WorldWideScience

Sample records for laboratory technical area

  1. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Atchley, Adam Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Elizabeth D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-24

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis (PA/CA) maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the PA/CA are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2016 annual review for Area G.

  2. Low Energy Accelerator Laboratory Technical Area 53, Los Alamos National Laboratory. Environmental assessment

    International Nuclear Information System (INIS)

    1995-04-01

    This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the Department of Energy (DOE) were to construct and operate a small research and development laboratory building at Technical Area (TA) 53 at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. DOE proposes to construct a small building to be called the Low Energy Accelerator Laboratory (LEAL), at a previously cleared, bladed, and leveled quarter-acre site next to other facilities housing linear accelerator research activities at TA-53. Operations proposed for LEAL would consist of bench-scale research, development, and testing of the initial section of linear particle accelerators. This initial section consists of various components that are collectively called an injector system. The anticipated life span of the proposed development program would be about 15 years

  3. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  4. Glovebox glove change program at Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Olivas, J.D.; Burkett, B.O.; Weier, D.R.

    1992-01-01

    A formal glovebox glove change program is planned for the the gloveboxes in technical area 55 at the Los Alamos National laboratory. The program will increase worker safety by reducing the chance of having worn out gloves in service. The Los Alamos program is based on a similar successful program at the Rocky Flats Plant in Golden, Colorado. Glove change frequencies at Rocky Flats were determined statistically, and are based on environmental factors the glovebox gloves are subjected to

  5. Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    International Nuclear Information System (INIS)

    French, Sean B.; Shuman, Robert

    2012-01-01

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

  6. Upgrades and Enclosure of Building 15 at Technical Area 40: Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Plimpton, Kathryn D [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garcia, Kari L. M [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brunette, Jeremy Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McGehee, Ellen D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    The U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office (Field Office) proposes to upgrade and enclose Building 15 at Technical Area (TA) 40, Los Alamos National Laboratory. Building TA-40-15, a Cold War-era firing site, was determined eligible for listing in the National Register of Historic Places (Register) in DX Division’s Facility Strategic Plan: Consolidation and Revitalization at Technical Areas 6, 8, 9, 14, 15, 22, 36, 39, 40, 60, and 69 (McGehee et al. 2005). Building TA-40-15 was constructed in 1950 to support detonator testing. The firing site will be enclosed by a steel building to create a new indoor facility that will allow for year-round mission capability. Enclosing TA-40-15 will adversely affect the building by altering the characteristics that make it eligible for the Register. In compliance with Section 106 of the National Historic Preservation Act of 1966, as amended, the Field Office is initiating consultation for this proposed undertaking. The Field Office is also requesting concurrence with the use of standard practices to resolve adverse effects as defined in the Programmatic Agreement among the U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office, the New Mexico State Historic Preservation Office and the Advisory Council on Historic Preservation Concerning Management of the Historic Properties at Los Alamos National Laboratory, Los Alamos, New Mexico.

  7. Sandia Laboratories technical capabilities: auxiliary capabilities

    International Nuclear Information System (INIS)

    1978-09-01

    The primary responsibility of the environmental health function is the evaluation and control of hazardous materials and conditions. The evaluation and control of toxic materials, nonionizing radiation such as laser beams and microwaves, and ionizing radiation such as from radiation machines and radioactive sources, are examples of the activities of environmental health programs. A chemical laboratory is operated for the analysis of toxic and radioactive substances and for the bioassay program to provide an index of internal exposure of personnel to toxic and radioactive materials. Instrumentation support and development is provided for environmental health activities. A dosimetry program is maintained to measure personnel exposure to external ionizing radiation. A radiation counting laboratory is maintained. Reentry safety control and effluent documentation support are provided for underground nuclear tests at the Nevada Test Site. A radiation training program is provided for laboratory personnel which covers all areas of radiation protection, from working with radioactive materials to radiation-producing machines. The information science activity functions within the framework of Sandia Laboratories' technical libraries. Information science is oriented toward the efficient dissemination of information to technical and administrative personnel. Computerized systems are used to collect, process and circulate books, reports, and other literature. Current-awareness, reference, translation, and literature-search services are also provided

  8. Compilation of Sandia Laboratories technical capabilities

    International Nuclear Information System (INIS)

    Lundergan, C.D.; Mead, P.L.

    1975-11-01

    This report is a compilation of 17 individual documents that together summarize the technical capabilities of Sandia Laboratories. Each document in this compilation contains details about a specific area of capability. Examples of application of the capability to research and development problems are provided. An eighteenth document summarizes the content of the other seventeen. Each of these documents was issued with a separate report number (SAND 74-0073A through SAND 74-0091, except -0078)

  9. Subsurface Contaminants Focus Area (SCFA) Lead Laboratory Providing Technical Assistance to the DOE Weapons Complex in Subsurface Contamination

    International Nuclear Information System (INIS)

    Wright, J. A. Jr.; Corey, J. C.

    2002-01-01

    The Subsurface Contaminants Focus Area (SCFA), a DOE-HQ EM-50 organization, is hosted and managed at the Savannah River Site in Aiken, South Carolina. SCFA is an integrated program chartered to find technology and scientific solutions to address DOE subsurface environmental restoration problems throughout the DOE Weapons Complex. Since its inception in 1989, the SCFA program has resulted in a total of 269 deployments of 83 innovative technologies. Until recently, the primary thrust of the program has been to develop, demonstrate, and deploy those remediation technology alternatives that are solutions to technology needs identified by the DOE Sites. Over the last several years, the DOE Sites began to express a need not only for innovative technologies, but also for technical assistance. In response to this need, DOE-HQ EM-50, in collaboration with and in support of a Strategic Lab Council recommendation directed each of its Focus Areas to implement a Lead Laboratory Concept to enhance their technical capabilities. Because each Focus Area is unique as defined by the contrast in either the type of contaminants involved or the environments in which they are found, the Focus Areas were given latitude in how they set up and implemented the Lead Lab Concept. The configuration of choice for the SCFA was a Lead-Partner Lab arrangement. Savannah River Technology Center (SRTC) teamed with the SCFA as the Focus Area's Lead Laboratory. SRTC then partnered with the DOE National Laboratories to create a virtual consulting function within DOE. The National Laboratories were established to help solve the Nation's most difficult problems, drawing from a resource pool of the most talented and gifted scientists and engineers. Following that logic, SRTC, through the Lead-Partner Lab arrangement, has that same resource base to draw from to provide assistance to any SCFA DOE customer throughout the Complex. This paper briefly describes how this particular arrangement is organized and

  10. Compilation of Sandia Laboratories technical capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Lundergan, C. D.; Mead, P. L. [eds.

    1975-11-01

    This report is a compilation of 17 individual documents that together summarize the technical capabilities of Sandia Laboratories. Each document in this compilation contains details about a specific area of capability. Examples of application of the capability to research and development problems are provided. An eighteenth document summarizes the content of the other seventeen. Each of these documents was issued with a separate report number (SAND 74-0073A through SAND 74-0091, except -0078). (RWR)

  11. Moisture Monitoring at Area G, Technical Area 54, Los Alamos National Laboratory, 2016 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, Daniel Glenn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jennings, Terry L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-17

    Hydrological characterization and moisture monitoring activities provide data required for evaluating the transport of subsurface contaminants in the unsaturated and saturated zones beneath Area G, and for the Area G Performance Assessment and Composite Analysis. These activities have been ongoing at Area G, Technical Area 54 of the Los Alamos National Laboratory since waste disposal operations began in 1957. This report summarizes the hydrological characterization and moisture monitoring activities conducted at Area G. It includes moisture monitoring data collected from 1986 through 2016 from numerous boreholes and access tubes with neutron moisture meters, as well as data collected by automated dataloggers for water content measurement sensors installed in a waste disposal pit cover, and buried beneath the floor of a waste disposal pit. This report is an update of a nearly identical report by Levitt et al., (2015) that summarized data collected through early 2015; this report includes additional moisture monitoring data collected at Pit 31 and the Pit 38 extension through December, 2016. It also includes information from the Jennings and French (2009) moisture monitoring report and includes all data from Jennings and French (2009) and the Draft 2010 Addendum moisture monitoring report (Jennings and French, 2010). For the 2015 version of this report, all neutron logging data, including neutron probe calibrations, were investigated for quality and pedigree. Some data were recalculated using more defensible calibration data. Therefore, some water content profiles are different from those in the Jennings and French (2009) report. All of that information is repeated in this report for completeness. Monitoring and characterization data generally indicate that some areas of the Area G vadose zone are consistent with undisturbed conditions, with water contents of less than five percent by volume in the top two layers of the Bandelier tuff at Area G. These data also

  12. Preliminary data from an instantaneous profile test conducted near the Mixed Waste Landfill, Technical Area 3, Sandia National Laboratories/New Mexico

    International Nuclear Information System (INIS)

    Bayliss, S.C.; Goering, T.J.; McVey, M.D.; Strong, W.R.; Peace, J.L.

    1996-04-01

    This paper presents data from an instantaneous profile test conducted near the Sandia National Laboratories/New Mexico Mixed Waste Landfill in Technical Area 3. The test was performed from December 1993 through 1995 as part of the environmental Restoration Project's Phase 2 RCRA Facility Investigation of the Mixed Waste Landfill. The purpose of the test was to measure the unsaturated hydraulic properties of soils near the Mixed Waste Landfill. The instantaneous profile test and instrumentation are described, and the pressure and moisture content data from the test are presented. These data may be useful for understanding the unsaturated hydraulic properties of soils in Technical Area 3 and for model validation, verification, and calibration

  13. H. W. Laboratory manual: 100 Area section

    Energy Technology Data Exchange (ETDEWEB)

    1950-07-01

    The purpose of this manual is to present a Hazard Breakdown of all jobs normally encountered in the laboratory work of the three sections comprising the Analytic Section, Metallurgy and Control Division of the Technical Department. A Hazard Breakdown is a careful analysis of any job in which the source of possible dangers is clearly indicated for each particular step. The analysis is prepared by individuals who are thoroughly familiar with the specific job or procedure. It is felt that if the hazards herein outlined are recognized by the Laboratory personnel and the suggested safety cautions followed, the chance for injury will be minimized and the worker will become generally more safety conscious. The manual, which is prefaced by the general safety rules applying to all the laboratories, is divided into three main sections, one for each of the three sections into which the Laboratories Division is divided. These sections are as follows: Section 1 -- 200 Area Control; Section 2 -- 100 Area Control; Section 3 -- 300 Area Control, Essential Materials, and Methods Improvement.

  14. Summary of Sandia Laboratories technical capabilities

    International Nuclear Information System (INIS)

    1977-05-01

    The technical capabilities of Sandia Laboratories are detailed in a series of companion reports. In this summary the use of the capabilities in technical programs is outlined and the capabilities are summarized. 25 figures, 3 tables

  15. Final environmental assessment: TRU waste drum staging building, Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    1996-01-01

    Much of the US Department of Energy's (DOE's) research on plutonium metallurgy and plutonium processing is performed at Los Alamos National Laboratory (LANL), in Los Alamos, New Mexico. LANL's main facility for plutonium research is the Plutonium Facility, also referred to as Technical Area 55 (TA-55). The main laboratory building for plutonium work within the Plutonium Facility (TA-55) is the Plutonium Facility Building 4, or PF-4. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if DOE were to stage sealed containers of transuranic (TRU) and TRU mixed waste in a support building at the Plutonium Facility (TA-55) that is adjacent to PF-4. At present, the waste containers are staged in the basement of PF-4. The proposed project is to convert an existing support structure (Building 185), a prefabricated metal building on a concrete foundation, and operate it as a temporary staging facility for sealed containers of solid TRU and TRU mixed waste. The TRU and TRU mixed wastes would be contained in sealed 55-gallon drums and standard waste boxes as they await approval to be transported to TA-54. The containers would then be transported to a longer term TRU waste storage area at TA-54. The TRU wastes are generated from plutonium operations carried out in PF-4. The drum staging building would also be used to store and prepare for use new, empty TRU waste containers

  16. Direct Penetrating Radiation Monitoring Systems: Technical Evaluation for Use at Area G, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    D. Kraig; W. A. Treadaway; R. J. Wechsler

    1999-01-01

    Recent advances and commercialization of electret-ion-chamber (EIC) technology for photon measurements prompted us to consider EKs as a replacement for our TLD system. After laboratory tests indicated that both systems gave adequate results for controlled exposures, throughout 1998 we conducted field tests with paired TLDs and EICS, in LANL technical areas and in public areas. We had approximately 30 paired sampling sites at Area G. At each sampling site, we deployed three TLDs and three EICS. The EICS were contained in air-tight jars, each of which was placed in a Tyvek envelope and hung about 1 m above the ground. The dosimeters were read (and, if necessary, replaced) every three months. At the sites outside Area G, the TLD readings for the first two quarters were statistically significantly higher than those of the EICS: group average exposures were 38 and 36, compared with 33 mR (both quarters) for the EICS; during quarter 3, the EIC average (40 mR) was higher than the TLD average (34 mR); and during quarter 4, the two systems were statistically the same: EIC = 42, TLD = 41 with a p-value of 0.61. We are still evaluating these differences and performing additional laboratory studies to determine causes. At the Area G sites,we noticed that several of the TLDs gave much higher readings than their co-located EICS; we believe that the TLDs were over-responding by ∼50% to the low-energy (60-keV) gamma radiation associated with 241 Am, whereas the EICS were responding accurately. We conclude that EICS are more accurate at a wide range of gamma energies and are preferable to TLDs in environments where a significant fraction of the photons are low energy

  17. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

    2012-05-22

    As a condition to the Disposal Authorization Statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year 2011 annual review for Area G. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 and formally approved in 2009. These analyses are expected to provide reasonable estimates of the long-term performance of Area G and, hence, the disposal facility's ability to comply with Department of Energy (DOE) performance objectives. Annual disposal receipt reviews indicate that smaller volumes of waste will require disposal in the pits and shafts at Area G relative to what was projected for the performance assessment and composite analysis. The future inventories are projected to decrease modestly for the pits but increase substantially for the shafts due to an increase in the amount of tritium that is projected to require disposal. Overall, however, changes in the projected future inventories of waste are not expected to compromise the ability of Area G to satisfy DOE performance objectives. The Area G composite analysis addresses potential impacts from all waste disposed of at the facility, as well as other sources of radioactive material that may interact with releases from Area G. The level of knowledge about the other sources included in the composite analysis has not changed sufficiently to call into question the validity of that analysis. Ongoing environmental surveillance activities are conducted at, and in the vicinity of, Area G. However, the information generated by

  18. Probabilistic risk assessment for the Sandia National Laboratories Technical Area V Liquid Waste Disposal System surface impoundments

    International Nuclear Information System (INIS)

    Dawson, L.A.; Eidson, A.F.

    1996-01-01

    A probabilistic risk assessment was completed for a former radioactive waste disposal site. The site, two unlined surface impoundment, was designed as part of the Liquid Waste Disposal System (LWDS) to receive radioactive effluent from nuclear reactors in Technical Area-V (TA-V) at Sandia National Laboratories/New Mexico (SNL/NM). First, a statistical comparison of site sampling results to natural background, using EPA methods, and a spatial distribution analysis were performed. Risk assessment was conducted with SNL/NM's Probabilistic Risk Evaluation and Characterization Investigation System model. The risk assessment indicated that contamination from several constituents might have been high enough to require remediation. However, further analysis based on expected site closure activities and recent EPA guidance indicated that No Further Action was acceptable

  19. Technical Targets - A Tool to Support Strategic Planning in the Subsurface Contaminants Focus Area

    International Nuclear Information System (INIS)

    Looney, B.B.

    2002-01-01

    The Subsurface Contaminants Focus Area (SCFA) is supported by a lead laboratory consisting of technical representatives from DOE laboratories across the country. This broadly representative scientific group has developed and implemented a process to define Technical Targets to assist the SCFA in strategic planning and in managing their environmental research and development portfolio. At an initial meeting in Golden Colorado, an initial set of Technical Targets was identified using a rapid consensus based technical triage process. Thirteen Technical Targets were identified and described. Vital scientific and technical objectives were generated for each target. The targets generally fall into one of the following five strategic investment categories: Enhancing Environmental Stewardship, Eliminating Contaminant Sources, Isolating Contaminants, Controlling Contaminant Plumes, Enabling DOEs CleanUp Efforts. The resulting targets and the detail they comprise on what is, and what is not, needed to meet Environmental Management needs provide a comprehensive technically-based framework to assist in prioritizing future work and in managing the SCFA program

  20. Seismic assessment of Technical Area V (TA-V).

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, Carlos S.

    2014-03-01

    The Technical Area V (TA-V) Seismic Assessment Report was commissioned as part of Sandia National Laboratories (SNL) Self Assessment Requirement per DOE O 414.1, Quality Assurance, for seismic impact on existing facilities at Technical Area-V (TA-V). SNL TA-V facilities are located on an existing Uniform Building Code (UBC) Seismic Zone IIB Site within the physical boundary of the Kirtland Air Force Base (KAFB). The document delineates a summary of the existing facilities with their safety-significant structure, system and components, identifies DOE Guidance, conceptual framework, past assessments and the present Geological and Seismic conditions. Building upon the past information and the evolution of the new seismic design criteria, the document discusses the potential impact of the new standards and provides recommendations based upon the current International Building Code (IBC) per DOE O 420.1B, Facility Safety and DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and Non-Nuclear Facilities.

  1. Technical Safety Appraisal of the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    This report documents the results of the Technical Safety Appraisal (TSA) of the Lawrence Livermore National Laboratory (LLNL) (including the Site 300 area), Livermore, California, conducted from February 26 to April 5, 1990. The purpose of the assessment was to provide the Secretary of Energy with the status of Environment, Safety and Health (ES H) Programs at LLNL. LLNL is operated by the University of California for the Department of Energy (DOE), and is a multi-program, mission-oriented institution engaged in fundamental and applied research programs that require a multidisciplinary approach. 1 fig.

  2. Idaho National Engineering Laboratory waste area groups 1--7 and 10 Technology Logic Diagram

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Technology Logic Diagram was developed to provide technical alternatives for environmental restoration projects at the Idaho National Engineering Laboratory. The diagram (three volumes) documents suggested solutions to the characterization, retrieval, and treatment phases of cleanup activities at contaminated sites within 8 of the laboratory's 10 waste area groups. Contaminated sites at the laboratory's Naval Reactor Facility and Argonne National Laboratory-West are not included in this diagram

  3. Technical standards in nuclear area

    International Nuclear Information System (INIS)

    Grimberg, M.

    1978-01-01

    The technical standardization in nuclear area is discussed. Also, the competence of CNEN in standardization pursuit is analysed. Moreover, the process of working up of technical standards is explained; in addition, some kinds of technical standards are discussed. (author) [pt

  4. Corrective measures evaluation report for technical area-v groundwater.

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Johnathan L (North Wind, Inc., Idaho Falls, ID); Orr, Brennon R. (North Wind, Inc., Idaho Falls, ID); Dettmers, Dana L. (North Wind, Inc., Idaho Falls, ID); Hall, Kevin A. (North Wind, Inc., Idaho Falls, ID); Howard, Hope (North Wind, Inc., Idaho Falls, ID)

    2005-07-01

    This Corrective Measures Evaluation Report was prepared as directed by the Compliance Order on Consent issued by the New Mexico Environment Department to document the process of selecting the preferred remedial alternative for contaminated groundwater at Technical Area V. Supporting information includes background information about the site conditions and potential receptors and an overview of work performed during the Corrective Measures Evaluation. Evaluation of remedial alternatives included identification and description of four remedial alternatives, an overview of the evaluation criteria and approach, qualitative and quantitative evaluation of remedial alternatives, and selection of the preferred remedial alternative. As a result of the Corrective Measures Evaluation, it was determined that monitored natural attenuation of all contaminants of concern (trichloroethene, tetrachloroethene, and nitrate) was the preferred remedial alternative for implementation as the corrective measure to remediate contaminated groundwater at Technical Area V of Sandia National Laboratories/New Mexico. Finally, design criteria to meet cleanup goals and objectives and the corrective measures implementation schedule for the preferred remedial alternative are presented.

  5. WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, D.A.

    2001-04-30

    The United States Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL) implemented the Wind Partnership for Advanced Component Technologies (WindPACT) program. As part of the WindPACT program, Global Energy Concepts, LLC (GEC), was awarded contract number YAM-0-30203-01 to examine Technical Area 1-Blade Scaling, Technical Area 2-Turbine Rotor and Blade Logistics, and Technical Area 3-Self-Erecting Towers. This report documents the results of GEC's Technical Area 1-Blade Scaling. The primary objectives of the Blade-Scaling Study are to assess the scaling of current materials and manufacturing technologies for blades of 40 to 60 meters in length, and to develop scaling curves of estimated cost and mass for rotor blades in that size range.

  6. Field Implementation Plan for the In-Situ Bioremediation Treatability Study at the Technical Area-V Groundwater Area of Concern

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-31

    This Field Implementation Plan (FIP) was prepared by Sandia National Laboratories, New Mexico (SNL/NM) and provides instruction on conducting a series of in-situ bioremediation (ISB) tests as described in the Revised Treatability Study Work Plan for In-Situ Bioremediation at the Technical Area-V Groundwater Area of Concern, referred to as the Revised Work Plan in this FIP. The Treatability Study is designed to gravity inject an electron-donor substrate and bioaugmentation bacteria into groundwater via three injection wells to perform bioremediation of the constituents of concern (COCs), nitrate and trichloroethene (TCE), in the regions with the highest concentrations at the Technical Area-V Groundwater (TAVG) Area of Concern (AOC). The Treatability Study will evaluate the effectiveness of bioremediation solution delivery and COC treatment over time. This FIP is designed for SNL/NM work planning and management. It is not intended to be submitted for regulator’s approval. The technical details presented in this FIP are subject to change based on field conditions, availability of equipment and materials, feasibility, and inputs from Sandia personnel and Aboveground Injection System contractor.

  7. Field Implementation Plan for the In-Situ Bioremediation Treatability Study at the Technical Area-V Groundwater Area of Concern

    International Nuclear Information System (INIS)

    Li, Jun

    2016-01-01

    This Field Implementation Plan (FIP) was prepared by Sandia National Laboratories, New Mexico (SNL/NM) and provides instruction on conducting a series of in-situ bioremediation (ISB) tests as described in the Revised Treatability Study Work Plan for In-Situ Bioremediation at the Technical Area-V Groundwater Area of Concern, referred to as the Revised Work Plan in this FIP. The Treatability Study is designed to gravity inject an electron-donor substrate and bioaugmentation bacteria into groundwater via three injection wells to perform bioremediation of the constituents of concern (COCs), nitrate and trichloroethene (TCE), in the regions with the highest concentrations at the Technical Area-V Groundwater (TAVG) Area of Concern (AOC). The Treatability Study will evaluate the effectiveness of bioremediation solution delivery and COC treatment over time. This FIP is designed for SNL/NM work planning and management. It is not intended to be submitted for regulator's approval. The technical details presented in this FIP are subject to change based on field conditions, availability of equipment and materials, feasibility, and inputs from Sandia personnel and Aboveground Injection System contractor.

  8. Los Alamos National Laboratory Environmental Restoration Project quarterly technical report, April--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-18

    This quarterly report describes the technical status of activities in the Los Alamos National Laboratory Environmental Restoration (ER) Project. Each activity is identified by an activity data sheet number, a brief title describing the activity or the technical area where the activity is located, and the name of the project leader. The Hazardous and Solid Waste Amendments (HSWA) portion of the facility operating permit requires the submission of a technical progress report on a quarterly basis. This report, submitted to fulfill the permit`s requirement, summarizes the work performed and the results of sampling and analysis in the ER Project. Suspect waste found include: Radionuclides, high explosives, metals, solvents and organics. The data provided in this report have not been validated. These data are considered ``reviewed data.``

  9. Application of non-intrusive geophysical techniques at the Mixed Waste Landfill, Technical Area 3, Sandia National Laboratories, New Mexico

    International Nuclear Information System (INIS)

    Peace, J.L.; Goering, T.J.

    1996-03-01

    The Environmental Restoration Project at Sandia National Laboratories, New Mexico is tasked with assessment and remediation of the Mixed Waste Landfill in Technical Area 3. The Mixed Waste Landfill is an inactive radioactive and mixed waste disposal site. The landfill contains disposal pits and trenches of questionable location and dimension. Non-intrusive geophysical techniques were utilized to provide an effective means of determining the location and dimension of suspected waste disposal trenches before Resource Conservation and Recovery Act intrusive assessment activities were initiated. Geophysical instruments selected for this investigation included a Geonics EM-31 ground conductivity meter, the new Geonics EM-61 high precision, time-domain metal detector, and a Geometrics 856 total field magnetometer. The results of these non-intrusive geophysical techniques were evaluated to enhance the efficiency and cost-effectiveness of future waste-site investigations at Environmental Restoration Project sites

  10. Environmental Measurements Laboratory fiscal year 1998: Accomplishments and technical activities

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, M.D.

    1999-01-01

    The Environmental Measurements Laboratory (EML) is government-owned, government-operated, and programmatically under the DOE Office of Environmental Management. The Laboratory is administered by the Chicago Operations Office. EML provides program management, technical assistance and data quality assurance for measurements of radiation and radioactivity relating to environmental restoration, global nuclear nonproliferation, and other priority issues for the Department of Energy, as well as for other government, national, and international organizations. This report presents the technical activities and accomplishments of EML for Fiscal Year 1998.

  11. Technical roles and success of US federal laboratory-industry partnerships

    OpenAIRE

    Barry Bozeman; Dennis Wittmer

    2001-01-01

    Drawing from questionnaire-based data of 229 US federal laboratory-industry joint R&D projects, this research examines the composition of the technical interaction by character of the R&D performed to determine the impacts on effectiveness of the technical roles played by research partners. In addition to the particular technical roles, their number and diversity are examined, giving particular attention to the subset of projects in which the company played no technical role. Our findings sho...

  12. Floodplain statement of findings for corrective actions in Potrillo Canyon technical area-36, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Keller, David Charles

    2016-01-01

    In 2014, baseline storm water monitoring samples for Potrillo Canyon Sample Management Area at Los Alamos National Laboratory (LANL) exceeded the National Pollutant Discharge Elimination System Individual Permit No. NM0030759 target action level (TAL) of 15 picocuries per liter (pCi/L) for gross-alpha radioactivity (393 pCi/L) and a TAL of 30 pCi/L for radium-226 and radium-228 (95.9 pCi/L). Consequently, erosion control measures within the management area are proposed to minimize sediment migration, a corrective action under the permit that is a requirement of the New Mexico Environment Department consent decree and a good management practice to limit off-site sediment migration. The area proposed for erosion controls consists of portions of Technical Area 36 that were used as firing sites primarily involving high explosives (HE) and metal (e.g., depleted uranium, lead, copper, aluminum, and steel), small-explosives experiments and burn pits (burn pits were used for burning and disposal of test debris). In addition, underground explosive tests at an approximate depth of 100 feet were also conducted. These watershed-based storm water controls will focus on addressing erosion occurring within the floodplain through mitigating and reducing both current and future channelization and head cutting.

  13. Floodplain statement of findings for corrective actions in Potrillo Canyon technical area-36, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Keller, David Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-18

    In 2014, baseline storm water monitoring samples for Potrillo Canyon Sample Management Area at Los Alamos National Laboratory (LANL) exceeded the National Pollutant Discharge Elimination System Individual Permit No. NM0030759 target action level (TAL) of 15 picocuries per liter (pCi/L) for gross-alpha radioactivity (393 pCi/L) and a TAL of 30 pCi/L for radium-226 and radium-228 (95.9 pCi/L). Consequently, erosion control measures within the management area are proposed to minimize sediment migration, a corrective action under the permit that is a requirement of the New Mexico Environment Department consent decree and a good management practice to limit off-site sediment migration. The area proposed for erosion controls consists of portions of Technical Area 36 that were used as firing sites primarily involving high explosives (HE) and metal (e.g., depleted uranium, lead, copper, aluminum, and steel), small-explosives experiments and burn pits (burn pits were used for burning and disposal of test debris). In addition, underground explosive tests at an approximate depth of 100 feet were also conducted. These watershed-based storm water controls will focus on addressing erosion occurring within the floodplain through mitigating and reducing both current and future channelization and head cutting.

  14. Risk assessment of the retrieval of transuranic waste: Pads 1, 2, and 4, Technical Area-54, Area G Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Wilbert, K.A.; Lyon, B.F.; Hutchison, J.; Holmes, J.A.; Legg, J.L.; Simek, M.P.; Travis, C.C.; Wollert, D.A.

    1995-05-01

    The Risk Assessment for the Retrieval of Transuranic Waste is a comparative risk assessment of the potential adverse human health effects resulting from exposure to contaminants during retrieval and post-retrieval aboveground storage operations of post-1970 earthen-covered transuranic waste. Two alternatives are compared: (1) Immediate Retrieval and (2) Delayed Retrieval. Under the Immediate Retrieval Alternative, retrieval of the waste is assumed to begin immediately, Under the Delayed Retrieval Alternative, retrieval is delayed 10 years. The current risk assessment is on Pads 1, 2, and 4, at Technical Area-54, Area-G, Los Alamos National Laboratory (LANL). Risks are assessed independently for three scenarios: (1) incident-free retrieval operations, (2) incident-free storage operations, and (3) a drum failure analysis. The drum failure analysis evaluates container integrity under both alternatives and assesses the impacts of potential drum failures during retrieval operations. Risks associated with a series of drum failures are potentially severe for workers, off-site receptors, and general on-site employees if retrieval is delayed 10 years and administrative and engineering controls remain constant. Under the Delayed Retrieval Alternative, an average of 300 drums out of 16,647 are estimated to fail during retrieval operations due to general corrosion, while minimal drums are predicted to fail under the Immediate Retrieval Alternative. The results of the current study suggest that, based on risk, remediation of Pads 1, 2, and 4 at LANL should not be delayed. Although risks from incident-free operations in the Delayed Retrieval Alternative are low, risks due to corrosion and drum failures are potentially severe

  15. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Gratson, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1991-12-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the Acid Pit and Transuranic Pits and Trenches (TRU-PTs) that are present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues exist that must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues associated with ISV application at the INEL SDA. The activities of the ISV Steering Committee are summarized in three volumes of this report. This document, Volume 1, identifies the systematic approach used to identify and prioritize the ISV technical issues, and briefly discusses the methodology that will be employed to resolve these issues

  16. Sandia Laboratories technical capabilities. Auxiliary capabilities: environmental health information science

    International Nuclear Information System (INIS)

    1975-09-01

    Sandia Laboratories is an engineering laboratory in which research, development, testing, and evaluation capabilities are integrated by program management for the generation of advanced designs. In fulfilling its primary responsibility to ERDA, Sandia Laboratories has acquired extensive research and development capabilities. The purpose of this series of documents is to catalog the many technical capabilities of the Laboratories. After the listing of capabilities, supporting information is provided in the form of highlights, which show applications. This document deals with auxiliary capabilities, in particular, environmental health and information science. (11 figures, 1 table) (RWR)

  17. Technical baseline description for in situ vitrification laboratory test equipment

    International Nuclear Information System (INIS)

    Beard, K.V.; Bonnenberg, R.W.; Watson, L.R.

    1991-09-01

    IN situ vitrification (ISV) has been identified as possible waste treatment technology. ISV was developed by Pacific Northwest Laboratory (PNL), Richland, Washington, as a thermal treatment process to treat contaminated soils in place. The process, which electrically melts and dissolves soils and associated inorganic materials, simultaneously destroys and/or removes organic contaminants while incorporating inorganic contaminants into a stable, glass-like residual product. This Technical Baseline Description has been prepared to provide high level descriptions of the design of the Laboratory Test model, including all design modifications and safety improvements made to data. Furthermore, the Technical Baseline Description provides a basic overview of the interface documents for configuration management, program management interfaces, safety, quality, and security requirements. 8 figs

  18. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Gratson, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1992-01-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the Acid Pit and Transuranic Pits and Trenches (TRU-PTs) that are present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues exist that must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues associated with ISV application at the INEL SDA. The activities of the ISV Steering Committee are summarized in three volumes of this report. Volume 1 identifies the systematic approach used to identify and prioritize the ISV technical issues, and briefly discusses the methodology that will be employed to resolve these issues. This document Volume 2 and Volume 3 discusses each technical issue in greater detail and suggest specific closure roadmaps to be used in resolving technical issues associated with ISV at the SDA Acid Pit and TRU-PTs, respectively

  19. Mixed waste focus area integrated technical baseline report. Phase I, Volume 2: Revision 0

    International Nuclear Information System (INIS)

    1996-01-01

    This document (Volume 2) contains the Appendices A through J for the Mixed Waste Focus Area Integrated Technical Baseline Report Phase I for the Idaho National Engineering Laboratory. Included are: Waste Type Managers' Resumes, detailed information on wastewater, combustible organics, debris, unique waste, and inorganic homogeneous solids and soils, and waste data information. A detailed list of technology deficiencies and site needs identification is also provided

  20. Technical Service Agreement (TSA) | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Frederick National Laboratory for Cancer Research (FNLCR) scientists provide services and solutions to collaborators through the Technical Services Program, whose portfolio includes more than 200 collaborations with more than 80 partners. The Frederi

  1. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Krisman, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1992-07-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the acid pit and transuranic pits and trenches (TRU-PTs) at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues lated with ISV application at the SDA. The activities of the ISV Steering Committee are summarized in a three-volume report. Volume I identifies the systematic approach used to identify and prioritize the ISV technical issues and briefly discusses the methodology that will be employed to resolve these issues. Volumes 2 and 3 discuss each technical issue in greater detail and suggest specific closure roadmaps to be used in resolving technical issues associated with ISV at the SDA Acid Pit and TRU-PTS, respectively. The three-volume report is a working document that will be updated as necessary to reflect current evaluation strategy for the ISV technology. This is Volume 3

  2. AECL's underground research laboratory: technical achievements and lessons learned

    International Nuclear Information System (INIS)

    Ohta, M.M.; Chandler, N.A.

    1997-03-01

    During the development of the research program for the Canadian Nuclear Fuel Waste Management Program in the 1970's, the need for an underground facility was recognized. AECL constructed an Underground Research Laboratory (URL) for large-scale testing and in situ engineering and performance-assessment-related experiments on key aspects of deep geological disposal in a representative geological environment. Ale URL is a unique geotechnical research and development facility because it was constructed in a previously undisturbed portion of a granitic pluton that was well characterized before construction began, and because most of the shaft and experimental areas are below the water table. The specific areas of research, development and demonstration include surface and underground characterization; groundwater and solute transport; in situ rock stress conditions; temperature and time-dependent deformation and failure characteristics of rock; excavation techniques to minimize damage to surrounding rock and to ensure safe working conditions; and the performance of seals and backfills. This report traces the evolution of the URL and summarizes the technical achievements and lessons learned during its siting, design and construction, and operating phases over the last 18 years. (author)

  3. Annual report on operation, utilization and technical development of research reactors and hot laboratory

    International Nuclear Information System (INIS)

    1990-09-01

    This report describes the activities of the Department of Research Reactor Operation in fiscal year of 1989. It also presents some technical topics on the reactor operation and utilization in details. The Department is responsible for operation of the research reactors, JRR-2 and JRR-4, and the Hot Laboratory. The research reactor JRR-3 was reconstructed to enhance the performance for utilization. The first criticality was achieved on March 22, 1989, and it subsequently went into operation. In connection with the reactor operation, the various research and development activities in the area of fuel management, water chemistry, radiation monitoring and material irradiation have been made. In the Hot Laboratory, post-irradiation examinations of fuels and materials have been carried out along with the development of related techniques. (author)

  4. Technical Feasibility of Integrated Laboratory in Faculty of Sports Science Universitas Negeri Semarang

    Directory of Open Access Journals (Sweden)

    Ipang Setiawan

    2017-11-01

    Full Text Available This research aims to analyze the requirements of technical integrated laboratory FIK Unnes in improving sports achievement in Central Java Province, Indonesia. Research method used in this research was qualitative descriptive, with evaluation approach, the instrument used document analysis, observation, interview and inquiry. Data analysis used by using Miles and Huberman interactive cycle then the pattern tendency was explained, qualitative analysis was initiated by describing reality happened in narration form then it was interpreted by a guidebook with ISO 17025 or SNI 17025 standard in laboratory. The result shows that the requirements of technical integrated laboratory FIK Unnes was quite maximum to contribute in improving sports achievement in Central Java Province, Indonesia, it was based on the technical standard from equipment, personnel, accommodation and environment condition, finding of test and measurement, quality assurance of measurement and test result, and reporting of result conducted based on ISO 17025 or SNI 17025 standard.

  5. Special Analysis: 2017-001 Disposal of Drums Containing Enriched Uranium in Pit 38 at Technical Area 54, Area G

    Energy Technology Data Exchange (ETDEWEB)

    Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-05

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. This special analysis, SA 2017-001, evaluates the potential impacts of disposing of this waste in Pit 38 at Area G based on the assumptions that form the basis of the Area G PA/CA. Section 2 describes the methods used to conduct the analysis; the results of the evaluation are provided in Section 3; and conclusions and recommendations are provided in Section 4.

  6. Floodplain Assessment for the North Ancho Canyon Aggregate Area Cleanup in Technical Area 39 at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, Charles Dean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-26

    This floodplain assessment was prepared in accordance with 10 Code of Federal Regulations (CFR) 1022 Compliance with Floodplain and Wetland Environmental Review Requirements, which was promulgated to implement the U.S. Department of Energy (DOE) requirements under Executive Order 11988 Floodplain Management and Executive Order 11990 Wetlands Protection. According to 10 CFR 1022, a 100-year floodplain is defined as “the lowlands adjoining inland and coastal waters and relatively flat areas and flood prone areas of offshore islands.” In this action, DOE is proposing to collect soil investigation samples and remove contaminated soil within and around selected solid waste management units (SWMUs) near and within the 100-year floodplain (hereafter “floodplain”) in north Ancho Canyon at Los Alamos National Laboratory (LANL). The work is being performed to comply with corrective action requirements under the 2016 Compliance Order on Consent.

  7. Factors Influencing Choice of Occupational Area among Technical ...

    African Journals Online (AJOL)

    Interest in study area; perceived availability of job opportunities related to area of specialization; simplicity of area in training and in employment; and perceived affordability of equipment for self-employment were found to influence choice of occupational area among the two groups. Keywords: Technical Education; Career ...

  8. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.H.

    1996-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).

  9. Proceedings of symposium on technology in laboratories by department of engineering and technical services

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    The Symposium on Technology in Laboratories was held on March 14 and 15 at Ceratopia Toki in Toki City, Gifu Prefecture, Japan. This symposium was hosted by National Institute for Fusion Science (NIFS). There were 407 participants from many Japanese universities, national laboratories, technical colleges and from some Japanese Industrial world. One hundred and thirty one papers were presented in the symposium. Technical experience and new techniques were reported and discussed being divided into five sessions; technology of fabrication, device technology, diagnostic and control system, cryogenics, computer and data processing. (author)

  10. Technical review of the Sandia Laboratories' Particle Beam Fusion Program

    International Nuclear Information System (INIS)

    1979-01-01

    This report considers the technical aspects of Sandia Laboratories' Particle Beam Fusion Program and examines the program's initial goals, the progress made to date towards reaching those goals, and the future plans or methods of reaching those original or modified goals. A summary of Sandia Laboratories' effort, which seeks to demonstrate that high voltage pulsed power generated high-current electron or light ion beams can be used to ignite a deuterium or tritium pellet, is provided. A brief review and assessment of the Sandia Pulse Power Program is given. Several critical issues and summaries of the committee members' opinions are discussed

  11. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas

    OpenAIRE

    Yeh, Kenneth B.; Adams, Martin; Stamper, Paul D.; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D.; Richards, Allen L.; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and r...

  12. Implementing waste minimization at an active plutonium processing facility: Successes and progress at technical area (TA) -55 of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Balkey, J.J.; Robinson, M.A.; Boak, J.

    1997-12-01

    The Los Alamos National Laboratory has ongoing national security missions that necessitate increased plutonium processing. The bulk of this activity occurs at Technical Area -55 (TA-55), the nations only operable plutonium facility. TA-55 has developed and demonstrated a number of technologies that significantly minimize waste generation in plutonium processing (supercritical CO{sub 2}, Mg(OH){sub 2} precipitation, supercritical H{sub 2}O oxidation, WAND), disposition of excess fissile materials (hydride-dehydride, electrolytic decontamination), disposition of historical waste inventories (salt distillation), and Decontamination & Decommissioning (D&D) of closed nuclear facilities (electrolytic decontamination). Furthermore, TA-55 is in the process of developing additional waste minimization technologies (molten salt oxidation, nitric acid recycle, americium extraction) that will significantly reduce ongoing waste generation rates and allow volume reduction of existing waste streams. Cost savings from reduction in waste volumes to be managed and disposed far exceed development and deployment costs in every case. Waste minimization is also important because it reduces occupational exposure to ionizing radiation, risks of transportation accidents, and transfer of burdens from current nuclear operations to future generations.

  13. Implementing waste minimization at an active plutonium processing facility: Successes and progress at technical area (TA) -55 of the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Balkey, J.J.; Robinson, M.A.; Boak, J.

    1997-01-01

    The Los Alamos National Laboratory has ongoing national security missions that necessitate increased plutonium processing. The bulk of this activity occurs at Technical Area -55 (TA-55), the nations only operable plutonium facility. TA-55 has developed and demonstrated a number of technologies that significantly minimize waste generation in plutonium processing (supercritical CO 2 , Mg(OH) 2 precipitation, supercritical H 2 O oxidation, WAND), disposition of excess fissile materials (hydride-dehydride, electrolytic decontamination), disposition of historical waste inventories (salt distillation), and Decontamination ampersand Decommissioning (D ampersand D) of closed nuclear facilities (electrolytic decontamination). Furthermore, TA-55 is in the process of developing additional waste minimization technologies (molten salt oxidation, nitric acid recycle, americium extraction) that will significantly reduce ongoing waste generation rates and allow volume reduction of existing waste streams. Cost savings from reduction in waste volumes to be managed and disposed far exceed development and deployment costs in every case. Waste minimization is also important because it reduces occupational exposure to ionizing radiation, risks of transportation accidents, and transfer of burdens from current nuclear operations to future generations

  14. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    International Nuclear Information System (INIS)

    Smith, M.H.

    1996-01-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory's research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL)

  15. The roots of gender inequity in technical areas

    Science.gov (United States)

    Campbell, James Reed

    This article describes a study of the academic self-concepts, attributions and achievements of male and female Asian American and Caucasian students who won Westinghouse Awards in 1984 and 1985. The results of the study showed that fewer Caucasian female recipients anticipated college majors in the technical areas. Furthermore, this group of females scored lower on both parts of the SAT, scored lower on all of the self-concept scales, and also scored lower on both attribution scales. In contrast, the Asian females optimized courses for the gifted and specialized research courses to distance themselves from the American females in almost all areas. The author linked these ethnic, gender differences to underlying psychological and sociological forces that are responsible for the self-concept and attribution differences. It is these forces that must be altered for Caucasian females to rectify the gender inequalities that exist in the technical areas.

  16. Areas and programmes of technical assistance

    International Nuclear Information System (INIS)

    1998-01-01

    The cooperation between the Atomic Energy Commission of Costa Rica, and the International Atomic Energy Agency, has permitted to carry out programmes and projects which agree with the national objectives of development. In the areas of environmental hydrology; physical sciences and chemistry; industry and geological sciences; health and animal production; biological sciences, agriculture and alimentation; scientific and technical information. (author) [es

  17. Report on operation, utilization and technical development of research reactors and hot laboratory

    International Nuclear Information System (INIS)

    1980-03-01

    Activities of the Division of Research Reactor Operation in fiscal 1978 are described. The division is responsible for operation and maintenance of JRR-2, JRR-3, JRR-4 and Hot Laboratory. In the above connection, various other works are performed, including technical management of fuel and coolant, radiation control, irradiation technique, etc. In Hot Laboratory, postirradiation examinations of fuels and materials are made, and also development of examination methods. (author)

  18. Report on operation utilization and technical development of research reactors and hot laboratory

    International Nuclear Information System (INIS)

    1982-03-01

    Activities of the Division of Research Reactor Operation in fiscal 1980 are described. The division is responsible for operation and maintenance of JRR-2, JRR-3, JRR-4 and Hot Laboratory. In the above connection, various other works are performed, including technical management of fuel and coolant, radiation control, irradiation technique, etc. In Hot Laboratory, postirradiation examinations of fuels and materials are made, and also development of examination methods. (author)

  19. Report on operation, utilization and technical development of Research Reactors and Hot Laboratory

    International Nuclear Information System (INIS)

    1984-10-01

    Activities of the Division of Research Reactor Operation in fiscal 1981 are described. The division is responsible for operation and maintenance of JRR-2, JRR-3, JRR-4 and Hot Laboratory. In the above connection, various other works are performed, including technical management of fuel and coolant, radiation control, irradiation technique, etc. In Hot Laboratory, postirradiation examinations of fuels and materials are made, and also development of examination methods. (author)

  20. Tanks Focus Area FY98 midyear technical review

    Energy Technology Data Exchange (ETDEWEB)

    Schlahta, S.N.; Brouns, T.M.

    1998-06-01

    The Tanks Focus Area (TFA) serves as the DOE`s Office of Environmental Management`s national technology and solution development program for radioactive waste tank remediation. Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. In total, 17 technologies and technical solutions were selected for review. The purpose of each review was to understand the state of development of each technology selected for review and to identify issues to be resolved before the technology or technical solution progressed to the next level of maturity. The reviewers provided detailed technical and programmatic recommendations and comments. The disposition of these recommendations and comments and their impact on the program is documented in this report.

  1. Tanks Focus Area FY98 midyear technical review

    International Nuclear Information System (INIS)

    Schlahta, S.N.; Brouns, T.M.

    1998-06-01

    The Tanks Focus Area (TFA) serves as the DOE's Office of Environmental Management's national technology and solution development program for radioactive waste tank remediation. Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. In total, 17 technologies and technical solutions were selected for review. The purpose of each review was to understand the state of development of each technology selected for review and to identify issues to be resolved before the technology or technical solution progressed to the next level of maturity. The reviewers provided detailed technical and programmatic recommendations and comments. The disposition of these recommendations and comments and their impact on the program is documented in this report

  2. Z plant aggregate area management study technical baseline report

    International Nuclear Information System (INIS)

    DeFord, D.H.; Carpenter, R.W.

    1995-05-01

    This document was prepared in support of the development of a Aggregate Area Management Study of Z Plant, 200 West Area, at the US Department of Energy (DOE) Hanford Site near Richland, Washington. It provides a technical description and operational history of the aggregate area and results from an environmental investigation undertaken by the Technical Baseline Section of the Environmental Engineering Group, Westinghouse Hanford Company (WHC) which is currently the Waste Site and Facility Research Office, Natural Resources, Bechtel Hanford, Inc. (BHI). It is based upon review and evaluation of numerous Hanford Site current and historical reports, drawings and photographs, supplemented with site inspections and employee interviews. No intrusive field investigations or sampling were conducted in support of this report

  3. Technical area status report for low-level mixed waste final waste forms

    International Nuclear Information System (INIS)

    Mayberry, J.L.; DeWitt, L.M.; Darnell, R.

    1993-08-01

    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA's Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities

  4. Developing Technical Writing Skills in the Physical Chemistry Laboratory: A Progressive Approach Employing Peer Review

    Science.gov (United States)

    Gragson, Derek E.; Hagen, John P.

    2010-01-01

    Writing formal "journal-style" lab reports is often one of the requirements chemistry and biochemistry students encounter in the physical chemistry laboratory. Helping students improve their technical writing skills is the primary reason this type of writing is a requirement in the physical chemistry laboratory. Developing these skills is an…

  5. Introduction of a fresh cadaver laboratory during the surgery clerkship improves emergency technical skills.

    Science.gov (United States)

    Nematollahi, Saman; Kaplan, Stephen J; Knapp, Christopher M; Ho, Hang; Alvarado, Jared; Viscusi, Rebecca; Adamas-Rappaport, William

    2015-08-01

    Student acquisition of technical skills during the clinical years of medical school has been steadily declining. To address this issue, the authors instituted a fresh cadaver-based Emergency Surgical Skills Laboratory (ESSL). Sixty-three medical students rotating through the third-year surgery clerkship participated in a 2-hour, fresh cadaver-based ESSL conducted during the first 2 days of the clerkship. The authors evaluated students utilizing both surgical skills and written examination before the ESSL and at 4 weeks post ESSL. Students demonstrated a mean improvement of 64% (±11) (P cadaver laboratory is an effective method to provide proficiency in emergency technical skills not acquired during the clinical years of medical school. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Association Euratom - Risø National Laboratory, Technical University of Denmark - Annual Progress Report 2007

    DEFF Research Database (Denmark)

    Michelsen, Poul; Korsholm, Søren Bang; Juul Rasmussen, Jens

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the pla......The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction...... phased out during 2007. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2007....

  7. S Plant Aggregate Area Management study technical baseline report

    International Nuclear Information System (INIS)

    DeFord, D.H.; Carpenter, R.W.

    1995-05-01

    This document is prepared in support of an Aggregate Area Management Study of S Plant, 200 West Area, at the US Department of Energy's (DOE) Hanford Site near Richland, Washington. It provides a technical baseline of the aggregate area and the results from an environmental investigation undertaken by the Technical Baseline Section of the Environmental Engineering Group, Westinghouse Hanford Company (WHC). This document is based on review and evaluation of numerous Hanford Site current and historical reports, drawings and photographs, supplemented with site inspections and employee interviews. This report describes the REDOX facility and its waste sites, including cribs, french drains, septic tanks and drain fields, trenches, catch tanks, settling tanks, diversion boxes, underground tank farms designed for high-level liquid wastes, and the lines and encasements that connect them

  8. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    Science.gov (United States)

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.

  9. Software engineering laboratory series: Annotated bibliography of software engineering laboratory literature

    Science.gov (United States)

    Morusiewicz, Linda; Valett, Jon

    1992-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) the Software Engineering Laboratory; (2) the Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.

  10. Environmental assessment for operations, upgrades, and modifications in SNL/NM Technical Area IV

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The proposed action for this EA for Sandia National Laboratories/New Mexico Technical Area IV, includes continuing existing operations, modification of an existing accelerator (Particle Beam Fusion Accelerator II) to support defnese-related Z-pinch experiments, and construction of two transformer oil storage tanks to support the expansion of the Advanced Pulsed Power Research Module, a single pulse accelerator. Based on the analyses in the EA, DOE believes that the proposed action is not a major federal action significantly affecting the quality of the human environment within the meaning of NEPA and CEQ NEPA implementing regulations in 40 CFR 1508.18 and 1508.27. Therefore, an environmental impact statement is not required, and a Finding of No Significant Impact is issued.

  11. Environmental assessment for operations, upgrades, and modifications in SNL/NM Technical Area IV

    International Nuclear Information System (INIS)

    1996-04-01

    The proposed action for this EA for Sandia National Laboratories/New Mexico Technical Area IV, includes continuing existing operations, modification of an existing accelerator (Particle Beam Fusion Accelerator II) to support defnese-related Z-pinch experiments, and construction of two transformer oil storage tanks to support the expansion of the Advanced Pulsed Power Research Module, a single pulse accelerator. Based on the analyses in the EA, DOE believes that the proposed action is not a major federal action significantly affecting the quality of the human environment within the meaning of NEPA and CEQ NEPA implementing regulations in 40 CFR 1508.18 and 1508.27. Therefore, an environmental impact statement is not required, and a Finding of No Significant Impact is issued

  12. [Implementation of the technical requirements of the UNE-EN-ISO 15189 quality standard in a mycobacterial laboratory].

    Science.gov (United States)

    Guna Serrano, M del Remedio; Ocete Mochón, M Dolores; Lahiguera, M José; Bresó, M Carmen; Gimeno Cardona, Concepción

    2013-02-01

    The UNE-EN-ISO 15189:2007 standard defines the requirements for quality and competence that must be met by medical laboratories. These laboratories should use this international standard to develop their own quality management systems and to evaluate their own competencies; in turn, this standard will be used by accreditation bodies to confirm or recognize the laboratories' competence. In clinical microbiology laboratories, application of the standard implies the implementation of the technical and specific management requirements that must be met to achieve optimal quality when carrying out microbiological tests. In Spain, accreditation is granted by the Spanish Accreditation Body (Entidad Nacional de Acreditación). This review aims to discuss the practical application of the standard's technical requirements in mycobacterial laboratory. Firstly, we define the scope of accreditation. Secondly, we specify how the items of the standard on personnel management, control of equipment, environmental facilities, method validation, internal controls and customer satisfaction surveys were developed and implemented in our laboratory. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  13. Physics Laboratory technical activities, 1991. Final report

    International Nuclear Information System (INIS)

    Gebbie, K.B.

    1992-02-01

    The report summarizes research projects, measurement method development, calibration and testing, and data evaluation activities that were carried out during calendar year 1991 in the NIST Physics Laboratory. These activities fall in the areas of electron and optical physics, atomic physics, molecular physics, radiometric physics, quantum metrology, ionizing radiation, time and frequency, quantum physics, and fundamental constants

  14. Optical networks and laboratory services

    International Nuclear Information System (INIS)

    Ciaffoni, O.; Ferrer, M.L.; Trasatti, L.

    1987-01-01

    Possible technical solutions to the problem of high speed data links between laboratories are presented. Long distance networks (WAN), ranging from tens to hundreds of kilometers, offer a variety of possibilities, from standard 64 Kbit/s connections to optical fiber links and radio or satellite Mbit channels. Short range (up to 2-3 km) communications are offered by many existing LAN (local area network) standards up to 10 Mbit/s. The medium distance range (around 10 km) can be covered by high performance fiber optic links and the now emerging MAN (metropolitan area network) protocols. A possible area of application is between the Gran Sasso Tunnel Laboratory, the outside installations and other Italien and foreign laboratories. (orig.)

  15. Training on radiation protection in university area. Experience of Technical University of Catalonia

    International Nuclear Information System (INIS)

    Ortega, X.

    2007-01-01

    This paper presents an overview of the different agents that are involved in training on Radiation Protection in Spain. The main circumstances which can introduce new challenges in radiation protection practices are reviewed, namely the planned modifications in the regulation framework, the mobility of European workers, the consequences of deregulation of the electric system, the moratorium of the Spanish nuclear programme and the changes in Spanish studies resulting from implementation of the European Higher Education Area. In relation to the contributions that university groups can develop in this field, the author makes some suggestions according to his own experience in the Technical University of Catalonia. It is emphasized that this contribution must be characterized by its quality, credibility and independence. It should include activities such as development of R and D studies, the implementation of accredited laboratories, organization of post-graduate courses, preparation of teaching materials and technical publications, and collaboration with public institutions, scientific and professional societies and other organizations. Finally, the other new activity that is stressed is related to the efforts required to improve information and communication to the stake holders and a growing social interest. (Author)

  16. Laboratory directed research and development FY98 annual report; TOPICAL

    International Nuclear Information System (INIS)

    Al-Ayat, R; Holzrichter, J

    1999-01-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs

  17. Laboratory technical services provides business opportunities for supervisory control and data acquisition systems

    International Nuclear Information System (INIS)

    Ballard, W.

    1994-01-01

    The author presents some additional information about what he considers are some really great opportunities for the business community to participate in developing the greatest scientific project in the history of mankind. Facility Engineering Services is part of Laboratory Technical Services. As part of this group, it has the responsibility to direct the construction of interim facilities, scientific labs, production process, cooling towers, cooling ponds and the operation and control of SSC Laboratory conventional support systems. These operations and controls will be accomplished through the employment of a Supervisory Control and Data Acquisition system (SCADA)

  18. Sandia National Laboratories 1979 environmental monitoring report

    International Nuclear Information System (INIS)

    Simmons, T.N.

    1980-04-01

    Sandia National Laboratories in Albuquerque is located south of the city on two broad mesas. The local climate is arid continental. Radionuclides are released from five technical areas from the Laboratories' resarch activities. Sandia's environmental monitoring program searches for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. No activity was found in public areas in excess of local background in 1979. The Albuquerque population receives only 0.076 person-rem (estimated) from airborne radioactive releases. While national security research is the laboratories' major responsibility, energy research is a major area of activity. Both these research areas cause radioactive releases

  19. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    CERN Document Server

    Cooper, J R

    2000-01-01

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  20. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    International Nuclear Information System (INIS)

    COOPER, J.R.

    2000-01-01

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual

  1. 100 Areas technical activities report, engineers - March 1951

    Energy Technology Data Exchange (ETDEWEB)

    1951-04-01

    This is the monthly 100 areas technical activities report from the engineering division for the month of March 1951. It reports on engineering activities related directly to the different production reactors, and gives progress reports on various engineering projects which are in development by the engineering group.

  2. Technical resource documents and technical handbooks for hazardous-wastes management

    Energy Technology Data Exchange (ETDEWEB)

    Schomaker, N.B.; Bliss, T.M.

    1986-07-01

    The Environmental Protection Agency is preparing a series of Technical Resource Documents (TRD's) and Technical Handbooks to provide best engineering control technology to meet the needs of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) respectively. These documents and handbooks are basically compilation of research efforts of the Land Pollution Control Division (LPCD) to date. The specific areas of research being conducted under the RCRA land disposal program relate to laboratory, pilot and field validation studies in cover systems, waste leaching and solidification, liner systems and disposal facility evaluation. The technical handbooks provide the EPA Program Offices and Regions, as well as the states and other interested parties, with the latest information relevant to remedial actions.

  3. Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Holterman, Luciana R. [Los Alamos National Laboratory

    2012-05-07

    This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of the open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.

  4. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    Energy Technology Data Exchange (ETDEWEB)

    COOPER, J.R.

    2000-04-17

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  5. KSC Technical Capabilities Website

    Science.gov (United States)

    Nufer, Brian; Bursian, Henry; Brown, Laurette L.

    2010-01-01

    This document is the website pages that review the technical capabilities that the Kennedy Space Center (KSC) has for partnership opportunities. The purpose of this information is to make prospective customers aware of the capabilities and provide an opportunity to form relationships with the experts at KSC. The technical capabilities fall into these areas: (1) Ground Operations and Processing Services, (2) Design and Analysis Solutions, (3) Command and Control Systems / Services, (4) Materials and Processes, (5) Research and Technology Development and (6) Laboratories, Shops and Test Facilities.

  6. Sandia National Laboratories analysis code data base

    Science.gov (United States)

    Peterson, C. W.

    1994-11-01

    Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.

  7. Sandia National Laboratories analysis code data base

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, C.W.

    1994-11-01

    Sandia National Laboratories, mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The Laboratories` strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia`s technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code ``ownership`` and release status, and references describing the physical models and numerical implementation.

  8. Laboratory Directed Research and Development FY-10 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  9. Laboratory and project based learning in the compulsory course Biological Chemistry enhancing collaboration and technical communication between groups

    DEFF Research Database (Denmark)

    Agersø, Yvonne; Bysted, Anette; Jensen, Lars Bogø

    2011-01-01

    The aim of this paper was to describe how changes of laboratory training and project based learning were implemented in order to train the students in making a study design, basic laboratory skills, handling of data, technical communication, collaboration and presentation....

  10. Core Capabilities and Technical Enhancement -- FY-98 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David Lynn

    1999-04-01

    The Core Capability and Technical Enhancement (CC&TE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CC&TE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CC&TE from the standpoint of program management and complex-wide issues. This report also provides details of ongoing and future work in all six areas.

  11. Core capabilities and technical enhancement, FY-98 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.L.

    1999-04-01

    The Core Capability and Technical Enhancement (CCTE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Department of Energy's Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CCTE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CCTE from the standpoint of program management and complex-wide issues. This report also provides details of ongoing and future work in all six areas.

  12. Technical area status report for low-level mixed waste final waste forms. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.L.; DeWitt, L.M. [Science Applications International Corp., Idaho Falls, ID (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-08-01

    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA`s Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities.

  13. Annotated bibliography of Software Engineering Laboratory literature

    Science.gov (United States)

    Morusiewicz, Linda; Valett, Jon D.

    1991-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. All materials have been grouped into eight general subject areas for easy reference: The Software Engineering Laboratory; The Software Engineering Laboratory: Software Development Documents; Software Tools; Software Models; Software Measurement; Technology Evaluations; Ada Technology; and Data Collection. Subject and author indexes further classify these documents by specific topic and individual author.

  14. Propellant Preparation Laboratory Complex (Area1-21)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: Area 1-21 is an explosion resistant complex of nine cells built into the side of a granite ridge. Three solid propellant cutting cells are housed in the...

  15. Proceedings of symposium on technology in laboratories by department of engineering and technical services

    International Nuclear Information System (INIS)

    1994-07-01

    The Symposium on Technology in Laboratories was held on March 23 and 24 at Ceratopia Toki, and Toki Chamber of Commerce and Industry in Toki city, Gifu Prefecture, Japan. This symposium was hosted by National Institute for Fusion Science (NIFS). There were 273 participants from many Japanese universities and laboratories, from some Japanese industrial world. Seventy eight papers were presented in the symposium. Technical experience and new techniques were reported and discussed being divided into five sessions; technologies of fabrication, cryogenics, diagnostic and control system, computer and experimental apparatus. (author)

  16. Management and technical requirements for laboratories in charge of water monitoring

    International Nuclear Information System (INIS)

    Ottaviani, M.; Bonadonna, L.; Lucentini, L.; Pettine, P.

    2008-01-01

    This report completes the series of volumes focused on microbiological (Rapporti ISTISAN 07/5) and chemical methods (Rapporti ISTISAN 07/31) for the monitoring of water intended for human consumption according to the Italian Legislative Decree 31/2001 (transposition of European Directive 98/83/EC) and its integrations. The guidelines here presented concern management and technical requirements for laboratories in charge of testing parameters required by the Decree also taking into account the criteria stated by the standard UNI CEI EN ISO/IEC 17025 [it

  17. Modeling Aeolian Transport of Contaminated Sediments at Los Alamos National Laboratory, Technical Area 54, Area G: Sensitivities to Succession, Disturbance, and Future Climate

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J. [Los Alamos National Laboratory; Kirchner, Thomas B. [New Mexico State University; Breshears, David D. [University of Arizona; Field, Jason P. [University of Arizona

    2012-03-27

    The Technical Area 54 (TA-54) Area G disposal facility is used for the disposal of radioactive waste at Los Alamos National Laboratory (LANL). U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety and the environment. In compliance with that requirement, DOE field sites must prepare and maintain site-specific radiological performance assessments for facilities that receive waste after September 26, 1988. Sites are also required to conduct composite analyses for facilities that receive waste after this date; these analyses account for the cumulative impacts of all waste that has been (and will be) disposed of at the facilities and other sources of radioactive material that may interact with these facilities. LANL issued Revision 4 of the Area G performance assessment and composite analysis in 2008. In support of those analyses, vertical and horizontal sediment flux data were collected at two analog sites, each with different dominant vegetation characteristics, and used to estimate rates of vertical resuspension and wind erosion for Area G. The results of that investigation indicated that there was no net loss of soil at the disposal site due to wind erosion, and suggested minimal impacts of wind on the long-term performance of the facility. However, that study did not evaluate the potential for contaminant transport caused by the horizontal movement of soil particles over long time frames. Since that time, additional field data have been collected to estimate wind threshold velocities for initiating sediment transport due to saltation and rates of sediment transport once those thresholds are reached. Data such as these have been used in the development of the Vegetation Modified Transport (VMTran) model. This model is designed to estimate patterns and long-term rates of contaminant redistribution caused by winds at the site, taking into account the impacts of plant

  18. Modeling Aeolian Transport of Contaminated Sediments at Los Alamos National Laboratory, Technical Area 54, Area G: Sensitivities to Succession, Disturbance, and Future Climate

    International Nuclear Information System (INIS)

    Whicker, Jeffrey J.; Kirchner, Thomas B.; Breshears, David D.; Field, Jason P.

    2012-01-01

    The Technical Area 54 (TA-54) Area G disposal facility is used for the disposal of radioactive waste at Los Alamos National Laboratory (LANL). U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety and the environment. In compliance with that requirement, DOE field sites must prepare and maintain site-specific radiological performance assessments for facilities that receive waste after September 26, 1988. Sites are also required to conduct composite analyses for facilities that receive waste after this date; these analyses account for the cumulative impacts of all waste that has been (and will be) disposed of at the facilities and other sources of radioactive material that may interact with these facilities. LANL issued Revision 4 of the Area G performance assessment and composite analysis in 2008. In support of those analyses, vertical and horizontal sediment flux data were collected at two analog sites, each with different dominant vegetation characteristics, and used to estimate rates of vertical resuspension and wind erosion for Area G. The results of that investigation indicated that there was no net loss of soil at the disposal site due to wind erosion, and suggested minimal impacts of wind on the long-term performance of the facility. However, that study did not evaluate the potential for contaminant transport caused by the horizontal movement of soil particles over long time frames. Since that time, additional field data have been collected to estimate wind threshold velocities for initiating sediment transport due to saltation and rates of sediment transport once those thresholds are reached. Data such as these have been used in the development of the Vegetation Modified Transport (VMTran) model. This model is designed to estimate patterns and long-term rates of contaminant redistribution caused by winds at the site, taking into account the impacts of plant

  19. LANGUAGE LABORATORY FACILITIES, TECHNICAL GUIDE FOR THE SELECTION, PURCHASE, USE, AND MAINTENANCE, STUDY 4--NEW MEDIA FOR INSTRUCTION.

    Science.gov (United States)

    HAYES, ALFRED S.

    THE MANY POSSIBLE VARIATIONS OF LANGUAGE LABORATORY SYSTEMS WERE DESCRIBED, AND RELATIVE ADVANTAGES AND LIMITATIONS OF EACH WERE DISCUSSED. DETAILED GUIDANCE ON PURCHASING LANGUAGE LABORATORY EQUIPMENT WAS PROVIDED THROUGH (1) DEFINITION OF HIGH-QUALITY SPEECH REPRODUCTION, (2) DISCUSSION OF TECHNICAL FACTORS WHICH AFFECT ITS ACHIEVEMENT, AND (3)…

  20. Laboratory Directed Research and Development Program FY98

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  1. Medical Laboratory Technician--Microbiology, 10-3. Military Curriculum Materials for Vocational and Technical Education.

    Science.gov (United States)

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, the second of three courses in the medical laboratory technician field adapted from military curriculum materials for use in vocational and technical education, was designed as a refresher course for student self-study and evaluation. It is suitable for use by advanced students or beginning students participating in a supervised…

  2. Technical basis for nuclear accident dosimetry at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kerr, G.D.; Mei, G.T.

    1993-08-01

    The Oak Ridge National Laboratory (ORNL) Environmental, Safety, and Health Emergency Response Organization has the responsibility of providing analyses of personnel exposures to neutrons and gamma rays from a nuclear accident. This report presents the technical and philosophical basis for the dose assessment aspects of the nuclear accident dosimetry (NAD) system at ORNL. The issues addressed are regulatory guidelines, ORNL NAD system components and performance, and the interpretation of dosimetric information that would be gathered following a nuclear accident

  3. Central Laboratories Services

    Data.gov (United States)

    Federal Laboratory Consortium — The TVA Central Laboratories Services is a comprehensive technical support center, offering you a complete range of scientific, engineering, and technical services....

  4. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress

  5. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.

  6. Bilateral comparison of the calibration laboratories in radiodiagnosis: Technical Protocol 16/17

    International Nuclear Information System (INIS)

    Peixoto, J.G.P.; Almeida, C.E.V. de

    2016-01-01

    The need to standardize the results in diagnostic radiology conditions of calibration laboratories, taking into account the applicability to conventional radiology , mammography and computed tomography where the total demand for diagnostic imaging is ≈70 % ≈4 % and ≈2 % respectively. The objective of the technical protocol is not only the equipment used , but also in terms of reference and the evaluation worksheet measurement uncertainties . The results of stability and energy dependence of transfer chamber shows these adequacy for the propose. (author)

  7. Harmonization of clinical laboratories in Africa: a multidisciplinary approach to identify innovative and sustainable technical solutions.

    Science.gov (United States)

    Putoto, Giovanni; Cortese, Antonella; Pecorari, Ilaria; Musi, Roberto; Nunziata, Enrico

    2015-06-01

    In an effective and efficient health system, laboratory medicine should play a critical role. This is not the case in Africa, where there is a lack of demand for diagnostic exams due to mistrust of health laboratory performance. Doctors with Africa CUAMM (Collegio Universitario Aspiranti Medici Missionari) is a non-profit organization, working mainly in sub-Saharan Africa (Angola, Ethiopia, Mozambique, Sierra Leone, South Sudan, Tanzania and Uganda) to help and sustain local health systems. Doctors with Africa CUAMM has advocated the need for a harmonized model for health laboratories to assess and evaluate the performance of the facilities in which they operate. In order to develop a harmonized model for African health laboratories, previous attempts at strengthening them through standardization were taken into consideration and reviewed. A survey with four Italian clinicians experienced in the field was then performed to try and understand the actual needs of health facilities. Finally a market survey was conducted to find new technologies able to update the resulting model. Comparison of actual laboratories with the developed standard - which represents the best setting any African health laboratory could aim for - allowed shortcomings in expected services to be identified and interventions subsequently prioritized. The most appropriate equipment was proposed to perform the envisaged techniques. The suitability of appliances was evaluated in consideration of recognized international recommendations, reported experiences in the field, and the availability of innovative solutions that can be performed on site in rural areas, but require minimal sample preparation and little technical expertise. The present work has developed a new, up-to-date, harmonized model for African health laboratories. The authors suggest lists of procedures to challenge the major African health problems - HIV/AIDS, malaria, tubercolosis (TB) - at each level of pyramidal health system. This

  8. Interpretation of stable isotope, denitrification, and groundwater age data for samples collected from Sandia National Laboratories /New Mexico (SNL/NM) Burn Site Groundwater Area of Concern

    Energy Technology Data Exchange (ETDEWEB)

    Madrid, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Singleton, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Visser, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-02

    This report combines and summarizes results for two groundwater-sampling events (October 2012 and October/November 2015) from the Sandia National Laboratories/New Mexico (SNL/NM) Burn Site Groundwater (BSG) Area of Concern (AOC) located in the Lurance Canyon Arroyo southeast of Albuquerque, NM in the Manzanita Mountains. The first phase of groundwater sampling occurred in October 2012 including samples from 19 wells at three separate sites that were analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory as part of a nitrate Monitored Natural Attenuation (MNA) evaluation. The three sites (BSG, Technical Area-V, and Tijeras Arroyo) are shown on the regional hydrogeologic map and described in the Sandia Annual Groundwater Monitoring Report. The first phase of groundwater sampling included six monitoring wells at the Burn Site, eight monitoring wells at Technical Area-V, and five monitoring wells at Tijeras Arroyo. Each groundwater sample was analyzed using the two specialized analytical methods, age-dating and denitrification suites. In September 2015, a second phase of groundwater sampling took place at the Burn Site including 10 wells sampled and analyzed by the same two analytical suites. Five of the six wells sampled in 2012 were resampled in 2015. This report summarizes results from two sampling events in order to evaluate evidence for in situ denitrification, the average age of the groundwater, and the extent of recent recharge of the bedrock fracture system beneath the BSG AOC.

  9. Interpretation of stable isotope, denitrification, and groundwater age data for samples collected from Sandia National Laboratories /New Mexico (SNL/NM) Burn Site Groundwater Area of Concern

    International Nuclear Information System (INIS)

    Madrid, V.; Singleton, M. J.; Visser, A.; Esser, B.

    2016-01-01

    This report combines and summarizes results for two groundwater-sampling events (October 2012 and October/November 2015) from the Sandia National Laboratories/New Mexico (SNL/NM) Burn Site Groundwater (BSG) Area of Concern (AOC) located in the Lurance Canyon Arroyo southeast of Albuquerque, NM in the Manzanita Mountains. The first phase of groundwater sampling occurred in October 2012 including samples from 19 wells at three separate sites that were analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory as part of a nitrate Monitored Natural Attenuation (MNA) evaluation. The three sites (BSG, Technical Area-V, and Tijeras Arroyo) are shown on the regional hydrogeologic map and described in the Sandia Annual Groundwater Monitoring Report. The first phase of groundwater sampling included six monitoring wells at the Burn Site, eight monitoring wells at Technical Area-V, and five monitoring wells at Tijeras Arroyo. Each groundwater sample was analyzed using the two specialized analytical methods, age-dating and denitrification suites. In September 2015, a second phase of groundwater sampling took place at the Burn Site including 10 wells sampled and analyzed by the same two analytical suites. Five of the six wells sampled in 2012 were resampled in 2015. This report summarizes results from two sampling events in order to evaluate evidence for in situ denitrification, the average age of the groundwater, and the extent of recent recharge of the bedrock fracture system beneath the BSG AOC.

  10. Implementation of the CNEN's safeguards laboratory

    International Nuclear Information System (INIS)

    Almeida, S.G. de

    1986-01-01

    The International Safeguards Agreements between Brazil and others countries has been concluded with the participation of the International Atomic Energy Agency (AIEA), and involve the Physical Protection and Control of Nuclear Material activities, which set up the National Safeguards System. The Safeguards Laboratory was constructed to the implementation and maintenance of this National Safeguards System, under responsability of CNEN's Safeguards Division, in order to carry out measurements of nuclear materials under safeguards. Technical requirements applied to the construction, setting up and operation of the laboratory are showed. The first results refer to the implementation of safeguards methods and techniques, as well as its participation within international scientific and technical co-operation programs in the safeguards area, through of them we wait its credencement by the AIEA as Regional Safeguards Laboratory for every countries of the Latin America. (Author) [pt

  11. Technical Area V (TA-V) transformation project close-out report.

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    Sandia National Laboratories (SNL) Technical Area V (TA-V) has provided unique nuclear experimental environments for decades. The technologies tested in TA-V facilities have furthered the United States Nuclear Weapons program and has contributed to the national energy and homeland security mission. The importance of TA-V working efficiently to produce an attractive and effective platform for experiments should not be underestimated. Throughout its brief history, TA-V has evolved to address multiple and diverse sets of requirements. These requirements evolved over many years; however, the requirements had not been managed nor communicated comprehensively or effectively. A series of programmatic findings over several years of external audits was evidence of this downfall. Today, these same requirements flow down through a new TA-V management system that produces consistently applied and reproducible approaches to work practices. In 2008, the TA-V department managers assessed the state of TA-V services and work activities to understand how to improve customer interfaces, stakeholders perceptions, and workforce efficiencies. The TA-V management team initiated the TA-V Transformation Project after they deemed the pre-June 2008 operational model to be ineffective in managing work and in providing integrated, continuous improvement to TA-V processes. This report summarizes the TA-V Transformation Project goals, activities, and accomplishments.

  12. Minutes of Technical Division Steering Committee meeting January 11, 1955, Savannah River Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L.C.

    1955-01-18

    The following studies were approved: 8501 - non-destructive testing, 8502 - 300 Area process development, 8503 - new fuel element fabrication, 8504 - protective coatings for new fuel elements, 8505 - corrosion, 8508 - instrument development in 300 Area, 8514 - instrument development in 100 Area, 8515 - instrument development in 200 Area, and 8524 - new LM elements. Information and Safety agreements are listed, and information in appended on the following topics: financial status, instrument development program, metallurgical development program, and Technical Division study status.

  13. Cyclotron Development and Technical Aspects on Accelerator Based Laboratory Development

    International Nuclear Information System (INIS)

    Sunarhadijoso

    2000-01-01

    BATAN is planning to establish an accelerator-based laboratory at P3TM Yogyakarta as an effort in the development and use of accelerator technology for improving industrial performance and public welfare. This paper reviews several aspects of cyclotron technology and describes the combination of a linear accelerator - cyclotron system as an alternative to be considered in the planing of the laboratory. The progress of cyclotron technology is discussed covering three generations, i.e. conventional cyclotron, synchrocyclotron and AVF cyclotron generations. The planning should not consider the accelerator application for radioisotope production because it is established in Serpong with the existing negative ion cyclotron. The proposed facility at P3TM may comprise two linear accelerators coupled with a positive ion cyclotron of synchrocyclotron generation. In fact, the attachment of the synchrocyclotron unit is flexible and it can be installed subsequently if the higher energy particle beam, which can not be produced by the linear accelerators, is extremely needed. Some technical aspects related to ion beam application, building construction and infrastructure, human resources, and specification of function test are discussed for additional information in the implementation of the planning. (author)

  14. Minutes of Technical Division Steering Committee Meeting, September 13, 1955 -- Savannah River Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L.C.

    1955-09-16

    The Steering Committee approved 8 studies related to separation processes, analytical chemistry, waste handling, and recycle development. Safety and security issues were discussed. Appendices detail the financial status of the Technical Division and estimated man months for development studies approved for the Purex Process, tritium separations, thorium recycle, U-235 separations, and 100-, 200-, and 300-Area studies in analytical chemistry development. The status of 25 other Technical Division studies are listed along with their budget.

  15. [Experience of the development special medical technical laboratory for studies of effects caused by potent electromagnetic radiation in biologic objects].

    Science.gov (United States)

    Gorodetsky, B N; Kalyada, T V; Petrov, S V

    2015-01-01

    This article covers topics of creating special medical technical laboratory for medial and biologic studies concerning influence of potent high-frequency elecromagnetic radiation on various biologic objects. The authors gave example of such laboratory, described its construction features, purpose and main characteristics of the included devices.

  16. Evaluation of ground freezing for environmental restoration at waste area grouping 5, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Gates, D.D.

    1995-09-01

    A study to evaluate the feasibility of using ground freezing technology to immobilize tritium contaminants was performed as part of the Waste Area Grouping (WAG) 6 Technology Demonstrations initiated by the WAG 6 Record of Agreement. The study included a review of ground freezing technology, evaluation of this technology for environmental restoration, and identification of key technical issues. A proposed ground freezing demonstration for containment of tritium at a candidate Oak Ridge National Laboratory site was developed. The planning requirements for the demonstration were organized into seven tasks including site selection, site characterization, conceptual design, laboratory evaluation, demonstration design, field implementation, and monitoring design. A brief discussion of each of these tasks is provided. Additional effort beyond the scope of this study is currently being directed to the selection of a demonstration site and the identification of funding

  17. Laboratory Safety Needs of Kentucky School-Based Agricultural Mechanics Teachers

    Science.gov (United States)

    Saucier, P. Ryan; Vincent, Stacy K.; Anderson, Ryan G.

    2014-01-01

    The frequency and severity of accidents that occur in the agricultural mechanics laboratory can be reduced when these facilities are managed by educators who are competent in the area of laboratory safety and facility management (McKim & Saucier, 2011). To ensure teachers are technically competent and prepared to manage an agricultural…

  18. Meeting the challenges of globalisation and miniaturisation in laboratory services.

    Science.gov (United States)

    Melo, Murilo R; Rosenfeld, Luiz Gastão

    2007-12-01

    In the recent years, two trends emerged in the clinical laboratory: the miniaturisation of equipments to provide point-of-care testing (POCT) and a concentration of laboratories through mergers and acquisitions. New technology has expanded both opportunities. POCT provides the benefit of a convenient test where it is needed, i.e. near the patient. For companies, it is easier and cheaper to develop such tests, since technical requirements are somewhat less stringent, being an interesting area for start-ups. Nanotechnology is one of the most fascinating technical advances, with some advocating a US$1 trillion market-size for it by 2015. Laboratory tests and biomaterials will probably be greatly influenced by it, with new approaches for molecular diagnosis, with tests that can target both DNA and proteins in a process that eliminates PCR and allows multiplex analysis. On the other hand, there is a strong trend towards the globalisation of clinical laboratories and that occurs in four areas: a) Consumption of health services abroad; b) Movement of Health Personnel; c) Cross-Border delivery of trade; and d) Commercial presence. Each of these areas presents new challenges and opportunities for clinical laboratories, what will certainly shape the way we work today and in the future.

  19. Technical development of fluid machinery area

    International Nuclear Information System (INIS)

    Chung, Kyung Nam; Kim, Jin Young; Kim, Yang Ik

    2008-01-01

    In this paper, recent research activity of Hyundai Heavy Industries in the fluid machinery area is introduced. Technical development has been carried out in pumps, turbines, construction equipment, side thrusters, engine lubrication flow, etc. Here the technology of pumps and cooling of construction equipment will be dealt with. We have actively used computational fluid dynamics in the performance analysis of pump models and the design of new models of various industrial pumps or marine pumps. And a cooling analysis system composed of 3D flow analysis and 1D cooling analysis has been established, and applied to the design of cooling systems of new models of excavators and wheel loaders. The above mentioned technology is presented in details, and some future works are mentioned

  20. Annotated bibliography of software engineering laboratory literature

    Science.gov (United States)

    Kistler, David; Bristow, John; Smith, Don

    1994-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. Nearly 200 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) The Software Engineering Laboratory; (2) The Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.

  1. The Components of Abstracts: the Logical Structure of Abstractsin the Area of Technical Sciences

    Directory of Open Access Journals (Sweden)

    Nina Jamar

    2014-04-01

    Full Text Available ABSTRACTPurpose: The main purpose of this research was to find out what kind of structure would be the most appropriate for abstracts in the area of technical sciences, and on the basis of these findings develop guidelines for their writing.Methodology/approach: First, the components of abstracts published in journals were analyzed. Then the prototypes and recommended improved abstracts were presented. Third, the satisfaction of the readers with the different forms of abstracts was examined. According to the results of these three parts of the research, the guidelines for writing abstracts in the area of technical sciences were developed.Results: The results showed that it is possible to determine the optimum structure for abstracts from the area of technical sciences. This structure should follow the known IMRD format or BMRC structure according to the coding scheme.Research limitations: The presented research included in the analysis only abstracts from several areas that represent technical studies. In order to develop the guidelines for writing abstracts more broadly, the research should be extended with at least one more area from the natural sciences and two areas from social sciences and humanities.Original/practical implications: It is important to emphasize that even if the guidelines for writing abstracts by the individual journal exist, authors do not always take them into account. Therefore, it is important that the abstracts that are actually published in journals were analysed. It is also important that with the development of guidelines for writing abstracts the opinion of researchers was also taken into account.

  2. Technical Area 55 Entry Control System (ECS)

    International Nuclear Information System (INIS)

    Beaumont, A.; Brundige, E.; DesJardin, R.; Rivera, R.

    1984-01-01

    The exchange badge system which was used at the Plutonium Facility located in Technical Area 55 was replaced on a trial basis with an automated Entry Control System. As a result of the success of the trial system, a new system incorporating expanded features and increased reliability is being implemented. The new Entry Control System incorporates several features not previously available in relatively inexpensive entry systems. The reliability of the system is enhanced by redundant microprocessors incorporating bubble memory for nonvolatile storage of the system data base. The badge readers incorporate dual communication lines to two different controllers to further increase the total system reliability

  3. 100-D Area technical baseline report

    International Nuclear Information System (INIS)

    Carpenter, R.W.

    1993-01-01

    This document is prepared in support of the 100 Area Environmental Restoration activity at the US Department of Energy's Hanford Site near Richland, Washington. It provides a technical baseline of waste sites located at the 100-D Area. The report is based on an environmental investigation undertaken by the Westinghouse Hanford Company (WHC) History Office in support of the Environmental Restoration Engineering Function and on review and evaluation of numerous Hanford Site current and historical reports, drawings, and photographs, supplemented by site inspections and employee interviews. No intrusive field investigation or sampling was conducted. All Hanford coordinate locations are approximate locations taken from several different maps and drawings of the 100-D Area. Every effort was made to derive coordinate locations for the center of each facility or waste site, except where noted, using standard measuring devices. Units of measure are shown as they appear in reference documents. The 100-D Area is made up of three operable units: 100-DR-1, 100-DR-2, and 100-DR-3. All three are addressed in this report. These operable units include liquid and solid waste disposal sites in the vicinity of, and related to, the 100-D and 100-DR Reactors. A fourth operable unit, 100-HR-3, is concerned with groundwater and is not addressed here. This report describes waste sites which include cribs, trenches, pits, french drains, retention basins, solid waste burial grounds, septic tanks, and drain fields. Each waste site is described separately and photographs are provided where available. A complete list of photographs can be found in Appendix A. A comprehensive environmental summary is not provided here but may be found in Hanford Site National Environmental Policy Act Characterization (Cushing 1988), which describes the geology and soils, meteorology, hydrology, land use, population, and air quality of the area

  4. Can technical laboratory skills be taught at a distance? An analysis of a semiconductor course taught at a distance via interactive technologies

    Science.gov (United States)

    Rao, Lalita

    2000-10-01

    This study investigated extending synchronous distance learning to teaching courses in the psychomotor domain in real-time, with immediate, direct feedback on technical skills performance from an instructor at a remote site via interactive technologies such as videoconferencing. This study focused on two research questions (1) can interactive distance learning technologies be used to teach technical and/or trouble shooting skills that fall under psychomotor domain? and, (2) to what degree can psychomotor skills be taught at a distance? A technical course, "RF Power PC 211L" from a technical and vocational institute was selected and the instructor who had no prior experience in teaching a distance learning course taught the course. Data on cognitive skills, psychomotor technical skills, attitudes and perceptions, demographics as well as boundary conditions on teaching psychomotor skills was gathered from both remote and the main campus. Instruments used for data gathering were final course grades, total points in laboratory exercise, pre and post course surveys, demographic survey and open-ended interviews with the instructor, student and review of instructor journal were used to address the two research questions. The main campus course was taught to the remote campus via distance learning technology in a distance learning format. The main technology used was videoconferencing. Both campus classrooms had the RF Trainer equipment. The rooms were set up to facilitate distance learning in the classroom. The instructor was present only at the main campus. The students on the remote campus were the experimental group. The experimental group participated in all course activities such as demonstrations, laboratory exercises, learning conceptual skills and tests only via distance. These students only had the benefit of laboratory assistant. The role of the laboratory assistant was to assist students/instructor as needed, ensure the safety of students and equipment and

  5. TMI-2 Technical Information and Examination Program. 1984 annual report

    International Nuclear Information System (INIS)

    Hess, C.J.

    1985-04-01

    In 1984, the US Department of Energy's Technical Information and Examination Program entered its fifth year of research and development work at Three Mile Island Unit 2 (TMI-2) and at the Idaho National Engineering Laboratory and other supporting laboratories. The work concentrated on six major areas: waste immobilization, reactor evaluation, data acquisition, information and industry coordination, core activities, and EPICOR II and waste research and disposition

  6. Technical assessment of compliance with workplace air sampling requirements in the 300 Area

    International Nuclear Information System (INIS)

    Olsen, P.A.

    1995-01-01

    The purpose of this Technical Work Document is to satisfy HSRCM-1, the ''Hanford Site Radiological Control Manual.'' Article 551.4 of that manual states a requirement for a documented study of facility workplace air sampling programs (WPAS). This first revision of the original Supporting Document covers the period from January 1, 1995 to December 31, 1995. HSRCM-1 is the primary guidance for radiological control at Westinghouse Hanford Company (WHC). It was written to implement DOE/EH-0256T ''US Department of Energy Radiological Control Manual'' as it applies to programs at Hanford. As such, it complies with Title 10, Part 835 of the Code of Federal Regulations. There are also several Department of Energy (DOE) Orders, national consensus standards, and reports that provide criteria, standards, and requirements for workplace air sampling programs. This document provides a summary of these, as they apply to WHC facility workplace air sampling programs. This document also provides an evaluation of the compliance of 300 Areas' workplace air sampling program to the criteria, standards, and requirements and documents compliance with the requirements where appropriate. Where necessary, it also indicates changes needed to bring specific locations into compliance. The areas evaluated were the 340 Facility, the Advanced Reactor Operations Division Facilities, the N Reactor Fuels Supply Facility, and The Geotechnical Engineering Laboratory

  7. The technical support organization at BNL is twenty years old

    International Nuclear Information System (INIS)

    Indusi, J.P.

    1988-01-01

    The Technical Support Organization was established by the Atomic Energy Commission in January 1968 at Brookhaven National Laboratory (BNL). The original idea came from a small group of scientists at BNL. The group included Willy Higinbotham, Herb Kouts, Frank Miles, Richard Dodson, and Gerhardt Friedlander. The AEC endorsed the idea of a technical support group to provide technical assistance to AEC's Office of Safeguards and Materials Management and they sent requests for expressions of interest throughout the complex. For a number of reasons, to be discussed in the paper, the Technical Support Organization was established at BNL. An early project was the Conceptual Design for Safeguarding Nuclear Material which formed the first logical and systematic description of the integration of several elements into a safeguards system for protecting nuclear materials. Many other projects were undertaken over the years. TSO today provides technical assistance to the DOE Office of Safeguards and Secuirty, the Office of Classification and Technology Policy, and the Office of Security Evaluations. Technical support to the IAEA is provided under the Program of Technical Assistance to Agency Safeguards (POTAS). Recently, TSO began a program of technical assistance to the Air Force Weapons Laboratory in the area of nuclear systems security

  8. Low-level radioactive waste disposal operations at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stanford, A.R.

    1997-01-01

    Los Alamos National Laboratory (LANL) generates Low-Level Radioactive Waste (LLW) from various activities: research and development, sampling and storage of TRU wastes, decommissioning and decontamination of facilities, and from LANL's major role in stockpile stewardship. The Laboratory has its own active LLW disposal facility located at Technical Area 54, Area G. This paper will identify the current operations of the facility and the issues pertaining to operating a disposal facility in today's compliance and cost-effective environment

  9. A Cryogenic Detector Characterization Facility in the Shallow Underground Laboratory at the Technical University of Munich

    Science.gov (United States)

    Langenkämper, A.; Defay, X.; Ferreiro Iachellini, N.; Kinast, A.; Lanfranchi, J.-C.; Lindner, E.; Mancuso, M.; Mondragón, E.; Münster, A.; Ortmann, T.; Potzel, W.; Schönert, S.; Strauss, R.; Ulrich, A.; Wawoczny, S.; Willers, M.

    2018-04-01

    The Physics Department of the Technical University of Munich operates a shallow underground detector laboratory in Garching, Germany. It provides ˜ 160 {m^2} of laboratory space which is shielded from cosmic radiation by ˜ 6 m of gravel and soil, corresponding to a shielding of ˜ 15 {m.w.e.} . The laboratory also houses a cleanroom equipped with work- and wetbenches, a chemical fumehood as well as a spin-coater and a mask-aligner for photolithographic processing of semiconductor detectors. Furthermore, the shallow underground laboratory runs two high-purity germanium detector screening stations, a liquid argon cryostat and a ^3 He-^4 He dilution refrigerator with a base temperature of ≤ 12-14 mK . The infrastructure provided by the shallow laboratory is particularly relevant for the characterization of CaWO_4 target crystals for the CRESST-III experiment, detector fabrication and assembly for rare event searches. Future applications of the laboratory include detector development in the framework of coherent neutrino nucleus scattering experiments (ν -cleus) and studying its potential as a site to search for MeV-scale dark matter with gram-scale cryogenic detectors.

  10. WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor and Blade Logistics; TOPICAL

    International Nuclear Information System (INIS)

    Smith, K.

    2001-01-01

    Through the National Renewable Energy Laboratory (NREL), the United States Department of Energy (DOE) implemented the Wind Partnership for Advanced Component Technologies (WindPACT) program. This program will explore advanced technologies that may reduce the cost of energy (COE) from wind turbines. The initial step in the WindPACT program is a series of preliminary scaling studies intended to determine the optimum sizes for future turbines, help define sizing limits for certain critical technologies, and explore the potential for advanced technologies to contribute to reduced COE as turbine scales increase. This report documents the results of Technical Area 2-Turbine Rotor and Blade Logistics. For this report, we investigated the transportation, assembly, and crane logistics and costs associated with installation of a range of multi-megawatt-scale wind turbines. We focused on using currently available equipment, assembly techniques, and transportation system capabilities and limitations to hypothetically transport and install 50 wind turbines at a facility in south-central South Dakota

  11. Chemical Technology Division annual technical report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  12. 1998 Chemical Technology Division Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  13. Chemical Technology Division annual technical report 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1997 are presented

  14. Predictors of employer satisfaction: technical and non-technical skills.

    Science.gov (United States)

    Danielson, Jared A; Wu, Tsui-Feng; Fales-Williams, Amanda J; Kirk, Ryan A; Preast, Vanessa A

    2012-01-01

    Employers of 2007-2009 graduates from Iowa State University College of Veterinary Medicine were asked to respond to a survey regarding their overall satisfaction with their new employees as well as their new employees' preparation in several technical and non-technical skill areas. Seventy-five responses contained complete data and were used in the analysis. Four technical skill areas (data collection, data interpretation, planning, and taking action) and five non-technical skill areas (interpersonal skills, ability to deal with legal issues, business skills, making referrals, and problem solving) were identified. All of the skill area subscales listed above had appropriate reliability (Cronbach's alpha>0.70) and were positively and significantly correlated with overall employer satisfaction. Results of two simultaneous regression analyses indicated that of the four technical skill areas, taking action is the most salient predictor of employer satisfaction. Of the five non-technical skill areas, interpersonal skills, business skills, making referrals, and problem solving were the most important skills in predicting employer satisfaction. Hierarchical regression analysis revealed that all technical skills explained 25% of the variation in employer satisfaction; non-technical skills explained an additional 42% of the variation in employer satisfaction.

  15. U Plant Aggregate Area Management study technical baseline report

    International Nuclear Information System (INIS)

    DeFord, D.H.; Carpenter, R.W.

    1995-05-01

    This document was prepared in support of an Aggregate Area Management Study of U Plant. It provides a technical baseline of the aggregate area and results from an environmental investigation that was undertaken by the Technical Baseline Section of the Environmental Engineering Group, Westinghouse Hanford Company (WHC), which is currently the Waste Site and Facility Research Office, Natural Resources, Bechtel Hanford, Inc. (BHI). It is based upon review and evaluation of numerous Hanford Site current and historical reports, drawings and photographs, supplemented with site inspections and employee interviews. U Plant refers to the 221-U Process Canyon Building, a chemical separation facility constructed during World War II. It also includes the Uranium Oxide (UO 3 ) Plant constructed at the same time as 221-U as an adjunct to the original plutonium separation process but which, like 221-U, was converted for other missions. Waste sites are associated primarily with U Plant's 1952 through 1958 Uranium Metal Recovery Program mission and the U0 3 Plant's ongoing U0 3 mission. Waste sites include cribs, reverse wells, french drains, septic tanks and drain fields, trenches, catch tanks, settling tanks, diversion boxes, a waste vault, and the lines and encasements that connect them. It also includes the U Pond and its feed ditches and an underground tank farm designed for high-level liquid wastes

  16. Groundwater Pathway Model for the Los Alamos National Laboratory Technical Area 54, Area G, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Terry A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Strobridge, Daniel M. [Neptune Inc., Los Alamos, NM (United States); Cole, Gregory L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gable, Carl Walter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Broxton, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Springer, Everett P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schofield, Tracy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-10

    This report consists of four major sections, including this introductory section. Section 2 provides an overview of previous investigations related to the development of the current sitescale model. The methods and data used to develop the 3-D groundwater model and the techniques used to distill that model into a form suitable for use in the GoldSim models are discussed in Section 3. Section 4 presents the results of the model development effort and discusses some of the uncertainties involved. Eight attachments that provide details about the components and data used in this groundwater pathway model are also included with this report. The groundwater modeling effort reported here is a revision of the work that was conducted in 2005 (Stauffer et al., 2005a) in support of the 2008 Area G performance assessment and composite analysis (LANL, 2008). The revision effort was undertaken primarily to incorporate new geologic information that has been collected since 2003 at, and in the vicinity of, Area G. The new data were used to create a more accurate geologic framework model (GFM) that forms the basis of the numerical modeling of the site’s long-term performance. The groundwater modeling uses mean hydrologic properties of the geologic strata underlying Area G; this revision includes an evaluation of the impacts that natural variability in these properties may have on the model projections.

  17. Scoping evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Examples: Sandia National Laboratories and Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Gruebel, M.R.; Parsons, A.M.; Waters, R.D.

    1996-01-01

    The disposal of mixed low-level waste has become an issue for the U.S. Department of Energy and the States since the inception of the Federal Facilities Compliance Act in 1992. Fifteen sites, including Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL), have been evaluated to estimate their technical capabilities for disposal of this type of waste after it has been subjected to treatment processes. The analyses were designed to quantify the maximum permissible concentrations of radioactive and hazardous constituents in mixed low-level waste that could potentially be disposed of in a facility at one of the fifteen sites and meet regulatory requirements. The evaluations provided several major insights about the disposal of mixed low-level waste. All of the fifteen sites have the technical capability for disposal of some waste. Maximum permissible concentrations for the radioactive component of the waste at and sites such as SNL and LANL are almost exclusively determined by pathways other than through groundwater. In general, for the hazardous component of the waste, travel times through groundwater to a point 100 meters from the disposal facility are on the order of thousands of years. The results of the evaluations will be compared to actual treated waste that may be disposed of in a facility at one of these fifteen evaluated sites. These comparisons will indicate which waste streams may exceed the disposal limitations of a site and which component of the waste limits the technical acceptability for disposal. The technical analyses provide only partial input to the decision-making process for determining the disposal sites for mixed low-level waste. Other, less quantitative factors such as social and political issues will also be considered

  18. PUREX Plant aggregate area management study technical baseline report

    International Nuclear Information System (INIS)

    DeFord, D.H.; Carpenter, R.W.

    1995-05-01

    The PUREX aggregate area is made up of six operable units; 200-PO-1 through 200-PO-6 and consists of liquid and solid waste disposal sites in the vicinity of, and related to, PUREX Plant operations. This report describes PUREX and its waste sites, including cribs, french drains, septic tanks and drain fields, trenches and ditches, ponds, catch tanks, settling tanks, diversion boxes, underground tank farms, and the lines and encasements that connect them. Each waste site in the aggregate area is described separately. Close relationships between waste units, such as overflow from one to another, are also discussed. This document provides a technical baseline of the aggregate area and results from an environmental investigation. This document is based upon review and evaluation of numerous Hanford Site current and historical reports, drawings and photographs, supplemented with site inspections and employee interviews. No intrusive field investigations or sampling were conducted

  19. Technical program plan for the transitioning, decommissioning, and final disposition focus area

    International Nuclear Information System (INIS)

    1994-01-01

    The end of the Cold War and the decision to reduce the size of the nuclear weapons production complex have created a need for DOE to deactivate, decontaminate, and decommission (D ampersand D) a large number of aging, surplus facilities. The nature and magnitude of the facility D ampersand D problems require EM to facilitate the development and application of technologies that will address these problems quickly and cost-effectively. The needed technologies can best be provided by integrating the strengths of DOE's national laboratories with those of industry, universities, and other government agencies. To help focus and direct these activities toward achieving DOE's goals, the EM Office of Technology Development (OTD) devised the strategic concept of an Integrated Demonstration (ID), which involves selecting, demonstrating, testing, and evaluating an integrated set of technologies tailored to provide a complete solution to specific EM problems, such as those posed by D ampersand D. The ID approach allows optimal use of DOE's resources by avoiding duplication of effort and ensuring rapid demonstration of applicable technologies. Many technologies, including both the commercially mature and the innovative, are combined and evaluated for a cradle-to-grave solution to specific EM problems in areas such as D ampersand D. The process will involve transforming an existing problem condition to a desired end state, recycling waste materials generated, wherever feasible, and minimizing requirements for waste disposal. The D ampersand D ID Strategic Plan has been prepared by a Technical Support Group (TSG) assembled from various sites within the DOE Complex and intended to identify cross-cutting problem areas amenable to applications of the D ampersand D ID concept and to develop specific ID proposals for these problem areas

  20. Sources of transportation expertise by selected technical areas

    International Nuclear Information System (INIS)

    1987-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) has assigned components of its Waste Transportation Program to three of the DOE Operations offices. The DOE Oak Ridge Operations Office (ORO) is responsible for the transportation operations design, development, acquisition, testing, implementation, and program management, including the equipment, facilities, and services of the transportation system. Within ORO, the OCRWM transportation component is assigned to the Transportation Operations Project Office (TOPO). The specific activities involved in the ORO/TOPO include procurement, operational testing, inspection, logistics, interfaces, maintenance, management and improvements, and system operation. Oak Ridge Associated Universities (ORAU) has developed (and will maintain and enhance) a data base of sources of transportation expertise in selected technical areas for ORO. The data base includes individuals and organizations who have indicated that they have capabilities and interest in assisting ORO in the design, development, implementation, and management of the OCRWM transportation system. This assistance might be in the form of consulting or subcontract work and/or participation in peer review panels, technical evaluation committees, workshops, advisory groups, etc. This initial project was completed in the four month period of January 30, 1987 through May 31, 1987

  1. Pacific Northwest National Laboratory Institutional Plan FY 2001-2005

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Darrell R.; Pearson, Erik W.

    2000-12-29

    The Pacific Northwest National Laboratory Institutional Plan for FY 2001-2005 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; managaement procatices and standards; and communications and trust.

  2. Pacific Northwest National Laboratory Institutional Plan FY 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Erik W.

    2000-03-01

    The Pacific Northwest National Laboratory Institutional Plan for FY 2000-2004 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; management practices and standards; and communications and trust.

  3. LLNL 1981: technical horizons

    International Nuclear Information System (INIS)

    1981-07-01

    Research programs at LLNL for 1981 are described in broad terms. In his annual State of the Laboratory address, Director Roger Batzel projected a $481 million operating budget for fiscal year 1982, up nearly 13% from last year. In projects for the Department of Energy and the Department of Defense, the Laboratory applies its technical facilities and capabilities to nuclear weapons design and development and other areas of defense research that include inertial confinement fusion, nonnuclear ordnances, and particle-beam technology. LLNL is also applying its unique experience and capabilities to a variety of projects that will help the nation meet its energy needs in an environmentally acceptable manner. A sampling of recent achievements by LLNL support organizations indicates their diversity

  4. Sandia Laboratories technical capabilities: materials and processes

    International Nuclear Information System (INIS)

    Lundergan, C.D.; Mead, P.L.

    1977-08-01

    Materials and process activities have emphasized the balance between research and development necessary to provide materials compatible with the extreme environments and performance requirements associated with nuclear ordnance. Specific technical areas which have continuing emphasis include metallurgy, composites, surface characterization and thin films, polymers, ceramics, and high-temperature characterization. Complete processing and fabrication facilities assure the capability for early evaluation and use of tailored materials. Efforts are focused on material applications involving structural and electronic materials, thermal and electrical insulation, radiation shields, and shock mitigation. Key elements in these efforts are functionability, reliability, and longevity. This interdisciplinary approach to scientific materials engineering results from the recognition that many disciplines are required to understand, characterize, and apply materials, and from the fact that material design is an essential element in meeting the objectives of quality, functionality, and life. In effect, the responsibility of a materials group extends beyond the development of a material into the understanding and description of its behavior in the extreme environments to which it will be subjected

  5. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2, Appendix A: Characterization methods and data summary

    International Nuclear Information System (INIS)

    1995-03-01

    This appendix presents background regulatory and technical information regarding the solid waste management units (SWMUs) at Waste Area Grouping (WAG) 5 to address requirements established by the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). The Department of energy (DOE) agreed to conduct remedial investigations (RIs) under the FFA at various sites at Oak Ridge National Laboratory (ORNL), including SWMUs and other areas of concern on WAG 5. The appendix gives an overview of the regulatory background to provide the context in which the WAG 5 RI was planned and implemented and documents how historical sources of data, many of which are SWMU-specific, were evaluated and used

  6. B Plant aggregate area management study technical baseline report

    International Nuclear Information System (INIS)

    DeFord, D.H.; Carpenter, R.W.

    1995-05-01

    The B aggregate area is made up of 13 operable units; 200-BP 1 through 200-BP 1 1, 200-IU-6, and 200-SS-1 that consist of liquid and solid waste disposal sites in the vicinity of, and related to, B Plant operations. This report describes B Plant and its waste sites, including cribs, french drains, septic tanks and drain fields, trenches and ditches, ponds, catch tanks, settling tanks, diversion boxes, underground tank farms designed for high-level liquid wastes, and the lines and encasements that connect them. Each waste site in the aggregate area is described separately. Close relationships between waste units, such as overflow from one to another, are also discussed. This document provides a technical baseline of the aggregate area and results from an environmental investigation. This document is based upon review and evaluation of numerous Hanford Site current and historical reports, drawings and photographs, supplemented with site inspections and employee interviews. No intrusive field investigations or sampling were conducted

  7. Dose measurements in controlled area and laboratory of TRIGA IPR-R1 reactor

    International Nuclear Information System (INIS)

    Maretti Junior, Fausto; Alvarenga, Frederico Ladeia

    2005-01-01

    The workers doses in exposure areas to the radiation are so important for a Radioprotection Quality Program, as well as to guarantee the workers safety. For that it is necessary to raise the doses in the radiation areas, to obtain the accumulated dose in certain procedures for detailed studies. Several risings were accomplished to obtain the radiation levels in the areas where the workers are exposed due the operation of a research nuclear reactor and in the radioisotopes manipulation laboratories of a nuclear institute. The radiation levels and doses can be observed through graphs in the dependences of the Controlled Area 1 (AC-1) and the Reactor Laboratory. Those limits are in according of the CNEN-NE-3.01 work limits rules. The conclusion of the work allowed to demonstrate that the Laboratory of the Reactor and AC-1, have booth an effective radiological program with efficient operational practices that contributes with low doses to the workers. (author)

  8. Fuel cells for transportation program: FY1997 national laboratory annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Department of Energy (DOE) Fuel Cells for Transportation Program is structured to effectively implement the research and development (R and D) required for highly efficient, low or zero emission fuel cell power systems to be a viable replacement for the internal combustion engine in automobiles. The Program is part of the Partnership for a New Generation of Vehicles (PNGV), a government-industry initiative aimed at development of an 80 mile-per-gallon vehicle. This Annual Report summarizes the technical accomplishments of the laboratories during 1997. Participants include: Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and the National Renewable Energy Laboratory (NREL). During 1997, the laboratory R and D included one project on solid oxide fuel cells; this project has since been terminated to focus Department resources on PEM fuel cells. The technical component of this report is divided into five key areas: fuel cell stack research and development; fuel processing; fuel cell modeling, testing, and evaluation; direct methanol PEM fuel cells; and solid oxide fuel cells.

  9. Medical Laboratory Technician--Hematology, Serology, Blood Banking & Immunohematology, 10-4. Military Curriculum Materials for Vocational and Technical Education.

    Science.gov (United States)

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, the third of three courses in the medical laboratory technician field adapted from military curriculum materials for use in vocational and technical education, was designed as a refresher course for student self-study and evaluation. It is suitable for use by advanced students or beginning students participating in a supervised…

  10. The Technical Student Programme draws Norwegians

    CERN Multimedia

    2005-01-01

    Erik Hejne, second from left, Chairman of the Technical Students Committee, and Jens Vigen, who is concerned spefically with Norwegian students at CERN, with some of the Norwegian technical students who arrived at CERN in spring 2005, together with their teachers. From mid-April, CERN's PH and IT Departments are hosting ten Norwegian students from Bergen University College, the Sør-Trøndelag University College and the University of Science and Technology in Trondheim to take part in the Laboratory's Technical Student Programme. The Technical Student Programme is open to students of universities and technical higher education establishments in the Member States who, in the course of their studies, are required to complete a period of professional training in industry or in a laboratory. Around 70 Technical Students come to work at CERN each year. Selected by a committee, they spend between six months and one year with the Organization. The programme is funded by CERN. However, once the Laboratory's quota of...

  11. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Massachusetts Wind Energy Area

    Energy Technology Data Exchange (ETDEWEB)

    Musial, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Parker, Z. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fields, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Elliott, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development of three delineated leasing area options for the Massachusetts (MA) WEA and the technical evaluation of these leasing areas. The overarching objective of this study is to develop a logical process by which the MA WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL worked with BOEM to identify an appropriate number of leasing areas and proposed three delineation alternatives within the MA WEA based on the boundaries announced in May 2012. A primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  12. Technical area status report for chemical/physical treatment

    International Nuclear Information System (INIS)

    Brown, C.H. Jr.; Schwinkendorf, W.E.

    1993-08-01

    The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs and activities throughout the DOE Complex. The Mixed Waste Integrated Program (MWIP) was created by the DOE Office of Technology Development (OTD) to develop, deploy, and complete appropriate technologies for the treatment of an DOE low-level mixed waste (LLMW). The MWIP mission includes development of strategies related to enhanced waste form production, improvements to and testing of the EM-30 baseline flowsheet for mixed waste treatment, programmatic oversight for ongoing technical projects, and specific technical tasks related to the site specific Federal Facilities Compliance Agreement (FFCA). The MWIP has established five Technical Support Groups (TSGs) based on primary functional areas of the Mixed Waste Treatment Plant) identified by EM-30. These TSGs are: (1) Front-End Waste Handling, (2) Chemical/Physical Treatment, (3) Waste Destruction and Stabilization, (4) Second-stage Destruction and Offgas Treatment, and (5) Final Waste Forms. The focus of this document is the Chemical/Physical Treatment System (CPTS). The CPTS performs the required pretreatment and/or separations on the waste streams passing through the system for discharge to the environment or efficient downstream processing. Downstream processing can include all system components except Front-End Waste Handling. The primary separations to be considered by the CPTS are: (1) removal of suspended and dissolved solids from aqueous and liquid organic streams, (2) separation of water from organic liquids, (3) treatment of wet and dry solids, including separation into constituents as required, for subsequent thermal treatment and final form processing, (4) mercury removal and control, and (5) decontamination of equipment and waste classified as debris

  13. Sandia Laboratories technical capabilities: testing

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-12-01

    The testing capabilities at Sandia Laboratories are characterized. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs

  14. Technical basis for removal of 221-T tunnel from airborne radiological area status

    International Nuclear Information System (INIS)

    Geuther, W.J.

    1996-01-01

    This document provides the technical basis for removal of the 221-T Tunnel from airborne radiological control. T Plant Radiological Control has evaluated air sampling data and engineering controls, and determined the necessary administrative controls to make this transition. With these administrative controls (specified within document) in place, the tunnel can be removed from Airborne Radioactive Area status. The removal of the tunnel from airborne status will allow work to be performed within the tunnel under controlled conditions, as outlined in this technical basis, without the use of respiratory protection equipment

  15. Savannah River Plant engineering and design history. Volume 4: 300/700 Areas & general services and facilities

    Energy Technology Data Exchange (ETDEWEB)

    1957-01-01

    The primary function of the 300 Area is the production and preparation of the fuel and target elements required for the 100 Area production reactors. Uranium slugs and lithium-aluminium alloy control and blanket rods are prepared in separate structures. Other facilities include a test pile, a physics assembly laboratory, an office and change house, an electrical substation, and various service facilities such as rail lines, roads, sewers, steam and water distribution lines, etc. The 700 Area contains housing and facilities for plant management, general plant services, and certain technical activities. The technical buildings include the Main Technical Laboratory, the Waste Concentration Building, the Health Physics Headquarters, and the Health Physics Calibration building. Sections of this report describe the following: development of the 300-M Area; selection and description of process; design of main facilities of the 300 Area; development of the 700-A Area; design of the main facilities of the 700 Area; and general services and facilities, including transportation, plant protection, waste disposal and drainage, site work, pilot plants, storage, and furniture and fixtures.

  16. Remedial investigation report on Waste Area Group 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Technical summary

    International Nuclear Information System (INIS)

    1995-03-01

    A remedial investigation (RI) was performed to support environmental restoration activities for Waste Area Grouping (WAG) 5 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The WAG 5 RI made use of the observational approach, which concentrates on collecting only information needed to assess site risks and support future cleanup work. This information was interpreted and is presented using the framework of the site conceptual model, which relates contaminant sources and release mechanisms to migration pathways and exposure points that are keyed to current and future environmental risks for both human and ecological receptors. The site conceptual model forms the basis of the WAG 5 remedial action strategy and remedial action objectives. The RI provided the data necessary to verify this model and allows recommendations to be made to accomplish those objectives

  17. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Technical summary

    International Nuclear Information System (INIS)

    1995-09-01

    A remedial investigation (RI) was performed to support environmental restoration activities for Waste Area Grouping (WAG) 5 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The WAG 5 RI made use of the observational approach, which concentrates on collecting only information needed to assess site risks and support future cleanup work. This information was interpreted and is presented using the framework of the site conceptual model, which relates contaminant sources and release mechanisms to migration pathways and exposure points that are keyed to current and future environmental risks for both human and ecological receptors. The site conceptual model forms the basis of the WAG 5 remedial action strategy and remedial action objectives. The RI provided the data necessary to verify this model and allows recommendations to be made to accomplish those objectives.

  18. Sandia Laboratories technical capabilities: electronics

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-12-01

    This report characterizes the electronics capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs

  19. Surveillance Plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-12-01

    This Surveillance Plan has been developed as part of the Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental monitoring will be conducted in two phases: the baseline monitoring phase and the routine annual monitoring phase. The baseline monitoring phase will be conducted to establish the baseline contaminant release conditions at the Waste Area Grouping (WAG), to confirm the site-related chemicals of concern (COC), and to gather data to confirm the site hydrologic model The baseline monitoring phase is expected to begin in 1994 and continue for 12--18 months. The routine annual monitoring phase will consist of continued sampling and analyses of COC to determine off-WAG contaminant flux, to identify trends in releases, and to confirm the COC The routine annual monitoring phase will continue for ∼4 years after completion of the baseline monitoring phase. This Surveillance Plan presents the technical and quality assurance surveillance activities for the various WAG 6 environmental monitoring and data evaluation plans and implementing procedures

  20. Institutional Plan, FY 1993--1998, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-01-01

    This document presents the plans and goals of the Idaho National Engineering Laboratory for FY 1993--1998. Areas discussed in this document include: INEL strategic view; initiatives; scientific and technical programs; environmental, safety, and health management, technology transfer, science and math education, and community affairs; human resources; site and facilities; and resource projections

  1. Association Euratom - Risoe National Laboratory, Technical Univ. of Denmark. Annual progress report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, P.K.; Korsholm, S.B.; Rasmussen, J.J. (eds.)

    2008-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology on investigations of radiation damage of fusion reactor materials have been phased out during 2007. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2007. (Author)

  2. Association Euratom - Risoe National Laboratory, Technical Univ. of Denmark. Annual progress report 2007

    International Nuclear Information System (INIS)

    Michelsen, P.K.; Korsholm, S.B.; Rasmussen, J.J.

    2008-04-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology on investigations of radiation damage of fusion reactor materials have been phased out during 2007. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2007. (Author)

  3. Impact of Nuclear Laboratory Personnel Credentials & Continuing Education on Nuclear Cardiology Laboratory Quality Operations.

    Science.gov (United States)

    Malhotra, Saurabh; Sobieraj, Diana M; Mann, April; Parker, Matthew W

    2017-12-22

    Background/Objectives: The specific credentials and continuing education (CME/CE) of nuclear cardiology laboratory medical and technical staff are important factors in the delivery of quality imaging services that have not been systematically evaluated. Methods: Nuclear cardiology accreditation application data from the Intersocietal Accreditation Commission (IAC) was used to characterize facilities performing myocardial perfusion imaging by setting, size, previous accreditation and credentials of the medical and technical staff. Credentials and CME/CE were compared against initial accreditation decisions (grant or delay) using multivariable logistic regression. Results: Complete data were available for 1913 nuclear cardiology laboratories from 2011-2014. Laboratories with initial positive accreditation decisions had a greater prevalence of Certification Board in Nuclear Cardiology (CBNC) certified medical directors and specialty credentialed technical directors. Certification and credentials of the medical and technical directors, respectively, staff CME/CE compliance, and assistance of a consultant with the application were positively associated with accreditation decisions. Conclusion: Nuclear cardiology laboratories directed by CBNC-certified physicians and NCT- or PET-credentialed technologists were less likely to receive delay decisions for MPI. CME/CE compliance of both the medical and technical directors was associated with accreditation decision. Medical and technical directors' years of experience were not associated with accreditation decision. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  4. Floodplain Assessment for the Upper Cañon de Valle Watershed Enhancement Project in Technical Area 16 at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, Charles Dean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Keller, David Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sartor, Karla A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-04

    This floodplain assessment was prepared in accordance with 10 Code of Federal Regulations (CFR) 1022 Compliance with Floodplain and Wetland Environmental Review Requirements, which was promulgated to implement the U.S. Department of Energy (DOE) requirements under Executive Order 11988 Floodplain Management and Executive Order 11990 Wetlands Protection. According to 10 CFR 1022, a 100-year floodplain is defined as “the lowlands adjoining inland and coastal waters and relatively flat areas and flood prone areas of offshore islands.” In this action, DOE is proposing to control the run-on of storm water by slowing water velocity and managing sediments from the upper portions of the Cañon de Valle watershed on Los Alamos National Laboratory (LANL) property with a number of new watershed controls near and within the 100-year floodplain (hereafter floodplain). The proposed work will comply with requirements under the Settlement Agreement and Stipulated Final Compliance Order (Settlement Agreement) Number HWB-14-20.

  5. Tiger Team Assessment of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  6. Tiger Team Assessment of the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services

  7. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  8. Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area

    Energy Technology Data Exchange (ETDEWEB)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.

    2013-04-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to BOEM on the identification and delineation of offshore leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM in 2012. This report focuses on NREL's evaluation of BOEM's Rhode Island/Massachusetts (RIMA) WEA leasing areas. The objective of the NREL evaluation was to assess the proposed delineation of the two leasing areas and determine if the division is reasonable and technically sound. Additionally, the evaluation aimed to identify any deficiencies in the delineation. As part of the review, NREL performed the following tasks: 1. Performed a limited review of relevant literature and RIMA call nominations. 2. Executed a quantitative analysis and comparison of the two proposed leasing areas 3. Conducted interviews with University of Rhode Island (URI) staff involved with the URI Special Area Management Plan (SAMP) 4. Prepared this draft report summarizing the key findings.

  9. Laboratory directed research development annual report. Fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview of the research and development program, program management, program funding, and Fiscal Year 1997 projects.

  10. Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark - Annual Progress Report 2009

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Juul Rasmussen, Jens

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its...... superconductors. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2009....

  11. Gateway to the Future. Skill Standards for the Bioscience Industry for Technical Workers in Pharmaceutical Companies, Biotechnology Companies, and Clinical Laboratories.

    Science.gov (United States)

    Education Development Center, Inc., Newton, MA.

    The Bioscience Industry Skills Standards Project (BISSP) is developing national, voluntary skill standards for technical jobs in biotechnology and pharmaceutical companies and clinical laboratories in hospitals, universities, government, and independent settings. Research with employees and educators has pinpointed three issues underscoring the…

  12. Tech Area II: A history

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, R. [Ktech Corp., Albuquerque, NM (United States)

    1998-07-01

    This report documents the history of the major buildings in Sandia National Laboratories` Technical Area II. It was prepared in support of the Department of Energy`s compliance with Section 106 of the National Historic Preservation Act. Technical Area II was designed and constructed in 1948 specifically for the final assembly of the non-nuclear components of nuclear weapons, and was the primary site conducting such assembly until 1952. Both the architecture and location of the oldest buildings in the area reflect their original purpose. Assembly activities continued in Area II from 1952 to 1957, but the major responsibility for this work shifted to other sites in the Atomic Energy Commission`s integrated contractor complex. Gradually, additional buildings were constructed and the original buildings were modified. After 1960, the Area`s primary purpose was the research and testing of high-explosive components for nuclear weapons. In 1994, Sandia constructed new facilities for work on high-explosive components outside of the original Area II diamond-shaped parcel. Most of the buildings in the area are vacant and Sandia has no plans to use them. They are proposed for decontamination and demolition as funding becomes available.

  13. Radiological survey and decontamination of the former main technical area (TA-1) at Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Ahlquist, A.J.; Stoker, A.K.; Trocki, L.K.

    1977-12-01

    A radiological survey was conducted on the undeveloped portions of the site of the former Main Technical Area (TA-1) of the Los Alamos Scientific Laboratory in north-central New Mexico. Between 1943 and 1965, research work on nuclear weapons was carried out in TA-1. The area was decontaminated and demolished in stages, and beginning in 1966 the land was given to Los Alamos County or sold to private interests. The survey disclosed traces of radioactive contamination undetected or considered insignificant during original demolition in the 1950s and 1960s. The remaining contamination was removed in 1975 and 1976 to levels considered to pose no health or safety hazards and, further, to the lowest levels considered practicable. Methods used in the survey included measurement techniques for detecting alpha emitters such as uranium and plutonium, extensive surface and subsurface soil sampling, and use of conventional health physics instrumentation to provide detailed information on approximately 16 hectares (40 acres) of land. As a result of the decontamination efforts, approximately 15,000 m 3 of contaminated or potentially contaminated material was removed to an approved radioactive waste disposal site on ERDA property. Full details of the methods, findings, decision criteria, and as-left conditions are documented

  14. Oak Ridge National Laboratory Institutional Plan FY 1984-FY 1989

    International Nuclear Information System (INIS)

    1983-11-01

    In this plan, Oak Ridge National Laboratory (ORNL) continues to be committed to scientific and technological research that is based on technical excellence and innovation and that provides a foundation for and a stimulus to broader and more sustained economic growth. DOE is being asked to assist in establishing a new program for Laboratory cooperation with industry, beginning with an initial focus on materials science. The current Institutional Plan thus projects growth in the materials science area as well as in other basic physical science areas and suggests a new initiative designed to extend the various technology transfer activities and to make them more effective by using ORNL as the trial Laboratory for some of these different approaches. This Institutional Plan projects a stable future for ORNL, with only modest amounts of growth in selected areas of research for the FY 1984-FY 1989 planning cycle. Summaries of the overall picture of the proposed budget and personnel levels for the current planning cycle are included. Scientific programs, laboratory resource development, and private sector interactions are discussed

  15. Summary of Tiger Team Assessment and Technical Safety Appraisal recurring concerns in the Operations Area

    International Nuclear Information System (INIS)

    1993-01-01

    Fourteen Tiger Team Assessment and eight Technical Safety Appraisal (TSA) final reports have been received and reviewed by the DOE Training Coordination Program during Fiscal Year 1992. These assessments and appraisals included both reactor and non-reactor nuclear facilities in their reports. The Tiger Team Assessments and TSA reports both used TSA performance objectives, and list ''concerns'' as a result of their findings. However, the TSA reports categorized concerns into the following functional areas: (1) Organization and Administration, (2) Radiation Protection, (3) Nuclear Criticality Safety, (4) Occupational Safety, (5) Engineering/Technical Support, (6) Emergency Preparedness, (7) Safety Assessments, (8) Quality Verification, (9) Fire Protection, (10) Environmental Protection, and (11) Energetic Materials Safety. Although these functional areas match most of the TSA performance objectives, not all of the TSA performance objectives are addressed. For example, the TSA reports did not include Training, Maintenance, and Operations as functional areas. Rather, they included concerns that related to these topics throughout the 11 functional areas identified above. For consistency, the Operations concerns that were identified in each of the TSA report functional areas have been included in this summary with the corresponding TSA performance objective

  16. Nuclear criticality safety aspects of emergency response at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Baker, J.S.

    2003-01-01

    Emergency response at Los Alamos National Laboratory (LANL) is handled through a graded approach depending on the specific emergency situation . LANL maintains a comprehensive capability to respond to events ranging from minor facility events (alerts) through major community events (general emergencies), including criticality accidents . Criticality safety and emergency response apply to all activities involving significant quantities of fissile material at LANL, primarily at Technical Area 18 (TA-18, the Los Alamos Critical Experiments Facility) and Technical Area 55 (TA-55, the Plutonium Facility). This discussion focuses on response to a criticality accident at TA-55; the approach at TA-18 is comparable .

  17. Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark - Annual Progress Report 2008

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Juul Rasmussen, Jens

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its...... been initiated in 2008. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2008....

  18. Radionuclide contaminant analysis of small mammals at Area G, TA-54, Los Alamos National Laboratory, 1995

    International Nuclear Information System (INIS)

    Bennett, K.; Biggs, J.; Fresquez, P.

    1997-01-01

    At Los Alamos National Laboratory, small mammals were sampled at two waste burial sites (Site 1-recently disturbed and Site 2-partially disturbed) at Area G, Technical Area 54 and a control site on Frijoles Mesa (Site 4) in 1995. Our objectives were (1) to identify radionuclides that are present within surface and subsurface soils at waste burial sites, (2) to compare the amount of radionuclide uptake by small mammals at waste burial sites to a control site, and (3) to identify if the primary mode of contamination to small mammals is by surface contact or ingestion/inhalation. Three composite samples of at least rive animals per sample were collected at each site. Pelts and carcasses of each animal were separated and analyzed independently. Samples were analyzed for 241 Am, 90 Sr , 238 Pu, 239 Pu, total U, 137 Cs, and 3 H. Significantly higher (parametric West at p=0.05) levels of total U, 241 Am, 238 Pu and 239 Pu were detected in pelts than in carcasses of small mammals at TA-54. Concentrations of other measured radionuclides in carcasses were nearly equal to or exceeded the mean concentrations in the pelts. Our results show higher concentrations in pelts compared to carcasses, which is similar to what has been found at waste burial/contaminated sites outside of Los Alamos National Laboratory. Site 1 had a significantly higher (alpha=0.05, P=0.0125) mean tritium concentration in carcasses than Site 2 or Site 4. In addition Site 1 also had a significantly higher (alpha=0.05, p=0.0024) mean tritium concentration in pelts than Site 2 or Site 4. Site 2 had a significantly higher (alpha=0.05, P=0.0499) mean 239 Pu concentration in carcasses than either Site 1 or Site 4

  19. Mixed Waste Focus Area integrated technical baseline report, Phase 1: Volume 1

    International Nuclear Information System (INIS)

    1996-01-01

    The Department of Energy (DOE) established the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop and facilitate implementation of technologies required to meet the Department's commitments for treatment of mixed low-level and transuranic wastes. The mission of the MWFA is to provide acceptable treatment systems, developed in partnership with users and with participation of stakeholders, tribal governments, and regulators, that are capable of treating DOE's mixed waste. These treatment systems include all necessary steps such as characterization, pretreatment, and disposal. To accomplish this mission, a technical baseline is being established that forms the basis for determining which technology development activities will be supported by the MWFA. The technical baseline is the prioritized list of deficiencies, and the resulting technology development activities needed to overcome these deficiencies. This document presents Phase I of the technical baseline development process, which resulted in the prioritized list of deficiencies that the MWFA will address. A summary of the data and the assumptions upon which this work was based is included, as well as information concerning the DOE Office of Environmental Management (EM) mixed waste technology development needs. The next phase in the technical baseline development process, Phase II, will result in the identification of technology development activities that will be conducted through the MWFA to resolve the identified deficiencies

  20. A History of Building 828, Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Rebecca

    1999-08-01

    This report documents the history of Building 828 in Sandia National Laboratories' Technical Area I. Building 828 was constructed in 1946 as a mechanical test laboratory for Los Alamos' Z-Division (later Sandia) as it moved to Sandia Base. The building has undergone significant remodeling over the years and has had a variety of occupants. The building was evaluated in compliance with the National Historic Preservation Act, but was not eligible for the National Register of Historic Places. Nevertheless, for many Labs employees, it was a symbol of Sandia's roots in World War II and the Manhattan Project.

  1. Swedish Hard Rock Laboratory first evaluation of preinvestigations 1986-87 and target area characterization

    International Nuclear Information System (INIS)

    Gustafson, G.; Stanfors, R.; Wikberg, P.

    1988-06-01

    SKB plans to site an underground research laboratory in the Simpevarp area. A regional survey started in 1986 and an extensive programme for geology, geohydrology and hydrochemistry was carried through. This report gives an evaluation of all available data gathered from the start of the project up to the drilling of core boreholes in some target areas in the autumn of 1987. A descriptive geological-tectonic model on a regional scale is presented that is intended to constitute a basis for the hydrogeological modelling work. Preliminary rock mass descriptions are also presented on a more detailed scale for some minor parts of the area. It is recommended that the island Aespoe is the principal target area for the continued work on the Swedish Hard Rock Laboratory. (orig.)

  2. Accreditation of laboratories in the field of radiation protection

    International Nuclear Information System (INIS)

    Galjanic, S.; Franic, Z.

    2005-01-01

    This paper gives a review of requirements and procedures for the accreditation of test and calibration laboratories in the field of radiation protection, paying particular attention to Croatia. General requirements to be met by a testing or calibration laboratory to be accredited are described in the standard HRN EN ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories. The quality of a radiation protection programme can only be as good as the quality of the measurements made to support it. Measurement quality can be assured by participation in measurement assurance programmes that evaluate the appropriateness of procedures, facilities, and equipment and include periodic checks to assure adequate performance. These also include internal consistency checks, proficiency tests, intercomparisons and site visits by technical experts to review operations. In Croatia, laboratories are yet to be accredited in the field of radiation protection. However, harmonisation of technical legislation with the EU legal system will require some changes in laws and regulations in the field of radiation protection, including the ones dealing with the notification of testing laboratories and connected procedures. Regarding the notification procedures for testing laboratories in Croatia, in the regulated area, the existing accreditation infrastructure, i.e. Croatian Accreditation Agency is ready for its implementation, as it has already established and further developed a consistent accreditation system, compatible with international requirements and procedures.(author)

  3. Annual report on operation, utilization and technical development of Research Reactors and Hot Laboratory, from April 1, 1983 to March 31, 1984

    International Nuclear Information System (INIS)

    1984-11-01

    Activities of the Department of Research Reactor Operation in fiscal year 1983 are described. The department is responsible for operation and maintenance of JRR-2, JRR-3, JRR-4 and Hot Laboratory. In the above connection, various other work has also been performed, such as technical management of fuel and coolant, radiation control, irradiation technique, etc. In Hot Laboratory, we have performed post-irradiation examinations of fuels and materials, and also development of examination procedures, too. (author)

  4. Fast-turnaround RCRA site characterization of former TA-42 at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pratt, A.R.; Gainer, G.M.; Thomson, C.N.; Hutton, R.D.

    1994-01-01

    This report describes the results of an accelerated characterization to evaluate contamination at the site of former Technical Area (TA)-42. This characterization supported the construction validation for the Nuclear Safeguards Technology Laboratory (NSTL), which will be constructed at the site

  5. Technical specifications of variable speed motors for negative pressure control in hot cell area

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Duk; Bang, H. S.; Cho, W. K

    2002-01-01

    Hot cells are the facilities for handling the high radioactive materials and various R and D activities are performed using hot cells. Therefore the control of air flow in hot cell area is very important technology and it is started with the variable speed motor(VSM) controlling the air handling system in that area. This report describes various technical aspects of VS motors and will be useful for understanding the practical technologies of VS motors and also for optimization of the negative pressure controls in hot cell area.

  6. Chemical surety material decontamination and decommissioning of Los Alamos National Laboratory Chemical Surety Material Laboratory area TA-3, building SM-29, room 4009

    International Nuclear Information System (INIS)

    Moore, T.E.; Smith, J.M.

    1994-04-01

    From 1982 through 1987, Los Alamos National Laboratory (LANL) performed surety laboratory operations for the U.S. Army Medical Research and Development Command (MRDC). Room 4009 in building SM-29, TA-3, was used as the laboratory for work with the following chemical surety material (CSM) agents: sarin (GB), soman (GD), lewisite (L), and distilled mustard (HD) radio-labelled with H 3 or C 14 . The work was confined to three CSM-certified fume hoods, located in room 4009 (see diagram in Appendix C). The laboratory ceased all active operations during the late 1986 and early 1987 period. From 1987 until 1993 the laboratory was secured and the ventilation system continued to operate. During late 1992, the decision was made to utilize this laboratory space for other operations, thus a decision was made to dismantle and reconfigure this room. LANL sub-contracted Battelle Memorial Institute (BMI) to draw upon the CSM experience of the technical staff from the Hazardous Materials Research Facility (HMRF) to assist in developing a decontamination and decommissioning plan. BMI was subcontracted to devise a CSM safety training course, and a sampling and air monitoring plan for CSM material to ensure personnel safety during all disassembly operations. LANL subcontracted Johnson Controls personnel to perform all disassembly operations. Beginning in early 1993 BMI personnel from the HMRF visited the laboratory to develop both the safety plan and the sample and air monitoring plan. Execution of that plan began in September 1993 and was completed in January 1994

  7. Chemical surety material decontamination and decommissioning of Los Alamos National Laboratory Chemical Surety Material Laboratory area TA-3, building SM-29, room 4009

    Energy Technology Data Exchange (ETDEWEB)

    Moore, T.E.; Smith, J.M.

    1994-04-01

    From 1982 through 1987, Los Alamos National Laboratory (LANL) performed surety laboratory operations for the U.S. Army Medical Research and Development Command (MRDC). Room 4009 in building SM-29, TA-3, was used as the laboratory for work with the following chemical surety material (CSM) agents: sarin (GB), soman (GD), lewisite (L), and distilled mustard (HD) radio-labelled with H{sup 3} or C{sup 14}. The work was confined to three CSM-certified fume hoods, located in room 4009 (see diagram in Appendix C). The laboratory ceased all active operations during the late 1986 and early 1987 period. From 1987 until 1993 the laboratory was secured and the ventilation system continued to operate. During late 1992, the decision was made to utilize this laboratory space for other operations, thus a decision was made to dismantle and reconfigure this room. LANL sub-contracted Battelle Memorial Institute (BMI) to draw upon the CSM experience of the technical staff from the Hazardous Materials Research Facility (HMRF) to assist in developing a decontamination and decommissioning plan. BMI was subcontracted to devise a CSM safety training course, and a sampling and air monitoring plan for CSM material to ensure personnel safety during all disassembly operations. LANL subcontracted Johnson Controls personnel to perform all disassembly operations. Beginning in early 1993 BMI personnel from the HMRF visited the laboratory to develop both the safety plan and the sample and air monitoring plan. Execution of that plan began in September 1993 and was completed in January 1994.

  8. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  9. Comparison of Uncertainty of Two Precipitation Prediction Models at Los Alamos National Lab Technical Area 54

    Energy Technology Data Exchange (ETDEWEB)

    Shield, Stephen Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dai, Zhenxue [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-18

    Meteorological inputs are an important part of subsurface flow and transport modeling. The choice of source for meteorological data used as inputs has significant impacts on the results of subsurface flow and transport studies. One method to obtain the meteorological data required for flow and transport studies is the use of weather generating models. This paper compares the difference in performance of two weather generating models at Technical Area 54 of Los Alamos National Lab. Technical Area 54 is contains several waste pits for low-level radioactive waste and is the site for subsurface flow and transport studies. This makes the comparison of the performance of the two weather generators at this site particularly valuable.

  10. Idaho National Laboratory Directed Research and Development FY-2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are

  11. Subsurface contamination focus area technical requirements. Volume II

    International Nuclear Information System (INIS)

    Nickelson, D.; Nonte, J.; Richardson, J.

    1996-10-01

    This is our vision, a vision that replaces the ad hoc or open-quotes delphiclose quotes method which is to get a group of open-quotes expertsclose quotes together and make decisions based upon opinion. To fulfill our vision for the Subsurface Contaminants Focus Area (SCFA), it is necessary to generate technical requirements or performance measures which are quantitative or measurable. Decisions can be supported if they are based upon requirements or performance measures which can be traced to the origin (documented) and are verifiable, i.e., prove that requirements are satisfied by inspection (show me), demonstration, analysis, monitoring, or test. The data from which these requirements are derived must also reflect the characteristics of individual landfills or plumes so that technologies that meet these requirements will necessarily work at specific sites. Other subjective factors, such as stakeholder concerns, do influence decisions. Using the requirements as a basic approach, the SCFA can depend upon objective criteria to help influence the areas of subjectivity, like the stakeholders. In the past, traceable requirements were not generated, probably because it seemed too difficult to do so. There are risks that the requirements approach will not be accepted because it is new and represents a departure from the historical paradigm

  12. Subsurface contamination focus area technical requirements. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Nickelson, D.; Nonte, J.; Richardson, J.

    1996-10-01

    This is our vision, a vision that replaces the ad hoc or {open_quotes}delphi{close_quotes} method which is to get a group of {open_quotes}experts{close_quotes} together and make decisions based upon opinion. To fulfill our vision for the Subsurface Contaminants Focus Area (SCFA), it is necessary to generate technical requirements or performance measures which are quantitative or measurable. Decisions can be supported if they are based upon requirements or performance measures which can be traced to the origin (documented) and are verifiable, i.e., prove that requirements are satisfied by inspection (show me), demonstration, analysis, monitoring, or test. The data from which these requirements are derived must also reflect the characteristics of individual landfills or plumes so that technologies that meet these requirements will necessarily work at specific sites. Other subjective factors, such as stakeholder concerns, do influence decisions. Using the requirements as a basic approach, the SCFA can depend upon objective criteria to help influence the areas of subjectivity, like the stakeholders. In the past, traceable requirements were not generated, probably because it seemed too difficult to do so. There are risks that the requirements approach will not be accepted because it is new and represents a departure from the historical paradigm.

  13. Savannah River Ecology Laboratory, Annual Technical Progress Report of Ecological Research, June 30, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Paul M. Bertsch, (Director)

    2002-06-30

    The Savannah River Ecology Laboratory (SREL) is a research unit of The University of Georgia (UGA) and has been conducting ecological research on the Savannah River Site (SRS) near Aiken, South Carolina for 50 years. The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts fundamental and applied ecological research, as well as education and outreach programs, under a Cooperative Agreement with the U.S. Department of Energy (DOE). The Laboratory's research mission during the 2002 fiscal year was fulfilled with the publication of 76 journal articles and book chapters by faculty, technical staff, students, and visiting scientists. An additional 50 journal articles have been submitted or are in press. Other noteworthy events took place as faculty members, staff, and graduate students received awards. These are described in the section titled Special Accomplishments of Faculty, Staff, Students, and Administration on page 51. Notable scientific accomplishments include work conducted on contaminant transport, stable isotopes, sandhills ecology, and phytoremediation: (1) A collaborative study between Dr. Tom Hinton at SREL and scientists at SRTC demonstrated the feasibility of using illite clay to sequester 137Cs in sediments along the P and R reactor cooling canal system, where approximately 3,000 acres of land are contaminated. Overall, the study showed significant decreases in cesium concentrations and bioavailability following the addition of illite with no sign of harm to the ecosystem. While the cesium remains sequestered from the biosphere, its radioactivity decays and the process progresses from contaminant immobilization to remediation. (2) SREL's stable isotope laboratory is now fully functional. Stable isotope distributions in nature can provide important insights into many historical and current environmental processes. Dr. Christopher Romanek is leading SREL's research

  14. Savannah River Ecology Laboratory, Annual Technical Progress Report of Ecological Research, June 30, 2002

    International Nuclear Information System (INIS)

    Paul M. Bertsch,

    2002-01-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of The University of Georgia (UGA) and has been conducting ecological research on the Savannah River Site (SRS) near Aiken, South Carolina for 50 years. The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts fundamental and applied ecological research, as well as education and outreach programs, under a Cooperative Agreement with the U.S. Department of Energy (DOE). The Laboratory's research mission during the 2002 fiscal year was fulfilled with the publication of 76 journal articles and book chapters by faculty, technical staff, students, and visiting scientists. An additional 50 journal articles have been submitted or are in press. Other noteworthy events took place as faculty members, staff, and graduate students received awards. These are described in the section titled Special Accomplishments of Faculty, Staff, Students, and Administration on page 51. Notable scientific accomplishments include work conducted on contaminant transport, stable isotopes, sandhills ecology, and phytoremediation: (1) A collaborative study between Dr. Tom Hinton at SREL and scientists at SRTC demonstrated the feasibility of using illite clay to sequester 137Cs in sediments along the P and R reactor cooling canal system, where approximately 3, 000 acres of land are contaminated. Overall, the study showed significant decreases in cesium concentrations and bioavailability following the addition of illite with no sign of harm to the ecosystem. While the cesium remains sequestered from the biosphere, its radioactivity decays and the process progresses from contaminant immobilization to remediation. (2) SREL's stable isotope laboratory is now fully functional. Stable isotope distributions in nature can provide important insights into many historical and current environmental processes. Dr. Christopher Romanek is leading SREL's research in this area

  15. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Barbara J.; West, Stephanie G.; Jones, Olga G.; Kerr, Dorothy A.; Bieri, Rita A.; Sanderson, Nancy L.

    1991-08-01

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  16. Tiger Team assessment of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-08-01

    The purpose of the Safety and Health (S ampersand H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG ampersand G Idaho, Inc. (EG ampersand G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S ampersand H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety

  17. Technical Evaluation of Soil Remediation Alternatives at the Building 812 Operable Unit, Lawrence Livermore National Laboratory Site 300

    International Nuclear Information System (INIS)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-01-01

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in

  18. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    Energy Technology Data Exchange (ETDEWEB)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in

  19. Argonne National Laboratory 1985 publications

    International Nuclear Information System (INIS)

    Kopta, J.A.; Hale, M.R.

    1987-08-01

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index

  20. Sandia Laboratories technical capabilities: engineering analysis

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-12-01

    This report characterizes the engineering analysis capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs

  1. Sandia Laboratories technical capabilities: systems analysis

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-06-01

    The systems analysis capabilities at Sandia Laboratories are summarized. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs. (U.S.)

  2. Technical and legal considerations and solutions in the area of battery charging for electric vehicles

    Science.gov (United States)

    Juda, Z.

    2016-09-01

    The issue of protecting health of residents of urbanized areas from the effect of excessive particulate matter and toxic components of car exhaust gases imposes the need of introduction of clean electric vehicles to the market. The increasing market availability of electric vehicles, especially in the segment of short-range (neighborhood) vehicles is followed by development of new and advanced infrastructure solutions. This also applies to the increasingly popular hybrid vehicles PHEV (Plug-in Hybrid Electric Vehicles). However, problems with the existing designs are primarily associated with limited driving range on a single battery charge, the density of charging stations in urban and suburban area, energy system efficiency due to increased electricity demand and the unification of solutions for charging stations, on-board chargers and the necessary accessories. Technical solutions are dependent on many factors, including the type and size of battery in the vehicle and access to power grid with increased load capacity. The article discusses the legal and technical actions outlined in the above directions. It shows the available and planned solutions in this area.

  3. Chemical Technology Division annual technical report, 1996

    International Nuclear Information System (INIS)

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R ampersand D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division's activities during 1996 are presented

  4. Chemical Technology Division annual technical report, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R&D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division`s activities during 1996 are presented.

  5. Weapons Engineering Tritium Facility, Building 205, Technical Area 16: Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1991-04-01

    The Weapons Engineering Tritium Facility (WETF) was planned by the US Department of Energy (DOE) to retain at Los Alamos National Laboratory the capability of repackaging small quantities of tritium to exacting specifications. Small quantities of tritium are required for energy research and development activities and for research on nuclear weapons test devices carried out as part of the laboratory mission. The WETF is an improved design proposed to replace an aging Los Alamos facility where tritium has been repackaged for many years. This Environmental Assessment evaluates the environmental consequences to be expected from operating the new facility, for which construction was completed in 1984, compared with those from continuing to operate the old facility. The document was prepared for compliance with NEPA. In operation, the WETF will incorporate state-of-the-art systems for containing tritium in glove boxes and capturing any tritium released into the glove box exhaust system and the laboratory atmosphere. Liquid discharges from the WETF would contain less than 1% of the tritium found in effluents from the present facility. Effluent streams would be surface discharges and would not enter the aquifer from which municipal water supplies are drawn. The quantity of solid radioactive waste generated at the WETF would be approximately the same as that generated at the present facility. The risk to the public from normal tritium-packaging operations would be significantly less from the WETF than from the present facility. The proposed action will reduce the adverse environmental impacts caused by tritium repackaging by substantially reducing the amount of tritium that escapes to the environment. 35 refs., 3 figs., 21 tabs

  6. Elk and Deer Study, Material Disposal Area G, Technical Area 54: Source document

    International Nuclear Information System (INIS)

    Ferenbaugh, J.K.; Fresquez, P.R.; Ebinger, M.H.; Gonzales, G.J.; Jordan, P.A.

    1999-01-01

    As nuclear research has become more prevalent, environmental contamination from the disposal of radioactive waste has become a prominent issue. At Los Alamos National Laboratory (LANL) in northern New Mexico, radioactive contamination from disposal operations has raised some very specific concerns. Material Disposal Area G (Area G) is the primary low-level radioactive waste disposal site at LANL and occupies an area adjacent to land belonging to the Native American community of the Pueblo of San Ildefonso. Analyses of soil and vegetation collected from the perimeter of Area G have shown concentrations of radionuclides greater than background concentrations established for northern New Mexico. As a result, Pueblo residents had become concerned that contaminants from Area G could enter tribal lands through various ecological pathways. The residents specifically questioned the safety of consuming meat from elk and deer that forage near Area G and then migrate onto tribal lands. Consequently, this study addresses the uptake of 3 H, 90 Sr, tot U, 238 Pu, 239 Pu, 241 Am, and 137 Cs by elk (Cervus elaphus) and deer (Odocoileus hemionus) that forage around the perimeter of Area G and the associated doses to the animals and to humans who consume these animals. Radionuclide uptake by and internal dose to animals was estimated using equations modified from National Council on Radiological Protection Report 76. The Residual Radiation computer code was used to estimate the external dose to animals and the dose to humans consuming meat. Soil and water concentrations from the perimeter of Area G and from background regions in northern New Mexico were averaged over 4 years (1993--1996) and used as input data for the models. Concentration estimates generated by the model correspond to the concentration range measured in actual tissue samples from elk and deer collected at LANL. The highest dose estimates for both animals (0.028 mrad/d) and humans (0.072 mrem/y) were well below

  7. 1998 Chemical Technology Division Annual Technical Report. Applying chemical innovation to environmental problems

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-01-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented

  8. Radionuclide concentrations in honey bees from Area G at TA-54 during 1997. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Haarmann, T.K.; Fresquez, P.R.

    1998-07-01

    Honey bees were collected from two colonies located at Los Alamos National Laboratory`s Area G, Technical Area 54, and from one control (background) colony located near Jamez Springs, NM. Samples were analyzed for the following: cesium ({sup 137}Cs), americium ({sup 241}Am), plutonium ({sup 238}Pu and {sup 239,240}Pu), tritium ({sup 3}H), total uranium, and gross gamma activity. Area G sample results from both colonies were higher than the upper (95%) level background concentration for {sup 238}Pu and {sup 3}H.

  9. Environment Laboratories Newsletter. Vol. 1, No. 01, Jan.-Jun. 2014

    International Nuclear Information System (INIS)

    2014-01-01

    This is the first edition of the newsletter of the IAEA Environment Laboratories. This replaces the former Marine Environment Laboratories newsletter, reflecting a restructure that has seen the marine and terrestrial environment laboratories of the IAEA integrated into a single division. The IAEA’s Environment Laboratories in Monaco and Seibersdorf, Austria, in partnership with several collaborating centres around the globe, are unique in the UN system. Through the use and promotion of nuclear and isotopic techniques, the Environment Laboratories play a major role in the journey towards sustainable development, both on land and at sea. Responding to requests for technical assistance from Member States and other UN agencies, the Environment Laboratories provide applied collaborative research, training courses, technical cooperation projects and analytical quality support services for radioactive and non-radioactive contaminants in the environment. Through its environmental programme the IAEA promotes an integrated approach to the study, monitoring and protection of marine, coastal and terrestrial pollution, climate change and the loss of habitat. In this first edition we focus on the challenge of ocean acidification. Governments across the globe are calling for immediate action to minimize and address the impacts of ocean acidification which will require enhanced scientific cooperation at all levels. The IAEA Environment Laboratories will play a key role in this area and are proud to host the Ocean Acidification International Coordination Centre. We are also happy to include in this edition the winners of the 2014 World Oceans Day (WOD) photo competition

  10. An aerial radiological survey of the Fermi National Accelerator Laboratory and surrounding area, Batavia, Illinois

    International Nuclear Information System (INIS)

    Fritzsche, A.E.

    1990-11-01

    An aerial radiological gamma survey was conducted over the Fermi National Accelerator Laboratory during 1 through 6 June 1989. Flight lines at 150-foot altitude and 250-foot line spacings assured nearly 100% coverage. The terrestrial exposure at about 6 μR/h was nearly the same as that measured by the previous survey of this area (May 1977). Ten anomalous areas, mostly Na-22 and Mn-54, were detected within buildings and laboratories in the area. Although these locations have changed somewhat from the 1977 survey, the aerial data shows good agreement with the ground-based ion chamber and soil sample data. 7 refs., 15 figs., 1 tab

  11. Technical protocol for laboratory tests of transformation of veterinary medicinal products and biocides in liquid manures. Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzig, Robert [Technische Univ. Braunschweig (Germany). Inst. fuer Oekologische Chemie und Abfallanalytik

    2010-07-15

    The technical protocol under consideration describes a laboratory test method to evaluate the transformation of chemicals in liquid bovine and pig manures under anaerobic conditions and primarily is designed for veterinary medicinal products and biocides. The environmentally relevant entry routes into liquid manures occur via urine and feces of cattle and pigs in stable housings after excretion of veterinary medicinal products as parent compounds or metabolites and after the application of biocides in animal housings. Further entry routes such as solid dung application and direct dung pat deposition by production animals on pasture are not considered by this technical protocol. Thus, this technical protocol focused on the sampling of excrements from cattles and pigs kept in stables and fed under standard nutrition conditions. This approach additionally ensures that excrement samples are operationally free of any contamination by veterinary medicinal products and biocides. After the matrix characterization, reference-manure samples are prepared from the excrement samples by adding tap water to adjust defined dry substance contents typical for bovine or pig manures. This technical protocol comprehends a tiered experimental design in two parts: (a) Sampling of excrements and preparation of reference bovine and pig manures; (b) Testing of anaerobic transformation of chemicals in reference manures.

  12. Argonne National Laboratory 1985 publications

    Energy Technology Data Exchange (ETDEWEB)

    Kopta, J.A. (ED.); Hale, M.R. (comp.)

    1987-08-01

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index.

  13. Das Sprachlabor in der Schule (The Language Laboratory in Schools).

    Science.gov (United States)

    Cabus, Hans-Joachim; Freudenstein, Reinhold

    This technical manual for the use of language laboratories includes information on the following topics: (1) types of laboratories, (2) the tape, (3) the tape recorder, (4) other basic technical equipment, (5) the audio-active laboratory, the audio-active-compare laboratory, and an evaluation of the two, (6) possibilities for expanded use, (7)…

  14. Procedures For Microbial-Ecology Laboratory

    Science.gov (United States)

    Huff, Timothy L.

    1993-01-01

    Microbial Ecology Laboratory Procedures Manual provides concise and well-defined instructions on routine technical procedures to be followed in microbiological laboratory to ensure safety, analytical control, and validity of results.

  15. Annual report on operation, utilization and technical development of research reactors and hot laboratory, from April 1, 1987 to March 31, 1988

    International Nuclear Information System (INIS)

    1988-10-01

    Activities of the Department of Research Reactor Operation in fiscal year 1987 are described. The department is responsible for operation and maintenance of JRR-2, JRR-4, Research Reactor Development Division which performed upgraded JRR-3 and other R D, and Hot Laboratory. In the above connection various other work has also been performed, such as technical management of fuel and coolant, radiation control, irradiation technique, etc. In Hot Laboratory, we have performed post-irradiation examinations of fuels and materials, and also development of examination procedures, too. (author)

  16. Annual report on operation, utilization and technical development of research reactors and hot laboratory, from April 1, 1985 to March 31, 1986

    International Nuclear Information System (INIS)

    1986-10-01

    Activities of the Department of Research Reactor Operation in fiscal year 1985 are described. The department is responsible for operation and maintenance of JRR-2, JRR-4, Research Reactor Development Division which performed upgraded JRR-3 and other R and D, and Hot Laboratory. In the above connection various other work has also been performed, such as technical management of fuel and coolant, radiation control, irradiation technique, etc. In Hot Laboratory, we have performed post-irradiation examinations of fuels and materials, and also development of examination procedures, too. (author)

  17. Modernization of physical protection educational laboratories in the National Research Nuclear University MEPhI

    Science.gov (United States)

    Geraskin, N. I.; Krasnoborodko, A. A.

    2017-01-01

    Non-proliferation of nuclear materials includes, in addition to accounting and control, the Physical Protection (PP) of one. The paper considers the experience by MEPhI in application the practical educational in the area of PP technical systems. The following aspects are discussed in the paper: specific features graduate program in nuclear security area; overview of the practical course curricula in the special laboratory.

  18. Subsurface Contaminant Focus Area: Monitored Natural Attenuation (MNA)--Programmatic, Technical, and Regulatory Issues

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Kenneth M.; Martin, Wayne J.

    2001-07-23

    Natural attenuation processes are commonly used for remediation of contaminated sites. A variety of natural processes occur without human intervention at all sites to varying rates and degrees of effectiveness to attenuate (decrease) the mass, toxicity, mobility, volume, or concentration of organic and inorganic contaminants in soil, groundwater, and surface water systems. The objective of this review is to identify potential technical investments to be incorporated in the Subsurface Contaminant Focus Area Strategic Plan for monitored natural attenuation. When implemented, the technical investments will help evaluate and implement monitored natural attenuation as a remediation option at DOE sites. The outcome of this review is a set of conclusions and general recommendations regarding research needs, programmatic guidance, and stakeholder issues pertaining to monitored natural attenuation for the DOE complex.

  19. HTGR safety research at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stroh, K.R.; Anderson, C.A.; Kirk, W.L.

    1982-01-01

    This paper summarizes activities undertaken at the Los Alamos National Laboratory as part of the High-Temperature Gas-Cooled Reactor (HTGR) Safety Research Program sponsored by the US Nuclear Regulatory Commission. Technical accomplishments and analysis capabilities in six broad-based task areas are described. These tasks are: fission-product technology, primary-coolant impurities, structural investigations, safety instrumentation and control systems, accident delineation, and phenomena modeling and systems analysis

  20. Floodplain Assessment for the Middle Los Alamos Canyon Aggregate Area Investigations in Technical Area 02 at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, Charles Dean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-22

    The proposed action being assessed in this document occurs in TA-02 in the bottom of Los Alamos Canyon. The DOE proposes to conduct soil sampling at AOC 02-011 (d), AOC 02- 011(a)(ii), and SWMU 02-005, and excavate soils in AOC 02-011(a)(ii) as part of a corrective actions effort. Additional shallow surface soil samples (soil grab samples) will be collected throughout the TA-02 area, including within the floodplain, to perform ecotoxicology studies (Figures 1 and 2). The excavation boundaries in AOC 02-011(a)(ii) are slightly within the delineated 100-year floodplain. The project will use a variety of techniques for soil sampling and remediation efforts to include hand/digging, standard hand auger/sampling, excavation using machinery such as backhoe and front end loader and small drill rig. Heavy equipment will traverse the floodplain and spoils piles will be staged in the floodplain within developed or previously disturbed areas (e.g., existing paved roads and parking areas). The project will utilize and maintain appropriate best management practices (BMPs) to contain excavated materials, and all pollutants, including oil from machinery/vehicles. The project will stabilize disturbed areas as appropriate at the end of the project.

  1. [Review comments on the Draft DOE Area Recommendation Report for the Crystalline Repository Project]: Final technical report

    International Nuclear Information System (INIS)

    Dutch, S.I.; Stiegliltz, R.D.

    1986-03-01

    Research performed under the grant primarily involved review and comment on the Draft Area Recommendations Report (DARR). However, because data and ''recommendations'' included in the DARR are unquestionably tied to years of research and dozens of technical reports and documents, i.e., Screening Methodologies, Regional characterization Reports, etc., it is essential that consultants to the Menominee Tribe review all the relevant DOE documents, working papers, etc. Given the short period provided for technical comment and limited funds available to the Tribe, a well designed and thorough technical review was (and is) without question impossible. What review and comment that did occur on a geotechnical level is included in this report

  2. Preliminary characterization of the 100 area at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Biang, C.; Biang, R.; Patel, P.

    1994-06-01

    This characterization report is based on the results of sampling and an initial environmental assessment of the 100 Area of Argonne National Laboratory. It addresses the current status, projected data requirements, and recommended actions for five study areas within the 100 Area: the Lime Sludge Pond, the Building 108 Liquid Retention Pond, the Coal Yard, the East Area Burn Pit, and the Eastern Perimeter Area. Two of these areas are solid waste management units under the Resource Conservation and Recovery Act (the Lime Sludge Pond and the Building 108 Liquid Retention Pond); however, the Illinois Environmental Protection Agency has determined that no further action is necessary for the Lime Sludge Pond. Operational records for some of the activities were not available, and one study area (the East Area Burn Pit) could not be precisely located. Recommendations for further investigation include sample collection to obtain the following information: (1) mineralogy of major minerals and clays within the soils and underlying aquifer, (2) pH of the soils, (3) total clay fraction of the soils, (4) cation exchange capacity of the soils and aquifer materials, and (5) exchangeable cations of the soils and aquifer material. Various other actions are recommended for the 100 Area, including an electromagnetic survey, sampling of several study areas to determine the extent of contamination and potential migration pathways, and sampling to determine the presence of any radionuclides. For some of the study areas, additional actions are contingent on the results of the initial recommendations.

  3. Preliminary characterization of the 100 area at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Biang, C.; Biang, R.; Patel, P.

    1994-06-01

    This characterization report is based on the results of sampling and an initial environmental assessment of the 100 Area of Argonne National Laboratory. It addresses the current status, projected data requirements, and recommended actions for five study areas within the 100 Area: the Lime Sludge Pond, the Building 108 Liquid Retention Pond, the Coal Yard, the East Area Burn Pit, and the Eastern Perimeter Area. Two of these areas are solid waste management units under the Resource Conservation and Recovery Act (the Lime Sludge Pond and the Building 108 Liquid Retention Pond); however, the Illinois Environmental Protection Agency has determined that no further action is necessary for the Lime Sludge Pond. Operational records for some of the activities were not available, and one study area (the East Area Burn Pit) could not be precisely located. Recommendations for further investigation include sample collection to obtain the following information: (1) mineralogy of major minerals and clays within the soils and underlying aquifer, (2) pH of the soils, (3) total clay fraction of the soils, (4) cation exchange capacity of the soils and aquifer materials, and (5) exchangeable cations of the soils and aquifer material. Various other actions are recommended for the 100 Area, including an electromagnetic survey, sampling of several study areas to determine the extent of contamination and potential migration pathways, and sampling to determine the presence of any radionuclides. For some of the study areas, additional actions are contingent on the results of the initial recommendations

  4. An aerial radiological survey of the Ames Laboratory and surrounding area, Ames, Iowa

    International Nuclear Information System (INIS)

    Maurer, R.J.

    1993-04-01

    An aerial radiological survey of the Ames Laboratory and surrounding area in Ames, Iowa, was conducted during the period July 15--25, 1991. The purpose of the survey was to measure and document the terrestrial radiological environment at the Ames Laboratory and the surrounding area for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 200 feet (61 meters) along a series of parallel lines 350 feet (107 meters) apart. The survey encompassed an area of 36 square miles (93 square kilometers) and included the city of Ames, Iowa, and the Iowa State University. The results are reported as exposure rates at 1 meter above ground level (inferred from the aerial data) in the form of a gamma radiation contour map. Typical background exposure rates were found to vary from 7 to 9 microroentgens per hour (μR/h). No anomalous radiation levels were detected at the Ames Laboratory. However, one anomalous radiation source was detected at an industrial storage yard in the city of Ames. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several sites within the survey perimeter. The results of the aerial and ground-based measurements were found to agree within the expected uncertainty of ±15%

  5. Environmental Audit at Santa Barbara Operations, Special Technologies Laboratory, Remote Sensing Laboratory, North Las Vegas Facilities

    International Nuclear Information System (INIS)

    1991-03-01

    This report documents the results of the Environmental Audit of selected facilities under the jurisdiction of the DOE Nevada Operations Office (NV) that are operated by EG and G Energy Measurements, Incorporated (EG and G/EM). The facilities included in this Audit are those of Santa Barbara Operation (SBO) at Goleta, California; the Special Technologies Laboratory (STL) at Santa Barbara, California; and Las Vegas Area Operations (LVAO) including the Remote Sensing Laboratory (RSL) at Nellis Air Force Base in Nevada, and the North Las Vegas Facilities (NLVF) at North Las Vegas, Nevada. The Environmental Audit was conducted by the US Department of Energy's (DOE) Office of Environmental Audit, commencing on January 28, 1991 and ending on February 15, 1991. The scope of the Audit was comprehensive, addressing environmental activities in the technical areas of air, surface water/drinking water, groundwater, waste management, toxic and chemical materials, quality assurance, radiation, inactive waste sites, and environmental management. Also assessed was compliance with applicable Federal, state, and local regulations and requirements; internal operating requirements; DOE Orders; and best management practices. 8 tabs

  6. Modelling technical snow production for skiing areas in the Austrian Alps with the physically based snow model AMUNDSEN

    Science.gov (United States)

    Hanzer, F.; Marke, T.; Steiger, R.; Strasser, U.

    2012-04-01

    Tourism and particularly winter tourism is a key factor for the Austrian economy. Judging from currently available climate simulations, the Austrian Alps show a particularly high vulnerability to climatic changes. To reduce the exposure of ski areas towards changes in natural snow conditions as well as to generally enhance snow conditions at skiing sites, technical snowmaking is widely utilized across Austrian ski areas. While such measures result in better snow conditions at the skiing sites and are important for the local skiing industry, its economic efficiency has also to be taken into account. The current work emerges from the project CC-Snow II, where improved future climate scenario simulations are used to determine future natural and artificial snow conditions and their effects on tourism and economy in the Austrian Alps. In a first step, a simple technical snowmaking approach is incorporated into the process based snow model AMUNDSEN, which operates at a spatial resolution of 10-50 m and a temporal resolution of 1-3 hours. Locations of skiing slopes within a ski area in Styria, Austria, were digitized and imported into the model environment. During a predefined time frame in the beginning of the ski season, the model produces a maximum possible amount of technical snow and distributes the associated snow on the slopes, whereas afterwards, until to the end of the ski season, the model tries to maintain a certain snow depth threshold value on the slopes. Due to only few required input parameters, this approach is easily transferable to other ski areas. In our poster contribution, we present first results of this snowmaking approach and give an overview of the data and methodology applied. In a further step in CC-Snow, this simple bulk approach will be extended to consider actual snow cannon locations and technical specifications, which will allow a more detailed description of technical snow production as well as cannon-based recordings of water and energy

  7. Information support of monitoring of technical condition of buildings in construction risk area

    Science.gov (United States)

    Skachkova, M. E.; Lepihina, O. Y.; Ignatova, V. V.

    2018-05-01

    The paper presents the results of the research devoted to the development of a model of information support of monitoring buildings technical condition; these buildings are located in the construction risk area. As a result of the visual and instrumental survey, as well as the analysis of existing approaches and techniques, attributive and cartographic databases have been created. These databases allow monitoring defects and damages of buildings located in a 30-meter risk area from the object under construction. The classification of structures and defects of these buildings under survey is presented. The functional capabilities of the developed model and the field of it practical applications are determined.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 56: Technical Communications in Engineering and Science: The Practices Within a Government Defense Laboratory

    Science.gov (United States)

    VonSeggern, Marilyn; Jourdain, Janet M.; Pinelli, Thomas E.

    1996-01-01

    Research in recent decades has identified the varied information needs of engineers versus scientists. While most of that research looked at the differences among organizations, we surveyed engineers and scientists within a single Air Force research and development laboratory about their information gathering, usage, and production practices. The results of the Phillips Laboratory survey confirm prior assumptions about distinctions between engineering and science. Because military employees responded at a much higher rate than civilian staff, the survey also became an opportunity to profile a little-known segment of the engineer/scientist population. In addition to the effect Phillips Laboratory's stated mission may have on member engineers and scientists, other factors causing variations in technical communication and information-related activities are identified.

  9. Decommissioning of surplus facilities at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stout, D.S.

    1995-01-01

    Decommissioning Buildings 3 and 4 South at Technical Area 21, Los Alamos National Laboratory, involves the decontamination, dismantlement, and demolition of two enriched-uranium processing buildings containing process equipment and ductwork holdup. The Laboratory has adopted two successful management strategies to implement this project: Rather than characterize an entire site, upfront, investigators use the ''observational approach,'' in which they collect only enough data to begin decommissioning activities and then determine appropriate procedures for further characterization as the work progresses. Project leaders augment work packages with task hazard analyses to fully define specific tasks and inform workers of hazards; all daily work activities are governed by specific work procedures and hazard analyses

  10. Elk and Deer Study, Material Disposal Area G, Technical Area 54: Source document

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Ferenbaugh; P. R. Fresquez; M. H. Ebinger; G. J. Gonzales; P. A. Jordan

    1999-09-01

    As nuclear research has become more prevalent, environmental contamination from the disposal of radioactive waste has become a prominent issue. At Los Alamos National Laboratory (LANL) in northern New Mexico, radioactive contamination from disposal operations has raised some very specific concerns. Material Disposal Area G (Area G) is the primary low-level radioactive waste disposal site at LANL and occupies an area adjacent to land belonging to the Native American community of the Pueblo of San Ildefonso. Analyses of soil and vegetation collected from the perimeter of Area G have shown concentrations of radionuclides greater than background concentrations established for northern New Mexico. As a result, Pueblo residents had become concerned that contaminants from Area G could enter tribal lands through various ecological pathways. The residents specifically questioned the safety of consuming meat from elk and deer that forage near Area G and then migrate onto tribal lands. Consequently, this study addresses the uptake of {sup 3}H, {sup 90}Sr, {sup tot}U, {sup 238}Pu, {sup 239}Pu, {sup 241}Am, and {sup 137}Cs by elk (Cervus elaphus) and deer (Odocoileus hemionus) that forage around the perimeter of Area G and the associated doses to the animals and to humans who consume these animals. Radionuclide uptake by and internal dose to animals was estimated using equations modified from National Council on Radiological Protection Report 76. The Residual Radiation computer code was used to estimate the external dose to animals and the dose to humans consuming meat. Soil and water concentrations from the perimeter of Area G and from background regions in northern New Mexico were averaged over 4 years (1993--1996) and used as input data for the models. Concentration estimates generated by the model correspond to the concentration range measured in actual tissue samples from elk and deer collected at LANL. The highest dose estimates for both animals (0.028 mrad/d) and humans

  11. The Los Alamos National Laboratory Environmental Restoration Program

    International Nuclear Information System (INIS)

    Krueger, J.W.

    1990-01-01

    The LANL Environmental Restoration (ER) Program Office, established in October 1989, is faced with the challenge of assessing and cleaning up nearly 1,8000 potentially hazardous waste sites according to an aggressive corrective action schedule that the Environmental Protection Agency (EPA) mandated on May 23, 1990, in a Resource, Conservation, and Recovery Act (RCRA) Part B Permit. To maximize program efficiency, the ER Program Office will implement a unique management approach designed to maximize the use of laboratory technical expertise. The Installation Work Plan, which provides a blueprint for the program, has been submitted to EPA for review and approval. A work plan for characterization of Technical Area 21, an early plutonium processing facility, is also nearing completion. The feasibility of an expedited cleanup of the Laboratory's worst hazardous waste release has been modelled using a computer code originally developed by LANL to assist the nuclear weapons testing program. A sophisticated Geographic Information System has been implemented to assist in data management and presentation, and the design of a Mixed Waste Disposal Facility is underway. 6 refs., 2 figs

  12. Accreditation of testing laboratories in CNEA (National Atomic Energy Commission)

    International Nuclear Information System (INIS)

    Piacquadio, N.H.; Casa, V.A.; Palacios, T.A.

    1993-01-01

    The recognition of the technical capability of a testing laboratory is carried out by Laboratory Accreditation Bodies as the result of a satisfactory evaluation and the systematic follow up of the certified qualification. In Argentina the creation of a National Center for the Accreditation of Testing Laboratories, as a first step to assess a National Accreditation System is currently projected. CNEA, as an institution involved in technological projects and in the development and production of goods and services, has adopted since a long time ago quality assurance criteria. One of their requirements is the qualification of laboratories. Due to the lack of a national system, a Committee for the Qualification of Laboratories was created jointly by the Research and Development and Nuclear Fuel Cycle Areas with the responsibility of planning and management of the system evaluation and the certification of the quality of laboratories. The experience in the above mentioned topics is described in this paper. (author)

  13. Transmission of hepatitis B virus in clinical laboratory areas.

    Science.gov (United States)

    Lauer, J L; VanDrunen, N A; Washburn, J W; Balfour, H H

    1979-10-01

    The transmission of hepatitis B virus (HBV) in clinical laboratory areas was delineated by the use of hepatitis B surface antigen (HBsAg) as presumptive evidence for the presence of the infective agent. Twenty-six (34%) of 76 environmental surfaces sampled were positive for HBsAg. The outer surfaces of blood- and serum-specimen containers had HBsAg contamination rates of 55% (six of 11) and 44% (four of nine), respectively. Subsequent handling of pipetting aids, marking devices, and other items led to their contamination and further dissemination of HBsAg. An assay instrument for complete determinations of blood cell counts was observed to splatter and drip blood during its operation. The contamination rate for environmental surfaces associated with this instrument was 15%. The data indicate that transmission of HBV in the clinical laboratory is subtle and mainly via hand contact with contaminated items during the various steps of blood processing. These data support the concept that the portal of entry of HBV is through inapparent breaks in skin and mucous membranes.

  14. Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [URS Coporation

    2012-06-26

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts have

  15. Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G

    International Nuclear Information System (INIS)

    French, Sean B.; Shuman, Rob

    2012-01-01

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts

  16. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  17. Space Weather Studies at Istanbul Technical University

    Science.gov (United States)

    Kaymaz, Zerefsan

    2016-07-01

    This presentation will introduce the Upper Atmosphere and Space Weather Laboratory of Istanbul Technical University (ITU). It has been established to support the educational needs of the Faculty of Aeronautics and Astronautics in 2011 to conduct scientific research in Space Weather, Space Environment, Space Environment-Spacecraft Interactions, Space instrumentation and Upper Atmospheric studies. Currently the laboratory has some essential infrastructure and the most instrumentation for ionospheric observations and ground induced currents from the magnetosphere. The laboratory has two subunits: SWIFT dealing with Space Weather Instrumentation and Forecasting unit and SWDPA dealing with Space Weather Data Processing and Analysis. The research area covers wide range of upper atmospheric and space science studies from ionosphere, ionosphere-magnetosphere coupling, magnetic storms and magnetospheric substorms, distant magnetotail, magnetopause and bow shock studies, as well as solar and solar wind disturbances and their interaction with the Earth's space environment. We also study the spacecraft environment interaction and novel plasma instrument design. Several scientific projects have been carried out in the laboratory. Operational objectives of our laboratory will be carried out with the collaboration of NASA's Space Weather Laboratory and the facilities are in the process of integration to their prediction services. Educational and research objectives, as well as the examples from the research carried out in our laboratory will be demonstrated in this presentation.

  18. Technical Site Information: Planning group of the Directorate and Conventional Construction Division

    International Nuclear Information System (INIS)

    1993-11-01

    This document presents the technical site information for the Superconducting Super Collider project. The Ellis County, Texas site was selected by the Department of Energy in 1989. After assembling the initial staff at temporary facilities in Dallas, the SSC Laboratory began site-specific design work. The resulting design for the SSC accelerators, experimental areas, and laboratory facilities were described in the Site-Specific Conceptual Design Report of July 1990. Since then, design specifications for the technical components and conventional facilities have been formulated. In fact, a very significant amount of surface and underground construction has been initiated and many buildings have been completed. Testing of prototypes for most technical components is advanced. The construction phase of the SSC project is approximately 20% complete. At this time, it is appropriate to capture the conventional design work which has taken place since 1990. This documents records regional and physical information used in site studies, summarizes the site studies for conventional facilities, and presents site layouts for buildings and utilities as they would have been at the end of the construction project. As such, this documents summarizes and complements the work of many groups in the SSC laboratory, the Texas National Research Laboratory Commission (TNRLC), and several subcontractors to the SSC project. The document contains extensive references to their work contained in other drafts and final reports. In particular, it borrows heavily from the Site Development Plan (released in draft form in January, 1992) which has, to date, guided aspects of site development

  19. Technical Site Information: Planning group of the Directorate and Conventional Construction Division

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    This document presents the technical site information for the Superconducting Super Collider project. The Ellis County, Texas site was selected by the Department of Energy in 1989. After assembling the initial staff at temporary facilities in Dallas, the SSC Laboratory began site-specific design work. The resulting design for the SSC accelerators, experimental areas, and laboratory facilities were described in the Site-Specific Conceptual Design Report of July 1990. Since then, design specifications for the technical components and conventional facilities have been formulated. In fact, a very significant amount of surface and underground construction has been initiated and many buildings have been completed. Testing of prototypes for most technical components is advanced. The construction phase of the SSC project is approximately 20% complete. At this time, it is appropriate to capture the conventional design work which has taken place since 1990. This documents records regional and physical information used in site studies, summarizes the site studies for conventional facilities, and presents site layouts for buildings and utilities as they would have been at the end of the construction project. As such, this documents summarizes and complements the work of many groups in the SSC laboratory, the Texas National Research Laboratory Commission (TNRLC), and several subcontractors to the SSC project. The document contains extensive references to their work contained in other drafts and final reports. In particular, it borrows heavily from the Site Development Plan (released in draft form in January, 1992) which has, to date, guided aspects of site development.

  20. US Department of Energy mixed waste characterization, treatment, and disposal focus area technical baseline development process

    International Nuclear Information System (INIS)

    Roach, J.A.; Gombert, D.

    1996-01-01

    The US Department of Energy (DOE) created the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop and facilitate implementation of technologies required to meet its commitments for treatment of mixed wastes under the Federal Facility Compliance Act (FFCA), and in accordance with the Land Disposal Restrictions (LDR) of the Resource Conservation and Recovery Act (RCRA). Mixed wastes include both mixed low-level waste (MLLW) and mixed transuranic (MTRU) waste. The goal of the MWFA is to develop mixed waste treatment systems to the point of implementation by the Environmental Management (EM) customer. To accomplish this goal, the MWFA is utilizing a three step process. First, the treatment system technology deficiencies were identified and categorized. Second, these identified needs were prioritized. This resulted in a list of technical deficiencies that will be used to develop a technical baseline. The third step, the Technical Baseline Development Process, is currently ongoing. When finalized, the technical baseline will integrate the requirements associated with the identified needs into the planned and ongoing environmental research and technology development activities supported by the MWFA. Completion of this three-step process will result in a comprehensive technology development program that addresses customer identified and prioritized needs. The MWFA technical baseline will be a cost-effective, technically-defensible tool for addressing and resolving DOE's mixed waste problems

  1. Works Technical Department progress report, March 1961

    Energy Technology Data Exchange (ETDEWEB)

    None

    1961-04-19

    This document details the activities of the Savannah River Works Technical Department during the month of March 1961. Topics discussed are: Reactor Technology, Separations Technology, Engineering Assistance, Health Physics, Laboratories Overview, and Technical Papers Issued.

  2. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M. (eds.)

    2009-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. New activities in technology related to development of high temperature superconductors have been initiated in 2008. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2008. (Author)

  3. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M. (eds.)

    2011-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature superconductors. Other activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2010. (Author)

  4. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2008

    International Nuclear Information System (INIS)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M.

    2009-04-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. New activities in technology related to development of high temperature superconductors have been initiated in 2008. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2008. (Author)

  5. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2009

    International Nuclear Information System (INIS)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M.

    2010-04-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature superconductors. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2009. (Author)

  6. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Korsholm, S B; Michelsen, P K; Rasmussen, J J; Westergaard, C M [eds.

    2010-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature superconductors. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2009. (Author)

  7. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2010

    International Nuclear Information System (INIS)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M.

    2011-04-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature superconductors. Other activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2010. (Author)

  8. Technical studies on a composite groundwater sample from F- and H-Area

    International Nuclear Information System (INIS)

    Bibler, J.P.

    1990-01-01

    A composite sample of groundwater from F- and H-Areas was collected by Waste Management Tech and delivered to the Savannah River Laboratory to use in preliminary experiments that would test three remediation technologies under consideration. The three technologies are pH adjustment and filtration, decontamination with a strong acid ion exchange resin, and decontamination with a chelating ion exchange resin

  9. An aerial radiological survey of the Sandia National Laboratories and surrounding area

    International Nuclear Information System (INIS)

    Riedhauser, S.R.

    1994-06-01

    A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the area surrounding the Sandia National Laboratories and Kirtland Air Force Base in Albuquerque, New Mexico, during March and April 1993. The survey team measured the terrestrial gamma radiation at the site to determine the levels of natural and man-made radiation. This survey includes the areas covered by a previous survey in 1981. The results of the aerial survey show a background exposure rate which varies between 5 and 18 μR/h plus an approximate 6 μR/h contribution from cosmic rays. The major radioactive isotopes found in this survey were: potassium-40, thallium-208, bismuth-214, and actinium-228, which are all naturally-occurring isotopes, and cobalt-60, cesium-137, and excess amounts of thallium-208 and actinium-228, which are due to human actions in the survey area. In regions away from man-made activity, the exposure rates inferred from this survey's gamma ray measurements agree almost exactly with the exposure rates inferred from the 1981 survey. In addition to the aerial measurements, another survey team conducted in situ and soil sample radiation measurements at three sites within the survey perimeter. These ground-based measurements agree with the aerial measurements within ± 5%

  10. [ISO 15189 medical laboratory accreditation].

    Science.gov (United States)

    Aoyagi, Tsutomu

    2004-10-01

    This International Standard, based upon ISO/IEC 17025 and ISO 9001, provides requirements for competence and quality that are particular to medical laboratories. While this International Standard is intended for use throughout the currently recognized disciplines of medical laboratory services, those working in other services and disciplines will also find it useful and appropriate. In addition, bodies engaged in the recognition of the competence of medical laboratories will be able to use this International Standard as the basis for their activities. The Japan Accreditation Board for Conformity Assessment (AB) and the Japanese Committee for Clinical Laboratory Standards (CCLS) are jointly developing the program of accreditation of medical laboratories. ISO 15189 requirements consist of two parts, one is management requirements and the other is technical requirements. The former includes the requirements of all parts of ISO 9001, moreover it includes the requirement of conformity assessment body, for example, impartiality and independence from any other party. The latter includes the requirements of laboratory competence (e.g. personnel, facility, instrument, and examination methods), moreover it requires that laboratories shall participate proficiency testing(s) and laboratories' examination results shall have traceability of measurements and implement uncertainty of measurement. Implementation of ISO 15189 will result in a significant improvement in medical laboratories management system and their technical competence. The accreditation of medical laboratory will improve medical laboratory service and be useful for patients.

  11. Emotional intelligence in medical laboratory science

    Science.gov (United States)

    Price, Travis

    The purpose of this study was to explore the role of emotional intelligence (EI) in medical laboratory science, as perceived by laboratory administrators. To collect and evaluate these perceptions, a survey was developed and distributed to over 1,400 medical laboratory administrators throughout the U.S. during January and February of 2013. In addition to demographic-based questions, the survey contained a list of 16 items, three skills traditionally considered important for successful work in the medical laboratory as well as 13 EI-related items. Laboratory administrators were asked to rate each item for its importance for job performance, their satisfaction with the item's demonstration among currently working medical laboratory scientists (MLS) and the amount of responsibility college-based medical laboratory science programs should assume for the development of each skill or attribute. Participants were also asked about EI training in their laboratories and were given the opportunity to express any thoughts or opinions about EI as it related to medical laboratory science. This study revealed that each EI item, as well as each of the three other items, was considered to be very or extremely important for successful job performance. Administrators conveyed that they were satisfied overall, but indicated room for improvement in all areas, especially those related to EI. Those surveyed emphasized that medical laboratory science programs should continue to carry the bulk of the responsibility for the development of technical skills and theoretical knowledge and expressed support for increased attention to EI concepts at the individual, laboratory, and program levels.

  12. Savannah River Laboratory monthly report: 238Pu fuel form processes

    International Nuclear Information System (INIS)

    1976-01-01

    Progress in the Savannah River 238 Pu Fuel Form Program is discussed. Goals of the Savannah River Laboratory (SRL) program are to provide technical support for the transfer of the 238 Pu fuel form fabrication operations from Mound Laboratory to new facilities being built at the Savannah River Plant (SRP), to provide the technical basis for 238 Pu scrap recovery at SRP, and to assist in sustaining plant operations. During the period it was found that the density of hot-pressed 238 PuO 2 pellets decreased as the particle size of ball-milled powder decreased;the surface area of calcined 238 PuO 2 powder increased with increasing precipitation temperature and may be related to the variation in ball-milling response observed among different H Area B-Line batches; calcined PuO 2 produced by Pu(III) reverse-strike precipitation was directly fabricated into a pellet without ball milling, slugging, or sharding. The pellet had good appearance with acceptable density and dimensional stability, and heat transfer measurements and calculations showed that the use of hollow aluminum sleeves in the plutonium fuel fabrication (PuFF) storage vault reduced the temperature of shipping cans to 170 0 C and will reduce the temperature at the center of pure plutonium oxide (PPO) spheres to 580 0 C

  13. 42 CFR 414.510 - Laboratory date of service for clinical laboratory and pathology specimens.

    Science.gov (United States)

    2010-10-01

    ... and pathology specimens. 414.510 Section 414.510 Public Health CENTERS FOR MEDICARE & MEDICAID... date of service for clinical laboratory and pathology specimens. The date of service for either a clinical laboratory test or the technical component of physician pathology service is as follows: (a...

  14. A Brief Technical History of the Large-Area Picosecond Photodetector (LAPPD) Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Adams, B.W.; et al.

    2016-03-06

    The Large Area Picosecond PhotoDetector (LAPPD) Collaboration was formed in 2009 to develop large-area photodetectors capable of time resolutions measured in pico-seconds, with accompanying sub-millimeter spatial resolution. During the next three and one-half years the Collaboration developed the LAPPD design of 20 x 20 cm modules with gains greater than $10^7$ and non-uniformity less than $15\\%$, time resolution less than 50 psec for single photons and spatial resolution of 700~microns in both lateral dimensions. We describe the R\\&D performed to develop large-area micro-channel plate glass substrates, resistive and secondary-emitting coatings, large-area bialkali photocathodes, and RF-capable hermetic packaging. In addition, the Collaboration developed the necessary electronics for large systems capable of precise timing, built up from a custom low-power 15-GigaSample/sec waveform sampling 6-channel integrated circuit and supported by a two-level modular data acquisition system based on Field-Programmable Gate Arrays for local control, data-sparcification, and triggering. We discuss the formation, organization, and technical successes and short-comings of the Collaboration. The Collaboration ended in December 2012 with a transition from R\\&D to commercialization.

  15. Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University`s Institute of Ecology. The laboratory`s overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M&O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the following areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give.

  16. Waste Isolation Pilot Plant Technical Assessment Team Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-17

    This report provides the results of the Waste Isolation Pilot Plant (WIPP) technical assessment led by the Savannah River National Laboratory and conducted by a team of experts in pertinent disciplines from SRNL and Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL).

  17. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2 -- Appendix A: Characterization methods and data summary

    International Nuclear Information System (INIS)

    1995-09-01

    This document provides the Environmental Restoration Program with information about the results of investigations performed at Waste Area Grouping (WAG) 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding the need for subsequent remediation work at WAG 5. This appendix presents background regulatory and technical information regarding the solid waste management units (SWMUs) at WAG 5 to address requirements established by the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). The US Department of Energy (DOE) agreed to conduct remedial investigations (RIs) under the FFA at various sites at Oak Ridge National Laboratory (ORNL), including SWMUs and other areas of concern on WAG 5. The appendix gives an overview of the regulatory background to provide the context in which the WAG 5 RI was planned and implemented and documents how historical sources of data, many of which are SWMU-specific, were evaluated and used.

  18. Technical area status report for waste destruction and stabilization

    International Nuclear Information System (INIS)

    Dalton, J.D.; Harris, T.L.; DeWitt, L.M.

    1993-08-01

    The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office of Technology Development (OTD) is to develop treatment technologies for DOE's operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities

  19. 1995 Laboratory-Directed Research and Development Annual report

    International Nuclear Information System (INIS)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-01-01

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy

  20. 1995 Laboratory-Directed Research and Development Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  1. Informal workshop on radionuclide laboratories. Issue 1

    International Nuclear Information System (INIS)

    2001-01-01

    The network of radionuclide stations in the International Monitoring System (IMS) of the Comprehensive Test Ban Treaty (CTBT) will be comprised of 80 monitoring stations and 16 laboratories acting in support of the monitoring stations. The 16 radionuclide laboratories have been designated but there are issues to resolve in several areas: - Fee structure and payments to the laboratories from the PTS; - Agreement on Detailed requirements for certification of the laboratories; - Duties of the laboratory To help provide technical information in these and other areas an Informal Workshop was held on January 29th - February 2nd 2001 at Atomic Weapons Establishment (AWE) United Kingdom. It was agreed that a common fee structure would make for a more efficient operation if one could be agreed. One possible fee structure for payment to the laboratories was considered to be an annual fixed fee for service (estimated at $38,000) plus a charge for each individual analysis (estimated at $1,200). These estimated values were based on the laboratory replies to a questionnaire organised by the PTS in December 2000. An average of 40 samples/year/ laboratory was considered to be the number required to maintain support to the monitoring station network and also maintain the laboratory capability. Based on this number the overall cost, payable to the laboratories, of running a network of 16 radionuclide laboratories was estimated at $1.38M per year, when all 80 radionuclide stations are operational. The first proficiency test exercise had been carried out in November 2000 and was discussed. Overall the results were highly encouraging and any minor problems found were being addressed. The technical areas requiring further consideration were uncertainty values and cascade summing corrections. The basis for an ongoing programme of such exercises was discussed and agreed by participants. One recommendation that came out of this meeting was the desirability of using a common nuclear data

  2. In der fachsprachlichen Didaktik ist der "fachneutrale" Vorkurs ein Umweg (In Teaching Technical Language, a "Neutral Area" Course is an Evasion)

    Science.gov (United States)

    Becker, Norbert

    1974-01-01

    In learning to read technical language, texts in specialized technical fields are preferable to "neutral area" or popular science texts. Assorted textbooks are suggested, along with suitable types of exercises and their use. Model preparatory exercises and model drills are included. (Text is in German.) (IFS/WGA)

  3. Argonne National Laboratory 1986 publications

    International Nuclear Information System (INIS)

    Kopta, J.A.; Springer, C.J.

    1987-12-01

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index

  4. Argonne National Laboratory 1986 publications

    Energy Technology Data Exchange (ETDEWEB)

    Kopta, J.A.; Springer, C.J.

    1987-12-01

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index.

  5. NVLAP activities at Department of Defense calibration laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, D.M. [Defense Nuclear Agency, Alexandria, VA (United States)

    1993-12-31

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts.

  6. NVLAP activities at Department of Defense calibration laboratories

    International Nuclear Information System (INIS)

    Schaeffer, D.M.

    1993-01-01

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts

  7. Independent Technical (open-quotes Red Teamclose quotes) Reviews

    International Nuclear Information System (INIS)

    Thullen, P.; Bennett, D.R.; Kosiewicz, S.T.; Weaver, D.L.

    1995-01-01

    Offices under the Assistant Secretary for Environmental Restoration and Waste Management (EM) in the Department of Energy (DOE) and some National Laboratories are using Independent Technical or open-quotes Red Teamclose quotes Reviews to understand and improve the performance of major projects, major system acquisitions, programs and organizations. A core group formed in 1991 by Los Alamos National Laboratory and Sandia National Laboratories, has organized teams of commercial and private consultants to perform over fifteen Independent Technical Reviews (ITRs) throughout the DOE Complex. This paper discusses: review initiation, team formation, methodology, site response, and observations gathered over the past three years

  8. US-India Technical Collaboration to Promote Regional Stability

    International Nuclear Information System (INIS)

    Killinger, Mark H.; Griggs, James R.; Apt, Kenneth E.; Doyle, James E.

    2001-01-01

    Two US-India documents were signed in 2000 that provided new impetus for scientific and technical cooperation between the two countries. The first document is the US-India Science and Technology Agreement, which is aimed at 'promoting scientific and technological cooperation between the people of their two countries.' The second is the US-India Joint Statement on Energy and Environment, which states 'the United States and India believe that energy and environment could be one of the most important areas of cooperation between the two countries.' In addition to the work already underway as part of these two agreements, DOE has established a US-India Science and Technology Initiative to utilize the expertise of DOE national laboratories to conduct activities that support US policy objectives in South Asia. PNNL and LANL are working with US agencies and the Indian government and scientific communities to identify appropriate non-sensitive areas for US-Indian technical collaboration. The objectives of such collaboration are to address visible national/international problems, build trust between the United States and India, and contribute to regional stability in South Asia. This paper describes research done on the Indian scientific organization and infrastructure, potential areas for collaboration, the approach for this engagement, and current status of the initiative.

  9. US-INDIA TECHNICAL COLLABORATION TO PROMOTE REGIONAL STABILITY

    International Nuclear Information System (INIS)

    Killinger, M.H.; Griggs, J.R.; Apt, Kenneth E.; Doyle, J.E.

    2001-01-01

    Two US-India documents were signed in 2000 that provided new impetus for scientific and technical cooperation between the two countries. The first document is the US-India Science and Technology Agreement, which is aimed at 'promoting scientific and technological cooperation between the people of their two countries.' The second is the US-India Joint Statement on Energy and Environment, which states 'the United States and India believe that energy and environment could be one of the most important areas of cooperation between the two countries.' In addition to the work already underway as part of these two agreements, the US Department of Energy (DOE) has established a US-India Science and Technology Initiative to utilize the expertise of DOE national laboratories to conduct activities that support US policy objectives in South Asia. PNNL and LANL are working with US government agencies to identify appropriate non-sensitive, non-nuclear areas for US-Indian technical collaboration. The objectives of such collaboration are to address visible national and international problems, build trust between the United States and India, and contribute to regional stability in South Asia. This paper describes the approach for this engagement, the Indian scientific organization and infrastructure, potential areas for collaboration, and current status of the initiative.

  10. Program plan for the development of Solid Waste Storage Area 7 at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Lomenick, T.F.; Gonzales, S.; Byerly, D.W.

    1984-02-01

    The need for additional waste-burial facilities for low-level radwastes generated at Oak Ridge National Laboratory mandates development of a program to identify and evaluate an acceptable new Solid Waste Storage Area (SWSA 7). Provisions of this program include plans for identifying and evaluating SWSA 7 as well as plans for the necessary technical efforts for designing and monitoring a waste-burial facility. The development of the program plan is in accordance with general procedures issued by ORNL, and if adhered to, should meet proposed criteria and guidelines issued by such organizations as the Nuclear Regulatory Commission, the Environmental Protection Agency, the Department of Energy, and the Tennessee Department of Health. The major parts of the program include plans for (1) the acquisition of data necessary for geotechnical evaluation of a site, (2) the engineering design and construction of a facility which would be compatible with the geology and the classification and particular character of the wastes to be disposed, and (3) a monitoring system for achieving health and safety standards and environmental protection. The objective of the program, to develop SWSA 7, can only be achieved through sound management. Plans provided in this program which will ensure successful management include quality assurance, corrective measures, safety analysis, environmental impact statements, and schedule and budget

  11. Index to Benet Laboratories Technical Reports - 2002

    National Research Council Canada - National Science Library

    Shuman, R

    2003-01-01

    A principal challenge by the U.S. Army TACOM-ARDEC Benet Laboratories in the design of armaments for lightweight future fighting vehicles with lethality overmatch is mitigating the deleterious effects of large caliber cannon recoil...

  12. Final Technical Close out Report University Research Program in Robotics for Environmental Restoration and Waste Management

    International Nuclear Information System (INIS)

    James S. Tulenko; Carl Crane

    2004-01-01

    The report covers the 2003-04 contract period, with a retrospective of the 11 years for the contract, from 1993 to 2004. This includes personnel, technical publications and reports, plus research laboratories employed. Specific information is given in eight research areas, reporting on all technology developed and/or deployed by the University of Florida

  13. Technical support non-SLB(GCDF)

    International Nuclear Information System (INIS)

    DePoorter, G.L.; Burton, B.W.

    1982-01-01

    The Los Alamos National Laboratory is providing technical support for the Greater Confinement Demonstration Facility (GCDF) at the Nevada Test Site. This technical support consists of computer modeling of the GCDF, design and emplacement of a Shallow Test Plot at NTS, and instrument testing at Los Alamos. Results to date on the computer modeling and the Shallow Test Plot are described

  14. Requirements for the authorization of operation os a calibration laboratory of gamma-ray monitors

    International Nuclear Information System (INIS)

    Silva, Raimundo Dias da; Kibrit, Eduardo

    2011-01-01

    This paper describes the process for obtaining the authorization of operation of a laboratory designed to calibrate area and personal monitors with gamma radiation, by using a sealed Cs-137 source. The regulations of Comissao Nacional de Energia Nuclear (CNEN) are deeply analysed and discussed. The authorization for construction, the authorization for modification of items important to safety, the authorization for the acquisition and handling of radiation sources, the authorization for operating, and the authorization for withdrawal of operation of the laboratory are also discussed. The paper also describes the technical and managerial requirements necessary to operate a gamma radiation calibration laboratory in Brazil. . (author)

  15. Pulsed power safety and technical training at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Goldstein, S.A.; Zawadzkas, G.A.; Donovan, G.L.; Mikkelson, K.A.; Sharpe, A.W.; Johnston, R.R.

    1987-01-01

    The expansion of pulsed power applications research at Sandia National Labs requires increasing technician-level support from individuals trained in high voltage, short pulse technology. Large superpower generators need a broad-based training curriculum in all aspects of accelerator operation to satisfy recent Department of Energy (DOE) desires for formal certification of accelerator operators. This paper discusses the status of Sandia's safety and technical training program in pulsed power technology directed mainly towards high school graduate and technical school level students. Present safety training methodology requires that hazards for experimental facilities are identified first, a specific curriculum is then tailored to individuals' background experiences and hazards involved with their current assignments. In the technical training program, certification requirements are being established and a coursework program has been initiated in which subjects are organized into two sections. The first covers electrical principles and physical properties of pulsed power components. The second presents various support-type subsystems for accelerators

  16. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendix B, Technical findings and conclusions

    International Nuclear Information System (INIS)

    1995-03-01

    This Remedial Investigation Report on Waste Area Grouping, (NVAG) 5 at Oak Ridge National Laboratory was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting, the results of a site chacterization for public review. This work was performed under Work Breakdown Structure 1.4.12.6.1.05.40.02 (Activity Data Sheet 3305, ''WAG 5''). Publication of this document meets a Federal Facility Agreement milestone of March 31, 1995. This document provides the Environmental Restoration Program with information about the results of investigations performed at WAG 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding, the need for subsequent remediation work at WAG 5

  17. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendix B, Technical findings and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This Remedial Investigation Report on Waste Area Grouping, (NVAG) 5 at Oak Ridge National Laboratory was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting, the results of a site chacterization for public review. This work was performed under Work Breakdown Structure 1.4.12.6.1.05.40.02 (Activity Data Sheet 3305, ``WAG 5``). Publication of this document meets a Federal Facility Agreement milestone of March 31, 1995. This document provides the Environmental Restoration Program with information about the results of investigations performed at WAG 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding, the need for subsequent remediation work at WAG 5.

  18. 222-S Laboratory complex hazards assessment

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1996-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the 222-S Laboratory Complex on the Hanford Site. Through this document, the technical basis for the development of facility specific Emergency Action Levels and Emergency Planning Zone is demonstrated

  19. Ames Laboratory site environmental report, Calendar year 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Ames Laboratory conducts fundamental research in the physical, chemical, materials, and mathematical sciences and engineering which underlie energy generating, conversion, transmission and storage technologies, environmental improvement, and other technical areas essential to national needs. These efforts will be maintained so as to contribute to the achievement of the vision of DOE and, more specifically, to increase the general levels of knowledge and technical capabilities, to prepare engineering and physical sciences students for the future, both academia and industry, and to develop new technologies and practical applications from our basic scientific programs that will contribute to a strengthening of the US economy. The Laboratory approaches all its operations with the safety and health of all workers as a constant objective and with genuine concern for the environment. The Laboratory relies upon its strengths in materials synthesis and processing, materials reliability, chemical analysis, chemical sciences, photosynthesis, materials sciences, metallurgy, high-temperature superconductivity, and applied mathematical sciences to conduct the long term basic and intermediate range applied research needed to solve the complex problems encountered in energy production, and utilization as well as environmental restoration and waste management. Ames Laboratory will continue to maintain a very significant and highly beneficial pre-college math and science education program which currently serves both teachers and students at the middle school and high school levels. Our technology transfer program is aided by joint efforts with ISU's technology development and commercialization enterprise and will sustain concerted efforts to implement Cooperative Research and Development Agreements, industrially sponsored Work for Others projects. and scientific personnel exchanges with our various customers

  20. Technical evaluation: 300 Area steam line valve accident

    International Nuclear Information System (INIS)

    1993-08-01

    On June 7, 1993, a journeyman power operator (JPO) was severely burned and later died as a result of the failure of a 6-in. valve that occurred when he attempted to open main steam supply (MSS) valve MSS-25 in the U-3 valve pit. The pit is located northwest of Building 331 in the 300 Area of the Hanford Site. Figure 1-1 shows a layout of the 300 Area steam piping system including the U-3 steam valve pit. Figure 1-2 shows a cutaway view of the approximately 10- by 13- by 16-ft-high valve pit with its various steam valves and connecting piping. Valve MSS-25, an 8-in. valve, is located at the bottom of the pit. The failed 6-in. valve was located at the top of the pit where it branched from the upper portion of the 8-in. line at the 8- by 8- by 6-in. tee and was then ''blanked off'' with a blind flange. The purpose of this technical evaluation was to determine the cause of the accident that led to the failure of the 6-in. valve. The probable cause for the 6-in. valve failure was determined by visual, nondestructive, and destructive examination of the failed valve and by metallurgical analysis of the fractured region of the valve. The cause of the accident was ultimately identified by correlating the observed failure mode to the most probable physical phenomenon. Thermal-hydraulic analyses, component stress analyses, and tests were performed to verify that the probable physical phenomenon could be reasonably expected to produce the failure in the valve that was observed

  1. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Three - Appendix F

    Energy Technology Data Exchange (ETDEWEB)

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01

    This appendix supports the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-13711/V1. This volume contains Appendix F. Appendix F is essentially a photocopy of the ORNL researchers' laboratory notebooks from the Environmental Sciences Division (ESD) and the Radioactive Materials Analytical Laboratory (RMAL).

  2. ERLN Technical Support for Labs

    Science.gov (United States)

    The Environmental Response Laboratory Network provides policies and guidance on lab and data requirements, Standardized Analytical Methods, and technical support for water and radiological sampling and analysis

  3. Itinerant radiometric laboratory (IRL-76)

    International Nuclear Information System (INIS)

    Dolgirev, E.I.; Domaratskij, V.P.; Kostikov, Yu.I.

    1978-01-01

    A mobile radiometric laboratory for routine radiation monitoring of the environment, personnel, and population is described. As compared to the previous models, this one incorporates a number of new features and is more informative and versatile. The design and main technical and operating characteristics of the laboratory are detailed

  4. Laboratory Biosafety and Biosecurity Risk Assessment Technical Guidance Document

    Energy Technology Data Exchange (ETDEWEB)

    Astuto-Gribble, Lisa M; Caskey, Susan Adele

    2014-07-01

    The purpose of this document is threefold: 1) to describe the laboratory bio safety and biosecurity risk assessment process and its conceptual framework; 2) provide detailed guidance and suggested methodologies on how to conduct a risk assessment; and 3) present some practical risk assessment process strategies using realistic laboratory scenarios.

  5. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It also summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.

  6. DOE standard: The Department of Energy Laboratory Accreditation Program for radiobioassay

    International Nuclear Information System (INIS)

    1998-12-01

    This technical standard describes the US Department of Energy Laboratory Accreditation Program (DOELAP) for Radiobioassay, for use by the US Department of Energy (DOE) and DOE Contractor radiobioassay programs. This standard is intended to be used in conjunction with the general administrative technical standard that describes the overall DOELAP accreditation process--DOE-STD-1111-98, Department of Energy Laboratory Accreditation Program Administration. This technical standard pertains to radiobioassay service laboratories that provide either direct or indirect (in vivo or in vitro) radiobioassay measurements in support of internal dosimetry programs at DOE facilities or for DOE and DOE contractors. Similar technical standards have been developed for other DOELAP dosimetry programs. This program consists of providing an accreditation to DOE radiobioassay programs based on successful completion of a performance-testing process and an on-site evaluation by technical experts. This standard describes the technical requirements and processes specific to the DOELAP Radiobioassay Accreditation Program as required by 10 CFR 835 and as specified generically in DOE-STD-1111-98

  7. Materials Capability Review Los Alamos National Laboratory May 4-7, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoniette J [Los Alamos National Laboratory

    2009-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g ., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors. LANL has defined fourteen

  8. Chemical research at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  9. Proceedings of the symposium on technology in laboratories

    International Nuclear Information System (INIS)

    1988-10-01

    The Symposium on Technology in Laboratories was held on March 29 and 30, 1988 at Toyota Auditorium in Nagoya University. This symposium was hosted by Institute of Plasma Physics. Participants were about 210 and 54 papers were presented from many of Japanese universities and laboratories. Technical experience and new technics were reported and discussed divided into five sessions; technologies of manufacture, cryogenic, diagonostic and control system, computer and experimental apparatus. (author)

  10. Functional requirements of the borrow area and haul route for the Waste Area Grouping projects at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Miller, D.G.

    1992-09-01

    This report describes the mission and functional requirements for the development of a borrow area and the associated haul route to support closure and/or remediation of Waste Area Grouping (WAG) 6 and other WAGs at Oak Ridge National Laboratory. This document specifies the basic functional requirements that must be met by the borrow area and haul route developed to produce low-permeability soil for the covers or caps at WAG 6

  11. Tritium research laboratory cleanup and transition project final report

    International Nuclear Information System (INIS)

    Johnson, A.J.

    1997-02-01

    This Tritium Research Laboratory Cleanup and Transition Project Final Report provides a high-level summary of this project's multidimensional accomplishments. Throughout this report references are provided for in-depth information concerning the various topical areas. Project related records also offer solutions to many of the technical and or administrative challenges that such a cleanup effort requires. These documents and the experience obtained during this effort are valuable resources to the DOE, which has more than 1200 other process contaminated facilities awaiting cleanup and reapplication or demolition

  12. Research in Technical Colleges

    Science.gov (United States)

    MacLennan, A.

    2008-01-01

    Purpose: The purpose of this paper is to list and demonstrate areas in which research needs to be carried out, or questions answered, in order to raise the quality of technical education. Design/methodology/approach: The area of technical education expanded very rapidly in the late 1950s, and there was little comprehensive knowledge regarding the…

  13. Gun Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Gun Dynamics Laboratory is a research multi-task facility, which includes two firing bays, a high bay area and a second floor laboratory space. The high bay area...

  14. Radionuclide Concentrations in Honey Bees from Area G at TA-54 during 1998

    Energy Technology Data Exchange (ETDEWEB)

    Haarmann, T.K.; Fresquez, P.R.

    1999-06-01

    Honey bees were collected from two colonies located at Los Alamos National Laboratory's Area G, Technical Area 54, and from one control (background) colony located near Jemez Springs, NM. Samples were analyzed for various radionuclides. Area G sample results from both colonies were higher than the upper (95%) level background concentration for {sup 239,240}Pu, {sup 3}H, and total uranium. Sample results from one colony were higher than the upper (95%) level background concentration for {sup 238}Pu.

  15. 1980 Annual status report: provision of scientific and technical services

    International Nuclear Information System (INIS)

    1981-01-01

    Two kinds of objectives are pursued at the JRC in direct support of the various General Directorates of the Commission: Technical Evaluations where system analysis techniques are mainly employed and Technical Assistance where laboratory measurement, technical expertises and management of projects are provided

  16. RCRA Facilities Assessment (RFA), Oak Ridge National Laboratory, container storage accumulation areas

    International Nuclear Information System (INIS)

    1987-01-01

    The Oak Ridge National Laboratory (ORNL) remedial action strategy is based on a memorandum from the Environmental Protection Agency (EPA) to the Department of Energy (DOE) in which EPA elected to enforce regulatory requirements for ORNL through its amended Resource Conservation and Recovery Act (RCRA) authority. This report, which completes the requirements of II.A.1 of the Hazardous and Solid Waste Amendments (HSWA) permit, identifies areas near the point of waste generation in which wastes are accumulated before they are transferred into the permitted waste storage facilities. In includes background information on each area and an assessment of the need for further remedial attention. The waste accumulation areas described in this addendum bear identification numbers indicative of the WAGs of which they are a part. Waste accumulation areas that are located inside a building and in which there is no potential for releases to the environment are not included in this report

  17. Aerial radiological survey of the Brookhaven National Laboratory and surrounding area, May 1980

    International Nuclear Information System (INIS)

    Hobaugh, J.L.; Steiner, P.A.

    1984-01-01

    An aerial radiological survey was performed from 15 to 18 May 1980 over approximately a 21-square-kilometer (8-square-mile) area surrounding the Brookhaven National Laboratory (BNL). BNL is located in the center of Suffolk County, Long Island, New York. All gamma radiation data were collected by flying north-south lines spaced 91 meters (300 feet) apart at an altitude of 61 meters (200 feet) above ground level. A total of 17 anomalous areas were identified. The dominant isotopes found over these areas were cesium-137, manganese-54, and cobalt-60. All anomalies identified by the aerial measurements were correlated to site activities and storage facilities. 4 references, 18 figures, 1 table

  18. Assessment of Offshore Wind Energy Leasing Areas for the BOEM New Jersey Wind Energy Area

    Energy Technology Data Exchange (ETDEWEB)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-10-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development and evaluation of the delineations for the New Jersey (NJ) WEA. The overarching objective of this study is to develop a logical process by which the New Jersey WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL identified a selection of leasing areas and proposed delineation boundaries within the established NJ WEA. The primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  19. Technical Report - FINAL

    Energy Technology Data Exchange (ETDEWEB)

    Barbara Luke, Director, UNLV Engineering Geophysics Laboratory

    2007-04-25

    Improve understanding of the earthquake hazard in the Las Vegas Valley and to assess the state of preparedness of the area's population and structures for the next big earthquake. 1. Enhance the seismic monitoring network in the Las Vegas Valley 2. Improve understanding of deep basin structure through active-source seismic refraction and reflection testing 3. Improve understanding of dynamic response of shallow sediments through seismic testing and correlations with lithology 4. Develop credible earthquake scenarios by laboratory and field studies, literature review and analyses 5. Refine ground motion expectations around the Las Vegas Valley through simulations 6. Assess current building standards in light of improved understanding of hazards 7. Perform risk assessment for structures and infrastructures, with emphasis on lifelines and critical structures 8. Encourage and facilitate broad and open technical interchange regarding earthquake safety in southern Nevada and efforts to inform citizens of earthquake hazards and mitigation opportunities

  20. Proceedings of a technical session on rock mechanics ''Advance in laboratory sample testing''

    International Nuclear Information System (INIS)

    Come, B.

    1984-01-01

    This report brings together a series of papers about rock mechanics. The meeting was divided into three sessions, which dealt with the three main types of rock formation currently considered in the CEC Programme: granite, clay and salt. Safe disposal of high-level radioactive waste involves the proper design of deep underground repositories. This necessitates an in-depth knowledge of the mechanical properties of the rock mass. The behaviour of the rock mass must be known both for the construction and the operation (heating effects) of the repository. Usually, the dominant factor for designing an underground structure is the fracturing of the rock mass. In the present case, the rock is chosen with a very low fracturing. Therefore, the mechanical properties of the formation are mainly those of the rock matrix. These properties are obtained, at least in a first exploratory step, by laboratory testing of rock samples obtained by core-drilling from surface. This aspect of rock characterization was thought to deserve a special technical meeting, in order to bring together most of the results obtained in this field by contracting partners of the CEC for the years 1980-82

  1. Record of Technical Change No.2 for ''Corrective Action Investigation Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada''

    International Nuclear Information System (INIS)

    1999-01-01

    This Record of Technical Change provides updates to the technical information included in ''Corrective Action Investigation Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada.''

  2. An Evaluation of the Employee Training and Development Process for Nicolet Area Technical College's Basic Education Program.

    Science.gov (United States)

    Karl, Luis C.

    The adult basic education (ABE) program at Nicolet Area Technical College (NATC) evaluated its training and development (T&D) process for new basic education instructors. The study gathered monitoring and screening criteria that addressed valuable components for use in an instrument for validating effectiveness of the ABE program (T&D)…

  3. Characterization and immobilization of cesium-137 in soil at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Lu, Ningping; Mason, C.F.V.; Turney, W.R.J.R.

    1996-01-01

    At Los Alamos National Laboratory, cesium-137 ( 137 Cs) is a major contaminant in soils of Technical Area 21 (TA-21) and is mainly associated with soil particles ≤2.00 mm. Cesium-137 was not leached by synthetic groundwater or acid rainwater. Soil erosion is a primary mechanism of 137 Cs transport in TA-21. The methodology that controls soil particle runoff can prevent the transport of 137 Cs

  4. Handbook of Technical Communication

    OpenAIRE

    Mehler , Alexander; Romary , Laurent; Gibbon , Dafydd

    2012-01-01

    International audience; The handbook "Technical Communication" brings together a variety of topics which range from the role of technical media in human communication to the linguistic, multimodal enhancement of present-day technologies. It covers the area of computer-mediated text, voice and multimedia communication as well as of technical documentation. In doing so, the handbook takes professional and private communication into account. Special emphasis is put on technical communication bas...

  5. Oak Ridge National Laboratory institutional plan, FY 1992--FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    In operation for fifty years, the Oak Ridge National Laboratory (ORNL) is managed by Martin Marietta Energy Systems, Inc., for the US Department of Energy (DOE). ORNL is one of DOE's major multiprogram national laboratories. Activities at the Laboratory are focused on basic and applied research, on technology development, and on other technological challenges that are important to DOE and to the nation. The Laboratory also performs research and development (R D) for non-DOE sponsors when such activities complement DOE missions and address important national or international issues. The Laboratory is committed to the pursuit of excellence in all its activities, including the commitment to carry out its missions in compliance with environmental, safety, and health laws and regulations. The principal elements of the Laboratory's missions in support of DOE include activities in each of the following areas: (1) Energy production and conservation technologies; (2) physical and life sciences; (3) scientific and technical user facilities; (4) environmental protection and waste management; (5) science technology transfer; and, (6) education. This institutional plan for ORNL activities is for the next five years: FY 1992--1997.

  6. 4th July 2011 - Russian Deputy Director-General Director of Directorate for Scientific and Technical Complex ROSATOM V. Pershukov in the ATLAS underground experimental area with Adviser T. Kurtyka, ATLAS Technical Coordinator M. Nessi and ATLAS Russian users.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    4th July 2011 - Russian Deputy Director-General Director of Directorate for Scientific and Technical Complex ROSATOM V. Pershukov in the ATLAS underground experimental area with Adviser T. Kurtyka, ATLAS Technical Coordinator M. Nessi and ATLAS Russian users.

  7. Radionuclide concentrations in honey bees from Area G at TA-54 during 1997. Progress report

    International Nuclear Information System (INIS)

    Haarmann, T.K.; Fresquez, P.R.

    1998-07-01

    Honey bees were collected from two colonies located at Los Alamos National Laboratory's Area G, Technical Area 54, and from one control (background) colony located near Jamez Springs, NM. Samples were analyzed for the following: cesium ( 137 Cs), americium ( 241 Am), plutonium ( 238 Pu and 239,240 Pu), tritium ( 3 H), total uranium, and gross gamma activity. Area G sample results from both colonies were higher than the upper (95%) level background concentration for 238 Pu and 3 H

  8. Pacific Northwest National Laboratory institutional plan FY 1998--2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research the lab creates fundamental knowledge of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. They solve legacy environmental problems by delivering technologies that remedy existing environmental hazards, they address today`s environmental needs with technologies that prevent pollution and minimize waste, and they are laying the technical foundation for tomorrow`s inherently clean energy and industrial processes. The lab also applies their capabilities to meet selected national security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. The paper summarizes individual research activities under each of these areas.

  9. Modeling of technical soil-erosion control measures and its impact on soil erosion off-site effects within urban areas

    Science.gov (United States)

    Dostal, Tomas; Devaty, Jan

    2013-04-01

    The paper presents results of surface runoff, soil erosion and sediment transport modeling using Erosion 3D software - physically based mathematical simulation model, event oriented, fully distributed. Various methods to simulate technical soil-erosion conservation measures were tested, using alternative digital elevation models of different precision and resolution. Ditches and baulks were simulated by three different approaches, (i) by change of the land-cover parameters to increase infiltration and decrease flow velocity, (ii) by change of the land-cover parameters to completely infiltrate the surface runoff and (iii) by adjusting the height of the digital elevation model by "burning in" the channels of the ditches. Results show advantages and disadvantages of each approach and conclude suitable methods for combinations of particular digital elevation model and purpose of the simulations. Further on a set of simulations was carried out to model situations before and after technical soil-erosion conservation measures application within a small catchment of 4 km2. These simulations were focused on quantitative and qualitative assessment of technical soil-erosion control measures impact on soil erosion off-site effects within urban areas located downstream of intensively used agricultural fields. The scenarios were built upon a raster digital elevation model with spatial resolution of 3 meters derived from LiDAR 5G vector point elevation data. Use of this high-resolution elevation model allowed simulating the technical soil-erosion control measures by direct terrain elevation adjustment. Also the structures within the settlements were emulated by direct change in the elevation of the terrain model. The buildings were lifted up to simulate complicated flow behavior of the surface runoff within urban areas, using approach of Arévalo (Arévalo, 2011) but focusing on the use of commonly available data without extensive detailed editing. Application of the technical

  10. Innovative methods of popularizing technical education

    Science.gov (United States)

    Shkitsa, L. Y.; Panchuk, V. G.; Kornuta, V. A.

    2017-05-01

    There have been analyzed reasons of the loss of technical education’s popularity. Also, the analysis of known educational and production methods, oriented at the innovative model of development of society, was performed. It is stated that the acquisition of 21st century’s skills as a result of competition of technical education are natural for the DIY ideology, which was realized in the institutions like Fab Lab. The new educational strategy, based on project-based learning, is proposed to be implemented as a special laboratory with equipment, which would be a center of innovative development for students at the Technical University. Moreover, the list of projects planned for implementation, that includes not only projects, specific to a particular university, but also projects, demanded by society as a whole, is specified. It is worth to implement trendy projects in the laboratory, such as toy-like, ecological projects; projects of the energy dependence decrease or the energy efficiency increase, modern digital or innovative projects etc. The student should gain knowledge, skills and, possibly, equipment that are available for immediate usage on the labor market or for the realization of his own projects or the community’s projects in everyday life after the realization of the particular project at the laboratory

  11. Pollution prevention opportunity assessment for Technical Art

    International Nuclear Information System (INIS)

    Torres, H.M.

    1995-09-01

    This pollution prevention opportunity assessment was conducted to evaluate Technical Art, which is part of the Technical Communications Department at Sandia National Laboratories/California. It is located in Building 912, Room 138. This assessment documents the processes, identifies the hazardous chemical waste streams generated by these processes, and recommends possible ways to minimize waste

  12. Laboratory equipment maintenance contracts.

    Science.gov (United States)

    Boudreau, D A; Scheer, W D; Catrou, P G

    1985-12-01

    The increasing level of technical sophistication and complexity found in clinical laboratory instrumentation today more than ever demands careful attention to maintenance service needs. The time-worn caution for careful definition of requirements for acquisition of a system should also carry over to acquisition of maintenance service. Guidelines are presented for specifications of terms and conditions for maintenance service from the perspective of the laboratorian in the automated clinical laboratory.

  13. Proceedings of symposium on technology in laboratories

    International Nuclear Information System (INIS)

    2008-03-01

    The Symposium on Technology in Laboratories was held on both 10th and 11th March 2008 at Ceratopia Toki in Toki city, Gifu Prefecture, Japan, which hosted by the National Institute for Fusion Science (NIFS). 287 people participated and 97 papers were presented from many universities, national laboratories, technical colleges, and some industries in Japan. Technical experience and new techniques were reported and discussed in four fields: technology of fabrication and cryogenics', 'device technology', 'diagnostic and control system', and 'computer and processing'. The 37 of the presented papers are indexed individually. (J.P.N.)

  14. Bioassay Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Bioassay Laboratory is an accredited laboratory capable of conducting standardized and innovative environmental testing in the area of aquatic ecotoxicology. The...

  15. Technical cooperation on nuclear security between the United States and China : review of the past and opportunities for the future.

    Energy Technology Data Exchange (ETDEWEB)

    Pregenzer, Arian Leigh

    2011-12-01

    The United States and China are committed to cooperation to address the challenges of the next century. Technical cooperation, building on a long tradition of technical exchange between the two countries, can play an important role. This paper focuses on technical cooperation between the United States and China in the areas of nonproliferation, arms control and other nuclear security topics. It reviews cooperation during the 1990s on nonproliferation and arms control under the U.S.-China Arms Control Exchange, discusses examples of ongoing activities under the Peaceful Uses of Technology Agreement to enhance security of nuclear and radiological material, and suggests opportunities for expanding technical cooperation between the defense nuclear laboratories of both countries to address a broader range of nuclear security topics.

  16. Los Alamos National Laboratory scientific interactions with the Former Soviet Union

    International Nuclear Information System (INIS)

    White, P.C.

    1995-01-01

    The Los Alamos National Laboratory has a wide-ranging set of scientific interactions with technical institutes in the Former Soviet Union (FSU). Many of these collaborations, especially those in pure science, began long before the end of the Cold War and the breakup of the Soviet Union. This overview will, however, focus for the most part on those activities that were initiated in the last few years. This review may also serve both to indicate the broad spectrum of US government interests that are served, at least in part, through these laboratory initiatives, and to suggest ways in which additional collaborations with the FSU may be developed to serve similar mutual interests of the countries involved. While most of the examples represent programs carried out by Los Alamos, they are also indicative of similar efforts by Lawrence Livermore National Laboratory and Sandia National Laboratories. There are indeed other Department of Energy (DOE) laboratories, and many of them have active collaborative programs with FSU institutes. However, the laboratories specifically identified above are those with special nuclear weapons responsibilities, and thus have unique technical capabilities to address certain issues of some importance to the continuing interests of the United States and the states of the Former Soviet Union. Building on pre-collapse scientific collaborations and contacts, Los Alamos has used the shared language of science to build institutional and personal relationships and to pursue common interests. It is important to understand that Los Alamos, and the other DOE weapons laboratories are federal institutions, working with federal funds, and thus every undertaking has a definite relationship to some national objective. The fertile areas for collaboration are obviously those where US and Russian interests coincide

  17. The activities of the IAEA Laboratories, Vienna. Annual report 1981

    International Nuclear Information System (INIS)

    Taylor, C.B.G.

    1983-06-01

    The report presents the activities of the IAEA Laboratories at Seibersdorf during the year 1981, with emphasis on the twofold purpose of the Laboratories: to support the Technical Cooperation activities of the Agency, and to operate the Safeguards Analytical Laboratory (SAL). The section dealing with the IAEA Technical Cooperation reports the programs of research where methods developed in Vienna are used throughout the world. Another section deals with the advanced techniques for chemical analysis and the interlaboratory comparisons programme. The training of specialists from member states is also described. The SAL, which became a separate part of the Laboratory, and its role in the Agency's Safeguards programme is also described. Reports and publications of Laboratory members are also listed

  18. N-1: Safeguards Science and Technology Group, Tour Areas

    International Nuclear Information System (INIS)

    Geist, William H.

    2012-01-01

    Group N-1 develops and provides training on nondestructive assay (NDA) technologies intended for nuclear material accounting and control to fulfill both international and domestic obligations. The N-1 group is located at Technical Area (TA)-35 in Buildings 2 and 27. Visitors to the area can observe developed and fielded NDA technologies, as well as the latest research efforts to develop the next generation of NDA technologies. Several areas are used for NDA training. The N-1 School House area typically is used for basic training on neutron- and gamma-ray-based NDA techniques. This area contains an assortment of gamma-ray detector systems, including sodium iodide and high-purity germanium and the associated measurement components. Many types of neutron assay systems are located here, including both standard coincidence and multiplicity counters. The N-1 School House area is also used for holdup training; located here are the mock holdup assemblies and associated holdup measurement tools. Other laboratory areas in the N-1 space are used for specialized training, such as waste NDA, calorimetry, and advanced gamma-ray NDA. Also, many research laboratories in the N-1 space are used to develop new NDA technologies. The calorimetry laboratory is used to develop and evaluate new technologies and techniques that measure the heat signature from nuclear material to determine mass. The micro calorimetry laboratory is being used to develop advanced technologies that can measure gamma rays with extremely high resolution. This technique has been proven in the laboratory setting, and the team is now working to cultivate a field-capable system. The N-1 group also develops remote and unattended systems for the tracking and control of nuclear material. A demonstration of this technology is located within one of the laboratory spaces. The source tracker software was developed by N-1 to monitor the locations and quantities of nuclear materials. This software is currently used to track

  19. Savannah River Ecology Laboratory Annual Technical Progress Report of Ecological Research, June 30, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, Paul M.; Janecek, Laura; Rosier, Brenda

    2001-06-30

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) and has been conducting ecological research on the Savannah River Site (SRS) in South Carolina for 50 years. The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts fundamental and applied ecological research, as well as education and outreach programs, under a Cooperative Agreement with the U.S. Department of Energy (DOE) SRS near Aiken, South Carolina. The Laboratory's research mission during the 2001 fiscal year was fulfilled with the publication of one book and 83 journal articles and book chapters by faculty, technical staff, students, and visiting scientists. An additional 77 journal articles have been submitted or are in press. Other noteworthy events took place as faculty members and graduate students received awards. These are described in the section Special Accomplishments of Faculty, Staff, Students, and Administration on page 54. Notable scientific accomplishments include work conducted on contaminant transport, global reptile decline, phytoremediation, and radioecology. Dr. Domy Adriano authored the second edition of his book ''Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals'', which was recently published by Springer-Verlag. The book provides a comprehensive treatment of many important aspects of trace elements in the environment. The first edition of the book, published in 1986, has become a widely acclaimed and cited reference. International attention was focused on the problem of reptile species decline with the publication of an article on this topic in the journal ''Bioscience'' in August, 2000. The article's authors included Dr. Whit Gibbons and a number of other SREL herpetologists who researched the growing worldwide problem of decline of reptile species. Factors related

  20. (Re)implantation of quality system of LCR (Laboratory for Radiation Sciences) for accreditation in the standard ABNT NBR ISO/IEC 17025:2005

    International Nuclear Information System (INIS)

    Leite, Sandro P.; Fernandes, Elisabeth O.; David, Mariano G.; Pires, Evandro J.; Alves, Carlos F.E.; Almeida, Carlos E.

    2014-01-01

    This paper presents preparing procedure of the metrology laboratory (LABMETRO), which belongs Laboratorio de Ciencias Radiologicas of Rio de Janeiro , for postulating accreditation of its services metrology to INMETRO. This process, supported by the Technological Services Network SIBRATEC/FINEP for Radiation Protection and Dosimetry Technological Services, had as one of its aims to avoid possible technical barriers to the purchase services in the area of ionizing radiation laboratories. Accreditation will also enable the integration of services such laboratories in Brazilian Calibration Network (RBC). (author)

  1. Technical note The formulation of synthetic domestic wastewater ...

    African Journals Online (AJOL)

    Technical note The formulation of synthetic domestic wastewater sludge medium to study anaerobic biological treatment of acid mine drainage in the laboratory. ... Journal Home > Vol 42, No 2 (2016) > ... Domestic wastewater sludge is however highly variable in its composition, making laboratory experimentation difficult.

  2. USDOE Laboratory views on U.S.-Russian partnership for nuclear security

    International Nuclear Information System (INIS)

    Kempf, C.R.

    1998-01-01

    This paper summarizes an analysis of the US-Russian Nuclear Material Protection, Control and Accounting (MPC and A) Program, developed on the basis of extensive discussions with US laboratory participants as well as personal experience. Results of the discussions have been organized into three main areas: Technical/MPC and A Progress; Programmatic and Administrative Issues; and Professional Aspects, Implications for MPC and A effectiveness, for MPC and A sustainability, and for future relations and collaboration are derived. Suggested next steps are given

  3. Radioanalytical laboratory quality control: Current status at Tennessee Valley Authority's western area radiological laboratory

    International Nuclear Information System (INIS)

    Rogers, W.J.

    1986-01-01

    The Tennessee Valley Authority operates a laboratory for radiological analysis of nuclear plant environmental monitoring samples and also for analysis of environmental samples from uranium mining and milling decommissioning activities. The laboratory analyzes some 9,000 samples per year and employs approximately 20 people as analysts, sample collectors, and supervisory staff members. The laboratory is supported by a quality control section of four people involved in computer support, production of radioactive standards, quality control data assessment and reporting, and internal reviews of compliance. The entire laboratory effort is controlled by 60 written procedures or standards. An HP-1000 computer and data base software are used to schedule samples for collection, assign and schedule samples within the laboratory for preparation and analysis, calculate sample activity, review data, and report data outside the laboratory. Gamma spectroscopy systems with nine germanium detectors, an alpha spectroscopy system, five alpha/beta counters, two liquid scintillation counters, four beta-gamma coincidence systems, two sodium iodide single-channel systems, and four photomultipliers for counting Lucas cells are all employed. Each device has various calibration and quality control checks performed on it routinely. Logbooks and control charts are in use for each instrument

  4. Hydrologic resources management program and underground test area operable unit fy 1997

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. F., LLNL

    1998-05-01

    This report present the results of FY 1997 technical studies conducted by the Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area Operable Unit (UGTA). The HRMP is sponsored by the US Department of Energy to assess the environmental (radiochemical and hydrologic) consequences of underground nuclear weapons testing at the Nevada Test Site.

  5. Technical Evaluation Summary of the In Situ Vitrification Melt Expulsion at the Oak Ridge National Laboratory on April 21, 1996, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-11-01

    This Technical Evaluation Summary of the In Situ Vitrification Melt Expulsion at the Oak Ridge National Laboratory on April 21, 1996, was prepared at the request of the Department of Energy as a supporting reference document for the Final Unusual Occurrence Report to fully explore the probable causes that lead to the subject incident. This document provides the Environmental Restoration Program with the technical information on the performance of the in situ vitrification treatability study operations at ORNL pit 1 up to and including the time of the melt expulsion incident. This document also attempts to diagnose the causes of the melt expulsion event the consequent damages to equipment the radiological impacts of the event, and the equipment design modifications and procedural changes necessary for future safe ISV operations

  6. Sandia Laboratories technical capabilities: instrumentation and data systems

    International Nuclear Information System (INIS)

    Lundergain, C.D.; Mead, P.L.

    1975-12-01

    This report characterizes the instrumentation and data systems capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs

  7. The direction of the laboratories

    International Nuclear Information System (INIS)

    Blanquet, S.

    1988-01-01

    In the scope of the presentation of the 1988 Polytechnic School (France) research programs, the activities concerning each laboratory, are summarized. Several aspects of the programs are considered: the main projects, the results, the planned researches and the technical means. The personnel of the laboratory, their number in the different categories, the published papers, the patents and the thesis are included [fr

  8. Lawrence Livermore National Laboratory FY 2016 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ayat, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gard, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sketchley, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Watkins, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    The LDRD annual report for FY2016 consists of two parts: The Overview. This section contains a broad description of the LDRD Program, highlights of recent accomplishments and awards, Program statistics, and the LDRD portfolio-management processes. Project Reports. Project reports are submitted by all principal investigators at the end of the fiscal year. The length and depth of the report depends on the project’s lifecycle. For projects that will be continuing the following year, the principal investigator submits a continuing project report, which is a brief update containing descriptions of the goals, scope, motivation, relevance (to DOE/NNSA and Livermore mission areas), and technical progress achieved in FY16, as well as a list of selected publications and presentations that resulted from the research. For projects that concluded in FY16, a more detailed final report is provided that is technical in nature and includes the background, objectives, scientific approach, accomplishments, and impacts on the Laboratory missions, as well as a list of publications and presentations that resulted from the research. Project reports are listed under their research topics and organized by year and type, such as exploratory research (ER), feasibility study (FS), laboratory-wide competition (LW), and strategic initiative (SI). Each project is assigned a unique tracking code, an identifier that consists of three elements. The first is the fiscal year in which the project began, the second represents the project type, and the third identifies the serial number of the project for that fiscal year. For example, 16-ERD-100 means the project is an exploratory research project that began in FY16. The three-digit number (100) represents the serial number for the project.

  9. Spray Calciner/In-Can Melter high-level waste solidification technical manual

    International Nuclear Information System (INIS)

    Larson, D.E.

    1980-09-01

    This technical manual summarizes process and equipment technology developed at Pacific Northwest Laboratory over the last 20 years for vitrification of high-level liquid waste by the Spray Calciner/In-Can Melter process. Pacific Northwest Laboratory experience includes process development and demonstration in laboratory-, pilot-, and full-scale equipment using nonradioactive synthetic wastes. Also, laboratory- and pilot-scale process demonstrations have been conducted using actual high-level radioactive wastes. In the course of process development, more than 26 tonnes of borosilicate glass have been produced in 75 canisters. Four of these canisters contained radioactive waste glass. The associated process and glass chemistry is discussed. Technology areas described include calciner feed treatment and techniques, calcination, vitrification, off-gas treatment, glass containment (the canister), and waste glass chemistry. Areas of optimization and site-specific development that would be needed to adapt this base technology for specific plant application are indicated. A conceptual Spray Calciner/In-Can Melter system design and analyses are provided in the manual to assist prospective users in evaluating the process for plant application, to provide equipment design information, and to supply information for safety analyses and environmental reports. The base (generic) technology for the Spray Calciner/In-Can Melter process has been developed to a point at which it is ready for plant application

  10. Radionuclide Concentrations in Honey Bees from Area G at TA-54 during 1999

    Energy Technology Data Exchange (ETDEWEB)

    T. K. Haarmann; P. R. Fresquez

    2000-06-01

    Honey bees were collected from two colonies located at Los Alamos National Laboratory's Area G, Technical Area 54, and from one control (background) colony located near Jemez Springs, NM. Samples were analyzed for various radionuclides. Area G sample results from both colonies were higher than the upper (95%) level background concentration for {sup 3}H. Sample results from one colony were higher than the upper (95%) level background concentration for total uranium, while sample results from the other colony were higher than the upper (95%) level background concentration for {sup 90}Sr.

  11. Radionuclide Concentrations in Honey Bees from Area G at TA-54 during 1999

    International Nuclear Information System (INIS)

    Haarmann, T. K.; Fresquez, P.R.

    2000-01-01

    Honey bees were collected from two colonies located at Los Alamos National Laboratory's Area G, Technical Area 54, and from one control (background) colony located near Jemez Springs, NM. Samples were analyzed for various radionuclides. Area G sample results from both colonies were higher than the upper (95%) level background concentration for 3 H. Sample results from one colony were higher than the upper (95%) level background concentration for total uranium, while sample results from the other colony were higher than the upper (95%) level background concentration for 90 Sr

  12. Characterization and immobilization of cesium-137 in soil at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ningping; Mason, C.F.V.; Turney, W.R.J.R.

    1996-06-01

    At Los Alamos National Laboratory, cesium-137 ({sup 137}Cs) is a major contaminant in soils of Technical Area 21 (TA-21) and is mainly associated with soil particles {<=}2.00 mm. Cesium-137 was not leached by synthetic groundwater or acid rainwater. Soil erosion is a primary mechanism of {sup 137}Cs transport in TA-21. The methodology that controls soil particle runoff can prevent the transport of {sup 137}Cs.

  13. Sandia Laboratories technical capabilities: design, definition, and fabrication

    International Nuclear Information System (INIS)

    1976-12-01

    This report characterizes the design definition and fabrication capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs. 13 figures

  14. Sandia Laboratories technical capabilities: design, definition, and fabrication

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-01

    This report characterizes the design definition and fabrication capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs. 13 figures.

  15. The applies specific technical requirements to the services of radiological protection according to the 17025

    Energy Technology Data Exchange (ETDEWEB)

    Marrero Garcia, M.; Fernandez Gomez, I. M.; Prendes Alonso, M.; Molina Perez, D.

    2004-07-01

    The employment in the Center of Radiation Protection and Hygiene (CRPH) of Cuba, of the standard 17025 for the administration of the quality of the calibration laboratories and test that offer services of radiological protection requires of a technical complement to really determine the technical competence. In the standard 17025, the specific requirements, are mentioned in the annex B (with informative character), where it points out that: {sup T}he requirements specified in the standard 17025 are established in general terms and, although they can be applied to all the test laboratories and applications, they could be necessary applications{sup .} In the CRPH these applications are translated in indispensable technical requirements to evaluate the performance of the services of radiological protection that offers, specifically those of personal monitoring, the calibration of instruments and the metrology of radionuclides. Although the standard 17025 is quite rigorous in the evaluation of technical requirements, to have specific materials not serves alone of tool to the laboratories, but also for the body of accreditation . In the CRPH the permanent employment of this tool has not constituted a practice, but had been good before our clients certain nonconformities to evaluate the performance of the laboratory and to achieve the recovery of the trust in its results. With this work we seek to expose some of these experiences. The experiences of the application of some of the technical requirements, in our case, they have been applied to the service of personal monitoring that offers the Laboratory of Personal Dosimetry. This laboratory is accredited by the National Accreditation Board of the Republic of Cuba (NABC) and besides fulfilling that settled down in 17025, the Approaches of Accreditation for test laboratories and calibration and it should also implant that settled down as specific technical requirements for the recognition of technical competence. (Author

  16. Department of Energy multiprogram laboratories

    International Nuclear Information System (INIS)

    1982-09-01

    The Panel recommends the following major roles and missions for the laboratories: perform the Department's national trust fundamental research missions in the physical sciences, including high energy and nuclear physics, and the radiobiological sciences including nuclear medicine; sustain scientific staff core capabilities and specialized research facilities for laboratory research purposes and for use by other Federal agencies and the private sector; perform independent scientific and technical assessment or verification studies required by the Department; and perform generic research and development where it is judged to be in the public interest or where for economic or technical reasons industry does not choose to support it. Organizational efficiencies if implemented by the Department could contribute toward optimal performance of the laboratories. The Panel recommends that a high level official, such as a Deputy Under Secretary, be appointed to serve as Chief Laboratory Executive with authority to help determine and defend the research and development budget, to allocate resources, to decide where work is to be done, and to assess periodically laboratory performance. Laboratory directors should be given substantially more flexibility to deploy resources and to initiate or adapt programs within broad guidelines provided by the Department. The panel recommends the following actions to increase the usefulness of the laboratories and to promote technology transfer to the private sector: establish user groups for all major mission programs and facilities to ensure greater relevance for Department and laboratory efforts; allow the laboratories to do more reimbursable work for others (other Federal agencies, state and local governments, and industry) by relaxing constraints on such work; implement vigorously the recently liberalized patent policy; permit and encourage joint ventures with industry

  17. Guam Initial Technical Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.; Conrad, M.; Haase, S.; Hotchkiss, E.; McNutt, P.

    2011-04-01

    Under an interagency agreement, funded by the Department of Interior's (DOI) Office of Insular Affairs (OIA), the National Renewable Energy Laboratory (NREL) was tasked to deliver technical assistance to the island of Guam by conducting an island initial technical assessment that would lay out energy consumption and production data and establish a baseline. This assessment will be used to conduct future analysis and studies by NREL that will estimate energy efficiency and renewable energy potential for the island of Guam.

  18. Technical Writing Tips

    Science.gov (United States)

    Kennedy, Patrick M.

    2004-01-01

    The main reason engineers, technicians, and programmers write poor technical documents is because they have had little training or experience in that area. This article addresses some of the basics that students can use to master technical writing tasks. The article covers the most common problems writers make and offers suggestions for improving…

  19. Oak Ridge National Laboratory Institutional Plan, FY 1995--FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years (1995-2000). Included in this report are the: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; and resource projections.

  20. U.S./Russian Laboratory-to-Laboratory MPC ampersand A Program at the VNIITF Institute, Chelyabinsk-70

    International Nuclear Information System (INIS)

    Teryohin, V.; Tzygankov, G.; Blasy, J.

    1995-07-01

    The All Russian Institute of Technical Physics (VNIITF) is one of the major sites in the nuclear weapons complex in Russia. The site contains a number of research facilities which use nuclear material as well as facilities active in disassembly and disposition of nuclear weapons. Chelyabinsk-70 (C-70) also has ties to the major nuclear materials production facilities in the Urals region of Russia. Under the U.S./Russian Laboratory -to- Laboratory cooperative program, enhanced safeguards systems are being implemented, initially at a reactor test area that contains two pulse reactors and a nuclear material storage facility. C-70 is developing an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. Under the Lab-to-Lab program, the existing systems will bi augmented with Russian and US technologies. The integrated MPC ampersand A system for the test facilities will be demonstrated to US and Russian audiences when completed and follow-on work at additional C-70 facilities will be identified. This paper will describe the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories in support of VNIITF

  1. U.S./Russian laboratory-to-laboratory MPC and A program at the VNIITF Institute, Chelyabinsk-70

    International Nuclear Information System (INIS)

    Teryohin, V.; Tzygankov, G.; Blasy, J.

    1996-01-01

    The All Russian Institute of Technical Physics (VNIITF) is one of the major sites in the nuclear weapons complex in Russia. The site contains a number of research facilities which use nuclear material as well as facilities active in disassembly and disposition of nuclear weapons. Chelyabinsk-70 (C-70) also has ties to the major nuclear materials production facilities in the Urals region of Russia. Under the US/Russian Laboratory-to-Laboratory cooperative program, enhanced safeguards systems are being implemented, initially at a reactor test area that contains two pulse reactors and a nuclear material storage facility. C-70 is developing an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. Under the Lab-to-Lab program, the existing systems will be augmented with Russian and US technologies. The integrated MPC and A system for the test facilities will be demonstrated to US and Russian audiences when completed and follow-on work at additional C-70 facilities will be identified. This paper will describe the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories in support of VNIITF

  2. Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University's Institute of Ecology. The laboratory's overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M ampersand O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the following areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give

  3. A Comprehensive Review of Selected Business Programs in Community Colleges and Area Vocational-Technical Centers. Program Review Report.

    Science.gov (United States)

    Florida State Dept. of Education, Tallahassee. Div. of Vocational, Adult, and Community Education.

    In 1988, a review was conducted of the business component of associate in arts and associate in science (AS) degree programs, and of the certificate programs in business in Florida community colleges and area vocational-technical centers. Focusing primarily on business programs in marketing, general business management, and small business…

  4. Progress report from the Studsvik Neutron Research Laboratory 1990-91

    International Nuclear Information System (INIS)

    Dahlborg, U.; Ebbsjoe, I.; Holmqvist, B.

    1992-01-01

    The Studsvik Neutron Research Laboratory (NFL) is the base for the research activities at the Studsvik reactors. It is administrated by the University of Uppsala and is established to facilitate reactor based research. The laboratory is intended to, in co-operation with institutes and department at universities in Sweden, develop, construct and maintain experimental equipment for this kind of research and to make it available for scientists at Swedish universities and, if possible, also to scientists outside the universities. The research at the Studsvik facilities has during 1990 and 1991 been performed by groups form Uppsala University, Royal Institute of Technology, Stockholm, Chalmers Technical University, Gothenburg, and by scientists at NFL. The research programme of the groups is divided into three main areas, scattering of thermal neutrons, nuclear chemistry/nuclear physics, and neutron capture radiography

  5. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford Tank Initiative: Applications to the AX tank farm

    International Nuclear Information System (INIS)

    Becker, D.L.

    1997-01-01

    This report investigates five technical areas for stabilization of decommissioned waste tanks and contaminated soils at the Hanford Site AX Farm. The investigations are part of a preliminary evacuation of end-state options for closure of the AX Tanks. The five technical areas investigated are: (1) emplacement of cementations grouts and/or other materials; (2) injection of chemicals into contaminated soils surrounding tanks (soil mixing); (3) emplacement of grout barriers under and around the tanks; (4) the explicit recognition that natural attenuation processes do occur; and (5) combined geochemical and hydrological modeling. Research topics are identified in support of key areas of technical uncertainty, in each of the five areas. Detailed cost-benefit analyses of the technologies are not provided. This investigation was conducted by Sandia National Laboratories, Albuquerque, New Mexico, during FY 1997 by tank Focus Area (EM-50) funding

  6. Derived concentration guideline levels for Argonne National Laboratory's building 310 area.

    Energy Technology Data Exchange (ETDEWEB)

    Kamboj, S., Dr.; Yu, C ., Dr. (Environmental Science Division)

    2011-08-12

    The derived concentration guideline level (DCGL) is the allowable residual radionuclide concentration that can remain in soil after remediation of the site without radiological restrictions on the use of the site. It is sometimes called the single radionuclide soil guideline or the soil cleanup criteria. This report documents the methodology, scenarios, and parameters used in the analysis to support establishing radionuclide DCGLs for Argonne National Laboratory's Building 310 area.

  7. Radionuclide contaminant analysis of small mammals at Area G, Technical Area 54, 1996 (with cumulative summary for 1994--1996)

    International Nuclear Information System (INIS)

    Biggs, J.R.; Bennett, K.D.; Fresquez, P.R.

    1997-07-01

    Small mammals were sampled at two waste burial sites at Area G, Technical Area (TA) 54 and a control site within the proposed Area G expansion area in 1996 to (1) identify radionuclides that are present within rodent tissues at waste burial sites, (2) to compare the amount of radionuclide uptake by small mammals at waste burial sites to a control site, and (3) to identify the primary mode of contamination to small mammals, either through surface contact or ingestion/inhalation. Three composite samples of approximately five animals per sample were collected at each site. Pelts and carcasses of each animal were separated and analyzed independently. Samples were analyzed for 241 Am, 90 Sr, 238 Pu, 239 Pu, total U, 137 Cs, and 3 H. Higher levels of total U, 241 Am, 238 Pu, and 239 Pu were detected in pelts as compared to the carcasses of small mammals at TA-54. Concentrations of other measured radionuclides in carcasses were nearly equal to or exceeded the mean concentrations in the pelts. Due to low sample sizes in total number of animals captured, statistical analysis to compare site to site could not be conducted. However, mean concentrations of total U, 238 Pu, 239 Pu, and 137 Cs in rodent carcasses were higher at Site 1 than site 2 or the Control Site and 241 Am was higher at Site 2 than Site 1 or the Control Site

  8. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2014-03-01

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program proves its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.

  9. Laboratory and test beam results from a large-area silicon drift detector

    CERN Document Server

    Bonvicini, V; Giubellino, P; Gregorio, A; Idzik, M; Kolojvari, A A; Montaño-Zetina, L M; Nouais, D; Petta, C; Rashevsky, A; Randazzo, N; Reito, S; Tosello, F; Vacchi, A; Vinogradov, L I; Zampa, N

    2000-01-01

    A very large-area (6.75*8 cm/sup 2/) silicon drift detector with integrated high-voltage divider has been designed, produced and fully characterised in the laboratory by means of ad hoc designed MOS injection electrodes. The detector is of the "butterfly" type, the sensitive area being subdivided into two regions with a maximum drift length of 3.3 cm. The device was also tested in a pion beam (at the CERN PS) tagged by means of a microstrip detector telescope. Bipolar VLSI front-end cells featuring a noise of 250 e/sup -/ RMS at 0 pF with a slope of 40 e/sup -//pF have been used to read out the signals. The detector showed an excellent stability and featured the expected characteristics. Some preliminary results will be presented. (12 refs).

  10. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  11. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  12. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R.; Smith, R.P.

    1992-09-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  13. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R.; Smith, R.P.

    1992-01-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  14. Mechanical Engineering Department technical review

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.B.; Abrahamson, L.; Denney, R.M.; Dubois, B.E (eds.)

    1982-01-01

    Technical achievements and publication abstracts related to research in the following Divisions of Lawrence Livermore Laboratory are reported in this biannual review: Nuclear Fuel Engineering; Nuclear Explosives Engineering; Weapons Engineering; Energy Systems Engineering; Engineering Sciences; Magnetic Fusion Engineering; and Material Fabrication. (LCL)

  15. Area Monitoring Dosimeter Program for the Pacific Northwest National Laboratory: Results for CY 2000

    International Nuclear Information System (INIS)

    Bivins, Steven R; Stoetzel, Gregory A

    2001-01-01

    Pacific Northwest National Laboratory (PNNL) established an area monitoring dosimeter program in accordance with Article 514 of the Department of Energy (DOE) Radiological Control Manual (RCM) in January 1993. This program is to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological Buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a) (1)-(4) and Article 511.1 of the DOE Standard Radiological Control, personnel dosimetry shall be provided to (1) radiological workers who are likely to receive at least 100 mrem annually, and (2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years 1993-2000 confirm that personnel dosimetry is not needed for individuals located in areas monitored by the program

  16. Identification of Vital Areas at Nuclear Facilities. Technical Guidance

    International Nuclear Information System (INIS)

    2012-01-01

    The possibility that nuclear or other radioactive material could be used for malicious purposes cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to effectively respond to nuclear security events. States have agreed to strengthen existing and established new international legal instruments to enhance nuclear security around the world. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear or other radioactive material is used or transported. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its nuclear security series, the IAEA aims to assist States to implement and sustain such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises: Nuclear Security Fundamentals, which include objectives and essential elements of a State?s nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance publications. Each State carries the full responsibility for nuclear security, i.e. to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; and to combat illicit trafficking and the inadvertent movement of such material. It should also be prepared to respond to a nuclear security event. The IAEA recommendations for the protection of

  17. Source Release Modeling for the Idaho National Engineering and Environmental Laboratory's Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Becker, B.H.

    2002-01-01

    A source release model was developed to determine the release of contaminants into the shallow subsurface, as part of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) evaluation at the Idaho National Engineering and Environmental Laboratory's (INEEL) Subsurface Disposal Area (SDA). The output of the source release model is used as input to the subsurface transport and biotic uptake models. The model allowed separating the waste into areas that match the actual disposal units. This allows quantitative evaluation of the relative contribution to the total risk and allows evaluation of selective remediation of the disposal units within the SDA

  18. A CCD-based area detector for X-ray crystallography using synchrotron and laboratory sources

    International Nuclear Information System (INIS)

    Phillips, W.C.; Li Youli; Stanton, M.; Xie Yuanhui; O'Mara, D.; Kalata, K.

    1993-01-01

    The design and characteristics of a CCD-based area detector suitable for X-ray crystallographic studies using both synchrotron and laboratory sources are described. The active area is 75 mm in diameter, the FWHM of the point response function is 0.20 mm, and for Bragg peaks the dynamic range is 900 and the DQE ∼0.3. The 1320x1035-pixel Kodak CCD is read out into an 8 Mbyte memory system in 0.14 s and digitized to 12 bits. X-ray crystallographic data collected at the NSLS synchrotron from cubic insulin crystals are presented. (orig.)

  19. Quicklime (CaO) Stabilization of fine-grained marine sediments in low temperature areas

    DEFF Research Database (Denmark)

    Skels, Peteris; Ingeman-Nielsen, Thomas; Jørgensen, Anders Stuhr

    2011-01-01

    This study presents laboratory testing on quicklime (CaO) stabilization of fine-grained marine sediments in low temperature areas. The soil was sampled on the Fossil Plain in Kangerlussuaq, Greenland, and analyzed in the laboratory at Technical University of Denmark (DTU). The optimum CaO content...... curing temperatures, comparing stabilization effectiveness between low and normal soil temperature conditions....... in a soil-CaO mixture was determined using a number of laboratory methods, such as pH test, consistency limit analysis, degree of compaction, and short term California Bearing Ratio (CBR) values. The study also numerically demonstrates a long term strength development of the soil-CaO mixture at 1°C and 10°C...

  20. Prediction of 137Cs and 90Sr accumulation in milk of horses and sheep grazing the area adjacent to the 'Experimental Field' technical area of the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Gontarenko, I.A.; Spiridonov, S.I.; Mukusheva, M.K.

    2005-01-01

    The paper describes mathematical models for 137 Cs and 90 Sr behavior in body of horses and sheep grazing the area adjacent to the 'Experimental Field' Technical Area of the Semipalatinsk test site. The models were parametrized on the basis of experimental data for those breeds of animals that are currently encountered within the Semipalatinsk test area. The predictive conclusions using devised models have shown that 137 Cs and 90 Sr concentration in milk of horses and sheep grazing the Experimental field are can exceed the adopted standards during a long period of time. (author)

  1. Establishing the Isotope Hydrology Laboratory in accordance with ISO/IEC 17025:2005 standard

    International Nuclear Information System (INIS)

    Nguyen Thi Hong Thinh; Ha Lan Anh; Vo Thi Anh; Dinh Thi Bich Lieu; Vo Thi Tuong Hanh

    2013-01-01

    The ISO/IEC 17025:2005 General requirements for the competence calibration laboratories is basis for the accreditation body of the country in general and VILAS in particular recognizing the competence of laboratories. With the desire to prove that we have sufficient technical , management capacity , and the ability to provide the legally recognized and technically valuable test results, the Isotope Hydrology Laboratory have developed a quality management system in accordance with ISO / IEC 17025:2005, in which the laboratory quality manual has been developed. It describes the laboratory management system , scope of activities related to quality assurance of 13 major ions and tritium content measurement services in water samples. Under quality management system, there are management and technical procedures, analysis procedures, work instructions, technical documentation, file and form system. These documents define the roles, responsibilities, powers, detailed instructions for applying and maintaining effective quality management system. Isotope Hydrology Laboratory received a certificate of accreditation issued by Bureau of Accreditation which recognized the laboratory in accordance with ISO 17025:2005 with VILAS 670 accreditation code. Scope of recognition is analyzed 14 parameters: F - , Cl - , NO 2 - , NO 3 - , Br - , PO 4 3- , SO 4 2- , Li + , Na + , NH 4 + , K + , Mg 2+ , Ca 2+ and 3 H in water by ion chromatography and liquid scintillator counting method. (author)

  2. Hanford Laboratories Operation monthly activities report, December 1961

    Energy Technology Data Exchange (ETDEWEB)

    1962-01-15

    The monthly report for the Hanford Laboratories Operation, May 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, operations research and synthesis operation, programming, laboratory auxiliaries operation, and technical administration operation are discussed.

  3. Hanford Laboratories Operation monthly activities report, November 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-12-15

    The monthly report for the Hanford Laboratories Operation, November 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, operations research and synthesis operation, programming, laboratory auxiliaries operation, and technical administration operation are discussed.

  4. Microbial ecology laboratory procedures manual NASA/MSFC

    Science.gov (United States)

    Huff, Timothy L.

    1990-01-01

    An essential part of the efficient operation of any microbiology laboratory involved in sample analysis is a standard procedures manual. The purpose of this manual is to provide concise and well defined instructions on routine technical procedures involving sample analysis and methods for monitoring and maintaining quality control within the laboratory. Of equal importance is the safe operation of the laboratory. This manual outlines detailed procedures to be followed in the microbial ecology laboratory to assure safety, analytical control, and validity of results.

  5. Evaporation Basin Test Reactor Area, Idaho National Engineering Laboratory: Environmental assessment

    International Nuclear Information System (INIS)

    1991-12-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0501, on the construction and operation of the proposed Evaporation Basin at the Test Reactor Area (TRA) at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact

  6. Towards an evaluation framework for Laboratory Information Systems.

    Science.gov (United States)

    Yusof, Maryati M; Arifin, Azila

    Laboratory testing and reporting are error-prone and redundant due to repeated, unnecessary requests and delayed or missed reactions to laboratory reports. Occurring errors may negatively affect the patient treatment process and clinical decision making. Evaluation on laboratory testing and Laboratory Information System (LIS) may explain the root cause to improve the testing process and enhance LIS in supporting the process. This paper discusses a new evaluation framework for LIS that encompasses the laboratory testing cycle and the socio-technical part of LIS. Literature review on discourses, dimensions and evaluation methods of laboratory testing and LIS. A critical appraisal of the Total Testing Process (TTP) and the human, organization, technology-fit factors (HOT-fit) evaluation frameworks was undertaken in order to identify error incident, its contributing factors and preventive action pertinent to laboratory testing process and LIS. A new evaluation framework for LIS using a comprehensive and socio-technical approach is outlined. Positive relationship between laboratory and clinical staff resulted in a smooth laboratory testing process, reduced errors and increased process efficiency whilst effective use of LIS streamlined the testing processes. The TTP-LIS framework could serve as an assessment as well as a problem-solving tool for the laboratory testing process and system. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  7. Health Physics Laboratory - Overview

    International Nuclear Information System (INIS)

    Olko, P.

    2000-01-01

    Full text: The activities of the Health Physics Laboratory at the Institute of Nuclear Physics in Cracow are principally research in the general area of radiation physics, and radiation protection of the employees of the Institute of Nuclear Physics. Theoretical research concerns modelling of radiation effects in radiation detectors and studies of concepts in radiation protection. Experimental research, in the general area of solid state dosimetry, is primarily concerned with thermoluminescence (TL) dosimetry, and more specifically: development of LiF:Mg, Ti and CVD diamond detectors for medical applications in conventional and hadron radiotherapy and of LiF:Mg, Cu, P for low-level natural external ionising radiation. Environmental radiation measurements (cosmic-rays on aircraft and radon in dwellings and soil) are also performed using track CR-39 and TLD detectors. The Laboratory provides expert advice on radiation protection regulations at national and international levels. Routine work of the Health Physics Laboratory involves design and maintenance of an in-house developed TL-based personnel dosimetry system for over 200 radiation workers at the INP, supervision of radiation safety on INP premises, and advising other INP laboratories on all matters pertaining to radiation safety. We provide personal and environmental TLD dosimetry service for several customers outside the INP, mainly in hospitals and nuclear research institutes in Poland. We also calibrate radiation protection instruments for customers in southern Poland. The year 2000 was another eventful year for the Health Physics Laboratory. We started three new research projects granted by the Polish State Committee of Scientific Research. Mr P. Bilski co-ordinates the project on the measurements of radiation doses on board of commercial aircraft of Polish LOT Airlines. Dr B. Marczewska and I worked on the application of artificial diamonds for dosimetry of ionising radiation. We also participate in a

  8. Laboratory accreditation complying with ISO 25 Guide (IRAM 301): Industrial radiography method

    International Nuclear Information System (INIS)

    Schneebeli, Jorge E.; Zampini, Juan J.; Naucevich, Alfredo

    2000-01-01

    The ISO 25 Guide (IRAM 301) replaced by ISO 17025 is the standard applied for the implementation of a quality system in a test or calibration laboratory. This document is not known as ISO 9000, but it is the proper standard for this kind of laboratory. This document establishes requirements no just for the quality system in general, but on technical competence, that means the laboratory technical aptitude to carry out the tests. The aim of this paper is to comment the criteria used in the Radiographic Laboratory of CEMEC, that have been assessed by the United King dome Accreditation Service (UKAS). (author)

  9. Method Validation Procedure in Gamma Spectroscopy Laboratory

    International Nuclear Information System (INIS)

    El Samad, O.; Baydoun, R.

    2008-01-01

    The present work describes the methodology followed for the application of ISO 17025 standards in gamma spectroscopy laboratory at the Lebanese Atomic Energy Commission including the management and technical requirements. A set of documents, written procedures and records were prepared to achieve the management part. The technical requirements, internal method validation was applied through the estimation of trueness, repeatability , minimum detectable activity and combined uncertainty, participation in IAEA proficiency tests assure the external method validation, specially that the gamma spectroscopy lab is a member of ALMERA network (Analytical Laboratories for the Measurements of Environmental Radioactivity). Some of these results are presented in this paper. (author)

  10. Web Based Remote Access Microcontroller Laboratory

    OpenAIRE

    H. Çimen; İ. Yabanova; M. Nartkaya; S. M. Çinar

    2008-01-01

    This paper presents a web based remote access microcontroller laboratory. Because of accelerated development in electronics and computer technologies, microcontroller-based devices and appliances are found in all aspects of our daily life. Before the implementation of remote access microcontroller laboratory an experiment set is developed by teaching staff for training microcontrollers. Requirement of technical teaching and industrial applications are considered when expe...

  11. Materials Capability Review Los Alamos National Laboratory April 29-May 2, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoinette J [Los Alamos National Laboratory

    2012-04-20

    Los Alamos National Laboratory (LANL) uses Capability Reviews to assess the quality and institutional integration of science, technology and engineering (STE) and to advise Laboratory Management on the current and future health of LANL STE. The capabilities are deliberately chosen to be crosscutting over the Laboratory and therefore will include experimental, theoretical and simulation disciplines from multiple line organizations. Capability Reviews are designed to provide a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. The principal product of the Capability Review is the report that includes the review committee's assessments, recommendations, and recommendations for STE.

  12. High performance ground penetrating radar survey of TA-49/Area 2. Final report

    International Nuclear Information System (INIS)

    Hoeberling, R.F.; Rangel, M.J. III

    1994-09-01

    The results of high performance ground penetrating radar study of Area 2 at Technical Area 49 are presented. The survey was commissioned as part of Los Alamos Laboratory's continuing Environmental Remediation program and was completed and analyzed before borehole studies in Area 2 were started. Based upon the ground penetrating radar results, the location of one of the planned boreholes was moved to assure the drilling area was as safe as possible. While earlier attempts to use commercial radar devices at this facility had not been successful, the radar and digital processing system developed at Los Alamos were able to significantly improve the buried physical detail of the site

  13. DECOMMISSIONING THE HIGH PRESSURE TRITIUM LABORATORY AT LOS ALAMOS NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    Peifer, M.J.; Rendell, K.; Hearnsberger, D.W.

    2003-01-01

    In May 0f 2000, the Cerro Grande wild land fire burned approximately 48,000 acres in and around Los Alamos. In addition to the many buildings that were destroyed in the town site, many structures were also damaged and destroyed within the 43 square miles that comprise the Los Alamos National Laboratory (LANL). A special Act of Congress provided funding to remove Laboratory structures that were damaged by the fire, or that could be threatened by subsequent catastrophic wild land fires. The High Pressure Tritium Laboratory (HPTL) is located at Technical Area (TA) 33, building 86 in the far southeast corner of the Laboratory property. It is immediately adjacent to Bandelier National Park. Because it was threatened by both the Cerro Grande fire in 2000, and the 16,000- acre Dome fire in 1996, the former tritium processing facility was placed on the list of facilities scheduled for Decontamination and Decommissioning under the Cerro Grande Rehabilitation Project. The work was performed through the Facilities and Waste Operations (FWO) Division and is integrated with other Laboratory D and D efforts. The primary demolition contractor was Clauss Construction of San Diego, California. Earth Tech Global Environmental Services of San Antonio, Texas was sub-contracted to Clauss Construction, and provided radiological decontamination support to the project. Although the forty-seven year old facility had been in a state of safe-shutdown since operations ceased in 1990, a significant amount of tritium remained in the rooms where process systems were located. Tritium was the only radiological contaminant associated with this facility. Since no specific regulatory standards have been set for the release of volumetrically contaminated materials, concentration guidelines were derived in order to meet other established regulatory criteria. A tritium removal system was developed for this project with the goal of reducing the volume of tritium concentrated in the concrete of the

  14. Quality assurance of laboratory work and clinical use of laboratory tests in general practice in norway: a survey.

    Science.gov (United States)

    Thue, Geir; Jevnaker, Marianne; Gulstad, Guri Andersen; Sandberg, Sverre

    2011-09-01

    Virtually all the general practices in Norway participate in the Norwegian Quality Improvement of Laboratory Services in Primary Care, NOKLUS. In order to assess and develop NOKLUS's services, it was decided to carry out an investigation in the largest participating group, general practices. In autumn 2008 a questionnaire was sent to all Norwegian general practices asking for feedback on different aspects of NOKLUS's main services: contact with medical laboratory technologists, sending of control materials, use and maintenance of practice-specific laboratory binders, courses, and testing of laboratory equipment. In addition, attitudes were elicited towards possible new services directed at assessing other technical equipment and clinical use of tests. Responses were received from 1290 of 1552 practices (83%). The great majority thought that the frequency of sending out control material should continue as at present, and they were pleased with the feedback reports and follow-up by the laboratory technologists in the counties. Even after many years of practical experience, there is still a need to update laboratory knowledge through visits to practices, courses, and written information. Practices also wanted quality assurance of blood pressure meters and spirometers, and many doctors wanted feedback on their use of laboratory tests. Services regarding quality assurance of point-of-care tests, guidance, and courses should be continued. Quality assurance of other technical equipment and of the doctor's clinical use of laboratory tests should be established as part of comprehensive quality assurance.

  15. Potential for low fracture toughness and lamellar tearing on PWR steam generator and reactor coolant pump supports. Resolution of generic technical activity A-12

    International Nuclear Information System (INIS)

    Snaider, R.P.; Hodge, J.M.; Levin, H.A.; Zudans, J.J.

    1979-10-01

    This report summarizes work performed by the Nuclear Regulatory Commission staff and its contractor, Sandia Laboratories, in the resolution of Generic Technical Activity A-12, ''Potential for Low Fracture Toughness and Lamellar Tearing in PWR Steam Generator and Reactor Coolant Pump Supports.'' The report describes the technical issues, the technical studies performed by Sandia describes the technical issues, the technical studies performed by Sandia Laboratories, the NRC staff's technical positions based on these studies, and the staff's plan for implementing its technical positions. It also provides recommendations for further work. The complete technical input from Sandia Laboratories is appended to the report

  16. Nuclear waste glass melter: an update of technical progress

    International Nuclear Information System (INIS)

    Brouns, R.A.; Hanson, M.S.

    1984-08-01

    The direct slurry-fed ceramic-lined melter is currently the reference US process for treating defense and civilian high-level liquid waste. Extensive nonradioactive pilot-scale testing at Pacific Northwest Laboratory (PNL) and Savannah River Laboratory has proven the process, defined operating parameters, and identified successful equipment design concepts. Programs at PNL continue to support several of the planned US vitrification plants through preparation of equipment designs and flowsheet testing. Current emphasis is on remotization of equipment, radioactive verification testing, and resolution of remaining technical issues. Development of this technology, technical status, and planned development activities are discussed. 9 references, 4 figures

  17. Summary of field operations Technical Area I well PGS-1. Site-Wide Hydrogeologic Characterization Project

    International Nuclear Information System (INIS)

    Fritts, J.E.; McCord, J.P.

    1995-02-01

    The Environmental Restoration (ER) Project at Sandia National Laboratories, New Mexico is managing the project to assess and, when necessary, to remediate sites contaminated by the lab operations. Within the ER project, the site-wide hydrogeologic characterization task is responsible for the area-wide hydrogeologic investigation. The purpose of this task is to reduce the uncertainty about the rate and direction of groundwater flow beneath the area and across its boundaries. This specific report deals with the installation of PGS-1 monitoring well which provides information on the lithology and hydrology of the aquifer in the northern area of the Kirtland Air Force Base. The report provides information on the well design; surface geology; stratigraphy; structure; drilling, completion, and development techniques; and borehole geophysics information

  18. Facility effluent monitoring plan determinations for the 200 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-11-01

    The following facility effluent monitoring plan determinations document the evaluations conducted for the Westinghouse Hanford Company 200 Area facilities (chemical processing, waste management, 222-S Laboratory, and laundry) on the Hanford Site in south central Washington State. These evaluations determined the need for facility effluent monitoring plans for the 200 Area facilities. The facility effluent monitoring plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438 (WHC 1991). The Plutonium/Uranium Extraction Plant and UO 3 facility effluent monitoring plan determinations were prepared by Los Alamos Technical Associates, Richland, Washington. The Plutonium Finishing Plant, Transuranic Waste Storage and Assay Facility, T Plant, Tank Farms, Low Level Burial Grounds, and 222-S Laboratory determinations were prepared by Science Applications International Corporation of Richland, Washington. The B Plant Facility Effluent Monitoring Plan Determination was prepared by ERCE Environmental Services of Richland, Washington

  19. Sandia National Laboratories Internal Dosimetry Technical Basis Manual (Rev 4)

    Energy Technology Data Exchange (ETDEWEB)

    Goke, Sarah Hayes [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Nathan Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    The Sandia National Laboratories’ Internal Dosimetry Technical Basis Manual is intended to provide extended technical discussion and justification of the internal dosimetry program at SNL. It serves to record the approach to evaluating internal doses from radiobioassay data, and where appropriate, from workplace monitoring data per the Department of Energy Internal Dosimetry Program Guide DOE G 441.1C. The discussion contained herein is directed primarily to current and future SNL internal dosimetrists. In an effort to conserve space in the TBM and avoid duplication, it contains numerous references providing an entry point into the internal dosimetry literature relevant to this program. The TBM is not intended to act as a policy or procedure statement, but will supplement the information normally found in procedures or policy documents. The internal dosimetry program outlined in this manual is intended to meet the requirements of Federal Rule 10CFR835 for monitoring the workplace and for assessing internal radiation doses to workers.

  20. Oak Ridge National Laboratory institutional plan, FY 1996--FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years. Included in the report are: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory strategic plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; resource projections; appendix which contains data for site and facilities, user facility, science and mathematic education and human resources; and laboratory organization chart.

  1. Management of citation verification requests for multiple projects at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Crawford, C.S.

    1995-01-01

    Sandia National Laboratories' (SNL) Technical Library is now responsible for providing citation verification management support for all references cited in technical reports issued by the Nuclear Waste Management (NWM) Program. This paper dancing how this process is managed for the Yucca Mountain Site Characterization (YWP), Waste Isolation Pilot Plant (WIPP), Idaho National Engineering Laboratory (INEL), and Greater Confinement Disposal (GCD) projects. Since technical reports are the main product of these projects, emphasis is placed on meeting the constantly evolving needs of these customers in a timely and cost-effective manner

  2. US/Russian laboratory-to-laboratory MPC ampersand A Program at the VNIITF Institute, Chelyabinsk-70 May 1996

    International Nuclear Information System (INIS)

    Tsygankov, G.; Churikov, Y.; Teryokhin, V.

    1996-01-01

    The AR Russian Institute of Technical Physics (VNIITF), also called Chelyabinsk-70, is one of two Russian federal nuclear centers established to design, test and support nuclear weapons throughout their life cycle. The site contains research facilities which use nuclear materials, two experimental plants which manufacture prototype samples for nuclear weapons, and a site for various ground tests. Chelyabinsk-70 also has cooperative relationships with the major nuclear materials production facilities in the Urals region of Russia. Chelyabinsk-70 has been participating in the US/Russian Laboratory-to-laboratory cooperative program for approximately one year. Six US Department of Energy Laboratories are carrying out a program of cooperation with VNIITF to improve the capabilities and facilities for nuclear materials protection, control, and accounting (MPC ampersand A) at VNIITF. A Safeguards Effectiveness Evaluation Workshop was conducted at VNIITF in July, 1995. Enhanced safeguards systems are being implemented, initially at a reactor test area that contains three pulse reactors. Significant improvements to physical security and access control systems are under way. C-70 is developing an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. The existing systems will be augmented with Russian and US technologies. This paper will describe the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories and VNIITF

  3. Technical Review of the Laboratory Biosphere Closed Ecological System Facility

    Science.gov (United States)

    Dempster, W.; van Thillo, M.; Alling, A.; Allen, J.; Silverstone, S.; Nelson, M.

    The "Laboratory Biosphere", a new closed ecological system facility in Santa Fe, New Mexico (USA) has been constructed and became operational in May 2002. Built and operated by the Global Ecotechnics consortium (Biosphere Technologies and Biosphere Foundation with Biospheric Design Inc., and the Institute of Ecotechnics), the research apparatus for intensive crop growth, biogeochemical cycle dynamics and recycling of inedible crop biomass comprises a sealed cylindrical steel chamber and attached variable volume chamber (lung) to prevent pressures caused by the expansion and contraction of the contained air. The cylindrical growing chamber is 3.7m (12 feet) long and 3.7m (12 foot) diameter, giving an internal volume of 34 m3 (1200 ft 3 ). The two crop growth beds cover 5.5 m2, with a soil depth of 0.3m (12 inches), with 12 x 1000 watt high-pressure sodium lights capable of variable lighting of 40-70 mol per m2 per day. A small soil bed reactor in the chamber can be activated to help with metabolism of chamber trace gases. The volume of the attached variable volume chamber (lung) can range between 0-11 m3 (0-400 ft 3 ). Evapotranspired and soil leachate water are collected, combined and recycled to water the planting beds. Sampling ports enable testing of water quality of leachate, condensate and irrigation water. Visual inspection windows provide views of the entire interior and growing beds. The chamber is also outfitted with an airlock to minimize air exchange when people enter and work in the chamber. Continuous sensors include atmospheric CO2 and oxygen, temperature, humidity, soil moisture, light level and water levels in reservoirs. Both "sniffer" (air ports) and "sipper" (water ports) will enable collection of water or air samples for detailed analysis. This paper reports on the development of this new soil-based bioregenerative life support closed system apparatus and its technical challenges and capabilities.

  4. International Laboratory of Marine Radioactivity: Biennial report 1985-1986

    International Nuclear Information System (INIS)

    1987-10-01

    A review of the scientific activities of the ILMR in 1985-1986 is presented. The scientific programs of the Radiobiology Laboratory, Radiochemistry-Geochemistry Laboratory and Marine Environmental Studies Laboratory are briefly described. In addition lists of the visiting consultants/experts, trainees/fellows, publications/meetings, Committee/Expert group membership, courses and research/technical contracts are given

  5. Technical safety appraisal of the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    1992-05-01

    On June 27, 1989, Secretary of Energy, Admiral James D. Watkins, US Navy (Retired), announced a 10-point initiative to strengthen environment, safety, and health (ES ampersand H) programs and waste management operations in the Department of Energy (DOE). One of the initiatives involved conducting independent Tiger Team Assessments (TTA) at DOE operating facilities. A TTA of the Idaho National Engineering Laboratory (INEL) was performed during June and July 1991. Technical Safety Appraisals (TSA) were conducted in conjunction with the TTA as its Safety and Health portion. However, because of operational constraints the the Idaho Chemical Processing Plant (ICPP), operated for the DOE by Westinghouse Idaho Nuclear Company, Inc. (WINCO), was not included in the Safety and Health Subteam assessment at that time. This TSA, conducted April 12 - May 8, 1992, was performed by the DOE Office of Performance Assessment to complete the normal scope of the Safety and Health portion of the Tiger Team Assessment of the Idaho National Engineering Laboratory. The purpose of TSAs is to evaluate and strengthen DOE operations by verifying contractor compliance with DOE Orders, to assure that lessons learned from commercial operations are incorporated into facility operations, and to stimulate and encourage pursuit of excellence; thus, the appraisal addresses more issues than would be addressed in a strictly compliance-oriented appraisal. A total of 139 Performance Objectives have been addressed by this appraisal in 19 subject areas. These 19 areas are: organization and administration, quality verification, operations, maintenance, training and certification, auxiliary systems, emergency preparedness, technical support, packaging and transportation, nuclear criticality safety, safety/security interface, experimental activities, site/facility safety review, radiological protection, worker safety and health compliance, personnel protection, fire protection, medical services and natural

  6. Analytical Chemistry Laboratory progress report for FY 1985

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.

    1985-12-01

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab.

  7. Analytical Chemistry Laboratory progress report for FY 1985

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.

    1985-12-01

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab

  8. Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  9. Technical snow production in skiing areas: conditions, practice, monitoring and modelling. A case study in Mayrhofen/Austria

    Science.gov (United States)

    Strasser, Ulrich; Hanzer, Florian; Marke, Thomas; Rothleitner, Michael

    2017-04-01

    The production of technical snow today is a self-evident feature of modern alpine skiing resort management. Millions of Euros are invested every year for the technical infrastructure and its operation to produce a homogeneous and continuing snow cover on the skiing slopes for the winter season in almost every larger destination in the Alps. In Austria, skiing tourism is a significant factor of the national economic structure. We present the framing conditions of technical snow production in the mid-size skiing resort of Mayrhofen (Zillertal Alps/Austria, 136 km slopes, elevation range 630 - 2.500 m a.s.l.). Production conditions are defined by the availability of water, the planned date for the season opening, and the climatic conditions in the weeks before. By means of an adapted snow production strategy an attempt is made to ecologically and economically optimize the use of water and energy resources. Monitoring of the snow cover is supported by a network of low-cost sensors and mobile snow depth recordings. Finally, technical snow production is simulated with the spatially distributed, physically based hydroclimatological model AMUNDSEN. The model explicitly considers individual snow guns and distributes the produced snow along the slopes. The amount of simulated snow produced by each device is a function of its type, of actual wet-bulb temperature at the location, of ski area infrastructure (in terms of water supply and pumping capacity), and of snow demand.

  10. Hydrologic Resources Management Program and Underground Test Area Project FY2005 Progress Report

    International Nuclear Information System (INIS)

    Eaton, G F; Genetti, V; Hu, Q; Hudson, G B; Kersting, A B; Lindvall, R E; Moran, J E; Nimz, G J; Ramon, E C; Rose, T P; Shuller, L; Williams, R W; Zavarin, M; Zhao, P

    2007-01-01

    This report describes FY 2005 technical studies conducted by the Chemical Biology and Nuclear Science Division (CBND) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area Project (UGTA). These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work is directed toward the responsible management of the natural resources at the Nevada Test Site (NTS), enabling its continued use as a staging area for strategic operations in support of national security. UGTA-funded work emphasizes the development of an integrated set of groundwater flow and contaminant transport models to predict the extent of radionuclide migration from underground nuclear testing areas at the NTS. The report is organized on a topical basis and contains five chapters that highlight technical work products produced by CBND. However, it is important to recognize that most of this work involves collaborative partnerships with the other HRMP and UGTA contract organizations. These groups include the Energy and Environment Directorate at LLNL (LLNL-E and E), Los Alamos National Laboratory (LANL), the Desert Research Institute (DRI), the U.S. Geological Survey (USGS), Stoller-Navarro Joint Venture (SNJV), and Bechtel Nevada (BN)

  11. Laboratory automation and LIMS in forensics

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Hansen, Anders Johannes; Morling, Niels

    2013-01-01

    . Furthermore, implementation of automated liquid handlers reduces the risk of sample misplacement. A LIMS can efficiently control the sample flow through the laboratory and manage the results of the conducted tests for each sample. Integration of automated liquid handlers with a LIMS provides the laboratory......Implementation of laboratory automation and LIMS in a forensic laboratory enables the laboratory, to standardize sample processing. Automated liquid handlers can increase throughput and eliminate manual repetitive pipetting operations, known to result in occupational injuries to the technical staff...... with the tools required for setting up automated production lines of complex laboratory processes and monitoring the whole process and the results. Combined, this enables processing of a large number of samples. Selection of the best automated solution for an individual laboratory should be based on user...

  12. A checklist of plant and animal species at Los Alamos National Laboratory and surrounding areas

    Energy Technology Data Exchange (ETDEWEB)

    Hinojosa, H. [comp.

    1998-02-01

    Past and current members of the Biology Team (BT) of the Ecology Group have completed biological assessments (BAs) for all of the land that comprises Los Alamos National Laboratory (LANL). Within these assessments are lists of plant and animal species with the potential to exist on LANL lands and the surrounding areas. To compile these lists, BT members examined earlier published and unpublished reports, surveys, and data bases that pertained to the biota of this area or to areas that are similar. The species lists that are contained herein are compilations of the lists from these BAs, other lists that were a part of the initial research for the performance of these BAs, and more recent surveys.

  13. Competence and lastingness in specialized clinical laboratories: technical report about requirements concerning quality of users competence and used processes in immunochemical diagnostic procedures using isotopic and non-isotopic tracer technologies

    International Nuclear Information System (INIS)

    Wiegel, B.

    2005-01-01

    From the citizens view this technical report about immunochemical diagnostic procedures using radioactive and nonradioactive tracer technologies describes the requirements in special laboratory diagnostics concerning competency and process control. Governmental or administrational obligations of inspecting both skill and sites to guarantee patients security are pointed out. (orig.)

  14. Analytical Chemistry Laboratory, progress report for FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

  15. Hanford Environmental Information System (HEIS). Volume 7: Sample and Data Tracking subject area

    International Nuclear Information System (INIS)

    1994-06-01

    The Hanford Environmental Information System (HEIS) Sample and Data Tracking subject area allows insertion of tracking information into a central repository where the data is immediately available for viewing. For example, a technical coordinator is able to view the current status of a particular sampling effort, from sample collection to data package validation dates. Four major types of data comprise the Sample and Data Tracking subject area: data about the mechanisms that groups a set of samples for a particular sampling effort; data about how constituents are grouped and assigned to a sample; data about when, where, and how samples are sent to a laboratory for analysis; and data bout the status of a sample's constituent analysis requirements, i.e., whether the analysis results have been returned from the laboratory

  16. Environmental Science and Research Foundation, Inc. annual technical report: Calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, R.D.; Warren, R.W. [eds.

    1998-05-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation`s mission to DOE-ID provides support in several key areas. The Foundation conducts an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provides environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research on the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. Summaries are included of the individual research projects.

  17. Environmental Science and Research Foundation, Inc. annual technical report: Calendar year 1997

    International Nuclear Information System (INIS)

    Reynolds, R.D.; Warren, R.W.

    1998-05-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation's mission to DOE-ID provides support in several key areas. The Foundation conducts an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provides environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research on the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. Summaries are included of the individual research projects

  18. Physics laboratory 2

    International Nuclear Information System (INIS)

    1980-01-01

    The report covers the research activities of the Physics laboratory of H.C. Oersted Institute, University of Copenhagen in the period January 1, 1976 - January 1, 1979. It gives also an idea about the teaching carried out by yhe laboratory. The research - broadly speaking - deals mainly with the interaction of particles (ions, electrons and neutrons) and electromagnetic radiation (X-rays) with matter. Use is made in studies of: atomic physics, radiation effects, surface physics, the electronic and crystallographic structure of matter and some biological problems. The research is carried out partly in the laboratory itself and partly at and in collaboration with other institutes in this country (H.C. Oersted Institute, Chemical Laboratories, Denmark's Technical University, Aarhus University, Institute of Physics and Risoe National Laboratory) and abroad (Federal Republic of Germany, France, India, Sweden, U.K., U.S.A. and U.S.S.R.). All these institutes are listed in the abstract titles. Bibliography comprehends 94 publications. A substantial part of the research is supported by the Danish Natural Sciences Research Council. (author)

  19. TECHNICAL DIAGNOSTICS AT RUP “BMZ”

    Directory of Open Access Journals (Sweden)

    A. A. Kuzembajev

    2004-01-01

    Full Text Available The review of technical diagnostics and crack detection at RUP “BMZ” is given in the article and there are reflected the functions and tasks of the Laboratory of Technical Diagnostics and Crack detection (LTDandC. The examples of determination of the equipment failure by methods of vibration diagnostics, applied in LTDandC, are given and the efficiency of using of the system of technical servicing of the equipment according to “state” is shown. The idea of transfer from the repairs system “according to schedule” to repairs “according to state” using new information technologies such as vibrating monitoring and vibrating diagnostics is briefly reflected in the article.

  20. Associate Directorate Environmental Management Infrastructure Plan for Area G and Area L Domes

    International Nuclear Information System (INIS)

    Stevens, Patrice Ann; Baumer, Andrew Ronald

    2016-01-01

    Technical Area 54, at Los Alamos National Laboratory (LANL) is situated in the east-central portion of the Laboratory on the Mesita del Buey between Pajarito Canyon to the south and Canada del Buey to the north. TA-54 includes four MDAs designated as G, H, J, and L; a waste characterization, container storage, and transfer facility; active TRU waste and MLLW waste storage and low-level waste (LLW) disposal operations at Area G; active hazardous and mixed low-level (MLLW) waste storage operations at Area L; and administrative and support areas. MDA J has previously under-gone closure. Area G is a waste management and disposal area, used for the disposal and storage of radioactive wastes since 1957. Since August 2015, Area G has been in warm standby and provides minimal operations to support safety, compliance, and nitrate salt remediation. Located within Area G, MDA G covers 63-acres. MDA G contains 334 active and inactive waste management units, which include 36 pits, 294 shafts, and 4 trenches. In 1971, Area G began use for the retrievable storage of TRU waste. There are two pits, four trenches and 60 shafts that contain retrievable TRU waste. Thirty-three of the shafts contain TRU waste that may present unique problems for retrieval. In 1986, segregation of MLLW was initiated at Area G for treatment and temporary storage or for off-site disposal. Area G is the only active LLW disposal facility at the Laboratory. Current operations at Area G include storage and characterization of TRU and mixed TRU waste destined for off-site disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and the storage of MLLW destined for off-site treatment and/or disposal. Several above-ground container storage units (CSUs) are currently used for storage of containerized MLLW and/or mixed TRU wastes. These consist of asphalt pads and associated fabric domes or other structures. As defined by the Consent Order, MDA G contains 229 of the 334 subsurface waste

  1. Associate Directorate Environmental Management Infrastructure Plan for Area G and Area L Domes

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Patrice Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baumer, Andrew Ronald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-26

    Technical Area 54, at Los Alamos National Laboratory (LANL) is situated in the east-central portion of the Laboratory on the Mesita del Buey between Pajarito Canyon to the south and Cañada del Buey to the north. TA-54 includes four MDAs designated as G, H, J, and L; a waste characterization, container storage, and transfer facility; active TRU waste and MLLW waste storage and low-level waste (LLW) disposal operations at Area G; active hazardous and mixed low-level (MLLW) waste storage operations at Area L; and administrative and support areas. MDA J has previously under-gone closure. Area G is a waste management and disposal area, used for the disposal and storage of radioactive wastes since 1957. Since August 2015, Area G has been in warm standby and provides minimal operations to support safety, compliance, and nitrate salt remediation. Located within Area G, MDA G covers 63-acres. MDA G contains 334 active and inactive waste management units, which include 36 pits, 294 shafts, and 4 trenches. In 1971, Area G began use for the retrievable storage of TRU waste. There are two pits, four trenches and 60 shafts that contain retrievable TRU waste. Thirty-three of the shafts contain TRU waste that may present unique problems for retrieval. In 1986, segregation of MLLW was initiated at Area G for treatment and temporary storage or for off-site disposal. Area G is the only active LLW disposal facility at the Laboratory. Current operations at Area G include storage and characterization of TRU and mixed TRU waste destined for off-site disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and the storage of MLLW destined for off-site treatment and/or disposal. Several above-ground container storage units (CSUs) are currently used for storage of containerized MLLW and/or mixed TRU wastes. These consist of asphalt pads and associated fabric domes or other structures. As defined by the Consent Order, MDA G contains 229 of the 334 subsurface waste

  2. Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 1993

    International Nuclear Information System (INIS)

    Conrad, R.; Childs, M.; Rivera-Dirks, C.; Coriz, F.

    1995-07-01

    Area G, in Technical Area 54, has been the principle facility at Los Alamos National Laboratory for the storage and disposal of low-level and transuranic (TRU) radioactive wastes since 1957. The current environmental investigation consisted of ESH-19 personnel who collected soil and single-stage water samples around the perimeter of Area G to characterize possible contaminant movement through surface-water runoff. These samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241 (soil only), and cesium 137. The metals, mercury, lead, and barium, were analyzed using x-ray fluorescence

  3. Environmental Science and Research Foundation annual technical report: Calendar year 1996

    International Nuclear Information System (INIS)

    Morris, R.C.; Blew, R.D.

    1997-01-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation's mission to DOE-ID provides support in several key areas. The authors conduct an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provide environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research in the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. The major accomplishments of the Foundation and its University Affiliates during the calendar year 1996 are discussed

  4. Environmental Science and Research Foundation annual technical report: Calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R.C.; Blew, R.D. [eds.

    1997-07-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation`s mission to DOE-ID provides support in several key areas. The authors conduct an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provide environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research in the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. The major accomplishments of the Foundation and its University Affiliates during the calendar year 1996 are discussed.

  5. Bilateral comparison of the calibration laboratories in radiodiagnosis: Technical Protocol 16/17; Comparacao bilateral dos laboratorios de calibracao em radiodiagnostico: Protocolo Tecnico 16/17

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, J.G.P., E-mail: guilherm@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Almeida, C.E.V. de [Universidade do Estado do Rio de Janeiro (LCR/IBRAG/UERJ), RJ (Brazil). Lab. de Ciencias Radiologicas

    2016-07-01

    The need to standardize the results in diagnostic radiology conditions of calibration laboratories, taking into account the applicability to conventional radiology , mammography and computed tomography where the total demand for diagnostic imaging is ≈70 % ≈4 % and ≈2 % respectively. The objective of the technical protocol is not only the equipment used , but also in terms of reference and the evaluation worksheet measurement uncertainties . The results of stability and energy dependence of transfer chamber shows these adequacy for the propose. (author)

  6. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball

    2010-01-01

    Operational Experience At the end of the first full-year running period of LHC, CMS is established as a reliable, robust and mature experiment. In particular common systems and infrastructure faults accounted for <0.6 % CMS downtime during LHC pp physics. Technical operation throughout the entire year was rather smooth, the main faults requiring UXC access being sub-detector power systems and rack-cooling turbines. All such problems were corrected during scheduled technical stops, in the shadow of tunnel access needed by the LHC, or in negotiated accesses or access extensions. Nevertheless, the number of necessary accesses to the UXC averaged more than one per week and the technical stops were inevitably packed with work packages, typically 30 being executed within a few days, placing a high load on the coordination and area management teams. It is an appropriate moment for CMS Technical Coordination to thank all those in many CERN departments and in the Collaboration, who were involved in CMS techni...

  7. Laboratory Directed Research and Development FY2008 Annual Report

    International Nuclear Information System (INIS)

    Kammeraad, J.E.; Jackson, K.J.; Sketchley, J.A.; Kotta, P.R.

    2009-01-01

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities

  8. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    This report presents data and information related to remedial investigation studies for Oak Ridge National Laboratory (ORNL). Information is included on a soil gas survey, surface radiological investigations of waste areas, and well installation for ground water monitoring

  9. Technical infra-structure for accelerators in Brazil

    International Nuclear Information System (INIS)

    Polga, T.

    1983-01-01

    A minimal technical support infra-structura for, operation, maintenance and development suitable to a multi-user laboratory is presented. The costs of this infra-structure are 1.300 MCr$ in equipment and 700 MCr$ in people. A coordinated utilization of a particle accelerator network existing in the country and its corresponding costs are shown. Considerations in relation to the local of the sinchrotron radiation laboratory implantation are done. (L.C.) [pt

  10. Summary of Tiger Team Assessment and Technical Safety Appraisal recurring concerns in the Maintenance Area

    International Nuclear Information System (INIS)

    1993-01-01

    Tiger Team Assessments and Technical Safety Appraisals (TSA) were reviewed and evaluated for concerns in the Maintenance Area (MA). Two hundred and thirty one (231) maintenance concerns were identified by the Tiger Team Assessments and TSA reports. These recurring concerns appear below. A summary of the Noteworthy Practices that were identified and a compilation of the maintenance concerns for each performance objective that were not considered as recurring are also included. Where the Tiger Team Assessment and TSA identified the operating contractor or facility by name, the concern has been modified to remove the name while retaining the intent of the comment

  11. The research project on technical information basis for aging management in Fukui and Kinki area. Final report

    International Nuclear Information System (INIS)

    Fujimura, Kimiya; Nagayama, Shigeru; Watarumi, Chikae; Toudou, Tsugihiko

    2011-01-01

    The Research Project on Technical Information Basis for Aging Management was initiated in FY2006 by the Nuclear and Industrial Safety Agency (NISA) of the Ministry of Economy, Trade and Industry (METI) as a five-year program effectively, to promote aging management of domestic nuclear power plants. Its main objective was to improve the technical basis on which aging nuclear power plants are regulated. Upon taking part in the technical strategy map for Aging Management and Safe Long Term Operation, the experiences and achievements of the participating organizations were taken into account and the following four topics were chosen. The regional characteristics of the Fukui and Kinki area where 15 nuclear power plants, mainly PWRs, and many nuclear related research institutes and universities are located, were also considered. 1) The improvement of pipe thinning management in nuclear power plants, 2) The development of inspection techniques to monitor the initiation and propagation of defects, 3) The development of a guideline for evaluating weld repair methods, 4) The development of a guideline for evaluating the degradation of main structures. To promote this research project, INSS has established a regional consortium (called the 'Fukui Regional Cluster' in coordination with universities, research institutes, electric utilities and venders in the Fukui and Kinki area. INSS is acting as a coordinator to make contracts, facilitate execution, and compile annual reports. In FY2010, 11 continuing research subjects were proposed for this project and all were accepted. Of these, 5 subjects were related to the first topic (pipe thinning), 4 subjects to the second topic (inspection technique) and 1 subject to each of the other two topics (weld repair and main structures). All the subjects have been completed, fulfilling the requirements and expectations. (author)

  12. Savannah River Ecology Laboratory annual technical progress report of ecological research for the year ending July 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.H.

    1995-07-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the US Department of Energy (DOE) at the Savannah River Site near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. Major additions to SREL Facilities were completed that will enhance the Laboratory`s work in the future. Following several years of planning, opening ceremonies were held for the 5000 ft{sup 2} multi-purpose conference center that was funded by the University of Georgia Research Foundation (UGARF). The center is located on 68 acres of land that was provided by the US Department of Energy. This joint effort between DOE and UGARF supports DOE`s new initiative to develop partnerships with the private sector and universities. The facility is being used for scientific meetings and environmental education programs for students, teachers and the general public. A 6000 ft{sup 2} office and library addition to S@s main building officially opened this year, and construction plans are underway on a new animal care facility, laboratory addition, and receiving building.

  13. List of selected publications 1982. Risoe National Laboratory

    International Nuclear Information System (INIS)

    1983-12-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1982. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply and Supporting Technology, Environmental and Safety Research, Materials Research, Biotechnology and Radiation Research, Technical and Administrative Services, General. (author)

  14. List of selected publications 1983. Risoe National Laboratory

    International Nuclear Information System (INIS)

    1985-09-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1983. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply and Supporting Technology, Environmental and Safety Research, Materials Research, Biotechnology and Tradiation Research, Technical Support, General. (author)

  15. Strengthening LLNL Missions through Laboratory Directed Research and Development in High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Willis, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-01

    High performance computing (HPC) has been a defining strength of Lawrence Livermore National Laboratory (LLNL) since its founding. Livermore scientists have designed and used some of the world’s most powerful computers to drive breakthroughs in nearly every mission area. Today, the Laboratory is recognized as a world leader in the application of HPC to complex science, technology, and engineering challenges. Most importantly, HPC has been integral to the National Nuclear Security Administration’s (NNSA’s) Stockpile Stewardship Program—designed to ensure the safety, security, and reliability of our nuclear deterrent without nuclear testing. A critical factor behind Lawrence Livermore’s preeminence in HPC is the ongoing investments made by the Laboratory Directed Research and Development (LDRD) Program in cutting-edge concepts to enable efficient utilization of these powerful machines. Congress established the LDRD Program in 1991 to maintain the technical vitality of the Department of Energy (DOE) national laboratories. Since then, LDRD has been, and continues to be, an essential tool for exploring anticipated needs that lie beyond the planning horizon of our programs and for attracting the next generation of talented visionaries. Through LDRD, Livermore researchers can examine future challenges, propose and explore innovative solutions, and deliver creative approaches to support our missions. The present scientific and technical strengths of the Laboratory are, in large part, a product of past LDRD investments in HPC. Here, we provide seven examples of LDRD projects from the past decade that have played a critical role in building LLNL’s HPC, computer science, mathematics, and data science research capabilities, and describe how they have impacted LLNL’s mission.

  16. Area monitoring dosimeter program for the Pacific Northwest National Laboratory: Results for CY 1997

    International Nuclear Information System (INIS)

    Bivins, S.R.; Stoetzel, G.A.

    1998-07-01

    In January 1993, Pacific Northwest National Laboratory (PNNL) established an area monitoring dosimeter program in accordance with Article 514 of the US Department of Energy (DOE) Radiological Control Manual (RCM). The purpose of the program was to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological Buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a) (1)--(3) and Article 511.1 of the RCM, personnel dosimetry shall be provided to (1) radiological workers who are likely to receive at least 100 mrem annually, and (2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years (CY) 1993--1996 confirmed that personnel dosimetry was not needed for individuals located in areas monitored by the program. A total of 93 area thermoluminescent dosimeters (TLDs) were placed in PNNL facilities during CY 1997. The TLDs were exchanged and analyzed quarterly. All routine area monitoring TLD results were less than 50 mrem annually after correcting for worker occupancy. The results support the conclusions that personnel dosimeters are not necessary for staff, declared pregnant workers, minors, or members of the public in these monitored areas

  17. Area Monitoring Dosimeter Program for the Pacific Northwest National Laboratory: Results for CY 1998

    International Nuclear Information System (INIS)

    GA Stoetzel; SR Bivins

    1999-01-01

    In January 1993, Pacific Northwest National Laboratory (PNNL) established an area monitoring dosimeter program in accordance with Article 514 of the Department of Energy (DOE) Radiological Control Manual (RCM). The purpose of the program was to minimize the number of areas requiring issuance of personnel dosimeters and to demonstrate that doses outside Radiological Buffer Areas are negligible. In accordance with 10 CFR Part 835.402 (a)(1)-(4) and Article 511.1 of the RCM, personnel dosimetry shall be provided to (1) radiological workers who are likely to receive at least 100 mrem annually and (2) declared pregnant workers, minors, and members of the public who are likely to receive at least 50 mrem annually. Program results for calendar years 1993-1997 confirmed that personnel dosimetry was not needed for individuals located in areas monitored by the program. A total of 97 area thermoluminescent dosimeters (TLDs) were placed in PNNL facilities during calendar year 1998. The TLDs were exchanged and analyzed quarterly. All routine area monitoring TLD results were less than 50 mrem annually after correcting for worker occupancy. The results support the conclusion that personnel dosimeters are not necessary for staff, declared pregnant workers, minors, or members of the public in these monitored areas

  18. National CW GeV Electron Microtron laboratory

    International Nuclear Information System (INIS)

    1982-12-01

    Rising interest in the nuclear physics community in a CW GeV electron accelerator reflects the growing importance of high-resolution short-range nuclear physics to future advances in the field. To meet this need, Argonne National Laboratory proposes to build a CW GeV Electron Microtron (GEM) laboratory as a national user facility. The microtron accelerator has been chosen as the technology to generate the electron beams required for the research discussed because of the advantages of superior beam quality, low capital and operating costs and capability of furnishing beams of several energies and intensities simultaneously. A complete technical description of the conceptual design for a six-sided CW microtron (hexatron) is presented. The hexatron and three experimental areas will be housed in a well-shielded complex of existing buildings that provide all utilities and services required for an advanced accelerator and an active research program at a savings of $30 to 40 million. Beam lines have been designed to accommodate the transport of polarized beams to each area. The total capital cost of the facility will be $78.6 million and the annual budget for accelerator operations will be $12.1 million. Design and construction of the facility will require four and one half years. Staged construction with a 2 GeV phase costing $65.9 million is also discussed

  19. Pocket dictionary of laboratory equipment

    International Nuclear Information System (INIS)

    Junge, H.D.

    1987-01-01

    This pocket dictionary contains the 2500 most common terms for scientific and technical equipment in chemical laboratories. It is a useful tool for those who are used to communicating in German and English, but have to learn the special terminology in this field. (orig.) [de

  20. Tanks Focus Area (TFA) site needs assessment FY 2000

    International Nuclear Information System (INIS)

    RW Allen

    2000-01-01

    This report documents the process used by the Tanks Focus Area (TFA) to analyze and develop responses to technology needs submitted by five major U.S. Department of Energy (DOE) sites with radioactive tank waste problems, and the initial results of the analysis. The sites are the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), Savannah River Site (SRS), and West Valley Demonstration Project (WVDP). During the past year, the TFA established a link with DOE's Fernald site to exchange, on a continuing basis, mutually beneficial technical information and assistance

  1. 42 CFR 493.1838 - Training and technical assistance for unsuccessful participation in proficiency testing.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Training and technical assistance for unsuccessful... REQUIREMENTS Enforcement Procedures § 493.1838 Training and technical assistance for unsuccessful participation... may require the laboratory to undertake training of its personnel, or to obtain necessary technical...

  2. ORGANIZATION AND METHOD FOR THE REMOTE LABORATORY WORK OF GENERAL TECHNICAL DISCIPLINE

    Directory of Open Access Journals (Sweden)

    Alfia Sh. Salakhova

    2014-01-01

    Full Text Available The article is devoted to the important problem – use of distant technologies in engineering education in the laboratory experiments. The role of distant experiment in the modern engineering education is discussed. The authors consider structure of the distant system to real experiments control and the method of realization distant laboratory work in the educational process. The analysis of distant laboratory work effectiveness is discussed. 

  3. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data

  4. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU's) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation

  5. Laboratory services series: the utilization of scientific glassblowing in a national research and development laboratory

    International Nuclear Information System (INIS)

    Farnham, R.M.; Poole, R.W.

    1976-04-01

    Glassblowing services at a national research and development laboratory provide unique equipment tailored for specific research efforts, small-scale process items for flowsheet demonstrations, and solutions for unusual technical problems such as glass-ceramic unions. Facilities, equipment, and personnel necessary for such services are described

  6. Los Alamos Scientific Laboratory long-range alarm system

    International Nuclear Information System (INIS)

    DesJardin, R.; Machanik, J.

    1980-01-01

    The Los Alamos Scientific Laboratory (LASL) Long-Range Alarm System is described. The last few years have brought significant changes in the Department of Energy regulations for protection of classified documents and special nuclear material. These changes in regulations have forced a complete redesign of the LASL security alarm system. LASL covers many square miles of varying terrain and consists of separate technical areas connected by public roads and communications. A design study over a period of 2 years produced functional specifications for a distributed intelligence, expandable alarm system that will handle 30,000 alarm points from hundreds of data concentrators spread over a 250-km 2 area. Emphasis in the design was on nonstop operation, data security, data communication, and upward expandability to incorporate fire alarms and the computer-aided dispatching of security and fire vehicles. All aspects of the alarm system were to be fault tolerant from the central computer system down to but not including the individual data concentrators. Redundant communications lines travel over public domain from the alarmed area to the central alarm station

  7. Tanks focus area site needs assessment FY 1997

    International Nuclear Information System (INIS)

    1997-04-01

    The Tanks Focus Area's (TFA's) mission is to manage an integrated technology development program that results in the application of technology to safely and efficiently accomplish tank waste remediation across the U.S. Department of Energy (DOE) complex. The TFA uses a systematic process for developing its annual program that draws from the tanks technology development needs expressed by four DOE tank waste sites - Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), and Savannah River Site (SRS). The process is iterative and involves six steps: (1) Site needs identification and documentation, (2) Site communication of priority needs, (3) Technical response development, (4) Review technical responses, (5) Develop program planning documents, and (6) Review planning documents. This document describes the outcomes of the first two steps: site needs identification and documentation, and site communication of priority needs. It also describes the initial phases of the third and fourth steps: technical response development and review technical responses. Each site's Site Technology Coordination Group (STCG) was responsible for developing and delivering priority tank waste needs. This was accomplished using a standardized needs template developed by the National STCG. The standard template helped improve the needs submission process this year. The TFA received the site needs during December 1996 and January 1997

  8. Quality assurance in the HIV/AIDS laboratory network of China.

    Science.gov (United States)

    Jiang, Yan; Qiu, Maofeng; Zhang, Guiyun; Xing, Wenge; Xiao, Yao; Pan, Pinliang; Yao, Jun; Ou, Chin-Yih; Su, Xueli

    2010-12-01

    In 2009, there were 8273 local screening laboratories, 254 confirmatory laboratories, 35 provincial confirmatory central laboratories and 1 National AIDS Reference Laboratory (NARL) in China. These laboratories were located in Center for Disease Control and Prevention (CDC) facilities, hospitals, blood donation clinics, maternal and child health (MCH) hospitals and border health quarantine health-care facilities. The NARL and provincial laboratories provide quality assurance through technical, bio-safety and managerial training; periodic proficiency testing; on-site supervisory inspections; and commercial serologic kit evaluations. From 2002 to 2009, more than 220 million HIV antibody tests were performed at screening laboratories, and all reactive and indeterminate samples were confirmed at confirmatory laboratories. The use of highly technically complex tests, including CD4 cell enumeration, viral load, dried blood spot (DBS)-based early infant diagnosis (EID), drug resistance (DR) genotyping, HIV-1 subtyping and incidence assays, have increased in recent years and their performance quality is closely monitored. China has made significant progress in establishing a well-coordinated HIV laboratory network and QA systems. However, the coverage and intensity of HIV testing and quality assurance programmes need to be strengthened so as to ensure that more infected persons are diagnosed and that they receive timely prevention and treatment services.

  9. Senior Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  10. Area balance method for calculation of air interchange in fire-resesistance testing laboratory for building products and constructions

    Directory of Open Access Journals (Sweden)

    Sargsyan Samvel Volodyaevich

    2014-09-01

    Full Text Available Fire-resistance testing laboratory for building products and constructions is a production room with a substantial excess heat (over 23 W/m . Significant sources of heat inside the aforementioned laboratory are firing furnace, designed to simulate high temperature effects on structures and products of various types in case of fire development. The excess heat production in the laboratory during the tests is due to firing furnaces. The laboratory room is considered as an object consisting of two control volumes (CV, in each of which there may be air intake and air removal, pollutant absorption or emission. In modeling air exchange conditions the following processes are being considered: the processes connected with air movement in the laboratory room: the jet stream in a confined space, distribution of air parameters, air motion and impurity diffusion in the ventilated room. General upward ventilation seems to be the most rational due to impossibility of using local exhaust ventilation. It is connected with the peculiarities of technological processes in the laboratory. Air jets spouted through large-perforated surface mounted at the height of 2 m from the floor level, "flood" the lower control volume, entrained by natural convective currents from heat sources upward and removed from the upper area. In order to take advantage of the proposed method of the required air exchange calculation, you must enter additional conditions, taking into account the provision of sanitary-hygienic characteristics of the current at the entrance of the service (work area. Exhaust air containing pollutants (combustion products, is expelled into the atmosphere by vertical jet discharge. Dividing ventilated rooms into two control volumes allows describing the research process in a ventilated room more accurately and finding the air exchange in the lab room during the tests on a more reasonable basis, allowing to provide safe working conditions for the staff without

  11. American Samoa Initial Technical Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Conrad, M.; Funk, K.; Kandt, A.; McNutt, P.

    2011-09-01

    This document is an initial energy assessment for American Samoa, the first of many steps in developing a comprehensive energy strategy. On March 1, 2010, Assistant Secretary of the Interior Tony Babauta invited governors and their staff from the Interior Insular Areas to meet with senior principals at the National Renewable Energy Laboratory (NREL). Meeting discussions focused on ways to improve energy efficiency and increase the deployment of renewable energy technologies in the U.S. Pacific Territories. In attendance were Governors Felix Camacho (Guam), Benigno Fitial (Commonwealth of the Northern Mariana Islands), and Togiola Tulafono, (American Samoa). This meeting brought together major stakeholders to learn and understand the importance of developing a comprehensive strategic plan for implementing energy efficiency measures and renewable energy technologies. For several decades, dependence on fossil fuels and the burden of high oil prices have been a major concern but never more at the forefront as today. With unstable oil prices, the volatility of fuel supply and the economic instability in American Samoa, energy issues are a high priority. In short, energy security is critical to American Samoa's future economic development and sustainability. Under an interagency agreement, funded by the Department of Interior's Office of Insular Affairs, NREL was tasked to deliver technical assistance to the islands of American Samoa. Technical assistance included conducting an initial technical assessment to define energy consumption and production data, establish an energy consumption baseline, and assist with the development of a strategic plan. The assessment and strategic plan will be used to assist with the transition to a cleaner energy economy. NREL provided an interdisciplinary team to cover each relevant technical area for the initial energy assessments. Experts in the following disciplines traveled to American Samoa for on-island site assessments: (1

  12. Advanced transportation system studies, technical area 3. Alternate propulsion subsystem concepts: J-2S restart study

    Science.gov (United States)

    Vilja, John; Levack, Daniel

    1993-04-01

    The objectives were to assess what design changes would be required to remit late production of the J-2S engine for use as a large high energy upper stage engine. The study assessed design changes required to perform per the J-2S model specification, manufacturing changes required due to obsolescence or improvements in state-of-the-practice, availability issues for supplier provided items, and provided cost and schedule estimates for this configuration. The confidence that J-2S production could be reinitiated within reasonable costs and schedules was provided. No significant technical issues were identified in either the producibility study or in the review of previous technical data. Areas of potential cost reduction were identified which could be quantified to a greater extent with further manufacturing planning. The proposed schedule can be met with no foreseeable impacts. The results of the study provided the necessary foundation for the detailed manufacturing and test plans and non-recurring and recurring cost estimates that are needed to complete the effort to reinitiate production of the J-2S engine system.

  13. Evolving the US Army Research Laboratory (ARL) Technical Communication Strategy

    Science.gov (United States)

    2016-10-01

    communication strategy. However, if the goal is to build support for Army S&T within the general public, then community outreach, mass media , and concise...Content into Popular Media 14 2.3 Leveraging Established S&T Audiences 15 3. Prong 2: Improve Workforce Technical and Strategic Communications Skills 16... community organization, STEM-related, activities (FIRST, Scouts, Citizen School), videos Permanent exhibit at a museum, quarterly for media

  14. Aerial radiological survey of the Industrial Reactor Laboratory and surrounding area Plainsboro, New Jersey

    International Nuclear Information System (INIS)

    1980-12-01

    An airborne radiological survey of a 6 km 2 area centered over the Industrial Reactor Laboratory was made 25-27 July 1979. Detected radioisotopes and their associated gamma ray exposure rates were consistent with that expected from normal background emitters, except at two locations described in this report. Count rates observed at 46 m altitude were converted to exposure rates at 1 m above the ground and are presented in the form of an isopleth map

  15. High Intensity Source Laboratory (HISL)

    International Nuclear Information System (INIS)

    1992-01-01

    The High Intensity Source Laboratory (HISL) is a laboratory facility operated for the US Department of Energy (DOE) by EG ampersand G, Energy Measurements (EG ampersand G/EM). This document is intended as an overview -- primarily for external users -- of the general purposes and capabilities of HISL; numerous technical details are beyond its scope. Moreover, systems at HISL are added, deleted, and modified to suit current needs, and upgraded with continuing development. Consequently, interested parties are invited to contact the HISL manager for detailed, current, technical, and administrative information. The HISL develops and operates pulsed radiation sources with energies, intensities, and pulse widths appropriate for several applications. Principal among these are development, characterization, and calibration of various high-bandwidth radiation detectors and diagnostic systems. Hardness/vulnerability of electronic or other sensitive components to radiation is also tested. In this connection, source development generally focuses on attending (1) the highest possible intensities with (2) reasonably short pulse widths and (3) comprehensive output characterization

  16. Technical Procedures Management in Gas-Phase Detoxification Laboratory

    International Nuclear Information System (INIS)

    Cardona Garcia, A. I.; Sanchez Cabrero, B.

    2000-01-01

    The natural cycle of Volatile Organic Compounds (VOCs) has been disturbed by the industrial and socioeconomic activities of human beings. This imbalance in the environment has affected the ecosystems and the human health. Initiatives have been planned to mitigate these adverse effects. In order to minimize the hazardous effects, initiatives have been proposed for the treatment of gaseous emissions. The solar photo catalysis appears as a clear and renewable technology in front of the conventional ones.In CIEMAT this line is being investigated as the base of a future implementation at a pre industrial scale.Technical procedures are written in this document for testing Gas-Phase detoxification at lab scale in the Renewable Energy Department (DER) CIEMAT- Madrid to eliminate the VOCs by using the solar photo catalysis technology. (Author) 34 refs

  17. Health Physics Laboratory - Overview

    International Nuclear Information System (INIS)

    Olko, P.

    2002-01-01

    Full text: The activities of the Health Physics Laboratory at the Institute of Nuclear Physics (IFJ) in Cracow are principally research in the general area of radiation physics, dosimetry and radiation protection of the employees of the Institute. Theoretical research concerns modelling of radiation effects in radiation detectors and studies of concepts in radiation protection. Experimental research, in the general area of solid state dosimetry, is primarily concerned with thermoluminescence (TL) dosimetry, and more specifically: development of LiF:Mg, Ti, CaF 2 :Tm and CVD diamond detectors for medical applications in conventional and hadron radiotherapy and of LiF:Mg, Cu, P and LiF:Mg, Cu, Si, Na for low-level natural external ionising radiation. Environmental radiation measurements (cosmic-rays on aircraft and radon in dwellings and soil) are also performed using track CR-39 and TLD detectors. The Laboratory provides expert advice on radiation protection regulations at national and international levels. Routine work of the Health Physics Laboratory involves design and maintenance of an in-house developed TL-based personnel dosimetry system for over 200 radiation workers at the INP, supervision of radiation safety on IFJ premises, and advising other INP laboratories on all matters pertaining to radiation safety. We provide personal and environmental TLD dosimetry services for several customers outside the IFJ, mainly in hospitals and nuclear research institutes in Poland. We also calibrate radiation protection instruments (400 per year) for customers in the southern region of Poland. The year 2001 was another eventful year for the Health Physics Laboratory. M. Waligorski has received his Professor of Physics state nomination from A. Kwasniewski, the President of Poland. P. Bilski and M. Budzanowski were granted their Ph.D. degrees by the Scientific Council of the Institute of Nuclear Physics. We continued several national and international research projects. Dr

  18. Small mammal density and movement on the SL-1 disposal area, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Filipovich, M.A.; Keller, B.L.

    1983-01-01

    This study was initiated to examine the population composition, density and food habits of small mammals on a radioactive waste disposal area. Population parameters of small mammals were studied at 3-month intervals on and adjacent to the SL-1 radioactive waste disposal area (1.4 ha) and a 0.3 ha control area between August 1981 and February 1982 with mark-release methods. Both areas have crested wheatgrass (Agropyron cristatum) stands surrounded by sagebrush steppe. Species composition on the SL-1 and control area was similar to that found on the Subsurface Disposal Area at the Idaho National Engineering Laboratory. Considerable use by small mammals of the perimeter of the crested wheatgrass stands was found on both the SL-1 and control area. Additionally, deer mice (Peromyscus maniculatus) and Ord's kangaroo rats (Dipodomys ordii) that frequent the crested wheatgrass stands of the SL-1 and control area were often captured over 100 m from the crested wheatgrass stands. Thus, future research efforts will focus on examining the intensity of perimeter use and food habits of rodents residing on and adjacent to the SL-1. Results of this study will be used to evaluate ecological conditions that affect small mammal use of radioactive waste disposal areas

  19. Technical performance of cementitious grouting materials for ONKALO. Laboratory tests 2006

    International Nuclear Information System (INIS)

    Raivio, P.; Hansen, J.

    2007-09-01

    During 2006 the development of high and low-pH cementitious grouts for fractures > 100 μm designed for the ONKALO rock was continued within the LPHTEK/IMAproject. The main focus in laboratory was to study high pH micro cement grouts. The low pH (≥ 11.0) of the cementitious grout material is required in deep repository as natural pH plume deriving from pure cement paste is very high and moves via ground water circulation in bedrock. This may be deleterious to the protective covers of nuclear waste. The objective to study high pH grouts in laboratory was to optimise their composition and to get preliminary test results. Low pH grouts based on Portland cement + micro silica were also studied further in laboratory to understand their behaviour more thoroughly in different conditions and due to quality changes in materials and to compare the laboratory results with the field results. Alternative fine-grained glass material was briefly studied to replace silica in low pH grout. Low and high pH rock bolt mortars were also developed and tested to get the preliminary test results. The results of the 2006 laboratory work are presented in this report. The high pH micro cement mix U1 with no silica, mix 5/5 with moderate silica and low pH mix P308B rich in silica show generally good properties at fresh and hardening stage at +12 deg C. Lower temperature gives weaker strength build-up with all the mixes and weakens especially the Marsh fluidity and penetration ability of the mixes 5/5 and P308B as bulk density rises a little at lower temperature. Cement quality variation and insufficient mixing may also weaken the properties of all mixes. Deformation of the hardened mixes was observed in laboratory tests. This may weaken their durability if cracks are formed in the grouts at later ages and need to be studied more thoroughly. (orig.)

  20. Green Building Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, David Jean [Portland State Univ., Portland, OR (United States)

    2013-12-29

    This project provided support to the Green Building Research Laboratory at Portland State University (PSU) so it could work with researchers and industry to solve technical problems for the benefit of the green building industry. It also helped to facilitate the development of PSU’s undergraduate and graduate-level training in building science across the curriculum.

  1. An aerial radiological survey of the Superconducting Super Collider Laboratory and surrounding area, Waxahachie, Texas

    International Nuclear Information System (INIS)

    Fritzsche, A.E.

    1993-02-01

    An aerial radiological survey was conducted over the Superconducting Super Collider Laboratory (SSCL) site from July 22 through August 20,1991. Parallel lines were flown at intervals of 305 meters over a 1,036-square-kilometer (400-square-mile) area surrounding Waxahachie, Texas. The 70,000 terrestrial gamma energy spectra obtained were reduced to an exposure rate contour map overlaid on a United States Geological Survey (USGS) map of the area. The mean terrestrial exposure rate measured was 5.4 μR/h at 1 meter above ground level. Comparison to ground-based measurements shows good agreement. No anomalous or man-made isotopes were detected

  2. NASA Space Radiation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory is a NASA funded facility, delivering heavy ion beams to a target area where scientists...

  3. IAEA safeguards technical manual

    International Nuclear Information System (INIS)

    1982-03-01

    Part F of the Safeguards Technical Manual is being issued in three volumes. Volume 1 was published in 1977 and revised slightly in 1979. Volume 1 discusses basic probability concepts, statistical inference, models and measurement errors, estimation of measurement variances, and calibration. These topics of general interest in a number of application areas, are presented with examples drawn from nuclear materials safeguards. The final two chapters in Volume 1 deal with problem areas unique to safeguards: calculating the variance of MUF and of D respectively. Volume 2 continues where Volume 1 left off with a presentation of topics of specific interest to Agency safeguards. These topics include inspection planning from a design and effectiveness evaluation viewpoint, on-facility site inspection activities, variables data analysis as applied to inspection data, preparation of inspection reports with respect to statistical aspects of the inspection, and the distribution of inspection samples to more than one analytical laboratory. Volume 3 covers generally the same material as Volumes 1 and 2 but with much greater unity and cohesiveness. Further, the cook-book style of the previous two volumes has been replaced by one that makes use of equations and formulas as opposed to computational steps, and that also provides the bases for the statistical procedures discussed. Hopefully, this will help minimize the frequency of misapplications of the techniques

  4. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2000-2001

    International Nuclear Information System (INIS)

    Astier, Pierre; Bassler, Ursula; Levy, Jean-Michel; Cossin, Isabelle; Mathy, Jean-Yves

    2002-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2000-2001: 1 - Forewords; 2 - Scientific and technical activities of the laboratory: Physics with accelerators (CP Violation, hadronic physics, proton-antiproton physics, Neutrino beams, LEP, LHC, future linear electron collider); Physics without accelerators (extreme energy cosmic radiation, Cosmology and supernovae, high-energy gamma astronomy); theoretical physics (QCD, phenomenological approaches); 3 - Technical and administrative activities (electronics, computers, mechanics departments, Administration and general services); 4 - Laboratory life (Teaching, training, Internal activities); 5 - Dissemination of scientific information; 6 - List of publications; 7 - staff

  5. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2002-2003

    International Nuclear Information System (INIS)

    Dagoret-Campagne, Sylvie; Roos, Lydia; Schwemling, Philippe; Cossin, Isabelle; Mathy, Jean-Yves

    2004-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2002-2003: 1 - Forewords; 2 - Scientific and technical activities of the laboratory: Physics with accelerators (CP Violation, proton-antiproton physics, LHC, Neutrino beams, LEP, future linear electron collider); Physics without accelerators (extreme energy cosmic radiation, Cosmology and supernovae, high-energy gamma astronomy); theoretical physics (QCD, phenomenological approaches); 3 - Technical and administrative activities (electronics, computers, mechanics departments, Administration and general services); 4 - Laboratory life (Teaching, training, Internal activities); 5 - Dissemination of scientific information; 6 - List of publications; 7 - Appendix: staff

  6. Acoustic Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains an electro-magnetic worldwide data collection and field measurement capability in the area of acoustic technology. Outfitted by NASA Langley...

  7. Virtual Mechatronic/Robotic Laboratory--A Step Further in Distance Learning

    Science.gov (United States)

    Potkonjak, Veljko; Vukobratovi, Miomir; Jovanovi, Kosta; Medenica, Miroslav

    2010-01-01

    The implementation of the distance learning and e-learning in technical disciplines (like Mechanical and Electrical Engineering) is still far behind the grown practice in narrative disciplines (like Economy, management, etc.). This comes out from the fact that education in technical disciplines inevitably involves laboratory exercises and this…

  8. Haemophilia Laboratory diagnosis training and care in Rural communities in Sudan

    Directory of Open Access Journals (Sweden)

    Fathelrahman M. Hassan

    2012-06-01

    Full Text Available Sixty nine per cent of people with hemophilia symptoms in rural areas were accessed to laboratory diagnosis and care support in Sudan, where technical expertise and health care facilities was less than optimal. There were many reasons for the inadequate care of hemophilic patients: the perception of rarity of the disease; lacked of laboratory facilities to diagnose the disorder; lacked of understanding of the disorder by patients, their relatives, and even healthcare providers; poorly developed blood bank facilities; and lacked of adequate factor supply were just some examples. The Sudanese Hemophilia Care Association (SHCA was attempted to address many of these issues by establishing hemophilia care programs and by educating and training healthcare practitioners so that a healthcare team could be organized that attempts to ameliorate these problems and provides treatment options. However, it was possible to manage hemophiliac’s patients with limited resources. Strategies for conserving factor concentrates were included education of doctors and patients, prenatal diagnosis, increasing the use of anti fibrinolytic agents, physiotherapy, the use of fibrin glue, and simple orthotics and prosthetic measures. An outreach program would be initiated to ensure that hemophilia care and diagnosis was available outside the capital city. Official recognition of hemophilia laboratory diagnosis and treatment centers and designated centers by the government could also be very beneficial in ensuring adequate care in rural areas in Sudan.

  9. Laboratory Directed Research and Development FY2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with

  10. 222 S Laboratory complex hazards assessment

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1998-01-01

    This report documents the hazards assessment for the 222-S Analytical Laboratory located on the US Department of Energy (DOE) Hanford Site. Operation of the laboratory is the responsibility of Waste Management Federal Services, Inc. (WMFS). This hazards assessment was conducted to provide the emergency planning technical basis for the 222-S Facility. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  11. Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the US Department of Energy: Quarter ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Ruhter, W.D.; Strait, R.S.; Mansur, D.L.; Davis, G.

    1993-10-01

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the fourth quarter of Fiscal Year 1993 (July through September, 1993). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in five areas: Safeguards Technology, Safeguard System Studies, Computer Security, DOE Automated Physical Security and DOE Automated Visitor Access Control System. The remainder of this report describes the activities in each of these five areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

  12. Establishment of a Laboratory for Biofuels Research at the University of Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Mark [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Crofcheck, Czarena [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Andrews, Rodney [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2013-03-29

    This project was aimed at the development of the biofuels industry in Kentucky by establishing a laboratory to develop improved processes for biomass utilization. The facility is based at the University of Kentucky Center for Applied Energy Research and the Department of Biosystems and Agricultural Engineering, and constitutes an “open” laboratory, i.e., its equipment is available to other Kentucky researchers working in the area. The development of this biofuels facility represents a significant expansion of research infrastructure, and will provide a lasting resource for biobased research endeavors at the University of Kentucky. In order to enhance the laboratory's capabilities and contribute to on-going biofuels research at the University of Kentucky, initial research at the laboratory has focused on the following technical areas: (i) the identification of algae strains suitable for oil production, utilizing flue gas from coal-fired power plants as a source of CO2; (ii) the conversion of algae to biofuels; and (iii) the development of methods for the analysis of lignin and its deconstruction products. Highlights from these activities include the development of catalysts for the upgrading of lipids to hydrocarbons by means of decarboxylation/decarbonylation (deCOx), a study of bio-oil production from the fast pyrolysis of algae (Scenedesmus), and the application of pyrolytic gas chromatography coupled with mass spectrometry (Py-GC-MS) to the characterization of high lignin biomass feedstocks.

  13. List of Selected Publications 1983. Risø National Laboratory

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The list comprises a selection of scientific and technical publications of Risø National Laboratory and its staff during 1983. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply and Supporting...... Technology, Environmental and Safety Research, Materials Research, Biotechnology and Radiation Research, Technical Support, General....

  14. [Future roles of clinical laboratories and clinical laboratory technologists in university hospitals].

    Science.gov (United States)

    Yokota, Hiromitsu; Yatomi, Yutaka

    2013-08-01

    Clinical laboratories in university hospitals should be operated with a good balance of medical practice, education, research, and management. The role of a clinical laboratory is to promptly provide highly reliable laboratory data to satisfy the needs of clinicians involved in medical practice and health maintenance of patients. Improvement and maintenance of the quality of the laboratory staff and environment are essential to achieve this goal. In order to implement these requirements efficiently, an appropriate quality management system should be introduced and established, and evaluated objectively by a third party (e.g. by obtaining ISO 15189 certification). ISO 15189 is an international standard regarding the quality and competence of clinical laboratories, and specifies a review of the efficient operational system and technical requirements such as competence in implementing practical tests and calibration. This means the results of laboratory tests reported by accredited laboratories withstand any international evaluation, which is very important to assure the future importance of the existence and management of clinical laboratories as well as internationalization of medical practice. "Education" and "research" have important implications in addition to "medical practice" and "management", as the roles that clinical laboratories should play in university hospitals. University hospital laboratories should be operated by keeping these four factors in good balance. Why are "education" and "research" required in addition to "medical practice" services? If individual clinical laboratory technologists can provide an appropriate response to this question, the importance of the existence of clinical laboratories would be reinforced, without being compromised.

  15. Analytical Chemistry Laboratory progress report for FY 1984

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.; Stetter, J.R.

    1985-03-01

    Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs

  16. Modernisation of the intermediate physics laboratory

    Science.gov (United States)

    Kontro, Inkeri; Heino, Olga; Hendolin, Ilkka; Galambosi, Szabolcs

    2018-03-01

    The intermediate laboratory courses at the Department of Physics, University of Helsinki, were reformed using desired learning outcomes as the basis for design. The reformed laboratory courses consist of weekly workshops and small-group laboratory sessions. Many of the laboratory exercises are open-ended and have several possible ways of execution. They were designed around affordable devices, to allow for the purchase of multiple sets of laboratory equipment. This allowed students to work on the same problems simultaneously. Thus, it was possible to set learning goals which build on each other. Workshop sessions supported the course by letting the students solve problems related to conceptual and technical aspects of each laboratory exercise. The laboratory exercises progressed biweekly to allow for iterative problem solving. Students reached the learning goals well and the reform improved student experiences. Neither positive or negative changes in expert-like attitudes towards experimental physics (measured by E-CLASS questionnaire) were observed.

  17. [ISO 15189 accreditation in clinical microbiology laboratory: general concepts and the status in our laboratory].

    Science.gov (United States)

    Akyar, Işin

    2009-10-01

    One important trend in the laboratory profession and quality management is the global convergence of laboratory operations. The goal of an accredited medical laboratory is to continue "offering useful laboratory service for diagnosis and treatment of the patients and also aid to the health of the nation". An accredited clinical laboratory is managed by a quality control system, it is competent technically and the laboratory service meets the needs of all its patients and physicians by taking the responsibility of all the medical tests and therapies. For this purpose, ISO 15189 international standard has been prepared by 2003. ISO 15189 standard is originated from the arrangement of ISO 17025 and ISO 9001:2000 standards. Many countries such as England, Germany, France, Canada and Australia have preferred ISO 15189 as their own laboratory accreditation programme, meeting all the requirements of their medical laboratories. The accreditation performance of a clinical microbiology laboratory is mainly based on five essential points; preanalytical, analytical, postanalytical, quality control programmes (internal, external, interlaboratory) and audits (internal, external). In this review article, general concepts on ISO 15189 accreditation standards for the clinical microbiology laboratories have been summarized and the status of a private laboratory (Acibadem LabMed, Istanbul) in Turkey has been discussed.

  18. Measurement of air quality within storage domes in technical area 54, areas G and L

    International Nuclear Information System (INIS)

    Anderson, E.

    1994-01-01

    The concentrations of volatile organic compounds (VOCs) and tritium inside of storage domes at TA-54 were measured to assess worker exposure and support the Area G site characterization, including the Radioactive Air Emissions Management (RAEM) program. Samples were collected at 2-3 locations within Domes 48, 49, and 153 on up to six days during the summer of 1994. Samples were collected to evaluate three scenarios: (1) normal working activities with the domes open; (2) after domes were closed overnight; and (3) after domes were closed for three days. Eight-hour integrated samples were collected and analyzed in Radian's Austin laboratories. Tritium activities from 17.1 to 69,900 pCi/m 3 were measured. About two dozen individual VOCs were identified in each sample, but most of the concentration levels were very low (e.g.; 20%) than when the domes were closed only overnight. The data were used to generate estimated annual dome emission rates of 0.3 Ci/yr of tritium and less than 100 lbs/yr of VOCs. The measured VOC concentrations were collected during the warmest months of the year and therefore should represent worst-case air impacts

  19. Engineering research, development and technology: Thrust area report FY 91

    International Nuclear Information System (INIS)

    1991-01-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence, Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) conduct high quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. The thrust area leader is also responsible for carrying out the work that follows from the Engineering Research, Development, and Technology Program so that the results can be applied as early as possible to the needs of LLNL programs. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year, 1991. Its intent is to provide timely summaries of objectives, theories, methods, and results

  20. Magnetic fusion energy plasma interactive and high heat flux components. Volume II. Technical assessment of the critical issues and problem areas in high heat flux materials and component development

    International Nuclear Information System (INIS)

    Abdou, M.A.; Boyd, R.D.; Easor, J.R.

    1984-06-01

    A technical assessment of the critical issues and problem areas for high heat flux materials and components (HHFMC) in magnetic fusion devices shows these problems to be of critical importance for the successful operation of near-term fusion experiments and for the feasibility and attractiveness of long-term fusion reactors. A number of subgroups were formed to assess the critical HHFMC issues along the following major lines: (1) source conditions, (2) systems integration, (3) materials and processes, (4) thermal hydraulics, (5) thermomechanical response, (6) electromagnetic response, (7) instrumentation and control, and (8) test facilities. The details of the technical assessment are presented in eight chapters. The primary technical issues and needs for each area are highlighted

  1. Magnetic fusion energy plasma interactive and high heat flux components. Volume II. Technical assessment of the critical issues and problem areas in high heat flux materials and component development

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.A.; Boyd, R.D.; Easor, J.R.; Gauster, W.B.; Gordon, J.D.; Mattas, R.F.; Morgan, G.D.; Ulrickson, M.A,; Watson, R.D.; Wolfer, W.G,

    1984-06-01

    A technical assessment of the critical issues and problem areas for high heat flux materials and components (HHFMC) in magnetic fusion devices shows these problems to be of critical importance for the successful operation of near-term fusion experiments and for the feasibility and attractiveness of long-term fusion reactors. A number of subgroups were formed to assess the critical HHFMC issues along the following major lines: (1) source conditions, (2) systems integration, (3) materials and processes, (4) thermal hydraulics, (5) thermomechanical response, (6) electromagnetic response, (7) instrumentation and control, and (8) test facilities. The details of the technical assessment are presented in eight chapters. The primary technical issues and needs for each area are highlighted.

  2. Technical area status report for chemical/physical treatment

    International Nuclear Information System (INIS)

    Brown, C.H. Jr.; Schwinkendorf, W.E.

    1993-08-01

    These Appendices describe various technologies that may be applicable to the Mixed Waste Treatment Plant (MWTP) Chemical/Physical Treatment System (CPTS). These technologies were identified by the CPTS Technical Support Group (TSG) as potentially applicable to a variety of separation, volume reduction, and decontamination requirements. The purpose was to identify all available and developing technologies, and their characteristics, for subsequent evaluation for specific requirements identified for the CPTS. However, the technologies described herein are not necessarily all inclusive, nor are they necessarily all applicable

  3. Landfill stabilization focus area: Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed

  4. Landfill stabilization focus area: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  5. Annual Report FY2011: Establishment of a Laboratory for Biofuels Research at the University of Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Mark [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Crofcheck, Czarena [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Andrews, Rodney [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2011-12-21

    This project is aimed at the development of the biofuels industry in Kentucky by establishing a laboratory to develop improved processes for biomass utilization. The facility is based at the University of Kentucky Center for Applied Energy Research and the Department of Biosystems and Agricultural Engineering, and constitutes an open laboratory, i.e., its equipment is available to other Kentucky researchers working in the area. The development of this biofuels facility represents a significant expansion of research infrastructure, and will provide a lasting resource for biobased research endeavors at the University of Kentucky. In order to enhance the laboratory's capabilities and contribute to on-going biofuels research at the University of Kentucky, initial research at the laboratory has focused on the following technical areas: (i) the identification of algae strains suitable for oil production, utilizing flue gas from coal-fired power plants as a source of CO2; (ii) the conversion of algae to biofuels; and (iii) thermochemical methods for the deconstruction of lignin. Highlights from these activities include a detailed study of bio-oil production from the fast pyrolysis of microalgae (Scenedesmus sp.) and the application of pyrolytic gas chromatography coupled with mass spectrometry (Py-GC-MS) to the characterization of high lignin biomass feedstocks.

  6. The Swedish Research Councils' Laboratory progress report for 1975

    International Nuclear Information System (INIS)

    Rudstam, G.

    1976-01-01

    The Swedish Research Councils' Laboratory herewith presents its progress report for 1975. The report summarizes the current projects carried out by the research groups working at the laboratory. The very efficient assistance of the staff of the laboratory is greatfully acknowledged. The laboratory has been financially supported by the Atomic Research Council, the Medical Research Council, the Natural Science Research Council, and the Board of Technical Development. Valuable support in various ways has also been given by the Atomic Energy Company (AB Atomenergi). (author)

  7. Savannah River Ecology Laboratory annual technical progress report of ecological research for the year ending July 31, 1995

    International Nuclear Information System (INIS)

    Smith, M.H.

    1995-07-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the US Department of Energy (DOE) at the Savannah River Site near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. Major additions to SREL Facilities were completed that will enhance the Laboratory's work in the future. Following several years of planning, opening ceremonies were held for the 5000 ft 2 multi-purpose conference center that was funded by the University of Georgia Research Foundation (UGARF). The center is located on 68 acres of land that was provided by the US Department of Energy. This joint effort between DOE and UGARF supports DOE's new initiative to develop partnerships with the private sector and universities. The facility is being used for scientific meetings and environmental education programs for students, teachers and the general public. A 6000 ft 2 office and library addition to S at sign s main building officially opened this year, and construction plans are underway on a new animal care facility, laboratory addition, and receiving building

  8. Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update

    International Nuclear Information System (INIS)

    L. V. Street

    2007-01-01

    The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility

  9. US-Russian laboratory-to-laboratory cooperation in nuclear materials protection, control, and accounting

    International Nuclear Information System (INIS)

    Mullen, M.; Augustson, R.; Horton, R.

    1995-01-01

    Under the guidance of the Department of Energy (DOE), six DOE laboratories have initiated a new program of cooperation with the Russian Federation's nuclear institutes. The purpose of the program is to accelerate progress toward a common goal shared by both the US and Russia--to reduce the risks of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials, by strengthening systems of nuclear materials protection, control, and accounting. This new program is called the Laboratory-to-Laboratory Nuclear Materials Protection, Control, and Accounting (Lab-to-Lab MPC and A) Program. It is designed to complement other US-Russian MPC and A programs such as the government-to-government (Nunn-Lugar) programs. The Lab-to-Lab MPC and A program began in 1994 with pilot projects at two sites: Arzamas-16 and the Kurchitov Institute. This paper presents an overview of the Laboratory-to-Laboratory MPC and A Program. It describes the background and need for the program; the objectives and strategy; the participating US and Russian laboratories, institutes and enterprises; highlights of the technical work; and plans for the next several years

  10. Technical know-how for modeling of geological environment. (1) Overview and groundwater flow modeling

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Takeuchi, Shinji; Maekawa, Keisuke; Osawa, Hideaki; Semba, Takeshi

    2011-01-01

    It is important for site characterization projects to manage the decision-making process with transparency and traceability and to transfer the technical know-how accumulated during the research and development to the implementing phase and to future generations. The modeling for a geological environment is to be used to synthesize investigation results. Evaluation of the impact of uncertainties in the model is important to identify and prioritize key issues for further investigations. Therefore, a plan for site characterization should be made based on the results of the modeling. The aim of this study is to support for the planning of initial surface-based site characterization based on the technical know-how accumulated from the Mizunami Underground Research Laboratory Project and the Horonobe Underground Research Laboratory Project. These projects are broad scientific studies of the deep geological environment that are a basis for research and development for the geological disposal of high-level radioactive wastes. In this study, the work-flow of the groundwater flow modeling, which is one of the geological environment models, and is to be used for setting the area for the geological environment modeling and for groundwater flow characterization, and the related decision-making process using literature data have been summarized. (author)

  11. Transportation Technical Environmental Information Center index

    International Nuclear Information System (INIS)

    Davidson, C.A.; Foley, J.T.

    1979-01-01

    In an effort to determine the environmental intensities to which energy materials in transit may be exposed, a ''Data Center'' of technical environmental information has been established by Sandia Laboratories, Division 5522, for the DOE Division of Environmental Control Technology. An index is presented which can be used to request data of interest

  12. Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the U.S. Department of Energy. Quarter ending December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G.; Mansur, D.L.; Ruhter, W.D.; Strauch, M.S.

    1997-01-01

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the First Quarter of Fiscal Year 1997 (October through December, 1996). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in four areas: (1) safeguards technology; (2) safeguards and material accountability; (3) computer security--distributed systems; and (4) physical and personnel security support. The remainder of this report describes the activities in each of these four areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

  13. Argonne Research Library | Argonne National Laboratory

    Science.gov (United States)

    Argonne Argonne Research Library The Argonne Research Library supports the scientific and technical research needs of Argonne National Laboratory employees. Our library catalog is available via the Research questions or concerns, please contact us at librarians@anl.gov. Contact the Library Argonne Research Library

  14. Health Physics Laboratory - Overview

    International Nuclear Information System (INIS)

    Olko, P.

    1999-01-01

    The activities of the Health Physics Laboratory at the Institute of Nuclear Physics in Cracow are principally research in the general area of radiation physics, and radiation protection of the employees of the Institute of Nuclear Physics. Theoretical research concerns modelling of radiation effects in radiation detectors and studies of concepts in radiation protection. Experimental research, in the general area of solid state dosimetry, is primarily concerned with thermoluminescence (TL) dosimetry, and more specifically: development of LiF:Mg, Ti for medical applications in conventional and hadron radiotherapy, and of LiF:Mg, Cu, P for low-level natural external ionising radiation. Environmental radiation measurements (radon in dwellings and in soil air) are also performed using track detectors. The Laboratory provides expert advice on radiation protection regulations at national and international levels. Routine work of the Health Physics Laboratory involves design and maintenance of an in-house developed TL-based personnel dosimetry system for over 200 radiation workers at the INP, monitoring and supervision of radiation safety on INP premises, and advising other INP laboratories on all matters pertaining to radiation safety. The year 1998 was another eventful year for the Health Physics Laboratory. In retrospective, the main effort in 1998 has been directed towards preparation and participation in the 12th International Conference on Solid State Dosimetry in Burgos, Spain. One of the research projects is aimed at developing novel miniature TLD detectors with improved LET and dose characteristics for precise phantom measurements in eye cancer radiotherapy with proton beams. The second project concerns the application of ultra-sensitive LiF:Mg, Cu, P (MCP-N) TLD detectors in environmental monitoring of gamma ionising radiation. The main objective of this last project is to develop and to test a system for rapid, short-term monitoring of environmental radiation

  15. Strategies for enhancing the teaching and learning of technical ...

    African Journals Online (AJOL)

    The study evaluated strategies for enhancing the teaching and learning of technical drawing in technical colleges in ebonyi state, Nigeria. Data were collected with the aid of structured interview from twenty technical drawing teachers and 120 technical drawing students in the study area. Data were analysed using mean ...

  16. Manual on laboratory testing for uranium ore processing

    International Nuclear Information System (INIS)

    1990-01-01

    Laboratory testing of uranium ores is an essential step in the economic evaluation of uranium occurrences and in the development of a project for the production of uranium concentrates. Although these tests represent only a small proportion of the total cost of a project, their proper planning, execution and interpretation are of crucial importance. The main purposes of this manual are to discuss the objectives of metallurgical laboratory ore testing, to show the specific role of these tests in the development of a project, and to provide practical instructions for performing the tests and for interpreting their results. Guidelines on the design of a metallurgical laboratory, on the equipment required to perform the tests and on laboratory safety are also given. This manual is part of a series of Technical Reports on uranium ore processing being prepared by the IAEA's Division of Nuclear Fuel Cycle and Waste Management. A report on the Significance of Mineralogy in the Development of Flowsheets for Processing Uranium Ores (Technical Reports Series No. 196, 1980) and an instruction manual on Methods for the Estimation of Uranium Ore Reserves (No. 255, 1985) have already been published. 17 refs, 40 figs, 17 tabs

  17. A MODEL FOR INTEGRATED SOFTWARE TO IMPROVE COMMUNICATION POLICY IN DENTAL TECHNICAL LABS

    Directory of Open Access Journals (Sweden)

    Minko M. Milev

    2017-06-01

    Full Text Available Introduction: Integrated marketing communications (IMC are all kinds of communications between organisations and customers, partners, other organisations and society. Aim: To develop and present an integrated software model, which can improve the effectiveness of communications in dental technical services. Material and Methods: The model of integrated software is based on recommendations of a total of 700 respondents (students of dental technology, dental physicians, dental technicians and patients of dental technical laboratories in Northeastern Bulgaria. Results and Discussion: We present the benefits of future integrated software to improve the communication policy in the dental technical laboratory that meets the needs of fast cooperation and well-built communicative network between dental physicians, dental technicians, patients and students. Conclusion: The use of integrated communications could be a powerful unified approach to improving the communication policy between all players at the market of dental technical services.

  18. Oak Ridge National Laboratory Institutional Plan, FY 1997--FY 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Three major initiatives are described, which are proposed to strengthen ORNL`s ability to support the missions of the Department: neutron science, functional genomics, and distributed computing at teraflop speeds. The laboratory missions, strategic plan, scientific and technical programs, enterprise activities, laboratory operations, and resource projections are also described.

  19. Chemical Technology Division annual technical report, 1994

    International Nuclear Information System (INIS)

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing 99 Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  20. Chemical Technology Division, Annual technical report, 1991

    International Nuclear Information System (INIS)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  1. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  2. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  3. Action Memorandum for Decommissioning of TAN-607 Hot Shop Area

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Pinzel

    2007-05-01

    The Department of Energy is documenting the selection of an alternative for the TAN-607 Hot Shop Area using a Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action (NTCRA). The scope of the removal action is limited to TAN-607 Hot Shop Area. An engineering evaluation/cost analysis (EE/CA) has assisted the Department of Energy Idaho Operations Office in identifuomg the most effective method for performing the decommissioning of this structure whose mission has ended. TAN-607 Hot Shop Area is located at Test Area North Technical Support Facility within the Idaho National Laboratory Site. The selected alternative consists of demolishing the TAN-607 aboveground structures and components, removing belowground noninert components (e.g. wood products), and removing the radiologically contaminated debris that does not meet remedial action objectives (RAOs), as defined in the Record of Decision Amendment for the V-Tanks and Explanation of Significant Differences for the PM-2A Tanks at Test Area North, Operable Unit 1-10.

  4. The 1989 progress report: Polytechnic school laboratories' Direction

    International Nuclear Information System (INIS)

    1989-01-01

    The 1989 progress report of the laboratories' Direction of the Polytechnic School (France) is presented. The research activities carried out in each laboratory are summarized. Scientific and technical cooperation, financial and employement aspects are included. The main fields of research are: biochemistry, chemistry, reaction mechanisms, organic synthesis, mechanics of solids, meteorology, irradiated solids, optics, physics, biophysics, lasers, mathematics, econometrics, epistemology, management and computer science [fr

  5. 2015 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael George [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2014, through October 31, 2015.

  6. Laboratory Directed Research and Development FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A. [eds.

    1992-12-31

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

  7. Laboratory Directed Research and Development FY 1992

    International Nuclear Information System (INIS)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A.

    1992-01-01

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation's only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible

  8. The Los Alamos National Laboratory Transuranic Waste Retireval Project

    International Nuclear Information System (INIS)

    Montoya, G.M.; Christensen, D.V.; Stanford, A.R.

    1997-01-01

    This paper presents the status of the Los Alamos National Laboratory (LANL) project for remediation of transuranic (TRU) and TRU mixed waste from Pads 1, 2, and 4. Some of the TRU waste packages retrieved from Pad I are anticipated to be part of LANL's initial inventory to be shipped to the Waste Isolation Pilot Plant (WIPP) in April 1998. The TRU Waste Inspectable Storage Project (TWISP) was initiated in February 1993 in response to the New Mexico Environment Department's (NMED's) Consent Agreement for Compliance Order, ''New Mexico Hazardous Waste Agreement (NMHWA) 93-03.'' The TWISP involves the recovery of approximately 16,865 TRU and TRU-mixed waste containers currently under earthen cover on Pads 1, 2, and 4 at Technical Area 54, Area G, and placement of that waste into inspectable storage. All waste will be moved into inspectable storage by September 30, 2003. Waste recovery and storage operations emphasize protection of worker safety, public health, and the environment

  9. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball

    Overview From a technical perspective, CMS has been in “beam operation” state since 6th November. The detector is fully closed with all components operational and the magnetic field is normally at the nominal 3.8T. The UXC cavern is normally closed with the radiation veto set. Access to UXC is now only possible during downtimes of LHC. Such accesses must be carefully planned, documented and carried out in agreement with CMS Technical Coordination, Experimental Area Management, LHC programme coordination and the CCC. Material flow in and out of UXC is now strictly controlled. Access to USC remains possible at any time, although, for safety reasons, it is necessary to register with the shift crew in the control room before going down.It is obligatory for all material leaving UXC to pass through the underground buffer zone for RP scanning, database entry and appropriate labeling for traceability. Technical coordination (notably Stephane Bally and Christoph Schaefer), the shift crew and run ...

  10. Defense Waste Processing Facility prototypic analytical laboratory

    International Nuclear Information System (INIS)

    Policke, T.A.; Bryant, M.F.; Spencer, R.B.

    1991-01-01

    The Defense Waste Processing Technology (DWPT) Analytical Laboratory is a relatively new laboratory facility at the Savannah River Site (SRS). It is a non-regulated, non-radioactive laboratory whose mission is to support research and development (R ampersand D) and waste treatment operations by providing analytical and experimental services in a way that is safe, efficient, and produces quality results in a timely manner so that R ampersand D personnel can provide quality technical data and operations personnel can efficiently operate waste treatment facilities. The modules are sample receiving, chromatography I, chromatography II, wet chemistry and carbon, sample preparation, and spectroscopy

  11. FY2007 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  12. Environmental audit of the Savannah River Ecology Laboratory (SREL)

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report documents the results of the environmental audit conducted at the Savannah River Ecology Laboratory (SREL) at the Savannah River Site (SRS), principally in Aiken and Barnwell Counties, South Carolina. The audit was conducted by the US Department of Energy`s (DOE`s), Office of Environmental Audit (EH-24), beginning September 13, 1993, and ending September 23, 1993. The scope of the audit at SREL was comprehensive, addressing environmental activities in the technical areas of air; surface water/drinking water; groundwater/soil, sediment, and biota; waste management; toxic and chemical materials; inactive Waste sites; radiation; quality assurance; and environmental management. Specifically assessed was the compliance of SREL operations and activities with Federal, state, and local regulations; DOE Orders; and best management practices.

  13. Environmental audit of the Savannah River Ecology Laboratory (SREL)

    International Nuclear Information System (INIS)

    1993-09-01

    This report documents the results of the environmental audit conducted at the Savannah River Ecology Laboratory (SREL) at the Savannah River Site (SRS), principally in Aiken and Barnwell Counties, South Carolina. The audit was conducted by the US Department of Energy's (DOE's), Office of Environmental Audit (EH-24), beginning September 13, 1993, and ending September 23, 1993. The scope of the audit at SREL was comprehensive, addressing environmental activities in the technical areas of air; surface water/drinking water; groundwater/soil, sediment, and biota; waste management; toxic and chemical materials; inactive Waste sites; radiation; quality assurance; and environmental management. Specifically assessed was the compliance of SREL operations and activities with Federal, state, and local regulations; DOE Orders; and best management practices

  14. Designing a hands-on brain computer interface laboratory course.

    Science.gov (United States)

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2016-08-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.

  15. The Potential of Experiential Learning Models and Practices in Career and Technical Education and Career and Technical Teacher Education

    Science.gov (United States)

    Clark, Robert W.; Threeton, Mark D.; Ewing, John C.

    2010-01-01

    Since inception, career and technical education programs have embraced experiential learning as a true learning methodology for students to obtain occupational skills valued by employers. Programs have integrated classroom instruction with laboratory experiences to provide students a significant opportunity to learn. However, it is questionable as…

  16. Assembly and evaluation of an inventory of guidelines that are available to support clinical hematology laboratory practice.

    Science.gov (United States)

    Hayward, C P M; Moffat, K A; George, T I; Proytcheva, M

    2015-05-01

    Practice guidelines provide helpful support for clinical laboratories. Our goal was to assemble an inventory of publically listed guidelines on hematology laboratory topics, to create a resource for laboratories and for assessing gaps in practice-focused guidelines. PubMed and website searches were conducted to assemble an inventory of hematology laboratory-focused guidelines. Exclusions included annual, technical, or collaborative study reports, clinically focused guidelines, position papers, nomenclature, and calibration documents. Sixty-eight guidelines were identified on hematology laboratory practice topics from 12 organizations, some as joint guidelines. The median year of publication was 2010 and 15% were >10 years old. Coagulation topics had the largest numbers of guidelines, whereas some areas of practice had few guidelines. A minority of guidelines showed evidence of periodic updates, as some organizations did not remove or identify outdated guidelines. This inventory of current practice guidelines will encourage awareness and uptake of guideline recommendations by the worldwide hematology laboratory community, with the International Society for Laboratory Hematology facilitating ongoing updates. There is a need to encourage best guideline development practices, to ensure that hematology laboratory community has current, high-quality, and evidence-based practice guidelines that cover the full scope of hematology laboratory practice. © 2015 John Wiley & Sons Ltd.

  17. Engineering Research and Development and Technology thrust area report FY92

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R.T.; Minichino, C. [eds.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

  18. Engineering Research and Development and Technology thrust area report FY92

    International Nuclear Information System (INIS)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering

  19. A professional development model for medical laboratory scientists working in the microbiology laboratory.

    Science.gov (United States)

    Amerson, Megan H; Pulido, Lila; Garza, Melinda N; Ali, Faheem A; Greenhill, Brandy; Einspahr, Christopher L; Yarsa, Joseph; Sood, Pramilla K; Hu, Peter C

    2012-01-01

    The University of Texas M.D. Anderson Cancer Center, Division of Pathology and Laboratory Medicine is committed to providing the best pathology and medicine through: state-of-the art techniques, progressive ground-breaking research, education and training for the clinical diagnosis and research of cancer and related diseases. After surveying the laboratory staff and other hospital professionals, the Department administrators and Human Resource generalists developed a professional development model for Microbiology to support laboratory skills, behavior, certification, and continual education within its staff. This model sets high standards for the laboratory professionals to allow the labs to work at their fullest potential; it provides organization to training technologists based on complete laboratory needs instead of training technologists in individual areas in which more training is required if the laboratory needs them to work in other areas. This model is a working example for all microbiology based laboratories who want to set high standards and want their staff to be acknowledged for demonstrated excellence and professional development in the laboratory. The PDM model is designed to focus on the needs of the laboratory as well as the laboratory professionals.

  20. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    Energy Technology Data Exchange (ETDEWEB)

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.; Olson, Karl R.; Grether, Donald F.; Clary, Mary M.; Smith, Brian M.; Stevens, David F.; Ross, Loren; Alper, Mark D.; Dairiki, Janis M.; Fong, Pauline L.; Bartholomew, James C.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.