formation of volatile sulfur compounds as a result of the fermentation. These products were subsequently identified in the experimental fermentations carried out. Thus, the genome-scale metabolic model couples the carbon and nitrogen metabolism in L. lactis MG1363 with complete known catabolic pathways leading to flavor formation. The model provided valuable insights into the metabolic networks underlying flavor formation and has the potential to contribute to new developments in dairy industries and cheese-flavor research.

  10. Effect of X-Prolyl Dipeptidyl Aminopeptidase Deficiency on Lactococcus lactis

    NARCIS (Netherlands)

    Mayo, Baltasar; Kok, Jan; Bockelmann, Wilhelm; Haandrikman, Alfred; Leenhouts, Kees J.; Venema, Gerhardus

    1993-01-01

    The genetic determinant (pepXP) of an X-prolyl dipeptidyl aminopeptidase (PepXP) has recently been cloned and sequenced from both Lactococcus lactis subsp. cremoris (B. Mayo, J. Kok, K. Venema, W. Bockelmann, M. Teuber, H. Reinke, and G. Venema, Appl. Environ. Microbiol. 57:38-44, 1991) and L. lacti

  11. Heterologous expression and characterization of recombinant Lactococcus lactis neutral endopeptidase (Neprilysin)

    NARCIS (Netherlands)

    Lian, W; Wu, D; Konings, W.N; Mierau, I; Hersh, L.B

    1996-01-01

    A neutral endopeptidase (NEP) from Lactococcus lactis has recently been cloned and shown to contain high sequence homology with the human neutral endopeptidase, endopeptidase 24.11 (I. Mierau et al., J. Bacteriol. 175, 2087-2096, 1993). The gene for the neutral endopeptidase from L. lactis was clone

  12. Molecular analysis of the replication origin of the Lactococcus lactis plasmid pCI305

    NARCIS (Netherlands)

    Foley, S; Bron, S; Venema, G; Daly, C; Fitzgerald, GF

    1996-01-01

    The replication origin region, ori, of the Lactococcus lactis subsp. lactis plasmid pCI305 contains three-and-one-half directly repeated 22-bp sequences and two inverted repeat sequences, IR1 and IR2. These inverted repeat sequences overlap the promoter of the repB gene, which encodes a protein (Rep

  13. Characteristics and Osmoregulatory Roles of Uptake Systems for Proline and Glycine Betaine in Lactococcus lactis

    NARCIS (Netherlands)

    Molenaar, Douwe; Hagting, Anja; Alkema, Harmen; Driessen, Arnold J.M.; Konings, Wilhelmus

    1993-01-01

    Lactococcus lactis subsp. lacti ML3 contains high pools of proline or betaine when grown under conditions of high osmotic strength. These pools are created by specific transport systems. A high-affinity uptake system for glycine betaine (betaine) with a Km of 1.5 µM is expressed constitutively. The

  14. Genotype-phenotype matching analysis of 38 Lactococcus lactis strains using random forest methods

    NARCIS (Netherlands)

    Bayjanov, J.; Starrenburg, M.J.; Sijde, M.R. van der; Siezen, R.J.; Hijum, S.A.F.T. van

    2013-01-01

    BACKGROUND: Lactococcus lactis is used in dairy food fermentation and for the efficient production of industrially relevant enzymes. The genome content and different phenotypes have been determined for multiple L. lactis strains in order to understand intra-species genotype and phenotype diversity a

  15. On the binding mechanism of the peptide receptor of the oligopeptide transport system of Lactococcus lactis

    NARCIS (Netherlands)

    Lanfermeijer, Frank C.; Detmers, Frank J.M.; Konings, Wil N.; Poolman, Bert

    2000-01-01

    Lactococcus lactis degrades exogenous proteins such as β-casein to peptides of 4–30 amino acids, and uses these as nitrogen sources. The binding protein or receptor (OppALl) of the oligopeptide transport system (Opp) of L.lactis has the unique capacity to bind peptides from five up to at least 20

  16. Hydrophobic membrane thickness and lipid-protein interactions of the leucine transport system of Lactococcus lactis

    NARCIS (Netherlands)

    in t Veld, Gerda; Driessen, Arnold J.M.; Kamp, Jos A.F. op den; Konings, Wil N.

    1991-01-01

    The effect of the phospholipid acyl chain carbon number on the activity of the branched-chain amino acid transport system of Lactococcus lactis has been investigated. Major fatty acids identified in a total lipid extract of L. lactis membranes are palmitic acid (16:0), oleic acid (18:1) and the cycl

  17. Characteristics and Osmoregulatory Roles of Uptake Systems for Proline and Glycine Betaine in Lactococcus lactis

    NARCIS (Netherlands)

    Molenaar, Douwe; Hagting, Anja; Alkema, Harmen; Driessen, Arnold J.M.; Konings, Wilhelmus

    Lactococcus lactis subsp. lacti ML3 contains high pools of proline or betaine when grown under conditions of high osmotic strength. These pools are created by specific transport systems. A high-affinity uptake system for glycine betaine (betaine) with a Km of 1.5 µM is expressed constitutively. The

  18. Morphology, genome sequence, and structural proteome of type phage P335 from Lactococcus lactis

    DEFF Research Database (Denmark)

    Labrie, Simon J.; Josephsen, Jytte; Neve, Horst;

    2008-01-01

    Lactococcus lactis phage P335 is a virulent type phage for the species that bears its name and belongs phage P335 is a virulent type phage for the species that bears its name and belongs to the Siphoviridae family. Morphologically, P335 resembled the L. lactis phages TP901-1 and Tuc2009, except...

  19. Complete genome sequence of Lactococcus lactis S0, an efficient producer of nisin.

    Science.gov (United States)

    Zhao, Fangyuan; Ma, Hongchu; Lu, Ying; Teng, Kunling; Kang, Xusheng; Wang, Fangfang; Yang, Xiaopan; Zhong, Jin

    2015-03-20

    Lactococcus lactis S0 is a nisin Z-producing strain isolated from milk, and the nisin production of the strain can reach 4000 IU/ml under fermenting condition. Here, we present the complete genome sequence of L. lactis S0 which includes a single circular chromosome.

  20. Arginine transport in Streptococcus lactis is catalyzed by a cationic exchanger

    NARCIS (Netherlands)

    Driessen, Arnold J.M.; Poolman, Bert; Kiewiet, Rense; Konings, Wil N.

    1987-01-01

    Streptococcus lactis metabolizes arginine via the arginine deiminase pathway to ornithine, CO2, NH3, and ATP. The translocation of arginine and ornithine has been studied using membrane vesicles of galactose/arginine-grown cells of S. lactis fused with cytochrome c oxidase proteoliposomes by the fre

  1. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666

    NARCIS (Netherlands)

    Del Rio, Beatriz; Linares, Daniel M; Redruello, Begoña; Martin, Maria Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P; Ladero, Victor; Alvarez, Miguel A

    2015-01-01

    Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine) into the biogenic amine putrescine by the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, ag

  2. Regulation of Arginine-Ornithine Exchange and the Arginine Deiminase Pathway in Streptococcus lactis

    NARCIS (Netherlands)

    POOLMAN, B; DRIESSEN, AJM; KONINGS, WN

    1987-01-01

    Streptococcus lactis metabolizes arginine by the argiqine deiminase (ADI) pathway. Resting cells of S. lactis grown in the presence of galactose and arginine maintain a high intracellular ornithine pool in the absence of arginine and other exogenous energy sources. Addition of arginine results in a

  3. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp cremoris MG1363

    NARCIS (Netherlands)

    Wegmann, Udo; O'Connell-Motherwy, Mary; Zomer, Aldert; Buist, Girbe; Shearman, Claire; Canchaya, Carlos; Ventura, Marco; Goesmann, Alexander; Gasson, Michael J.; Kuipers, Oscar P.; van Sinderen, Douwe; Kok, Jan

    2007-01-01

    Lactococcus lactis is of great importance for the nutrition of hundreds of millions of people worldwide. This paper describes the genome sequence of Lactococcus lactis subsp. cremoris MG1363, the lactococcal strain most intensively studied throughout the world. The 2,529,478-bp genome contains 81 ps

  4. The Transcriptional and Gene Regulatory Network of Lactococcus lactis MG1363 during Growth in Milk

    DEFF Research Database (Denmark)

    de Jong, Anne; Hansen, Morten Ejby; Kuipers, Oscar P.;

    2013-01-01

    analysis of gene expression over time showed that L. lactis adapted quickly to the environmental changes. Using upstream sequences of genes with correlated gene expression profiles, we uncovered a substantial number of putative DNA binding motifs that may be relevant for L. lactis fermentative growth...

  5. Genetically modified lactococcus lactis for delivery of human interleukin-10 to dendritic cells

    NARCIS (Netherlands)

    H. Braat (Henri); I.L. Huibregtse (Inge ); S.A.J. Zaat (Sebastiaan); M.L. Kapsenberg (Martien ); M.A. Sartori da Silva; M.P. Peppelenbosch (Maikel); S. van Deventer (Sander)

    2012-01-01

    textabstractInterleukin-10 (IL-10) plays an indispensable role in mucosal tolerance by programming dendritic cells (DCs) to induce suppressor Th-cells. We have tested the modulating effect of L. lactis secreting human IL-10 (L.lacti s IL-10) on DC function in vitro. Monocyte-derived DC incubated wit

  6. PURIFICATION AND CHARACTERIZATION OF NISIN PRODUCED BY LACTOCOCCUS LACTIS ISOLATED FROM INDIAN CURD

    Directory of Open Access Journals (Sweden)

    Saba A. Mahdy

    2015-12-01

    Full Text Available Lactococcus lactis isolated from traditional dairy Indian curd. Strains were preliminarily identified by PCR analysis and partial 16S rRNA confirmed that N5 were 100% identical to Lactococcus. lactis sp. lactis. The results revealed that only the bacteriocin produced from strain N5 was shown as being active against mostly gram positive bacteria The bacteriocin produced purified by precipitation followed by loading with gel chromatography. The partially purified bacteriocin was found to be stable over a wide range of pH, temperature and enzymes. The molecular weight of the peptide was judged to be 3.5 kDa by SDSpolyacrylamide gel electrophoresis.and conform to the result of mass spectrometry by maldi-tof test which calculated the mass of 3354.07 Da for nisin.These results indicate that bacteriocin produced by L. lactis sp. lactis N5 is a nisin.

  7. Encapsulated Lactococcus lactis with enhanced gastrointestinal survival for the development of folate enriched functional foods.

    Science.gov (United States)

    Divya, Jayakumar Beena; Nampoothiri, Kesavan Madhavan

    2015-01-01

    Two lactic acid bacteria (LAB) isolated from cow's milk were identified as Lactococcus lactis strains and designated as L. lactis CM22 and L. lactis CM28. They were immobilised by co-encapsulation using alginate and mannitol and by hybrid entrapment with skim milk, glycerol, CaCO3 and alginate. The encapsulated cells survived better in simulated gastrointestinal conditions compared to the free cells. The percentage survival of probiotics encapsulated by hybrid entrapment method was 62.74% for L. lactis CM22 and 68% for L. lactis CM28. Studies to check their efficacy in fermentative fortification of skim milk and ice cream revealed an enhancement in folate level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Antimicrobial susceptibilities and random amplified polymorphic DNA-PCR fingerprint characterization of Lactococcus lactis ssp. lactis and Lactococcus garvieae isolated from bovine intramammary infections.

    Science.gov (United States)

    Plumed-Ferrer, C; Barberio, A; Franklin-Guild, R; Werner, B; McDonough, P; Bennett, J; Gioia, G; Rota, N; Welcome, F; Nydam, D V; Moroni, P

    2015-09-01

    In total, 181 streptococci-like bacteria isolated from intramammary infections (IMI) were submitted by a veterinary clinic to Quality Milk Production Services (QMPS, Cornell University, Ithaca, NY). The isolates were characterized by sequence analysis, and 46 Lactococcus lactis ssp. lactis and 47 Lactococcus garvieae were tested for susceptibility to 17 antibiotics. No resistant strains were found for β-lactam antibiotics widely used in clinical practice (penicillin, ampicillin, and amoxicillin), and all minimum inhibitory concentrations (MIC) were far from the resistance breakpoints. Eight strains had MIC intermediate to cefazolin. The random amplification of polymorphic DNA (RAPD)-PCR fingerprint patterns showed a slightly higher heterogeneity for Lc. lactis ssp. lactis isolates than for Lc. garvieae isolates.

  9. Partial characterization of an rpoD-like gene of Lactococcus lactis subsp. lactis ML3 with a polymerase chain reaction-based approach.

    Science.gov (United States)

    Gansel, X; Dutreix, M; Hartke, A; Boutibonnes, P; Auffray, Y

    1993-11-01

    With degenerated oligonucleotide primers for conserved regions of bacterial sigma factor proteins, a 117-bp internal DNA fragment of an rpoD-like gene of Lactococcus lactis subsp. lactis ML3 was amplified by the polymerase chain reaction (PCR). The DNA sequence of this PCR product was determined by cycle sequencing, and the deduced amino acid sequence of this internal fragment showed an extensive homology with the known sigma factor sequences from six other microorganisms and present a 13-amino acid region corresponding to the typical "RpoD box" of primary sigma factors. This PCR product was used as a probe to specifically detect sigma homologs in Pediococcus acidilactici, Leuconostoc lactis, Lactobacillus helveticus, Lactobacillus acidophilus, Enterococcus faecalis, Streptococcus thermophilus, and Lactococcus lactis subsp. cremoris. These data are consistent with the existence of a high similarity between the primary sigma factors from diverse Gram-positive microorganisms.

  10. Outgrowth inhibition of Clostridium beijerinckii spores by a bacteriocin-producing lactic culture in ovine milk cheese.

    Science.gov (United States)

    Garde, Sonia; Avila, Marta; Arias, Ramón; Gaya, Pilar; Nuñez, Manuel

    2011-10-17

    In the manufacture of model cheeses, ovine milk was deliberately contaminated with spores of Clostridium beijerinckii INIA 63, a wild isolate from Manchego cheese with late blowing defect, and inoculated with nisin- and lacticin 481-producing Lactococcus lactis subsp. lactis INIA 415 as starter, to test its potential to prevent the late blowing defect, or with L. lactis subsp. lactis INIA 415-2, a spontaneous mutant not producing bacteriocins. Cheeses made individually with the lactococcal strains, without clostridial spores, served as controls. Cheese made with clostridial spores and L. lactis subsp. lactis INIA 415-2 showed late blowing defect after 120days of ripening. Spoilt cheese also showed lower concentrations of lactic acid, and higher levels of acetic, propionic and butyric acids, and of other volatile compounds such as 2-propanol and 1-butanol, than control cheese. In addition, cheese made with the bacteriocin producer did not show any late blowing symptoms, despite its spore counts similar to those of blown cheese, pointing to outgrowth inhibition of C. beijerinckii spores by bacteriocins. Besides, cheese made with the bacteriocin producer showed similar concentrations of lactic acid and volatile compounds than control cheese. Inclusion of L. lactis subsp. lactis INIA 415 in starter cultures seems a feasible method to prevent late blowing defect in cheese without altering its sensory characteristics.

  11. A novel, lactase-based selection and strain improvement strategy for recombinant protein expression in Kluyveromyces lactis

    Directory of Open Access Journals (Sweden)

    Krijger Jorrit-Jan

    2012-08-01

    Full Text Available Abstract Background The Crabtree-negative yeast species Kluyveromyces lactis has been established as an attractive microbial expression system for recombinant proteins at industrial scale. Its LAC genes allow for utilization of the inexpensive sugar lactose as a sole source of carbon and energy. Lactose efficiently induces the LAC4 promoter, which can be used to drive regulated expression of heterologous genes. So far, strain manipulation of K. lactis by homologous recombination was hampered by the high rate of non-homologous end-joining. Results Selection for growth on lactose was applied to target the insertion of heterologous genes downstream of the LAC4 promoter into the K. lactis genome and found to yield high numbers of positive transformants. Concurrent reconstitution of the β-galactosidase gene indicated the desired integration event of the expression cassette, and β-galactosidase activity measurements were used to monitor gene expression for strain improvement and fermentation optimization. The system was particularly improved by usage of a cell lysis resistant strain, VAK367-D4, which allowed for protein accumulation in long-term fermentation. Further optimization was achieved by increased gene dosage of KlGAL4 encoding the activator of lactose and galactose metabolic genes that led to elevated transcription rates. Pilot experiments were performed with strains expressing a single-chain antibody fragment (scFvox and a viral envelope protein (BVDV-E2, respectively. scFvox was shown to be secreted into the culture medium in an active, epitope-binding form indicating correct processing and protein folding; the E2 protein could be expressed intracellularly. Further data on the influence of protein toxicity on batch fermentation and potential post-transcriptional bottlenecks in protein accumulation were obtained. Conclusions A novel Kluyveromyces lactis host-vector system was developed that places heterologous genes under the control of

  12. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808

    Directory of Open Access Journals (Sweden)

    Patricia eMunsch-Alatossava

    2013-12-01

    Full Text Available The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lb. delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimise the risks associated with the appearance and attack of phages in the manufacture of yoghurt, and Swiss or Italian type hard cheeses, which typically use thermophilic LAB starter cultures containing Lb. delbrueckii strains among others. This mini review article summarises the present data concerning (i the special features, particle structure and components of phage LL-H and (ii the structure and properties of lipoteichoic acids (LTAs, which are the phage LL-H receptor components of Lb. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of Lb. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed.

  13. Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis

    Science.gov (United States)

    Dijkstra, Annereinou R.; Alkema, Wynand; Starrenburg, Marjo J. C.; van Hijum, Sacha A. F. T.; Bron, Peter A.

    2016-01-01

    Recently, we demonstrated that fermentation conditions have a strong impact on subsequent survival of Lactococcus lactis strain MG1363 during heat and oxidative stress, two important parameters during spray drying. Moreover, employment of a transcriptome-phenotype matching approach revealed groups of genes associated with robustness towards heat and/or oxidative stress. To investigate if other strains have similar or distinct transcriptome signatures for robustness, we applied an identical transcriptome-robustness phenotype matching approach on the L. lactis strains IL1403, KF147 and SK11, which have previously been demonstrated to display highly diverse robustness phenotypes. These strains were subjected to an identical fermentation regime as was performed earlier for strain MG1363 and consisted of twelve conditions, varying in the level of salt and/or oxygen, as well as fermentation temperature and pH. In the exponential phase of growth, cells were harvested for transcriptome analysis and assessment of heat and oxidative stress survival phenotypes. The variation in fermentation conditions resulted in differences in heat and oxidative stress survival of up to five 10-log units. Effects of the fermentation conditions on stress survival of the L. lactis strains were typically strain-dependent, although the fermentation conditions had mainly similar effects on the growth characteristics of the different strains. By association of the transcriptomes and robustness phenotypes highly strain-specific transcriptome signatures for robustness towards heat and oxidative stress were identified, indicating that multiple mechanisms exist to increase robustness and, as a consequence, robustness of each strain requires individual optimization. However, a relatively small overlap in the transcriptome responses of the strains was also identified and this generic transcriptome signature included genes previously associated with stress (ctsR and lplL) and novel genes, including nan

  14. CTP limitation increases expression of CTP synthase in Lactococcus lactis

    DEFF Research Database (Denmark)

    Jørgensen, C.M.; Hammer, Karin; Martinussen, Jan

    2003-01-01

    for regulation of the pyrG gene. It is possible to fold the pyrG leader in an alternative structure that would prevent the formation of the terminator. We suggest a model for pyrG regulation in L. lactis, and probably in other gram-positive bacteria as well, in which pyrG expression is directly dependent...... on the CTP concentration through an attenuator mechanism. At normal CTP concentrations a terminator is preferentially formed in the pyrG leader, thereby reducing expression of CTP synthase. At low CTP concentrations the RNA polymerase pauses at a stretch of C residues in the pyrG leader, thereby allowing...

  15. Design of aqueous two-phase systems for purification of hyaluronic acid produced by metabolically engineered Lactococcus lactis.

    Science.gov (United States)

    Rajendran, Vivek; Puvendran, Kirubhakaran; Guru, Bharath Raja; Jayaraman, Guhan

    2016-02-01

    Hyaluronic acid has a wide range of biomedical applications and its commercial value is highly dependent on its purity and molecular weight. This study highlights the utility of aqueous two-phase separation as a primary recovery step for hyaluronic acid and for removal of major protein impurities from fermentation broths. Metabolically engineered cultures of a lactate dehydrogenase mutant strain of Lactococcus lactis (L. lactis NZ9020) were used to produce high-molecular-weight hyaluronic acid. The cell-free fermentation broth was partially purified using a polyethylene glycol/potassium phosphate system, resulting in nearly 100% recovery of hyaluronic acid in the salt-rich bottom phase in all the aqueous two-phase separation experiments. These experiments were optimized for maximum removal of protein impurities in the polyethylene glycol rich top phase. The removal of protein impurities resulted in substantial reduction of membrane fouling in the subsequent diafiltration process, carried out with a 300 kDa polyether sulfone membrane. This step resulted in considerable purification of hyaluronic acid, without any loss in recovery and molecular weight. Diafiltration was followed by an adsorption step to remove minor impurities and achieve nearly 100% purity. The final hyaluronic acid product was characterized by Fourier-transform IR and NMR spectroscopy, confirming its purity.

  16. In Vitro characterization of Lactococcus lactis strains Isolated from Iranian Traditional Dairy Products as a Potential Probiotic

    Directory of Open Access Journals (Sweden)

    Fatemeh Nejati

    2015-12-01

    Full Text Available Few studies have been reported regarding probiotic properties of Lactococcus lactis strains although they are extensively used as starter cultures in the production of dairy products. In this study 8 wild isolates of Lactococcus lactis were evaluated in vitro with regard to resistance to simulated gastric and intestinal juices, adherence ability to Caco-2 cells and HT29-MTX-E12 cell lines, anti-microbial activity, hydrophobicity and antibiotic susceptibility. The results revealed that all isolates had better survival after exposure to simulated gastrointestinal tract stresses in comparison to control probiotic Lactobacillus rhamnosus GG. Regarding adherence efficiency, almost all isolates exhibited similar adherence with control. Three isolates showed antibacterial activity against Gram-positive pathogens (Staphylococcus aureus and Listeria monocytogenes through spot-agar method. Almost all isolates (seven out of eight showed similar hydrophobicity to control probiotic. Regarding to antibiotic resistance, all isolates were susceptible to gentamicin, ampicillin, ciprofloxacin, erythromycin, tetracycline, penicillin, kanamycin and nitrofurantoin. Although, further investigations are necessary, it was concluded that strains derived from raw milk and home-made dairy products could be a remarkable reservoir for identification of new potential probiotic strains.

  17. A high-throughput qPCR system for simultaneous quantitative detection of dairy Lactococcus lactis and Leuconostoc bacteriophages

    Science.gov (United States)

    Muhammed, Musemma K.; Krych, Lukasz; Nielsen, Dennis S.

    2017-01-01

    Simultaneous quantitative detection of Lactococcus (Lc.) lactis and Leuconostoc species bacteriophages (phages) has not been reported in dairies using undefined mixed-strain DL-starters, probably due to the lack of applicable methods. We optimized a high-throughput qPCR system that allows simultaneous quantitative detection of Lc. lactis 936 (now SK1virus), P335, c2 (now C2virus) and Leuconostoc phage groups. Component assays are designed to have high efficiencies and nearly the same dynamic detection ranges, i.e., from ~1.1 x 105 to ~1.1 x 101 phage genomes per reaction, which corresponds to ~9 x 107 to ~9 x 103 phage particles mL-1 without any additional up-concentrating steps. The amplification efficiencies of the corresponding assays were 100.1±2.6, 98.7±2.3, 101.0±2.3 and 96.2±6.2. The qPCR system was tested on samples obtained from a dairy plant that employed traditional mother-bulk-cheese vat system. High levels of 936 and P335 phages were detected in the mother culture and the bulk starter, but also in the whey samples. Low levels of phages were detected in the cheese milk samples. PMID:28339484

  18. Potential aquaculture probiont Lactococcus lactis TW34 produces nisin Z and inhibits the fish pathogen Lactococcus garvieae.

    Science.gov (United States)

    Sequeiros, Cynthia; Garcés, Marisa E; Vallejo, Marisol; Marguet, Emilio R; Olivera, Nelda L

    2015-04-01

    Bacteriocin-producing Lactococcus lactis TW34 was isolated from marine fish. TW34 bacteriocin inhibited the growth of the fish pathogen Lactococcus garvieae at 5 AU/ml (minimum inhibitory concentration), whereas the minimum bactericidal concentration was 10 AU/ml. Addition of TW34 bacteriocin to L. garvieae cultures resulted in a decrease of six orders of magnitude of viable cells counts demonstrating a bactericidal mode of action. The direct detection of the bacteriocin activity by Tricine-SDS-PAGE showed an active peptide with a molecular mass ca. 4.5 kDa. The analysis by MALDI-TOF-MS detected a strong signal at m/z 2,351.2 that corresponded to the nisin leader peptide mass without the initiating methionine, whose sequence STKDFNLDLVSVSKKDSGASPR was confirmed by MS/MS. Sequence analysis of nisin structural gene confirmed that L. lactis TW34 was a nisin Z producer. This nisin Z-producing strain with probiotic properties might be considered as an alternative in the prevention of lactococcosis, a global disease in aquaculture systems.

  19. Genetically Modified Lactococcus lactis for Delivery of Human Interleukin-10 to Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Inge L. Huibregtse

    2012-01-01

    Full Text Available Interleukin-10 (IL-10 plays an indispensable role in mucosal tolerance by programming dendritic cells (DCs to induce suppressor Th-cells. We have tested the modulating effect of L. lactis secreting human IL-10 (L.  lactisIL-10 on DC function in vitro. Monocyte-derived DC incubated with L.  lactisIL-10 induced effector Th-cells that markedly suppressed the proliferation of allogenic Th-cells as compared to L. lactis. This suppressive effect was only seen when DC showed increased CD83 and CD86 expression. Furthermore, enhanced production of IL-10 was measured in both L.  lactisIL-10-derived DC and Th-cells compared to L. lactis-derived DC and Th-cells. Neutralizing IL-10 during DC-Th-cell interaction and coculturing L.  lactisIL-10-derived suppressor Th-cells with allogenic Th-cells in a transwell system prevented the induction of suppressor Th-cells. Only 130 pg/mL of bacterial-derived IL-10 and 40 times more exogenously added recombinant human IL-10 were needed during DC priming for the generation of suppressor Th-cells. The spatially restricted delivery of IL-10 by food-grade bacteria is a promising strategy to induce suppressor Th-cells in vivo and to treat inflammatory diseases.

  20. CTP limitation increases expression of CTP synthase in Lactococcus lactis

    DEFF Research Database (Denmark)

    Jørgensen, C.M.; Hammer, Karin; Martinussen, Jan

    2003-01-01

    on the CTP concentration through an attenuator mechanism. At normal CTP concentrations a terminator is preferentially formed in the pyrG leader, thereby reducing expression of CTP synthase. At low CTP concentrations the RNA polymerase pauses at a stretch of C residues in the pyrG leader, thereby allowing......CTP synthase is encoded by the pyrG gene and catalyzes the conversion of UTP to CTP. A Lactococcus lactis pyrG mutant with a cytidine requirement was constructed, in which beta-galactosidase activity in a pyrG-lacLM transcriptional fusion was used to monitor gene expression of pyrG. A 10-fold...... decrease in the CTP pool induced by cytidine limitation was found to immediately increase expression of the L. lactis pyrG gene. The final level of expression of pyrG is 37-fold higher than the uninduced level. CTP limitation has pronounced effects on central cellular metabolism, and both RNA and protein...

  1. Functional Expression of an Orchid Fragrance Gene in Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Adelene Ai Lian Song

    2012-02-01

    Full Text Available Vanda Mimi Palmer (VMP, an orchid hybrid of Vanda tesselata and Vanda Tan Chay Yan is a highly scented tropical orchid which blooms all year round. Previous studies revealed that VMP produces a variety of isoprenoid volatiles during daylight. Isoprenoids are well known to contribute significantly to the scent of most fragrant plants. They are a large group of secondary metabolites which may possess valuable characteristics such as flavor, fragrance and toxicity and are produced via two pathways, the mevalonate (MVA pathway or/and the 2-C-methyl-D-erythritol-4-phosphate (MEP pathway. In this study, a sesquiterpene synthase gene denoted VMPSTS, previously isolated from a floral cDNA library of VMP was cloned and expressed in Lactococcus lactis to characterize the functionality of the protein. L. lactis, a food grade bacterium which utilizes the mevalonate pathway for isoprenoid production was found to be a suitable host for the characterization of plant terpene synthases. Through recombinant expression of VMPSTS, it was revealed that VMPSTS produced multiple sesquiterpenes and germacrene D dominates its profile.

  2. Nutritional requirements and media development for Lactococcus lactis IL1403.

    Science.gov (United States)

    Aller, Kadri; Adamberg, Kaarel; Timarova, Veronica; Seiman, Andrus; Feštšenko, Darja; Vilu, Raivo

    2014-07-01

    Lactic acid bacteria are extensively used in food technology and for the production of various compounds, but they are fastidious in nutrient requirements. In order to elucidate the role of each component precisely, defined multicomponent media are required. This study focuses on determining nutrient auxotrophies and minimizing media components (amino acids, vitamins, metal ions, buffers and additional compounds) for the cultivation of Lactococcus lactis subsp. lactis IL1403, using microtitre plates and test tubes. It was shown that glutamine and asparagine were the most important media components for achieving higher biomass yields while the branched-chain amino acids were necessary to increase specific growth rate. The amino acid and glucose ratio was reduced to achieve minimal residual concentration of amino acids in the medium after the growth of cells, whereas the specific growth rate and biomass yield of cells were not considerably affected. As the percentage of each consumed amino acid compared to initial amount is larger than measurement error, these optimized media are important for achieving more precise data about amino acid utilization and metabolism.

  3. Investigation of glycerol assimilation and cofactor metabolism in Lactococcus lactis

    DEFF Research Database (Denmark)

    Holm, Anders Koefoed

    The production of biodiesel has been steadily increasing during the last decade, and with it crude glycerol as a byproduct. Despite being rich in glycerol, the increased supply has saturated the demand for glycerol, making purification a non-viable option. The background for this project was to i......The production of biodiesel has been steadily increasing during the last decade, and with it crude glycerol as a byproduct. Despite being rich in glycerol, the increased supply has saturated the demand for glycerol, making purification a non-viable option. The background for this project...... the technological requirements for the GLYFINERY processes. These have been included in the appendix (section A). The screening did not reveal any L. lactis strains capable of assimilating glycerol nor did it reveal any conditions favorable to glycerol dissimilation in L. lactis. The conditions evaluated were...... effects and improve the growth rate, though not completely to the level of the reference strain. The fact that this effect was predominantly observed while utilizing xylose implicates the involvement of the pentose phosphate pathway. A possible mechanism underlying the observed growth characteristics...

  4. Adhesion and immunomodulatory effects of Bifidobacterium lactis HN019 on intestinal epithelial cells INT-407

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To elucidate the adherence and immunomodulatory properties of a probiotic strain Bifidobacterium lactis(B.lactis) HN019.METHODS:Adhesion assays of B.lactis HN019 and Salmonella typhimurium(S.typhimurium) ATCC 14028 to INT-407 cells were carried out by detecting copies of species-specific genes with real-time polymerase chain reaction.Morphological study was further conducted by transmission electron microscopy.Interleukin-1β(IL-1β),interleukin-8,and tumor necrosis factor-α(TNF-α) gene expression were as...

  5. Relevance of Bifidobacterium animalis subsp. lactis Plasminogen Binding Activity in the Human Gastrointestinal Microenvironment ▿

    Science.gov (United States)

    Candela, Marco; Turroni, Silvia; Centanni, Manuela; Fiori, Jessica; Bergmann, Simone; Hammerschmidt, Sven; Brigidi, Patrizia

    2011-01-01

    Human plasmin(ogen) is regarded as a component of the molecular cross talk between the probiotic species Bifidobacterium animalis subsp. lactis and the human host. However, up to now, only in vitro studies have been reported. Here, we demonstrate that the probiotic strain B. animalis subsp. lactis BI07 is capable of recruiting plasmin(ogen) present at physiological concentrations in crude extracts from human feces. Our results provide evidence that supports the significance of the B. lactis-plasmin(ogen) interaction in the human gastrointestinal tract. PMID:21821753

  6. Relevance of Bifidobacterium animalis subsp. lactis plasminogen binding activity in the human gastrointestinal microenvironment.

    Science.gov (United States)

    Candela, Marco; Turroni, Silvia; Centanni, Manuela; Fiori, Jessica; Bergmann, Simone; Hammerschmidt, Sven; Brigidi, Patrizia

    2011-10-01

    Human plasmin(ogen) is regarded as a component of the molecular cross talk between the probiotic species Bifidobacterium animalis subsp. lactis and the human host. However, up to now, only in vitro studies have been reported. Here, we demonstrate that the probiotic strain B. animalis subsp. lactis BI07 is capable of recruiting plasmin(ogen) present at physiological concentrations in crude extracts from human feces. Our results provide evidence that supports the significance of the B. lactis-plasmin(ogen) interaction in the human gastrointestinal tract.

  7. Expression of Helicobacter pylori hspA Gene in Lactococcus lactis NICE System and Experimental Study on Its Immunoreactivity

    Directory of Open Access Journals (Sweden)

    Xiao-Juan Zhang

    2015-01-01

    Full Text Available Aim. The aim of this study was to develop an oral Lactococcus lactis (L. lactis vaccine against Helicobacter pylori (H. pylori. Methods. After L. lactis NZ3900/pNZ8110-hspA was constructed, growth curves were plotted to study whether the growth of recombinant L. lactis was affected after hspA was cloned into L. lactis and whether the growth of empty bacteria, empty plasmid bacteria, and recombinant L. lactis was affected by different concentrations of Nisin; SDS-PAGE and Western blot were adopted, respectively, to detect the HspA expressed by recombinant L. lactis and its immunoreactivity. Results. There was no effect observed from the growth curve after exogenous gene hspA was cloned into L. lactis NZ3900; different concentrations of Nisin did not affect the growth of NZ3900 and NZ3900/pNZ8110, while different concentrations of Nisin inhibited the growth of NZ3900/pNZ8110-hspA except 10 ng/mL Nisin. No HspA strip was observed from SDS-PAGE. Western blot analysis showed that HspA expressed by recombinant bacteria had favorable immunoreactivity. Conclusion. The growth of recombinant L. lactis was suppressed even though a small amount of HspA had been induced to express. Therefore recombinant L. lactis only express HspA which was not suitable to be oral vaccine against Helicobacter pylori.

  8. L+-lactic acid production from starch by a novel amylolytic Lactococcus lactis subsp. lactis B84.

    Science.gov (United States)

    Petrov, Kaloyan; Urshev, Zoltan; Petrova, Penka

    2008-06-01

    A new Lactococcus lactis subsp. lactis B84, capable of utilizing starch as a sole carbon source and producing L(+)-lactate, was isolated from spontaneously fermented rye sourdough. Aiming at maximum lactic acid productivity, the components of the media and the cultivation conditions were varied. In MRS-starch medium (with absence of yeast and meat extracts), at 33 degrees C, agitation 200 rpm and pH 6.0 for 6 days complete starch hydrolysis occurred and 5.5 gl(-1) lactic acid were produced from 18 gl(-1) starch. The identification of strain B84 was based on genetic criteria. Amplified ribosomal DNA restriction analysis (ARDRA), PCR with species-specific primers and sequencing of the 16S rDNA proved its species affiliation. Four genes for enzymes, involved in starch degradation were detected in B84 genome: amyL, amyY, glgP and apu, coding cytoplasmic and extracellular alpha-amylases, glycogen phosphorylase and amylopullulanase, respectively. Reverse transcription PCR experiments showed that both genes, encoding alpha-amylases (amyL and amyY) were expressed into mRNAs, whereas apu and glgP were not. Amylase activity assay was performed at different pH and temperatures. The cell-bond amylase proved to be the key enzyme, involved in the starch hydrolysis with maximum activity at 45 degrees C and pH 5.4.

  9. Antimicrobial activity of the Nisin Z producer Lactococcus lactis subsp. lactis Lc08 against Listeria monocytogenes in skim milk

    Directory of Open Access Journals (Sweden)

    L.M. Perin

    2013-10-01

    Full Text Available The presented study aimed to verify the effect of different pH values, enzyme solutions and heat treatments on the antimicrobial activity of the bacteriocinogenic strain Lactococcus lactis subsp. lactis Lc08 and to test their antimicrobial activity against Listeria monocytogenes in reconstituted skim milk at refrigeration temperatures. This strain was previously described as a nisin Z producer and capable of inhibiting L. monocytogenes growth in in vitro tests. The antimicrobial activity of the bacteriocin cell-free supernatant of Lc08 was sensitive to enzyme treatments (except papain. The pH values and heating (65ºC for 30min, 75ºC for 15s had no apparent effect on the antimicrobial activity of the bacteriocin produced by Lc08. Only treatment at autoclave conditions result in loss of their antimicrobial activity. Lc08 presented antimicrobial activity against L. monocytogenes in the milk system after 12h at 25ºC. No effect was found at 7ºC. The results show the application viability of the Lc08 in food systems as a biopreservative against L. monocytogenes.

  10. Cloning, production, and functional expression of the bacteriocin sakacin A (SakA) and two SakA-derived chimeras in lactic acid bacteria (LAB) and the yeasts Pichia pastoris and Kluyveromyces lactis.

    Science.gov (United States)

    Jiménez, Juan J; Borrero, Juan; Diep, Dzung B; Gútiez, Loreto; Nes, Ingolf F; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2013-09-01

    Mature sakacin A (SakA, encoded by sapA) and its cognate immunity protein (SakI, encoded by sapiA), and two SakA-derived chimeras mimicking the N-terminal end of mature enterocin P (EntP/SakA) and mature enterocin A (EntA/SakA) together with SakI, were fused to different signal peptides (SP) and cloned into the protein expression vectors pNZ8048 and pMG36c for evaluation of their production and functional expression by different lactic acid bacteria. The amount, antimicrobial activity, and specific antimicrobial activity of SakA and its chimeras produced by Lactococcus lactis subsp. cremoris NZ9000 depended on the SP and the expression vector. Only L. lactis NZ9000 (pNUPS), producing EntP/SakA, showed higher bacteriocin production and antimicrobial activity than the natural SakA-producer Lactobacillus sakei Lb706. The lower antimicrobial activity of the SakA-producer L. lactis NZ9000 (pNUS) and that of the EntA/SakA-producer L. lactis NZ9000 (pNUAS) could be ascribed to secretion of truncated bacteriocins. On the other hand, of the Lb. sakei Lb706 cultures transformed with the pMG36c-derived vectors only Lb. sakei Lb706 (pGUS) overproducing SakA showed a higher antimicrobial activity than Lb. sakei Lb706. Finally, cloning of SakA and EntP/SakA into pPICZαA and pKLAC2 permitted the production of SakA and EntP/SakA by recombinant Pichia pastoris X-33 and Kluyveromyces lactis GG799 derivatives although their antimicrobial activity was lower than expected from their production.

  11. Engineering of carbon distribution between glycolysis and sugar nucleobiosynthesis in Lactococcus lactis

    NARCIS (Netherlands)

    Boels, I.C.; Kleerebezem, M.; Vos, de W.M.

    2003-01-01

    We describe the effects of modulating the activities of glucokinase, phosphofructokinase, and phosphoglucomutase on the branching point between sugar degradation and the biosynthesis of sugar nucleotides involved in the production of exopolysaccharide biosynthesis by Lactococcus lactis. This was

  12. Localization and accessibility of antigenic sites of the extracellular serine proteinase of Lactococcus lactis

    NARCIS (Netherlands)

    Laan, Harm; Kok, Jan; Haandrikman, Alfred J.; Venema, Gerhardus; Konings, Wilhelmus

    1992-01-01

    Lactococcus lactis strains produce an extracellular subtilisin-related serine proteinase in which immunologically different components can be distinguished. Monoclonal antibodies specific for the different proteinase components have been raised and their epitopes were identified. By Western-blot ana

  13. Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53

    NARCIS (Netherlands)

    Rodrigues, LR; Teixeira, JA; van der Mei, HC; Oliveira, R

    2006-01-01

    Isolation and identification of key components of the crude biosurfactant produced by Lactococcus lactis 53 was studied. Fractionation was achieved by hydrophobic interaction chromatography which allowed the isolation of a fraction rich in glycoproteins. Molecular (by Fourier transform infrared

  14. Physiological Adaptation of the Bacterium Lactococcus lactis in Response to the Production of Human CFTR

    NARCIS (Netherlands)

    Steen, Anton; Wiederhold, Elena; Gandhi, Tejas; Breitling, Rainer; Slotboom, Dirk Jan

    2011-01-01

    Biochemical and biophysical characterization of CFTR (the cystic fibrosis transmembrane conductance regulator) is thwarted by difficulties to obtain sufficient quantities of correctly folded and functional protein. Here we have produced human CFTR in the prokaryotic expression host Lactococcus lacti

  15. Acid Production Characteristics of Luminescent Lactococcus Lactis Transformed with Lux Genes%转lux基因发光乳球菌产酸特性研究

    Institute of Scientific and Technical Information of China (English)

    郭善广; 蒋爱民; 杨公明; 王海峰; Mansel W. Griffiths

    2011-01-01

    Objective: Effect of lux genes, generations, erythromycin, and incubating time on the acid producing characteristics of the luminescent L lactis transformed with lux genes was studied in this paper in order to apply its luminescent phenotype in test field. Method: The selected luminescent L. lactis transformed with luxCDABE and luxAB were activated and then cultured in liquid medium at 30℃. The capacity of acid producing of the microorganisms was determined. Result: Gene and generation did not obviously affect the production capacity of the luminescent L. lactis transformed with lux genes (P>0.05). It suggested that the transformed genes make no difference to the capability of producing acid. Erythromycin slowed down the rate of acid production of the luminescent L. lactis transformed with lux genes, but did not influence the biggest capacity of acid production. Conclusion; The selected luminescent L. lactis transformed with lux genes had a stable heritable property of acid production.%目的:为使转lux基因发光乳球菌应用于检测领域,研究lux基因、世代、红霉素和培养时间等因素对转lux基因发光乳球菌产酸特性的影响.方法:将筛选的转luxCDA BE基因发光乳球菌、转luxAB基因发光乳球菌菌株活化后接入液体培养基中,30℃培养,测定其产酸能力.结果:基因、世代对转lux基因发光乳球菌的产酸能力无显著影响(P>0.05),表明转入的lux基因大小对lux基因发光乳球菌的产酸性能无影响.红霉素可明显降低转lux基因发光乳球菌产酸速率,但对其最大产酸能力无显著影响.结论:筛选的转lux基因发光乳球菌的产酸性能具有稳定的遗传特性.

  16. Expanding the molecular toolbox for Lactococcus lactis: construction of an inducible thioredoxin gene fusion expression system

    LENUS (Irish Health Repository)

    Douillard, Francois P

    2011-08-09

    Abstract Background The development of the Nisin Inducible Controlled Expression (NICE) system in the food-grade bacterium Lactococcus lactis subsp. cremoris represents a cornerstone in the use of Gram-positive bacterial expression systems for biotechnological purposes. However, proteins that are subjected to such over-expression in L. lactis may suffer from improper folding, inclusion body formation and\\/or protein degradation, thereby significantly reducing the yield of soluble target protein. Although such drawbacks are not specific to L. lactis, no molecular tools have been developed to prevent or circumvent these recurrent problems of protein expression in L. lactis. Results Mimicking thioredoxin gene fusion systems available for E. coli, two nisin-inducible expression vectors were constructed to over-produce various proteins in L. lactis as thioredoxin fusion proteins. In this study, we demonstrate that our novel L. lactis fusion partner expression vectors allow high-level expression of soluble heterologous proteins Tuc2009 ORF40, Bbr_0140 and Tuc2009 BppU\\/BppL that were previously insoluble or not expressed using existing L. lactis expression vectors. Over-expressed proteins were subsequently purified by Ni-TED affinity chromatography. Intact heterologous proteins were detected by immunoblotting analyses. We also show that the thioredoxin moiety of the purified fusion protein was specifically and efficiently cleaved off by enterokinase treatment. Conclusions This study is the first description of a thioredoxin gene fusion expression system, purposely developed to circumvent problems associated with protein over-expression in L. lactis. It was shown to prevent protein insolubility and degradation, allowing sufficient production of soluble proteins for further structural and functional characterization.

  17. Efeito e modo de ação das bacteriocinas produzidas por Lactococcus lactis subsp. lactis ITAL 383, ATCC 11454 e CNRZ 150 contra Listeria innocua LIN 11 Effect and mode of action of the bacterioncin produced by Lactococcus. lactis subsp. lactis ITAL 383, ATCC 11454 e CNRZ 150 against Listeria innocua LIN 11

    Directory of Open Access Journals (Sweden)

    Izildinha MORENO

    1999-01-01

    Full Text Available O efeito e o modo de ação das bacteriocinas produzidas por L. lactis subsp. lactis ITAL 383 e CNRZ 150 são similares à nisina de L. lactis subsp. lactis ATCC 11454. Estas bacteriocinas apresentaram um modo de ação bactericida, causando a lise de células de L. innocua LIN 11, associada ao decréscimo da absorbância e da viabilidade celular. O efeito letal foi maior para células em fase exponencial comparativamente à fase estacionária de crescimento. A adsorção dessas bacteriocinas às células de L. innocua LIN 11 foi muito rápida e influenciada pelo pH do meio de suspensão; adsorção máxima foi verificada a pH 6,0 e logo após o contato inicial. Perda completa de adsorção ocorreu em pH 2,0.The effect and mode of action of the bacteriocin produced by L. lactis subsp. lactis ITAL 383 and CNRZ 150 are similar to the nisin produced by L. lactis subsp. lactis ATCC 11454. It was clearly bactericidal, and caused lysis of a strain of L. innocua LIN 11 detected by the decrease of absorbance values and the cell viability. Their lethal effect was considerably higher during the logarithmic growth when compared to the stationary phase. Adsorption developed rapidly and was influenced by the pH value of the suspension medium. Maximum adsorption was observed at pH 6,0 and immediately after initial contact and loss at pH 2,0.

  18. The extracellular proteome of Bifidobacterium animalis subsp. lactis BB‐12 reveals proteins with putative roles in probiotic effects

    DEFF Research Database (Denmark)

    Gilad, Ofir; Svensson, Birte; Viborg, Alexander Holm

    2011-01-01

    Probiotics are live microorganisms that exert health‐promoting effects on the human host, as demonstrated for numerous strains of the genus Bifidobacterium. To unravel the proteins involved in the interactions between the host and the extensively used and well‐studied probiotic strain Bifidobacte......Probiotics are live microorganisms that exert health‐promoting effects on the human host, as demonstrated for numerous strains of the genus Bifidobacterium. To unravel the proteins involved in the interactions between the host and the extensively used and well‐studied probiotic strain...... Bifidobacterium animalis subsp. lactis BB‐12, proteins secreted by the bacterium, i.e. belonging to the extracellular proteome present in the culture medium, were identified by 2‐DE coupled with MALDI‐TOF MS. Among the 74 distinct proteins identified, 31 are predicted to carry out their physiological role either...

  19. A Computational Study of Amensalistic Control of Listeria monocytogenes by Lactococcus lactis under Nutrient Rich Conditions in a Chemostat Setting

    Directory of Open Access Journals (Sweden)

    Hassan Khassehkhan

    2016-09-01

    Full Text Available We study a previously introduced mathematical model of amensalistic control of the foodborne pathogen Listeria monocytogenes by the generally regarded as safe lactic acid bacteria Lactococcus lactis in a chemostat setting under nutrient rich growth conditions. The control agent produces lactic acids and thus affects pH in the environment such that it becomes detrimental to the pathogen while it is much more tolerant to these self-inflicted environmental changes itself. The mathematical model consists of five nonlinear ordinary differential equations for both bacterial species, the concentration of lactic acids, the pH and malate. The model is algebraically too involved to allow a comprehensive, rigorous qualitative analysis. Therefore, we conduct a computational study. Our results imply that depending on the growth characteristics of the medium in which the bacteria are cultured, the pathogen can survive in an intermediate flow regime but will be eradicated for slower flow rates and washed out for higher flow rates.

  20. Transcriptome and proteome exploration to model translation efficiency and protein stability in Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Clémentine Dressaire

    2009-12-01

    Full Text Available This genome-scale study analysed the various parameters influencing protein levels in cells. To achieve this goal, the model bacterium Lactococcus lactis was grown at steady state in continuous cultures at different growth rates, and proteomic and transcriptomic data were thoroughly compared. Ratios of mRNA to protein were highly variable among proteins but also, for a given gene, between the different growth conditions. The modeling of cellular processes combined with a data fitting modeling approach allowed both translation efficiencies and degradation rates to be estimated for each protein in each growth condition. Estimated translational efficiencies and degradation rates strongly differed between proteins and were tested for their biological significance through statistical correlations with relevant parameters such as codon or amino acid bias. These efficiencies and degradation rates were not constant in all growth conditions and were inversely proportional to the growth rate, indicating a more efficient translation at low growth rate but an antagonistic higher rate of protein degradation. Estimated protein median half-lives ranged from 23 to 224 min, underlying the importance of protein degradation notably at low growth rates. The regulation of intracellular protein level was analysed through regulatory coefficient calculations, revealing a complex control depending on protein and growth conditions. The modeling approach enabled translational efficiencies and protein degradation rates to be estimated, two biological parameters extremely difficult to determine experimentally and generally lacking in bacteria. This method is generic and can now be extended to other environments and/or other micro-organisms.

  1. Differential expression of proteins and genes in the lag phase of Lactococcus lactis subsp lactis grown in synthetic medium and reconstituted skim milk

    DEFF Research Database (Denmark)

    Larsen, N.; Boye, Mette; Jakobsen, Marianne

    2006-01-01

    metabolism, glycolysis, stress response, translation, transcription, cell division, amino acid metabolism, and coenzyme synthesis., were identified. Among the identified proteins, > 2-fold induction and down-regulation in the lag phase were determined for 12 proteins in respect to the exponential phase......We investigated protein and gene expression in the lag phase of Lactococcus lactis subsp. lactis CNRZ 157 and compared it to the exponential and stationary phases. By means of two-dimensional polyacrylamide gel electrophoresis, 28 highly expressed lag-phase proteins, implicated in nucleotide...... and for 18 proteins in respect to the stationary phase. Transcriptional changes of the lag-phase proteins in L. lactis were studied by oligonucleotide microarrays. Good correlation between protein and gene expression studies was demonstrated for several differentially expressed proteins, including nucleotide...

  2. Antigenicity and Immunogenicity of Rotavirus VP6 Protein Expressed on the Surface of Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    L. E. Esteban

    2013-01-01

    Full Text Available Group A rotaviruses are the major etiologic agents of acute gastroenteritis worldwide in children and young animals. Among its structural proteins, VP6 is the most immunogenic and is highly conserved within this group. Lactococcus lactis is a food-grade, Gram-positive, and nonpathogenic lactic acid bacteria that has already been explored as a mucosal delivery system of heterologous antigens. In this work, the nisin-controlled expression system was used to display the VP6 protein at the cell surface of L. lactis. Conditions for optimal gene expression were established by testing different nisin concentrations, cell density at induction, and incubation times after induction. Cytoplasmic and cell wall protein extracts were analyzed by Western blot and surface expression was confirmed by flow cytometry. Both analysis provided evidence that VP6 was efficiently expressed and displayed on the cell surface of L. lactis. Furthermore, the humoral response of mice immunized with recombinant L. lactis was evaluated and the displayed recombinant VP6 protein proved to be immunogenic. In conclusion, this is the first report of displaying VP6 protein on the surface of L. lactis to induce a specific immune response against rotavirus. These results provide the basis for further evaluation of this VP6-displaying L. lactis as a mucosal delivery vector in a mouse model of rotavirus infection.

  3. Electroinduced extraction of beta-galactosidase from Kluyveromyces lactis.

    Science.gov (United States)

    Ganeva, V; Galutzov, B; Eynard, N; Teissié, J

    2001-08-01

    A new methodology for the extraction of beta-galactosidase from the yeast Kluyveromyces lactis was obtained by electropulsation. The application of a series of electric pulses (2 ms duration, 1 Hz frequency, and 4-4.5 kV/cm field strength) to fresh cells suspended in deionized water, followed by incubation in PBS, led to a spontaneous slow release of enzyme at a yield of 75-80% without any further treatment. Most of the enzyme was extracted within 8 h after electropulsation. This release was dependent on the growth phase. The specific activity of beta-galactosidase in the supernatant of pulsed cells was higher by a factor of 1.5-1.7 in comparison with crude extract.

  4. Lactococcus lactis productor de bacteriocina utilizable como cultivo iniciador para acelerar la maduración de queso

    OpenAIRE

    Martínez-Cuesta, M. Carmen; Requena, Teresa; Peláez, Carmen

    2003-01-01

    Lactococcus lactis productor de bacteriocina utilizable como cultivo iniciador para acelerar la maduración de queso. La presente invención describe un procedimiento de producción de transconjugantes de Lactococcus lactis (se describe en detalle el Lactococcus lactis CECT5367) productores de bacteriocina y por tanto inmune a ella. Este microorganismo y otros similares pueden utilizarse como cultivos iniciadores para la elaboración de queso semiduro produciendo quesos de buena calidad organolép...

  5. Application of the ligase chain reaction to the detection of nisinA and nisinZ genes in Lactococcus lactis ssp. lactis.

    Science.gov (United States)

    Ward, L J; Brown, J C; Davey, G P

    1994-03-15

    This paper reports on the application of the ligase chain reaction (LCR) to the specific detection of variants of the nisin structural gene (nisinA and nisinZ) in nisin producing strains of Lactococcus lactis ssp lactis. The LCR assay was used to screen nisin producing strains to determine which form of the nisin structural gene they contained. This method of differentiating the nisin structural gene variants provides a useful alternative to the only other available genetic differentiation, that of sequencing the gene.

  6. Influence of Stress Treatments on the Resistance of Lactococcus lactis to Freezing and Freeze-Drying

    OpenAIRE

    Lin, Chan

    1998-01-01

    This study investigated the effect of cold, heat, or osmotic shock treatment on the resistance of L. lactis subsp. cremoris MM160 and MM310 and Lactococcus lactis subsp. lactis MM210 and FG2 cheese starter bacteria to freezing and freeze-drying. The ability to withstand freezing at -60°C for 24 h was variable among lactococci, but resistance to this treatment was significantly improved (P < 0.05) in most strains by a 2-h cold shock at l0°C or a 25-min heat shock at 39°C (L. lactis subsp. crem...

  7. Impact of Bifidobacterium lactis supplementation on fecal microbiota in infants delivered vaginally compared to Caesarean section

    Directory of Open Access Journals (Sweden)

    Tetty Yuniaty

    2013-03-01

    Full Text Available AbstractBackground It has been reported that infants born by Caesarean section have altered gut microbiota, with lower numbers of bifidobacteria and Bacteroides, compared to that of infants who were delivered vaginally. Probiotic supplementation has been reported to have beneficial effects on the immune response, generally in relation to allergies.Objective To assess the effect of Bifidobacterium lactis (B. lactis supplementation on the presence of B. lactis and bifidobacteria counts in stool of infants during the first 2 months of life.Methods We conducted an observational study of 122 healthy, breast-fed infants delivered vaginally or by Caesarean section. Infants assigned to the test group received breast milk and formula supplemented with the B. lactis probiotics. Infants in the control group received breast milk and formula without probiotics. The presence of B. lactis and stool bifidobacteria counts were determined at 1 month and 2 months of age. Growth, morbidity, serum immune markers, and stool immunoglobulin (Ig A were also assessed.Results B. lactis was more frequently detected in the stool of infants who received breast milk and probiotic-supplemented formula than in stool of infants who received breast milk and non-supplemented formula, both at 1 month and 2 months of age (OR 1,263; 95%CI 11 to 151,030; P=0.003. Of infants who received probiotic-supplemented formula, B. lactis was detected in 80% of those delivered by Caesarean section and in 38% of those delivered vaginally, at the 1-month mark. In infants delivered by Caesarean section, the mean stool bifidobacteria level at 1 month was significantly higher in the probiotic-supplemented group compared to that of the non-supplemented group (P=0.021.Conclusion Eearly bifidobacteria supplementation of infants, particularly those delivered by Caesarean section, is associated with higher levels of stool bifidobacteria. Anthropometric data suggests beneficial effects of bifidobacteria

  8. Impact of Bifidobacterium lactis supplementation on fecal microbiota in infants delivered vaginally compared to Caesarean section

    Directory of Open Access Journals (Sweden)

    Tetty Yuniaty

    2013-03-01

    Full Text Available Background It has been reported that infants born by Caesarean section have altered gut microbiota, with lower numbers of bifidobacteria and Bacteroides, compared to that of infants who were delivered vaginally. Probiotic supplementation has been reported to have beneficial effects on the immune response, generally in relation to allergies. Objective To assess the effect of Bifidobacterium lactis (B. lactis supplementation on the presence of B. lactis and bifidobacteria counts in stool of infants during the first 2 months of life. Methods We conducted an observational study of 122 healthy, breast-fed infants delivered vaginally or by Caesarean section. Infants assigned to the test group received breast milk and formula supplemented with the B. lactis probiotics. Infants in the control group received breast milk and formula without probiotics. The presence of B. lactis and stool bifidobacteria counts were determined at 1 month and 2 months of age. Growth, morbidity, serum immune markers, and stool immunoglobulin (Ig A were also assessed. Results B. lactis was more frequently detected in the stool of infants who received breast milk and probiotic-supplemented formula than in stool of infants who received breast milk and non-supplemented formula, both at 1 month and 2 months of age (OR 1,263; 95%CI 11 to 151,030; P=0.003. Of infants who received probiotic-supplemented formula, B. lactis was detected in 80% of those delivered by Caesarean section and in 38% of those delivered vaginally, at the 1-month mark. In infants delivered by Caesarean section, the mean stool bifidobacteria level at 1 month was significantly higher in the probiotic-supplemented group compared to that of the non-supplemented group (P=0.021. Conclusion Eearly bifidobacteria supplementation of infants, particularly those delivered by Caesarean section, is associated with higher levels of stool bifidobacteria. Anthropometric data suggests beneficial effects of bifidobacteria

  9. Secretion of an immunoreactive single-chain variable fragment antibody against mouse interleukin 6 by Lactococcus lactis.

    Science.gov (United States)

    Shigemori, Suguru; Ihara, Masaki; Sato, Takashi; Yamamoto, Yoshinari; Nigar, Shireen; Ogita, Tasuku; Shimosato, Takeshi

    2017-01-01

    Interleukin 6 (IL-6) is an important pathogenic factor in development of various inflammatory and autoimmune diseases and cancer. Blocking antibodies against molecules associated with IL-6/IL-6 receptor signaling are an attractive candidate for the prevention or therapy of these diseases. In this study, we developed a genetically modified strain of Lactococcus lactis secreting a single-chain variable fragment antibody against mouse IL-6 (IL6scFv). An IL6scFv-secretion vector was constructed by cloning an IL6scFv gene fragment into a lactococcal secretion plasmid and was electroporated into L. lactis NZ9000 (NZ-IL6scFv). Secretion of recombinant IL6scFv (rIL6scFv) by nisin-induced NZ-IL6scFv was confirmed by western blotting and was optimized by tuning culture conditions. We found that rIL6scFv could bind to commercial recombinant mouse IL-6. This result clearly demonstrated the immunoreactivity of rIL6scFv. This is the first study to engineer a genetically modified strain of lactic acid bacteria (gmLAB) that produces a functional anti-cytokine scFv. Numerous previous studies suggested that mucosal delivery of biomedical proteins using gmLAB is an effective and low-cost way to treat various disorders. Therefore, NZ-IL6scFv may be an attractive tool for the research and development of new IL-6 targeting agents for various inflammatory and autoimmune diseases as well as for cancer.

  10. Diversity analysis of dairy and nondairy Lactococcus lactis isolates, using a novel multilocus sequence analysis scheme and (GTG)5-PCR fingerprinting

    NARCIS (Netherlands)

    Rademaker, J.L.W.; Herbet, H.; Starrenburg, M.J.C.; Naser, S.M.; Gevers, D.; Kelly, W.J.; Hugenholtz, J.; Swings, J.; van Hylckama Vlieg, J.E.T.

    2007-01-01

    The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subs

  11. Tripeptidase Gene (pepT) of Lactococcus lactis : Molecular Cloning and Nucleotide Sequencing of pepT and Construction of a Chromosomal Deletion Mutant

    NARCIS (Netherlands)

    Mierau, Igor; Haandrikman, Alfred J.; Velterop, Odilia; Tan, Paris S.T.; Leenhouts, Kees L.; Konings, Wilhelmus; Venema, Gerhardus; Kok, Jan

    1994-01-01

    The gene encoding a tripeptidase (pepT) of lactococcus lactis subsp. cremoris (formerly subsp. lactis) MG1363 was cloned from a genomic library in pUC19 and subsequently sequenced. The tripeptidase of L. lactis was shown to be homologous to PepT of Salmonella typhimurium with 47.4% identity in the d

  12. cultural

    Directory of Open Access Journals (Sweden)

    Irene Kreutz

    2006-01-01

    Full Text Available Es un estudio cualitativo que adoptó como referencial teorico-motodológico la antropología y la etnografía. Presenta las experiencias vivenciadas por mujeres de una comunidad en el proceso salud-enfermedad, con el objetivo de comprender los determinantes sócio-culturales e históricos de las prácticas de prevención y tratamiento adoptados por el grupo cultural por medio de la entrevista semi-estructurada. Los temas que emergieron fueron: la relación entre la alimentación y lo proceso salud-enfermedad, las relaciones con el sistema de salud oficial y el proceso salud-enfermedad y lo sobrenatural. Los dados revelaron que los moradores de la comunidad investigada tienen un modo particular de explicar sus procedimientos terapéuticos. Consideramos que es papel de los profesionales de la salud en sus prácticas, la adopción de abordajes o enfoques que consideren al individuo en su dimensión sócio-cultural e histórica, considerando la enorme diversidad cultural en nuestro país.

  13. The prophylactic effect of probiotic Enterococcus lactis IW5 against different human cancer cells

    Directory of Open Access Journals (Sweden)

    YOUSEF eNAMI

    2015-11-01

    Full Text Available Enterococcus lactis IW5 was obtained from human gut and the potential probiotic characteristics of this organism were then evaluated. Results showed that this strain was highly resistant to low pH and high bile salt and adhered strongly to Caco-2 human epithelial colorectal cell lines. The supernatant of E. lactis IW5 strongly inhibited the growth of several pathogenic bacteria and decreased the viability of different cancer cells, such as HeLa, AGS, HT-29, and MCF-7. Conversely, E. lactis IW5 did not inhibit the viability of normal FHs-74 cells. This strain did not generate toxic enzymes, including β-glucosidase, β-glucuronidase, and N-acetyl-β-glucosaminidase and was highly susceptible to ampicillin, gentamycin, penicillin, vancomycin, clindamycin, sulfamethoxazol, and chloramphenicol but resistant to erythromycin and tetracyclin. This study provided evidence for the effect of E. lactis IW5 on cancer cells. Therefore, E. lactis IW5, as a bioactive therapeutics, should be subjected to other relevant tests to verify the therapeutic suitability of this strain for clinical applications.

  14. Cooperation between Lactococcus lactis and nonstarter lactobacilli in the formation of cheese aroma from amino acids.

    Science.gov (United States)

    Kieronczyk, Agnieszka; Skeie, Siv; Langsrud, Thor; Yvon, Mireille

    2003-02-01

    In Gouda and Cheddar type cheeses the amino acid conversion to aroma compounds, which is a major process for aroma formation, is essentially due to lactic acid bacteria (LAB). In order to evaluate the respective role of starter and nonstarter LAB and their interactions in cheese flavor formation, we compared the catabolism of phenylalanine, leucine, and methionine by single strains and strain mixtures of Lactococcus lactis subsp. cremoris NCDO763 and three mesophilic lactobacilli. Amino acid catabolism was studied in vitro at pH 5.5, by using radiolabeled amino acids as tracers. In the presence of alpha-ketoglutarate, which is essential for amino acid transamination, the lactobacillus strains degraded less amino acids than L. lactis subsp. cremoris NCDO763, and produced mainly nonaromatic metabolites. L. lactis subsp. cremoris NCDO763 produced mainly the carboxylic acids, which are important compounds for cheese aroma. However, in the reaction mixture containing glutamate, only two lactobacillus strains degraded amino acids significantly. This was due to their glutamate dehydrogenase (GDH) activity, which produced alpha-ketoglutarate from glutamate. The combination of each of the GDH-positive lactobacilli with L. lactis subsp. cremoris NCDO763 had a beneficial effect on the aroma formation. Lactobacilli initiated the conversion of amino acids by transforming them mainly to keto and hydroxy acids, which subsequently were converted to carboxylic acids by the Lactococcus strain. Therefore, we think that such cooperation between starter L. lactis and GDH-positive lactobacilli can stimulate flavor development in cheese.

  15. Proton Motive Force-Driven and ATP-Dependent Drug Extrusion Systems in Multidrug-Resistant Lactococcus lactis

    NARCIS (Netherlands)

    BOLHUIS, H; MOLENAAR, D; POELARENDS, G; VANVEEN, HW; POOLMAN, B; DRIESSEN, AJM; KONINGS, WN

    1994-01-01

    Three mutants of Lactococcus lactis subsp. lactis MG1363, termed Eth(R), Dau(R), and Rho(R), were selected for resistance to high concentrations of ethidium bromide, daunomycin, and rhodamine 6G, respectively. These mutants were found to be cross resistant to a number of structurally and

  16. The Lcn972 Bacteriocin-Encoding Plasmid pBL1 Impairs Cellobiose Metabolism in Lactococcus lactis

    NARCIS (Netherlands)

    Campelo, Ana B.; Gaspar, Paula; Roces, Clara; Rodriguez, Ana; Kok, Jan; Kuipers, Oscar P.; Neves, Ana Rute; Martinez, Beatriz

    2011-01-01

    pBL1 is a Lactococcus lactis theta-replicating 10.9-kbp plasmid that encodes the synthetic machinery of the bacteriocin Lcn972. In this work, the transcriptomes of exponentially growing L. lactis strains with and without pBL1 were compared. A discrete response was observed, with a total of 10 genes

  17. Effects of gene disruptions in the nisin gene cluster of Lactococcus lactis on nisin production and producer immunity

    NARCIS (Netherlands)

    Ra, Runar; Beerthuyzen, Marke M.; Vos, Willem M. de; Saris, Per E.J.; Kuipers, Oscar P.

    1999-01-01

    The lantibiotic nisin is produced by several strains of Lactococcus lactis subsp. lactis. The chromosomally located gene cluster nisABTCIPRKFEG is required for biosynthesis, development of immunity, and regulation of gene expression. In-frame deletions in the nisB and nisT genes, and disruption of

  18. Evolution of Lactococcus lactis phages within a cheese factory.

    Science.gov (United States)

    Rousseau, Geneviève M; Moineau, Sylvain

    2009-08-01

    We have sequenced the double-stranded DNA genomes of six lactococcal phages (SL4, CB13, CB14, CB19, CB20, and GR7) from the 936 group that were isolated over a 9-year period from whey samples obtained from a Canadian cheese factory. These six phages infected the same two industrial Lactococcus lactis strains out of 30 tested. The CB14 and GR7 genomes were found to be 100% identical even though they were isolated 14 months apart, indicating that a phage can survive in a cheese plant for more than a year. The other four genomes were related but notably different. The length of the genomes varied from 28,144 to 32,182 bp, and they coded for 51 to 55 open reading frames. All five genomes possessed a 3' overhang cos site that was 11 nucleotides long. Several structural proteins were also identified by nano-high-performance liquid chromatography-tandem mass spectrometry, confirming bioinformatic analyses. Comparative analyses suggested that the most recently isolated phages (CB19 and CB20) were derived, in part, from older phage isolates (CB13 and CB14/GR7). The organization of the five distinct genomes was similar to the previously sequenced lactococcal phage genomes of the 936 group, and from these sequences, a core genome was determined for lactococcal phages of the 936 group.

  19. Effect of autochthonous starter cultures on the biogenic amine content of ewe's milk cheese throughout ripening.

    Science.gov (United States)

    Renes, E; Diezhandino, I; Fernández, D; Ferrazza, R E; Tornadijo, M E; Fresno, J M

    2014-12-01

    Cheese is among the most commonly implicated foods associated with biogenic amines poisoning. The aim of this study was to evaluate the effects of the type of autochthonous starter culture and ripening time on the concentration of biogenic amines (histamine, tyramine, putrescine, cadaverine, tryptamine, β-phenylethylamine, spermine and spermidine) in cheeses made from pasteurized ewe's milk. 4 cheese batches were made, in duplicate, and ripened for 7 months. The biogenic amines of 40 cheeses were analysed by high performance liquid chromatography. The predominant biogenic amines determined at the end of the ripening time were phenylethylamine, spermine and tryptamine. Together, these accounted for 81% of the total of biogenic amines studied. The type of starter culture used to make the ewe's cheese had a significant effect (p culture made up entirely of Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris or of the same in combination with Lactobacillus plantarum.

  20. Geraniol dehydrogenase, the key enzyme in biosynthesis of the alarm pheromone, from the astigmatid mite Carpoglyphus lactis (Acari: Carpoglyphidae).

    Science.gov (United States)

    Noge, Koji; Kato, Makiko; Mori, Naoki; Kataoka, Michihiko; Tanaka, Chihiro; Yamasue, Yuji; Nishida, Ritsuo; Kuwahara, Yasumasa

    2008-06-01

    Geraniol dehydrogenase (GeDH), which plays an important role in the biosynthesis of neral, an alarm pheromone, was purified from the astigmatid mite Carpoglyphus lactis. The enzyme was obtained in an apparently homogeneous and active form after 1879-fold purification through seven steps of chromatography. Car. lactis GeDH was determined to be a monomer in its active form with a relative molecular mass of 42 800, which is a unique subunit structure in comparison with already established alcohol dehydrogenases. Car. lactis GeDH oxidized geraniol into geranial in the presence of NAD+. NADP+ was ineffective as a cofactor, suggesting that Car. lactis GeDH is an NAD+-dependent alcohol dehydrogenase. The optimal pH and temperature for geraniol oxidation were determined to be pH 9.0 and 25 degrees C, respectively. The Km values for geraniol and NAD+ were 51.0 microm and 59.5 microm, respectively. Car. lactis GeDH was shown to selectively oxidize geraniol, whereas its geometrical isomer, nerol, was inert as a substrate. The high specificity for geraniol suggests that Car. lactis GeDH specializes in the alarm pheromone biosynthesis of Car. lactis. Car. lactis GeDH is composed of 378 amino acids. Structurally, Car. lactis GeDH showed homology with zinc-dependent alcohol dehydrogenases found in mammals and a mosquito (36.6-37.6% identical), and the enzyme was considered to be a member of the medium-chain dehydrogenase/reductase family, in view of the highly conserved sequences of zinc-binding and NAD+-binding sites. Phylogenetic analyses indicate that Car. lactis GeDH could be categorized as a new class, different from other established alcohol dehydrogenases.

  1. Physiochemical parameters optimization for enhanced nisin production by Lactococcus lactis (MTCC 440

    Directory of Open Access Journals (Sweden)

    Puspadhwaja Mall

    2010-02-01

    Full Text Available The influence of various physiochemical parameters on the growth of Lactococcus lactis sub sp. lactis MTCC 440 was studied at shake flask level for 20 h. Media optimization (MRS broth was studied to achieve enhanced growth of the organism and also nisin production. Bioassay of nisin was done with agar diffusion method using Streptococcus agalactae NCIM 2401 as indicator strain. MRS broth (6%, w/v with 0.15μg/ml of nisin supplemented with 0.5% (v/v skimmed milk was found to be the best for nisin production as well as for growth of L lactis. The production of nisin was strongly influenced by the presence of skimmed milk and nisin in MRS broth. The production of nisin was affected by the physical parameters and maximum nisin production was at 30(0C while the optimal temperature for biomass production was 37(0C.

  2. An exoproteome approach to monitor safety of a cheese-isolated Lactococcus lactis

    DEFF Research Database (Denmark)

    Genovese, Federica; Coïsson, Jean Daniel; Majumder, Avishek

    2013-01-01

    The safety of the cheese-isolated and potential starter Lactococcus lactis 11D was explored by means of an extracellular proteomic study. A preliminary analysis showed good caseification/proteolytic behavior of the strain, absence of production of biogenic amines and good survival at acidic p...... isomerase were abundant in the L. lactis 11D exoproteome. These proteins play a role in bacterial aggregation and in bacteria–fungi interactions, therefore their presence may indicate a good competition potential of the strain against other microorganisms in both food and the gastrointestinal habitat....... This is to our knowledge the first extracellular proteomic mapping of L. lactis with relevance for bacterial strain-typing in food safety....

  3. Butanol is cytotoxic to Lactococcus lactis while ethanol and hexanol are cytostatic

    DEFF Research Database (Denmark)

    Hviid, Anne-Mette Meisner; Jensen, Peter Ruhdal; Kilstrup, Mogens

    2017-01-01

    Lactic acid bacteria currently used extensively by the dairy industry have a superior tolerance towards small chain alcohols, which makes them interesting targets for use in future bio-refineries. The mechanism underlying the alcohol tolerance of lactic acid bacteria has so far received little...... resistant lactic acid bacteria. Combined results from alcohol survival rate, live/dead staining, and a novel usage of the beta-galactosidase assay, revealed that while high concentrations of ethanol and hexanol were cytostatic to L. lactis, high concentrations of butanol were cytotoxic, causing irreparable...... attention. In the present study the physiological alcohol stress response of Lactococcus lactis subsp. cremoris MG1363 towards the primary, even-chain alcohols; ethanol, butanol, and hexanol was characterized. The alcohol tolerance of L. lactis was found comparable to those reported for highly alcohol...

  4. Physiological function of the maltose operon regulator, MalR, in Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Rådström Peter

    2002-09-01

    Full Text Available Abstract Background Maltose metabolism is initiated by an ATP-dependent permease system in Lactococcus lactis. The subsequent degradation of intracellular maltose is performed by the concerted action of Pi-dependent maltose phosphorylase and β-phosphoglucomutase. In some Gram-positive bacteria, maltose metabolism is regulated by a maltose operon regulator (MalR, belonging to the LacI-GalR family of transcriptional regulators. A gene presumed to encode MalR has been found directly downstream the maltose phosphorylase-encoding gene, malP in L. lactis. The purpose of this study was to investigate the physiological role of the MalR protein in maltose metabolism in L. lactis. Results A L. lactis ssp. lactis mutant, TMB5004, deficient in the putative MalR protein, was physiologically characterised. The mutant was not able to ferment maltose, while its capability to grow on glucose as well as trehalose was not affected. The activity of maltose phosphorylase and β-phosphoglucomutase was not affected in the mutant. However, the specific maltose uptake rate in the wild type was, at its lowest, five times higher than in the mutant. This difference in maltose uptake increased as the maltose concentration in the assay was increased. Conclusion According to amino acid sequence similarities, the presumed MalR is a member of the LacI-GalR family of transcriptional regulators. Due to the suggested activating effect on maltose transport and absence of effect on the activities of maltose phosphorylase and β-phosphoglucomutase, MalR of L. lactis is considered rather as an activator than a repressor.

  5. Oxidative Stress at High Temperatures in Lactococcus lactis Due to an Insufficient Supply of Riboflavin

    DEFF Research Database (Denmark)

    Shen, Jing; Solem, Christian; Jensen, Peter Ruhdal;

    2013-01-01

    . These results indicate that L. lactis suffers from heat-induced oxidative stress at increased temperatures. A decrease in intracellular flavin adenine dinucleotide (FAD), which is derived from riboflavin, was observed with increasing growth temperature, but the presence of riboflavin made the decrease smaller...... riboflavin to the medium, it was possible to improve growth and oxygen consumption at 37°C, and this also normalized the [ATP]-to-[ADP] ratio. A codon-optimized redox-sensitive green fluorescent protein (GFP) was introduced into L. lactis and revealed a more oxidized cytoplasm at 37°C than at 30°C...

  6. Eggs of Ephestia kuehniella and Ceratitis capitata, and motile stages of the astigmatid mites Tyrophagus putrescentiae and Carpoglyphus lactis as factitious foods for Orius spp.

    Science.gov (United States)

    Bonte, Jochem; Van de Walle, Anaïs; Conlong, Des; De Clercq, Patrick

    2017-08-01

    Several factitious foods were assessed for rearing the anthocorid predators Orius thripoborus (Hesse) and Orius naivashae (Poppius) (Hemiptera: Anthocoridae) in the laboratory. Developmental and reproductive traits of both Orius species were examined when offered frozen eggs of the Mediterranean flour moth, Ephestia kuehniella Zeller, frozen processed eggs of the medfly, Ceratitis capitata Wiedemann, or mixed motile stages of the astigmatid mites Tyrophagus putrescentiae (Schrank) or Carpoglyphus lactis (L). Whereas C. lactis and T. putresecentiae proved to be an inferior food for rearing O. thripoborus and O. naivashae, eggs of C. capitata fully supported development and reproduction of both predators. Results on medfly eggs were similar or slightly inferior to those on E. kuehniella eggs, which is the standard food for culturing these anthocorid bugs. O. thripoborus could be maintained for 4 consecutive generations on C. capitata eggs indicating that processed medfly eggs can be a suitable and cheaper alternative to E. kuehniella eggs for prolonged rearing of these Orius spp. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  7. Immunization against Leishmania major infection using LACK- and IL-12-expressing Lactococcus lactis induces delay in footpad swelling.

    Directory of Open Access Journals (Sweden)

    Felix Hugentobler

    Full Text Available BACKGROUND: Leishmania is a mammalian parasite affecting over 12 million individuals worldwide. Current treatments are expensive, cause severe side effects, and emerging drug resistance has been reported. Vaccination is the most cost-effective means to control infectious disease but currently there is no vaccine available against Leishmaniasis. Lactococcus lactis is a non-pathogenic, non-colonizing Gram-positive lactic acid bacterium commonly used in the dairy industry. Recently, L. lactis was used to express biologically active molecules including vaccine antigens and cytokines. METHODOLOGY/PRINCIPAL FINDINGS: We report the generation of L. lactis strains expressing the protective Leishmania antigen, LACK, in the cytoplasm, secreted or anchored to the bacterial cell wall. L. lactis was also engineered to secrete biologically active single chain mouse IL-12. Subcutaneous immunization with live L. lactis expressing LACK anchored to the cell wall and L. lactis secreting IL-12 significantly delayed footpad swelling in Leishmania major infected BALB/c mice. The delay in footpad swelling correlated with a significant reduction of parasite burden in immunized animals compared to control groups. Immunization with these two L. lactis strains induced antigen-specific multifunctional T(H1 CD4(+ and CD8(+ T cells and a systemic LACK-specific T(H1 immune response. Further, protection in immunized animals correlated with a Leishmania-specific T(H1 immune response post-challenge. L. lactis secreting mouse IL-12 was essential for directing immune responses to LACK towards a protective T(H1 response. CONCLUSIONS/SIGNIFICANCE: This report demonstrates the use of L. lactis as a live vaccine against L. major infection in BALB/c mice. The strains generated in this study provide the basis for the development of an inexpensive and safe vaccine against the human parasite Leishmania.

  8. Immunization against Leishmania major infection using LACK- and IL-12-expressing Lactococcus lactis induces delay in footpad swelling.

    Science.gov (United States)

    Hugentobler, Felix; Yam, Karen K; Gillard, Joshua; Mahbuba, Raya; Olivier, Martin; Cousineau, Benoit

    2012-01-01

    Leishmania is a mammalian parasite affecting over 12 million individuals worldwide. Current treatments are expensive, cause severe side effects, and emerging drug resistance has been reported. Vaccination is the most cost-effective means to control infectious disease but currently there is no vaccine available against Leishmaniasis. Lactococcus lactis is a non-pathogenic, non-colonizing Gram-positive lactic acid bacterium commonly used in the dairy industry. Recently, L. lactis was used to express biologically active molecules including vaccine antigens and cytokines. We report the generation of L. lactis strains expressing the protective Leishmania antigen, LACK, in the cytoplasm, secreted or anchored to the bacterial cell wall. L. lactis was also engineered to secrete biologically active single chain mouse IL-12. Subcutaneous immunization with live L. lactis expressing LACK anchored to the cell wall and L. lactis secreting IL-12 significantly delayed footpad swelling in Leishmania major infected BALB/c mice. The delay in footpad swelling correlated with a significant reduction of parasite burden in immunized animals compared to control groups. Immunization with these two L. lactis strains induced antigen-specific multifunctional T(H)1 CD4(+) and CD8(+) T cells and a systemic LACK-specific T(H)1 immune response. Further, protection in immunized animals correlated with a Leishmania-specific T(H)1 immune response post-challenge. L. lactis secreting mouse IL-12 was essential for directing immune responses to LACK towards a protective T(H)1 response. This report demonstrates the use of L. lactis as a live vaccine against L. major infection in BALB/c mice. The strains generated in this study provide the basis for the development of an inexpensive and safe vaccine against the human parasite Leishmania.

  9. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Application in the control of Listeria monocytogenes in fresh Minas-type goat cheese

    Directory of Open Access Journals (Sweden)

    Danielle N. Furtado

    2015-03-01

    Full Text Available Listeria monocytogenes is a pathogen frequently found in dairy products. Its control in fresh cheeses is difficult, due to the psychrotrophic properties and salt tolerance. Bacteriocinogenic lactic acid bacteria (LAB with proven in vitro antilisterial activity can be an innovative technological approach but their application needs to be evaluated by means of in situ tests. In this study, a novel bacteriocinogenic Lactococcus lactis strain (Lc. lactis DF4Mi, isolated from raw goat milk, was tested for control of growth of L. monocytogenes in artificially contaminated fresh Minas type goat cheese during storage under refrigeration. A bacteriostatic effect was achieved, and counts after 10 days were 3 log lower than in control cheeses with no added LAB. However, this effect did not differ significantly from that obtained with a non-bacteriocinogenic Lc. lactis strain. Addition of nisin (12.5 mg/kg caused a rapid decrease in the number of viable L. monocytogenes in the cheeses, suggesting that further studies with the purified bacteriocin DF4Mi may open new possibilities for this strain as biopreservative in dairy products.

  10. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Application in the control of Listeria monocytogenes in fresh Minas-type goat cheese.

    Science.gov (United States)

    Furtado, Danielle N; Todorov, Svetoslav D; Landgraf, Mariza; Destro, Maria T; Franco, Bernadette D G M

    2015-03-01

    Listeria monocytogenes is a pathogen frequently found in dairy products. Its control in fresh cheeses is difficult, due to the psychrotrophic properties and salt tolerance. Bacteriocinogenic lactic acid bacteria (LAB) with proven in vitro antilisterial activity can be an innovative technological approach but their application needs to be evaluated by means of in situ tests. In this study, a novel bacteriocinogenic Lactococcus lactis strain ( Lc . lactis DF4Mi), isolated from raw goat milk, was tested for control of growth of L. monocytogenes in artificially contaminated fresh Minas type goat cheese during storage under refrigeration. A bacteriostatic effect was achieved, and counts after 10 days were 3 log lower than in control cheeses with no added LAB. However, this effect did not differ significantly from that obtained with a non-bacteriocinogenic Lc. lactis strain. Addition of nisin (12.5 mg/kg) caused a rapid decrease in the number of viable L. monocytogenes in the cheeses, suggesting that further studies with the purified bacteriocin DF4Mi may open new possibilities for this strain as biopreservative in dairy products.

  11. CONTINUOUS MEASUREMENT OF THE CYTOPLASMIC PH IN LACTOCOCCUS-LACTIS WITH A FLUORESCENT PH INDICATOR

    NARCIS (Netherlands)

    MOLENAAR, D; ABEE, T; KONINGS, WN

    1991-01-01

    The cytoplasmic pH of Lactococcus lactis was studied with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5 (and-6)-carboxyfluorescein (BCECF). A novel method was applied for loading bacterial cells with BCECF, which consists of briefly treating a dense cell suspension with acid in the prese

  12. Physiological responses of Lactococcus lactis ML3 to alternating conditions of growth and starvation

    NARCIS (Netherlands)

    Kunji, E.R.S.; Ubbink, T.; Matin, A.; Poolman, B.; Konings, W.N.

    1993-01-01

    Lactococcus lactis species can survive periods of carbohydrate starvation for relatively long periods of time. In the first hours of starvation, however, the maximal glycolytic and arginine deiminase (ADI) pathway activities decline rapidly. The rate of decrease of the pathway activities diminishes

  13. Targeting diseases with genetically engineered Lactococcus lactis and its course towards medical translation

    NARCIS (Netherlands)

    Villatoro-Hernandez, Julio; Montes-de-Oca-Luna, Roberto; Kuipers, Oscar P.

    2011-01-01

    The use of the lactic acid bacterium Lactococcus lactis, primarily used in food fermentations, as therapeutic agent is no longer speculative but an imminent reality. After the successful completion of Phase I and II clinical trials in humans for the treatment of inflammatory bowel disease, an ongoin

  14. Quantitative physiology of Lactococcus lactis at extreme low-growth rates

    NARCIS (Netherlands)

    Ercan, O.; Smid, E.J.; Kleerebezem, M.

    2013-01-01

    This paper describes the metabolic adaptation of Lactococcus lactis during the transition from a growing to a non-growing state using retentostat cultivation. Under retentostat cultivation, the specific growth rate decreased from 0.025 h-1 to 0.0001 h-1 in 42 days, while doubling time increased to m

  15. Physiological and molecular adaptations of Lactococcus lactis to near-zero growth conditions

    NARCIS (Netherlands)

    Ercan, O.

    2014-01-01

    Lactococcus lactis is an important lactic acid bacteria (LAB) species that is used for the manufacture of dairy products, such as cheese, buttermilk, and other fermented products. The predominant function of this bacterium in dairy fermentation is the production of lactic acid, as its major fermenta

  16. Insertion-Sequence-Mediated Mutations Isolated During Adaptation to Growth and Starvation in Lactococcus lactis.

    NARCIS (Netherlands)

    Visser, de J.A.G.M.; Akkermans, A.D.L.; Hoekstra, R.F.; Vos, de W.M.

    2004-01-01

    We studied the activity of three multicopy insertion sequence (IS) elements in 12 populations of Lactococcus lactis IL1403 that evolved in the laboratory for 1000 generations under various environmental conditions (growth or starvation and shaken or stationary). Using RFLP analysis of single-clone r

  17. Systematic identification of tRNAome and its dynamics in Lactococcus lactis

    NARCIS (Netherlands)

    Puri, Pranav; Wetzel, Collin; Saffert, Paul; Gaston, Kirk W.; Russel, Susan P.; Cordero Varela, Juan A.; van der Vlies, Pieter; Zhang, Gong; Limbach, Patrick A.; Ignatova, Zoya; Poolman, Bert

    2014-01-01

    Transfer RNAs (tRNAs) through their abundance and modification pattern significantly influence protein translation. Here, we present a systematic analysis of the tRNAome of Lactococcus lactis. Using the next-generation sequencing approach, we identified 40 tRNAs which carry 16 different post-transcr

  18. Comparative analyses of prophage-like elements present in two Lactococcus lactis strains

    NARCIS (Netherlands)

    Ventura, Marco; Zomer, Aldert; Canchaya, Carlos; O'Connell-Motherway, Mary; Kuipers, Oscar; Turroni, Francesca; Ribbera, Angela; Foroni, Elena; Buist, Girbe; Wegmann, Udo; Shearman, Claire; Gasson, Michael J.; Fitzgerald, Gerald F.; Kok, Jan; van Sinderen, Douwe; O’Connell-Motherway, Mary

    2007-01-01

    In this study, we describe the genetic organizations of six and five apparent prophage-like elements present in the genomes of the Lactococcus lactis subsp. cremoris strains MG1363 and SK11, respectively. Phylogenetic investigation as well bioinformatic analyses indicates that all 11 prophages belon

  19. Kinetics and regulation of lactose transport and metabolism in Kluyveromyces lactis JA6.

    Science.gov (United States)

    Santos, A M; Silveira, W B; Fietto, L G; Brandão, R L; Castro, I M

    2014-07-01

    Kluyveromyces lactis strains are able to assimilate lactose. They have been used industrially to eliminate this sugar from cheese whey and in other industrial products. In this study, we investigated specific features and the kinetic parameters of the lactose transport system in K. lactis JA6. In lactose grown cells, lactose was transported by a system transport with a half-saturation constant (K s) of 1.49 ± 0.38 mM and a maximum velocity (V max) of 0.96 ± 0.12 mmol. (g dry weight)(-1) h(-1) for lactose. The transport system was constitutive and energy-dependent. Results obtained by different approaches showed that the lactose transport system was regulated by glucose at the transcriptional level and by glucose and other sugars at a post-translational level. In K. lactis JA6, galactose metabolization was under glucose control. These findings indicated that the regulation of lactose-galactose regulon in K. lactis was similar to the regulation of galactose regulon in Saccharomyces cerevisiae.

  20. Immunogenicity of a malaria parasite antigen displayed by Lactococcus lactis in oral immunisations

    NARCIS (Netherlands)

    Ramasamy, R; Yasawardena, S; Zomer, A; Venema, G; Kok, J; Leenhouts, K

    2006-01-01

    A putative protective protein from Plasmodium falciparum merozoites, MSA2, was expressed in two different ways on the cell surface of the Gram-positive food-grade bacterium, Lactococcus lactis. The first display format exploits an LPXTG-type anchoring motif of the lactococcal proteinase PrtP to cova

  1. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate

    DEFF Research Database (Denmark)

    Chen, Jun; Shen, Jing; Hellgren, Lars;

    2015-01-01

    Lactococcus lactis is essential for most cheese making, and this mesophilic bacterium has its growth optimum around 30 °C. We have, through adaptive evolution, isolated a mutant TM29 that grows well up to 39 °C, and continuous growth at 40 °C is possible if pre-incubated at a slightly lower...

  2. Construction of a food-grade multiple-copy integration system for Lactococcus lactis

    NARCIS (Netherlands)

    Leenhouts, K.; Bolhuis, A.; Venema, G.; Kok, J.

    A food-grade vector system was developed that allows stable integration of multiple plasmid copies in the chromosome of Lactococcus lactis. The vector consists of the plus origin of replication (Ori(+)) of the lactococcal plasmid pWV01, the sucrose genes of the lactic acid bacterium Pediococcus

  3. A possible contribution of mRNA secondary structure to translation initiation efficiency in Lactococcus lactis

    NARCIS (Netherlands)

    Guchte, Maarten van de; Lende, Ted van der; Kok, Jan; Venema, Gerard

    1991-01-01

    Gene expression signals derived from Lactococcus lactis were linked to lacZ-fused genes with different 5'-nucleotide sequences. Computer predictions of mRNA secondary structure were combined with lacZ expression studies to direct base-substitutions that could possibly influence gene expression. Muta

  4. Functional Analysis of Promoters in the Nisin Gene Cluster of Lactococcus lactis

    NARCIS (Netherlands)

    Ruyter, Pascalle G.G.A. de; Kuipers, Oscar P.; Beerthuyzen, Marke M.; Alen-Boerrigter, Ingrid van; Vos, Willem M. de

    1996-01-01

    The promoters in the nisin gene cluster nisABTCIPRKFEG of Lactococcus lactis were characterized by primer extension and transcriptional fusions to the Escherichia coli promoterless β-glucuronidase gene (gusA). Three promoters preceding the nisA, nisR, and nisF genes, which all give rise to gusA expr

  5. Rerouting Citrate Metabolism in Lactococcus lactis to Citrate-Driven Transamination

    NARCIS (Netherlands)

    Pudlik, Agata M.; Lolkema, Juke S.

    2012-01-01

    Oxaloacetate is an intermediate of the citrate fermentation pathway that accumulates in the cytoplasm of Lactococcus lactis ILCitM(pFL3) at a high concentration due to the inactivation of oxaloacetate decarboxylase. An excess of toxic oxaloacetate is excreted into the medium in exchange for citrate

  6. Lactococcus lactis Dihydroorotate Dehydrogenase A Mutants Reveal Important Facets of the Enzymatic Function

    DEFF Research Database (Denmark)

    Nørager, Sofie Charlotte; Arent, S; Björnberg, Olof

    2003-01-01

    and 1B, and class 2. This division corresponds to differences in cellular location and the nature of the electron acceptor. Herein we report a study of Lactococcus lactis DHODA, a representative of the class 1A enzymes. Based on the DHODA structure we selected seven residues that are highly conserved...

  7. A System To Generate Chromosomal Mutations in Lactococcus lactis Which Allows Fast Analysis of Targeted Genes

    NARCIS (Netherlands)

    Law, Jean; Buist, Girbe; Haandrikman, Alfred; Kok, Jan; Venema, Gerhardus; Leenhouts, Kees

    1995-01-01

    A system for generating chromosomal insertions in lactococci is described. It is based on the conditional replication of lactococcal pWV01-derived Ori+ RepA- vector pORI19, containing lacZα and the multiple cloning site of pUC19. Chromosomal AluI fragments of Lactococcus lactis were cloned in pORI19

  8. Supplementation with engineered Lactococcus lactis improves the folate status in deficient rats

    NARCIS (Netherlands)

    LeBlanc, J.G.; Sybesma, W.F.H.; Starrenburg, M.; Sesma, F.; Vos, de W.M.; Giori, de G.S.; Hugenholtz, J.

    2010-01-01

    Objective: The aim of this study was to establish the bioavailability of different folates produced by engineered Lactococcus lactis strains using a rodent depletion-repletion bioassay. Methods: Rats were fed a folate-deficient diet, which produces a reversible subclinical folate deficiency,

  9. Heterologous expression of the Bacillus subtilis (natto) alanine dehydrogenase in Escherichia coli and Lactococcus lactis.

    Science.gov (United States)

    Ye, Wei; Huo, Guicheng; Chen, Junliang; Liu, Fei; Yin, Jingyuan; Yang, Lijie; Ma, Xiaolong

    2010-05-30

    The major objective of the present study is to change the alanine production of Lactic acid bacteria by expression of Bacillus subtilis (natto) alanine dehydrogenase (AlaDH), the gene that is not present in Lactic acid. B. subtilis AlaDH gene (ald) was cloned into a pGEX6p-1 and expressed in E. coli JM109. Its enzyme activity was 48.3U/mg at 30 degrees C and 45.2U/mg at 42 degrees C. This ald gene was then cloned into a vector pNZ8148 to generate a vector pNZ8148/ald. The same ald gene was placed downstream of the ldh promoter from Streptococcus thermophilus to generate pNZ273/ldhp/ald. The pNZ8148/ald and pNZ273/ldhp/ald were introduced separately in Lactococcus lactis NZ9000. As a result of over-expressed ald, the production of alanine detected by HPLC in L. lactis NZ9000 carrying pNZ273/ldhp/ald reached 52mug/ml, an approximately 26-fold increase compared to the parent strain L. lactis NZ9000, but not in L. lactis NZ9000 carrying pNZ8148/ald. This study would help strain improvement to be used in dairy fermentation for developing healthy yogurts with sweet taste or other fermented dairy foods. Copyright 2009 Elsevier GmbH. All rights reserved.

  10. CONTINUOUS MEASUREMENT OF THE CYTOPLASMIC PH IN LACTOCOCCUS-LACTIS WITH A FLUORESCENT PH INDICATOR

    NARCIS (Netherlands)

    MOLENAAR, D; ABEE, T; KONINGS, WN

    1991-01-01

    The cytoplasmic pH of Lactococcus lactis was studied with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5 (and-6)-carboxyfluorescein (BCECF). A novel method was applied for loading bacterial cells with BCECF, which consists of briefly treating a dense cell suspension with acid in the

  11. Development, molecular characterization and exploitation of the nisin controlled expression system in Lactococcus lactis.

    NARCIS (Netherlands)

    Ruyter, de P.G.G.A.

    1998-01-01

    Lactic acid bacteria are gram-positive bacteria that are widely used in a variety of dairy fermentation processes. Notably, strains of the lactic acid starter bacterium Lactococcus lactis are of great economic importance because of their world-wide use in cheese making. The characteristic aroma, fla

  12. Lactococcus lactis YfiA is necessary and sufficient for ribosome dimerization

    NARCIS (Netherlands)

    Puri, Pranav; Eckhardt, Thomas H; Franken, Linda E; Fusetti, Fabrizia; Stuart, Marc C A; Boekema, Egbert J; Kuipers, Oscar P; Kok, Jan; Poolman, Berend

    2014-01-01

    Dimerization and inactivation of ribosomes in Escherichia coli is a two-step process that involves the binding of ribosome modulation factor (RMF) and hibernation promotion factor (HPF). Lactococcus lactisMG1363 expresses a protein, YfiA(Ll), which associates with ribosomes in the stationary phase o

  13. The major facilitator superfamily transporter Knq1p modulates boron homeostasis in Kluyveromyces lactis.

    Science.gov (United States)

    Svrbicka, Alexandra; Toth Hervay, Nora; Gbelska, Yvetta

    2016-03-01

    Boron is an essential micronutrient for living cells, yet its excess causes toxicity. To date, the mechanisms of boron toxicity are poorly understood. Recently, the ScATR1 gene has been identified encoding the main boron efflux pump in Saccharomyces cerevisiae. In this study, we analyzed the ScATR1 ortholog in Kluyveromyces lactis--the KNQ1 gene, to understand whether it participates in boron stress tolerance. We found that the KNQ1 gene, encoding a permease belonging to the major facilitator superfamily, is required for K. lactis boron tolerance. Deletion of the KNQ1 gene led to boron sensitivity and its overexpression increased K. lactis boron tolerance. The KNQ1 expression was induced by boron and the intracellular boron concentration was controlled by Knq1p. The KNQ1 promoter contains two putative binding motifs for the AP-1-like transcription factor KlYap1p playing a central role in oxidative stress defense. Our results indicate that the induction of the KNQ1 expression requires the presence of KlYap1p and that Knq1p like its ortholog ScAtr1p in S. cerevisiae functions as a boron efflux pump providing boron resistance in K. lactis.

  14. Topology of LcnD, a protein implicated in the transport of bacteriocins from Lactococcus lactis

    NARCIS (Netherlands)

    Franke, Christian M.; Leenhouts, Kees J.; Haandrikman, Alfred J.; Kok, Jan; Venema, Gerard; Venema, Koen

    1996-01-01

    Four in-frame translational fusions to both the reporter proteins beta-galactosidase and alkaline phosphatase support a topological model of LcnD, a protein implicated in the transport of several bacteriocins from Lactococcus lactis, in which the N-terminal part is located intracellularly and one tr

  15. Lactococcus lactis Uses MscL as Its Principal Mechanosensitive Channel

    NARCIS (Netherlands)

    Folgering, Joost H.A.; Moe, Paul C.; Schuurman-Wolters, Gea K.; Blount, Paul; Poolman, Bert

    2005-01-01

    The functions of the mechanosensitive channels from Lactococcus lactis were determined by biochemical, physiological, and electrophysiological methods. Patchclamp studies showed that the genes yncB and mscL encode MscS and MscL-like channels, respectively, when expressed in Escherichia coli or if th

  16. An ABC-type multidrug transporter of Lactococcus lactis possesses an exceptionally broad substrate specificity

    NARCIS (Netherlands)

    Poelarends, GJ; Mazurkiewicz, P; Putman, M; Cool, RH; van Veen, HW; Konings, WN

    2000-01-01

    LmrA is a 590-amino acid membrane protein which confers multidrug resistance on Lactococcus lactis cells by extruding amphiphilic compounds from the inner leaflet of the cytoplasmic membrane at the expense of ATP hydrolysis. Its structural and functional characteristics place it in the

  17. Properties of Nisin Z and Distribution of Its Gene, nisZ, in Lactococcus lactis

    NARCIS (Netherlands)

    Vos, Willem M. de; Mulders, John W.M.; Siezen, Roland J.; Hugenholtz, Jeroen; Kuipers, Oscar P.

    1993-01-01

    Two natural variants of the lantibiotic nisin that are produced by Lactococcus lactis are known. They have a similar structure but differ in a single amino acid residue at position 27: histidine in nisin A and asparagine in nisin Z. The nisin variants were purified to apparent homogeneity, and their

  18. Carbon catabolite repression and global control of the carbohydrate metabolism in Lactococcus lactis.

    NARCIS (Netherlands)

    Luesink, E.J.

    1998-01-01

    In view of the economic importance of fermented dairy products considerable scientific attention has been given to various steps of fermentation processes, including the L-lactate formation of lactic acid bacteria (de Vos, 1996). In particular, the carbohydrate metabolism of L. lactis has been the s

  19. Sec-mediated secretion of bacteriocin enterocin P by Lactococcus lactis

    NARCIS (Netherlands)

    Herranz, C; Driessen, AJM

    2005-01-01

    Most lactic acid bacterium bacteriocins utilize specific leader peptides and dedicated machineries for secretion. In contrast, the enterococcal bacteriocin enterocin P (EntP) contains a typical signal peptide that directs its secretion when heterologously expressed in Lactococcus lactis. Signal pept

  20. Relationships between MDR proteins, bacteriocin production and proteolysis in Lactococcus lactis

    NARCIS (Netherlands)

    Gajic, Olivera

    2003-01-01

    The Gram-positive lactic acid bacterium Lactococcus lactis can harbour a wide variety of circular extrachromosomal DNA molecules, so-called plasmids. Many of the traits that make them useful for manufacturing of fermented food products (e.g. bacteriophage resistance, bacteriocin and proteinase produ

  1. Topology of a type I secretion system for bacteriocins of Lactococcus lactis

    NARCIS (Netherlands)

    Franke, Christian Marc

    1998-01-01

    This thesis describes the analysis of a number of aspects of the secretion and muturation machinery of the bacteriocin lactococcin A (LcnA) from Lactococcus lactis, whick is initially synthesized as a precursor protein (preLcnA), containing an N-terminal extension of 20 amino acids (the leader)....

  2. Topology of LcnD, a protein implicated in the transport of bacteriocins from Lactococcus lactis

    NARCIS (Netherlands)

    Franke, Christian M.; Leenhouts, Kees J.; Haandrikman, Alfred J.; Kok, Jan; Venema, Gerard; Venema, Koen

    Four in-frame translational fusions to both the reporter proteins beta-galactosidase and alkaline phosphatase support a topological model of LcnD, a protein implicated in the transport of several bacteriocins from Lactococcus lactis, in which the N-terminal part is located intracellularly and one

  3. Development, molecular characterisation and exploitation of the nisin controlled expression system in Lactococcus lactis

    NARCIS (Netherlands)

    Ruyter, de P.G.G.A.

    1998-01-01

    Lactic acid bacteria are gram-positive bacteria that are widely used in a variety of dairy fermentation processes. Notably, strains of the lactic acid starter bacterium Lactococcus lactis are of great economic importance because of their world-wide use in cheese making.

  4. Dependence of Streptococcus lactis Phosphate Transport on Internal Phosphate Concentration and Internal pH

    NARCIS (Netherlands)

    POOLMAN, B; NIJSSEN, RMJ; KONINGS, WN

    1987-01-01

    Uptake of phosphate by Streptococcus lactis ML3 proceeds in the absence of a proton motive force, but requires the synthesis of ATP by either arginine or lactose metabolism. The appearance of free Pi internally in arginine-metabolizing cells corresponded quantitatively with the disappearance of extr

  5. Changes in Glycolytic Activity of Lactococcus lactis Induced by Low Temperature

    NARCIS (Netherlands)

    Wouters, Jeroen A.; Kamphuis, Henrike H.; Hugenholtz, Jeroen; Kuipers, Oscar P.; Vos, Willem M. de; Abee, Tjakko

    2000-01-01

    The effects of low-temperature stress on the glycolytic activity of the lactic acid bacterium Lactococcus lactis were studied. The maximal glycolytic activity measured at 30°C increased approximately 2.5-fold following a shift from 30 to 10°C for 4 h in a process that required protein synthesis.

  6. Changes in glycolytic activity of Lactococcus lactis induced by low temperature

    NARCIS (Netherlands)

    Wouters, J.A.; Kamphuis, H.H.; Hugenholtz, J.; Kuipers, O.P.; Vos, de W.M.; Abee, T.

    2000-01-01

    The effects of low-temperature stress on the glycolytic activity of the lactic acid bacterium Lactococcus lactis were studied. The maximal glycolytic activity measured at 30°C increased approximately 2.5-fold following a shift from 30 to 10°C for 4 h in a process that required protein synthesis.

  7. The cmbT gene encodes a novel major facilitator multidrug resistance transporter in Lactococcus lactis.

    Science.gov (United States)

    Filipic, Brankica; Golic, Natasa; Jovcic, Branko; Tolinacki, Maja; Bay, Denice C; Turner, Raymond J; Antic-Stankovic, Jelena; Kojic, Milan; Topisirovic, Ljubisa

    2013-01-01

    Functional characterization of the multidrug resistance CmbT transporter was performed in Lactococcus lactis. The cmbT gene is predicted to encode an efflux protein homologous to the multidrug resistance major facilitator superfamily. The cmbT gene (1377 bp) was cloned and overexpressed in L. lactis NZ9000. Results from cell growth studies revealed that the CmbT protein has an effect on host cell resistance to lincomycin, cholate, sulbactam, ethidium bromide, Hoechst 33342, sulfadiazine, streptomycin, rifampicin, puromycin and sulfametoxazole. Moreover, in vivo transport assays showed that overexpressed CmbT-mediated extrusion of ethidium bromide and Hoechst 33342 was higher than in the control L. lactis NZ9000 strain. CmbT-mediated extrusion of Hoechst 33342 was inhibited by the ionophores nigericin and valinomycin known to dissipate proton motive force. This indicates that CmbT-mediated extrusion is based on a drug-proton antiport mechanism. Taking together results obtained in this study, it can be concluded that CmbT is a novel major facilitator multidrug resistance transporter candidate in L. lactis, with a possible signaling role in sulfur metabolism.

  8. A Case of Infective Endocarditis and Pulmonary Septic Emboli Caused by Lactococcus lactis

    Science.gov (United States)

    Habib, Adib; Asli, Nazih; Geffen, Yuval; Miron, Dan; Elias, Nael

    2016-01-01

    Infective endocarditis is a rare condition in children with normal hearts. We present here a case of previously healthy eleven-year-old girl with infective endocarditis and pulmonary septic emboli caused by a very rare bacterial etiology (Lactococcus lactis). Identification of this pathogen was only made by polymerase chain reaction.

  9. Transcriptome analysis of the Lactococcus lactis ArgR and AhrC regulons

    DEFF Research Database (Denmark)

    Larsen, Rasmus; van Hijum, Sacha A. F. T.; Martinussen, Jan;

    2008-01-01

    In previous studies, we have shown that direct protein-protein. interaction between the two regulators ArgR and AhrC in Lactococcus lactis is required for arginine-dependent repression of the biosynthetic argC promoter and the activation of the catabolic arcA promoter. Here, we establish the global...

  10. Genome Sequences of Lactococcus lactis MG1363 (Revised) and NZ9000 and Comparative Physiological Studies

    NARCIS (Netherlands)

    Linares, D.M.; Kok, J.; Poolman, B.

    2010-01-01

    Lactococcus lactis NZ9000 and its parent MG1363 are the most commonly used lactic acid bacteria for expression and physiological studies. We noted unexpected but significant differences in the growth behaviors of both strains. We sequenced the entire genomes of the original NZ9000 and MG1363 strains

  11. Microbial domestication signatures of Lactococcus lactis can be reproduced by experimental evolution

    NARCIS (Netherlands)

    Bachmann, H.; Starrenburg, M.J.C.; Molenaar, D.; Kleerebezem, M.; Hylckama Vlieg, van J.E.T.

    2012-01-01

    Experimental evolution is a powerful approach to unravel how selective forces shape microbial genotypes and phenotypes. To this date, the available examples focus on the adaptation to conditions specific to the laboratory. The lactic acid bacterium Lactococcus lactis naturally occurs on plants and i

  12. CONTINUOUS MEASUREMENT OF THE CYTOPLASMIC PH IN LACTOCOCCUS-LACTIS WITH A FLUORESCENT PH INDICATOR

    NARCIS (Netherlands)

    MOLENAAR, D; ABEE, T; KONINGS, WN

    1991-01-01

    The cytoplasmic pH of Lactococcus lactis was studied with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5 (and-6)-carboxyfluorescein (BCECF). A novel method was applied for loading bacterial cells with BCECF, which consists of briefly treating a dense cell suspension with acid in the prese

  13. Characterization of the Lactococcus lactis lactose genes and regulation of their expression.

    NARCIS (Netherlands)

    Rooijen, van R.J.

    1993-01-01

    An important trait of the lactic acid bacterium Lactococcus lactis , that is used in industrial dairy fermentations, is the conversion of lactose into lactic acid. The enzymatic steps involved in the breakdown of lactose, that is transported into the cell via a phosphoenolpyruvate-dependent lactose

  14. Beneficial effect of Lactococcus lactis NCC 2287 in a murine model of eosinophilic esophagitis.

    Science.gov (United States)

    Holvoet, S; Doucet-Ladevèze, R; Perrot, M; Barretto, C; Nutten, S; Blanchard, C

    2016-12-01

    Eosinophilic esophagitis (EoE) is a severe inflammatory disease of the esophagus which is characterized histologically by an eosinophilic infiltration into the esophageal tissue. The efficacy of probiotics in the context of atopic diseases has been well investigated but, to date, there has been no study which has evaluated probiotic effects on EoE inflammation. This study sought to identify a probiotic which improves esophageal inflammation in experimental EoE. Two candidate probiotics, Lactococcus lactis NCC 2287 and Bifidobacterium lactis NCC 2818, were tested in a murine model of EoE elicited by epicutaneous sensitization with Aspergillus fumigatus protein extract. Administration of bacterial strains in drinking water was used, respectively, as a preventive or treatment measure, or continuously throughout the study. Inflammatory parameters were assessed in the esophagus, skin, and lungs after allergen challenge. In this EoE model, supplementation with L. lactis NCC 2287 significantly decreased esophageal and bronchoalveolar eosinophilia but only when given as a therapeutic treatment. No significant effect on eosinophilia was observed when NCC 2287 was given as a preventive or a continuous intervention. NCC 2287 supplementation had no significant effect on immunoglobulin levels, skin symptom scores, or on transepidermal water loss. Supplementation with another probiotic, B. lactis NCC 2818, had no significant effect on esophageal eosinophilia. We identified a L. lactis strain, able to attenuate esophageal eosinophilic inflammation in a preclinical model of EoE. This effect is strain specific and depends on the timing and duration of bacterial supplementation. Confirmation of these observations in human clinical trials is warranted. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. The impact of different starter cultures on fat content, pН and SH dynamics in white brined cheese production

    Directory of Open Access Journals (Sweden)

    B. Makarijoski

    2016-01-01

    Full Text Available White brined cheese is a specific dairy product for Balkan Peninsula countries, Mediterranean, North Africa, Eastern Europe and some parts of Asia. The survey was conducted in 2016 at a dairy industry laboratory in R. of Macedonia. In this research work the influence of three different starter cultures of three white brined cheese variants (A, B, C has been examined regarding the fat content dynamics. The starter culture in variant А (SMCH-5 contained following bacteria strains: Lb. bulgaricus, Str. thermophilus and Lb. acidophilus. In the variant B (Choozit Feta A the follow bacteria strains were included: Lac. lactis ssp. lactis, Lac. lactis ssp. cremoris, Str. thermophilus, Lb. bulgaricus and Lb. helveticus. The variant C (MOTC 092 EE was a combination of the strains: Lac. lactis ssp. lactis, Str. thermophilus, Lb. bulgaricus, Lb. helveticus and Lb. casei. The impact of the above mentioned three different starter cultures was determined over the fat content, рН and SH during the process of ripening of the white brined cheese.

  16. Reconstitution of the Leucine Transport System of Lactococcus lactis into Liposomes Composed of Membrane-Spanning Lipids from Sulfolobus acidocaldarius

    NARCIS (Netherlands)

    in t Veld, Geertruida; Elferink, Maria; Driessen, Arnold J.M.; Konings, Wilhelmus

    1992-01-01

    The effect of bipolar tetraether lipids, extracted from the thermophilic archaebacterium Sulfolobus acidocaldarius, on the branched-chain amino acid transport system of the mesophilic bacterium Lactococcus lactis was investigated. Liposomes were prepared from mixtures of monolayer lipids and the

  17. Powerful methods to establish chromosomal markers in Lactococcus lactis: an analysis of pyrimidine salvage pathway mutants obtained by positive selections

    DEFF Research Database (Denmark)

    Martinussen, Jan; Hammer, Karin

    1995-01-01

    phosphoribosyltransferase (upp), uridindcytidine kinase (udk), pyrimidine nucleoside phosphorylase (pdp), cytidine/deoxycytidine deaminase (dd), thymidine kinase (tdk) and purine nucleoride phosphorylase (pup). Based on an analysis of the mutants obtained, the pathways by which L. lactis metabolizes uracil...

  18. Dose-response effect of Bifidobacterium lactis HN019 on whole gut transit time and functional gastrointestinal symptoms in adults

    OpenAIRE

    2011-01-01

    Objective. To assess the impact of Bifidobacterium lactis HN019 supplementation on whole gut transit time (WGTT) and frequency of functional gastrointestinal (GI) symptoms in adults. Material and methods. We randomized 100 subjects (mean age: 44 years; 64% female) with functional GI symptoms to consume a proprietary probiotic strain, B. lactis HN019 (Fonterra Research Centre, Palmerston North, New Zealand), at daily doses of 17.2 billion colony forming units (CFU) (high dose; n = 33), 1.8 bil...

  19. Lacticin LC14, a new bacteriocin produced by Lactococcus lactis BMG6.14: isolation, purification and partial characterization.

    Science.gov (United States)

    Lasta, Samar; Ouzari, Hadda; Andreotti, Nicolas; Fajloun, Ziad; Mansuelle, Pascal; Boudabous, Abdellatif; Sampieri, Francois; Sabatier, Jean Marc

    2012-08-01

    A new bacteriocin, lacticin LC14, produced by Lactococcus lactis BMG6.14, was isolated and characterized. It was purified to homogeneity from overnight broth culture by ammonium sulfate precipitation, Sep-Pak chromatography, and two steps of reversed-phase HPLC. Lacticin LC14 showed bactericidal-type antimicrobial activity against several lactic acid bacteria and pathogenic strains including Listeria monocytogenes. It was inactivated by proteinase K and pronase E, but was resistant to papain, lysozyme, lipase and catalase. Lacticin LC14 was heat resistant, stable over a wide range of pH (2-10) and after treatment by solvents and detergents. Its N-terminal end was found unreactive towards Edman sequencing. Based on MALDI-TOF mass spectrometry, its molecular mass was 3333.7 Da. LC14 amino acid composition revealed a high proportion of hydrophobic residues, but no modified ones. LC14 may be able to challenge other well known other bacteriocins in probiotic and therapeutic applications.

  20. Biogenic amine production by Lactococcus lactis subsp. cremoris strains in the model system of Dutch-type cheese.

    Science.gov (United States)

    Flasarová, Radka; Pachlová, Vendula; Buňková, Leona; Menšíková, Anna; Georgová, Nikola; Dráb, Vladimír; Buňka, František

    2016-03-01

    The aim of this study was to compare the biogenic amine production of two starter strains of Lactococcus lactis subsp. cremoris (strains from the Culture Collection of Dairy Microorganisms - CCDM 824 and CCDM 946) with decarboxylase positive activity in a model system of Dutch-type cheese during a 90-day ripening period at 10°C. During ripening, biogenic amine and free amino acid content, microbiological characteristics and proximate chemical properties were observed. By the end of the ripening period, the putrescine content in both samples with the addition of the biogenic amine producing strain almost evened out and the concentration of putrescine was >800mg/kg. The amount of tyramine in the cheeses with the addition of the strain of CCDM 824 approached the limit of 400mg/kg by the end of ripening. In the cheeses with the addition of the strain of CCDM 946 it even exceeded 500mg/kg. In the control samples, the amount of biogenic amines was insignificant.

  1. Molecular and functional analyses of the metC gene of Lactococcus lactis, encoding cystathionine beta-lyase.

    Science.gov (United States)

    Fernández, M; van Doesburg, W; Rutten, G A; Marugg, J D; Alting, A C; van Kranenburg, R; Kuipers, O P

    2000-01-01

    The enzymatic degradation of amino acids in cheese is believed to generate aroma compounds and therefore to be essential for flavor development. Cystathionine beta-lyase (CBL) can convert cystathionine to homocysteine but is also able to catalyze an alpha, gamma elimination. With methionine as a substrate, it produces volatile sulfur compounds which are important for flavor formation in Gouda cheese. The metC gene, which encodes CBL, was cloned from the Lactococcus lactis model strain MG1363 and from strain B78, isolated from a cheese starter culture and known to have a high capacity to produce volatile compounds. The metC gene was found to be cotranscribed with a downstream cysK gene, which encodes a putative cysteine synthase. The MetC proteins of both strains were overproduced in strain MG1363 with the NICE (nisin-controlled expression) system, resulting in a >25-fold increase in cystathionine lyase activity. A disruption of the metC gene was achieved in strain MG1363. Determination of enzymatic activities in the overproducing and knockout strains revealed that MetC is essential for the degradation of cystathionine but that at least one lyase other than CBL contributes to methionine degradation via alpha, gamma elimination to form volatile aroma compounds.

  2. Clinical trial: multispecies probiotic supplementation alleviates the symptoms of IBS and stabilises intestinal microbiota

    NARCIS (Netherlands)

    Kajander, K.; Myllyluoma, E.; Rajlic-Stojanovic, M.; Kyronpalo, S.S.; Rasmussen, M.; Jarvenpaa, S.S.; Zoetendal, E.G.; Vos, de W.M.; Vapaatalo, H.; Korpela, R.

    2008-01-01

    Aim To investigate the effects of multispecies probiotic supplementation (Lactobacillus rhamnosus GG, L. rhamnosus Lc705, Propionibacterium freudenreichii ssp. shermanii JS and Bifidobacterium animalis ssp. lactis Bb12) on abdominal symptoms, quality of life, intestinal microbiota and inflammatory m

  3. The impact of selected strains of probiotic bacteria on metabolite formation in set yoghurt

    NARCIS (Netherlands)

    Settachaimongkon, S.; Nout, M.J.R.; Antunes Fernandes, E.C.; Hooijdonk, van A.C.M.; Zwietering, M.H.; Smid, E.J.; Valenberg, van H.J.F.

    2014-01-01

    The influence of Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB12 in cofermentation with traditional starters on metabolite formation in set yoghurt was evaluated. Microbial activity during fermentation and refrigerated storage was investigated by monitoring bacterial popul

  4. The impact of selected strains of probiotic bacteria on metabolite formation in set yoghurt

    NARCIS (Netherlands)

    Settachaimongkon, S.; Nout, M.J.R.; Antunes Fernandes, E.C.; Hooijdonk, van A.C.M.; Zwietering, M.H.; Smid, E.J.; Valenberg, van H.J.F.

    2014-01-01

    The influence of Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB12 in cofermentation with traditional starters on metabolite formation in set yoghurt was evaluated. Microbial activity during fermentation and refrigerated storage was investigated by monitoring bacterial popul

  5. AcmD, a homolog of the major autolysin AcmA of Lactococcus lactis, binds to the cell wall and contributes to cell separation and autolysis.

    Directory of Open Access Journals (Sweden)

    Ganesh Ram R Visweswaran

    Full Text Available Lactococcus lactis expresses the homologous glucosaminidases AcmB, AcmC, AcmA and AcmD. The latter two have three C-terminal LysM repeats for peptidoglycan binding. AcmD has much shorter intervening sequences separating the LysM repeats and a lower iso-electric point (4.3 than AcmA (10.3. Under standard laboratory conditions AcmD was mainly secreted into the culture supernatant. An L. lactis acmAacmD double mutant formed longer chains than the acmA single mutant, indicating that AcmD contributes to cell separation. This phenotype could be complemented by plasmid-encoded expression of AcmD in the double mutant. No clear difference in cellular lysis and protein secretion was observed between both mutants. Nevertheless, overexpression of AcmD resulted in increased autolysis when AcmA was present (as in the wild type strain or when AcmA was added to the culture medium of an AcmA-minus strain. Possibly, AcmD is mainly active within the cell wall, at places where proper conditions are present for its binding and catalytic activity. Various fusion proteins carrying either the three LysM repeats of AcmA or AcmD were used to study and compare their cell wall binding characteristics. Whereas binding of the LysM domain of AcmA took place at pHs ranging from 4 to 8, LysM domain of AcmD seems to bind strongest at pH 4.

  6. Nucleotide Sequence and Analysis of an orotate transporter-containing plasmid isolated from the Lactococcus lactis ssp. lactis biovar diacetylactis strain DB0410

    DEFF Research Database (Denmark)

    Defoor, Els Marie Celine; Martinussen, Jan

    determined. Fifteen open reading frames (ORFs) were encountered of which three insertion-sequence (IS) elements identified as two IS946 and one IS982. Two ORFs are incomplete due to the insertion of an IS element in their carboxy terminal end. Homologs for four ORFs were found on the IL1403 sequence: the cop...... and molecular cloning, we identified the open reading frames on pDBORO necessary for the utilization of orotate as the sole pyrimidine source. Surprisingly, homologs are found on the Lactococcus lactis IL1403 and MG1363 chromosomes despite the fact that they are resistant towards fluoroorotate....

  7. Purification and Characterization of a Bacteriocin Produced by Lactobacillus lactis Isolated from Marine Environment

    Directory of Open Access Journals (Sweden)

    P. Manivasagan

    2010-03-01

    Full Text Available Bacteriocin producing Lactobacillus lactis strain isolated from marine environment, showed broadrange of antibacterial activity against some major food borne pathogens. Maximum bacteriocin production wasobserved at 30°C , pH 6.0 and 1.5% sodium chloride solution. In addition of enzymes, "-amylase, DNase,RNase and lipase were slightly positive effect bacteriocin production. Proteinase K and pepsin were stronglyinhibited bacteriocin production. Among detergents, Sodium dodecyl sulphate (SDS, Tween 80 and TritoneX-100 stimulated bacteriocin production and strongly inhibited by EDTA and urea. The bacteriocin has purifiedby ammonium sulphate precipitate and ion exchange (DEAE cellulose chromatography. Biochemically it waspure protein moiety and the molecular weight was 94 kDa. The study revealed the possibility of usingbacteriocin as a food preservative and the L. lactis strain as probiotic.

  8. Analysis of heat shock gene expression in Lactococcus lactis MG1363

    DEFF Research Database (Denmark)

    Arnau, José; Sørensen, Kim; Appel, Karen Fuglede

    1996-01-01

    The induction of the heat shock response in Lactococcus lactis subsp. cremoris strain MG1363 was analysed at the RNA level using a novel RNA isolation procedure to prevent degradation. Cloning of the dnaJ and groEL homologous was carried out. Nothern blot analysis showed a similar induction pattern......, although maximum induction was observed earlier for orf1 and grpE. Novel transcript sizes were detected in heat-shocked cells. The induction kinetics observed for ftsH suggested a different regulation for this gene. Experimental evidence for a prenounced transcriptional regulation being involved...... in the heat shock response in L. lactis MG1363 is presented. A gene located downstream of the dnaK operon in strain MG1363, named orf4, was shown not to be regulated by heat shock....

  9. Biosorption of silver cations onto Lactococcus lactis and Lactobacillus casei isolated from dairy products

    Science.gov (United States)

    Milanowski, Maciej; Pomastowski, Paweł; Railean-Plugaru, Viorica; Rafińska, Katarzyna; Ligor, Tomasz; Buszewski, Bogusław

    2017-01-01

    The current work deals with the phenomenon of silver cations uptake by two kinds of bacteria isolated from dairy products. The mechanism of sorption of silver cations by Lactococcus lactis and Lactobacillus casei bacteria was investigated. Inductively coupled plasma–mass spectrometry (ICP-MS) was used for determination of silver concentration sorbed by bacteria. Analysis of charge distribution was conducted by diffraction light scattering method. Changes in the ultrastructure of Lactococcus lactis and Lactobacillus casei cells after treatment with silver cations were investigated using transmission electron microscopy observation. Molecular spectroscopy methods, namely Fourier transform-infrared spectroscopy (FT-IR) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) were employed for description of the sorption mechanism. Moreover, an analysis of volatile organic compounds (VOCs) extracted from bacterial cells was performed. PMID:28362838

  10. The pyrimidine operon pyrRPB-carA from Lactococcus lactis

    DEFF Research Database (Denmark)

    Martinussen, Jan; Schallert, J.; Andersen, Birgit;

    2001-01-01

    The four genes pyrR, pyrP, pyrB, and carA were found to constitute an operon in Lactococcus lactis subsp, lactis MG1363. The functions of the different genes were established by mutational analysis. The first gene in the operon is the pyrimidine regulatory gene, pyrR, which is responsible...... for the regulation of the expression of the pyrimidine biosynthetic genes leading to UMP formation. The second gene encodes a membrane-bound high-affinity uracil permease, required for utilization of exogenous uracil. The last two genes in the operon, pyrB and carA, encode pyrimidine biosynthetic enzymes; aspartate....... The expression of the pyrimidine biosynthetic genes including the pyrRPB-carA operon is subject to control at the transcriptional level, most probably by an attenuator mechanism in which PyrR acts as the regulatory protein....

  11. The Pasteur effect and catabolite repression in an oxidative yeast, Kluyveromyces lactis.

    Science.gov (United States)

    Royt, P W; MacQuillan, A M

    1979-01-01

    The presence of the Pasteur effect in Kluyveromyces lactis grown in glucose was shown by azide-stimulated glucose fermentation. Extracts from these cells contained ATP-sensitive phosphofructokinase activity. Cells grown on succinate oxidized glucose slowly at first without azide-stimulated rates of fermentation. Phosphofructokinase in these cells was ATP-insensitive. The activity of NAD+-isocitrate dehydrogenase in cell extracts did not require AMP activation. These results suggested the presence of a Pasteur effect in glucose-grown but not in succinate-grown K. lactis, mediated by (a) ATP inhibition of phosphofructokinase (b) possibly via feedback control of glucose transport, but not by AMP activation of isocitrate dehydrogenase. Azide inhibition of the Pasteur effect during growth of the cells did not lead to catabolite repression of respiratory activity. The results therefore suggest that the Pasteur effect does not inhibit the development of a Crabtree effect in oxidative yeasts.

  12. BIOCHEMICAL CHARACTERISTICS OF LACTIC ACID PRODUCING BACTERIA AND PREPARATION OF CAMEL MILK CHEESE BY USING STARTER CULTURE

    OpenAIRE

    T. Ahmed and R. Kanwal

    2004-01-01

    Lactic acid bacteria (LAB) were isolated from camel milk by culturing the milk on specific media and pure culture was obtained by sub-culturing. Purification of culture was confirmed by Gram’s staining and identified by different biochemical tests. Camel milk contained lactic acid producing bacteria like Streptococci such as S. cremoris and S. lactis and Lactobacilli such as L. acidophilus. L. acidophilus grew more rapidly in camel milk than others as its growth was supported by camel milk...

  13. Development, molecular characterization and exploitation of the nisin controlled expression system in Lactococcus lactis.

    OpenAIRE

    Ruyter, de, D.J.

    1998-01-01

    Lactic acid bacteria are gram-positive bacteria that are widely used in a variety of dairy fermentation processes. Notably, strains of the lactic acid starter bacterium Lactococcus lactis are of great economic importance because of their world-wide use in cheese making. The characteristic aroma, flavor and texture of cheese develops during ripening of the cheese curd through the action of numerous enzymes derived from the cheese milk, the coagulant, and the starter and non-starter bacteria. R...

  14. Characterization of the Lactococcus lactis lactose genes and regulation of their expression.

    OpenAIRE

    Rooijen, van, J.

    1993-01-01

    An important trait of the lactic acid bacterium Lactococcus lactis , that is used in industrial dairy fermentations, is the conversion of lactose into lactic acid. The enzymatic steps involved in the breakdown of lactose, that is transported into the cell via a phosphoenolpyruvate-dependent lactose phosphotransferase system (PEP-PTS lac), have been well established (Fig. 1). However, except for the molecular cloning and characterization of the plasmid-located phospho-B-galactosidase gene (Boi...

  15. Milk fermentation by Lactococcus lactis with modified proteolytic systems to accumulate potentially bio-active peptides

    OpenAIRE

    Algaron, Florence; Miranda, Guy; Le Bars, Dominique; Monnet, Véronique

    2004-01-01

    International audience; The proteolytic system of lactic acid bacteria has been characterised in detail and numerous modified strains with null or increased specific proteolytic activities have been constructed or identified among natural strains. Based on this knowledge, our objective was to ferment milk with modified strains and produce mixtures of peptides with specific features corresponding to potential bio-activities. We used a collection of Lactococcus lactis negative mutants for pepti...

  16. In vivo imaging of Lactococcus lactis, Lactobacillus plantarum and Escherichiacoli expressing infrared fluorescent protein in mice

    OpenAIRE

    Berlec, Aleš; Štrukelj, Borut; Završnik, Janja; Turk, Boris; Butinar, Miha

    2016-01-01

    Background In vivo imaging of orally administered lactic acid bacteria (LAB) and commensal bacteria in mice is shown to provide information on the spatial and temporal distribution of bacteria in the gastrointestinal tract. The bacteria can be detected and monitored using bioluminescence or near-infrared fluorescence. Results Fluorescence imaging of bacteria was established by expressing the infrared fluorescent protein IRFP713 in Lactococcus lactis, Lactobacillus plantarum and Escherichia co...

  17. Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis.

    Science.gov (United States)

    Koivistoinen, Outi M; Kuivanen, Joosu; Barth, Dorothee; Turkia, Heidi; Pitkänen, Juha-Pekka; Penttilä, Merja; Richard, Peter

    2013-09-23

    Glycolic acid is a C2 hydroxy acid that is a widely used chemical compound. It can be polymerised to produce biodegradable polymers with excellent gas barrier properties. Currently, glycolic acid is produced in a chemical process using fossil resources and toxic chemicals. Biotechnological production of glycolic acid using renewable resources is a desirable alternative. The yeasts Saccharomyces cerevisiae and Kluyveromyces lactis are suitable organisms for glycolic acid production since they are acid tolerant and can grow in the presence of up to 50 g l(-1) glycolic acid. We engineered S. cerevisiae and K. lactis for glycolic acid production using the reactions of the glyoxylate cycle to produce glyoxylic acid and then reducing it to glycolic acid. The expression of a high affinity glyoxylate reductase alone already led to glycolic acid production. The production was further improved by deleting genes encoding malate synthase and the cytosolic form of isocitrate dehydrogenase. The engineered S. cerevisiae strain produced up to about 1 g l(-1) of glycolic acid in a medium containing d-xylose and ethanol. Similar modifications in K. lactis resulted in a much higher glycolic acid titer. In a bioreactor cultivation with D-xylose and ethanol up to 15 g l(-1) of glycolic acid was obtained. This is the first demonstration of engineering yeast to produce glycolic acid. Prior to this work glycolic acid production through the glyoxylate cycle has only been reported in bacteria. The benefit of a yeast host is the possibility for glycolic acid production also at low pH, which was demonstrated in flask cultivations. Production of glycolic acid was first shown in S. cerevisiae. To test whether a Crabtree negative yeast would be better suited for glycolic acid production we engineered K. lactis in the same way and demonstrated it to be a better host for glycolic acid production.

  18. Development, molecular characterisation and exploitation of the nisin controlled expression system in Lactococcus lactis

    OpenAIRE

    Ruyter, de, D.J.

    1998-01-01

    Lactic acid bacteria are gram-positive bacteria that are widely used in a variety of dairy fermentation processes. Notably, strains of the lactic acid starter bacterium Lactococcus lactis are of great economic importance because of their world-wide use in cheese making. The characteristic aroma, flavor and texture of cheese develops during ripening of the cheese curd through the action of numerous enzymes derived from the cheese milk, the coagulant, and the start...

  19. Physiological and regulatory effects of controlled overproduction of five cold shock proteins of Lactococcus lactis

    NARCIS (Netherlands)

    Wouters, J.A.; Mailhes, M.; Rombouts, F.M.; Vos, de W.M.; Kuipers, O.P.; Abee, T.

    2000-01-01

    The physiological and regulatory effects of overproduction of five cold shock proteins (CSPs) of Lactococcus lactis were studied. CspB, CspD, and CspE could be overproduced at high levels (up to 19␘f the total protein), whereas for CspA and CspC limited overproduction (0.3 to 0.5␘f the total protein

  20. Biotechnological and safety characterization of Enterococcus lactis, a recently described species of dairy origin.

    Science.gov (United States)

    Morandi, Stefano; Silvetti, Tiziana; Brasca, Milena

    2013-01-01

    The biotechnological and safety properties of a recently described enterococcal species, Enterococcus lactis, were investigated. With regard to the technological properties, in milk all the strains tested had weak acidifying and proteolytic activities, generally medium reduction activity over 24 h (-102 mV detection did not identify any of the common genetic determinants for vancomycin, tetracycline and erythromycin resistance. The E. lactis strains showed good survival in simulated in vitro digestion and were able to inhibit the growth of Enterococcus durans, Enterococcus faecalis, Enterococcus faecium, Clostridium sporogenes, Clostridium tyrobutyricum and Pseudomonas syringae. Screening for enterocin structural genes showed that all isolates harboured the entP gene. The presence of nine virulence factor genes (cylA, asa1, gelE, hyl, esp, ace, efaA, hdc and tdc) was investigated by PCR and no virulence determinants were detected. This study highlights that the recently described E. lactis may be a potential source of novel strains with interesting features that could be used for fermented dairy foods.

  1. Heterologous protein secretion in Lactococcus lactis: a novel antigen delivery system

    Directory of Open Access Journals (Sweden)

    Langella P.

    1999-01-01

    Full Text Available Lactic acid bacteria (LAB are Gram-positive bacteria and are generally regarded as safe (GRAS organisms. Therefore, LAB could be used for heterologous protein secretion and they are good potential candidates as antigen delivery vehicles. To develop such live vaccines, a better control of protein secretion is required. We developed an efficient secretion system in the model LAB, Lactococcus lactis. Staphylococcal nuclease (Nuc was used as the reporter protein. We first observed that the quantity of secreted Nuc correlated with the copy number of the cloning vector. The nuc gene was cloned on a high-copy number cloning vector and no perturbation of the metabolism of the secreting strain was observed. Replacement of nuc native promoter by a strong lactococcal one led to a significant increase of nuc expression. Secretion efficiency (SE of Nuc in L. lactis was low, i.e., only 60% of the synthesized Nuc was secreted. Insertion of a synthetic propeptide between the signal peptide and the mature moiety of Nuc increased the SE of Nuc. On the basis of these results, we developed a secretion system and we applied it to the construction of an L. lactis strain which secretes a bovine coronavirus (BCV epitope-protein fusion (BCV-Nuc. BCV-Nuc was recognized by both anti-BCV and anti-Nuc antibodies. Secretion of this antigenic fusion is the first step towards the development of a novel antigen delivery system based on LAB-secreting strains.

  2. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666

    Directory of Open Access Journals (Sweden)

    Beatriz del Rio

    2015-12-01

    Full Text Available Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14 is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine into the biogenic amine putrescine by the agmatine deiminase (AGDI pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are responsible for the deamination of agmatine to putrescine and are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC [1]. aguR encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC [2], which is also transcriptionally regulated by carbon catabolic repression (CCR via glucose, but not by other sugars such as lactose and galactose [1,3]. Here we report the transcriptional profiling of the aguR gene deletion mutant (L. lactis subsp. cremoris CECT 8666 ∆aguR [2] compared to the wild type strain, both grown in M17 medium with galactose as carbon source and supplemented with agmatine. The transcriptional profiling data of AguR-regulated genes were deposited in the Gene Expression Omnibus (GEO database under accession no. GSE59514.

  3. Use of Lactococcus lactis to enrich sourdough bread with γ-aminobutyric acid.

    Science.gov (United States)

    Bhanwar, Seema; Bamnia, Meenakshi; Ghosh, Moushumi; Ganguli, Abhijit

    2013-02-01

    Fried sourdough bread (bhatura) with an elevated amount of γ-aminobutyric acid (GABA) was produced using lactic acid bacteria (LAB). The LAB starter was screened and isolated from pickled yam showing highest GABA content and was identified as Lactococcus lactis subsp. lactis. The maximum GABA production in de Man Rogosa Sharpe (MRS) media supplemented with monosodium glutamate (MSG) was 110 mg/100 ml at pH 5, and 1-3% NaCl did not change the production of GABA significantly (p>0.05). When MSG was replaced with Vigna mungo in sourdough, the amount of GABA for bhatura was 226.22 mg/100 g representing about 10-fold increase. A sensory evaluation resulted as the overall general acceptability of bhatura to be 4.91 ± 0.03 on a five-point hedonic scale. Thus, the results indicated the potential of L. lactis as a LAB starter for the production of GABA-enriched bhatura. Although other physiological effects can be expected in the product, animal and clinical studies are mandatory prior to application of this food.

  4. Production of bacteriocin-like inhibitory substance by Bifidobacterium lactis in skim milk supplemented with additives.

    Science.gov (United States)

    Martinez, Fabio Andres Castillo; Domínguez, José Manuel; Converti, Attilio; Oliveira, Ricardo Pinheiro de Souza

    2015-08-01

    Bacteriocins are natural compounds used as food biopreservatives instead of chemical preservatives. Bifidobacterium animalis subsp. lactis (Bifid. lactis) was shown to produce a bacteriocin-like inhibitory substance (BLIS) able to inhibit the growth of Listeria monocytogenes selected as an indicator microorganism. To enhance this production by the strain Bifid. lactis BL 04, skim milk (SM) was used as a fermentation medium either in the presence or in the absence of yeast extract, Tween 80 or inulin as stimulating additives, and the results in terms of bacterial growth and BLIS production were compared with those obtained in a traditional high cost complex medium such as Man, Rogosa and Sharpe (MRS). To this purpose, all the cultivations were carried out in flasks at 200 rpm under anaerobic conditions ensured by a nitrogen flowrate of 1.0 L/min for 48 h, and BLIS production was quantified by means of a modified agar diffusion assay at low values of both temperature and concentration of List. monocytogenes. Although all these ingredients were shown to exert positive influence on BLIS production in both media, yeast extract and SM were by far the best ingredient and the best medium, respectively, allowing for a BLIS production at the late exponential phase of 2000 AU/ml.

  5. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666.

    Science.gov (United States)

    Del Rio, Beatriz; Linares, Daniel M; Redruello, Begoña; Martin, Maria Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P; Ladero, Victor; Alvarez, Miguel A

    2015-12-01

    Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine) into the biogenic amine putrescine by the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are responsible for the deamination of agmatine to putrescine and are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC[1]. aguR encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC[2], which is also transcriptionally regulated by carbon catabolic repression (CCR) via glucose, but not by other sugars such as lactose and galactose [1], [3]. Here we report the transcriptional profiling of the aguR gene deletion mutant (L. lactis subsp. cremoris CECT 8666 ∆aguR) [2] compared to the wild type strain, both grown in M17 medium with galactose as carbon source and supplemented with agmatine. The transcriptional profiling data of AguR-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under accession no. GSE59514.

  6. Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44

    Science.gov (United States)

    Zhang, Jian; Caiyin, Qinggele; Feng, Wenjing; Zhao, Xiuli; Qiao, Bin; Zhao, Guangrong; Qiao, Jianjun

    2016-01-01

    Traditionally, nisin was produced industrially by using Lactococcus lactis in the neutral fermentation process. However, nisin showed higher activity in the acidic environment. How to balance the pH value for bacterial normal growth and nisin activity might be the key problem. In this study, 17 acid-tolerant genes and 6 lactic acid synthetic genes were introduced in L. lactis F44, respectively. Comparing to the 2810 IU/mL nisin yield of the original strain F44, the nisin titer of the engineered strains over-expressing hdeAB, ldh and murG, increased to 3850, 3979 and 4377 IU/mL, respectively. These engineered strains showed more stable intracellular pH value during the fermentation process. Improvement of lactate production could partly provide the extra energy for the expression of acid tolerance genes during growth. Co-overexpression of hdeAB, murG, and ldh(Z) in strain F44 resulted in the nisin titer of 4913 IU/mL. The engineered strain (ABGL) could grow on plates with pH 4.2, comparing to the surviving pH 4.6 of strain F44. The fed-batch fermentation showed nisin titer of the co-expression L. lactis strain could reach 5563 IU/mL with lower pH condition and longer cultivation time. This work provides a novel strategy of constructing robust strains for use in industry process. PMID:27306587

  7. The Nanomechanical Properties of Lactococcus lactis Pili Are Conditioned by the Polymerized Backbone Pilin.

    Directory of Open Access Journals (Sweden)

    Mickaël Castelain

    Full Text Available Pili produced by Lactococcus lactis subsp. lactis are putative linear structures consisting of repetitive subunits of the major pilin PilB that forms the backbone, pilin PilA situated at the distal end of the pilus, and an anchoring pilin PilC that tethers the pilus to the peptidoglycan. We determined the nanomechanical properties of pili using optical-tweezers force spectroscopy. Single pili were exposed to optical forces that yielded force-versus-extension spectra fitted using the Worm-Like Chain model. Native pili subjected to a force of 0-200 pN exhibit an inextensible, but highly flexible ultrastructure, reflected by their short persistence length. We tested a panel of derived strains to understand the functional role of the different pilins. First, we found that both the major pilin PilB and sortase C organize the backbone into a full-length organelle and dictate the nanomechanical properties of the pili. Second, we found that both PilA tip pilin and PilC anchoring pilin were not essential for the nanomechanical properties of pili. However, PilC maintains the pilus on the bacterial surface and may play a crucial role in the adhesion- and biofilm-forming properties of L. lactis.

  8. 荧光定量PCR法检测益生菌饮料中Lactobacillus casei Zhang和Bifidobacterium lactis V9%Lactobacillus casei Zhang Bifidobacterium lactis V9 Method of fluorescent quantitative PCR for detection of Lactobacillus casei Zhang and Bifidobacterium lactis V9

    Institute of Scientific and Technical Information of China (English)

    其木格苏都; 王记成; 张家超; 张和平

    2011-01-01

    益生菌活菌数是益生菌产品最重要的指标,而检测益生菌方法的准确性和科学性则至关重要.本文采用荧光定量PCR法同时定量检测益生菌饮料中Lactobacillus casei Zhang(L.casei Zhang)和Bifidobacterium lactis V9(B.lactis V9)的活菌数,并与平板菌落计数法进行比较.结果表明,荧光定量PCR法测得L.casei Zhang活菌数与平板菌落计数法测得活菌数差异不显著;而采用荧光定量PCR法测得B.lactis V9活菌数显著高于平板菌落计数法.荧光定量PCR法灵敏、特异、简便快速,可定量检测并真实反应L.casei Zhang和B.lactis V9的活菌数.%The viable count of probiotic is considered as the most important index and the accurate and scientific assay of probiotic viable number is essential to probiotic products. In the present study, the fluorescent quantitative PCR method and plate colony counting method were used and compared for detection of bacterial viable numbers of Lactobadllus casei Zhang and Bifidobacterium lactis V9 in probiotic fermented beverage. The result showed that there was no significant difference of L. Casei Zhang number between two methods, whereas the numbers of B. Lactis V9 detected by two methods were significant difference. It is suggested that fluorescent quantitative PCR method appear to be highly accurate, specific, fast and reliable for quantification of L. Casei Zhang and B. Lactis V9.

  9. Soro de leite como agente encapsulante de Bifidobacterium BB-12 por spray drying

    OpenAIRE

    Cislaghi, Fabiane Picinin de Castro

    2012-01-01

    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Agrárias. Programa de Pós-Graduação em Ciência dos Alimentos. O soro de leite e o principal subproduto da industria lactea. Apesar do seu elevado valor nutricional, o aproveitamento do soro de leite ainda e pequeno. Novas alternativas para utilizacao do soro sao necessarias a fim de reduzir seu desperdicio e a poluicao ambiental causada quando nao descartado adequadamente. O objetivo deste estudo foi avalia...

  10. Dicty_cDB: FC-BB12 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available neering technology. 86 6e-13 1 U40704 |U40704.1 Candida albicans catalase (Cat) gen...l catalase, gene of said catalase and composition containing said catalase, and process for preparing catalase using the genetic engi

  11. Proteolysis in goat "coalho" cheese supplemented with probiotic lactic acid bacteria.

    Science.gov (United States)

    Bezerra, Taliana Kênia Alves; de Araujo, Ana Rita Ribeiro; do Nascimento, Edilza Santos; de Matos Paz, José Eduardo; Gadelha, Carlos Alberto; Gadelha, Tatiane Santi; Pacheco, Maria Teresa Bertoldo; do Egypto Queiroga, Rita de Cássia Ramos; de Oliveira, Maria Elieidy Gomes; Madruga, Marta Suely

    2016-04-01

    This study aimed to analyse the proteolytic effects of adding isolated and combined probiotic strains to goat "coalho" cheese. The cheeses were: QS - with culture Start, composed by Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris (R704); QLA - with Lactobacillus acidophilus (LA-5); QLP - with Lactobacillus paracasei subsp. paracasei (L. casei 01); QB - with Bifidobacterium animalis subsp. lactis (BB 12); and QC, co-culture with the three probiotic microorganisms. The cheeses were analysed during 28 days of storage at 10°C. The probiotic cell count was higher than 6.5 and 7 log colony-forming units (CFU) g(-1) of cheese at the 1st and 28th days of storage, respectively. The addition of co-culture influenced (pcheese and resulted in a higher content of soluble protein and release of amino acids at the 1st day after processing. However, over all 28 days, the cheese supplemented with Bifidobacterium lactis in its isolated form showed the highest proteolytic activity, particularly in the hydrolysis of the alpha-s2 and kappa-casein fractions.

  12. Lactococcus lactis NCC 2287 Alleviates Food Allergic Manifestations in Sensitized Mice by Reducing IL-13 Expression Specifically in the Ileum

    Directory of Open Access Journals (Sweden)

    Adrian W. Zuercher

    2012-01-01

    Full Text Available Objective. Utilizing a food allergy murine model, we have investigated the intrinsic antiallergic potential of the Lactococcus lactis NCC 2287 strain. Methods. BALB/c mice were sensitized at weekly intervals with ovalbumin (OVA plus cholera toxin (CT by the oral route for 7 weeks. In this model, an oral challenge with a high dose of OVA at the end of the sensitization period leads to clinical symptoms. Lactococcus lactis NCC 2287 was given to mice via the drinking water during sensitization (prevention phase or after sensitization (management phase. Results. Lactococcus lactis NCC 2287 administration to sensitized mice strikingly reduced allergic manifestations in the management phase upon challenge, when compared to control mice. No preventive effect was observed with the strain. Lactococcus lactis NCC 2287 significantly decreased relative expression levels of the Th-2 cytokine, IL-13, and associated chemokines CCL11 (eotaxin-1 and CCL17 (TARC in the ileum. No effect was observed in the jejunum. Conclusion/Significance. These results taken together designate Lactococcus lactis NCC 2287 as a candidate probiotic strain appropriate in the management of allergic symptoms.

  13. Display of the Viral Epitopes on Lactococcus lactis: A Model for Food Grade Vaccine against EV71

    Directory of Open Access Journals (Sweden)

    Nadimpalli Ravi S. Varma

    2013-01-01

    Full Text Available In this study, we have developed a system for display of antigens of Enterovirus type 71 (EV71 on the cell surface of L. lactis. The viral capsid protein (VP1 gene from a local viral isolate was utilized as the candidate vaccine for the development of oral live vaccines against EV71 using L. lactis as a carrier. We expressed fusion proteins in E. coli and purified fusion proteins were incubated with L. lactis. We confirmed that mice orally fed with L. lactis displaying these fusion proteins on its surface were able to mount an immune response against the epitopes of EV71. This is the first example of an EV71 antigen displayed on the surface of a food grade organism and opens a new perspective for alternative vaccine strategies against the EV71. We believe that the method of protein docking utilized in this study will allow for more flexible presentations of short peptides and proteins on the surface of L. lactis to be useful as a delivery vehicle.

  14. Lactococcus lactis NCC 2287 Alleviates Food Allergic Manifestations in Sensitized Mice by Reducing IL-13 Expression Specifically in the Ileum

    Science.gov (United States)

    Zuercher, Adrian W.; Weiss, Marietta; Holvoet, Sébastien; Moser, Mireille; Moussu, Hélène; van Overtvelt, Laurence; Horiot, Stéphane; Moingeon, Philippe; Nutten, Sophie; Prioult, Guénolée; Singh, Anurag; Mercenier, Annick

    2012-01-01

    Objective. Utilizing a food allergy murine model, we have investigated the intrinsic antiallergic potential of the Lactococcus lactis NCC 2287 strain. Methods. BALB/c mice were sensitized at weekly intervals with ovalbumin (OVA) plus cholera toxin (CT) by the oral route for 7 weeks. In this model, an oral challenge with a high dose of OVA at the end of the sensitization period leads to clinical symptoms. Lactococcus lactis NCC 2287 was given to mice via the drinking water during sensitization (prevention phase) or after sensitization (management phase). Results. Lactococcus lactis NCC 2287 administration to sensitized mice strikingly reduced allergic manifestations in the management phase upon challenge, when compared to control mice. No preventive effect was observed with the strain. Lactococcus lactis NCC 2287 significantly decreased relative expression levels of the Th-2 cytokine, IL-13, and associated chemokines CCL11 (eotaxin-1) and CCL17 (TARC) in the ileum. No effect was observed in the jejunum. Conclusion/Significance. These results taken together designate Lactococcus lactis NCC 2287 as a candidate probiotic strain appropriate in the management of allergic symptoms. PMID:21961022

  15. Protective vaccination against infectious bursal disease virus with whole recombinant Kluyveromyces lactis yeast expressing the viral VP2 subunit.

    Directory of Open Access Journals (Sweden)

    Marina Arnold

    Full Text Available Here we report on vaccination approaches against infectious bursal disease (IBD of poultry that were performed with complete yeast of the species Kluyveromyces lactis (K. lactis. Employing a genetic system that enables the rapid production of stably transfected recombinant K. lactis, we generated yeast strains that expressed defined quantities of the virus capsid forming protein VP2 of infectious bursal disease virus (IBDV. Both, subcutaneous as well as oral vaccination regiments with the heat-inactivated but otherwise untreated yeast induced IBDV-neutralizing antibodies in mice and chickens. A full protection against a subsequent IBDV infection was achieved by subcutaneous inoculation of only milligram amounts of yeast per chicken. Oral vaccination also generated protection: while mortality was observed in control animals after virus challenge, none of the vaccinees died and ca. one-tenth were protected as indicated by the absence of lesions in the bursa of Fabricius. Recombinant K. lactis was thus indicated as a potent tool for the induction of a protective immune response by different applications. Subcutaneously applied K. lactis that expresses the IBDV VP2 was shown to function as an efficacious anti-IBD subunit vaccine.

  16. Lactococcus lactis NCC 2287 alleviates food allergic manifestations in sensitized mice by reducing IL-13 expression specifically in the ileum.

    Science.gov (United States)

    Zuercher, Adrian W; Weiss, Marietta; Holvoet, Sébastien; Moser, Mireille; Moussu, Hélène; van Overtvelt, Laurence; Horiot, Stéphane; Moingeon, Philippe; Nutten, Sophie; Prioult, Guénolée; Singh, Anurag; Mercenier, Annick

    2012-01-01

    Utilizing a food allergy murine model, we have investigated the intrinsic antiallergic potential of the Lactococcus lactis NCC 2287 strain. BALB/c mice were sensitized at weekly intervals with ovalbumin (OVA) plus cholera toxin (CT) by the oral route for 7 weeks. In this model, an oral challenge with a high dose of OVA at the end of the sensitization period leads to clinical symptoms. Lactococcus lactis NCC 2287 was given to mice via the drinking water during sensitization (prevention phase) or after sensitization (management phase). Lactococcus lactis NCC 2287 administration to sensitized mice strikingly reduced allergic manifestations in the management phase upon challenge, when compared to control mice. No preventive effect was observed with the strain. Lactococcus lactis NCC 2287 significantly decreased relative expression levels of the Th-2 cytokine, IL-13, and associated chemokines CCL11 (eotaxin-1) and CCL17 (TARC) in the ileum. No effect was observed in the jejunum. These results taken together designate Lactococcus lactis NCC 2287 as a candidate probiotic strain appropriate in the management of allergic symptoms.

  17. Identification and functional characterization of the Lactococcus lactis CodY-regulated branched-chain amino acid permease BcaP (CtrA)

    NARCIS (Netherlands)

    den Hengst, CD; Groeneveld, M; Kuipers, OP; Kok, J; Hengst, Chris D. den

    2006-01-01

    Transcriptome analyses have previously revealed that a gene encoding the putative amino acid transporter CtrA (YhdG) is one of the major targets of the pleiotropic regulator CodY in Lactococcus lactis and Bacillus subtilis. The role of ctrA in L. lactis was further investigated with respect to both

  18. AguR is a transmembrane transcription activator of the putrescine biosynthesis operon in Lactococcus lactis, and acts in response to agmatine concentration

    NARCIS (Netherlands)

    Linares, Daniel M; Del Rio, Beatriz; Redruello, Begoña; Ladero, Victor; Martin, Ma Cruz; de Jong, Anne; Kuipers, Oscar P; Fernandez, Maria; Alvarez, Miguel A

    2015-01-01

    Dairy industry fermentative processes mostly use Lactococcus lactis as a starter. However, some dairy L. lactis strains produce putrescine - a biogenic amine that raises food safety and spoilage concerns - via the agmatine deiminase pathway (AGDI). The enzymatic activities responsible for putrescine

  19. UvrA expression of Lactococcus lactis NZ9000 improve multiple stresses tolerance and fermentation of lactic acid against salt stress.

    Science.gov (United States)

    Moghaddam, Taher Khakpour; Zhang, Juan; Du, Guocheng

    2017-03-01

    Lactococcus lactis is subjected to several stressful conditions during industrial fermentation including oxidation, heating and cooling, acid, high osmolarity/dehydration and starvation. DNA lesion is a major cause of genetic instability in L. lactis that usually occurs at a low frequency, but it is greatly enhanced by environmental stresses. DNA damages produced by these environmental stresses are thought to induce DNA double-strand breaks, leading to illegitimate recombination. Nucleotide excision repair (NER) protein UvrA suppresses multiple stresses-induced illegitimate recombination. UvrA protein can survive a coincident condition of environmental harsh conditions, multiple stress factors supposedly encountered in the host and inducing UvrA in L. lactis. In this study the expression of UvrA and growth performance and viability of control strain L. lactisVector and recombinant strain L. lactisUvrA under multiple stress conditions were determined. The recombinants strain had 30.70 and 52.67% higher growth performances when subjected to acidic and osmotic stresses conditions. In addition, the L. lactisUvrA strain showed 1.85-, 1.65-, and 2.40-fold higher biomass, lactate production, and lactate productivity, compared with the corresponding values for L. lactisVector strain during the osmotic stress. Results demonstrated NER system is involved in adaptation to various stress conditions and suggested that cells with a compromised UvrA as DNA repair system have an enhanced protection behavior in L. lactis NZ9000 against DNA damage.

  20. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA

    NARCIS (Netherlands)

    Luesink, Evert J.; Herpen, René E.M.A. van; Grossiord, Benoît P.; Kuipers, Oscar P.; Vos, Willem M. de

    1998-01-01

    The Lactococcus lactis ccpA gene, encoding the global regulatory protein CcpA, was identified and characterized. Northern blot and primer extension analyses showed that the L. lactis ccpA gene is constitutively transcribed from a promoter that does not contain a cre sequence. Inactivation of the ccp

  1. Asinibacterium lactis gen. nov., sp. nov., a member of the family Chitinophagaceae, isolated from donkey (Equus asinus) milk.

    Science.gov (United States)

    Lee, Dong-Geol; Park, Ji-Min; Kang, Heecheol; Hong, So-Young; Lee, Kyung Real; Chang, Hung-Bae; Trujillo, Martha E

    2013-09-01

    A novel bacterial strain, designated LCJ02(T), was isolated on R2A agar from donkey (Equus asinus) milk powder and subjected to a taxonomic study using a polyphasic approach. Strain LCJ02(T) showed a Gram-negative reaction, was non-motile, non-spore-forming and possessed rod-shaped cells and yellow-pigmented colonies. Phylogenetic analysis based on 16S rRNA gene sequences showed that the novel isolate formed a cluster with several uncultured bacterial clones and with cultured members of the genera Hydrotalea, Sediminibacterium and Lacibacter (family Chitinophagaceae, phylum Bacteroidetes). The gene sequence similarities with respect to the type strains of recognized species from the above genera and other phylogenetic neighbours ranged from 89.3 to 92.9%. The G+C content of the genomic DNA was 49.2 mol%, the only isoprenoid quinone was MK-7 and the major fatty acids were iso-C(15:0), iso-C(17:0) 3-OH, iso-C(15:1) G and summed feature 3 (C(16:1)ω7c and/or iso-C(15:0) 2-OH). The major polar lipids of strain LCJ02(T) were phosphatidylethanolamine, two unidentified aminophospholipids, one unidentified aminolipid and five unidentified lipids. The results of physiological and biochemical tests allowed phenotypic differentiation of strain LCJ02(T) from its closest phylogenetic neighbours. On the basis of the evidence of this polyphasic study, isolate LCJ02(T) represents a novel genus and species in the family Chitinophagaceae for which the name Asinibacterium lactis gen. nov., sp. nov. is proposed. The type strain is LCJ02(T) ( =KCCM 90108(T) =JCM 18484(T)).

  2. Microbiology of Cheddar cheese made with different fat contents using a Lactococcus lactis single-strain starter.

    Science.gov (United States)

    Broadbent, J R; Brighton, C; McMahon, D J; Farkye, N Y; Johnson, M E; Steele, J L

    2013-07-01

    Flavor development in low-fat Cheddar cheese is typified by delayed or muted evolution of desirable flavor and aroma, and a propensity to acquire undesirable meaty-brothy or burnt-brothy off-flavor notes early in ripening. The biochemical basis for these flavor deficiencies is unclear, but flavor production in bacterial-ripened cheese is known to rely on microorganisms and enzymes present in the cheese matrix. Lipid removal fundamentally alters cheese composition, which can modify the cheese microenvironment in ways that may affect growth and enzymatic activity of starter or nonstarter lactic acid bacteria (NSLAB). Additionally, manufacture of low-fat cheeses often involves changes to processing protocols that may substantially alter cheese redox potential, salt-in-moisture content, acid content, water activity, or pH. However, the consequences of these changes on microbial ecology and metabolism remain obscure. The objective of this study was to investigate the influence of fat content on population dynamics of starter bacteria and NSLAB over 9 mo of aging. Duplicate vats of full fat, 50% reduced-fat, and low-fat (containing cheeses were manufactured at 3 different locations with a single-strain Lactococcus lactis starter culture using standardized procedures. Cheeses were ripened at 8°C and sampled periodically for microbiological attributes. Microbiological counts indicated that initial populations of nonstarter bacteria were much lower in full-fat compared with low-fat cheeses made at all 3 sites, and starter viability also declined at a more rapid rate during ripening in full-fat compared with 50% reduced-fat and low-fat cheeses. Denaturing gradient gel electrophoresis of cheese bacteria showed that the NSLAB fraction of all cheeses was dominated by Lactobacillus curvatus, but a few other species of bacteria were sporadically detected. Thus, changes in fat level were correlated with populations of different bacteria, but did not appear to alter the

  3. Effect of Lactococcin BZ and Enterocin KP on the Activity of Yoghurt Cultures

    Directory of Open Access Journals (Sweden)

    Nilgün Öncül

    2015-02-01

    Full Text Available In this study, the effects of lactococcin BZ from Lactococcus lactis ssp. lactis BZ and enterocin KP from Enterococcus faecalis KP (1600 AU/mL on the activities of three different yoghurt cultures (Y1 and Y2: CHR Hansen, Denmark; Y3: Sacco, Italy were investigated. Lactic acid bacteria counts and pH values of the samples were determined during the incubation period (at 42°C for 24 h. It was found that lactococcin BZ had bactericidal effect against only one yoghurt culture whereas enterocin KP was effective against two yoghurt cultures. When lactococcin BZ and enterosin KP were used in combination (1:1, they showed bactericidal effect against two yoghurt cultures.

  4. Characterization of the Fermentation Process and the Inhibition Effect of Lactobacillus lactis in Staphylococcus aureus and Staphylococcus epidermidis

    Directory of Open Access Journals (Sweden)

    Henry Jurado-Gámez

    2015-09-01

    Full Text Available The fermentative process and in vitro inhibition of L. lactis in Staphylococcus aureus and Staphylococcus epidermidis were assessed. The growth of L. lactis at three pH (2.5, 4.5 and 7, bile salts (0.5, 1 and 2 %, bovine bile (1 and 1.2 % and two temperatures (38 and 45 °C were evaluated. Peptides and organic acids in supernatant of L. lactis by HPLC were determined. Fermentation kinetics was carried out, evaluating: pH, total sugar, protein and lactic acid. An antibiogram of dicloxacilin, cefepime, penilicin and cefalotin was made. The inhibition of L. lactis and its supernatant were defined in pathogenic strains. The best growth was at a pH of 2.5 (3 × 1012 UFC/ml; of 1 × 1010 and 4 × 109 UFC/ml for 0.5 % of bile salts and 1.2 % of bovine bile, respectively; of 3.5 × 1013 and 3.4 × 1013 UFC/ml for 38 and 45 °C, respectively. The HPLC determined the peptides VAR-TIR-VAR and lactic acid (83.11 %. The fermentation kinetics determined the exponential phase at 14:24 h with a value of 77 × 1010 UFC/ ml, pH values of 4.284, 2.33 mg/ml sugar, 1.44 mg/ml protein and acidity of 0.79 %. It was found that S. aureus and S. epidermidis were sensitive to all antibiotics. The pathogenic bacteria were resistant to the lactic strain, but S. epidermidis was sensitive to the supernatant of L. lactis. The conclusion is that Lactobacillus lactis showed adequate growth capacity, good fermentation parameters and inhibitory effect in strains of S. aureus and S. epidermidis in in vitro conditions.

  5. Technological, physicochemical and sensory characteristics of a Brazilian semi-hard goat cheese (coalho with added probiotic lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Maria Elieidy Gomes de Oliveira

    2012-12-01

    Full Text Available Over the past few years, the use of probiotics, which are capable of exerting beneficial effects on the composition of intestinal microbiota, has increased. Cheeses have been suggested as a better carrier of probiotic bacteria than other fermented milk products. The effect of added cultures of probiotic lactic acid bacteria on the quality of a Brazilian goat semi-hard cheese (coalho was assessed during 21 days of storage at 10 ºC as follows: C1, Lactococcus lactis subsp. lactis and L. lactis subsp. Cremoris (standard cheese; C2, Lactobacillus acidophilus (LA-5; C3, Lactobacillus paracasei (Lactobacillus casei-01; C4, BBifidobacterium lactis (BB12; and C5, L. acidophilus, L. paracasei and B. lactis. Differences in some physico-chemical, experimental texture and proteolysis parameters were found among the assessed cheeses. All of them presented high luminosity (L* with predominance of the yellow component (b*. Numbers of lactic acid bacteria in the cheeses were greater than 10(7 cfu g-1 during storage. Cheeses with the added probiotic strains alone and in co-culture were better accepted than cheeses without the probiotic strains. It is suggested that goat "coalho" cheese could be a potential carrier of probiotic lactic acid bacteria.

  6. Licheniocin 50.2 and Bacteriocins from Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 Inhibit Biofilms of Coagulase Negative Staphylococci and Listeria monocytogenes Clinical Isolates

    Science.gov (United States)

    Draganic, Veselin; Lozo, Jelena; Beric, Tanja; Kojic, Milan; Arsic, Biljana; Garalejic, Eliana; Djukic, Slobodanka; Stankovic, Slavisa

    2016-01-01

    Background Coagulase negative staphylococci (CoNS) and Listeria monocytogenes have important roles in pathogenesis of various genital tract infections and fatal foetomaternal infections, respectively. The aim of our study was to investigate the inhibitory effects of two novel bacteriocins on biofilms of CoNS and L. monocytogenes genital isolates. Methods The effects of licheniocin 50.2 from Bacillus licheniformis VPS50.2 and crude extract of bacteriocins produced by Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 (BGBU1-4 crude extract) were evaluated on biofilm formation and formed biofilms of eight CoNS (four S. epidermidis, two S. hominis, one S. lugdunensis and one S. haemolyticus) and 12 L. monocytogenes genital isolates. Results Licheniocin 50.2 and BGBU1-4 crude extract inhibited the growth of both CoNS and L. monocytogenes isolates, with MIC values in the range between 200–400 AU/ml for licheniocin 50.2 and 400–3200 AU/ml for BGBU1-4 crude extract. Subinhibitory concentrations (1/2 × and 1/4 × MIC) of licheniocin 50.2 inhibited biofilm formation by all CoNS isolates (p bacteriocins in concentrations of 100 AU/mL and 200 AU/mL reduced the amount of 24 h old CoNS and L. monocytogenes biofilms (p bacteriocins have potential to be used for genital application, to prevent biofilm formation and/or to eradicate formed biofilms, and consequently reduce genital and neonatal infections by CoNS and L. monocytogenes. PMID:27930711

  7. Cloning and verification of the Lactococcus lactis pyrG gene and characterization of the gene product, CTP synthase

    DEFF Research Database (Denmark)

    Wadskov-Hansen, Steen Lyders Lerche; Willemoës, M.; Martinussen, Jan

    2001-01-01

    The pyrG gene of Lactococcus lactis subsp. cremoris, encoding CTP synthase, has been cloned and sequenced. It is flanked upstream by an open reading frame showing homology to several aminotransferases and downstream by an open reading frame of unknown function. L. lactis strains harboring disrupted...... of a functional cdd gene encoding cytidine deaminase. A characterization of the enzyme revealed similar properties as found for CTP synthases from other organisms. However, unlike the majority of CTP synthases the lactococcal enzyme can convert dUTP to dCTP, although a half saturation concentration of 0.6 m...

  8. Microencapsulation of Bifidobacterium animalis subsp. lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology

    Directory of Open Access Journals (Sweden)

    D.L. Pedroso

    2013-09-01

    Full Text Available In the present study, the cells of Bifidobacterium animalis subsp. lactis (BI-01 and Lactobacillus acidophilus (LAC-04 were encapsulated in cocoa butter using spray-chilling technology. Survival assays were conducted to evaluate the resistance of the probiotics to the spray-chilling process, their resistance to the simulated gastric and intestinal fluids (SGF and SIF, and their stability during 90 days of storage. The viability of the cells was not affected by microencapsulation. The free and encapsulated cells of B. animalis subsp. lactis were resistant to both SGF and SIF. The micro-encapsulated cells of L. acidophilus were more resistant to SGF and SIF than the free cells; the viability of the encapsulated cells was enhanced by 67%, while the free cells reached the detection limit of the method (10³ CFU/g. The encapsulated probiotics were unstable when they were stored at 20 °C. The population of encapsulated L. acidophilus decreased drastically when they were stored at 7 °C; only 20% of cells were viable after 90 days of storage. The percentage of viable cells of the encapsulated B. animalis subsp.lactis, however, was 72% after the same period of storage. Promising results were obtained when the microparticles were stored at -18 °C; the freeze granted 90 days of shelf life to the encapsulated cells. These results suggest that the spray-chilling process using cocoa butter as carrier protects L. acidophilus from gastrointestinal fluids. However, the viability of the cells during storage must be improved.

  9. Enzymatic synthesis and characterization of hydroquinone galactoside using Kluyveromyces lactis lactase.

    Science.gov (United States)

    Kim, Go-Eun; Lee, Jin-Ha; Jung, Sun-Hwa; Seo, Eun-Seong; Jin, Sheng-De; Kim, Ghahyun J; Cha, Jaeho; Kim, Eui-Joong; Park, Ki-Deok; Kim, Doman

    2010-09-08

    Hydroquinone galactoside (HQ-Gal) as a potential skin whitening agent was synthesized by the reaction of lactase (beta-galactosidase) from Kluyveromyces lactis, Aspergillus oryzae, Bacillus circulans, and Thermus sp. with lactose as a donor and HQ as an acceptor. Among these lactases, the acceptor reaction involving HQ and lactose with K. lactis lactase showed a higher conversion ratio to HQ-Gal (60.27%). HQ-Gal was purified using butanol partitioning and silica gel column chromatography. The structure of the purified HQ-Gal was determined by nuclear magnetic resonance, and the ionic product was observed at m/z 295 (C12H16O7Na)+ using matrix assisted laser desorption ionization time-of-flight mass spectrometry. HQ-Gal was identified as 4-hydroxyphenyl-beta-d-galactopyranoside. The optimum conditions for HQ-Gal synthesis by K. lactis determined using response surface methodology were 50 mM HQ, 60 mM lactose, and 20 U mL(-1) lactase. These conditions produced a yield of 2.01 g L(-1) HQ-Gal. The half maximal inhibitory concentration (IC50) of diphenylpicrylhydrazyl scavenging activity was 3.31 mM, indicating a similar antioxidant activity compared to beta-arbutin (IC50=3.95 mM). The Ki value of HQ-Gal (0.75 mM) against tyrosinase was smaller than that of beta-arbutin (Ki=1.97 mM), indicating its superiority as an inhibitor. HQ-Gal inhibited (23%) melanin synthesis without being significantly toxic to the cells, while beta-arbutin exhibited only 8% reduction of melanin synthesis in B16 melanoma cells compared with the control. These results indicate that HQ-Gal may be a suitable functional component in the cosmetics industry.

  10. Microencapsulation of Bifidobacterium animalis subsp. lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology

    Science.gov (United States)

    Pedroso, D.L.; Dogenski, M.; Thomazini, M.; Heinemann, R.J.B.; Favaro-Trindade, C.S.

    2013-01-01

    In the present study, the cells of Bifidobacterium animalis subsp. lactis (BI-01) and Lactobacillus acidophilus (LAC-04) were encapsulated in cocoa butter using spray-chilling technology. Survival assays were conducted to evaluate the resistance of the probiotics to the spray-chilling process, their resistance to the simulated gastric and intestinal fluids (SGF and SIF), and their stability during 90 days of storage. The viability of the cells was not affected by microencapsulation. The free and encapsulated cells of B. animalis subsp. lactis were resistant to both SGF and SIF. The micro-encapsulated cells of L. acidophilus were more resistant to SGF and SIF than the free cells; the viability of the encapsulated cells was enhanced by 67%, while the free cells reached the detection limit of the method (103 CFU/g). The encapsulated probiotics were unstable when they were stored at 20 °C. The population of encapsulated L. acidophilus decreased drastically when they were stored at 7 °C; only 20% of cells were viable after 90 days of storage. The percentage of viable cells of the encapsulated B. animalis subsp.lactis, however, was 72% after the same period of storage. Promising results were obtained when the microparticles were stored at −18 °C; the freeze granted 90 days of shelf life to the encapsulated cells. These results suggest that the spray-chilling process using cocoa butter as carrier protects L. acidophilus from gastrointestinal fluids. However, the viability of the cells during storage must be improved. PMID:24516445

  11. Quantitative comparison of transient growth of Saccharomyces cerevisiae, Saccharomyces kluyveri, and Kluyveromyces lactis.

    Science.gov (United States)

    Herwig, Christoph; Von Stockar, Urs

    2003-03-30

    A multitude of metabolic regulations occur in yeast, particularly under dynamic process conditions, such as under sudden glucose excess. However, quantification of regulations and classification of yeast strains under these conditions have yet to be elucidated, which requires high-frequency and consistent quantification of the metabolic response. The present study aimed at quantifying the dynamic regulation of the central metabolism of strains Saccharomyces cerevisiae, S. kluyveri, and Kluyveromyces lactis upon sudden glucose excess, accomplished by a shift-up in dilution rate inside of the oxidative region using a small metabolic flux model. It was found that, under transient growth conditions, S. kluyveri behaved like K. lactis, while classification using steady-state conditions would position S. kluyveri close to S. cerevisiae. For transient conditions and based on the observation whether excess glucose is initially used for catabolism (energy) or anabolism (carbon), we propose to classify strains into energy-driven, such as S. cerevisiae, and carbon-driven, such as S. kluyveri and K. lactis, strains. Furthermore, it was found that the delayed onset of fermentative catabolism in carbon-driven strains is a consequence of low catabolic flux and the initial shunt of glucose in non-nitrogen-containing biomass constituents. The MFA model suggests that energy limitation forced the cell to ultimately increase catabolic flux, while the capacity of oxidative catabolism is not sufficient to process this flux oxidatively. The combination of transient experiments and its exploitation with reconciled intrinsic rates using a small metabolic model could corroborate earlier findings of metabolic regulations, such as tight glucose control in carbon-driven strains and transient changes in biomass composition, as well as explore new regulations, such as assimilation of ethanol before glucose. The benefit from using small metabolic flux models is the richness of information and the

  12. Microencapsulation of Bifidobacterium animalis subsp. lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology.

    Science.gov (United States)

    Pedroso, D L; Dogenski, M; Thomazini, M; Heinemann, R J B; Favaro-Trindade, C S

    2013-01-01

    In the present study, the cells of Bifidobacterium animalis subsp. lactis (BI-01) and Lactobacillus acidophilus (LAC-04) were encapsulated in cocoa butter using spray-chilling technology. Survival assays were conducted to evaluate the resistance of the probiotics to the spray-chilling process, their resistance to the simulated gastric and intestinal fluids (SGF and SIF), and their stability during 90 days of storage. The viability of the cells was not affected by microencapsulation. The free and encapsulated cells of B. animalis subsp. lactis were resistant to both SGF and SIF. The micro-encapsulated cells of L. acidophilus were more resistant to SGF and SIF than the free cells; the viability of the encapsulated cells was enhanced by 67%, while the free cells reached the detection limit of the method (10(3) CFU/g). The encapsulated probiotics were unstable when they were stored at 20 °C. The population of encapsulated L. acidophilus decreased drastically when they were stored at 7 °C; only 20% of cells were viable after 90 days of storage. The percentage of viable cells of the encapsulated B. animalis subsp.lactis, however, was 72% after the same period of storage. Promising results were obtained when the microparticles were stored at -18 °C; the freeze granted 90 days of shelf life to the encapsulated cells. These results suggest that the spray-chilling process using cocoa butter as carrier protects L. acidophilus from gastrointestinal fluids. However, the viability of the cells during storage must be improved.

  13. Structural basis for arabinoxylo‐oligosaccharide capture by the probiotic Bifidobacterium animalis subsp. lactis Bl‐04

    DEFF Research Database (Denmark)

    Hansen, Morten Ejby; Fredslund, Folmer; Vujicic‐Zagar, Andreja

    2013-01-01

    Glycan utilization plays a key role in modulating the composition of the gut microbiota, but molecular insight into oligosaccharide uptake by this microbial community is lacking. Arabinoxylo‐oligosaccharides (AXOS) are abundant in the diet, and are selectively fermented by probiotic bifidobacteria...... in the colon. Here we show how selectivity for AXOS uptake is established by the probiotic strain Bifidobacterium animalis subsp. lactis Bl‐04. The binding protein BlAXBP, which is associated with an ATP‐binding cassette (ABC) transporter that mediates the uptake of AXOS, displays an exceptionally broad...

  14. Effects of Lactococcus lactis on composition of intestinal microbiota: Role of nisin

    DEFF Research Database (Denmark)

    Bernbom, Nete; Licht, Tine Rask; Brogren, Carl-Henrik

    2006-01-01

    in the rat fecal microbiota were observed after dosage with nisin. Pearson cluster analysis of denaturing gradient gel electrophoresis profiles of the 16S rRNA genes present in the fecal microbial population revealed that the microbiota of animals dosed with either of the two L. lactis strains were different...... from that of control animals dosed with saline. However, profiles of the microbiota from animals dosed with nisin did not differ from the controls. The concentrations of nisin estimated by competitive enzyme-linked immunosorbent assay (ELISA) were approximately 10-fold higher in the small intestine...

  15. Cloning and Expression of the Lactococcus lactis purDEK Genes, Required for Growth in Milk

    DEFF Research Database (Denmark)

    Nilsson, Dan; Kilstrup, Mogens

    1998-01-01

    An operon containing the genes purD and purE and part of the purK gene was cloned from the facultative anaerobic gram positive bacterium Lactococcus lactis by complementation of the purD mutation in Escherichia coli SO609. The genes encode enzymes in the de novo pathway of purine nucleotides....... The expression of the genes was regulated approximately 35-fold at the transcription level by the availability of purines in the growth medium. Deletion analysis of the nucleotide region upstream of purD indicated that a region of 145 bp is enough to give regulated expression of the reporter lacLM genes, which...

  16. Phosphoglycerate Mutase Is a Highly Efficient Enzyme without Flux Control in Lactococcus lactis

    DEFF Research Database (Denmark)

    Solem, Christian; Petranovic, D.; Købmann, Brian

    2010-01-01

    The glycolytic enzyme phosphoglycerate mutase (PGM), which catalyzes the conversion of 3-phosphoglycerate to 2-phosphoglycerate, was examined in Lactococcus lactis with respect to its function, kinetics and glycolytic flux control. A library of strains with PGM activities ranging between 15......-465% of the wild-type level was constructed by replacing the native promoter of pgm with synthetic promoters of varying strengths. The specific growth rate and glucose flux were found to be maximal at the wild-type level at which PGM had no flux control. Low flux control of PGM was found on mixed acid fluxes...

  17. Mechanism of flavin reduction in the class 1A dihydroorotate dehydrogenase from Lactococcus lactis

    DEFF Research Database (Denmark)

    Fagan, Rebecca L; Jensen, Kaj Frank; Björnberg, Olof;

    2007-01-01

    is concerted or stepwise was addressed for the class 1A enzyme from Lactococcus lactis by determining kinetic isotope effects (KIEs) on flavin reduction in anaerobic stopped-flow experiments. Isotope effects were determined at two pH values. At pH 7.0, KIEs were approximately 2-fold for DHO labeled singly...... mutants was extremely slow compared to that of the wild type; the rate of reduction increased with pH, showing no sign of a plateau. Interestingly, double-deuterium isotope effects on the Cys130Ser mutant also showed a concerted mechanism for flavin reduction....

  18. Cloning and Characterization of upp, a Gene Encoding Uracil Phosphoribosyltransferase from Lactococcus lactis

    DEFF Research Database (Denmark)

    Martinussen, Jan; Hammer, Karin

    1994-01-01

    Uracil phosphoribosyltransferase catalyzes the key reaction in the salvage of uracil in many microorganisms. The gene encoding uracil phosphoribosyltransferase (upp) was cloned from Lactococcus lactis subsp. cremoris MG1363 by complementation of an Escherichia coli mutant. The gene was sequenced...... construction of an internal deletion, a upp mutant was constructed by a double-crossover event. This implicated the utilization of a plasmid with a thermosensitive origin of replication and a new and easy way to screen for double crossover events in both gram-positive and gram-negative bacterial strains...

  19. Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Tingting Guo

    Full Text Available Lactococcus lactis is a well-studied bacterium widely used in dairy fermentation and capable of producing metabolites with organoleptic and nutritional characteristics. For fine tuning of the distribution of glycolytic flux at the pyruvate branch from lactate to diacetyl and balancing the production of the two metabolites under aerobic conditions, a constitutive promoter library was constructed by randomizing the promoter sequence of the H(2O-forming NADH oxidase gene in L. lactis. The library consisted of 30 promoters covering a wide range of activities from 7,000 to 380,000 relative fluorescence units using a green fluorescent protein as reporter. Eleven typical promoters of the library were selected for the constitutive expression of the H(2O-forming NADH oxidase gene in L. lactis, and the NADH oxidase activity increased from 9.43 to 58.17-fold of the wild-type strain in small steps of activity change under aerobic conditions. Meanwhile, the lactate yield decreased from 21.15 ± 0.08 mM to 9.94 ± 0.07 mM, and the corresponding diacetyl production increased from 1.07 ± 0.03 mM to 4.16 ± 0.06 mM with the intracellular NADH/NAD(+ ratios varying from 0.711 ± 0.005 to 0.383 ± 0.003. The results indicated that the reduced pyruvate to lactate flux was rerouted to the diacetyl with an almost linear flux variation via altered NADH/NAD(+ ratios. Therefore, we provided a novel strategy to precisely control the pyruvate distribution for fine tuning of the lactate and diacetyl production through promoter engineering in L. lactis. Interestingly, the increased H(2O-forming NADH oxidase activity led to 76.95% lower H(2O(2 concentration in the recombinant strain than that of the wild-type strain after 24 h of aerated cultivation. The viable cells were significantly elevated by four orders of magnitude within 28 days of storage at 4°C, suggesting that the increased enzyme activity could eliminate H(2O(2 accumulation and prolong cell survival.

  20. Development of a pentaplex PCR assay for the simultaneous detection of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, L. helveticus, L. fermentum in whey starter for Grana Padano cheese.

    Science.gov (United States)

    Cremonesi, Paola; Vanoni, Laura; Morandi, Stefano; Silvetti, Tiziana; Castiglioni, Bianca; Brasca, Milena

    2011-03-30

    A pentaplex PCR assay for the rapid, selective and simultaneous detection of Lactobacillus helveticus, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and L. fermentum, was developed. The target sequences were a group of genes coding for beta-galactosidase production (S. thermophilus and L. delbrueckii subsp. bulgaricus), for cell-enveloped associated proteinase synthesis (L. helveticus), for dipeptide transport system production (L. delbrueckii subsp. lactis) and for arginine-ornithine antiporter protein production (L. fermentum). The analytical specificity of the assay was evaluated with 5 reference strains and 140 lactic acid bacterial strains derived from raw milk cheeses and belonging to the Lactobacillus, Streptococcus, Lactococcus and Enterococcus genera. The identification limit for each target strain was 10(3)CFU/ml. This new molecular assay was used to investigate the LAB population by direct extraction of DNA from the 12 whey cultures for Grana Padano. The pentaplex PCR assay revealed a good correspondence with microbiological analyses and allowed to identify even minor LAB community members which, can be out-competed in vitro by numerically more abundant microbial species.

  1. Characterization of certain bacterial strains for potential use as starter or probiotic cultures in dairy products.

    Science.gov (United States)

    Monteagudo-Mera, A; Caro, I; Rodríguez-Aparicio, L B; Rúa, J; Ferrero, M A; García-Armesto, M R

    2011-08-01

    The present work was aimed at characterizing 12 strains of lactic acid bacteria (LAB) to obtain improved potential starter or probiotic cultures that could be used for making dairy products from ewe's milk and cow's milk. Eight strains with antimicrobial properties, isolated from ewe's milk and from cheese made from ewe's and/or cow's milk, were studied. They were identified as Enterococcus faecalis (five strains), Lactococcus lactis subsp. cremoris, Leuconostoc mesenteroides, and Lactobacillus paracasei subsp. paracasei (one strain of each species). Additionally, four strains were obtained from the American Type Culture Collection: Lactobacillus casei 393 (isolated from cheese), L. lactis subsp. lactis 11454 (origin nonspecified and a producer of nisin), and two strains isolated from human feces (L. paracasei subsp. paracasei 27092 and Lactobacillus rhamnosus 53103, antibacterial agent producer). All E. faecalis strains showed at least one virulence factor (either hemolysin or gelatinase), which emphasizes the importance of these studies in this species. Both L. lactis strains and most Lactobacillus spp. were good acidifiers in ewe's milk and cow's milk at 30°C. High β-galactosidase activity, as well as aminopeptidase activities that favor the development of desirable flavors in cheese, were detected in all Lactobacillus spp. strains. Furthermore, L. rhamnosus ATCC 53103 showed α-fucosidase activity (thought to help colonization of the intestine) and lack of α-glucosidase activity (a trait considered positive for diabetic and obese humans). This last enzymatic activity was also lacking in L. lactis ATCC 11454. L. mesenteroides was the only strain D(2)-lactic acid producer. The selection of any particular strain for probiotic or dairy cultures should be performed according to the technological and/or functional abilities needed.

  2. Chimeras of mature pediocin PA-1 fused to the signal peptide of enterocin P permits the cloning, production, and expression of pediocin PA-1 in Lactococcus lactis.

    Science.gov (United States)

    Martín, María; Gutiérrez, Jorge; Criado, Raquel; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2007-12-01

    Chimeras of pediocin PA-1 (PedA-1), a bacteriocin produced by Pediococcus acidilactici PLBH9, fused to the signal peptide of enterocin P (EntP), a sec-dependent bacteriocin produced by Enterococcus faecium P13, permitted the production of PedA-1 in Lactococcus lactis. Chimeric genes encoding the EntP signal peptide (SP(entP)) fused to mature PedA-1 (pedA), with or without its immunity gene (pedB), were cloned into the expression vector pMG36c to generate the recombinant plasmids pMPP9 (SP(entP):pedA) and pMPP14i (SP(entP):pedA + pedB). Transformation of competent L. lactis subsp. lactis IL1403, L. lactis subsp. cremoris NZ9000, and L. lactis subsp. lactis DPC5598 with the recombinant plasmids has permitted the detection and quantitation of PedA-1 and the coproduction of nisin A and PedA-1 in supernatants of producer cells with specific anti-PedA-1 antibodies and a noncompetitive indirect enzyme-linked immunosorbent assay. Recombinant L. lactis hosts carrying pMPP9 or pMPP14i displayed antimicrobial activity, suggesting that mature PedA-1 fused to SP(EntP) is the minimum requirement for the synthesis, processing, and secretion of biologically active PedA-1 in L. lactis. However, the production and antimicrobial activity of the PedA-1 produced by L. lactis was lower than that produced by the P. acidilactici control strains.

  3. Isolation and characterization of exopolysaccharide from Leuconostoc lactis KC117496 isolated from idli batter.

    Science.gov (United States)

    Saravanan, Chinnashanmugam; Shetty, Prathap Kumar H

    2016-09-01

    Diverse exopolysaccharide (EPS)-producing isolates were isolated from an Indian acidic fermented food (Idli) based on the colony morphology. One of the EPS-producing microflora (Leuconostoc lactis KC117496) was selected for further characterization using FT-IR, HPTLC, AFM, SEM, TGA and XRD analysis. FT-IR spectroscopy revealed the α-d-glucose nature of the EPS. HPTLC analysis confirmed the presence of only glucose monomers, indicating the glucan nature of EPS. NMR spectra revealed the presence of 95% α-(1→6) and 5% branching α-(1→3) linkages. The SEM and AFM showed smooth surfaces and compact structure. TGA results showed higher degradation temperature of 272.01°C. XRD analysis proved the 33.4% crystalline nature of the EPS. Water solubility index and water-holding capacity of EPS are 14.2±0.208% and 117±7.5%. All the above characteristics of the EPS produced by L. lactis showed that the EPS is of a good-quality polysaccharide with potential applications in the food industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Single-Step Partial Purification of Intracellular β-Galactosidase from Kluyveromyces lactis Using Microemulsion Droplets.

    Science.gov (United States)

    Mazı, Bekir G; Hamamcı, Haluk; Ogrydziak, David M; Dungan, Stephanie R

    2016-11-01

    Partial purification of β-galactosidase from the crude extract of Kluyveromyces lactis was carried out using water-in-isooctane microemulsions formed by the anionic surfactant, sodium di-ethylhexyl sulfosuccinate (Aerosol OT). In order to obtain the crude extract, yeast cells of K. lactis were disrupted by a cell disrupter and separated. The purification of β-galactosidase from the extract by a recently developed one-step reversed micellar (i.e., microemulsion-based) extraction method was then tested, by measuring total protein mass and enzyme activity in the product stream and by analyzing its composition using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration chromatography. Effects of salt concentration, protein concentration, and pH on the extraction were investigated. Using this approach, a 5.4-fold purification of β-galactosidase was achieved with 96 % total activity recovery, using a feed containing crude extract and 50 mM K-phosphate buffer (pH 7.5) and 50 mM KCl. Gel filtration chromatography showed that the single extraction was successful at removing low molecular weight impurity proteins (molecular weight (MW) extract.

  5. Statistical investigation of Kluyveromyces lactis cells permeabilization with ethanol by response surface methodology

    Science.gov (United States)

    de Faria, Janaína T.; Rocha, Pollyana F.; Converti, Attilio; Passos, Flávia M.L.; Minim, Luis A.; Sampaio, Fábio C.

    2013-01-01

    The aim of our study was to select the optimal operating conditions to permeabilize Kluyveromyces lactis cells using ethanol as a solvent as an alternative to cell disruption and extraction. Cell permeabilization was carried out by a non-mechanical method consisting of chemical treatment with ethanol, and the results were expressed as β-galactosidase activity. Experiments were conducted under different conditions of ethanol concentration, treatment time and temperature according to a central composite rotatable design (CCRD), and the collected results were then worked out by response surface methodology (RSM). Cell permeabilization was improved by an increase in ethanol concentration and simultaneous decreases in the incubation temperature and treatment time. Such an approach allowed us to identify an optimal range of the independent variables within which the β-galactosidase activity was optimized. A maximum permeabilization of 2,816 mmol L−1 oNP min−1 g−1 was obtained by treating cells with 75.0% v/v of ethanol at 20.0 °C for 15.0 min. The proposed methodology resulted to be effective and suited for K. lactis cells permeabilization at a lab-scale and promises to be of possible interest for future applications mainly in the food industry. PMID:24688494

  6. [Production and partial characterization of beta-galactosidase from Kluyveromyces lactis grown in deproteinized whey].

    Science.gov (United States)

    Ramírez Matheus, Alejandra O; Rivas, Nilo

    2003-06-01

    The purpose of this work was to optimize the beta-galactosidase production by Kluyveromyces lactis, applying the Surface Response Methodology (SRM) and using deproteinized whey as fermentation medium. An Orthogonal Central Compound Design (OCCD) was used without repetition, with four factors: temperature, pH, agitation speed and fermentation time. Then, enzyme activity (U/ml) as response variable was used. Thirty trials in twenty-five treatments, with six repetitions at the central point, were carried out, in a New Brunswick Bioflo 2000 fermentor with a volume of 2 liters. The deproteinized whey obtained by thermocoagulation was chemically analyzed. The results were: moisture 93.83%, total solids 6.17%, protein 0.44%, lactose 4.85%, acidity 0.43% and pH 4.58. The best conditions in the enzyme production were: temperature 30.3 degrees C, pH 4.68, agitation speed 191 r.p.m. and fermentation time 18.5 h. with an enzyme production of 8.3 U/ml. The degree of purification obtained was 7.4 times and the yield was 50.8%. The purified enzyme had an optimum temperature of 60 degrees C and a pH of 6.2. This work shows that the yeast Kluyveromyces lactis grown in deproteinized whey is able to produce the enzyme beta-galactosidase and SRM can be used in the fermentology processes, specifically in determining the best suitable operation conditions.

  7. Statistical investigation of Kluyveromyces lactis cells permeabilization with ethanol by response surface methodology

    Directory of Open Access Journals (Sweden)

    Janaína T. de Faria

    2013-12-01

    Full Text Available The aim of our study was to select the optimal operating conditions to permeabilize Kluyveromyces lactis cells using ethanol as a solvent as an alternative to cell disruption and extraction. Cell permeabilization was carried out by a non-mechanical method consisting of chemical treatment with ethanol, and the results were expressed as β-galactosidase activity. Experiments were conducted under different conditions of ethanol concentration, treatment time and temperature according to a central composite rotatable design (CCRD, and the collected results were then worked out by response surface methodology (RSM. Cell permeabilization was improved by an increase in ethanol concentration and simultaneous decreases in the incubation temperature and treatment time. Such an approach allowed us to identify an optimal range of the independent variables within which the β-galactosidase activity was optimized. A maximum permeabilization of 2,816 mmol L-1 oNP min-1 g-1 was obtained by treating cells with 75.0% v/v of ethanol at 20.0 °C for 15.0 min. The proposed methodology resulted to be effective and suited for K. lactis cells permeabilization at a lab-scale and promises to be of possible interest for future applications mainly in the food industry.

  8. Molecular Characterization of a Recombinant Manganese Superoxide Dismutase from Lactococcus lactis M4

    Directory of Open Access Journals (Sweden)

    Boon Hooi Tan

    2014-01-01

    Full Text Available A superoxide dismutase (SOD gene of Lactococcus lactis M4 was cloned and expressed in a prokaryotic system. Sequence analysis revealed an open reading frame of 621 bp which codes for 206 amino acid residues. Expression of sodA under T7 promoter exhibited a specific activity of 4967 U/mg when induced with 1 mM of isopropyl-β-D-thiogalactopyranoside. The recombinant SOD was purified to homogeneity by immobilised metal affinity chromatography and Superose 12 gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analyses of the recombinant SOD detected a molecular mass of approximately 27 kDa. However, the SOD was in dimer form as revealed by gel filtration chromatography. The purified recombinant enzyme had a pI of 4.5 and exhibited maximal activity at 25°C and pH 7.2. It was stable up to 45°C. The insensitivity of this lactococcal SOD to cyanide and hydrogen peroxide established that it was a MnSOD. Although it has 98% homology to SOD of L. lactis IL1403, this is the first elucidated structure of lactococcal SOD revealing active sites containing the catalytic manganese coordinated by four ligands (H-27, H-82, D-168, and H-172.

  9. Culture-dependent and culture-independent qualitative analysis of probiotic products claimed to contain bifidobacteria.

    Science.gov (United States)

    Masco, L; Huys, G; De Brandt, E; Temmerman, R; Swings, J

    2005-07-15

    A total of 58 probiotic products obtained worldwide, which were claimed to contain Bifidobacterium strains (including 22 yoghurts, 5 dairy fruit drinks, 28 food supplements and 3 pharmaceutical preparations) were investigated in parallel using a culture-dependent and a culture-independent approach. Three isolation media previously reported as selective for Bifidobacterium were evaluated for their suitability in the quality analysis of these products. Subsequently, possible bifidobacterial colonies were picked from the best medium and identified by means of rep-PCR fingerprinting using the BOX primer (BOX-PCR). Bifidobacterium animalis subsp. lactis, formerly classified as Bifidobacterium lactis, was most frequently found, but strains belonging to Bifidobacterium longum biotypes longum and infantis, Bifidobacterium bifidum and Bifidobacterium breve were recovered also. In parallel, all products were also subjected to culture-independent analysis which involved a nested-PCR step on total bacterial DNA extracted directly from the product, followed by separation of the amplicons by Denaturing Gradient Gel Electrophoresis (DGGE) and subsequent identification of species from the band patterns. By conventional cultivation, 70.7% of the products analysed were found to contain culturable bifidobacteria whereas by culture-independent DGGE analysis members of the genus Bifidobacterium could be detected in 96.5% of the analysed products. Genotypic characterization of a number of bifidobacterial isolates at the strain level by means of Pulsed-Field Gel Electrophoresis (PFGE) revealed a relatively high degree of genomic homogeneity among the Bifidobacterium strains currently used in the probiotic industry.

  10. Nisin production of Lactococcus lactis N8 with hemin-stimulated cell respiration in fed-batch fermentation system.

    Science.gov (United States)

    Kördikanlıoğlu, Burcu; Şimşek, Ömer; Saris, Per E J

    2015-01-01

    In this study, nisin production of Lactococcus lactis N8 was optimized by independent variables of glucose, hemin and oxygen concentrations in fed-batch fermentation in which respiration of cells was stimulated with hemin. Response surface model was able to explain the changes of the nisin production of L. lactis N8 in fed-batch fermentation system with high fidelity (R(2) 98%) and insignificant lack of fit. Accordingly, the equation developed indicated the optimum parameters for glucose, hemin, and dissolved oxygen were 8 g L(-1) h(-1) , 3 μg mL(-1) and 40%, respectively. While 1711 IU mL(-1) nisin was produced by L. lactis N8 in control fed-batch fermentation, 5410 IU mL(-1) nisin production was achieved within the relevant optimum parameters where the respiration of cell was stimulated with hemin. Accordingly, nisin production was enhanced 3.1 fold in fed-batch fermentation using hemin. In conclusion the nisin production of L. lactis N8 was enhanced extensively as a result of increasing the biomass by stimulating the cell respiration with adding the hemin in the fed-batch fermentation.

  11. Metabolic Engineering of Mannitol Production in Lactococcus lactis: Influence of Overexpression of Mannitol 1-Phosphate Dehydrogenase in Different Genetic Backgrounds

    NARCIS (Netherlands)

    Wisselink, H.W.; Mars, A.E.; Meer, van der P.; Eggink, G.; Hugenholtz, J.

    2004-01-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance l

  12. Metabolic and Transcriptional Analysis of Acid Stress in Lactococcus lactis, with a Focus on the Kinetics of Lactic Acid Pools

    NARCIS (Netherlands)

    Carvalho, Ana Lucia; Turner, David L.; Fonseca, Luis L.; Solopova, Ana; Catarino, Teresa; Kuipers, Oscar P.; Voit, Eberhard O.; Neves, Ana Rute; Santos, Helena

    2013-01-01

    The effect of pH on the glucose metabolism of non-growing cells of L. lactis MG1363 was studied by in vivo NMR in the range 4.8 to 6.5. Immediate pH effects on glucose transporters and/or enzyme activities were distinguished from transcriptional/translational effects by using cells grown at the opti

  13. Lytic Infection of Lactococcus lactis by Bacteriophages Tuc2009 and c2 Triggers Alternative Transcriptional Host Responses

    NARCIS (Netherlands)

    Ainsworth, S.; Zomer, A.L.; Mahony, J.; Sinderen, D. van

    2013-01-01

    Here we present an entire temporal transcriptional profile of Lactococcus lactis subsp. cremoris UC509.9 undergoing lytic infection with two distinct bacteriophages, Tuc2009 and c2. Furthermore, corresponding high-resolution whole-phage genome tiling arrays of both bacteriophages were performed thro

  14. Functional analysis of glycosyltransferase genes from Lactococcus lactis and other gram-positive cocci: complementation,expression, and diversity

    NARCIS (Netherlands)

    Kranenburg, van R.; Vos, H.R.; Swam, van I.I.; Kleerebezem, M.; Vos, de W.M.

    1999-01-01

    Sixteen exopolysaccharide (EPS)-producing Lactococcus lactis strains were analyzed for the chemical compositions of their EPSS and the locations, sequences, and organization of the eps genes involved in EPS biosynthesis. This allowed the grouping of these strains into three major groups, representat

  15. Kinetic Properties of a Phosphate-Bond-Driven Glutamate-Glutamine Transport System in Streptococcus lactis and Streptococcus cremoris

    NARCIS (Netherlands)

    POOLMAN, B; SMID, EJ; KONINGS, WN

    1987-01-01

    In Streptococcus lactis ML3 and Streptococcus cremoris Wg2 the uptake of glutamate and glutamine is mediated by the same transport system, which has a 30-fold higher affinity for glutamine than for glutamate at pH 6.0. The apparent affinity constant for transport (KT) of glutamine is 2.5 ± 0.3 μM, i

  16. The anaerobic (Class III) ribonucleotide reductase from Lactococcus lactis : Catalytic properties and allosteric regulation of the pure enzyme system

    NARCIS (Netherlands)

    Torrents, Eduard; Buist, Girbe; Liu, Aimin; Eliasson, Rolf; Kok, Jan; Gibert, Isidre; Gräslund, Astrid; Reichard, Peter

    2000-01-01

    Lactococcus lactis contains an operon with the genes (nrdD and nrdG) for a class III ribonucleotide reductase, Strict anaerobic growth depends on the activity of these genes. Both were sequenced, cloned, and overproduced in Escherichia coli, The corresponding proteins, NrdD and NrdG, were purified c

  17. Versatile vector suite for the extracytoplasmic production and purification of heterologous His-tagged proteins in Lactococcus lactis

    NARCIS (Netherlands)

    Neef, Jolanda; Milder, Fin J.; Koedijk, Danny G. A. M.; Klaassens, Marindy; Heezius, Erik C.; van Strijp, Jos A. G.; Otto, Andreas; Becher, Doerte; van Dijl, Jan Maarten; Buist, Girbe

    2015-01-01

    Recent studies have shown that the Gram-positive bacterium Lactococcus lactis can be exploited for the expression of heterologous proteins; however, a versatile set of vectors suitable for inducible extracellular protein production and subsequent purification of the expressed proteins by immobilized

  18. Expression of genes encoding F-1-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Solem, Christian; Pedersen, M.B.

    2002-01-01

    We studied how the introduction of an additional ATP-consuming reaction affects the metabolic fluxes in Lactococcus lactis. Genes encoding the hydrolytic part of the F-1 domain of the membrane-bound (F1F0) H+-ATPase were expressed from a range of synthetic constitutive promoters. Expression...

  19. Occurrence of nisin Z production in Lactococcus lactis BFE 1500 isolated from wara, a traditional Nigerian cheese product.

    Science.gov (United States)

    Olasupo, N A; Schillinger, U; Narbad, A; Dodd, H; Holzapfel, W H

    1999-12-15

    Screening for bacteriocin production of 500 strains of lactic acid bacteria (LAB) from various African fermented foods resulted in the detection of a bacteriocin producing Lactococcus lactis (BFE 1500) isolated from a dairy product called wara. The bacteriocin inhibited not only the closely related LAB, but also strains of Listeria monocytogenes, Listeria innocua, Clostridium butyricum, Clostridium perfringens, Bacillis cereus and Staphylococcus aureus. It was heat stable even at autoclaving temperature (121 degrees C for 15 min) and was active over a wide pH range (2-10), but highest activity was observed in the lower pH range. The bacteriocin was inactivated by alpha-chymotrypsin and proteinase K, but not by other proteases. Growth kinetic assay indicated stronger growth inhibition by the bacteriocin produced by Lc. lactis BFE 1500 on L. monocytogenes WS 2250 and B. cereus DSM 2301 than with the nisin A producing strain DSM 20729. Polymerase chain reaction indicated the presence of the nisin operon in strain BFE 1500 and sequencing of its structural gene showed that Lc. lactis BFE 1500 produced the natural nisin variant, nisin Z, as indicated by the substitution of asparagine residue instead of histidine at position 27. The genetic determinants for bacteriocin production in strain BFE 1500 are located on a conjugative transposon. The ability of the bacteriocin produced by Lc. lactis BFE 1500 to inhibit a wide range of food-borne pathogens is of special interest for food safety, especially in the African environment with perennial problems of poor food hygiene.

  20. A POSSIBLE CONTRIBUTION OF MESSENGER-RNA SECONDARY STRUCTURE TO TRANSLATION INITIATION EFFICIENCY IN LACTOCOCCUS-LACTIS

    NARCIS (Netherlands)

    VANDEGUCHTE, M; VANDERLENDE, T; KOK, J; VENEMA, G

    1991-01-01

    Gene expression signals derived from Lactococcus lactis were linked to lacZ-fused genes with different 5'-nucleotide sequences. Computer predictions of mRNA secondary structure were combined with lacZ expression studies to direct base-substitutions that could possibly influence gene expression. Muta

  1. Enhanced production of pediocin PA-1 in wild nisin- and non-nisin-producing Lactococcus lactis strains of dairy origin

    NARCIS (Netherlands)

    Reviriego, C.; Fernandez, L.; Kuipers, O. P.; Kok, J.; Rodriguez, J. M.

    In this work, heterologous production of pediocin PA-1 in Lactococcus lactis ESI 153 and ESI 515 (Nis+), two strains selected because of their technological properties for cheesemaking, was achieved after transformation with plasmids pMC117, pRK119 and pCNC1, which contain the complete pediocin

  2. Classification of Lactococcus lactis cell envelope proteinase based on gene sequencing, peptides formed after hydrolysis of milk, and computer modeling

    DEFF Research Database (Denmark)

    Børsting, Mette Winther; Qvist, K.B.; Brockmann, E.

    2015-01-01

    Lactococcus lactis strains depend on a proteolytic system for growth in milk to release essential AA from casein. The cleavage specificities of the cell envelope proteinase (CEP) can vary between strains and environments and whether the enzyme is released or bound to the cell wall. Thirty-eight L...

  3. Lytic Infection of Lactococcus lactis by Bacteriophages Tuc2009 and c2 Triggers Alternative Transcriptional Host Responses

    NARCIS (Netherlands)

    Ainsworth, S.; Zomer, A.L.; Mahony, J.; Sinderen, D. van

    2013-01-01

    Here we present an entire temporal transcriptional profile of Lactococcus lactis subsp. cremoris UC509.9 undergoing lytic infection with two distinct bacteriophages, Tuc2009 and c2. Furthermore, corresponding high-resolution whole-phage genome tiling arrays of both bacteriophages were performed

  4. Ability of Lactococcus lactis to export viral capsid antigens: a crucial step for development of live vaccines

    NARCIS (Netherlands)

    Dieye, Y.; Hoekman, A.J.W.; Clier, F.; Juillard, V.; Boot, H.J.; Piard, J.C.

    2003-01-01

    Thefood grade bacterium Lactococcus lactis is a potential vehicle for protein delivery in the gastrointestinal tract. As a model, we constructed lactococcal strains producing antigens of infectious bursal disease virus (IBDV). IBDV infects chickens and causes depletion of B-lymphoid cells in the bur

  5. CINÉTICA, PRUEBA DE CRECIMIENTO Y EFECTO DE INHIBICIÓN DE Lactococcus lactis SOBRE Yersinia pseudotuberculosis

    Directory of Open Access Journals (Sweden)

    HENRY JURADO GÁMEZ

    2016-12-01

    Full Text Available Lactic acid bacteria have demonstrated a high ability to inhibit pathogenic microorganisms, which improve knowledge of such microorganisms is important, for this, the kinetics was determined, growth and the inhibition effect of Lactococcus lactis on Yersinia pseudotuberculosis. The research was conducted at the University of Nariño, by susceptibility testing in all strains; in vitro inhibition of Lc. lactis and supernatant on bacterial pathogen; gastrointestinal lactic strain testing (gas production and catalase, bile, bile salts and 2 temperatures, growth kinetics and HPLC determination of peptides in the supernatant. dicloxacillin resistance was found in both strains. Lactic strain and the supernatant inhibited Y. pseudotuberculosis. growths and 3,9x1010 3x1011 CFU/150 uL to 3 to 5% bile salts, 3x1011 5x1012 and CFU/150 uL 1 and 2% bovine 3x1013 and 3x1012 bile and CFU/150 uL was found 38 and 45°C. The logarithmic phase of Lc. lactis was found at 3 hours with values 6,4x1012 CFU/150 uL. The VAL-TIR-VAL peptide was found in the supernatant. It is concluded that Lc lactis shows probiotic characteristics in in vitro conditions.

  6. Stimulation of the growth of two probiotic bacteria, Lactobacillus Acidophilus NCFM and Bifidobacterium Lactis BL-04, by selected prebiotic canditates

    DEFF Research Database (Denmark)

    van Zanten, Gabriella Christina; Knudsen, Anne; Bandsholm, O.

    2009-01-01

    Prebiotics have been shown to support the growth of probiotic bacteria thereby having a beneficial effect on human health. The aim of this work was to evaluate selected and structurally different carbohydrate prebiotic candidate by measuring their capability to stimulate the growth of the two pro...... probiotic bacteria Lactobacillus acdophilus NCFM and Bifidobacterium lactis BL-04....

  7. Expression of the pyrG gene determines the pool sizes of CTP and dCTP in Lactococcus lactis

    DEFF Research Database (Denmark)

    Jørgensen, C.M.; Hammer, Karin; Jensen, Peter Ruhdal;

    2004-01-01

    The pyrG gene from Lactococcus lactis encodes CTP synthase (EC 6.4.3.2), an enzyme converting UTP to CTP. A series of strains were constructed with different levels of pyrG expression by insertion of synthetic constitutive promoters with different strengths in front of pyrG. These strains expressed...

  8. Reconstitution of the Leucine Transport System of Lactococcus lactis into Liposomes Composed of Membrane-Spanning Lipids from Sulfolobus acidocaldarius

    NARCIS (Netherlands)

    in t Veld, Geertruida; Elferink, Maria; Driessen, Arnold J.M.; Konings, Wilhelmus

    1992-01-01

    The effect of bipolar tetraether lipids, extracted from the thermophilic archaebacterium Sulfolobus acidocaldarius, on the branched-chain amino acid transport system of the mesophilic bacterium Lactococcus lactis was investigated. Liposomes were prepared from mixtures of monolayer lipids and the bil

  9. Stimulation of the growth of two probiotic bacteria, Lactobacillus Acidophilus NCFM and Bifidobacterium Lactis BL-04, by selected prebiotic canditates

    DEFF Research Database (Denmark)

    van Zanten, Gabriella Christina; Knudsen, Anne; Bandsholm, O.;

    2009-01-01

    Prebiotics have been shown to support the growth of probiotic bacteria thereby having a beneficial effect on human health. The aim of this work was to evaluate selected and structurally different carbohydrate prebiotic candidate by measuring their capability to stimulate the growth of the two...... probiotic bacteria Lactobacillus acdophilus NCFM and Bifidobacterium lactis BL-04....

  10. EFFECT OF THE CONSUMPTION OF A CHEESE ENRICHED WITH PROBIOTIC ORGANISMS (BIFIDOBACTERIUM LACTIS BI-07 IN IMPROVING SYMPTOMS OF CONSTIPATION

    Directory of Open Access Journals (Sweden)

    Diane Cassia FAVRETTO

    2013-09-01

    Full Text Available Context Constipation is a very common symptom in the general population. One way of non-pharmacological treatment of constipation is through the addition of probiotics to food. Obectives The aim of this study was to evaluate de effect of the consumption of a fresh cheese, enriched with Bifidobacterium lactis Bi-07 on the symptoms of constipated women. Methods A randomized controlled trial, carried out in the Basic Health Units of Guaporé's City – RS/Brazil, between january and may 2012, with 30 constipated women. The patients were randomized into two groups whom received, for 30 days, 30 g of fresh cheese enriched with Bifidobacterium lactis Bi-07 (n = 15 or regular fresh cheese (n = 15. Constipation symptoms were evaluated according to ROMA III Consensus, before and after the nutritional intervention. Also, data of clinical and anthropometric characteristics of the individuals were collected. Accepted level of significance 5% (P≤0,05. Results The medium age of the studied population was 37,5±14,4 years in the intervention group and 40,8±12,8 years in the control group. After 30 days we observed that the ingestion of fresh cheese enriched with Bifidobacterium lactis Bi-07 promoted benefic effects on the symptoms of strength to evacuate. Conclusion The consumption of 30g/day of a fresh cheese enriched with Bifidobacterium lactis Bi-07 has beneficial effects on constipation symptoms.

  11. Biochemical Characterization of ThiT from Lactococcus lactis : A Thiamin Transporter with Picomolar Substrate Binding Affinity

    NARCIS (Netherlands)

    Erkens, Guus B.; Slotboom, Dirk Jan

    2010-01-01

    The putative thiamin transporter ThiT from Lactococeus lactis was overproduced in the membrane of lactococcal cells. In vivo transport assays using radiolabeled thiamin demonstrated that ThiT indeed was involved in thiamin transport. The protein was solubilized from the membranes and purified in det

  12. Physiological and Regulatory Effects of Controlled Overproduction of Five Cold Shock Proteins of Lactococcus lactis MG1363

    NARCIS (Netherlands)

    Wouters, Jeroen A.; Mailhes, Marielle; Rombouts, Frank M.; Vos, Willem M. de; Kuipers, Oscar P.; Abee, Tjakko

    2000-01-01

    The physiological and regulatory effects of overproduction of five cold shock proteins (CSPs) of Lactococcus lactis were studied. CspB, CspD, and CspE could be overproduced at high levels (up to 19% of the total protein), whereas for CspA and CspC limited overproduction (0.3 to 0.5% of the total pro

  13. Two nucleoside uptake systems in Lactococcus lactis: Competition between purine nucleosides and cytidine allows for modulation of intracellular nucleotide pools

    DEFF Research Database (Denmark)

    Martinussen, Jan; Wadskov-Hansen, Steen Lyders Lerche; Hammer, Karin

    2003-01-01

    in Lactococcus lactis were investigated by measuring the uptake of radioactively labeled nucleosides. The K. for for inosine, cytidine, and uridine was determined to be in the micromolar range. Furthermore, it was found that cytidine and inosine are competitive inhibitors of each other, whereas no competition...

  14. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism

    NARCIS (Netherlands)

    van der Meulen, Sjoerd B; de Jong, Anne; Kok, Jan

    2016-01-01

    RNA sequencing has revolutionized genome-wide transcriptome analyses, and the identification of non-coding regulatory RNAs in bacteria has thus increased concurrently. Here we reveal the transcriptome map of the lactic acid bacterial paradigm Lactococcus lactis MG1363 by employing differential RNA s

  15. Interaction between ArgR and AhrC controls regulation of arginine metabolism in Lactococcus lactis

    NARCIS (Netherlands)

    Larsen, R; Kok, J; Kuipers, OP

    2005-01-01

    The expression of arginine metabolism in Lactococcus lactis is controlled by the two homologous transcriptional regulators ArgR and AhrC. Genome sequence analyses have shown that the occurrence of multiple homologues of the ArgR family of transcriptional regulators is a common feature of many low-G

  16. Metabolic Engineering of Mannitol Production in Lactococcus lactis: Influence of Overexpression of Mannitol 1-Phosphate Dehydrogenase in Different Genetic Backgrounds

    NARCIS (Netherlands)

    Wisselink, H.W.; Mars, A.E.; Meer, van der P.; Eggink, G.; Hugenholtz, J.

    2004-01-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance

  17. Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux

    DEFF Research Database (Denmark)

    Andersen, Heidi Winterberg; Solem, Christian; Hammer, Karin;

    2001-01-01

    Two mutant strains of Lactococcus lactis in which the promoter of the las operon, harboring pfk, pyk, and ldh, were replaced by synthetic promoters were constructed. These las mutants had an approximately twofold decrease in the activity of phosphofructokinase, whereas the activities of pyruvate...

  18. The riboflavin transporter RibU in Lactococcus lactis : Molecular characterization of gene expression and the transport mechanism

    NARCIS (Netherlands)

    Burgess, CM; Slotboom, DJ; Geertsma, ER; Duurkens, Hinderika; Poolman, B; van Sinderen, D

    2006-01-01

    This study describes the characterization of the riboflavin transport protein RibU in the lactic acid bacterium Lactococcus lactis subsp. cremoris NZ9000. RibU is predicted to contain five membrane-spanning segments and is a member of a novel transport protein family, not described in the Transport

  19. Complete Sequences of Four Plasmids of Lactococcus lactis subsp. cremoris SK11 Reveal Extensive Adaptation to the Dairy Environment†

    Science.gov (United States)

    Siezen, Roland J.; Renckens, Bernadet; van Swam, Iris; Peters, Sander; van Kranenburg, Richard; Kleerebezem, Michiel; de Vos, Willem M.

    2005-01-01

    Lactococcus lactis strains are known to carry plasmids encoding industrially important traits. L. lactis subsp. cremoris SK11 is widely used by the dairy industry in cheese making. Its complete plasmid complement was sequenced and found to contain the plasmids pSK11A (10,372 bp), pSK11B (13,332 bp), pSK11L (47,165 bp), and pSK11P (75,814 bp). Six highly homologous repB-containing replicons were found, all belonging to the family of lactococcal theta-type replicons. Twenty-three complete insertion sequence elements segment the plasmids into numerous modules, many of which can be identified as functional units or containing functionally related genes. Plasmid-encoded functions previously known to reside on L. lactis SK11 plasmids were now mapped in detail, e.g., lactose utilization (lacR-lacABCDFEGX), the proteolytic system (prtM-prtP, pepO, pepF), and the oligopeptide permease system (oppDFBCA). Newly identified plasmid-encoded functions could facilitate the uptake of various cations, while the pabA and pabB genes could be essential for folate biosynthesis. A competitive advantage could be obtained by using the putative flavin adenine dinucleotide-dependent d-lactate dehydrogenase and oxalate:formate antiporter for enhanced ATP synthesis, while the activity of the predicted α-acetolactate decarboxylase may contribute to the formation of an additional electron sink. Various stress response proteins are plasmid encoded, which could enhance strain robustness. A substantial number of these “adaptation” genes have not been described before on L. lactis plasmids. Moreover, several genes were identified for the first time in L. lactis, possibly reflecting horizontal gene transfer. PMID:16332824

  20. Oral administration of Lactococcus lactis subsp. lactis JCM5805 enhances lung immune response resulting in protection from murine parainfluenza virus infection.

    Directory of Open Access Journals (Sweden)

    Kenta Jounai

    Full Text Available When activated by viral infection, plasmacytoid dendritic cells (pDCs play a primary role in the immune response through secretion of IFN-α. Lactococcus lactis subsp. lactis JCM5805 (JCM5805 is a strain of lactic acid bacteria (LAB that activates murine and human pDCs to express type I and type III interferons (IFNs. JCM5805 has also been shown to activate pDCs via a Toll-like receptor 9 (TLR9 dependent pathway. In this study, we investigated the anti-viral effects of oral administration of JCM5805 using a mouse model of murine parainfluenza virus (mPIV1 infection. JCM5805-fed mice showed a drastic improvement in survival rate, prevention of weight loss, and reduction in lung histopathology scores compared to control mice. We further examined the mechanism of anti-viral effects elicited by JCM5805 administration using naive mice. Microscopic observations showed that JCM5805 was incorporated into CD11c+ immune cells in Peyer's patches (PP and PP pDCs were significantly activated and the expression levels of IFNs were significantly increased. Interestingly, nevertheless resident pDCs at lung were not activated and expressions levels of IFNs at whole lung tissue were not influenced, the expressions of anti-viral factors induced by IFNs, such as Isg15, Oasl2, and Viperin, at lung were up-regulated in JCM5805-fed mice compared to control mice. Therefore expressed IFNs from intestine might be delivered to lung and IFN stimulated genes might be induced. Furthermore, elevated expressions of type I IFNs from lung lymphocytes were observed in response to mPIV1 ex vivo stimulation in JCM5805-fed mice compared to control. This might be due to increased ratio of pDCs located in lung were significantly increased in JCM5805 group. Taken together, a specific LAB strain might be able to affect anti-viral immunological profile in lung via activation of intestinal pDC leading to enhanced anti-viral phenotype in vivo.

  1. Genotypic identification of some lactic acid bacteria by amplified fragment length polymorphism analysis and investigation of their potential usage as starter culture combinations in Beyaz cheese manufacture.

    Science.gov (United States)

    Karahan, A G; Başyiğit Kiliç, G; Kart, A; Sanlidere Aloğlu, H; Oner, Z; Aydemir, S; Erkuş, O; Harsa, S

    2010-01-01

    In this study, 2 different starter culture combinations were prepared for cheesemaking. Starter culture combinations were formed from 8 strains of lactic acid bacteria. They were identified as Lactococcus lactis ssp. lactis (2 strains), Lactobacillus plantarum (5 strains), and Lactobacillus paraplantarum (1 strain) by amplified fragment length polymorphism analysis. The effects of these combinations on the physicochemical and microbiological properties of Beyaz cheeses were investigated. These cheeses were compared with Beyaz cheeses that were produced with a commercial starter culture containing Lc. lactis ssp. lactis and Lc. lactis ssp. cremoris as control. All cheeses were ripened in brine at 4 degrees C for 90 d. Dry matter, fat in dry matter, titratable acidity, pH, salt in dry matter, total N, water-soluble N, and ripening index were determined. Sodium dodecyl sulfate-PAGE patterns of cheeses showed that alpha(S)-casein and beta-casein degraded slightly during the ripening period. Lactic acid bacteria, total mesophilic aerobic bacteria, yeast, molds, and coliforms were also counted. All analyses were repeated twice during d 7, 30, 60, and 90. The starter culture combinations were found to be significantly different from the control group in pH, salt content, and lactobacilli, lactococci, and total mesophilic aerobic bacteria counts, whereas the cheeses were similar in fat, dry matter content, and coliform, yeast, and mold counts. The sensory analysis of cheeses indicated that textural properties of control cheeses presented somewhat lower scores than those of the test groups. The panelists preferred the tastes of treatment cheeses, whereas cheeses with starter culture combinations and control cheeses had similar scores for appearance and flavor. These results indicated that both starter culture combinations are suitable for Beyaz cheese production.

  2. BIOCHEMICAL CHARACTERISTICS OF LACTIC ACID PRODUCING BACTERIA AND PREPARATION OF CAMEL MILK CHEESE BY USING STARTER CULTURE

    Directory of Open Access Journals (Sweden)

    T. Ahmed and R. Kanwal

    2004-04-01

    Full Text Available Lactic acid bacteria (LAB were isolated from camel milk by culturing the milk on specific media and pure culture was obtained by sub-culturing. Purification of culture was confirmed by Gram’s staining and identified by different biochemical tests. Camel milk contained lactic acid producing bacteria like Streptococci such as S. cremoris and S. lactis and Lactobacilli such as L. acidophilus. L. acidophilus grew more rapidly in camel milk than others as its growth was supported by camel milk. Ability of each strain was tested to convert lactose of milk into lactic acid. It was observed that 66% lactose was converted by S. lactis 20, whereas S. cremoris 22 and L. acidophilus 23 converted 56 and 74% lactose into lactic acid, respectively. Effect of freeze-drying was also recorded and the results showed that in all cases there was a slight decrease in the cell count before and after the freeze-drying. The decrease was approximately 0.47, 0.078 and 0.86% for S. lactis 20, S. cremoris 22 and L. acidophilus 23, respectively. Starter culture was prepared from strains isolated from camel milk. Camel and buffalo milk cheese was prepared by using starter culture. The strains isolated from camel milk were best for acid production and coagulated the milk in less time. It is concluded that cheese can be prepared successfully from camel milk and better results can be obtained by coagulating milk with starter culture.

  3. Screening of lactic acid bacteria isolated from Serbian kajmak for use in starter cultures

    Directory of Open Access Journals (Sweden)

    Joković, N.

    2014-09-01

    Full Text Available One hundred and seventy eight isolates of lactic acid bacteria (LAB were isolated by pour plate and enrichment techniques from a sample of milk used for kajmak production and three samples of kajmak from one month ripening period. The identification of isolates was performed by phenotypic characterization followed by molecular identification using (GTG5-PCR and sequence analysis of 16S rRNA gene. Isolates belonged to Lactococcus lactis and Enterococcus faecium were found in milk and kajmak samples while Leuconostoc mesenteroides and Enterococcus durans were the most frequently isolated species from kajmak samples. Streptococcus thermophilus were isolated from milk sample only with enrichment technique. Further characterization of LAB isolates was done for technological properties which are important for industrial application of LAB. Strains of Lc. lactis and S. thermophilus that showed very good acidification and proteolityc activities and L. mesenteroides strains that metabolized citrate can be used in development of starter cultures for eventual industrial production of kajmak. Additionally, producers of antimicrobial compounds belonged to Lc. lactis subsp. lactis biovar. diacetylactis can be used for control of undesirable microflora in kajmak production.

  4. 不同气体环境对益生菌Bifidobacterium lactis V9生长的影响%Effects of air condition on the viability of probiotic bacteria: Bifidobacterium lactis V9

    Institute of Scientific and Technical Information of China (English)

    其木格苏都; 白梅; 孔亚楠; 魏爱彬; 王记成; 张和平

    2012-01-01

    Bifidobacterium lactis V9(B.lactis V9)是一株具有良好益生特性且遗传稳定的益生茵,工业化生产环境中气体组成关系着益生菌活菌数量,进而影响其益生功效.[目的]研究不同气体环境对B.lactis V9生长及代谢的影响.[方法]在固体MRS培养基、液体MRS培养基及巴氏杀菌脱脂乳接种B.lactis V9,于不同的气体环境中培养.[结果]在固体MRS培养基上,B.lactis V9在混合气体(N2∶H2∶CO2=80∶10∶10)环境中菌落形成较氮气环境(N2∶99.99%)多,在空气环境(N2∶O2≈79∶21)中菌落形成极少.B.lactis V9在MRS液体中培养24 h,混合气体环境下其活菌数(9.11±0.11 log CFU/mL)显著高于空气环境下的活菌数(8.04±0.10 log CFU/mL) (P<0.01),在混合气体环境下B.lactis V9代谢生成的乙酸和乳酸量分别为12.79±0.86 mmol/L和11.99±0.73 mmol/L,显著高于在空气环境中生成量0.65±0.07 mmol/L和2.75±0.57 mmol/L (P<0.01),乙酸/乳酸比值分别为1.06∶1和0.24∶1.B.lactis V9在巴氏杀菌脱脂乳中发酵18h,混合气体环境下pH值(4.48±0.07)显著低于空气环境下的pH值(5.03±0.12) (P<0.01),混合气体环境下其活菌数(9.02±0.15 log CFU/mL)显著高于空气环境下的活菌数(8.53±0.08 log CFU/mL) (P<0.01).混合气体和空气环境下发酵脱脂乳产生的乙酸和乳酸量分别为60.52±2.30 mmol/L、5.17±1.02 mmol/L和16.86±0.34 mmol/L、5.92±0.81 mmol/L,乙酸/乳酸的值分别为11.71∶1和2.85∶1.[结论]在N2∶H2∶CO2=80∶10∶10混合气体环境下有利于B.lactis V9在液体MRS和脱脂乳中生长,其活菌数可以增加0.5-1个数量级.这一研究结果也可为B.lactis V9益生菌发酵乳的生产和产品中B.lactis V9活菌培养计数提供指导.%Bifldobacterium lactis V9 (B.lactis V9) has been demostrated as a probiotic with well properties and stable genetics.The gas composition in environment of industrial manufacturation is positively associated with viable numbers of

  5. Endosomal recognition of Lactococcus lactis G121 and its RNA by dendritic cells is key to its allergy-protective effects.

    Science.gov (United States)

    Stein, Karina; Brand, Stephanie; Jenckel, André; Sigmund, Anna; Chen, Zhijian James; Kirschning, Carsten J; Kauth, Marion; Heine, Holger

    2017-02-01

    Bacterial cowshed isolates are allergy protective in mice; however, the underlying mechanisms are largely unknown. We examined the ability of Lactococcus lactis G121 to prevent allergic inflammatory reactions. We sought to identify the ligands and pattern recognition receptors through which L lactis G121 confers allergy protection. L lactis G121-induced cytokine release and surface expression of costimulatory molecules by untreated or inhibitor-treated (bafilomycin and cytochalasin D) human monocyte-derived dendritic cells (moDCs), bone marrow-derived mouse dendritic cells (BMDCs), and moDC/naive CD4(+) T-cell cocultures were analyzed by using ELISA and flow cytometry. The pathology of ovalbumin-induced acute allergic airway inflammation after adoptive transfer of BMDCs was examined by means of microscopy. L lactis G121-treated murine BMDCs and human moDCs released TH1-polarizing cytokines and induced TH1 T cells. Inhibiting phagocytosis and endosomal acidification in BMDCs or moDCs impaired the release of TH1-polarizing cytokines, costimulatory molecule expression, and T-cell activation on L lactis G121 challenge. In vivo allergy protection mediated by L lactis G121 was dependent on endosomal acidification in dendritic cells (DCs). Toll-like receptor (Tlr) 13(-/-) BMDCs showed a weak response to L lactis G121 and were unresponsive to its RNA. The TH1-polarizing activity of L lactis G121-treated human DCs was blocked by TLR8-specific inhibitors, mediated by L lactis G121 RNA, and synergistically enhanced by activation of nucleotide-binding oligomerization domain-containing protein (NOD) 2. Bacterial RNA is the main driver of L lactis G121-mediated protection against experimentally induced allergy and requires both bacterial uptake by DCs and endosomal acidification. In mice L lactis G121 RNA signals through TLR13; however, the most likely intracellular receptor in human subjects is TLR8. Copyright © 2016 American Academy of Allergy, Asthma & Immunology

  6. Studies on the storage stability of Bifidobacterium lactis V9 in skim milk powder%Bifidobacterium lactis V9在脱脂乳粉中贮藏稳定性的研究

    Institute of Scientific and Technical Information of China (English)

    刘彪; 张和平

    2012-01-01

    To investigate the bacterial survive stability (B. lactis V9 and Bifidobacterium B) in skim milk powder under different temperatures. Arrhenius equation was involved for evaluating the relationship between temperature and loss rate of bacterial cells in order to predict the loss of B. lactis V9 and Bifidobacterium B in skim milk powder during shelf life. The results showed drat loss rate of bacterial cells was increased as the temperature increment. After at 37 ℃ for 28 days storage, living numbers of two strains were the mosdy reduced by two order of magnitude. No significant changes of living numbers with rime variation was observed at each temperature. A prediction model of shelf life with two strains under different temperatures was established according to Arrhenius equation and bacterial decrement data.This model can predict the loss rate of bacterial cells under one temperature and shelf life of bifidobacteria skim milk powder.%研究Bifidobacterium laais V9(B.laais V9)与双歧杆菌B在脱脂乳粉中不同温度条件下存活稳定性,并以Arrhenius方程反映温度与菌体损失率之间关系,预测B.lactis V9与双歧杆菌B相关乳粉产品货架期内菌体损失情况.结果表明,B.lactis V9与双歧杆菌B随温度升高,菌体损失率增大.两菌株在37℃贮藏28 d后,活菌数下降最明显,约两个数量级,且在不同贮藏温度下活菌数随时间变化情况无显著性差异.通过Arrhenius方程和菌体递减模型,建立了B.lactis V9和双歧杆菌B在不同温度下货架期预测模型,该模型可以较好的预测含B.lactis V9和双歧杆菌B乳粉产品在某一温度下菌体损失率和货架期寿命.

  7. Dextran sulphate sodium colitis in C57BL/6J mice is alleviated by Lactococcus lactis and worsened by the neutralization of Tumor necrosis Factor α.

    Science.gov (United States)

    Berlec, Aleš; Perše, Martina; Ravnikar, Matjaž; Lunder, Mojca; Erman, Andreja; Cerar, Anton; Štrukelj, Borut

    2017-02-01

    TNFα has a well-established role in inflammatory bowel disease that affects the gastrointestinal tract and is usually manifested as Crohn's disease or ulcerative colitis. We have compared Lactococcus lactis NZ9000 displaying TNFα-binding affibody with control Lactococcus lactis and with anti-TNFα antibody infliximab for the treatment of mice with dextran sulphate sodium (DSS)-induced colitis. L. lactis NZ9000 alleviated the colitis severity one week after colitis induction with DSS, more effectively when administered in preventive fashion prior to, during and after DSS administration. TNFα-binding L. lactis was less effective than control L. lactis, particularly when TNFα-binding L. lactis was administered in preventive fashion. Similarly, an apparently detrimental effect of TNFα neutralization was observed in mice that were intraperitoneally administered anti-TNFα monoclonal antibody infliximab prior to colitis induction. The highest concentrations of tissue TNFα were observed in groups without DSS colitis that were treated either with TNFα-binding L. lactis or infliximab. To conclude, we have confirmed that L. lactis exerts a protective effect on DSS-induced colitis in mice. Contrary to expectations, but in line with some reports, the neutralization of TNFα aggravated disease symptoms in the acute phase of colitis and increased TNFα concentration in colon tissue of healthy mice. Nevertheless, we have demonstrated that oral administration of bacteria with surface displayed TNFα-binding affibody can interfere significantly with TNFα signaling and mimic the infliximab response in the given animal model of colitis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The Effect of Hyperosmotic Stress and Nitrogen Starvation on Growth and b-Galactosidase Synthesis in Kluyveromyces lactis and Kluyveromyces marxianus

    OpenAIRE

    2008-01-01

    Kluyveromyces lactis and Kluyveromyces marxianus are industrial yeasts widely used in the production of the b-galactosidase enzyme. Biosynthesis of b-galactosidase is controlled by glucose repression. In this study it was demonstrated that the derepression of b-galactosidase biosynthesis in these yeast strains is inhibited by high osmotic stress. It was found that the b-galactosidase activity of K. lactis and K. marxianus remained approximately at the repressed level when these yeast cells we...

  9. Purification and Characterization of Cystathionine (beta)-Lyase from Lactococcus lactis subsp. cremoris B78 and Its Possible Role in Flavor Development in Cheese.

    Science.gov (United States)

    Alting, A C; Engels, W; van Schalkwijk, S; Exterkate, F A

    1995-11-01

    An enzyme that degrades sulfur-containing amino acids was purified from Lactococcus lactis subsp. cremoris B78; this strain was isolated from a mixed-strain, mesophilic starter culture used for the production of Gouda cheese. The enzyme has features of a cystathionine (beta)-lyase (EC 4.4.1.8), a pyridoxal-5(prm1)-phosphate-dependent enzyme involved in the biosynthesis of methionine and catalyzing an (alpha),(beta)-elimination reaction. It is able to catalyze an (alpha),(gamma)-elimination reaction as well, which in the case of methionine, results in the production of methanethiol, a putative precursor of important flavor compounds in cheese. The native enzyme has a molecular mass of approximately 130 to 165 kDa and consists of four identical subunits of 35 to 40 kDa. The enzyme is relatively thermostable and has a pH optimum for activity around 8.0; it is still active under cheese-ripening conditions, viz., pH 5.2 to 5.4 and 4% (wt/vol) NaCl. A possible essential role of the enzyme in flavor development in cheese is suggested.

  10. Recombinant Lactococcus lactis Expressing Haemagglutinin from a Polish Avian H5N1 Isolate and Its Immunological Effect in Preliminary Animal Trials.

    Science.gov (United States)

    Szczepankowska, Agnieszka K; Szatraj, Katarzyna; Sałański, Przemysław; Rózga, Agnieszka; Górecki, Roman K; Bardowski, Jacek K

    2017-01-01

    Lactic acid bacteria (LAB) are Gram-positive, nonpathogenic microorganisms that are gaining much interest as antigen producers for development of live vaccine vectors. Heterologous proteins of different origin have been successfully expressed in various LAB species, including Lactococcus lactis. Recombinant L. lactis strains have been shown to induce specific local and systemic immune responses against various antigens. Our study aimed at constructing a L. lactis strain expressing haemagglutinin of a Polish avian H5H1 influenza isolate and examining its effect on animals. Expression of the cloned H5 gene was achieved using the nisin-controlled gene expression system. Detection of the intracellular H5 antigen produced in L. lactis was performed by Western blot analysis and confirmed using mass spectrometry. The potential of L. lactis recombinant cells to induce an immune response was examined by setting up preliminary immunization trials on chickens and mice. Obtained sera were tested for specific antibodies by ELISA assays. The results of these studies are a promising step toward developing a vaccine against the bird flu using Lactococcus lactis cells as bioreactors for efficient antigen production and delivery to the mucosal surface.

  11. DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts.

    Science.gov (United States)

    Candela, Marco; Centanni, Manuela; Fiori, Jessica; Biagi, Elena; Turroni, Silvia; Orrico, Catia; Bergmann, Simone; Hammerschmidt, Sven; Brigidi, Patrizia

    2010-06-01

    Bifidobacterium animalis subsp. lactis lives in the gastrointestinal tract of most mammals, including humans. Recently, for the probiotic strain B. animalis subsp. lactis BI07, a dose-dependent plasminogen-binding activity was demonstrated and five putative plasminogen-binding proteins were identified. Here we investigated the role of surface DnaK as a B. animalis subsp. lactis BI07 plasminogen receptor. DnaK was visualized on the bacterial cell surface by transmission electron microscopy. The His-tagged recombinant DnaK protein showed a high affinity for human plasminogen, with an equilibrium dissociation constant in the nanomolar range. The capability to tolerate physiological concentrations of bile salts is a crucial feature for an intestinal symbiont micro-organism. By proteome analysis we demonstrated that the long-term exposure of B. animalis subsp. lactis BI07 to bile salts results in the upregulation of important surface plasminogen receptors such as DnaK and enolase. Moreover, adaptation of B. animalis subsp. lactis BI07 to physiological concentrations of bile salts significantly increased its capacity to interact with the host plasminogen system. By enhancing the bacterial capacity to interact with the host plasminogen, the gut bile environment may facilitate the colonization of the human host by B. animalis subsp. lactis BI07.

  12. Comparison of the local immune response against Giardia lamblia cyst wall protein 2 induced by recombinant Lactococcus lactis and Streptococcus gordonii.

    Science.gov (United States)

    Lee, Peter; Abdul-Wahid, Aws; Faubert, Gaétan M

    2009-01-01

    Lactococcus lactis and Streptococcus gordonii are lactic acid bacteria (LAB) currently being advocated for use as live antigen delivery vehicles to mucosal sites. Since both vehicles differ in their capability to persist within the small intestine and in their mode of antigen delivery, we sought to compare them to determine which one was superior. In this study, we compared the efficacy of recombinant L. lactis and S. gordonii to stimulate intestinal immune responses against Giardia lamblia cyst wall protein-2 in BALB/c mice. Oral administration of either vector significantly increased the number of CD4(+) T helper and B-cells in the mesenteric lymph nodes (MLN) and Peyer's patches (PP) of immunized animals. Delivery of recombinant CWP2 (rCWP2) by L. lactis stimulated a balanced IFN-gamma/IL-4 response (MLN and PP cells) and a CWP2-specific intestinal IgA antibody response. Alternatively, delivery of rCWP2 by S. gordonii stimulated a higher frequency of IFN-gamma secreting MLN and PP cells, as well as doubling the amount of CWP2-specific intestinal IgA. In challenge studies, L. lactis and S. gordonii reduced cyst output by 71 and 90%, respectively. When compared to each other, S. gordonii-immunized animals shed 65% fewer cysts than their L. lactis-immunized counterparts. Based on these findings, we concluded that S. gordonii was superior to L. lactis as an intestinal vaccine delivery vehicle.

  13. Recombinant Lactococcus lactis Expressing Haemagglutinin from a Polish Avian H5N1 Isolate and Its Immunological Effect in Preliminary Animal Trials

    Directory of Open Access Journals (Sweden)

    Agnieszka K. Szczepankowska

    2017-01-01

    Full Text Available Lactic acid bacteria (LAB are Gram-positive, nonpathogenic microorganisms that are gaining much interest as antigen producers for development of live vaccine vectors. Heterologous proteins of different origin have been successfully expressed in various LAB species, including Lactococcus lactis. Recombinant L. lactis strains have been shown to induce specific local and systemic immune responses against various antigens. Our study aimed at constructing a L. lactis strain expressing haemagglutinin of a Polish avian H5H1 influenza isolate and examining its effect on animals. Expression of the cloned H5 gene was achieved using the nisin-controlled gene expression system. Detection of the intracellular H5 antigen produced in L. lactis was performed by Western blot analysis and confirmed using mass spectrometry. The potential of L. lactis recombinant cells to induce an immune response was examined by setting up preliminary immunization trials on chickens and mice. Obtained sera were tested for specific antibodies by ELISA assays. The results of these studies are a promising step toward developing a vaccine against the bird flu using Lactococcus lactis cells as bioreactors for efficient antigen production and delivery to the mucosal surface.

  14. Recombinant Lactococcus lactis Expressing Haemagglutinin from a Polish Avian H5N1 Isolate and Its Immunological Effect in Preliminary Animal Trials

    Science.gov (United States)

    Szatraj, Katarzyna; Sałański, Przemysław; Rózga, Agnieszka; Górecki, Roman K.; Bardowski, Jacek K.

    2017-01-01

    Lactic acid bacteria (LAB) are Gram-positive, nonpathogenic microorganisms that are gaining much interest as antigen producers for development of live vaccine vectors. Heterologous proteins of different origin have been successfully expressed in various LAB species, including Lactococcus lactis. Recombinant L. lactis strains have been shown to induce specific local and systemic immune responses against various antigens. Our study aimed at constructing a L. lactis strain expressing haemagglutinin of a Polish avian H5H1 influenza isolate and examining its effect on animals. Expression of the cloned H5 gene was achieved using the nisin-controlled gene expression system. Detection of the intracellular H5 antigen produced in L. lactis was performed by Western blot analysis and confirmed using mass spectrometry. The potential of L. lactis recombinant cells to induce an immune response was examined by setting up preliminary immunization trials on chickens and mice. Obtained sera were tested for specific antibodies by ELISA assays. The results of these studies are a promising step toward developing a vaccine against the bird flu using Lactococcus lactis cells as bioreactors for efficient antigen production and delivery to the mucosal surface. PMID:28321412

  15. Production of recombinant peanut allergen Ara h 2 using Lactococcus lactis

    DEFF Research Database (Denmark)

    Glenting, J.; Poulsen, Lars K.; Kato, K.;

    2007-01-01

    Background: Natural allergen sources can supply large quantities of authentic allergen mixtures for use as immunotherapeutics. However, such extracts are complex, difficult to define, vary from batch to batch, which may lead to unpredictable efficacy and/ or unacceptable levels of side effects....... The use of recombinant expression systems for allergen production can alleviate some of these issues. Several allergens have been tested in high- level expression systems and in most cases show immunereactivity comparable to their natural counterparts. The gram positive lactic acid bacterium Lactococcus...... of the major allergens in peanut have been described. However, for therapeutic usage more information about the individual allergenic components is needed. In this paper we report recombinant production of the Ara h 2 peanut allergen using L. lactis. Results: A synthetic ara h 2 gene was cloned into an L...

  16. Interaction of benzoate pyrimidine analogues with class 1A dihydroorotate dehydrogenase from Lactococcus lactis

    DEFF Research Database (Denmark)

    Wolfe, Abigail E; Thymark, Majbritt; Gattis, Samuel G

    2007-01-01

    -specific inhibitor directed against this site are poor. Nonetheless, two compounds that bind specifically to the Class 1A DHOD from Lactococcus lactis, 3,4-dihydroxybenzoate (3,4-diOHB) and 3,5-dihydroxybenzoate (3,5-diOHB), have been identified [Palfey et al. (2001) J. Med. Chem. 44, 2861-2864]. The mechanism...... determined, showing that 3,5-diOHB binds in the same orientation as orotate. In contrast, 3,4-diOHB binds in a twisted orientation, enabling one of its phenolic oxygens to form a very strong hydrogen bond to an asparagine, thus stabilizing the phenolate and causing charge-transfer interactions with the pi-system...... of the flavin, resulting in a green color....

  17. Control analysis as a tool to understand the formation of the las operon in Lactococcus lactis

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Solem, Christian; Jensen, Peter Ruhdal

    2005-01-01

    In Lactococcus lactis the enzymes phosphofructokinase (PFK), pyruvate kinase (PK) and lactate dehydrogenase (LDH) are uniquely encoded in the las operon and we here apply Metabolic Control Analysis to study the role of this organisation. Earlier work showed that LDH at wildtype level has zero...... control on glycolysis and growth rate but high negative control on formate production. We find that PFK and PK have zero control on glycolysis and growth rate at the wildtype enzyme level but both enzymes exert strong positive control on the glycolytic flux at reduced activities. PK has high positive...... control on formate and acetate production, whereas PFK has no control on these fluxes. Decreased expression of the entire las operon resulted in a strong decrease in growth rate and the glycolytic flux; at 53% expression of the las operon the glycolytic flux was reduced to 44% and the flux control...

  18. Control analysis as a tool to understand the formation of the las operon in Lactococcus lactis

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Solem, Christian; Jensen, Peter Ruhdal

    2005-01-01

    In Lactococcus lactis the enzymes phosphofructokinase (PFK), pyruvate kinase (PK) and lactate dehydrogenase (LDH) are uniquely encoded in the las operon and we here apply Metabolic Control Analysis to study the role of this organisation. Earlier work showed that LDH at wildtype level has zero...... control on glycolysis and growth rate but high negative control on formate production. We find that PFK and PK have zero control on glycolysis and growth rate at the wildtype enzyme level but both enzymes exert strong positive control on the glycolytic flux at reduced activities. PK has high positive...... control on formate and acetate production, whereas PFK has no control on these fluxes. Decreased expression of the entire las operon resulted in a strong decrease in growth rate and the glycolytic flux; at 53% expression of the las operon the glycolytic flux was reduced to 44% and the flux control...

  19. Biocidal Inactivation of Lactococcus lactis Bacteriophages: Efficacy and Targets of Commonly Used Sanitizers

    Science.gov (United States)

    Hayes, Stephen; Murphy, James; Mahony, Jennifer; Lugli, Gabriele A.; Ventura, Marco; Noben, Jean-Paul; Franz, Charles M. A. P.; Neve, Horst; Nauta, Arjen; Van Sinderen, Douwe

    2017-01-01

    Lactococcus lactis strains, being intensely used in the dairy industry, are particularly vulnerable to members of the so-called 936 group of phages. Sanitization and disinfection using purpose-made biocidal solutions is a critical step in controlling phage contamination in such dairy processing plants. The susceptibility of 36 936 group phages to biocidal treatments was examined using 14 biocides and commercially available sanitizers. The targets of a number of these biocides were investigated by means of electron microscopic and proteomic analyses. The results from this study highlight significant variations in phage resistance to biocides among 936 phages. Furthermore, rather than possessing resistance to specific biocides or biocide types, biocide-resistant phages tend to possess a broad tolerance to multiple classes of antimicrobial compounds. PMID:28210242

  20. Inducible amplification of gene copy number and heterologous protein production in the yeast Kluyveromyces lactis.

    Science.gov (United States)

    Morlino, G B; Tizzani, L; Fleer, R; Frontali, L; Bianchi, M M

    1999-11-01

    Heterologous protein production can be doubled by increasing the copy number of the corresponding heterologous gene. We constructed a host-vector system in the yeast Kluyveromyces lactis that was able to induce copy number amplification of pKD1 plasmid-based vectors upon expression of an integrated copy of the plasmid recombinase gene. We increased the production and secretion of two heterologous proteins, glucoamylase from the yeast Arxula adeninivorans and mammalian interleukin-1beta, following gene dosage amplification when the heterologous genes were carried by pKD1-based vectors. The choice of the promoters for expression of the integrated recombinase gene and of the episomal heterologous genes are critical for the mitotic stability of the host-vector system.

  1. Addition to thermized milk of Lactococcus lactis subsp. cremoris M104, a wild, novel nisin a-producing strain, replaces the natural antilisterial activity of the autochthonous raw milk microbiota reduced by thermization.

    Science.gov (United States)

    Lianou, Alexandra; Samelis, John

    2014-08-01

    Recent research has shown that mild milk thermization treatments routinely used in traditional Greek cheese production are efficient to inactivate Listeria monocytogenes and other pathogenic or undesirable bacteria, but they also inactivate a great part of the autochthonous antagonistic microbiota of raw milk. Therefore, in this study, the antilisterial activity of raw or thermized (63°C, 30 s) milk in the presence or absence of Lactococcus lactis subsp. cremoris M104, a wild, novel, nisin A-producing (Nis-A+) raw milk isolate, was assessed. Bulk milk samples were taken from a local cheese plant before or after thermization and were inoculated with a five-strain cocktail of L. monocytogenes (approximately 4 log CFU/ml) or with the cocktail, as above, plus the Nis-A+ strain (approximately 6 log CFU/ml) as a bioprotective culture. Heat-sterilized (121°C, 5 min) raw milk inoculated with L. monocytogenes was used as a control treatment. All milk samples were incubated at 37°C for 6 h and then at 18°C for an additional 66 h. L. monocytogenes grew abundantly (>8 log CFU/ml) in heat-sterilized milk, whereas its growth was completely inhibited in all raw milk samples. Conversely, in thermized milk, L. monocytogenes increased by 2 log CFU/ml in the absence of strain M104, whereas its growth was completely inhibited in the presence of strain M104. Furthermore, nisin activity was detected only in milk samples inoculated with strain M104. Thus, postthermal supplementation of thermized bulk milk with bioprotective L. lactis subsp. cremoris cultures replaces the natural antilisterial activity of raw milk reduced by thermization.

  2. Structural basis for the transcriptional regulation of heme homeostasis in Lactococcus lactis.

    Science.gov (United States)

    Sawai, Hitomi; Yamanaka, Masaru; Sugimoto, Hiroshi; Shiro, Yoshitsugu; Aono, Shigetoshi

    2012-08-31

    Although heme is a crucial element for many biological processes including respiration, heme homeostasis should be regulated strictly due to the cytotoxicity of free heme molecules. Numerous lactic acid bacteria, including Lactococcus lactis, acquire heme molecules exogenously to establish an aerobic respiratory chain. A heme efflux system plays an important role for heme homeostasis to avoid cytotoxicity of acquired free heme, but its regulatory mechanism is not clear. Here, we report that the transcriptional regulator heme-regulated transporter regulator (HrtR) senses and binds a heme molecule as its physiological effector to regulate the expression of the heme-efflux system responsible for heme homeostasis in L. lactis. To elucidate the molecular mechanisms of how HrtR senses a heme molecule and regulates gene expression for the heme efflux system, we determined the crystal structures of the apo-HrtR·DNA complex, apo-HrtR, and holo-HrtR at a resolution of 2.0, 3.1, and 1.9 Å, respectively. These structures revealed that HrtR is a member of the TetR family of transcriptional regulators. The residue pair Arg-46 and Tyr-50 plays a crucial role for specific DNA binding through hydrogen bonding and a CH-π interaction with the DNA bases. HrtR adopts a unique mechanism for its functional regulation upon heme sensing. Heme binding to HrtR causes a coil-to-helix transition of the α4 helix in the heme-sensing domain, which triggers a structural change of HrtR, causing it to dissociate from the target DNA for derepression of the genes encoding the heme efflux system. HrtR uses a unique heme-sensing motif with bis-His (His-72 and His-149) ligation to the heme, which is essential for the coil-to-helix transition of the α4 helix upon heme sensing.

  3. Effect of using different probiotic cultures on properties of Torba (strained yoghurt

    Directory of Open Access Journals (Sweden)

    Harun Kesenkaş

    2010-03-01

    Full Text Available The viability of Lactobacillus casei LAFTI® L26, Bifidobacterium animalis subsp. lactis LAFTI® B94 and Lactobacillus acidophilus LAFTI® L10, their proteolytic activities and effects on chemical, textural and sensory properties of Torba yoghurts were assessed during 14 days of storage at 4 °C. These probiotic cultures were separately added after the fermentation of milk with yoghurt culture but prior to packaging of the product. Probiotic bacteria reached the recommended level of 6 log cfu/g in Torba yoghurt except B. animalis subsp. lactis B94. The addition of probiotic bacteria resulted in an appreciable proteolytic activity but also textural defects due to the lower total solid content in the final product.

  4. Volatile Organic Compounds in Naturally Fermented Milk and Milk Fermented Using Yeasts, Lactic Acid Bacteria and Their Combinations As Starter Cultures

    Directory of Open Access Journals (Sweden)

    Bennie C. Viljoen

    2007-01-01

    Full Text Available The volatile organic compounds present in 18 Zimbabwean naturally fermented milk (amasi samples and those produced by various yeasts, lactic acid bacteria (LAB and yeast/ LAB combinations were determined using headspace gas chromatography. The yeast strains used were: Candida kefyr 23, C. lipolytica 57, Saccharomyces cerevisiae 71, C. lusitaniae 68, C. tropicalis 78, C. lusitaniae 63, C. colliculosa 41, S. dairenensis 32, and Dekkera bruxellensis 43, and were coded Y1 to Y9, respectively. The LAB strains used were Lactococcus lactis subsp. lactis Lc39, L. lactis subsp. lactis Lc261, Lactobacillus paracasei Lb11, and L. lactis subsp. lactis biovar. diacetylactis C1, and were coded B1 to B4, respectively. Some of the volatile organic compounds found in amasi were acetaldehyde, ethanol, acetone, 2-methyl propanal, 2-methyl-1-propanol and 3-methyl-1-butanol. However, the levels of volatile organic compounds in the naturally fermented milk (NFM samples varied from one sample to another, with acetaldehyde ranging from 0.1–18.4 ppm, 3-methyl butanal from <0.1–0.47 ppm and ethanol from 39.3–656 ppm. The LAB/C. kefyr 23 (B/Y1 co-cultures produced significantly (p<0.05 higher levels of acetaldehyde and ethanol than the levels found in the NFM. The acetaldehyde levels in the B/Y1 samples ranged from 26.7–87.7 ppm, with L. lactis subsp. lactis biovar. diacetylactis C1 (B4 producing the highest level of acetaldehyde in combination with C. kefyr 23 (Y1. Using principal component analysis (PCA, most of the NFM samples were grouped together with single and co-cultures of Lc261, Lb11 and the non-lactose fermenting yeasts, mainly because of the low levels of ethanol and similar levels of 3-methyl butanal. Chromatograms of amasi showed prominent peak of methyl aldehydes and their alcohols including 3-methyl-butanal and 3-methyl-butanol, suggesting that these compounds are important attributes of Zimbabwean naturally fermented milk.

  5. Use of PCR-based methods for rapid differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis.

    Science.gov (United States)

    Torriani, S; Zapparoli, G; Dellaglio, F

    1999-10-01

    Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412(T), which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains.

  6. The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA.

    Science.gov (United States)

    Linares, Daniel M; del Río, Beatriz; Ladero, Victor; Redruello, Begoña; Martín, María Cruz; Fernández, María; Alvarez, Miguel A

    2013-07-01

    Lactococcus lactis is the lactic acid bacterium most widely used by the dairy industry as a starter for the manufacture of fermented products such as cheese and buttermilk. However, some strains produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. The proteins involved in this pathway, including those necessary for agmatine uptake and conversion into putrescine, are encoded by the aguB, aguD, aguA and aguC genes, which together form an operon. This paper reports the mechanism of regulation of putrescine biosynthesis in L. lactis. It is shown that the aguBDAC operon, which contains a cre site at the promoter of aguB (the first gene of the operon), is transcriptionally regulated by carbon catabolic repression (CCR) mediated by the catabolite control protein CcpA.

  7. Multi-stress resistance in Lactococcus lactis is actually escape from purine-induced stress sensitivity

    DEFF Research Database (Denmark)

    Ryssel, Mia; Hviid, Anne-Mette Meisner; Dawish, Mohamed S.

    2014-01-01

    in the rich and complex M17 medium. When salvage of purines and subsequent conversion to GTP was permitted in various genetic backgrounds of L. lactis MG1363, the cells became sensitive to acid stress, indicating that an excess of guanine nucleotides induces stress sensitivity. The addition of phosphate......Multi-stress resistance is a widely documented and fascinating phenotype of lactococci where single mutations, preferentially in genes involved in nucleotide metabolism and phosphate uptake, result in elevated tolerance to multiple stresses simultaneously. In this report, we have analysed...... nucleotides is formed as a result of an improved conversion of guanosine in the salvage pathway. Based upon our findings, we suggest that L. lactis MG1363 is naturally multi-stress resistant in habitats devoid of any purine source. However, any exogenous purine that results in increased guanine nucleotide...

  8. The carB gene encoding the large subunit of carbamoylphosphate synthetase from Lactococcus lactis is transcribed monocistronically

    DEFF Research Database (Denmark)

    Martinussen, Jan; Hammer, Karin

    1998-01-01

    The biosynthesis of carbamoylphosphate is catalysed by the heterodimeric enzyme carbamoylphosphate synthetase (CPSase). The genes encoding the two subunits in procaryotes are normally transcribed as an operon, whereas in Lactococcus lactis, the gene encoding the large subunit (carB) is shown...... to be an isolated transcriptional unit. Carbamoylphosphate is a precursor in the biosynthesis of both pyrimidine nucleotides and arginine. By mutant analysis L. lactis is shown to possess only one carB gene; the same gene product is thus required for both biosynthetic pathways. Furthermore, arginine may satisfy...... the requirement for carbamoylphosphate in pyrimidine biosynthesis through degradation by the arginine deiminase pathway. The expression of the carB gene is subject to regulation at the level of transcription by pyrimidines most probably by an attenuator mechanism. Upstream of the carB gene, an open reading frame...

  9. EVIDENCE-BASED DATA ON EFFECTIVENESS OF LACTOBACILLUS RHAMNOSUS GG AND BIFIDOBACTERIUM LACTIS ВB-12 IN PEDIATRIC PRACTICE

    Directory of Open Access Journals (Sweden)

    I. V. Andreyeva

    2011-01-01

    Full Text Available Prophylactic and therapeutic administration of prebiotics in treatment of different disorders is used very often nowadays. However, this kind of a treatment confirmed its efficacy in only several diseases. The review presents the data on efficacy of two probiotic microorganisms (L. rhamnosus GG and B. lactis Вb-12 in pediatric practice. Author summarizes and analyzes existing evidence-based data on efficacy of probiotics in treatment of acute diarrhea, prophylaxis of antibiotic-associated diarrhea and nosocomial infections. L. rhamnosus GG and B. lactis Вb-12 have their own place in prophylaxis of infections of airways and gastrointestinal tract. Administration of probiotics for treatment and prophylaxis of allergic and other diseases is reviewed. Safety of probiotics is described as well.

  10. Bifidobacterium animalis subsp lactis CNCM-I2494 restores gut barrier permeability in chronically low-grade inflamed mice

    Directory of Open Access Journals (Sweden)

    Rebeca eMartín

    2016-05-01

    Full Text Available Growing evidence supports the efficacy of many probiotic strains in the management of gastrointestinal disorders associated with deregulated intestinal barrier function and/or structure. In particular, bifidobacteria have been studied for their efficacy to both prevent and treat a broad spectrum of animal and/or human gut disorders. The aim of the current work was thus to evaluate effects on intestinal barrier function of Bifidobacterium animalis subsp lactis CNCM-I2494, a strain used in fermented dairy products. A chronic DNBS-induced low-grade inflammation model causing gut dysfunction in mice was used in order to study markers of inflammation, intestinal permeability and immune function in the presence of the bacterial strain. In this chronic low-grade inflammation mice model several parameters pointed out the absence of an over active inflammation process. However, gut permeability, lymphocyte populations and colonic cytokines were found to be altered. B. animalis subsp lactis CNCM-I2494 was able to protect barrier functions by restoring intestinal permeability, colonic goblet cell populations and cytokine levels. Furthermore, tight junction (TJ proteins levels were also measured by qRT-PCR showing the ability of this strain to specifically normalize the level of several TJ proteins, in particular for claudin-4. Finally, B. lactis strain counterbalanced CD4+ lymphocyte alterations in both spleen and mesenteric lymphoid nodes (MLN. It restores the Th1/Th2 ratio altered by the DNBS challenge (which locally augments CD4+ Th1 cells by increasing the Th2 response as measured by the increase in the production of major representative Th2 cytokines (IL-4, IL-5 and IL-10. Altogether, these data suggest that B. animalis subsp lactis CNCM-I2494 may efficiently prevent disorders associated with increased barrier permeability.

  11. The influence of different polymers on viability of Bifidobacterium lactis 300b during encapsulation, freeze-drying and storage

    OpenAIRE

    Pop, Oana Lelia; Brandau, Thorsten; Schwinn, Jens; Dan Cristian VODNAR; Carmen SOCACIU

    2014-01-01

    Seven different types of natural polymers namely hydroxypropyl methylcellulose (HPMC), sodium-carboxymethyl cellulose (Na-CMC), microcrystalline cellulose (MCC), starch BR-07, starch BR-08, dextrin and pullulan were used in order to develop the optimal formula for the entrapment of Bifidobacterium lactis 300B in Ca-alginate based granules. Laminar flow drip casting with Brace-Encapsulator was used in order to prepare the granules. The results showed that alginate/pullulan and alginate/HPMC fo...

  12. Perdeuteration and methyl-selective {sup 1}H, {sup 13}C-labeling by using a Kluyveromyces lactis expression system

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa-Onami, Mayumi [Japan Biological Informatics Consortium, Research and Development Department (Japan); Takeuchi, Koh [National Institute of Advanced Industrial Science and Technology, Biomedicinal Information Research Center (Japan); Takano, Toshiaki; Sugiki, Toshihiko [Japan Biological Informatics Consortium, Research and Development Department (Japan); Shimada, Ichio, E-mail: shimada@iw-nmr.f.u-tokyo.ac.jp; Takahashi, Hideo, E-mail: hid@tsurumi.yokohama-cu.ac.jp [National Institute of Advanced Industrial Science and Technology, Biomedicinal Information Research Center (Japan)

    2013-10-22

    The production of stable isotope-labeled proteins is critical in structural analyses of large molecular weight proteins using NMR. Although prokaryotic expression systems using Escherichia coli have been widely used for this purpose, yeast strains have also been useful for the expression of functional eukaryotic proteins. Recently, we reported a cost-effective stable isotope-labeled protein expression using the hemiascomycete yeast Kluyveromyces lactis (K. lactis), which allow us to express exogenous proteins at costs comparable to prokaryotic expression systems. Here, we report the successful production of highly deuterated (>90 %) protein in the K. lactis system. We also examined the methyl-selective {sup 1}H, {sup 13}C-labeling of Ile, Leu, and Val residues using commonly used amino acid precursors. The efficiency of {sup 1}H- {sup 13}C-incorporation varied significantly based on the amino acid. Although a high level of {sup 1}H-{sup 13}C-incorporation was observed for the Ile δ1 position, {sup 1}H, {sup 13}C-labeling rates of Val and Leu methyl groups were limited due to the mitochondrial localization of enzymes involved in amino acid biosynthesis and the lack of transporters for α-ketoisovalerate in the mitochondrial membrane. In line with this notion, the co-expression with branched-chain-amino-acid aminotransferase in the cytosol significantly improved the incorporation rates of amino acid precursors. Although it would be less cost-effective, addition of {sup 13}C-labeled valine can circumvent problems associated with precursors and achieve high level {sup 1}H, {sup 13}C-labeling of Val and Leu. Taken together, the K. lactis system would be a good alternative for expressing large eukaryotic proteins that need deuteration and/or the methyl-selective {sup 1}H, {sup 13}C-labeling for the sensitive detection of NMR resonances.

  13. Clustered organization and transcriptional analysis of a family of five csp genes of Lactococcus lactis MG1363

    NARCIS (Netherlands)

    Wouters, Jeroen A.; Sanders, Jan-Willem; Kok, Jan; Vos, Willem M. de; Kuipers, Oscar P.; Abee, Tjakko; Wouters, J.W.

    1998-01-01

    A family of genes encoding cold-shock proteins, named cspA, cspB, cspC, cspD and cspE, was cloned and sequenced from Lactococcus lactis MG1363. The genes cspA and cspB and the genes cspC and cspD are located in tandem repeats, an organization of csp genes that has never been encountered before. The

  14. Strain-specific differentiation of lactococci in mixed starter culture populations using randomly amplified polymorphic DNA-derived probes.

    Science.gov (United States)

    Erlandson, K; Batt, C A

    1997-07-01

    A hydrophobic grid membrane filtration (HGMF) colony hybridization assay was developed that allows strain-specific differentiation of defined bacterial populations. The randomly amplified polymorphic DNA (RAPD) fingerprinting technique was used to identify potential signature nucleic acid sequences unique to each member of a commercial cheese starter culture blend. The blend consisted of two closely related Lactococcus lactis subsp. cremoris strains, 160 and 331, and one L. lactis subsp. lactis strain, 210. Three RAPD primers (OPX 1, OPX 12, and OPX 15) generated a total of 32 products from these isolates, 20 of which were potential strain-specific markers. Southern hybridization analyses revealed, that the RAPD-generated signature sequences OPX15-0.95 and a 0.36-kb HaeIII fragment of OPX1-1.0b were specific for strains 331 and 210, respectively, within the context of the test starter culture blend. These strain-specific probes were used in a HGMF colony hybridization assay. Colony lysis, hybridization, and nonradioactive detection parameters were optimized to allow specific differentiation and quantitation of the target strains in the mixed starter culture population. When the 210 and 331 probes were tested at their optimal hybridization temperatures against single cultures, they detected 100% of the target strain CFUs, without cross-reactivity to the other strains. The probes for strains 210 and 331 also successfully detected their targets in blended cultures even with a high background of the other two strains.

  15. The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model.

    Science.gov (United States)

    Guo, Shanguang; Yan, Weiwei; McDonough, Sean P; Lin, Nengfeng; Wu, Katherine J; He, Hongxuan; Xiang, Hua; Yang, Maosheng; Moreira, Maira Aparecida S; Chang, Yung-Fu

    2015-03-24

    Clostridium difficile infection (CDI) causes nosocomial antibiotic-associated diarrhea and colitis in the developed world. Two potent cytotoxins, toxin A (TcdA) and toxin B (TcdB) are the virulence factors of this disease and can be a good vaccine candidate against CDI. In the present study, we genetically engineered Lactococcus lactis to express the nontoxic, recombinant fragments derived from TcdA and TcdB C-terminal receptor binding domains (Tcd-AC and Tcd-BC) as an oral vaccine candidate. The immunogenicity of the genetically engineered L. lactis oral vaccine delivery system (animal groups LAC and LBC or the combination of both, LACBC) was compared with the recombinant TcdA and TcdB C-terminal receptor binding domain proteins (animal groups PAC and PBC or the combination of both, PACBC), which were expressed and purified from E. coli. After the C. difficile challenge, the control groups received PBS or engineered L. lactis with empty vector, showed severe diarrhea symptoms and died within 2-3 days. However, both the oral vaccine and recombinant protein vaccine groups had significantly lower mortalities, body weight decreases and histopathologic lesions than the control sham-vaccine groups (pvaccinated animals produced higher titers of both IgG and IgA than the control groups (pvaccine against CDI.

  16. Effect of oral Lactococcus lactis containing endostatin on 1,2-dimethvlhvdrazine-induced colon tumor in rats

    Institute of Scientific and Technical Information of China (English)

    Wei Li; Chong-Bi Li

    2005-01-01

    AIM: To investigate the effects of oral Lactococcus lactis (Llactis) containing endostatin on 1, 2-dimethylhydrazine (DMH)-induced rat colorectal cancer.METHODS: Recombinant endostatin was produced by the expression of L lactis NZ9000. Sixty male Wistar rats were injected with DMH (40 mg/kg body weight) subcutaneously once a week for 10 wk to induce colorectal cancer. The rats were gavaged with 1 mL of endostatin at a dose of 1×108/d and fed with the basal diet. The animals were killed after 22 wk for histopathological examination. The total time of experimental observation was 58 wk.RESULTS: Rat endostatin protein was expressed in L lactis. Recombinant endostatin exhibited a significant effect on colorectal cancer (P<0.05). Furthermore, the mean survival time of the rats treated with endostatin was longer than that of the animals treated with DMH.There was no statistically significant difference between the rats treated with endostatin and those treated with DMH. The results showed that endostatin could not result in complete cure.CONCLUSION: Oral endostatin exerts an influence on the progression of chemically induced colon tumors.

  17. Isolation and identification of Lactococcus lactis and Weissella%乳酸乳球菌和魏斯氏菌的分离及鉴定

    Institute of Scientific and Technical Information of China (English)

    商婷婷; 张日俊

    2013-01-01

    This experiment was conducted to isolate and identify Lactococcus lactis and Weissel-la. According to the morphological character and microscopic examination, six lactic acid coc-cus strains were isolated and identified from samples of raw milk, pickle, silage and commercial cheese. By physiological and biochemical reaction, salt tolerance and heat resistance reaction and 16S rDNA sequence analysis, four strains belong to Lactococcus lactis, ST2 is lactococcus lactis subsp. Cremoris and ST7 is Lactococcus lactis subsp. Lactis; two strains were identified as Weissella, one of them is Weissella cibaria. These results indicated that raw milk and pickle are the excellent habitats of Lactococcus lactis and Weissella correspondingly, with the incorpo-ration of traditional methods and molecular biology techniques, strains could be isolated and identified more accurately and rapidly.%试验以生牛奶、自制泡菜水、青贮料、市售奶酪为样品,进行乳酸乳球菌和魏斯氏菌的筛选与鉴定。通过培养基中菌落形态观察和镜检细胞形态观察,共筛得6株疑似乳酸球菌(分别命名为ST1、ST2、ST6、ST7、ST8、ST9)。经生理生化、耐盐性、耐热性试验以及16S rD-NA序列分析鉴定,这6株菌分属两个属:ST1、ST2、ST7、ST9为乳酸乳球菌(Lactococcus lac-tis),其中ST2为乳酸乳球菌乳脂亚种(Lactococcus lactis subsp. Cremoris),ST7为乳酸乳球菌乳酸亚种(Lactococcus lactis subsp. Lactis );ST6、ST8属于魏斯氏菌属(Weissella),其中ST6为食窦魏斯氏菌(Weissella cibaria)。研究表明,生牛奶和泡菜水分别是乳酸乳球菌和魏斯氏菌的优良生活环境,传统方法与分子生物技术相结合可更准确快速地分离及鉴定菌株。

  18. Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE: The case of lysostaphin

    Directory of Open Access Journals (Sweden)

    Floris Esther

    2005-05-01

    Full Text Available Abstract Background The NIsin-Controlled gene Expression system NICE of Lactococcus lactis is one of the most widespread used expression systems of Gram-positive bacteria. It is used in more than 100 laboratories for laboratory-scale gene expression experiments. However, L. lactis is also a micro-organism with a large biotechnological potential. Therefore, the aim of this study was to test whether protein production in L. lactis using the NICE system can also effectively be performed at the industrial-scale of fermentation. Results Lysostaphin, an antibacterial protein (mainly against Staphylococcus aureus from S. simulans biovar. Staphylolyticus, was used as a model system. Food-grade lysostaphin expression constructs in L. lactis were grown at 1L-, 300-L and 3000-L scale and induced with nisin for lysostaphin production. The induction process was equally effective at all scales and yields of about 100 mg/L were obtained. Up-scaling was easy and required no specific effort. Furthermore, we describe a simple and effective way of downstream processing to obtain a highly purified lysostaphin, which has been used for clinical phase I trials. Conclusion This is the first example that shows that nisin-regulated gene expression in L. lactis can be used at industrial scale to produce large amounts of a target protein, such as lysostaphin. Downstream processing was simple and in a few steps produced a highly purified and active enzyme.

  19. Construction of a recombinant Lactococcus lactis strain expressing a fusion protein of Omp22 and HpaA from Helicobacter pylori for oral vaccine development.

    Science.gov (United States)

    Zhang, Rongguang; Duan, Guangcai; Shi, Qingfeng; Chen, Shuaiyin; Fan, Qingtang; Sun, Nan; Xi, Yuanlin

    2016-11-01

    To develop orally administrated anti-Helicobacter pylori vaccination, a Lactococcus lactis strain was genetically constructed for fusion expression of H. pylori protective antigens HpaA and Omp22. The fusion gene of omp22 and hpaA with an adapter encoding three glycines was cloned from a plasmid pMAL-c2x-omp22-hpaA into Escherichia coli MC1061 and L. lactis NZ3900 successively using a shutter vector pNZ8110. Expression of the fusion gene in L. lactis was induced with nisin resulting in production of proteins with molecular weights of 50 and 28 kDa. Both of them were immunoreactive with mouse anti-H. pylori sera as determined via western blotting. Oral vaccination of BALB/c mice using the L. lactis strain carrying pNZ8110-omp22-hpaA elicited significant systematic humoral immune response (P < 0.05). This is the first report showing that a fusion protein of two H. pylori antigens was efficiently expressed in L. lactis with immunogenicity. This is a considerable step towards H. pylori vaccines.

  20. Characterization of the Lactococcus lactis Nisin A Operon Genes nisP, Encoding a Subtilisin-Like Serine Protease Involved in Precursor Processing, and nisR, Encoding a Regulatory Protein Involved in Nisin Biosynthesis

    NARCIS (Netherlands)

    Polman, Joyce; Beerthuyzen, Marke M.; Siezen, Roland J.; Kuipers, Oscar P.; Vos, Willem M. de

    1993-01-01

    Biosynthesis of the lantibiotic peptide nisin by Lactococcus lactis NIZO R5 relies on the presence of the conjugative transposon Tn5276 in the chromosome. A 12-kb DNA fragment of Tn5276 including the nisA gene and about 10 kb of downstream DNA was cloned in L. lactis, resulting in the production of

  1. Systematic identification of tRNAome and its dynamics in Lactococcus lactis

    Science.gov (United States)

    Puri, Pranav; Wetzel, Collin; Saffert, Paul; W.Gaston, Kirk; Russell, Susan P.; Varela, Juan A. Cordero; van der Vlies, Pieter; Zhang, Gong; Limbach, Patrick A.; Ignatova, Zoya; Poolman, Bert

    2014-01-01

    Transfer RNAs (tRNA) through their abundance and modification pattern significantly influence protein translation. Here, we present a systematic analysis of the tRNAome of Lactococcus lactis. Using the next-generation sequencing approach, we identified 40 tRNAs which carry 16 different posttranscriptional modifications as revealed by mass spectrometry analysis. While small modifications are located in the tRNA body, hypermodified nucleotides are mainly present in the anticodon loop, which through wobbling expand the decoding potential of the tRNAs. Using tRNA-based microarrays, we also determined the dynamics in tRNA abundance upon changes in the growth rate and heterologous protein overexpression stress. With a four-fold increase in the growth rate, the relative abundance of tRNAs cognate to low abundance codons decrease, while the tRNAs cognate to major codons remain mostly unchanged. Significant changes in the tRNA abundances are observed upon protein overexpression stress, which does not correlate with the codon usage of the overexpressed gene but rather reflects the altered expression of housekeeping genes. PMID:25040919

  2. Expression of heparan sulfate sulfotransferases in Kluyveromyces lactis and preparation of 3'-phosphoadenosine-5'-phosphosulfate.

    Science.gov (United States)

    Zhou, Xianxuan; Chandarajoti, Kasemsiri; Pham, Truong Quang; Liu, Renpeng; Liu, Jian

    2011-06-01

    Heparan sulfate (HS) belongs to a major class of glycans that perform central physiological functions. Heparin is a specialized form of HS and is a clinically used anticoagulant drug. Heparin is a natural product isolated from pig intestine. There is a strong demand to replace natural heparin with a synthetic counterpart. Although a chemoenzymatic approach has been employed to prepare synthetic heparin, the scale of the synthesis is limited by the availability of sulfotransferases and the cofactor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Here, we present a novel method to produce secreted forms of sulfotransferases in the yeast cells, Kluyveromyces lactis. Five sulfotransferases including N-sulfotransferase, 2-O-sulfotransferase, 3-O-sulfotransferase 1 and 6-O-sulfotransferases 1 and 3 were expressed using this method. Unlike bacterial-expressed sulfotransferases, the yeast proteins can be directly used to modify polysaccharides without laborious purification. The yeast-expressed sulfotransferases also tend to have higher specific activity and thermostability. Furthermore, we demonstrated the possibility for the gram-scale synthesis of PAPS from adenosine 5'-triphosphate at only 1/5000th of the price purchased from a commercial source. Our results pave the way to conduct the enzymatic synthesis of heparin in large quantities.

  3. Recovery and purification of a Kluyvermyces lactis β-galactosidase by Mixed Mode Chromatography.

    Science.gov (United States)

    Lima, Micael de Andrade; de Freitas, Maria de Fátima Matos; Gonçalves, Luciana Rocha Barros; da Silva Junior, Ivanildo José

    2016-03-15

    Mixed Mode Chromatography (MMC) is a potential separation technique that allows simultaneous ionic and hydrophobic interactions between the adsorbent and the adsorbate. The aim of this work was to assess the recovery and purification of a Kluyveromyces lactis β-galactosidase employing MMC. Protein precipitation and dialysis were performed in order to concentrate the enzyme of interest and eliminate cell debris and other interferences inherent in the fermentation medium. The best conditions for both adsorption and desorption were attained by a non-factorial Central Composite Experimental Design and employed in the chromatographic runs with resin CAPTO MMC. Fermentation yielded mean values of total enzyme concentration of 0.44 mg/mL, enzymatic activity (employing lactose as a substrate) of 74 U/mL and specific activity of 168 U/mg. The Purification Factor (PF) obtained was of 1.17. After precipitation and dialysis, the subsequent chromatographic run resulted in recovery values ​​of 41.0 and 48.2% of total protein concentration and enzymatic activity, respectively. SDS-PAGE electrophoresis confirmed the purification evolution throughout the unit operations employed, attesting the feasibility of the technique to obtain enzymes with not only considerable degree of purity but also possessing high-added value.

  4. Synthesis of Galactosyl Mannitol Derivative Using β-Galactosidase from Kluyveromyces lactis

    Directory of Open Access Journals (Sweden)

    Klewicki Robert

    2017-03-01

    Full Text Available The purpose of the study was to identify the influence of reactive mixture concentration (23–48 g/100 mL, pH (6.5–9.0, presence of NaCl (0.05–0.25 mol/L and enzyme dose (2850–28,500 LAU/100 g of lactose on the synthesis of galactosyl mannitol derivative using β-galactosidase from Kluyveromyces lactis. The use of the enzyme dose ranging from 2850 to 11,400 LAU/100 g lactose allowed obtaining gal-mannitol at the level of 21.8% total saccharides; higher doses intensified product decomposition. An increase in the concentration of the reactive mixture had a positive impact on the quantity of gal-mannitol obtained every single time, i.e. 4.39 g were obtained from 100 mL of a 23 g/100 mL solution and over 10 g were obtained from a 48 g/100 mL solution. A relatively low increase in product quantity (by ca. 5% occurred after the pH was increased from 6.5 to 9.0. The use of NaCl rendered better results. An increase in the maximum content of gal-mannitol in the total sugar by 12.8% was observed at the concentration of 0.25 mol/L.

  5. In vitro DNA binding of purified CcpA protein from Lactococcus lactis IL1403.

    Science.gov (United States)

    Kowalczyk, Magdalena; Borcz, Barbara; Płochocka, Danuta; Bardowski, Jacek

    2007-01-01

    During this study His-tagged CcpA protein purified under native conditions to obtain a biologically active protein was used for molecular analysis of CcpA-dependent regulation. Using electrophoretic mobility shift assays it was demonstrated that CcpA of L. lactis can bind DNA in the absence of the HPr-Ser-P corepressor and exhibits DNA-binding affinity for nucleotide sequences lacking cre sites. However, purified HPr-Ser-P protein from Bacillus subtilis was shown to slightly increase the DNA-binding capacity of the CcpA protein. It was also observed that CcpA bound to the cre box forms an apparently more stable complex than that resulting from unspecific binding. Competition gel retardation assay performed on DNA sequences from two PEP:PTS regions demonstrated that the ybhE, bglS, rheB, yebE, ptcB and yecA genes situated in these regions are most probably directly regulated by CcpA.

  6. Improvement of bovine ß-lactoglobulin production and secretion by Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    S. Nouaille

    2005-03-01

    Full Text Available The stabilizing effects of staphylococcal nuclease (Nuc and of a synthetic propeptide (LEISSTCDA, hereafter called LEISS on the production of a model food allergen, bovine ß-lactoglobulin (BLG, in Lactococcus lactis were investigated. The fusion of Nuc to BLG (Nuc-BLG results in higher production and secretion of the hybrid protein. When LEISS was fused to BLG, the production of the resulting protein LEISS-BLG was only slightly improved compared to the one obtained with Nuc-BLG. However, the secretion of LEISS-BLG was dramatically enhanced (~10- and 4-fold higher than BLG and Nuc-BLG, respectively. Finally, the fusion of LEISS to Nuc-BLG resulting in the protein LEISS-Nuc-BLG led to the highest production of the hybrid protein, estimated at ~8 µg/ml (~2-fold higher than Nuc-BLG. In conclusion, the fusions described here led to the improvement of the production and secretion of BLG. These tools will be used to modulate the immune response against BLG via delivery of recombinant lactococci at the mucosal level, in a mouse model of cow's milk allergy.

  7. Lactococcus lactis LMG2081 Produces Two Bacteriocins, a Nonlantibiotic and a Novel Lantibiotic.

    Science.gov (United States)

    Mirkovic, Nemanja; Polovic, Natalija; Vukotic, Goran; Jovcic, Branko; Miljkovic, Marija; Radulovic, Zorica; Diep, Dzung B; Kojic, Milan

    2016-04-01

    Bacteriocin producers normally possess dedicated immunity systems to protect themselves from their own bacteriocins.Lactococcus lactis strains LMG2081 and BGBM50 are known as lactococcin G producers. However, BGBM50 was sensitive to LMG2081, which indicated that LMG2081 might produce additional bacteriocins that are not present in BGBM50. Therefore, whole-genome sequencing of the two strains was performed, and a lantibiotic operon (called lctLMG) was identified in LMG2081 but not in BGBM50. The lctLMG operon contains six open reading frames; the first three genes,lmgA ,lmgM, and lmgT, are involved in the biosynthesis and export of bacteriocin, while the other three genes,lmgF,lmgE, and lmgG, are involved in lantibiotic immunity. Mutational analysis confirmed that the lctLMG operon is responsible for the additional antimicrobial activity. Specifically, site-directed mutation within this operon rendered LMG2081 inactive toward BGBM50. Subsequent purification and electrospray ionization-time of flight mass spectrometric analysis confirmed that the lantibiotic bacteriocin called lacticin LMG is exported as a 25-amino-acid peptide. Lacticin LMG is highly similar to the lacticin 481 group. It is interesting that a bacteriocin producer produces two different classes of bacteriocins, whose operons are located in the chromosome and a plasmid.

  8. Mode of action of lactococcin R produced by Lactococcus lactis R.

    Science.gov (United States)

    Yildirim, Zeliha; Yildirim, Metin; Johnson, Michael G

    2004-04-01

    We investigated the mode of action and factors affecting adsorption of lactoccocin R produced by Lactococcus lactis R. It was found that lactococcin R adsorbed to all Gram-positive but not to the Gram-negative bacteria tested and its adsorption was dependent on pH. It was observed that the binding of lactococcin R was prevented by anions of several salts (Cl-, PO4(-3)) and lipoteichoic acid. Pretreatments of sensitive cells and cell walls with detergents, organic solvents or enzymes did not reduce subsequent binding of lactococcin R. However, treatment of cell wall preparations with methanol:chloroform and hot 20% trichloroacetic acid (TCA) caused such walls to lose their ability to adsorb lactococcin R. Sensitive cells treated with lactococcin R lost high amounts of intracellular K+ ions, UV-absorbing materials and became more permeable to o-nitrophenol-beta-D-glactopyranoside (ONPG). In addition, different lactococcin R concentrations (0-2560 AU/mL) decreased the colony counts of Listeria monocytogenes by 99% and also a reduction in the absorbance values. These results show that the mode of action of lactococcin R is bactericidal rather than bacteriostatic.

  9. Activity improvement of a Kluyveromyces lactis aldo-keto reductase KlAKR via rational design.

    Science.gov (United States)

    Luo, Xi; Wang, Ya-Jun; Shen, Wei; Zheng, Yu-Guo

    2016-04-20

    Optically pure t-butyl 6-cyano-(3R, 5R)-dihydroxyhexanoate ((R)-1b) is the key chiral precursor for atorvastatin calcium, the most widely used cholesterol-lowering drug. Wild-type aldo-keto reductase KlAKR from Kluyveromyces lactis has ideal diastereoselectivity toward t-butyl 6-cyano-(5R)-hydroxy-3-oxohexanoate (1a, dep>99.5%) but poor activity. A rational engineering was used to improve the KlAKR activity. Based on homology modeling and molecular docking, two amino acid residues (295 and 296) were selected as mutation sites, and two rounds of site-saturation mutagenesis were performed. Among the mutants, KlAKR-Y295W/W296L exhibited the highest catalytic efficiency (kcat/Km) toward 1a up to 12.37s(-1)mM(-1), which was 11.25-fold higher than that of wild-type KlAKR. Moreover, the majority of mutations have no negative impact on stereoselectivity. Using KlAKR-Y295W/W296L coupled with Exiguobacterium sibiricum glucose dehydrogenase (EsGDH) for cofactor regeneration, (R)-1b was accumulated up to 162.7mM with dep value above 99.5%. KlAKR-Y295W/W296L represents a robust tool for (R)-1b synthesis.

  10. Induced Levels of Heat Shock Proteins in dnaK mutants of Lactococcus lactis

    DEFF Research Database (Denmark)

    Koch, Birgit; Hammer, Karin; Vogensen, Finn K.

    1998-01-01

    of the inferred substrate binding site of the DnaK protein, exhibits a pronounced temperature sensitive phenotype and shows altered regulation of the heat shock response. The expression of the heat shock proteins are increased at the normal growth temperature measured both as protein synthesis rates and m......, HrcA , is dependent of the chaperone function of the GroELS complex and that an insertion mutant in dnaK did not have any effect on the expression of the heat shock proteins. The present data from Lactococcus lactis suggest that the DnaK protein could be involved in maturation of the homologous Hrc......The bacterial heat shock response is characterized by the elevated expression of a number of chaperone complexes and proteases including the DnaK-GrpE-DnaJ and the GroELS chaperone complexes. In order to investigate the importance of the DnaK chaperone complex for the growth and the heat shock...

  11. ClpE from Lactococcus lactis promotes repression of CtsR-dependent gene expression

    DEFF Research Database (Denmark)

    Varmanen, P.; Vogensen, F.K.; Hammer, Karin;

    2003-01-01

    The heat shock response in bacterial cells is characterized by rapid induction of heat shock protein expression, followed by an adaptation period during which heat shock protein synthesis decreases to a new steady-state level. In this study we found that after a shift to a high temperature the Clp...... ATPase (ClpE) in Lactococcus lactis is required for such a decrease in expression of a gene negatively regulated by the heat shock regulator (CtsR). Northern blot analysis showed that while a shift to a high temperature in wild-type cells resulted in a temporal increase followed by a decrease......E by Western blot analysis revealed that at a high temperature CIpE is subjected to ClpP-dependent processing and that disruption of the zinc finger domain renders GpE more susceptible. Interestingly, this domain resembles the N-terminal region of McsA, which was recently reported to interact with the Cts...

  12. The influence of starter and adjunct lactobacilli culture on the ripening of washed curd cheeses

    Directory of Open Access Journals (Sweden)

    E. Hynes

    2002-12-01

    Full Text Available Ten strains of lactobacillus from the CNRZ collection were tested as adjunct culture in miniature washed curd cheeses manufactured under controlled bacteriological conditions with two different starters, Lactococcus lactis subsp. lactis IL 416 and Lactococcus lactis subsp. cremoris AM2. Lactobacilli growth seemed to be dependent on the Lactobacillus strain but was not influenced by the starter strain or counts. Lactococci counts were higher in the miniature cheeses with AM2 starter and added lactobacilli than in the control cheeses without lactobacilli. Gross composition and hydrolysis of s1 casein were similar for miniature cheeses with and without lactobacilli. In the miniature cheeses manufactured with IL416 starter, the lactobacilli adjunct slightly increased the soluble nitrogen content, but that was not verified in the AM2 miniature cheeses. Phosphotungstic acid nitrogen content increased in miniature cheeses manufactured with IL416 when Lactobacillus plantarum 1572 and 1310 adjunct cultures were added. That was also verified for several Lactobacillus strains, specially Lactobacillus casei 1227, for miniature cheeses manufactured with AM2 starter. Free fatty acid content increased in miniature cheeses made with lactobacilli adjuncts 1310, 1308 and 1219 with IL416 starter, and with strains 1218, 1244 and 1308 for miniature cheeses with AM2 starter. These results indicate that production of soluble nitrogen compounds as well as free fatty acid content could be influenced by the lactobacilli adjunct, depending on the starter strain.

  13. Polyphasic Approach to Bacterial Dynamics during the Ripening of Spanish Farmhouse Cheese, Using Culture-Dependent and -Independent Methods▿

    OpenAIRE

    Martín-Platero, Antonio M.; Valdivia, Eva; Maqueda, Mercedes; Martín-Sánchez,Inés; Martínez-Bueno, Manuel

    2008-01-01

    We studied the dynamics of the microbial population during ripening of Cueva de la Magahá cheese using a combination of classical and molecular techniques. Samples taken during ripening of this Spanish goat's milk cheese in which Lactococcus lactis and Streptococcus thermophilus were used as starter cultures were analyzed. All bacterial isolates were clustered by using randomly amplified polymorphic DNA (RAPD) and identified by 16S rRNA gene sequencing, species-specific PCR, and multiplex PCR...

  14. Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates.

    Science.gov (United States)

    Lahtvee, Petri-Jaan; Adamberg, Kaarel; Arike, Liisa; Nahku, Ranno; Aller, Kadri; Vilu, Raivo

    2011-02-24

    Lactococcus lactis is recognised as a safe (GRAS) microorganism and has hence gained interest in numerous biotechnological approaches. As it is fastidious for several amino acids, optimization of processes which involve this organism requires a thorough understanding of its metabolic regulations during multisubstrate growth. Using glucose limited continuous cultivations, specific growth rate dependent metabolism of L. lactis including utilization of amino acids was studied based on extracellular metabolome, global transcriptome and proteome analysis. A new growth medium was designed with reduced amino acid concentrations to increase precision of measurements of consumption of amino acids. Consumption patterns were calculated for all 20 amino acids and measured carbon balance showed good fit of the data at all growth rates studied. It was observed that metabolism of L. lactis became more efficient with rising specific growth rate in the range 0.10-0.60 h(-1), indicated by 30% increase in biomass yield based on glucose consumption, 50% increase in efficiency of nitrogen use for biomass synthesis, and 40% reduction in energy spilling. The latter was realized by decrease in the overall product formation and higher efficiency of incorporation of amino acids into biomass. L. lactis global transcriptome and proteome profiles showed good correlation supporting the general idea of transcription level control of bacterial metabolism, but the data indicated that substrate transport systems together with lower part of glycolysis in L. lactis were presumably under allosteric control. The current study demonstrates advantages of the usage of strictly controlled continuous cultivation methods combined with multi-omics approach for quantitative understanding of amino acid and energy metabolism of L. lactis which is a valuable new knowledge for development of balanced growth media, gene manipulations for desired product formation etc. Moreover, collected dataset is an excellent

  15. Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates

    Directory of Open Access Journals (Sweden)

    Arike Liisa

    2011-02-01

    Full Text Available Abstract Background Lactococcus lactis is recognised as a safe (GRAS microorganism and has hence gained interest in numerous biotechnological approaches. As it is fastidious for several amino acids, optimization of processes which involve this organism requires a thorough understanding of its metabolic regulations during multisubstrate growth. Results Using glucose limited continuous cultivations, specific growth rate dependent metabolism of L. lactis including utilization of amino acids was studied based on extracellular metabolome, global transcriptome and proteome analysis. A new growth medium was designed with reduced amino acid concentrations to increase precision of measurements of consumption of amino acids. Consumption patterns were calculated for all 20 amino acids and measured carbon balance showed good fit of the data at all growth rates studied. It was observed that metabolism of L. lactis became more efficient with rising specific growth rate in the range 0.10 - 0.60 h-1, indicated by 30% increase in biomass yield based on glucose consumption, 50% increase in efficiency of nitrogen use for biomass synthesis, and 40% reduction in energy spilling. The latter was realized by decrease in the overall product formation and higher efficiency of incorporation of amino acids into biomass. L. lactis global transcriptome and proteome profiles showed good correlation supporting the general idea of transcription level control of bacterial metabolism, but the data indicated that substrate transport systems together with lower part of glycolysis in L. lactis were presumably under allosteric control. Conclusions The current study demonstrates advantages of the usage of strictly controlled continuous cultivation methods combined with multi-omics approach for quantitative understanding of amino acid and energy metabolism of L. lactis which is a valuable new knowledge for development of balanced growth media, gene manipulations for desired product

  16. Use of the usp45 lactococcal secretion signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis.

    Science.gov (United States)

    Borrero, Juan; Jiménez, Juan J; Gútiez, Loreto; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2011-01-01

    Replacement of the signal peptide (SP) of the bacteriocins enterocin P (EntP) and hiracin JM79 (HirJM79), produced by Enterococcus faecium P13 and Enterococcus hirae DCH5, respectively, by the signal peptide of Usp45 (SP(usp45)), the major Sec-dependent protein secreted by Lactococcus lactis, permits the production, secretion, and functional expression of EntP and HirJM79 by L. lactis. Chimeric genes encoding the SP(usp45) fused to either mature EntP (entP), with or without the immunity gene (entiP) or to mature HirJM79 (hirJM79), with or without the immunity gene (hiriJM79), were cloned into the expression vector pMG36c, carrying the P(32) constitutive promoter, and into pNZ8048 under control of the inducible PnisA promoter. The production of EntP and HirJM79 by most of the L. lactis recombinant strains was 1.5- to 3.7-fold higher and up to 3.6-fold higher than by the E. faecium P13 and E. hirae DCH5 control strains, respectively. However, the specific antimicrobial activity of the recombinant EntP was 1.1- to 6.2-fold higher than that produced by E. faecium P13, while that of the HirJM79 was a 40% to an 89% of that produced by E. hirae DCH5. Chimeras of SP(usp45) fused to mature EntP or HirJM79 drive the production and secretion of these bacteriocins in L. lactis in the absence of specific immunity and secretion proteins. The supernatants of the recombinant L. lactis NZ9000 strains, producers of EntP, showed a much higher antimicrobial activity against Listeria spp. than that of the recombinant L. lactis NZ9000 derivatives, producers of HirJM79.

  17. Evaluación de la transferencia de oxígeno en cultivos con lactococcus lactis empleando un sistema de fermentación con aireación externa

    Directory of Open Access Journals (Sweden)

    Andrea Soler

    2010-10-01

    Full Text Available Título en inglés: Evaluating oxygen transfer in a Lactococcus lactis cultures using an external aeration fermentation system (EAFS Resumen En fermentaciones aerobias el oxígeno, como aceptor terminal de electrones en el proceso de respiración, comúnmente se constituye en limitante debido entre otros factores al diseño del biorreactor (factores geométricos, a las condiciones de operación de los fermentadores (condiciones ambientales requeridas en el cultivo, potencia transferida al cultivo por el sistema de agitación, propiedades del medio líquido, demanda de oxígeno por parte del microorganismo, sistema de aireación (concentración de oxígeno en el gas, solubilidad del oxígeno. La limitación de oxígeno se refleja en la fermentación con Lactococcus lactis cepa IBUN 34.1, en que presenta una baja disponibilidad de oxígeno desde muy temprano en la fase exponencial del cultivo. Para superar estas limitaciones se diseñó y desarrolló un sistema de suministro de oxígeno de alta tasa de transferencia, consistente en un sistema de fermentación con aireación externa (SFAE, el cual es comparado en este trabajo con el sistema tradicional de fermentador agitado dotado con dos turbinas tipo Rushton y aireación por difusor interno. En este trabajo se evalúa la operación del SFAE, se seleccionan y estudian algunas variables operacionales y su efecto sobre la transferencia de oxígeno gas-líquido. Los resultados indican que las variables que tienen efecto significativo sobre el coeficiente volumétrico global de transferencia de masa kLa son la agitación y el flujo de medio de cultivo que circula por el aireador externo denominado flujo de recirculación. Los valores de kLa obtenidos indican que con el fermentador convencional con aireación interna el mayor valor de kLa alcanzado fue de 40,68 (h-1, en tanto que con el SFAE se alcanzaron valores de 63,18 (h-1. Palabras clave: biorreactores; kLa; transferencia de ox

  18. A high-throughput qPCR system for simultaneous quantitative detection of dairy Lactococcus lactis and Leuconostoc bacteriophages

    DEFF Research Database (Denmark)

    Muhammed, Musemma Kedir; Krych, Lukasz; Nielsen, Dennis Sandris

    2017-01-01

    Simultaneous quantitative detection of Lactococcus (Lc.) lactis and Leuconostoc species bacteriophages (phages) has not been reported in dairies using undefined mixed-strain DL-starters, probably due to the lack of applicable methods. We optimized a high-throughput qPCR system that allows...... simultaneous quantitative detection of Lc. lactis 936 (now SK1virus), P335, c2 (now C2virus) and Leuconostoc phage groups. Component assays are designed to have high efficiencies and nearly the same dynamic detection ranges, i.e., from 1.1 x 105 to 1.1 x 101 phage genomes per reaction, which corresponds to 9 x...

  19. Fermentación in vitro de nopal forrajero con un inóculo de levadura Kluyveromyces lactis obtenida a partir de manzana de desecho

    Directory of Open Access Journals (Sweden)

    S. Mena-Mungía

    2012-01-01

    Full Text Available ResumenEl objetivo del presente estudio fue evaluar el efecto de un inóculo de levadura Kluyveromyces lactis, obtenida a partir de manzana de desecho de la variedad Golden Delicious en la fermentación en estado sólido (FES de nopalforrajero Opuntia spp.SummaryThe aim of this study was to evaluate the effect of an inoculum of yeast Kluyveromyces lactis, from apple waste on the variety Golden Delicious in solid state fermentation (SSF of forage prickly pear cactus Opuntia spp.

  20. Tumor necrosis factor alpha modulates the dynamics of the plasminogen-mediated early interaction between Bifidobacterium animalis subsp. lactis and human enterocytes.

    Science.gov (United States)

    Centanni, Manuela; Bergmann, Simone; Turroni, Silvia; Hammerschmidt, Sven; Chhatwal, Gursharan Singh; Brigidi, Patrizia; Candela, Marco

    2012-04-01

    The capacity to intervene with the host plasminogen system has recently been considered an important component in the interaction process between Bifidobacterium animalis subsp. lactis and the human host. However, its significance in the bifidobacterial microecology within the human gastrointestinal tract is still an open question. Here we demonstrate that human plasminogen favors the B. animalis subsp. lactis BI07 adhesion to HT29 cells. Prompting the HT29 cell capacity to activate plasminogen, tumor necrosis factor alpha (TNF-α) modulated the plasminogen-mediated bacterium-enterocyte interaction, reducing the bacterial adhesion to the enterocytes and enhancing migration to the luminal compartment.