WorldWideScience

Sample records for laboratory researchers solve

  1. Green Building Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, David Jean [Portland State Univ., Portland, OR (United States)

    2013-12-29

    This project provided support to the Green Building Research Laboratory at Portland State University (PSU) so it could work with researchers and industry to solve technical problems for the benefit of the green building industry. It also helped to facilitate the development of PSU’s undergraduate and graduate-level training in building science across the curriculum.

  2. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  3. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  4. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  5. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  6. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  7. Energy Materials Research Laboratory (EMRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  8. Simula Research Laboratory

    CERN Document Server

    Tveito, Aslak

    2010-01-01

    The Simula Research Laboratory, located just outside Oslo in Norway, is rightly famed as a highly successful research facility, despite being, at only eight years old, a very young institution. This fascinating book tells the history of Simula, detailing the culture and values that have been the guiding principles of the laboratory throughout its existence. Dedicated to tackling scientific challenges of genuine social importance, the laboratory undertakes important research with long-term implications in networks, computing and software engineering, including specialist work in biomedical comp

  9. Materials Behavior Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to evaluate mechanical properties of materials including metals, intermetallics, metal-matrix composites, and ceramic-matrix composites under typical...

  10. Metallurgical Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to increase basic knowledge of metallurgical processing for controlling the microstructure and mechanical properties of metallic aerospace alloys and...

  11. Metallurgical Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to increase basic knowledge of metallurgical processing for controlling the microstructure and mechanical properties of metallic aerospace alloys and...

  12. The National Fire Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The National Fire Research Laboratory (NFRL) is adding a unique facility that will serve as a center of excellence for fireperformance of structures ranging in size...

  13. Laboratory for Large Data Research

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Laboratory for Large Data Research (LDR) addresses a critical need to rapidly prototype shared, unified access to large amounts of data across both the...

  14. Geocentrifuge Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The geocentrifuge subjects a sample to a high-gravity field by spinning it rapidly around a central shaft. In this high-gravity field, processes, such as fluid flow,...

  15. Naval Research Laboratory Overview

    Science.gov (United States)

    2012-10-01

    Res Ctr Blossom Point Pomonkey KEY WEST Marine Corrosion Facility MOBILE , AL Ex-USS Shadwell BAY ST. LOUIS, MS John C. Stennis Space Center...decision support, and autonomous systems. Mobile Networks / Personal Secure Phone The Navy and Marine Corps Corporate Laboratory NRL Personnel FY 11...laser 1980 1990 2000 2010 1970 SHARP Reconnaissance 2001 QuadGard 2005 IPsec, IPv6 , NKDS ANDE-2 Spacecraft Blood Surrogate Significant and

  16. The Effects of Problem Solving Applications on the Development of Science Process Skills, Logical Thinking Skills and Perception on Problem Solving Ability in the Science Laboratory

    Science.gov (United States)

    Seyhan, Hatice Güngör

    2015-01-01

    This study was conducted with 98 prospective science teachers, who were composed of 50 prospective teachers that had participated in problem-solving applications and 48 prospective teachers who were taught within a more researcher-oriented teaching method in science laboratories. The first aim of this study was to determine the levels of…

  17. The Effects of Problem Solving Applications on the Development of Science Process Skills, Logical Thinking Skills and Perception on Problem Solving Ability in the Science Laboratory

    Science.gov (United States)

    Seyhan, Hatice Güngör

    2015-01-01

    This study was conducted with 98 prospective science teachers, who were composed of 50 prospective teachers that had participated in problem-solving applications and 48 prospective teachers who were taught within a more researcher-oriented teaching method in science laboratories. The first aim of this study was to determine the levels of…

  18. Great Lakes Environmental Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NOAA-GLERL and its partners conduct innovative research on the dynamic environments and ecosystems of the Great Lakes and coastal regions to provide information for...

  19. Research System Integration Laboratory (SIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The VEA Research SIL (VRS) is essential to the success of the TARDEC 30-Year Strategy. The vast majority of the TARDEC Capability Sets face challenging electronics...

  20. Virtual robotics laboratory for research

    Science.gov (United States)

    McKee, Gerard T.

    1995-09-01

    We report on work currently underway to put a robotics laboratory onto the Internet in support of teaching and research in robotics and artificial intelligence in higher education institutions in the UK. The project is called Netrolab. The robotics laboratory comprises a set of robotics resources including a manipulator, a mobile robot with an on-board monocular active vision head and a set of sonar sensing modules, and a set of laboratory cameras to allow the user to see into the laboratory. The paper will report on key aspect of the project aimed at using multimedia tools and object-oriented techniques to network the robotics resources and to allow them to be configured into complex teaching and experimental modules. The paper will outline both the current developments of Netrolab and provide a perspective on the future development of networked virtual laboratories for research.

  1. Numerical Aspects of Solving Differential Equations: Laboratory Approach for Students.

    Science.gov (United States)

    Witt, Ana

    1997-01-01

    Describes three labs designed to help students in a first course on ordinary differential equations with three of the most common numerical difficulties they might encounter when solving initial value problems with a numerical software package. The goal of these labs is to help students advance to independent work on common numerical anomalies.…

  2. Problem Solving: Polya's Heuristic Applied to Psychological Research.

    Science.gov (United States)

    Damarin, Suzanne K.

    Using the "How to Solve It" list developed by Polya as a vehicle of comparison, research findings and key concepts from the psychological study of problem solving are applied to mathematical problem solving. Hypotheses concerning the interpretation of psychological phenomena for mathematical problem situations are explored. Several areas…

  3. Small-Engine Research Laboratory (SERL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Small-Engine Research Laboratory (SERL) is a facility designed to conduct experimental small-scale propulsion and power generation systems research....

  4. Air Force Research Laboratory Integrated Omics Research

    Science.gov (United States)

    2015-10-01

    the goals of Air Force Research Laboratory (AFRL) is the development of new methods to assess warfighter performance by using advanced...Objective (DTO) project. The research project (MD.34 Biotechnology for Near-Real-Time Predictive Toxicology ) aimed to identify biomarkers of toxicity...Technology, established in discovery work in 2001, and has provided technical support to many researchers in the Department of Defense (DoD). The

  5. SESAME/Environmental Research Laboratories

    Science.gov (United States)

    1977-01-01

    The Environmental Research Laboratories (ERL) have been designated as the basic research group of the National Oceanic and Atmospheric Administration (NOAA). ERL performs an integrated program of research and research services directed toward understanding the geophysical environment, protecting the environment, and improving the forecasting ability of NOAA. Twenty-four laboratories located throughout the United States comprise ERL. The Project SESAME (Severe Environmental Storms and Mesoscale Experiment) Planning Office is a project office within ERL. SESAME is conceived as a joint effort involving NOAA, NASA, NSF, and the atmospheric science community to lay the foundation for improved prediction of severe convective storms. The scientific plan for SESAME includes a phased buildup of analysis, modeling, instrumentation development and procurement, and limited-scale observational activities.

  6. Frederick National Laboratory for Cancer Research

    Data.gov (United States)

    Federal Laboratory Consortium — Among the many cancer research laboratories operated by NCI, the Frederick National Laboratory for Cancer Research(FNLCR) is unique in that it is a Federally Funded...

  7. Guided-inquiry based laboratory instruction: Investigation of critical thinking skills, problem solving skills, and implementing student roles in chemistry

    Science.gov (United States)

    Gupta, Tanya

    Recent initiatives in the laboratory curriculum have encouraged an inquiry-based approach to learning and teaching in the laboratory. It has been argued that laboratory instruction should not just be hands-on, but it should portray the essence of inquiry through the process of experiential learning and reflective engagement in collaboration with peers and in facilitation by the instructor. A student-centered active learning approach may be an effective way to enhance student understanding of concepts in the laboratory. The dissertation research work explores the impact of laboratory instruction and its relevance for college-level chemistry. Each chapter is different from the preceding chapter in terms of the purpose of the study and the research questions asked. However, the overarching idea is to address the importance of guided-inquiry based laboratory instruction in chemistry and its relevance in helping students to make connections with the chemistry content and in imparting skills to students. Such skills include problem solving, collaborative group work and critical thinking. The first research study (Chapter 2) concerns the impact of first year co-requisite general chemistry laboratory instruction on the problem-solving skills of students. The second research study (Chapter 3) examines the impact of implementing student roles also known as Student-Led Instructor Facilitated Guided-Inquiry based Laboratories, SLIFGIL) by modifying the Science Writing Heuristic approach of laboratory instruction. In the third research study (Chapter 4), critical thinking skills of first semester general chemistry laboratory students were compared to advanced (third or fourth year) chemistry laboratory students based on the analysis of their laboratory reports.

  8. Laboratory directed research and development

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  9. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  10. NAS Human Factors Safety Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory conducts an integrated program of research on the relationship of factors concerning individuals, work groups, and organizations as employees perform...

  11. Solving the MCAO partial illumination issue and laboratory results

    Science.gov (United States)

    Santhakumari, K. K. R.; Arcidiacono, C.; Bertram, T.; Berwein, J.; Herbst, T. M.; Ragazzoni, R.

    2016-07-01

    Telescopes or instruments equipped with Multi-Conjugate Adaptive Optics (MCAO) provide uniform turbulence correction over a wide Field of View (FoV), thereby overcoming the problems of isoplanatism and enabling previously challenging science. LINC-NIRVANA (LN), the German-Italian near-infrared high-resolution imager for the Large Binocular Telescope (LBT), has an advanced and unique MCAO module, which uses the Optical Co-addition of Layer- Oriented Multiple-FoV Natural Guide Star approach to MCAO with pyramid wavefront sensing. The layer-oriented wavefront correction can be performed by conjugating the Deformable Mirrors (DM) and the respective Wavefront Sensors (WFS) to the corresponding atmospheric layers. LN corrects for the aberrations in two different layers. The ground layer, conjugated to the telescope pupil 100m above LBT, is corrected by the Ground-layer Wavefront Sensors (GWS) driving the LBT adaptive secondary mirrors, and a higher layer 7.1km above the telescope is corrected by the High-layer Wavefront Sensors (HWS) driving a pair of Xinetics DMs on the LN bench. At the ground layer, the footprints of the stars overlap completely and every star footprint illuminates the entire pupil-plane. However, for a higher layer, the footprints do not overlap completely and each star illuminates a different region of the conjugated plane. Lack of stars, therefore, results in some regions in this "meta-pupil"-plane not being illuminated, implying no information regarding the aberrations in these areas. The optimum way of correcting the high layer, given this limited information, is the crux of the "partial illumination issue". In this paper, we propose a solution for this issue and discuss laboratory results from the aligned LN bench in the lab. Currently, LN has completed the re-integration and re-alignment at LBT. In early June 2016, we tested our partial illumination algorithm in the instrument's final configuration in the LBT mountain lab, using simulated stars

  12. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  13. Photobiology Research Laboratory (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-06-01

    This fact sheet provides information about Photobiology Research Laboratory capabilities and applications at NREL. The photobiology group's research is in four main areas: (1) Comprehensive studies of fuel-producing photosynthetic, fermentative, and chemolithotrophic model microorganisms; (2) Characterization and engineering of redox enzymes and proteins for fuel production; (3) Genetic and pathway engineering of model organisms to improve production of hydrogen and hydrocarbon fuels; and (4) Studies of nanosystems using biological and non-biological materials in hybrid generation. NREL's photobiology research capabilities include: (1) Controlled and automated photobioreactors and fermenters for growing microorganisms under a variety of environmental conditions; (2) High-and medium-throughput screening of H{sub 2}-producing organisms; (3) Homologous and heterologous expression, purification, and biochemical/biophysical characterization of redox enzymes and proteins; (4) Qualitative and quantitative analyses of gases, metabolites, carbohydrates, lipids, and proteins; (5) Genetic and pathway engineering and development of novel genetic toolboxes; and (6) Design and spectroscopic characterization of enzyme-based biofuel cells and energy conversion nanodevices.

  14. The effect of introducing computers into an introductory physics problem-solving laboratory

    Science.gov (United States)

    McCullough, Laura Ellen

    2000-10-01

    Computers are appearing in every type of classroom across the country. Yet they often appear without benefit of studying their effects. The research that is available on computer use in classrooms has found mixed results, and often ignores the theoretical and instructional contexts of the computer in the classroom. The University of Minnesota's physics department employs a cooperative-group problem solving pedagogy, based on a cognitive apprenticeship instructional model, in its calculus-based introductory physics course. This study was designed to determine possible negative effects of introducing a computerized data-acquisition and analysis tool into this pedagogy as a problem-solving tool for students to use in laboratory. To determine the effects of the computer tool, two quasi-experimental treatment groups were selected. The computer-tool group (N = 170) used a tool, designed for this study (VideoTool), to collect and analyze motion data in the laboratory. The control group (N = 170) used traditional non-computer equipment (spark tapes and Polaroid(TM) film). The curriculum was kept as similar as possible for the two groups. During the ten week academic quarter, groups were examined for effects on performance on conceptual tests and grades, attitudes towards the laboratory and the laboratory tools, and behaviors within cooperative groups. Possible interactions with gender were also examined. Few differences were found between the control and computer-tool groups. The control group received slightly higher scores on one conceptual test, but this difference was not educationally significant. The computer-tool group had slightly more positive attitudes towards using the computer tool than their counterparts had towards the traditional tools. The computer-tool group also perceived that they spoke more frequently about physics misunderstandings, while the control group felt that they discussed equipment difficulties more often. This perceptual difference interacted

  15. Subsonic Aerodynamic Research Laboratory (SARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The SARL is a unique high contraction, open circuit subsonic wind tunnel providing a test velocity up to 436 mph (0.5 Mach number) and a high quality,...

  16. Biometrics Research and Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As the Department of Defense moves forward in its pursuit of integrating biometrics technology into facility access control, the Global War on Terrorism and weapon...

  17. Cognitive variables in science problem solving: a review of research

    OpenAIRE

    Solaz Portolés, Joan Josep; Vicente SANJOSÉ LÓPEZ

    2007-01-01

    This paper provides an overview of research into cognitive variables that are involved in problem solving and how these variables affect the performance of problem solvers. The variables discussed are grouped together in: prior knowledge, formal reasoning ability and neo-Piagetian variables, long-term memory and working memory, knowledge base, and metacognitive variables.

  18. Stanford Aerospace Research Laboratory research overview

    Science.gov (United States)

    Ballhaus, W. L.; Alder, L. J.; Chen, V. W.; Dickson, W. C.; Ullman, M. A.

    1993-02-01

    Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be, addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modelling and control of extremely flexible space structures. The ARL has designed and built several semi-autonomous free-flying robots that perform numerous tasks in a zero-gravity, drag-free, two-dimensional environment. It is envisioned that future generations of these robots will be part of a human-robot team, in which the robots will operate under the task-level commands of astronauts. To make this possible, the ARL has developed a graphical user interface (GUI) with an intuitive object-level motion-direction capability. Using this interface, the ARL has demonstrated autonomous navigation, intercept and capture of moving and spinning objects, object transport, multiple-robot cooperative manipulation, and simple assemblies from both free-flying and fixed bases. The ARL has also built a number of experimental test beds on which the modelling and control of flexible manipulators has been studied. Early ARL experiments in this arena demonstrated for the first time the capability to control the end-point position of both single-link and multi-link flexible manipulators using end-point sensing. Building on these accomplishments, the ARL has been able to control payloads with unknown dynamics at the end of a flexible manipulator, and to achieve high-performance control of a multi-link flexible manipulator.

  19. Research and Progress on Virtual Cloud Laboratory

    Directory of Open Access Journals (Sweden)

    Zhang Jian Wei

    2016-01-01

    Full Text Available In recent years, cloud computing technology has experienced continuous development and improvement, and has gradually expanded to the education sector. First, this paper will introduce the background knowledge of the current virtual cloud laboratory; by comparing the advantages and disadvantages between traditional laboratory and virtual cloud laboratory, and comparing the application, advantages and disadvantages, and development trend of OpenStack technology and VMWare technology in safety, performance, design, function, use case, and value of virtual cloud laboratory, this paper concludes that application based on OpenStack virtual cloud laboratory in universities and research institutes and other departments is essential.

  20. Virtual Instruction: A Qualitative Research Laboratory Course

    Science.gov (United States)

    Stadtlander, Lee M.; Giles, Martha J.

    2010-01-01

    Online graduate programs in psychology are becoming common; however, a concern has been whether instructors in the programs provide adequate research mentoring. One issue surrounding research mentoring is the absence of research laboratories in the virtual university. Students attending online universities often do research without peer or lab…

  1. A comparison of the classroom dynamics of a problem-solving and traditional laboratory model of instruction using path analysis

    Science.gov (United States)

    Pizzini, Edward L.; Shepardson, Daniel P.

    The classroom dynamics (class setting, lesson structure, student interactions, and student behaviors) of a traditional laboratory and a problem-solving Search, Solve, Create, and Share (SSCS) model of instruction were compared using path analysis. Class setting was based on small-group/large-group settings. Lesson structure variables were problem finding/refining, research designing, data collecting, data analyzing, and evaluating. The student-student interactions variable was determined by student-student responding, student-student initiating, and student (self-) interaction; while the teacher-student interaction variable was based on teacher-student initiating and teacher-student responding. The dependent variables of student behavior consisted of attending, responding, following, soliciting, and giving. A causal model was hypothesized for both instructional models based on the independent and dependent variables. The hypothesized causal model was tested using path-analysis procedures described by Pedhazur (1982). The hypothesized causal models were adjusted based on path coefficients with levels of significance greater than p = 0.05. While the descriptive data indicated a similarity in the classroom dynamics of the two instructional models, path analysis indicated a difference in the classroom dynamics. In the traditional laboratory model, student behaviors did not correlate to lesson structure, class setting, or student interactions, whereas in the SSCS problem-solving model student behaviors correlated to aspects of the lesson structure, class setting, and student interactions.

  2. NRL (Naval Research Laboratory) Review

    Science.gov (United States)

    1989-07-01

    and without any measurable voltage. In an applied field G.P. Espinosa , Phys. Rev. Lett. 58, 1676 of 9 T, this value was only reduced by a factor of...Division Dr. S. Ossakow 72723 WARFARE SYSTEMS AND SENSORS RESEARCH DIRECTORATE 5000 Associate Director of Research Mr. R.R. Rojas 73294 5100 Supt...Dr. W.R. Ellis Code 5000 Code 6000 P.G. Wilhelm R.R. Rojas Dr. B.B. Rath ORGANIZATIONAL CHART (Continued) EXECUTIVE DIRECTORATE EEUIECOMMANDING OFFICER

  3. Cyber Defense Research and Monitoring Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This facility acts as a fusion point for bridging ARL's research in tactical and operational Information Assurance (IA) areas and the development and assessment of...

  4. Stirling laboratory research engine survey report

    Science.gov (United States)

    Anderson, J. W.; Hoehn, F. W.

    1979-01-01

    As one step in expanding the knowledge relative to and accelerating the development of Stirling engines, NASA, through the Jet Propulsion Laboratory (JPL), is sponsoring a program which will lead to a versatile Stirling Laboratory Research Engine (SLRE). An objective of this program is to lay the groundwork for a commercial version of this engine. It is important to consider, at an early stage in the engine's development, the needs of the potential users so that the SLRE can support the requirements of educators and researchers in academic, industrial, and government laboratories. For this reason, a survey was performed, the results of which are described.

  5. Laboratory Learning in a Research Methods Course

    Directory of Open Access Journals (Sweden)

    Sarah Knapp

    2016-03-01

    Full Text Available Laboratory-based learning is increasingly considered to be an integral component of undergraduate education. However, students do not always perceive the value of laboratory learning in the college classroom. The current research sought to create an effective laboratory learning environment within a research methods course and to assess students’ perceptions of this approach at the end of one semester. This article reports the findings for two studies; in Study 1, a survey was given to 17 criminal justice, health care management and advocacy, and psychology students. In a subsequent semester, challenges from Study 1 were addressed, and the same survey (i.e., Study 2 was given to 20 criminal justice and psychology majors. Across both samples, students’ responses to the laboratory learning paradigm were generally positive, yet concerns and challenges were identified. Future research should attempt to address these concerns and to assess objective student outcomes, such as grades in the course.

  6. Chemical research at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  7. NPS Ocean Acoustics Laboratory Marine Mammal Research

    OpenAIRE

    Chiu, Ching-Sang; Collins, Curtis; Joseph, John; Margolina, Tetyana; Stimpert, Alison; Miller, Chris

    2014-01-01

    The Marine Mammal Group within the Ocean Acoustics Laboratory at NPS is involved with a range of research studying marine mammal acoustics , both sound production and effects of anthropogenic sound on marine mammals. A sampling of our research is described below.

  8. NASA Ames Fluid Mechanics Laboratory research briefs

    Science.gov (United States)

    Davis, Sanford (Editor)

    1994-01-01

    The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.

  9. US Naval Research Laboratory focus issue: introduction.

    Science.gov (United States)

    Hoffman, Craig A

    2015-11-01

    Rather than concentrate on a single topic, this feature issue presents the wide variety of research in optics that takes place at a single institution, the United States Naval Research Laboratory (NRL) and is analogous to an NRL feature issue published in Applied Optics in 1967. NRL is the corporate research laboratory for the Navy and Marine Corps. It conducts a broadly based multidisciplinary program of scientific research and advanced technological development in the physical, engineering, space, and environmental sciences related to maritime, atmospheric, and space domains. NRL's research is directed toward new and improved materials, techniques, equipment, and systems in response to identified and anticipated Navy needs. A number of articles in this issue review progress in broader research areas while other articles present the latest results on specific topics.

  10. 1999 LDRD Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  11. Idaho National Laboratory Research & Development Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, Nicole [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  12. Occupational radiation exposures in research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Vaccari, S.; Papotti, E. [Parma Univ., Health Physics (Italy); Pedrazzi, G. [Parma Univ., Dept. of Public Health (Italy)

    2006-07-01

    Radioactive sources are widely used in many research activities at University centers. In particular, the activities concerning use of sealed form ({sup 57}Co in Moessbauer application) and unsealed form ({sup 3}H, {sup 14}C, {sup 32}P in radioisotope laboratories) are analyzed. The radiological impact of these materials and potential effective doses to researchers and members of the public were evaluated to show compliance with regulatory limits. A review of the procedures performed by researchers and technicians in the research laboratories with the relative dose evaluations is presented in different situations, including normal operations and emergency situations, for example the fire. A study of the possible exposure to radiation by workers, restricted groups of people, and public in general, as well as environmental releases, is presented. (authors)

  13. Laboratory Apprenticeship through a Student Research Project.

    Science.gov (United States)

    Ritchie, Stephen M.; Rigano, Donna L.

    1996-01-01

    Discusses the viability of cognitive apprenticeship for learning science in relation to findings from an investigation of a research project involving high school students working in a university chemical engineering laboratory under the mentorship of a university-based scientist. Reports that students were empowered to seek empirically viable…

  14. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  15. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  16. Laboratory Directed Research and Development FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  17. Army Research Laboratory 2009 Annual Review

    Science.gov (United States)

    2009-01-01

    The second technology substitutes fatty acid monomers for styrene in unsaturated polyester and vinyl ester repair resins , while maintain- ing...U.S. Army Research Laboratory 2009 Annual Review Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection...of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering

  18. MSU-DOE Plant Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This document is the compiled progress reports of research funded through the Michigan State University/Department of Energy Plant Research Laboratory. Fourteen reports are included, covering the molecular basis of plant/microbe symbiosis, cell wall biosynthesis and proteins, gene expression, stress responses, plant hormone biosynthesis, interactions between the nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and trafficking, regulation of lipid metabolism, molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria, and hormonal involvement in environmental control of plant growth. 320 refs., 26 figs., 3 tabs. (MHB)

  19. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    Science.gov (United States)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  20. CNR LARA project, Italy: Airborne laboratory for environmental research

    Science.gov (United States)

    Bianchi, R.; Cavalli, R. M.; Fiumi, L.; Marino, C. M.; Pignatti, S.

    1995-01-01

    The increasing interest for the environmental problems and the study of the impact on the environment due to antropic activity produced an enhancement of remote sensing applications. The Italian National Research Council (CNR) established a new laboratory for airborne hyperspectral imaging, the LARA Project (Laboratorio Aero per Ricerche Ambientali - Airborne Laboratory for Environmental Research), equipping its airborne laboratory, a CASA-212, mainly with the Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument. MIVIS's channels, spectral bandwidths, and locations are chosen to meet the needs of scientific research for advanced applications of remote sensing data. MIVIS can make significant contributions to solving problems in many diverse areas such as geologic exploration, land use studies, mineralogy, agricultural crop studies, energy loss analysis, pollution assessment, volcanology, forest fire management and others. The broad spectral range and the many discrete narrow channels of MIVIS provide a fine quantization of spectral information that permits accurate definition of absorption features from a variety of materials, allowing the extraction of chemical and physical information of our environment. The availability of such a hyperspectral imager, that will operate mainly in the Mediterranean area, at the present represents a unique opportunity for those who are involved in environmental studies and land-management to collect systematically large-scale and high spectral-spatial resolution data of this part of the world. Nevertheless, MIVIS deployments will touch other parts of the world, where a major interest from the international scientific community is present.

  1. Problem Solving

    Science.gov (United States)

    Kinsella, John J.

    1970-01-01

    Discussed are the nature of a mathematical problem, problem solving in the traditional and modern mathematics programs, problem solving and psychology, research related to problem solving, and teaching problem solving in algebra and geometry. (CT)

  2. Master plan of Mizunami underground research laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    In June 1994, the Atomic Energy Commission of Japan reformulated the Long-Term Programme for Research, Development and Utilisation of Nuclear Energy (LTP). The LTP (item 7, chapter 3) sets out the guidelines which apply to promoting scientific studies of the deep geological environment, with a view to providing a sound basis for research and development programmes for geological disposal projects. The Japan Nuclear Cycle Development Institute (JNC) has been conducting scientific studies of the deep geological environment as part of its Geoscientific Research Programme. The LTP also emphasised the importance of deep underground research facilities in the following terms: Deep underground research facilities play an important role in research relating to geological disposal. They allow the characteristics and features of the geological environment, which require to be considered in performance assessment of disposal systems, to be investigated in situ and the reliability of the models used for evaluating system performance to be developed and refined. They also provide opportunities for carrying out comprehensive research that will contribute to an improved overall understanding of Japan's deep geological environment. It is recommended that more than one facility should be constructed, considering the range of characteristics and features of Japan's geology and other relevant factors. It is important to plan underground research facilities on the basis of results obtained from research and development work already carried out, particularly the results of scientific studies of the deep geological environment. Such a plan for underground research facilities should be clearly separated from the development of an actual repository. JNC's Mizunami underground research laboratory (MIU) Project will be a deep underground research facility as foreseen by the above provisions of the LTP. (author)

  3. National Renewable Energy Laboratory 2005 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

    2006-06-01

    Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

  4. NECESSITY FOR UNDERGROUND RESEARCH LABORATORY IN CROATIA

    Directory of Open Access Journals (Sweden)

    Želimir Vejnović

    2012-07-01

    Full Text Available Nuclear power plant (NPP Krško has a license to operate until 2023, and under the current agreement between the Republic of Slovenia and the Republic of Croatia, countries are bound to dispose one half of radioactive waste produced during the operation time and after decommissioning of NPP each. Safe long-term management of high level radioactive waste and spent fuel represents one of the most important issues of the modern world. The best way to provide practical demonstration of repository’s safety, which will be one of convincing arguments in the process of licensing future repository, is developed underground research laboratory (URL. Existence of URL open to international co-operation would certainly improve the international recognition and credibility of Croatian programme, as well as allow dissemination of scientific research results to a broader scientific community (the paper is published in Croatian.

  5. Laboratory Directed Research and Development FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A. [eds.

    1992-12-31

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

  6. Bringing ayahuasca to the clinical research laboratory.

    Science.gov (United States)

    Riba, Jordi; Barbanoj, Manel J

    2005-06-01

    Since the winter of 1999, the authors and their research team have been conducting clinical studies involving the administration of ayahuasca to healthy volunteers. The rationale for conducting this kind of research is twofold. First, the growing interest of many individuals for traditional indigenous practices involving the ingestion of natural psychotropic drugs such as ayahuasca demands the systematic study of their pharmacological profiles in the target species, i.e., human beings. The complex nature of ayahuasca brews combining a large number of pharmacologically active compounds requires that research be carried out to establish the safety and overall pharmacological profile of these products. Second, the authors believe that the study of psychedelics in general calls for renewed attention. Although the molecular and electrophysiological level effects of these drugs are relatively well characterized, current knowledge of the mechanisms by which these compounds modify the higher order cognitive processes in the way they do is still incomplete, to say the least. The present article describes the development of the research effort carried out at the Autonomous University of Barcelona, commenting on several methodological aspects and reviewing the basic clinical findings. It also describes the research currently underway in our laboratory, and briefly comments on two new studies we plan to undertake in order to further our knowledge of the pharmacology of ayahuasca.

  7. National Storage Laboratory: a collaborative research project

    Science.gov (United States)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  8. Eagleworks Laboratories: Advanced Propulsion Physics Research

    Science.gov (United States)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  9. 41 CFR 101-25.109 - Laboratory and research equipment.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal...

  10. 41 CFR 109-25.109 - Laboratory and research equipment.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Laboratory and research... PROCUREMENT 25-GENERAL 25.1-General Policies § 109-25.109 Laboratory and research equipment. The provisions of 41 CFR 101-25.109 and this section apply to laboratory and research equipment in the possession...

  11. Solving Ethical Dilemmas with Children: Empowering Classroom Research

    Science.gov (United States)

    Parr, Michelann

    2010-01-01

    This article identifies and discusses ethical dilemmas inherent when undertaking research with children or other vulnerable populations: power relations, risks and benefits, and informed consent and confidentiality (Maguire, 2005). Ethical dilemmas often arise when researchers attempt to merge the interests of their research and the interests of…

  12. Can Scientific Research From the Laboratory be of Any Use to Teachers?

    Science.gov (United States)

    Newman, Denis; Cole, Michael

    2004-01-01

    Behavior in a psychology laboratory?constrained by the need to efficiently replicate tasks, record individual responses, and avoid contamination from external factors?is different in systematic ways from behavior within an everyday environment where similar tasks are undertaken and problems solved. This article describes a program of research that…

  13. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  14. Tritium Research Laboratory safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Wright, D.A.

    1979-03-01

    Design and operational philosophy has been evolved to keep radiation exposures to personnel and radiation releases to the environment as low as reasonably achievable. Each experiment will be doubly contained in a glove box and will be limited to 10 grams of tritium gas. Specially designed solid-hydride storage beds may be used to store temporarily up to 25 grams of tritium in the form of tritides. To evaluate possible risks to the public or the environment, a review of the Sandia Laboratories Livermore (SLL) site was carried out. Considered were location, population, land use, meteorology, hydrology, geology, and seismology. The risks and the extent of damage to the TRL and vital systems were evaluated for flooding, lightning, severe winds, earthquakes, explosions, and fires. All of the natural phenomena and human error accidents were considered credible, although the extent of potential damage varied. However, rather than address the myriad of specific individual consequences of each accident scenario, a worst-case tritium release caused indirectly by an unspecified natural phenomenon or human error was evaluated. The maximum credible radiological accident is postulated to result from the release of the maximum quantity of gas from one experiment. Thus 10 grams of tritium gas was used in the analysis to conservatively estimate the maximum whole-body dose of 1 rem at the site boundary and a maximum population dose of 600 man-rem. Accidental release of this amount of tritium implies simultaneous failure of two doubly contained systems, an occurrence considered not credible. Nuclear criticality is impossible in this facility. Based upon the analyses performed for this report, we conclude that the Tritium Research Laboratory can be operated without undue risk to employees, the general public, or the environment. (ERB)

  15. Requirements Engineering as Creative Problem Solving: A Research Agenda for Idea Finding

    OpenAIRE

    Maiden, N.; Jones, S; Karlsen, I. K.; Neill, R.; Zachos, K.; Milne, A.

    2010-01-01

    This vision paper frames requirements engineering as a creative problem solving process. Its purpose is to enable requirements researchers and practitioners to recruit relevant theories, models, techniques and tools from creative problem solving to understand and support requirements processes more effectively. It uses 4 drivers to motivate the case for requirements engineering as a creative problem solving process. It then maps established requirements activities onto one of the longest-esta...

  16. Laboratory Directed Research and Development FY 2000 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ayat, R

    2001-05-24

    This Annual Report provides an overview of the FY2000 Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) and presents a summary of the results achieved by each project during the year.

  17. Frontiers for Laboratory Research of Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Hantao [Princeton University; Guo, Fan [Los Alamos National Laboratory

    2015-07-16

    Magnetic reconnection occcurs throughout heliophysical and astrophysical plasmas as well as in laboratory fusion plasmas. Two broad categories of reconnection models exist: collisional MHD and collisionless kinetic. Eight major questions with respect to magnetic connection are set down, and past and future devices for studying them in the laboratory are described. Results of some computerized simulations are compared with experiments.

  18. Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory Radio Frequency (RF) Propagation Section

    Science.gov (United States)

    2016-10-01

    ARL-TR-7860 ● OCT 2016 US Army Research Laboratory Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop...ARL-TR-7860 ● OCT 2016 US Army Research Laboratory Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory... Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory Radio Frequency (RF) Propagation Section 5a. CONTRACT NUMBER

  19. The Los Alamos, Sandia, and Livermore Laboratories: Integration and collaboration solving science and technology problems for the nation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    More than 40 years ago, three laboratories were established to take on scientific responsibility for the nation`s nuclear weapons - Los Alamos, Sandia, and Livermore. This triad of laboratories has provided the state-of-the-art science and technology to create America`s nuclear deterrent and to ensure that the weapons are safe, secure, and to ensure that the weapons are safe, secure, and reliable. These national security laboratories carried out their responsibilities through intense efforts involving almost every field of science, engineering, and technology. Today, they are recognized as three of the world`s premier research and development laboratories. This report sketches the history of the laboratories and their evolution to an integrated three-laboratory system. The characteristics that make them unique are described and some of the major contributions they have made over the years are highlighted.

  20. PENINGKATAN HASIL BELAJAR ELEKTRONIKA DASAR II MELALUI PENERAPAN MODEL PEMBELAJARAN PROBLEM SOLVING LABORATORY

    Directory of Open Access Journals (Sweden)

    - Sujarwata

    2012-01-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui peningkatan hasil belajar siswa SMP dengan pendekatan keterampilan proses pada pokok bahasan suhu dan pemuaian. Penelitian dilaksanakan dengan metode pre-post eksperimen tanpa kendali. Pre dan pos tes dilakukan untuk melihat peningkatan pemahaman konsep siswa. Pengamatan keterampilan dan sikap ilmiah dilakukan pada awal dan akhir kegiatan laboratorium berbasis inkuiri. Data penelitian diambil sebelum percobaan, selama percobaan, dan setelah percobaan. Hasil belajar pretes pemahaman konsep diperoleh rata-rata 51%, postes 61,73%, dan gain sebesar 0,219 (low-gain. Hasil belajar keterampilan proses, pengamatan awal diperoleh rata-rata 54%, pengamatan akhir 76%, dan gain sebesar 0,478 (medium-gain. Hasil pengamatan sikap ilmiah awal siswa rata-rata 55%, pengamatan akhir 67%, dan gain sebesar 0,267 (low-gain. Jadi hasil belajar siswa pada penelitian ini mengalami peningkatan. The research aimed to observe the improvement of junior high Scholl students in learning on temperature and expansion by process skill approach. Uncontrolled pre-post experiment method was used in this study. Pre and post test was used to obtain the student's understanding. The observation of skills and scientific attitudes was done on the beginning and at the end of each inquiry based laboratory activity. The data extracted from beginning, during and after lab's activity. The achievements in concept understanding yield the value of 51 % for pre test  and  61.73%  for post test  thus gain the gain is 0.219 (low gain. The achievements in process skills end up with the value of 54 % for initials and 76% for the final's observations give the gain of 0.478 (medium-gain. The observations in scientific attitude give the average value 55% at the beginning and 67% at the end, so the gain is 0,267. Overall conclusion, the student's achievement is improved.Keywords: science; process skills; learning achievements

  1. An action research to overcome undergraduates’ laboratory anxiety

    OpenAIRE

    Acar Şeşen, Burçin; Mutlu (Karadaş), Ayfer

    2014-01-01

    In this study, it was aimed to determine and overcome undergraduates’ laboratory anxiety. For this purpose, Laboratory Anxiety Questionnaire (LAQ) was developed by researchers. LAQ was applied to 92 undergraduates as a pre-test and focus group interviews were performed to determine their laboratory anxiety. An action research was conducted by researchers. After instruction was accomplished in ten weeks, LAQ was applied as post-test. According to results, it was found that undergradua...

  2. HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Danko, E

    2009-03-02

    The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies

  3. Ultra-Short-Pulse Laser Effects Research and Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables research into advanced laser countermeasure techniques. DESCRIPTION: This laser facility has a capability to produce very high peak power levels of...

  4. Ultra-Short-Pulse Laser Effects Research and Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables research into advanced laser countermeasure techniques.DESCRIPTION: This laser facility has a capability to produce very high peak power levels of...

  5. Integrating decision-making trial and evaluation laboratory model and failure mode and effect analysis to determine the priority in solving production problems

    Directory of Open Access Journals (Sweden)

    Yu-Cheng Lee

    2016-04-01

    Full Text Available Failure mode and effect analysis has been applied in manufacturing and service industries but can still be improved. Failure mode and effect analysis is a common tool used to evaluate risk priority number; however, numerous scholars have doubted the effectiveness of failure mode and effect analysis and have thus proposed methods for correcting failure mode and effect analysis from its conventional formula. Because implemented actions can determine or influence resource allocation and its effects, completing one corrective action can occasionally simultaneously improve various failure modes. In this study, failure mode and effect analysis and decision-making trial and evaluation laboratory were integrated to correct failure modes and increase their effectiveness. First, failure mode and effect analysis was employed to identify the items for improvement. Second, decision-making trial and evaluation laboratory was adopted to examine the reciprocal influences and causality among these items. Finally, the priority for improving the items was proposed. By combining the advantages of failure mode and effect analysis and decision-making trial and evaluation laboratory, this research method complemented the shortcomings of the two techniques. According to the empirical research of this case study in which decision-making trial and evaluation laboratory was employed to analyze the causality among the items of the failure modes, the malfunction of production lines can be solved faster and more effectively compared with merely considering the size of risk priority number values.

  6. Problem-Solving Inquiry-Oriented Biology Tasks Integrating Practical Laboratory and Computer.

    Science.gov (United States)

    Friedler, Yael; And Others

    1992-01-01

    Presents results of a study that examines the development and use of computer simulations for high school science instruction and for integrated laboratory and computerized tests that are part of the biology matriculation examination in Israel. Eleven implications for teaching are presented. (MDH)

  7. Sandia, California Tritium Research Laboratory transition and reutilization project

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T.B. [Sandia National Lab., Albuquerque, NM (United States)

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  8. Handbook of Research on Creative Problem-Solving Skill Development in Higher Education

    DEFF Research Database (Denmark)

    Developing students’ creative problem-solving skills is paramount to today’s teachers, due to the exponentially growing demand for cognitive plasticity and critical thinking in the workforce. In today’s knowledge economy, workers must be able to participate in creative dialogue and complex problem-solving....... This has prompted institutions of higher education to implement new pedagogical methods such as problem-based and case-based education. The Handbook of Research on Creative Problem-Solving Skill Development in Higher Education is an essential, comprehensive collection of the newest research in higher...... education, creativity, problem solving, and pedagogical design. It provides the framework for further research opportunities in these dynamic, necessary fields. Featuring work regarding problem-oriented curriculum and its applications and challenges, this book is essential for policy makers, teachers...

  9. Handbook of Research on Creative Problem-Solving Skill Development in Higher Education

    DEFF Research Database (Denmark)

    Chemi, Tatiana

    2016-01-01

    Developing students’ creative problem-solving skills is paramount to today’s teachers, due to the exponentially growing demand for cognitive plasticity and critical thinking in the workforce. In today’s knowledge economy, workers must be able to participate in creative dialogue and complex problem......-solving. This has prompted institutions of higher education to implement new pedagogical methods such as problem-based and case-based education. The Handbook of Research on Creative Problem-Solving Skill Development in Higher Education is an essential, comprehensive collection of the newest research in higher...... education, creativity, problem solving, and pedagogical design. It provides the framework for further research opportunities in these dynamic, necessary fields. Featuring work regarding problem-oriented curriculum and its applications and challenges, this book is essential for policy makers, teachers...

  10. Laboratory Directed Research and Development FY-15 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  11. Laboratory Directed Research and Development FY-10 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  12. MICROWAVE SYSTEM FOR RESEARCH BIOLOGICAL EFFECTS ON LABORATORY ANIMALS

    OpenAIRE

    Kopylov, Alexei; Kruglik, Olga; Khlebopros, Rem

    2014-01-01

    This research is concerned with development of the microwave system for research the radiophysical microwave radiation effects on laboratory animals. The frequency was 1 GHz. The results obtained demonstrate the metabolic changes in mice under the electromagnetic field influence.

  13. Network Science Research Laboratory (NSRL) Telemetry Warehouse

    Science.gov (United States)

    2016-06-01

    providing efficient and responsive services to millions of simultaneous users. Seeing as their business model is largely dependent on maintaining its users...Laboratory (NSRL) is composed of a suite of hardware and software that models the operation of mobile networked device radio frequency (RF) links...unique requirements like hybrid networks and extensive modeling of ground and urban effects on communications. NSRL supports investigation of

  14. Research Projects in Physics: A Mechanism for Teaching Ill-Structured Problem Solving

    Science.gov (United States)

    Milbourne, Jeff; Bennett, Jonathan

    2017-10-01

    Physics education research has a tradition of studying problem solving, exploring themes such as physical intuition and differences between expert and novice problem solvers. However, most of this work has focused on traditional, or well-structured, problems, similar to what might appear in a textbook. Less work has been done with open-ended, or ill-structured, problems, similar to the types of problems students might face in their professional lives. Given the national discourse on educational system reform aligned with 21st century skills, including problem solving, it is critical to provide educational experiences that help students learn to solve all types of problems, including ill-structured problems.

  15. Laboratory Directed Research and Development annual report, fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  16. A new geotechnical gas hydrates research laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grozic, J.L.H. [Calgary Univ., AB (Canada)

    2003-07-01

    Gas hydrates encapsulate natural gas molecules in a very compact form, as ice-like compounds composed of water molecules. Permafrost environments and offshore areas contain vast quantities of gas hydrates within soil and rock. This paper describes the role played by gas hydrates in submarine slope instability, their potential as a sustainable energy source, and their effects on global climate change. A new state-of-the-art laboratory located at the University of Calgary, which was developed to study the geomechanical behaviour of gas hydrate-sediment mixtures, was also presented. A specialized high pressure low temperature triaxial apparatus capable of performing a suite of tests on gas hydrate-sediment mixtures is housed in this laboratory. Extensive renovations were required in order to enable the use of methane gas to simulate natural hydrate formation conditions. The laboratory is specifically designed to examine the properties and behaviour of reconstituted gas hydrate-sediment mixtures and natural gas hydrate core samples. 26 refs., 9 figs.

  17. Laboratory Technology Research: Abstracts of FY 1996 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  18. Naval Research Laboratory Major Facilities 2008

    Science.gov (United States)

    2008-10-01

    Mexico seawater throughout the year. The tropical climate is ideally suited for marine exposure testing. There is minimal climatic variation and a...TW magnetically insulated inductive voltage adder ( IVA ). Mercury is a focal point of research for several areas, including IVA power-flow research...nuclear weapons effects simulation, and particle-beam source and transport research for various applications. DESCRIPTION: Mercury is a 6-stage IVA . The

  19. Laboratory Directed Research and Development FY2001 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ayat, R

    2002-06-20

    Established by Congress in 1991, the Laboratory Directed Research and Development (LDRD) Program provides the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) laboratories, like Lawrence Livermore National Laboratory (LLNL or the Laboratory), with the flexibility to invest up to 6% of their budget in long-term, high-risk, and potentially high payoff research and development (R&D) activities to support the DOE/NNSA's national security missions. By funding innovative R&D, the LDRD Program at LLNL develops and extends the Laboratory's intellectual foundations and maintains its vitality as a premier research institution. As proof of the Program's success, many of the research thrusts that started many years ago under LDRD sponsorship are at the core of today's programs. The LDRD Program, which serves as a proving ground for innovative ideas, is the Laboratory's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. Basic and applied research activities funded by LDRD enhance the Laboratory's core strengths, driving its technical vitality to create new capabilities that enable LLNL to meet DOE/NNSA's national security missions. The Program also plays a key role in building a world-class multidisciplinary workforce by engaging the Laboratory's best researchers, recruiting its future scientists and engineers, and promoting collaborations with all sectors of the larger scientific community.

  20. Chemical exposures in research laboratories in a university.

    Science.gov (United States)

    Takada, Shiro; Okamoto, Satoru; Yamada, Chikahisa; Ukai, Hirohiko; Samoto, Hajime; Ohashi, Fumiko; Ikeda, Masayuki

    2008-04-01

    Research laboratories in a university were investigated for air-borne levels of legally designated organic solvents and specified chemical substances. Repeated surveys in 2004-5 (four times in the two years) of about 720 laboratories (thus 2,874 laboratories in total) revealed that the solvent concentrations were in excess of the Administrative Control Levels only in a few laboratories (the conditions improved shortly after the identification) and none with regard to specified chemicals. Thus, working environments were in Control Class 1 in almost all (99.5%) laboratories examined. Such conditions were achieved primarily by extensive installation and use of local exhaust systems. The survey further revealed that types of chemicals used in research laboratories were extremely various (only poorly covered by the regulation) whereas the amounts of each chemical to be consumed were quite limited. For protection of health of researchers (including post- and under-graduate students) in laboratories, therefore, it appeared more appropriate to make personal exposure assessment rather than evaluation of levels of chemicals in air of research laboratories. Considering unique characteristics of research activity, it is important to educate each researcher to make his/her own efforts to protect his/her health, through supply of knowledge on toxicity of chemicals as well as that on proper use of protective equipments including exhaust chambers.

  1. Laboratory Directed Research and Development Annual Report FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  2. Air Force Research Laboratory Technology Milestones 2010

    Science.gov (United States)

    2010-01-01

    Aerospace Research and Development (AOARD) and from the Office of Naval Research-Global (ONRG), AFRL’s Dr. Kevin Kwiat worked with Professor...machined titanium (Ti) doubler to the surface of a C-130’s main wing plank , with positive results. The Ti doubler repair process uses a heat...thus greatly improved—bond-line. Having just undergone its first-ever operational implementation—in the depot repair of the C-130 wing plank —the

  3. Major research approaches to solve gas-dynamic problems in Donbass coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Kuzyara, V.I.; Agaphonov, A.V. [Makeyevka State Safety in Mine Research Institute, Makeyevka (Ukraine)

    1997-12-31

    The number of gas-dynamic events per million tons of coal mined remains great though coal output from underground coal mines in Donetsk basin has dropped. This dictates enhanced research efforts to solve the following gas-dynamic problems: sudden coal, rock and gas outbursts, sudden coal, rock and gas outbursts, sudden squeezing, falls (coal spillage) sudden methane inrushes from the bottom, and bumps. New approaches to solve these problems have been based on modern concepts and ideas of natural mechanisms of the events. Current and future research needs are discussed. 7 refs., 3 figs., 2 tabs.

  4. Laboratory Directed Research and Development Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  5. Air Force Research Laboratory Technology Milestones 2008

    Science.gov (United States)

    2008-01-01

    develop a unique measurement platform employing tunable diode laser absorption spectroscopy ( TDLAS ). The TDLAS platform provides a novel approach to...conduct research in the exploration and development of fundamental hypersonic aerospace technologies. TDLAS experiments are scheduled for three of...team expects that the TDLAS measurement platform will achieve Technology Readiness Level 6 status (i.e., system/subsystem model or prototype

  6. Research Review: Laboratory Student Magazine Programs.

    Science.gov (United States)

    Wheeler, Tom

    1994-01-01

    Explores research on student-produced magazines at journalism schools, including the nature of various programs and curricular structures, ethical considerations, and the role of faculty advisors. Addresses collateral sources that provide practical and philosophical foundations for the establishment and conduct of magazine production programs.…

  7. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  8. Laboratory Directed Research and Development Program Assessment for FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report fulfills that requirement.

  9. Perspectives from Former Executives of the DOD Corporate Research Laboratories

    Science.gov (United States)

    2009-03-01

    private and public sectors. He served with Monsanto Company for 18 years in various research and development positions, starting at the research bench and...then holding various positions in management of research and development. Following his stay at Monsanto , Lyons joined the Department of Commerce’s...experience. At Monsanto , he observed that those individuals who took a fundamental approach to solving industrial problems and were able to publish the

  10. 76 FR 1212 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-01-07

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... areas of biomedical, behavioral and clinical science research. The panel meeting will be open to the...

  11. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-12-21

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... biomedical, behavioral, and clinical science research. The panel meeting will be open to the public for...

  12. Evaluation of Radiometers in Full-Time Use at the National Renewable Energy Laboratory Solar Radiation Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, S. M.; Myers, D. R.

    2008-12-01

    This report describes the evaluation of the relative performance of the complement of solar radiometers deployed at the National Renewable Energy Laboratory (NREL) Solar Radiation Research Laboratory (SRRL).

  13. Laboratory directed research and development 2006 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  14. Argonne National Laboratory research offers clues to Alzheimer's plaques

    CERN Multimedia

    2003-01-01

    Researchers from Argonne National Laboratory and the University of Chicago have developed methods to directly observe the structure and growth of microscopic filaments that form the characteristic plaques found in the brains of those with Alzheimer's Disease (1 page).

  15. Laboratory Directed Research and Development Program Activities for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  16. Laboratory Directed Research and Development Program Activities for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  17. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  18. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  19. A study of the effects that grouping laboratory partners based on logical thinking abilities have on their problem solving strategies in a general chemistry course

    Science.gov (United States)

    Nammouz, Minory Suhil

    2005-07-01

    The development of problem solving skills and strategies is generally of importance in science education and specifically in chemistry, and is usually assessed by traditional methods such as laboratories, homework, and examinations. However, for instructors, developing a deep understanding of how students solve the problems is difficult and very time consuming. One potential way to address this problem is an internet-based software package known as IMMEX (Interactive Multimedia Exercises). Originally developed at the UCLA Medical School, it has now been expanded to K-12 and college classrooms. IMMEX Problems are case-based and cover a wide range of subject areas. Using this software the students are able to navigate throughout the problem space by choosing the necessary items from a range given to them. The student is provided with immediate feedback; if the student chooses an incorrect answer, most problems will allow for a review of the problem space and submit a second. The IMMEX system tracks the strategies used through a search path map for each problem the student answers; then these data are collected and analyzed using artificial neural networks for pattern recognition. In the present study, students were allowed to stabilize on a problem solving strategy by working five problems before conclusions were drawn regarding their acquired strategies. The major difference now being that any changes in strategy that occurred during and after the intervention of group-work would be by a student that had previously settled on a preferred strategy. The effects of group composition on students' problem solving strategies were also studied. The results presented in this study support the use of collaborative learning as a method that improves students' problem solving strategies. It was found that a collaborative learning environment would not only improve students' problem solving strategies in the groups, but would also carry over their individual subsequent

  20. 1995 Laboratory-Directed Research and Development Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  1. The Johns Hopkins Hunterian Laboratory Philosophy: Mentoring Students in a Scientific Neurosurgical Research Laboratory.

    Science.gov (United States)

    Tyler, Betty M; Liu, Ann; Sankey, Eric W; Mangraviti, Antonella; Barone, Michael A; Brem, Henry

    2016-06-01

    After over 50 years of scientific contribution under the leadership of Harvey Cushing and later Walter Dandy, the Johns Hopkins Hunterian Laboratory entered a period of dormancy between the 1960s and early 1980s. In 1984, Henry Brem reinstituted the Hunterian Neurosurgical Laboratory, with a new focus on localized delivery of therapies for brain tumors, leading to several discoveries such as new antiangiogenic agents and Gliadel chemotherapy wafers for the treatment of malignant gliomas. Since that time, it has been the training ground for 310 trainees who have dedicated their time to scientific exploration in the lab, resulting in numerous discoveries in the area of neurosurgical research. The Hunterian Neurosurgical Laboratory has been a unique example of successful mentoring in a translational research environment. The laboratory's philosophy emphasizes mentorship, independence, self-directed learning, creativity, and people-centered collaboration, while maintaining productivity with a focus on improving clinical outcomes. This focus has been served by the diverse backgrounds of its trainees, both in regard to educational status as well as culturally. Through this philosophy and strong legacy of scientific contribution, the Hunterian Laboratory has maintained a positive and productive research environment that supports highly motivated students and trainees. In this article, the authors discuss the laboratory's training philosophy, linked to the principles of adult learning (andragogy), as well as the successes and the limitations of including a wide educational range of students in a neurosurgical translational laboratory and the phenomenon of combining clinical expertise with rigorous scientific training.

  2. Alternative methods for internal quality control in research laboratories for environmental analysis: a programme for the performance evaluation of equipment, methods and staff

    NARCIS (Netherlands)

    Wieling, J.; Bakkeren, H.A.; Peters, R.J.B.; Gils, W.J.C.G. van; Leer, E.W.B. de; Mulder, S.A.; Burg, P.A. van der; Renesse van Duivenbode, J.A.D. van

    1994-01-01

    In analytical research laboratories, the problem of quality assurance is more difficult to solve than in laboratories devoted exclusively to routine analysis: the former usually have to deal with a much greater variety of samples and may have to develop entirely new methods of analysis. For research

  3. Laboratory Directed Research and Development Program Assessment for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps

  4. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Romano, A.J.

    1992-12-01

    This report briefly discusses the following research: Advances in Geoexploration; Transvenous Coronary Angiography with Synchrotron X-Rays; Borehole Measurements of Global Warming; Molecular Ecology: Development of Field Methods for Microbial Growth Rate and Activity Measurements; A New Malaria Enzyme - A Potential Source for a New Diagnostic Test for Malaria and a Target for a New Antimalarial Drug; Basic Studies on Thoron and Thoron Precursors; Cloning of the cDNA for a Human Serine/Threonine Protein Kinase that is Activated Specifically by Double-Stranded DNA; Development of an Ultra-Fast Laser System for Accelerator Applications; Cluster Impact Fusion; Effect of a Bacterial Spore Protein on Mutagenesis; Structure and Function of Adenovirus Penton Base Protein; High Resolution Fast X-Ray Detector; Coherent Synchrotron Radiation Longitudinal Bunch Shape Monitor; High Grain Harmonic Generation Experiment; BNL Maglev Studies; Structural Investigations of Pt-Based Catalysts; Studies on the Cellular Toxicity of Cocaine and Cocaethylene; Human Melanocyte Transformation; Exploratory Applications of X-Ray Microscopy; Determination of the Higher Ordered Structure of Eukaryotic Chromosomes; Uranium Neutron Capture Therapy; Tunneling Microscopy Studies of Nanoscale Structures; Nuclear Techiques for Study of Biological Channels; RF Sources for Accelerator Physics; Induction and Repair of Double-Strand Breaks in the DNA of Human Lymphocytes; and An EBIS Source of High Charge State Ions up to Uranium.

  5. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  6. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  7. Laboratory Directed Research and Development annual report, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  8. Laboratory technology research - abstracts of FY 1997 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  9. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new

  10. Laboratory Directed Research and Development Program Assessment for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which

  11. Laboratory technology research: Abstracts of FY 1998 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  12. Laboratory directed research and development. FY 1995 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  13. Field Research Studying Whales in an Undergraduate Animal Behavior Laboratory

    Science.gov (United States)

    MacLaren, R. David; Schulte, Dianna; Kennedy, Jen

    2012-01-01

    This work describes a new field research laboratory in an undergraduate animal behavior course involving the study of whale behavior, ecology and conservation in partnership with a non-profit research organization--the Blue Ocean Society for Marine Conservation (BOS). The project involves two weeks of training and five weekend trips on whale watch…

  14. Integrating Interdisciplinary Research-Based Experiences in Biotechnology Laboratories

    Science.gov (United States)

    Iyer, Rupa S.; Wales, Melinda E.

    2012-01-01

    The increasingly interdisciplinary nature of today's scientific research is leading to the transformation of undergraduate education. In addressing these needs, the University of Houston's College of Technology has developed a new interdisciplinary research-based biotechnology laboratory curriculum. Using the pesticide degrading bacterium,…

  15. Use of laboratory animals in biomedical and behavioral research

    National Research Council Canada - National Science Library

    1988-01-01

    ... of Laboratory Animals in Biomedical and Behavioral Research Commission on Life Sciences National Research Council Institute of Medicine NATIONAL ACADEMY PRESS Washington, D.C. 1988 Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, authoritative the typesetting-specific created from the as publ...

  16. Current safety practices in nano-research laboratories in China.

    Science.gov (United States)

    Zhang, Can; Zhang, Jing; Wang, Guoyu

    2014-06-01

    China has become a key player in the global nanotechnology field, however, no surveys have specifically examined safety practices in the Chinese nano-laboratories in depth. This study reports results of a survey of 300 professionals who work in research laboratories that handle nanomaterials in China. We recruited participants at three major nano-research laboratories (which carry out research in diverse fields such as chemistry, material science, and biology) and the nano-chemistry session of the national meeting of the Chinese Chemical Society. Results show that almost all nano-research laboratories surveyed had general safety regulations, whereas less than one third of respondents reported having nanospecific safety rules. General safety measures were in place in most surveyed nano-research laboratories, while nanospecific protective measures existed or were implemented less frequently. Several factors reported from the scientific literature including nanotoxicology knowledge gaps, technical limitations on estimating nano-exposure, and the lack of nano-occupational safety legislation may contribute to the current state of affairs. With these factors in mind and embracing the precautionary principle, we suggest strengthening or providing nanosafety training (including raising risk awareness) and establishing nanosafety guidelines in China, to better protect personnel in the nano-workplace.

  17. Solving problems in social-ecological systems: definition, practice and barriers of transdisciplinary research.

    Science.gov (United States)

    Angelstam, Per; Andersson, Kjell; Annerstedt, Matilda; Axelsson, Robert; Elbakidze, Marine; Garrido, Pablo; Grahn, Patrik; Jönsson, K Ingemar; Pedersen, Simen; Schlyter, Peter; Skärbäck, Erik; Smith, Mike; Stjernquist, Ingrid

    2013-03-01

    Translating policies about sustainable development as a social process and sustainability outcomes into the real world of social-ecological systems involves several challenges. Hence, research policies advocate improved innovative problem-solving capacity. One approach is transdisciplinary research that integrates research disciplines, as well as researchers and practitioners. Drawing upon 14 experiences of problem-solving, we used group modeling to map perceived barriers and bridges for researchers' and practitioners' joint knowledge production and learning towards transdisciplinary research. The analysis indicated that the transdisciplinary research process is influenced by (1) the amount of traditional disciplinary formal and informal control, (2) adaptation of project applications to fill the transdisciplinary research agenda, (3) stakeholder participation, and (4) functional team building/development based on self-reflection and experienced leadership. Focusing on implementation of green infrastructure policy as a common denominator for the delivery of ecosystem services and human well-being, we discuss how to diagnose social-ecological systems, and use knowledge production and collaborative learning as treatments.

  18. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  19. How can we improve problem-solving in undergraduate biology? Applying lessons from 30 years of physics education research

    CERN Document Server

    Hoskinson, Anne-Marie; Knight, Jennifer K

    2012-01-01

    Modern biological problems are complex. If students are to successfully grapple with such problems as scientists and citizens, they need to have practiced solving authentic, complex problems during their undergraduate years. Physics education researchers have investigated student problem-solving for the last three decades. Although the surface features and content of biology problems differ from physics problems, teachers of both sciences want students to learn to explain patterns and processes in the natural world and to make predictions about system behaviors. After surveying literature on problem-solving in physics and biology, we propose how biology education researchers could apply research-supported pedagogical techniques from physics to enhance biology students' problem-solving. First, we characterize the problems that biology students are typically asked to solve. We then describe the development of research-validated physics problem-solving curricula. Finally, we propose how biology scholars can appl...

  20. Oak Ridge National Laboratory Research Reactor Experimenters' Guide

    Energy Technology Data Exchange (ETDEWEB)

    Cagle, C.D. (comp.)

    1982-04-01

    The Oak Ridge National Laboratory (ORNL) operates six research reactors dedicated to research and development work as well as radioisotope production. These reactors are used by ORNL and qualified non-ORNL research and development groups. The purpose of this report is to provide information to research personnel concerning the facilities and the ORNL research and services groups available to assist in the design, fabrication, operation, and post-operation examination of irradiation assemblies. Safety and operability reviews and quality assurance requirements are also described.

  1. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  2. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  3. Micro-Cognitive-Processes at the Interface Research-Education-Problem Solving

    Directory of Open Access Journals (Sweden)

    Josiane Caron-Pargue

    2013-02-01

    Full Text Available A first part of this paper gives a rough picture of some difficulties encountered in research, in education, and in problem solving, for integrating them to one another. One can notice a much too global characterization of cognitive processes and a lack in the characterization of semiotic aspects. A second part analyses some theoretical limits to this integration. They are mainly due to the current conception of memories unable to take into consideration the micro-cognitive-processes at work under the reorganizations of knowledge when actualized within the situation. A third part presents a way toward the integration research-education-problem solving, relying on a cognitive approach of Culioli's enunciative theory of language, and presents some of the author's data. Micro-cognitive-processes are depicted in terms of the construction of aggregates (declarative versus procedural ones, standing at different levels of internalization and externalization, and of different processes of detachment from the situation. Then several kinds of interactions allow an on-line identification of the constraints of the task. The characterization of these constraints seems basic for each of the considered areas, research, education, and problem solving.

  4. Air conditioning a vaccine laboratory. [Connaught Medical Research Laboratory, Toronto, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Ross J.

    1976-05-01

    In 1974, the new Bacterial Vaccine Building of Connaught Medical Research Laboratories, Toronto, Canada, was opened to produce such vaccines as pertussis, typhoid, paratyphoids, and cholera and such toxoids as staphylococcus, diphtheria, and tetanus. It also produces other medicinal products. The layout of the complex and the air conditioning system necessary in all zones are described and schematically shown. (MCW)

  5. The changing role of the National Laboratories in materials research

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, J.; Fluss, M.

    1995-06-02

    The role of the National Laboratories is summarized from the era of post World War II to the present time. The U.S. federal government policy for the National Laboratories and its influence on their materials science infrastructure is reviewed with respect to: determining overall research strategies, various initiatives to interact with industry (especially in recent years), building facilities that serve the nation, and developing leading edge research in the materials sciences. Despite reductions in support for research in the U.S. in recent years, and uncertainties regarding the specific policies for R&D in the U.S., there are strong roles for materials research at the National Laboratories. These roles will be centered on the abilities of the National Laboratories to field multidisciplinary teams, the use of unique cutting edge facilities, a focus on areas of strength within each of the labs, increased teaming and partnerships, and the selection of motivated research areas. It is hoped that such teaming opportunities will include new alliances with China, in a manner similar, perhaps, to those recently achieved between the U.S. and other countries.

  6. Laboratory directed research and development annual report. Fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. This report represents Pacific Northwest Laboratory`s (PNL`s) LDRD report for FY 1994. During FY 1994, 161 LDRD projects were selected for support through PNL`s LDRD project selection process. Total funding allocated to these projects was $13.7 million. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our {open_quotes}core competencies.{close_quotes} Currently, PNL`s core competencies have been identified as integrated environmental research; process science and engineering; energy systems development. In this report, the individual summaries of LDRD projects (presented in Section 1.0) are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. Projects within the three core competency areas were approximately 91.4 % of total LDRD project funding at PNL in FY 1994. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. Funding allocated to each of these projects is typically $35K or less. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program, the management process used for the program, and project summaries for each LDRD project.

  7. Smart Electronic Laboratory Notebooks for the NIST Research Environment.

    Science.gov (United States)

    Gates, Richard S; McLean, Mark J; Osborn, William A

    2015-01-01

    Laboratory notebooks have been a staple of scientific research for centuries for organizing and documenting ideas and experiments. Modern laboratories are increasingly reliant on electronic data collection and analysis, so it seems inevitable that the digital revolution should come to the ordinary laboratory notebook. The most important aspect of this transition is to make the shift as comfortable and intuitive as possible, so that the creative process that is the hallmark of scientific investigation and engineering achievement is maintained, and ideally enhanced. The smart electronic laboratory notebooks described in this paper represent a paradigm shift from the old pen and paper style notebooks and provide a host of powerful operational and documentation capabilities in an intuitive format that is available anywhere at any time.

  8. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  9. Laboratory Directed Research and Development Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  10. Laboratory Directed Research and Development Program FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  11. Laboratory Directed Research and Development Program FY 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating

  12. Laboratory directed research and development FY98 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ayat, R; Holzrichter, J

    1999-05-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs.

  13. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  14. Laboratory directed research and development: FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  15. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Norris E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. This report is the transcript of his talk.

  16. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Norris E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. Below is the transcript of his talk.

  17. Laboratory Directed Research and Development FY 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  18. Laboratory directed research development annual report. Fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview of the research and development program, program management, program funding, and Fiscal Year 1997 projects.

  19. Laboratory Directed Research and Development LDRD-FY-2011

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  20. Laboratory Directed Research and Development FY2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with

  1. Naval Arctic Research Laboratory (NARL) Subsurface Containment Berm Investigation

    Science.gov (United States)

    2015-10-01

    The former Navy Arctic Research Laboratory Airstrip Site in Barrow, Alaska, has a history of fuel spills. Various methods have been used to re- mediate ...or [− + −]) were ab- sent directly under the insulation/plywood and on the shoulder areas im- mediately adjacent to the insulation/plywood. The lack

  2. Flocculation of venereal disease research laboratory reagent by Helicobacter pylori.

    Science.gov (United States)

    Müller, K D; von Recklinghausen, G; Heintschel von Heinegg, E; Ansorg, R

    1991-09-01

    Helicobacter pylori strains flocculated with Venereal Disease Research Laboratory (VDRL) reagent in a glass slide test. Other pathogenic bacterial and fungal strains were nonreactive. The specific VDRL reaction property of Helicobacter pylori indicates an affinity of the cells for lipoidal substances, and can be used as a diagnostic aid for species identification.

  3. Fermilab a laboratory at the frontier of research

    CERN Document Server

    Gillies, James D

    2002-01-01

    Since its foundation in 1967, creeping urbanization has taken away some of Fermilab's remoteness, but the famous buffalo still roam, and farm buildings evocative of frontier America dot the landscape - appropriately for a laboratory at the high-energy frontier of modern research. Topics discussed are the Tevatron, detector upgrades, the neutrino programme, Fermilab and the LHC and the non-accelerator programme.

  4. Laboratory directed research and development program FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  5. The Laboratory Rat as an Animal Model for Osteoporosis Research

    OpenAIRE

    Lelovas, Pavlos P; Xanthos, Theodoros T.; Thoma, Sofia E; Lyritis, George P; Dontas, Ismene A

    2008-01-01

    Osteoporosis is an important systemic disorder, affecting mainly Caucasian women, with a diverse and multifactorial etiology. A large variety of animal species, including rodents, rabbits, dogs, and primates, have been used as animal models in osteoporosis research. Among these, the laboratory rat is the preferred animal for most researchers. Its skeleton has been studied extensively, and although there are several limitations to its similarity to the human condition, these can be overcome th...

  6. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  7. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-05-14

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Research and Development and Clinical Science Research and Development Services Scientific Merit Review... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to the...

  8. Excursions in classical analysis pathways to advanced problem solving and undergraduate research

    CERN Document Server

    Chen, Hongwei

    2010-01-01

    Excursions in Classical Analysis introduces undergraduate students to advanced problem solving and undergraduate research in two ways. Firstly, it provides a colourful tour of classical analysis which places a wide variety of problems in their historical context. Secondly, it helps students gain an understanding of mathematical discovery and proof. In demonstrating a variety of possible solutions to the same sample exercise, the reader will come to see how the connections between apparently inapplicable areas of mathematics can be exploited in problem-solving. This book will serve as excellent preparation for participation in mathematics competitions, as a valuable resource for undergraduate mathematics reading courses and seminars and as a supplement text in a course on analysis. It can also be used in independent study, since the chapters are free-standing.

  9. Laboratory Directed Research and Development Program Activities for FY 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in

  10. Laboratory-Directed Research and Development 2016 Summary Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Julie Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclear Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy

  11. Laboratory directed research and development fy1999 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ayat, R A

    2000-04-11

    The Lawrence Livermore National Laboratory (LLNL) was founded in 1952 and has been managed since its inception by the University of California (UC) for the U.S. Department of Energy (DOE). Because of this long association with UC, the Laboratory has been able to recruit a world-class workforce, establish an atmosphere of intellectual freedom and innovation, and achieve recognition in relevant fields of knowledge as a scientific and technological leader. This environment and reputation are essential for sustained scientific and technical excellence. As a DOE national laboratory with about 7,000 employees, LLNL has an essential and compelling primary mission to ensure that the nation's nuclear weapons remain safe, secure, and reliable and to prevent the spread and use of nuclear weapons worldwide. The Laboratory receives funding from the DOE Assistant Secretary for Defense Programs, whose focus is stewardship of our nuclear weapons stockpile. Funding is also provided by the Deputy Administrator for Defense Nuclear Nonproliferation, many Department of Defense sponsors, other federal agencies, and the private sector. As a multidisciplinary laboratory, LLNL has applied its considerable skills in high-performance computing, advanced engineering, and the management of large research and development projects to become the science and technology leader in those areas of its mission responsibility. The Laboratory Directed Research and Development (LDRD) Program was authorized by the U.S. Congress in 1984. The Program allows the Director of each DOE laboratory to fund advanced, creative, and innovative research and development (R&D) activities that will ensure scientific and technical vitality in the continually evolving mission areas at DOE and the Laboratory. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies, which attract the most qualified scientists and engineers. The LDRD Program

  12. Laboratory Directed Research and Development Program. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  13. Laboratory Directed Research and Development Program FY98

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  14. Laboratory Directed Research and Development Program. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  15. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  16. FY2007 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  17. Guidelines for euthanasia of laboratory animals used in biomedical research

    Directory of Open Access Journals (Sweden)

    Adina Baias,

    2012-06-01

    Full Text Available Laboratory animals are used in several fields of science research, especially in biology, medicine and veterinary medicine. The majority of laboratory animals used in research are experimental models that replace the human body in study regarding pharmacological or biological safety products, studies conducted for a betterunderstanding of oncologic processes, toxicology, genetic studies or even new surgical techniques. Experimental protocols include a stage in which animals are euthanized in order to remove organs and tissues,or for no unnecessary pain and suffering of animals (humane endpoints or to mark the end of research. The result of euthanasia techniques is a rapid loss of consciousness followed by cardiac arrest, respiratory arrest and disruption of brain activity. Nowadays, the accepted euthanasia techniques can use chemicals (inhalant agents like: carbon dioxide, nitrogen or argon, overdoses of injectable anesthetics or physical methods (decapitation, cervical spine dislocation, stunning, gunshot, pitching.

  18. Laboratory Directed Research and Development Program FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hansen (Ed.), Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  19. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  20. FY03 Engineering Technology Reports Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C

    2004-03-05

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2003, and exemplifies Engineering's 50-year history of researching and developing the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Engineering's investment in technologies is carried out through two programs, the LDRD program and the ''Tech Base'' program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge, or that require a significant level of research, or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice.'' Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2003, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the science and technology investments for the Directorate. The Centers represent technology

  1. Radiological Characterization and Final Facility Status Report Tritium Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T.B.; Gorman, T.P.

    1996-08-01

    This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC&FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate.

  2. Tritium monitoring at the Sandia Tritium Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, T.K.

    1978-10-01

    Sandia Laboratories at Livermore, California, is presently beginning operation of a Tritium Research Laboratory (TRL). The laboratory incorporates containment and cleanup facilities such that any unscheduled tritium release is captured rather than vented to the atmosphere. A sophisticated tritium monitoring system is in use at the TRL to protect operating personnel and the environment, as well as ensure the safe and effective operation of the TRL decontamination systems. Each monitoring system has, in addition to a local display, a display in a centralized control room which, when coupled room which, when coupled with the TRL control computer, automatically provides an immediate assessment of the status of the entire facility. The computer controls a complex alarm array status of the entire facility. The computer controls a complex alarm array and integrates and records all operational and unscheduled tritium releases.

  3. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In

  4. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  5. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-05-02

    ... Development and Clinical Science Research and Development Services Scientific Merit Review Board, Notice of... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... science research. The panel meetings will be open to the public for approximately one-half hour at the...

  6. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  7. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  8. FY04 Engineering Technology Reports Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, R M

    2005-01-27

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2004, and exemplifies Engineering's more than 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investment in technologies is carried out through two programs, the ''Tech Base'' program and the LDRD program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply technologies to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2004, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the long-term science and technology investments for the Directorate. The Centers represent technologies that have been identified as

  9. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  10. Research in the Mont Terri Rock laboratory: Quo vadis?

    Science.gov (United States)

    Bossart, Paul; Thury, Marc

    During the past 10 years, the 12 Mont Terri partner organisations ANDRA, BGR, CRIEPI, ENRESA, FOWG (now SWISSTOPO), GRS, HSK, IRSN, JAEA, NAGRA, OBAYASHI and SCK-CEN have jointly carried out and financed a research programme in the Mont Terri Rock Laboratory. An important strategic question for the Mont Terri project is what type of new experiments should be carried out in the future. This question has been discussed among partner delegates, authorities, scientists, principal investigators and experiment delegates. All experiments at Mont Terri - past, ongoing and future - can be assigned to the following three categories: (1) process and mechanism understanding in undisturbed argillaceous formations, (2) experiments related to excavation- and repository-induced perturbations and (3) experiments related to repository performance during the operational and post-closure phases. In each of these three areas, there are still open questions and hence potential experiments to be carried out in the future. A selection of key issues and questions which have not, or have only partly been addressed so far and in which the project partners, but also the safety authorities and other research organisations may be interested, are presented in the following. The Mont Terri Rock Laboratory is positioned as a generic rock laboratory, where research and development is key: mainly developing methods for site characterisation of argillaceous formations, process understanding and demonstration of safety. Due to geological constraints, there will never be a site specific rock laboratory at Mont Terri. The added value for the 12 partners in terms of future experiments is threefold: (1) the Mont Terri project provides an international scientific platform of high reputation for research on radioactive waste disposal (= state-of-the-art research in argillaceous materials); (2) errors are explicitly allowed (= rock laboratory as a “playground” where experience is often gained through

  11. Guided-Inquiry Based Laboratory Instruction: Investigation of Critical Thinking Skills, Problem Solving Skills, and Implementing Student Roles in Chemistry

    Science.gov (United States)

    Gupta, Tanya

    2012-01-01

    Recent initiatives in the laboratory curriculum have encouraged an inquiry-based approach to learning and teaching in the laboratory. It has been argued that laboratory instruction should not just be hands-on, but it should portray the essence of inquiry through the process of experiential learning and reflective engagement in collaboration with…

  12. Environmental survey at Lucas Heights Research Laboratories, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, E.L.; Looz, T.

    1995-04-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1993. No activity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne discharges during this period is estimated to be less than 0.01 mSv, which is one per cent of the dose limit for long term exposure that is recommended by the National Health and Medical Research Council. A list of previous environmental survey reports is attached. 22 refs., 21 tabs., 4 figs.

  13. Environmental survey at Lucas Heights Research Laboratories, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, E.L.; Looz, T.

    1995-04-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1993. No activity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne discharges during this period is estimated to be less than 0.01 mSv, which is one per cent of the dose limit for long term exposure that is recommended by the National Health and Medical Research Council. A list of previous environmental survey reports is attached. 22 refs., 21 tabs., 4 figs.

  14. 2016 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-25

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectives and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven new

  15. Study of the comprehension of the scientific method by members of a university health research laboratory.

    Science.gov (United States)

    Burlamaque-Neto, A C; Santos, G R; Lisbôa, L M; Goldim, J R; Machado, C L B; Matte, U; Giugliani, R

    2012-02-01

    In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research.

  16. Study of the comprehension of the scientific method by members of a university health research laboratory

    Directory of Open Access Journals (Sweden)

    A.C. Burlamaque-Neto

    2012-02-01

    Full Text Available In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students’ concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students’ opinions about the characteristics of a successful researcher. Students’ difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research.

  17. Federal laboratory nondestructive testing research and development applicable to industry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.A.; Moore, N.L.

    1987-02-01

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  18. Benchmarking International High-Technology Research Laboratories' Marketing in Europe

    OpenAIRE

    Salonen, Suvi-Anna

    2014-01-01

    The thesis studies current marketing conventions of international high-technology research laboratories in Europe and is done for the UNELMA-project. UNELMA is a joint project between Finnish and Swedish universities and institutions funded by the European Union, the Provincial Government of Norbotten, Lapin Liitto and Interreg IV A. The project wishes to create a network of professional services which will benefit companies in the Bothnian Arc between Finland and Sweden. The study itself...

  19. Impactful times memories of 60 years of shock wave research at Sandia National Laboratories

    CERN Document Server

    Asay, James R; Lawrence, R Jeffery; Sweeney, Mary Ann

    2017-01-01

    This book presents a history of shock compression science, including development of experimental, material modeling, and hydrodynamics code technologies over the past six decades at Sandia National Laboratories. The book is organized into a discussion of major accomplishments by decade with over 900 references, followed by a unique collection of 45 personal recollections detailing the trials, tribulations, and successes of building a world-class organization in the field. It explains some of the challenges researchers faced and the gratification they experienced when a discovery was made. Several visionary researchers made pioneering advances that integrated these three technologies into a cohesive capability to solve complex scientific and engineering problems. What approaches worked, which ones did not, and the applications of the research are described. Notable applications include the turret explosion aboard the USS Iowa and the Shoemaker-Levy comet impact on Jupiter. The personal anecdotes and recollec...

  20. Dental Biofilm and Laboratory Microbial Culture Models for Cariology Research

    Directory of Open Access Journals (Sweden)

    Ollie Yiru Yu

    2017-06-01

    Full Text Available Dental caries form through a complex interaction over time among dental plaque, fermentable carbohydrate, and host factors (including teeth and saliva. As a key factor, dental plaque or biofilm substantially influence the characteristic of the carious lesions. Laboratory microbial culture models are often used because they provide a controllable and constant environment for cariology research. Moreover, they do not have ethical problems associated with clinical studies. The design of the microbial culture model varies from simple to sophisticated according to the purpose of the investigation. Each model is a compromise between the reality of the oral cavity and the simplification of the model. Researchers, however, can still obtain meaningful and useful results from the models they select. Laboratory microbial culture models can be categorized into a closed system and an open system. Models in the closed system have a finite supply of nutrients, and are also simple and cost-effective. Models in the open system enabled the supply of a fresh culture medium and the removal of metabolites and spent culture liquid simultaneously. They provide better regulation of the biofilm growth rate than the models in the closed system. This review paper gives an overview of the dental plaque biofilm and laboratory microbial culture models used for cariology research.

  1. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals that were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.

  2. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  3. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  4. Laboratory-directed research and development: FY 1996 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  5. Intertech Corporation Equipment for Laboratory Analysis and Scientific Research

    Directory of Open Access Journals (Sweden)

    Romanov, S.N.

    2014-03-01

    Full Text Available Intertech Corporation is an American company supplying instruments in Ukraine for laboratory analysis and scientific research for 15 years. The Company is an exclusive dealer of Thermo Fisher Scientific, TA Instruments and some other companies. Intertech Corporation offers instrumentation for elemental and molecular analysis, surface and nanostructure investigation, thermal analysis, sample preparation and provides certified service and methodological sup port for supplied equipment. There are two service centers in Ukraine — in Kyiv and Donetsk. More than 100 Ukrainian enterprises use instrumentation supplied by Intertech Corporation including metallurgical, machine-building, chemical and food industries, academic and research institutions, medical institutions and ecology inspections.

  6. 1996 Laboratory directed research and development annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P. [comp.

    1997-04-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  7. Laboratory Directed Research and Development Program, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  8. The need for econometric research in laboratory animal operations.

    Science.gov (United States)

    Baker, David G; Kearney, Michael T

    2015-06-01

    The scarcity of research funding can affect animal facilities in various ways. These effects can be evaluated by examining the allocation of financial resources in animal facilities, which can be facilitated by the use of mathematical and statistical methods to analyze economic problems, a discipline known as econometrics. The authors applied econometrics to study whether increasing per diem charges had a negative effect on the number of days of animal care purchased by animal users. They surveyed animal numbers and per diem charges at 20 research institutions and found that demand for large animals decreased as per diem charges increased. The authors discuss some of the challenges involved in their study and encourage research institutions to carry out more robust econometric studies of this and other economic questions facing laboratory animal research.

  9. Finding neurosyphilis without the Venereal Disease Research Laboratory test.

    Science.gov (United States)

    MacLean, S; Luger, A

    1996-01-01

    The cerebrospinal fluid (CSF)-Venereal Disease Research Laboratory (VDRL) test is only 27% sensitive for diagnosing neurosyphilis. Discriminant analysis, used on 124 patients, shows that other commonly used laboratory tests can, in combination, identify 87% of patients with neurosyphilis with 94% specificity. The insensitivity of the CSF-VDRL (27% in persons with neurosyphilis) and the foreseen greater need to identify and treat neurosyphilis in the era of human immunodeficiency virus caused us to analyze the serum and cerebrospinal fluid results of 73 patients with syphilis and of 51 patients with clinically diagnosed neurosyphilis. Discriminant analysis was applied to different sets of laboratory tests to find the combination of test results best able to predict retrospectively the clinical diagnosis of syphilis or neurosyphilis, without reference to the CSF-VDRL. The predicting function averages 94% specificity and 87% sensitivity. Test result variables considered together are: CSF-FTA-ABS, serum FTA-ABS, CSF-TPHA, serum TPHA, and CSF cells. The authors conclude that clinicians or laboratories can, independently of the CSF-VDRL, compute a score showing whether the results of a set of commonly used tests suggest neurosyphilis in a patient.

  10. Modifying a Research-Based Problem-Solving Intervention to Improve the Problem-Solving Performance of Fifth and Sixth Graders With and Without Learning Disabilities.

    Science.gov (United States)

    Krawec, Jennifer; Huang, Jia

    2016-05-10

    The purpose of the present study was to test the efficacy of a modified cognitive strategy instructional intervention originally developed to improve the mathematical problem solving of middle and high school students with learning disabilities (LD). Fifth and sixth grade general education mathematics teachers and their students of varying ability (i.e., average-achieving [AA] students, low-achieving [LA] students, and students with LD) participated in the research study. Several features of the intervention were modified, including (a) explicitness of instruction, (b) emphasis on meta-cognition, (c) focus on problem-solving prerequisites, (d) extended duration of initial intervention, and (e) addition of visual supports. General education math teachers taught all instructional sessions to their inclusive classrooms. Curriculum-based measures (CBMs) of math problem solving were administered five times over the course of the year. A multilevel model (repeated measures nested within students and students nested within schools) was used to analyze student progress on CBMs. Though CBM scores in the intervention group were initially lower than that of the comparison group, intervention students improved significantly more in the first phase, with no differences in the second phase. Implications for instruction are discussed as well as directions for future research.

  11. FORT KEOGH LIVESTOCK & RANGE RESEARCH LABORATORY, U.S. DEPARTMENT OF AGRICULTURE-AGRICULTRAL RESEARCH SERVICE

    Science.gov (United States)

    Article describes Fort Keogh Livestock and Range Research Laboratory to an audience of scientific researchers (i.e. ecologists) interested in the interactions among organisms and their environment. Article outlines the facilities, environment, history, and ongoing types of research. Emphasis is on...

  12. CSI flight experiment projects of the Naval Research Laboratory

    Science.gov (United States)

    Fisher, Shalom

    1993-02-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  13. Zoonoses of occupational health importance in contemporary laboratory animal research.

    Science.gov (United States)

    Hankenson, F Claire; Johnston, Nancy A; Weigler, Benjamin J; Di Giacomo, Ronald F

    2003-12-01

    In contemporary laboratory animal facilities, workplace exposure to zoonotic pathogens, agents transmitted to humans from vertebrate animals or their tissues, is an occupational hazard. The primary (e.g., macaques, pigs, dogs, rabbits, mice, and rats) and secondary species (e.g., sheep, goats, cats, ferrets, and pigeons) of animals commonly used in biomedical research, as classified by the American College of Laboratory Animal Medicine, are established or potential hosts for a large number of zoonotic agents. Diseases included in this review are principally those wherein a risk to biomedical facility personnel has been documented by published reports of human cases in laboratory animal research settings, or under reasonably similar circumstances. Diseases are listed alphabetically, and each section includes information about clinical disease, transmission, occurrence, and prevention in animal reservoir species and humans. Our goal is to provide a resource for veterinarians, health-care professionals, technical staff, and administrators that will assist in the design and on-going evaluation of institutional occupational health and safety programs.

  14. Governing solar geoengineering research as it leaves the laboratory.

    Science.gov (United States)

    Parker, Andy

    2014-12-28

    One of the greatest controversies in geoengineering policy concerns the next stages of solar radiation management research, and when and how it leaves the laboratory. Citing numerous risks and concerns, a range of prominent commentators have called for field experiments to be delayed until there is formalized research governance, such as an international agreement. As a piece of pragmatic policy analysis, this paper explores the practicalities and implications of demands for 'governance before research'. It concludes that 'governance before research' is a desirable goal, but that a delay in experimentation-a moratorium-would probably be an ineffective and counterproductive way to achieve it. Firstly, it is very unlikely that a moratorium could be imposed. Secondly, even if it were practicable it seems that a temporary ban on field experiments would have at best a mixed effect addressing the main risks and concerns, while blocking and stigmatizing safe research and delaying the development of good governance practices from learning by doing. The paper suggests a number of steps to ensure 'governance before research' that can be taken in the absence of an international agreement or national legislation, emphasizing the roles of researchers and research funders in developing and implementing good practices.

  15. Idaho National Laboratory Directed Research and Development FY-2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are

  16. Using the Human Systems Simulation Laboratory at Idaho National Laboratory for Safety Focused Research

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Jeffrey .C; Boring, Ronald L.

    2016-07-01

    Under the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program, researchers at Idaho National Laboratory (INL) have been using the Human Systems Simulation Laboratory (HSSL) to conduct critical safety focused Human Factors research and development (R&D) for the nuclear industry. The LWRS program has the overall objective to develop the scientific basis to extend existing nuclear power plant (NPP) operating life beyond the current 60-year licensing period and to ensure their long-term reliability, productivity, safety, and security. One focus area for LWRS is the NPP main control room (MCR), because many of the instrumentation and control (I&C) system technologies installed in the MCR, while highly reliable and safe, are now difficult to replace and are therefore limiting the operating life of the NPP. This paper describes how INL researchers use the HSSL to conduct Human Factors R&D on modernizing or upgrading these I&C systems in a step-wise manner, and how the HSSL has addressed a significant gap in how to upgrade systems and technologies that are built to last, and therefore require careful integration of analog and new advanced digital technologies.

  17. Laboratory Directed Research and Development FY2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High

  18. Aespoe hard rock laboratory. Current research projects 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a `dress rehearsal` for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book `Aespoe Hard Rock Laboratory - 10 years of Research` published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  19. The Usefulness of Qualitative and Quantitative Approaches and Methods in Researching Problem-Solving Ability in Science Education Curriculum

    Science.gov (United States)

    Eyisi, Daniel

    2016-01-01

    Research in science education is to discover the truth which involves the combination of reasoning and experiences. In order to find out appropriate teaching methods that are necessary for teaching science students problem-solving skills, different research approaches are used by educational researchers based on the data collection and analysis…

  20. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  1. Problem solving in physics: research review, analysis, and a methodological proposal

    Directory of Open Access Journals (Sweden)

    Maria Helena Fávero

    2001-05-01

    Full Text Available This article presents a literature review on problem solving in Physics based on the scientific articles published in periodicals of the related field of study. The articles considered for this study were published in the period between the end of the 70`s until 1999. A categorization of the publications , according to the issue investigated, the theoretical background used, the research method adopted, the results and conclusions are considered as a starting point in order to present a research profile of the field of study. Next, this profile is discussed and analyzed , pointing out the convergent aspects that characterize the field. Taking this analysis into account, the following thesis (based on Fávero`s proposal, 2000 is defended: in order to generate tools for the teaching practice of Physics through the study of problem solving, a method that substitutes the idea of knowledge transmission in the communication processes that takes place in the classroom should be developed. This method should comprise the idea of interlocution (Vion, 2000 which focuses on social interaction as a means to reveal metacognitive regulations of the subjects, pariticipants in the process, and their development of awareness in relation to a conceptual field (Vergnaud, 1990 – Physics, in this case. The analysis of these processes considers the verbal exchanges among the subjects (Bromberg & Chabrol, 1999 developed in the situation of interaction. This thesis is supported by the articulation of concepts in Psychology, including its interface with linguistics, such as conceptual field, development of awareness and acts of speech, which are reconsidered in this study.

  2. How can we improve problem solving in undergraduate biology? Applying lessons from 30 years of physics education research.

    Science.gov (United States)

    Hoskinson, A-M; Caballero, M D; Knight, J K

    2013-06-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.

  3. Establishment of a clean chemistry laboratory at JAERI. Clean laboratory for environmental analysis and research (CLEAR)

    Energy Technology Data Exchange (ETDEWEB)

    Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-02-01

    The JAERI has established a facility with a cleanroom: the Clean Laboratory for Environmental Analysis and Research (CLEAR). This report is an overview of the design, construction and performance evaluation of the CLEAR in the initial stage of the laboratory operation in June 2001. The CLEAR is a facility to be used for analyses of ultra trace amounts of nuclear materials in environmental samples for the safeguards, for the CTBT verification and for researches on environmental sciences. One of the special features of the CLEAR is that it meets double requirements of a cleanroom and for handling of nuclear materials. As another feature of the CLEAR, much attention was paid to the construction materials of the cleanroom for trace analysis of metal elements using considerable amounts of corrosive acids. The air conditioning and purification system, specially designed experimental equipment to provide clean work surfaces, utilities and safety systems are also demonstrated. The potential contamination from the completed cleanroom atmosphere during the analytical procedure was evaluated. It can be concluded that the CLEAR has provided a suitable condition for reliable analysis of ultra trace amounts of nuclear materials and other heavy elements in environmental samples. (author)

  4. Establishment of a clean chemistry laboratory at JAERI. Clean laboratory for environmental analysis and research (CLEAR)

    Energy Technology Data Exchange (ETDEWEB)

    Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-02-01

    The JAERI has established a facility with a cleanroom: the Clean Laboratory for Environmental Analysis and Research (CLEAR). This report is an overview of the design, construction and performance evaluation of the CLEAR in the initial stage of the laboratory operation in June 2001. The CLEAR is a facility to be used for analyses of ultra trace amounts of nuclear materials in environmental samples for the safeguards, for the CTBT verification and for researches on environmental sciences. One of the special features of the CLEAR is that it meets double requirements of a cleanroom and for handling of nuclear materials. As another feature of the CLEAR, much attention was paid to the construction materials of the cleanroom for trace analysis of metal elements using considerable amounts of corrosive acids. The air conditioning and purification system, specially designed experimental equipment to provide clean work surfaces, utilities and safety systems are also demonstrated. The potential contamination from the completed cleanroom atmosphere during the analytical procedure was evaluated. It can be concluded that the CLEAR has provided a suitable condition for reliable analysis of ultra trace amounts of nuclear materials and other heavy elements in environmental samples. (author)

  5. PDC (polycrystalline diamond compact) bit research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Glowka, D.A.

    1989-06-01

    From the beginning of the geothermal development program, Sandia has performed and supported research into polycrystalline diamond compact (PDC) bits. These bits are attractive because they are intrinsically efficient in their cutting action (shearing, rather than crushing) and they have no moving parts (eliminating the problems of high-temperature lubricants, bearings, and seals.) This report is a summary description of the analytical and experimental work done by Sandia and our contractors. It describes analysis and laboratory tests of individual cutters and complete bits, as well as full-scale field tests of prototype and commercial bits. The report includes a bibliography of documents giving more detailed information on these topics. 26 refs.

  6. Tritium research laboratory cleanup and transition project final report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.J.

    1997-02-01

    This Tritium Research Laboratory Cleanup and Transition Project Final Report provides a high-level summary of this project`s multidimensional accomplishments. Throughout this report references are provided for in-depth information concerning the various topical areas. Project related records also offer solutions to many of the technical and or administrative challenges that such a cleanup effort requires. These documents and the experience obtained during this effort are valuable resources to the DOE, which has more than 1200 other process contaminated facilities awaiting cleanup and reapplication or demolition.

  7. Oak Ridge National Laboratory Research Reactor Experimenters' Guide

    Energy Technology Data Exchange (ETDEWEB)

    Cagle, C.D. (comp.)

    1982-10-01

    The Oak Ridge National Laboratory has three multipurpose research reactors which accommodate testing loops, target irradiations, and beam-type experiments. Since the experiments must share common or similar facilities and utilities, be designed and fabricated by the same groups, and meet the same safety criteria, certain standards for these have been developed. These standards deal only with those properties from which safety and economy of time and money can be maximized and do not relate to the intent of the experiment or quality of the data obtained. The necessity for, and the limitations of, the standards are discussed; and a compilation of general standards is included.

  8. Laboratory directed research and development annual report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2004. In addition to a programmatic and financial overview, the report includes progress reports from 352 individual R and D projects in 15 categories. The 15 categories are: (1) Advanced Concepts; (2) Advanced Manufacturing; (3) Biotechnology; (4) Chemical and Earth Sciences; (5) Computational and Information Sciences; (6) Differentiating Technologies; (7) Electronics and Photonics; (8) Emerging Threats; (9) Energy and Critical Infrastructures; (10) Engineering Sciences; (11) Grand Challenges; (12) Materials Science and Technology; (13) Nonproliferation and Materials Control; (14) Pulsed Power and High Energy Density Sciences; and (15) Corporate Objectives.

  9. 1997 Laboratory directed research and development. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P. [comps.

    1997-12-31

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  10. A design guide for energy-efficient research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Wishner, N.; Chen, A.; Cook, L. [eds.; Bell, G.C.; Mills, E.; Sartor, D.; Avery, D.; Siminovitch, M.; Piette, M.A.

    1996-09-24

    This document--A Design Guide for Energy-Efficient Research Laboratories--provides a detailed and holistic framework to assist designers and energy managers in identifying and applying advanced energy-efficiency features in laboratory-type environments. The Guide fills an important void in the general literature and compliments existing in-depth technical manuals. Considerable information is available pertaining to overall laboratory design issues, but no single document focuses comprehensively on energy issues in these highly specialized environments. Furthermore, practitioners may utilize many antiquated rules of thumb, which often inadvertently cause energy inefficiency. The Guide helps its user to: introduce energy decision-making into the earliest phases of the design process, access the literature of pertinent issues, and become aware of debates and issues on related topics. The Guide does focus on individual technologies, as well as control systems, and important operational factors such as building commissioning. However, most importantly, the Guide is intended to foster a systems perspective (e.g. right sizing) and to present current leading-edge, energy-efficient design practices and principles.

  11. A Virtual Laboratory for Aviation and Airspace Prognostics Research

    Science.gov (United States)

    Kulkarni, Chetan; Gorospe, George; Teubert, Christ; Quach, Cuong C.; Hogge, Edward; Darafsheh, Kaveh

    2017-01-01

    Integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, and other aviation technologies, in the airspace is becoming more and more complicated, and will continue to do so in the future. Inclusion of new technology and complexity into the airspace increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems and systems of systems can be challenging, expensive, and at times unsafe when implementing real life scenarios. The application of prognostics to aviation and airspace management may produce new tools and insight into these problems. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. In our research, we develop a live, distributed, hardware- in-the-loop Prognostics Virtual Laboratory testbed for aviation and airspace prognostics. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. In our earlier work1 we discussed the initial Prognostics Virtual Laboratory testbed development work and related results for milestones 1 & 2. This paper describes the design, development, and testing of the integrated tested which are part of milestone 3, along with our next steps for validation of this work. Through a framework consisting of software/hardware modules and associated interface clients, the distributed testbed enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. The testbed modules can be used cohesively to construct complex and relevant airspace scenarios for research. Four modules are key to this research: the virtual aircraft module which uses the X

  12. UTRaLab – Urban Traffic Research Laboratory

    Directory of Open Access Journals (Sweden)

    Karsten Kozempel

    2017-08-01

    Full Text Available The Urban Traffic Research Laboratory (UTRaLab is a research and test track for traffic detection methods and sensors. It is located at the Ernst-Ruska-Ufer, in the southeast of the city of Berlin (Germany. The UTRaLab covers 1 km of a highly-frequented urban road and is connected to a motorway. It is equipped with two gantries with distance of 850 m in between and has several outstations for data collection. The gantries contain many different traffic sensors like inductive loops, cameras, lasers or wireless sensors for traffic data acquisition. Additionally a weather station records environmental data. The UTRaLab’s main purposes are the data collection of traffic data on the one hand and testing newly developed sensors on the other hand.

  13. Multi-modal virtual environment research at Armstrong Laboratory

    Science.gov (United States)

    Eggleston, Robert G.

    1995-01-01

    One mission of the Paul M. Fitts Human Engineering Division of Armstrong Laboratory is to improve the user interface for complex systems through user-centered exploratory development and research activities. In support of this goal, many current projects attempt to advance and exploit user-interface concepts made possible by virtual reality (VR) technologies. Virtual environments may be used as a general purpose interface medium, an alternative display/control method, a data visualization and analysis tool, or a graphically based performance assessment tool. An overview is given of research projects within the division on prototype interface hardware/software development, integrated interface concept development, interface design and evaluation tool development, and user and mission performance evaluation tool development.

  14. Environmental and effluent monitoring at Lucas Heights Research Laboratories, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, E.L.; Camilleri, A.; Loosz, T.; Farrar, Y.

    1995-12-01

    Results are presented of environmental and effluent monitoring conducted in the vicinity of the Lucas Heights Research Laboratories (LHRL) during 1994. All low level liquid and gaseous effluent discharges complied with existing discharge authorisations and relevant environmental regulations. Potential effective doses to the general public from controlled airborne discharges during this period, were estimated to be less than 0.015 mSv/year for receptor locations on the 1.6 km buffer zone boundary around HIFAR. This value represents 1.5 % of the 1 mSv/year dose limit for long term exposure that is recommended by the National Health and Medical Research Council, and 5 % of the site dose constraint of 0.3 mSv/year adopted by ANSTO. 27 refs., 22 tabs., 6 figs.

  15. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  16. Laboratory Directed Research and Development 1998 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pam Hughes; Sheila Bennett eds.

    1999-07-14

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work in atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.

  17. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    Energy Technology Data Exchange (ETDEWEB)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  18. Internet as a resource for solving the problems of adolescence: a review of psychological research

    Directory of Open Access Journals (Sweden)

    A.V. Zhilinskaya,

    2014-08-01

    Full Text Available We analyzed psychological research that consider the Internet as a resource for solving the problems of adolescence. Based on the understanding of self-consciousness as a central adolescence new formation, we formulated a set of tasks of adolescence. It is shown that for the successful solution of age problems by teenagers on the Internet, specialized environments should be designed. Internet as a medium of teenagers’ socialization is characterized by a high degree of variety and uncontrollability. Behavior of adolescents on the Internet depends on the social and cultural context in which they live. The emergence of the Internet makes new demands on media competence of the teenager and his environment. Adolescents face online with a variety of risks. An essential resource for successful adolescent development is the presence of a person whom he trusts, with whom he can consult in difficult situations. The research plan involves the creation of Internet resources, contributing to the solution of teenagers’ problems age, as well as the mapping of the Internet in terms of its developmental potential.

  19. One More Time: The Need for More Mathematical Problem Solving and What the Research Says about It

    Science.gov (United States)

    Woodward, John

    2013-01-01

    This article reviews recent research in math problem solving for students with learning disabilities. Two recently published syntheses of research on mathematics by the Institute of Education Sciences (IES) are used as frameworks for interpreting this body of work. A significant amount of the work in special education over the last decade is…

  20. Laboratory directed research and development program FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  1. Publication bias in laboratory animal research: a survey on magnitude, drivers, consequences and potential solutions

    NARCIS (Netherlands)

    Riet, G. ter; Korevaar, D.A.; Leenaars, M.; Sterk, P.J.; Noorden, C.J. van; Bouter, L.M.; Lutter, R.; Oude Elferink, R.P.; Hooft, L.

    2012-01-01

    CONTEXT: Publication bias jeopardizes evidence-based medicine, mainly through biased literature syntheses. Publication bias may also affect laboratory animal research, but evidence is scarce. OBJECTIVES: To assess the opinion of laboratory animal researchers on the magnitude, drivers, consequences a

  2. Laboratory directed research and development annual report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    2004-03-01

    Science historian James Burke is well known for his stories about how technological innovations are intertwined and embedded in the culture of the time, for example, how the steam engine led to safety matches, imitation diamonds, and the landing on the moon.1 A lesson commonly drawn from his stories is that the path of science and technology (S&T) is nonlinear and unpredictable. Viewed another way, the lesson is that the solution to one problem can lead to solutions to other problems that are not obviously linked in advance, i.e., there is a ripple effect. The motto for Sandia's approach to research and development (R&D) is 'Science with the mission in mind.' In our view, our missions contain the problems that inspire our R&D, and the resulting solutions almost always have multiple benefits. As discussed below, Sandia's Laboratory Directed Research and Development (LDRD) Program is structured to bring problems relevant to our missions to the attention of researchers. LDRD projects are then selected on the basis of their programmatic merit as well as their technical merit. Considerable effort is made to communicate between investment areas to create the ripple effect. In recent years, attention to the ripple effect and to the performance of the LDRD Program, in general, has increased. Inside Sandia, as it is the sole source of discretionary research funding, LDRD funding is recognized as being the most precious of research dollars. Hence, there is great interest in maximizing its impact, especially through the ripple effect. Outside Sandia, there is increased scrutiny of the program's performance to be sure that it is not a 'sandbox' in which researchers play without relevance to national security needs. Let us therefore address the performance of the LDRD Program in fiscal year 2003 and then show how it is designed to maximize impact.

  3. Idaho National Laboratory Directed Research and Development FY-2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are

  4. Community Problem-Solving Framed as a Distributed Information Use Environment: Bridging Research and Practice

    Science.gov (United States)

    Durrance, Joan C.; Souden, Maria; Walker, Dana; Fisher, Karen E.

    2006-01-01

    Introduction: This article results from a qualitative study of 1) information behavior in community problem-solving framed as a distributed information use environment and 2) approaches used by a best-practice library to anticipate information needs associated with community problem solving. Method: Several approaches to data collection were…

  5. Sandia National Laboratories shock thermodynamics applied research (STAR) facility

    Energy Technology Data Exchange (ETDEWEB)

    Asay, J.R.

    1981-08-01

    The Sandia National Laboratories Shock Thermodynamics Applied Research (STAR) Facility has recently consolidated three different guns and a variety of instrumentation capabilities into a single location. The guns available at the facility consist of a single-stage light gas gun, a single-stage propellant gun and a two-stage light gas gun, which cover a velocity range from 15 m/s to 8 km/s. Instrumentation available at the facility includes optical and microwave interferometry, time-resolved holography, fast x-radiography, framing and streak photography, fast multi-wavelength pyrometry, piezoelectric and piezoresistive gauges and computer data reduction. This report discusses the guns and instrumentation available at the facility and selected recent applications.

  6. Using a Molecular-Genetic Approach to Investigate Bacterial Physiology in a Continuous, Research-Based, Semester-Long Laboratory for Undergraduates †

    OpenAIRE

    Jeremiah Foster Ault; Betsey Marie Renfro; Andrea Kirsten White

    2011-01-01

    Designing investigative laboratory exercises that encourage critical thinking, problem solving, and independent thought for upper-division biology courses is a difficult but worthwhile task. In an effort to do so, we developed a semester-long, continuous, research-based investigative laboratory that integrates numerous genetic and molecular biology methods into the investigation of a bacterial physiological process. In this lab, students use random Tn5 transposon mutagenesis to create prodigi...

  7. Laboratory research at the clinical trials of Veterinary medicinal Products

    OpenAIRE

    ZHYLA M.I.

    2011-01-01

    The article analyses the importance of laboratory test methods, namely pathomorfological at conduct of clinical trials. The article focuses on complex laboratory diagnostics at determination of clinical condition of animals, safety and efficacy of tested medicinal product.

  8. Brain Cancer in Workers Employed at a Laboratory Research Facility.

    Directory of Open Access Journals (Sweden)

    James J Collins

    Full Text Available An earlier study of research facility workers found more brain cancer deaths than expected, but no workplace exposures were implicated.Adding four additional years of vital-status follow-up, we reassessed the risk of death from brain cancer in the same workforce, including 5,284 workers employed between 1963, when the facility opened, and 2007. We compared the work histories of the brain cancer decedents in relationship to when they died and their ages at death.As in most other studies of laboratory and research workers, we found low rates of total mortality, total cancers, accidents, suicides, and chronic conditions such as heart disease and diabetes. We found no new brain cancer deaths in the four years of additional follow-up. Our best estimate of the brain cancer standardized mortality ratio (SMR was 1.32 (95% confidence interval [95% CI] 0.66-2.37, but the SMR might have been as high as 1.69. Deaths from benign brain tumors and other non-malignant diseases of the nervous system were at or below expected levels.With the addition of four more years of follow-up and in the absence of any new brain cancers, the updated estimate of the risk of brain cancer death is smaller than in the original study. There was no consistent pattern among the work histories of decedents that indicated a common causative exposure.

  9. The Mammalian Microbiome and Its Importance in Laboratory Animal Research.

    Science.gov (United States)

    Bleich, André; Fox, James G

    2015-01-01

    In this issue are assembled 10 fascinating, well-researched papers that describe the emerging field centered on the microbiome of vertebrate animals and how these complex microbial populations play a fundamental role in shaping homeostasis of the host. The content of the papers will deal with bacteria and, because of relative paucity of information on these organisms, will not include discussions on viruses, fungus, protozoa, and parasites that colonize various animals. Dissecting the number and interactions of the 500-1000 bacterial species that can inhabit the intestines of animals is made possible by advanced DNA sequencing methods, which do not depend on whether the organism can be cultured or not. Laboratory animals, particularly rodents, have proven to be an indispensable component in not only understanding how the microbiome aids in digestion and protects the host against pathogens, but also in understanding the relationship of various species of bacteria to development of the immune system. Importantly, this research elucidates purported mechanisms for how the microbiome can profoundly affect initiation and progression of diseases such as type 1 diabetes, metabolic syndromes, obesity, autoimmune arthritis, inflammatory bowel disease, and irritable bowel syndrome. The strengths and limitations of the use of germfree mice colonized with single species of bacteria, a restricted flora, or most recently the use of human-derived microbiota are also discussed.

  10. Monitoring and information management system at the Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, G.S.; Chernis, P.J.; Bushman, A.T.; Spinney, M.H.; Backer, R.J. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1996-07-01

    Atomic Energy of Canada Limited (AECL) has developed a customer oriented monitoring and information management system at the Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba. The system is used to monitor instruments and manage, process, and distribute data. It consists of signal conditioners and remote loggers, central schedule and control systems, computer aided design and drafting work centres, and the communications linking them. The monitoring and communications elements are designed to meet the harsh demands of underground conditions while providing accurate monitoring of sensitive instruments to rigorous quality assured specifications. These instruments are used for testing of the concept for the deep geological disposal of nuclear fuel waste as part of the Canadian Nuclear Fuel Waste Management Program. Many of the tests are done in situ and at full-scale. The monitoring and information management system services engineering, research, and support staff working to design, develop, and demonstrate and present the concept. Experience gained during development of the monitoring and information management system at the URL, can be directly applied at the final disposal site. (author)

  11. Safe Operation and Alignment of the Variable Pulse Width Laser at the US Army Research Laboratory

    Science.gov (United States)

    2016-02-01

    ARL-TN-0736 ● FEB 2016 US Army Research Laboratory Safe Operation and Alignment of the Variable Pulse Width Laser at the US Army...Laboratory Safe Operation and Alignment of the Variable Pulse Width Laser at the US Army Research Laboratory by Jennifer L Gottfried...TITLE AND SUBTITLE Safe Operation and Alignment of the Variable -Pulse Width Laser at the US Army Research Laboratory 5a. CONTRACT NUMBER 5b

  12. The hot cell laboratories for material investigations of the Institute for Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Viehrig, H.W.

    1998-10-01

    Special facilities for handling and testing of irradiated specimens are necessary, to perform the investigation of activated material. The Institute for Safety Research has two hot cell laboratories: - the preparation laboratory and - the materials testing laboratory. This report is intended to give an overview of the available facilities and developed techniques in the laboratories. (orig.)

  13. Current and Planned Cochlear Implant Research at New York University Laboratory for Translational Auditory Research

    Science.gov (United States)

    Svirsky, Mario A.; Fitzgerald, Matthew B.; Neuman, Arlene; Sagi, Elad; Tan, Chin-Tuan; Ketten, Darlene; Martin, Brett

    2013-01-01

    The Laboratory of Translational Auditory Research (LTAR/NYUSM) is part of the Department of Otolaryngology at the New York University School of Medicine and has close ties to the New York University Cochlear Implant Center. LTAR investigators have expertise in multiple related disciplines including speech and hearing science, audiology, engineering, and physiology. The lines of research in the laboratory deal mostly with speech perception by hearing impaired listeners, and particularly those who use cochlear implants (CIs) or hearing aids (HAs). Although the laboratory's research interests are diverse, there are common threads that permeate and tie all of its work. In particular, a strong interest in translational research underlies even the most basic studies carried out in the laboratory. Another important element is the development of engineering and computational tools, which range from mathematical models of speech perception to software and hardware that bypass clinical speech processors and stimulate cochlear implants directly, to novel ways of analyzing clinical outcomes data. If the appropriate tool to conduct an important experiment does not exist, we may work to develop it, either in house or in collaboration with academic or industrial partners. Another notable characteristic of the laboratory is its interdisciplinary nature where, for example, an audiologistandan engineer might work closely to develop an approach that would not have been feasible if each had worked singly on the project. Similarly, investigators with expertise in hearing aids and cochlear implants might join forces to study how human listeners integrate information provided by a CI and a HA. The following pages provide a flavor of the diversity and the commonalities of our research interests. PMID:22668763

  14. Broadening Undergraduate Research Skills With A New Astrophysics Laboratory Class

    Science.gov (United States)

    Smecker-Hane, Tammy A.; Barth, A. J.

    2009-05-01

    To broaden the research skills of undergraduate students at the University of California, Irvine, we created a new required laboratory class called Observational Astrophysics, designed to be taken by junior and senior physics majors specializing in astrophysics. Students spend the first two weeks learning the basics of observational astronomy (coordinate systems, telescopes, CCDs, etc.) and completing homework assignments. Students spend the next eight weeks performing three lab experiments that involve: 1) CCD imaging of Jupiter with an 8-inch Meade telescope, doing astrometry of the their four brightest moons, and fitting the moons' distance versus time to derive the moons' orbital period, semimajor axis and inclination and Jupiter's mass, 2) CCD imaging of star cluster with a 24-inch telescope, doing profile-fitting photometry with DAOPHOT and doing main-sequence fitting of their observed color-magnitude diagram with stellar evolutionary models to derive the cluster's distance, reddening, and age, and 3) reducing longslit spectra of an x-ray binary previously taken with the Keck 10-meter telescope, deriving the radial velocity curve from cross-correlating the spectra with stellar templates, and deriving a lower limit on the mass of the black hole. In this paper, we discuss the course, report on the student reactions, and summarize some of the important things we learned in creating the class. Students enjoy the class. Although they find it difficult, they highly value the experience because they realize they are learning crucial research skills that will greatly help them when go on to do summer research, attend graduate school or work to industry. We are open to sharing our lab manual and data with others who wish to augment their university's curriculum.

  15. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Basques, Eric O. [National Academy of Sciences, Washington, DC (United States)

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of program promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.

  16. Joint Langley Research Center/Jet Propulsion Laboratory CSI experiment

    Science.gov (United States)

    Neat, Gregory W.; O'Brien, John F.; Lurie, Boris J.; Garnica, Angel; Belvin, W. K.; Sulla, Jeff; Won, John

    1992-01-01

    This paper describes a joint Control Structure Interaction (CSI) experiment in which Jet Propulsion Laboratory (JPL) damping devices were incorporated into the Langley Research Center (LaRC) Phase 0 Testbed. The goals of the effort were twofold: (1) test the effectiveness of the JPL structural damping methods in a new structure and (2) assess the feasibility of combining JPL local control methods with the LaRC multiple input multiple output global control methods. Six dampers (2 piezoelectric active members, 4 viscous dampers), placed in three different regions of the structure, produced up to 26 dB attenuation in target modes. The combined control strategy in which the JPL damping methods contributed local control action and the LaRC control scheme provided global control action, produced and overall control scheme with increased stability margins and improved performance. This paper presents an overview of the technologies contributed from the two centers, the strategies used to combine them, and results demonstrating the success of the damping and cooperative control efforts.

  17. Research on problem solving skills of orienteering athletes in terms of some variables

    Directory of Open Access Journals (Sweden)

    Eroğlu Başak

    2016-01-01

    Full Text Available The aim of this study is to examine the problem solving skills of orienteering athletes in terms of different variables. 157 male and 43 female orienteering athletes, making a total of 200 athletes that joined the 3rd Level of Turkey Championship in 2015 have participated in this study which is in a survey model. The data collection tools were the Problem Solving Inventory and Personal Information Form that were formed by Heppner & Peterson (1982 and adapted into Turkish by Şahin, Şahin & Heppner (1993. In the data analysis, descriptive statics, anova, t test and Tukey test have been utilized. In the line with the findings, it has been determined that the difference between the total mean values (85.55+20.45 that the orienteering athletes got from the problem solving inventory and their age, marital status, sports age, the years of practice in orienteering sports, and the status of being national player is significant (p<0.05. It has been found that male orienteering athletes perform higher evaluating approach compared to the female athletes, and that as the age levels increase, the problem solving skill is affected more positively. Furthermore, it has been determined that the perceptions of the participants that have more experience and sports age in orienteering sports and that do orienteering sports at a national level are more positive in the matter of problem solving skills.

  18. The A3 Problem Solving Report: A 10-Step Scientific Method to Execute Performance Improvements in an Academic Research Vivarium

    OpenAIRE

    Bassuk, James A.; Washington, Ida M.

    2013-01-01

    The purpose of this study was to illustrate the application of A3 Problem Solving Reports of the Toyota Production System to our research vivarium through the methodology of Continuous Performance Improvement, a lean approach to healthcare management at Seattle Children's (Hospital, Research Institute, Foundation). The Report format is described within the perspective of a 10-step scientific method designed to realize measurable improvements of Issues identified by the Report's Author, Sponso...

  19. Configuration of the Virtual Laboratory for Fusion Researches in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, T.; Nagayama, Y.; Nakanishi, H.; Ishiguro, S.; Takami, S.; Tsuda, K.; Okamura, S. [National Institute for Fusion Science, National Institutes of Natural Sciences, Toki (Japan)

    2009-07-01

    SNET is a virtual laboratory system for nuclear fusion research in Japan, it has been developed since 2001 with SINET3, which is a national academic network backbone operated by National Institute of Computer sciences. Twenty one sites including major Japanese universities, JAEA and NIFS are mutually connected on SNET with the speed of 1 Gbps in 2008 fiscal year. The SNET is a closed network system based on L2 and L3 VPN and is connected to the web through the firewall at NIFS for security maintenance. Collaboration categories in SNET are as follows: the LHD remote participation; the remote use of supercomputer system; the all Japan ST (Spherical Tokamak) research program. For example, the collaborators of the first category in a remote station can control their diagnostic devices at LHD and analyze the LHD data as if they were at the LHD control room. The detail of the network policy is different from each other because each category has its own particular purpose. In October 2008, the Kyushu University and NIFS were connected by L2 VPN. The site was already connected by L3 VPN, but the data transfer rate was rather low. L2 VPN supports the bulk data transfer which is produced by QUEST, the spherical tokamak device at Kyushu University. The wide-area broadcast test began to distribute to remote stations the video which is presented at the front panel of the LHD control room. ITER activity started in 2007 and 'The ITER Remote Experimentation Centre' will be constructed at the Rokkasho village in Japan under ITER-BA agreement. SNET would be useful for distributing the data of ITER to Japanese universities and institutions. (authors)

  20. Solvent use in private research laboratories in Japan: comparison with the use in public research laboratories and on production floors in industries.

    Science.gov (United States)

    Hanada, Takaaki; Zaitsu, Ai; Kojima, Satoshi; Ukai, Hirohiko; Nagasawa, Yasuhiro; Takada, Shiro; Kawakami, Takuya; Ohashi, Fumiko; Ikeda, Masayuki

    2014-01-01

    Solvents used in production facility-affiliated private laboratories have been seldomly reported. This study was initiated to specify solvent use characteristics in private laboratories in comparison with the use in public research laboratories and on production floors. Elucidation of the applicability of conclusions from a public laboratory survey to private institutions is not only of scientific interest but also of practical importance. A survey on use of 47 legally stipulated organic solvents was conducted. The results were compiled for April 2011 to March 2013. Through sorting, data were available for 479 unit workplaces in private laboratories. Similar sorting for April 2012 to March 2013 was conducted for public research laboratories (e.g., national universities) and production floors (in private enterprises) to obtain 621 and 937 cases, respectively. Sampling of workroom air followed by capillary gas-chromatographic analyses for solvents was conducted in accordance with regulatory requirements. More than one solvent was usually detected in the air of private laboratories. With regard to solvent types, acetone, methyl alcohol, chloroform and hexane were prevalently used in private laboratories, and this was similar to the case of public laboratories. Prevalent use of ethyl acetate was unique to private laboratories. Toluene use was less common both in private and public laboratories. The prevalence of administrative control class 1 (i.e., an adequately controlled environment) was higher in laboratories (both private and public) than production floors. Solvent use patterns are similar in private and public laboratories, except that the use of mixtures of solvents is substantially more popular in private laboratories than in public laboratories.

  1. RESEARCH ON SOLVING TRAVELLING SALESMAN PROBLEM USING RANK BASED ANT SYSTEM ON GPU

    Directory of Open Access Journals (Sweden)

    Khushbu Khatri

    2015-10-01

    Full Text Available Ant Colony Optimization (ACO is meta-heuristic algorithm inspired from nature to solve many combinatorial optimization problems such as Travelling Salesman Problem (TSP. There are many versions of ACO used to solve TSP like, Ant System, Elitist Ant System, Max-Min Ant System, Rank based Ant System algorithm. For improved performance, these methods can be implemented in parallel architecture like GPU, CUDA architecture. Graphics Processing Unit (GPU provides highly parallel and fully programmable platform. GPUs which have many processing units with an off-chip global memory can be used for general purpose parallel computation. This paper presents a parallel Rank Based Ant System algorithm to solve TSP by use of Pre Roulette Wheel Selection Method.

  2. Developing Students' Critical Thinking, Problem Solving, and Analysis Skills in an Inquiry-Based Synthetic Organic Laboratory Course

    Science.gov (United States)

    Weaver, Marisa G.; Samoshin, Andrey V.; Lewis, Robert B.; Gainer, Morgan J.

    2016-01-01

    A course is described where students are engaged in an inquiry-based quarter-long research project to synthesize a known pharmaceutical target. Students use literature search engines, such as Reaxys and SciFinder, and the primary chemical literature as resources to plan and perform the synthesis of their pharmaceutical target. Through this…

  3. Developing Students' Critical Thinking, Problem Solving, and Analysis Skills in an Inquiry-Based Synthetic Organic Laboratory Course

    Science.gov (United States)

    Weaver, Marisa G.; Samoshin, Andrey V.; Lewis, Robert B.; Gainer, Morgan J.

    2016-01-01

    A course is described where students are engaged in an inquiry-based quarter-long research project to synthesize a known pharmaceutical target. Students use literature search engines, such as Reaxys and SciFinder, and the primary chemical literature as resources to plan and perform the synthesis of their pharmaceutical target. Through this…

  4. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  5. Signal and Image Processing Research at the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R S; Poyneer, L A; Kegelmeyer, L M; Carrano, C J; Chambers, D H; Candy, J V

    2009-06-29

    Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fundamental and applied research in the physical sciences. Research programs at the Laboratory run the gamut from theoretical investigations, to modeling and simulation, to validation through experiment. Over the years, the Laboratory has developed a substantial research component in the areas of signal and image processing to support these activities. This paper surveys some of the current research in signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any one research area, but an extensive citation list is provided for further study of the topics presented.

  6. Signal and Image Processing Research at the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R S; Poyneer, L A; Kegelmeyer, L M; Carrano, C J; Chambers, D H; Candy, J V

    2009-06-29

    Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fundamental and applied research in the physical sciences. Research programs at the Laboratory run the gamut from theoretical investigations, to modeling and simulation, to validation through experiment. Over the years, the Laboratory has developed a substantial research component in the areas of signal and image processing to support these activities. This paper surveys some of the current research in signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any one research area, but an extensive citation list is provided for further study of the topics presented.

  7. NATIONAL RISK MANAGEMENT RESEARCH LABORATORY: PROVIDING SOLUTIONS FOR A BETTER TOMORROW

    Science.gov (United States)

    This small, two-fold flyer contains general information introducing EPA's National Risk Management Research Laboratory and its research program. The key overarching areas of research described are: Protection of drinking water; control of air pollution; pollution prevention and e...

  8. Summer Research Program (1992). Graduate Student Research Programs Reports. Armstrong Laboratory. Volume 7

    Science.gov (United States)

    1992-12-28

    Gottlob 15 The Effects of Two Doses of Exogenous Melatonin on Temperature and Rod J. Hughes Subjective Fatigue 16 Assisting Air Force Instructional... Gottlob Department of Psychology Arizona State University Tempe, AZ 85287 Final Report for Summer Research Program Armstrong Laboratory Sponsored by: Air...TASK Lawrence R. Gottlob Department of Psychology Arizona State University In a previous study, it was found that observers could allocate attention to

  9. Information problem solving instruction: An overview of 21st century research

    NARCIS (Netherlands)

    Wopereis, Iwan; Frerejean, Jimmy; Testers, Laurent; Van Strien, Johan; Walhout, Jaap; Brand-Gruwel, Saskia

    2015-01-01

    Information problem solving (IPS) is the process of locating, selecting, evaluating, and integrating information from various sources to fulfill an information need (Brand-Gruwel, Wopereis, & Vermetten, 2005). It is regarded an important contemporary skill, at times categorized as twenty-first centu

  10. Community problem-solving framed as a distributed information use environment: bridging research and practice

    Directory of Open Access Journals (Sweden)

    Joan C. Durrance

    2006-01-01

    Full Text Available Introduction. This article results from a qualitative study of 1 information behavior in community problem-solving framed as a distributed information use environment and 2 approaches used by a best-practice library to anticipate information needs associated with community problem solving. Method. Several approaches to data collection were used - focus groups, interviews, observation of community and library meetings, and analysis of supporting documents. We focused first on the information behaviour of community groups. Finding that the library supported these activities we sought to understand its approach. Analysis. Data were coded thematically for both information behaviour concepts and themes germane to problem-solving activity. A grounded theory approach was taken to capture aspects of the library staff's practice. Themes evolved from the data; supporting documentation - reports, articles and library communication - was also coded. Results. The study showed 1 how information use environment components (people, setting, problems, problem resolutions combine in this distributed information use environment to determine specific information needs and uses; and 2 how the library contributed to the viability of this distributed information use environment. Conclusion. Community problem solving, here explicated as a distributed IUE, is likely to be seen in multiple communities. The library model presented demonstrates that by reshaping its information practice within the framework of an information use environment, a library can anticipate community information needs as they are generated and where they are most relevant.

  11. Information problem solving instruction: An overview of 21st century research

    NARCIS (Netherlands)

    Wopereis, Iwan; Frerejean, Jimmy; Testers, Laurent; Van Strien, Johan; Walhout, Jaap; Brand-Gruwel, Saskia

    2015-01-01

    Information problem solving (IPS) is the process of locating, selecting, evaluating, and integrating information from various sources to fulfill an information need (Brand-Gruwel, Wopereis, & Vermetten, 2005). It is regarded an important contemporary skill, at times categorized as twenty-first

  12. Agent-Based Modeling of Collaborative Problem Solving. Research Report. ETS RR-16-27

    Science.gov (United States)

    Bergner, Yoav; Andrews, Jessica J.; Zhu, Mengxiao; Gonzales, Joseph E.

    2016-01-01

    Collaborative problem solving (CPS) is a critical competency in a variety of contexts, including the workplace, school, and home. However, only recently have assessment and curriculum reformers begun to focus to a greater extent on the acquisition and development of CPS skill. One of the major challenges in psychometric modeling of CPS is…

  13. Information problem solving instruction: An overview of 21st century research

    NARCIS (Netherlands)

    Wopereis, Iwan; Frerejean, Jimmy; Testers, Laurent; Van Strien, Johan; Walhout, Jaap; Brand-Gruwel, Saskia

    2015-01-01

    Information problem solving (IPS) is the process of locating, selecting, evaluating, and integrating information from various sources to fulfill an information need (Brand-Gruwel, Wopereis, & Vermetten, 2005). It is regarded an important contemporary skill, at times categorized as twenty-first centu

  14. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-30

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  15. Argonne National Laboratory research to help U.S. steel industry

    CERN Multimedia

    2003-01-01

    Argonne National Laboratory has joined a $1.29 million project to develop technology software that will use advanced computational fluid dynamics (CFD), a method of solving fluid flow and heat transfer problems. This technology allows engineers to evaluate and predict erosion patterns within blast furnaces (1 page).

  16. Low-gravity Orbiting Research Laboratory Environment Potential Impact on Space Biology Research

    Science.gov (United States)

    Jules, Kenol

    2006-01-01

    One of the major objectives of any orbital space research platform is to provide a quiescent low gravity, preferably a zero gravity environment, to perform fundamental as well as applied research. However, small disturbances exist onboard any low earth orbital research platform. The impact of these disturbances must be taken into account by space research scientists during their research planning, design and data analysis in order to avoid confounding factors in their science results. The reduced gravity environment of an orbiting research platform in low earth orbit is a complex phenomenon. Many factors, among others, such as experiment operations, equipment operation, life support systems and crew activity (if it is a crewed platform), aerodynamic drag, gravity gradient, rotational effects as well as the vehicle structural resonance frequencies (structural modes) contribute to form the overall reduced gravity environment in which space research is performed. The contribution of these small disturbances or accelerations is precisely why the environment is NOT a zero gravity environment, but a reduced acceleration environment. This paper does not discuss other factors such as radiation, electromagnetic interference, thermal and pressure gradient changes, acoustic and CO2 build-up to name a few that affect the space research environment as well, but it focuses solely on the magnitude of the acceleration level found on orbiting research laboratory used by research scientists to conduct space research. For ease of analysis this paper divides the frequency spectrum relevant to most of the space research disciplines into three regimes: a) quasi-steady, b) vibratory and c) transient. The International Space Station is used as an example to illustrate the point. The paper discusses the impact of these three regimes on space biology research and results from space flown experiments are used to illustrate the potential negative impact of these disturbances (accelerations

  17. A Place for Materials Science: Laboratory Buildings and Interdisciplinary Research at the University of Pennsylvania

    Science.gov (United States)

    Choi, Hyungsub; Shields, Brit

    2015-01-01

    The Laboratory for Research on the Structure of Matter (LRSM), University of Pennsylvania, was built in 1965 as part of the Advanced Research Projects Agency's (ARPA) Interdisciplinary Laboratories (IDL) program intended to foster interdisciplinary research and training in materials science. The process that led to the construction of the…

  18. NATIONAL RISK MANAGEMENT RESEARCH LABORATORY - PROVIDING SOLUTIONS FOR A BETTER TOMORROW

    Science.gov (United States)

    As part of the U.S. Environmental Protection Agency's Office of Research and Development, the National Risk Management Research Laboratory (NRMRL) conducts research into ways to prevent and reduce pollution risks that threaten human health and the environment. The laboratory inve...

  19. Large-Scale Laboratory Facility For Sediment Transport Research

    Data.gov (United States)

    Federal Laboratory Consortium — Effective design and maintenance of inlet navigation and shore protection projects require accurate estimates of the quantity of sand that moves along the beach. The...

  20. RF Anechoic Chambers, Tri-Service Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — In collaboration with the Navy, there are 12 RF Anechoic and static free exposure chambers located at TSRL. These chambers cover the majority of the RF spectrum and...

  1. RF Anechoic Chambers, Tri-Service Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — In collaboration with the Navy, there are 12 RF Anechoic and static free exposure chambers located at TSRL. These chambers cover the majority of the RF spectrum and...

  2. Research on cultural algorithm for solving routing problem of mobile agent

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The key idea behind cultural algorithm is to explicitly acquire problem-solving knowledge from the evolving population and in return apply that knowledge to guide the search. In this article, cultural algorithm-simulated annealing is proposed to solve the routing problem of mobile agent. The optimal individual is accepted to improve the belief space's evolution of cultural algorithms by simulated annealing. The step size in search is used as situational knowledge to guide the search of optimal solution in the population space. Because of this feature, the search time is reduced. Experimental results show that the algorithm proposed in this article can ensure the quality of optimal solutions, and also has better convergence speed. The operation efficiency of the system is considerably improved.

  3. Using Electron Paramagnetic Resonance Spectroscopy To Facilitate Problem Solving in Pharmaceutical Research and Development.

    Science.gov (United States)

    Mangion, Ian; Liu, Yizhou; Reibarkh, Mikhail; Williamson, R Thomas; Welch, Christopher J

    2016-08-19

    As new chemical methodologies driven by single-electron chemistry emerge, process and analytical chemists must develop approaches to rapidly solve problems in this nontraditional arena. Electron paramagnetic resonance spectroscopy has been long known as a preferred technique for the study of paramagnetic species. However, it is only recently finding application in contemporary pharmaceutical development, both to study reactions and to track the presence of undesired impurities. Several case studies are presented here to illustrate its utility in modern pharmaceutical development efforts.

  4. Applications of systems thinking and soft operations research in managing complexity from problem framing to problem solving

    CERN Document Server

    2016-01-01

    This book captures current trends and developments in the field of systems thinking and soft operations research which can be applied to solve today's problems of dynamic complexity and interdependency. Such ‘wicked problems’ and messes are seemingly intractable problems characterized as value-laden, ambiguous, and unstable, that resist being tamed by classical problem solving. Actions and interventions associated with this complex problem space can have highly unpredictable and unintended consequences. Examples of such complex problems include health care reform, global climate change, transnational serious and organized crime, terrorism, homeland security, human security, disaster management, and humanitarian aid. Moving towards the development of solutions to these complex problem spaces depends on the lens we use to examine them and how we frame the problem. It will be shown that systems thinking and soft operations research has had great success in contributing to the management of complexity. .

  5. Open- and closed-formula laboratory animal diets and their importance to research.

    Science.gov (United States)

    Barnard, Dennis E; Lewis, Sherry M; Teter, Beverly B; Thigpen, Julius E

    2009-11-01

    Almost 40 y ago the scientific community was taking actions to control environmental factors that contribute to variation in the responses of laboratory animals to scientific manipulation. Laboratory animal diet was recognized as an important variable. During the 1970s, the American Institute of Nutrition, National Academy of Science, Institute of Laboratory Animal Resources, and Laboratory Animals Centre Diets Advisory Committee supported the use of 'standard reference diets' in biomedical research as a means to improve the ability to replicate research. As a result the AIN76 purified diet was formulated. During this same time, the laboratory animal nutritionist at the NIH was formulating open-formula, natural-ingredient diets to meet the need for standardized laboratory animal diets. Since the development of open-formula diets, fixed-formula and constant-nutrient-concentration closed-formula laboratory animal natural ingredient diets have been introduced to help reduce the potential variation diet can cause in research.

  6. Laboratory Directed Research and Development Annual Report - Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Darrell R.; Hughes, Pamela J.; Pearson, Erik W.

    2001-04-01

    The projects described in this report represent the Laboratory's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides, a) a director's statement, b) an overview of the laboratory's LDRD program, including PNNL's management process and a self-assessment of the program, c) a five-year project funding table, and d) project summaries for each LDRD project.

  7. Measurement Instruments and Software Used in Biotribology Research Laboratory

    Directory of Open Access Journals (Sweden)

    Tyurin Andrei

    2015-07-01

    Full Text Available Precision measurements of friction processes have a key role in a variety of industrial processes. The emergence of fine electronic circuit techniques greatly expands capabilities of control. There are some difficulties for their full implementation today, especially when it regards the accuracy and frequency of measurements. The motion-measuring method in real-time system is considered in this article, paying special attention to increased accuracy. This method is based on rapid analog digital converter (ADC, transmission program and digital signal processor (DSP algorithms. Description of laboratory devices is included: Tribal-T and universal friction machine (MTU-01 designed for “Pin on disc” tests. Great emphasis is placed on the usability of accelerometers. The present study examined the collected data via laboratory system for data acquisition and control, and processing it in the laboratory of Biotribology. Laboratory supervisory control and data acquisition (SCADA algorithms is described below. Task of regulation is not considered. This paper describes only methods of automatic control theory to analyze the frictional quality.

  8. Research Laboratory of Electronics Progress Report Number 133

    Science.gov (United States)

    1991-08-01

    The substantial labora- ZnSe tory renovation was completed in February; the CBE system hardware was delivered in March and Sponsors installed...laboratories of E.N.E.A. ( Energia ceedings of the International Sherwood Theory Nucleare e Energie Alternative), as well as in- Meeting, Williamsburg, Virginia

  9. Adsorption of Phosphate on Goethite: An Undergraduate Research Laboratory Project

    Science.gov (United States)

    Tribe, Lorena; Barja, Beatriz C.

    2004-01-01

    A laboratory experiment on the adsorption of phosphate on goethite is presented, which also includes discussion on surface properties, interfaces, acid-base equilibrium, molecular structure and solid state chemistry. It was seen that many students were able to produce qualitatively correct results for a complex system of real interest and they…

  10. Laboratory Directed Research and Development FY2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K J

    2011-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader national needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.

  11. An Improved Dielectric Constant Cell for Use in Student and Research Laboratories.

    Science.gov (United States)

    Thompson, H. Bradford.; Walmsley, Judith A.

    1979-01-01

    Describes the latest stage in the design of an economical dielectric constant cell, tested in both instructional and research applications, that is suitable for student laboratories and for precision research measurements. (BT)

  12. The SERP Approach to Problem-Solving Research, Development, and Implementation

    Science.gov (United States)

    Donovan, M. Suzanne; Snow, Catherine; Daro, Phil

    2013-01-01

    Education researchers are increasingly working in practice-based partnerships in order to direct their research efforts toward important problems of practice. We argue for the creation of an infrastructure to support routine and sustained interaction among researchers, practitioners, and designers in order to make partnership efforts more…

  13. Review of Army Research Laboratory Programs for Historically Black Colleges and Universities and Minority Institutions

    Science.gov (United States)

    National Academies Press, 2014

    2014-01-01

    "Review of Army Research Laboratory Programs for Historically Black Colleges and Universities and Minority Institutions" examines the ways in which historically black colleges and universities and minority institutions have used the Army Research Laboratory (ARL) funds to enhance the science, technology, engineering, and mathematics…

  14. Redefining Authentic Research Experiences in Introductory Biology Laboratories and Barriers to Their Implementation

    Science.gov (United States)

    Spell, Rachelle M.; Guinan, Judith A.; Miller, Kristen R.; Beck, Christopher W.

    2014-01-01

    Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are…

  15. Frontiers: Research highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  16. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Wilcox, S.; Stoffel, T.

    2014-02-01

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  17. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Wilcox, Stephen; Stoffel, Thomas

    2015-12-23

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  18. The high temperature materials laboratory: A research and user facility at the Oak Ridge National Laboratory

    Science.gov (United States)

    1992-10-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy & image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed. Proprietary research is one on a full-cost recovery basis.

  19. Use of Laboratory Animals in Biomedical and Behavioral Research.

    Science.gov (United States)

    Ministry of Education, Addis Ababa (Ethiopia).

    The use of animals in scientific research has been a controversial issue for over a hundred years. Research with animals has saved human lives, lessened human suffering, and advanced scientific understanding, yet that same research can cause pain and distress for the animals involved and may result in their death. It is hardly surprising that…

  20. Laboratory Directed Research and Development Annual Report for 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Pamela J.

    2010-03-31

    This report documents progress made on all LDRD-funded projects during fiscal year 2009. As a US Department of Energy (DOE) Office of Science (SC) national laboratory, Pacific Northwest National Laboratory (PNNL) has an enduring mission to bring molecular and environmental sciences and engineering strengths to bear on DOE missions and national needs. Their vision is to be recognized worldwide and valued nationally for leadership in accelerating the discovery and deployment of solutions to challenges in energy, national security, and the environment. To achieve this mission and vision, they provide distinctive, world-leading science and technology in: (1) the design and scalable synthesis of materials and chemicals; (2) climate change science and emissions management; (3) efficient and secure electricity management from generation to end use; and (4) signature discovery and exploitation for threat detection and reduction. PNNL leadership also extends to operating EMSL: the Environmental Molecular Sciences Laboratory, a national scientific user facility dedicated to providing itnegrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences.

  1. Materials research at selected Japanese laboratories. Based on a 1992 visit: Overview, summary of highlights, notes on laboratories and topics

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    I visited Japan from June 29 to August 1, 1992. The purpose of this visit was to assess the status of materials science research at selected governmental, university and industrial laboratories and to established acquaintances with Japanese researchers. The areas of research covered by these visits included ceramics, oxide superconductors, intermetallics alloys, superhard materials and diamond films, high-temperature materials and properties, mechanical properties, fracture, creep, fatigue, defects, materials for nuclear reactor applications and irradiation effects, high pressure synthesis, self-propagating high temperature synthesis, microanalysis, magnetic properties and magnetic facilities, and surface science.

  2. A New Model for Transitioning Students from the Undergraduate Teaching Laboratory to the Research Laboratory

    Science.gov (United States)

    Hollenbeck, Jessica J.; Wixson, Emily N.; Geske, Grant D.; Dodge, Matthew W.; Tseng, T. Andrew; Clauss, Allen D.; Blackwell, Helen E.

    2006-01-01

    The transformation of 346 chemistry courses into a training experience that could provide undergraduate students with a skill set essential for a research-based chemistry career is presented. The course has an innovative structure that connects undergraduate students with graduate research labs at the semester midpoint and also includes new,…

  3. National Renewable Energy Laboratory (NREL) 2006 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    This 2006 issue of the NREL Research Review again reveals just how vital and diverse our research portfolio has become. Our feature story looks at how our move to embrace the tenants of "translational research" is strengthening our ability to meet the nation's energy goals. By closing the gap between basic science and applied research and development (R&D)--and focusing a bright light on the valuable end uses of our work--translational research promises to shorten the time it takes to push new technology off the lab bench and into the marketplace. This issue also examines our research into fuels of the future and our computer modeling of wind power deployment, both of which point out the real-world benefits of our work.

  4. Lawrence Berkeley Laboratory research highlights for FY 1975

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, Andrew M.

    1978-01-01

    Brief, nontechnical reviews are presented of work in the following areas: solar energy projects, fusion research, silicon cell research, superconducting magnetometers, psi particles, positron--electron project (PEP), pulsar measurements, nuclear dynamics, element 106, computer control of accelerators, the Bevalac biomedical facility, blood--lipid analysis, and bungarotoxin and the brain. Financial data and personnel lists are given, along with citations to well over a thousand research papers. (RWR)

  5. Research versus Problem Solving for the Education Leadership Doctoral Thesis: Implications for Form and Function

    Science.gov (United States)

    Archbald, Doug

    2008-01-01

    Background: A growing literature is questioning the appropriateness of a research dissertation for practitioners in education doctoral programs. Although this literature persuasively critiques the prevailing theory-research orientation of most programs and theses, it goes little beyond exhorting change and describing extant alternatives in a few…

  6. Behavioural science at work for Canada: National Research Council laboratories.

    Science.gov (United States)

    Veitch, Jennifer A

    2007-03-01

    The National Research Council is Canada's principal research and development agency. Its 20 institutes are structured to address interdisciplinary problems for industrial sectors, and to provide the necessary scientific infrastructure, such as the national science library. Behavioural scientists are active in five institutes: Biological Sciences, Biodiagnostics, Aerospace, Information Technology, and Construction. Research topics include basic cellular neuroscience, brain function, human factors in the cockpit, human-computer interaction, emergency evacuation, and indoor environment effects on occupants. Working in collaboration with NRC colleagues and with researchers from universities and industry, NRC behavioural scientists develop knowledge, designs, and applications that put technology to work for people, designed with people in mind.

  7. Speakers’ comfort and voice level variation in classrooms: Laboratory research

    DEFF Research Database (Denmark)

    Pelegrin Garcia, David; Brunskog, Jonas

    2012-01-01

    Teachers adjust their voice levels under different classroom acoustics conditions, even in the absence of background noise. Laboratory experiments have been conducted in order to understand further this relationship and to determine optimum room acoustic conditions for speaking. Under simulated...... from 0.93 dB/dB, with free speech, to 0.1 dB/dB with other less demanding communication tasks as reading and talking at short distances. The room effect for some individuals can be as strong as 1.7 dB/dB. A questionnaire investigation showed that the acoustic comfort for talking in classrooms...

  8. MOOCs as a Massive Research Laboratory: Opportunities and Challenges

    Science.gov (United States)

    Diver, Paul; Martinez, Ignacio

    2015-01-01

    Massive open online courses (MOOCs) offer many opportunities for research into several topics related to pedagogical methods and student incentives. In the context of over 20 years of online learning research, we discuss lessons to be learned from observational comparisons and experiments on randomly chosen groups of students. We target two MOOCs…

  9. Evolving the US Army Research Laboratory (ARL) Technical Communication Strategy

    Science.gov (United States)

    2016-10-01

    seat serving as a part of a big machine . In research, most S&E’s tend to follow work of individuals and small groups rather than research of an...so maybe there is some sort of roundup of ARL interviews that could be collated and posted somewhere? I don’t have a strong suggestion yet. Just

  10. The a3 problem solving report: a 10-step scientific method to execute performance improvements in an academic research vivarium.

    Directory of Open Access Journals (Sweden)

    James A Bassuk

    Full Text Available The purpose of this study was to illustrate the application of A3 Problem Solving Reports of the Toyota Production System to our research vivarium through the methodology of Continuous Performance Improvement, a lean approach to healthcare management at Seattle Children's (Hospital, Research Institute, Foundation. The Report format is described within the perspective of a 10-step scientific method designed to realize measurable improvements of Issues identified by the Report's Author, Sponsor and Coach. The 10-step method (Issue, Background, Current Condition, Goal, Root Cause, Target Condition, Countermeasures, Implementation Plan, Test, and Follow-up was shown to align with Shewhart's Plan-Do-Check-Act process improvement cycle in a manner that allowed for quantitative analysis of the Countermeasure's outcomes and of Testing results. During fiscal year 2012, 9 A3 Problem Solving Reports were completed in the vivarium under the teaching and coaching system implemented by the Research Institute. Two of the 9 reports are described herein. Report #1 addressed the issue of the vivarium's veterinarian not being able to provide input into sick animal cases during the work day, while report #7 tackled the lack of a standard in keeping track of weekend/holiday animal health inspections. In each Report, a measurable Goal that established the basis for improvement recognition was present. A Five Whys analysis identified the Root Cause for Report #1 as historical work patterns that existed before the veterinarian was hired on and that modern electronic communication tools had not been implemented. The same analysis identified the Root Cause for Report #7 as the vivarium had never standardized the process for weekend/holiday checks. Successful outcomes for both Reports were obtained and validated by robust audit plans. The collective data indicate that vivarium staff acquired a disciplined way of reporting on, as well as solving, problems in a manner

  11. Potato-related research at USDA-ARS laboratories in Washington and Idaho

    Science.gov (United States)

    Potato-related research currently being conducted at three USDA-ARS laboratories in Idaho and Washington is reviewed. Objectives of research programs at the Temperate Tree Fruit & Vegetable Research Unit (Wapato, WA), the Irrigated Agriculture Research and Extension Center (Prosser, WA), and the Sm...

  12. A typology of evidence based practice research heuristics for clinical laboratory science curricula.

    Science.gov (United States)

    Leibach, Elizabeth K; Russell, Barbara L

    2010-01-01

    A typology of EBP research heuristics was defined relative to clinical laboratory science levels of practice. Research skills requisite for CLS baccalaureate level are associated mainly with quality control of analytic processes. Research skills at master's level are associated with pre- and post-analytic investigations, as well. Doctoral level CLS practice portends to utilize research skills facilitating quality investigations at the systems level.

  13. Invasive versus Non Invasive Methods Applied to Mummy Research: Will This Controversy Ever Be Solved?

    Directory of Open Access Journals (Sweden)

    Despina Moissidou

    2015-01-01

    Full Text Available Advances in the application of non invasive techniques to mummified remains have shed new light on past diseases. The virtual inspection of a corpse, which has almost completely replaced classical autopsy, has proven to be important especially when dealing with valuable museum specimens. In spite of some very rewarding results, there are still many open questions. Non invasive techniques provide information on hard and soft tissue pathologies and allow information to be gleaned concerning mummification practices (e.g., ancient Egyptian artificial mummification. Nevertheless, there are other fields of mummy studies in which the results provided by non invasive techniques are not always self-explanatory. Reliance exclusively upon virtual diagnoses can sometimes lead to inconclusive and misleading interpretations. On the other hand, several types of investigation (e.g., histology, paleomicrobiology, and biochemistry, although minimally invasive, require direct contact with the bodies and, for this reason, are often avoided, particularly by museum curators. Here we present an overview of the non invasive and invasive techniques currently used in mummy studies and propose an approach that might solve these conflicts.

  14. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry.

  15. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry.

  16. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    Science.gov (United States)

    2015-12-01

    research associates. The PI and the research team have published over 10 journal articles and over 50 conference proceedings and over 50 symposiums...reflections. Optical interference filters with center wavelength at 5322 or 632.82 nm are used in front of the ICCD to suppress the plasma self- luminescence ...wavelength at 532 ± 2 nm was used in front of the ICCD to suppress the plasma jet self- luminescence . The shadow of the laser induced plasma falls onto

  17. Being relevant: Practical guidance for early career researchers interested in solving conservation problems

    Directory of Open Access Journals (Sweden)

    J.M. Chapman

    2015-07-01

    Full Text Available In a human-altered world where biodiversity is in decline and conservation problems abound, there is a dire need to ensure that the next generation of conservation scientists have the knowledge, skills, and training to address these problems. So called “early career researchers” (ECRs in conservation science have many challenges before them and it is clear that the status quo must change to bridge the knowledge–action divide. Here we identify thirteen practical strategies that ECRs can employ to become more relevant. In this context, “relevance” refers to the ability to contribute to solving conservation problems through engagement with practitioners, policy makers, and stakeholders. Conservation and career strategies outlined in this article include the following: thinking ‘big picture’ during conservation projects; embracing various forms of knowledge; maintaining positive relationships with locals familiar with the conservation issue; accepting failure as a viable (and potentially valuable outcome; daring to be creative; embracing citizen science; incorporating interdisciplinarity; promoting and practicing pro-environmental behaviours; understanding financial aspects of conservation; forming collaboration from the onset of a project; accepting the limits of technology; ongoing and effective networking; and finally, maintaining a positive outlook by focusing on and sharing conservation success stories. These strategies move beyond the generic and highlight the importance of continuing to have an open mind throughout the entire conservation process, from establishing one’s self as an asset to embracing collaboration and interdisciplinary work, and striving to push for professional and personal connections that strengthen personal career objectives.

  18. Group Problem Solving

    CERN Document Server

    Laughlin, Patrick R

    2011-01-01

    Experimental research by social and cognitive psychologists has established that cooperative groups solve a wide range of problems better than individuals. Cooperative problem solving groups of scientific researchers, auditors, financial analysts, air crash investigators, and forensic art experts are increasingly important in our complex and interdependent society. This comprehensive textbook--the first of its kind in decades--presents important theories and experimental research about group problem solving. The book focuses on tasks that have demonstrably correct solutions within mathematical

  19. Using Laboratory Experimental Auctions in Marketing Research: A Case Study of New Packaging for Fresh Beef

    OpenAIRE

    Elizabeth Hoffman; Menkhaus, Dale J.; Dipankar Chakravarti; Field, Ray A.; Whipple, Glen D.

    1993-01-01

    This paper illustrates the use of laboratory experimental auctions in a pretest market research program for new products. We review the experimental auctions literature, discuss the range of auction mechanisms available and present the advantages and disadvantages of using a particular mechanism for a laboratory pretest market. We then present a step-by-step example of how a theoretically incentive compatible auction mechanism (fifth-price, sealed-bid) was used in a laboratory pretest market ...

  20. Atlas: A Facility for High Energy Density Physics Research at Los Alamos National Laboratory

    Science.gov (United States)

    1995-07-01

    LOS ALAMOS NATIONAL LABORATORY W. M. Parsons, W. A. Reass, J. ~-Griego, D. W. Bowman...C. Thompson, R. F. Gribble, J. S. Shlachter, C. A. Ekdahl, P. D. Goldstone, and S.M. Younger Los Alamos National Laboratory Los Alamos, NM. 87545...Atlas A Facility For High Energy Density Physics Research At Los Alamos National Laboratory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  1. Ecological research at the Savannah River Ecology Laboratory. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    Research is organized around two major programs: thermal and aquatic stress and mineral cycling. These programs are strengthened by a previously established foundation of basic ecological knowledge. Research in basic ecology continues to be a major component of all SREL environmental programs. Emphasis in all programs has been placed upon field-oriented research relating to regional and local problems having broad ecological significance. For example, extensive research has been conducted in the Par Pond reservoir system and the Savannah River swamp, both of which have received thermal effluent, heavy metals, and low levels of radioisotopes. Furthermore, the availability of low levels of plutonium and uranium in both terrestrial and aquatic environments on the Savannah River Plant (SRP) has provided an unusual opportunity for field research in this area. The studies seek to document the effects, to determine the extent of local environmental problems, and to establish predictable relationships which have general applicability. In order to accomplish this objective it has been imperative that studies be carried out in the natural, environmentally unaffected areas on the SRP as a vital part of the overall program. Progress is reported in forty-nine studies.

  2. Pacific Northwest Laboratory: Director`s overview of research performed for DOE Office of Health And Environmental Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    A significant portion of the research undertaken at Pacific Northwest Laboratory (PNL) is focused on the strategic programs of the US Department of Energy`s (DOE) Office of Health and Environmental Research (OHER). These programs, which include Environmental Processes (Subsurface Science, Ecosystem Function and Response, and Atmospheric Chemistry), Global Change (Climate Change, Environmental Vulnerability, and Integrated Assessments), Biotechnology (Human Genome and Structural Biology), and Health (Health Effects and Medical Applications), have been established by OHER to support DOE business areas in science and technology and environmental quality. PNL uses a set of critical capabilities based on the Laboratory`s research facilities and the scientific and technological expertise of its staff to help OHER achieve its programmatic research goals. Integration of these capabilities across the Laboratory enables PNL to assemble multidisciplinary research teams that are highly effective in addressing the complex scientific and technical issues associated with OHER-sponsored research. PNL research efforts increasingly are focused on complex environmental and health problems that require multidisciplinary teams to address the multitude of time and spatial scales found in health and environmental research. PNL is currently engaged in research in the following areas for these OHER Divisions: Environmental Sciences -- atmospheric radiation monitoring, climate modeling, carbon cycle, atmospheric chemistry, ecological research, subsurface sciences, bioremediation, and environmental molecular sciences; Health Effects and Life Sciences -- cell/molecular biology, and biotechnology; Medical Applications and Biophysical Research -- analytical technology, and radiological and chemical physics. PNL`s contributions to OHER strategic research programs are described in this report.

  3. How Work Positions Affect the Research Activity and Information Behaviour of Laboratory Scientists in the Research Lifecycle: Applying Activity Theory

    Science.gov (United States)

    Kwon, Nahyun

    2017-01-01

    Introduction: This study was conducted to investigate the characteristics of research and information activities of laboratory scientists in different work positions throughout a research lifecycle. Activity theory was applied as the conceptual and analytical framework. Method: Taking a qualitative research approach, in-depth interviews and field…

  4. Bridging the Gap between Instructional and Research Laboratories: Teaching Data Analysis Software Skills through the Manipulation of Original Research Data

    Science.gov (United States)

    Hansen, Sarah J. R.; Zhu, Jieling; Karch, Jessica M.; Sorrento, Cristina M.; Ulichny, Joseph C.; Kaufman, Laura J.

    2016-01-01

    The gap between graduate research and introductory undergraduate teaching laboratories is often wide, but the development of teaching activities rooted within the research environment offers an opportunity for undergraduate students to have first-hand experience with research currently being conducted and for graduate students to develop…

  5. ORNLs Laboratory Directed Research and Development Program FY 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2010. The associated FY 2010 ORNL LDRD Self-Assessment (ORNL/PPA-2011/2) provides financial data and an internal evaluation of the program’s management process.

  6. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data and an internal evaluation of the program’s management process.

  7. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial data and an internal evaluation of the program’s management process.

  8. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program’s management process.

  9. ORNLs Laboratory Directed Research and Development Program FY 2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2011. The associated FY 2011 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  10. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  11. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  12. Air Force Research Laboratory Success Stories. A Review of 2001

    Science.gov (United States)

    2001-01-01

    resulting in more durable aircraft/spacecraft. Dr. Scott White and his Ul team received initial and some follow-on funding from a Ul Critical Research...Kennedy, Howard Hughes, Orson Wells, Elvis Presley, and Christopher Reeve. The Junior Chamber International also nominated Maj Lawrence as one of Ten

  13. Amphibians as animal models for laboratory research in physiology.

    Science.gov (United States)

    Burggren, Warren W; Warburton, Stephen

    2007-01-01

    The concept of animal models is well honored, and amphibians have played a prominent part in the success of using key species to discover new information about all animals. As animal models, amphibians offer several advantages that include a well-understood basic physiology, a taxonomic diversity well suited to comparative studies, tolerance to temperature and oxygen variation, and a greater similarity to humans than many other currently popular animal models. Amphibians now account for approximately 1/4 to 1/3 of lower vertebrate and invertebrate research, and this proportion is especially true in physiological research, as evident from the high profile of amphibians as animal models in Nobel Prize research. Currently, amphibians play prominent roles in research in the physiology of musculoskeletal, cardiovascular, renal, respiratory, reproductive, and sensory systems. Amphibians are also used extensively in physiological studies aimed at generating new insights in evolutionary biology, especially in the investigation of the evolution of air breathing and terrestriality. Environmental physiology also utilizes amphibians, ranging from studies of cryoprotectants for tissue preservation to physiological reactions to hypergravity and space exploration. Amphibians are also playing a key role in studies of environmental endocrine disruptors that are having disproportionately large effects on amphibian populations and where specific species can serve as sentinel species for environmental pollution. Finally, amphibian genera such as Xenopus, a genus relatively well understood metabolically and physiologically, will continue to contribute increasingly in this new era of systems biology and "X-omics."

  14. Air Force Research Laboratory’s 2006 Technology Milestones

    Science.gov (United States)

    2006-01-01

    the model to different aerodynamic orientations, propeller speeds, nacelle angles, and blade angles. The researchers also performed forced...based cloud profiling radar and light detection and ranging ( lidar ), radiosondes, satellite imagery, and a surface observer collected data throughout...more than 26 different 3-hour cirrus episodes occurring between February and December. Radar and lidar data specified the top and base altitudes of

  15. Translating University Biosensor Research to a High School Laboratory Experience

    Science.gov (United States)

    Heldt, Caryn L.; Bank, Alex; Turpeinen, Dylan; King, Julia A.

    2016-01-01

    The need to increase science, technology, engineering, and mathematics (STEM) graduates is great. To interest more students into STEM degrees, we made our graphene biosensor research portable, inexpensive, and safe to demonstrate technology development to high school students. The students increased their knowledge of biosensors and proteins, and…

  16. Adverse reproduction outcomes among employees working in biomedical research laboratories

    DEFF Research Database (Denmark)

    Wennborg, H.; Bonde, Jens Peter; Stenbeck, M.

    2002-01-01

    a previous questionnaire investigation at the research group level according to a specific definition. The ponderal index and ratio between observed and expected birthweights were calculated. Logistic regression models were used for the analyses of dichotomous outcomes (preterm, postterm and birthweight...

  17. Writing Material in Chemical Physics Research: The Laboratory Notebook as Locus of Technical and Textual Integration

    Science.gov (United States)

    Wickman, Chad

    2010-01-01

    This article, drawing on ethnographic study in a chemical physics research facility, explores how notebooks are used and produced in the conduct of laboratory science. Data include written field notes of laboratory activity; visual documentation of "in situ" writing processes; analysis of inscriptions, texts, and material artifacts produced in the…

  18. Writing Material in Chemical Physics Research: The Laboratory Notebook as Locus of Technical and Textual Integration

    Science.gov (United States)

    Wickman, Chad

    2010-01-01

    This article, drawing on ethnographic study in a chemical physics research facility, explores how notebooks are used and produced in the conduct of laboratory science. Data include written field notes of laboratory activity; visual documentation of "in situ" writing processes; analysis of inscriptions, texts, and material artifacts produced in the…

  19. Mapping Maize Genes: A Series of Research-Based Laboratory Exercises

    Science.gov (United States)

    Makarevitch, Irina; Kralich, Elizabeth

    2011-01-01

    Open-ended, inquiry-based multiweek laboratory exercises are the key elements to increasing students' understanding and retention of the major biological concepts. Including original research into undergraduate teaching laboratories has also been shown to motivate students and improve their learning. Here, we present a series of original…

  20. Developing Digital Courseware for a Virtual Nano-Biotechnology Laboratory: A Design-Based Research Approach

    Science.gov (United States)

    Yueh, Hsiu-Ping; Chen, Tzy-Ling; Lin, Weijane; Sheen, Horn-Jiunn

    2014-01-01

    This paper first reviews applications of multimedia in engineering education, especially in laboratory learning. It then illustrates a model and accreditation criteria adopted for developing a specific set of nanotechnology laboratory courseware and reports the design-based research approach used in designing and developing the e-learning…

  1. U.S. Army Aeromedical Research Laboratory Annual Progress Report Fiscal Year 2010

    Science.gov (United States)

    2011-03-01

    milestones per ANSI/ ISO /IEC 17025 (General Requirements for Competence testing and Calibration Labs and ISO 9001 Laboratory Accreditation Program...58  Training ...instructors before, during, and after training . U.S. Army Aeromedical Research Laboratory — Fiscal Year 2010 11 Validation of a Weapons Simulator

  2. Introducing Students to Psychological Research: General Psychology as a Laboratory Course

    Science.gov (United States)

    Thieman, Thomas J.; Clary, E. Gil; Olson, Andrea M.; Dauner, Rachel C.; Ring, Erin E.

    2009-01-01

    For 6 years, we have offered an integrated weekly laboratory focusing on research methods as part of our general psychology course. Through self-report measures and controlled comparisons, we found that laboratory projects significantly increase students' knowledge and comfort level with scientific approaches and concepts, sustain interest in…

  3. Buildings Research using Infrared Imaging Radiometers with Laboratory Thermal Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Brent; Arasteh, Dariush

    1999-01-12

    Infrared thermal imagers are used at Lawrence Berkeley National Laboratory to study heat transfer through components of building thermal envelopes. Two thermal chambers maintain steady-state heat flow through test specimens under environmental conditions for winter heating design. Infrared thermography is used to map surface temperatures on the specimens' warm side. Features of the quantitative thermography process include use of external reference emitters, complex background corrections, and spatial location markers. Typical uncertainties in the data are {+-} 0.5 C and 3 mm. Temperature controlled and directly measured external reference emitters are used to correct data from each thermal image. Complex background corrections use arrays of values for background thermal radiation in calculating temperatures of self-viewing surfaces. Temperature results are used to validate computer programs that predict heat flow including Finite-Element Analysis (FEA) conduction simulations and conjugate Computational Fluid Dynamics (CFD) simulations. Results are also used to study natural convection surface heat transfer. Example data show the distribution of temperatures down the center line of an insulated window.

  4. Solving Research Tasks Using Desk top Scanning Electron Microscope Phenom ProX

    Directory of Open Access Journals (Sweden)

    Vertsanova, O.V.

    2014-03-01

    Full Text Available Phenom ProX — morden effective universal desktop Scanning Electron Microscope with integrated EDS system. Phenom-World helps customers to stay competitive in a world where critical dimensions are continuously getting smaller. All Phenom desktop systems give direct access to the high resolution and high-quality imaging and analysis required in a large variety of applications. They are affordable, flexible and a fast tool enabling engineers, technicians, researchers and educational professionals to investigate micron and submicron structures.

  5. The long and winding road from the research laboratory to industrial applications of lactic acid bacteria.

    Science.gov (United States)

    Pedersen, Martin Bastian; Iversen, Stig Lykke; Sørensen, Kim Ib; Johansen, Eric

    2005-08-01

    Research innovations are constantly occurring in universities, research institutions and industrial research laboratories. These are reported in the scientific literature and presented to the scientific community in various congresses and symposia as well as through direct contacts and collaborations. Conversion of these research results to industrially useful innovations is, however, considerably more complex than generally appreciated. The long and winding road from the research laboratory to industrial applications will be illustrated with two recent examples from Chr. Hansen A/S: the implementation in industrial scale of a new production technology based on respiration by Lactococcus lactis and the introduction to the market of L. lactis strains constructed using recombinant DNA technology.

  6. A Hybrid Integrated Laboratory and Inquiry-Based Research Experience: Replacing Traditional Laboratory Instruction with a Sustainable Student-Led Research Project

    Science.gov (United States)

    Hartings, Matthew R.; Fox, Douglas M.; Miller, Abigail E.; Muratore, Kathryn E.

    2015-01-01

    The Department of Chemistry at American University has replaced its junior- and senior-level laboratory curriculum with two, two-semester long, student-led research projects as part of the department's American Chemical Society-accredited program. In the first semester of each sequence, a faculty instructor leads the students through a set of…

  7. Field and laboratory methods in human milk research.

    Science.gov (United States)

    Miller, Elizabeth M; Aiello, Marco O; Fujita, Masako; Hinde, Katie; Milligan, Lauren; Quinn, E A

    2013-01-01

    Human milk is a complex and variable fluid of increasing interest to human biologists who study nutrition and health. The collection and analysis of human milk poses many practical and ethical challenges to field workers, who must balance both appropriate methodology with the needs of participating mothers and infants and logistical challenges to collection and analysis. In this review, we address various collection methods, volume measurements, and ethical considerations and make recommendations for field researchers. We also review frequently used methods for the analysis of fat, protein, sugars/lactose, and specific biomarkers in human milk. Finally, we address new technologies in human milk research, the MIRIS Human Milk Analyzer and dried milk spots, which will improve the ability of human biologists and anthropologists to study human milk in field settings.

  8. Drastic reformation of Electrical and Electronics Engineering Laboratory(Researches)

    OpenAIRE

    青柳,稔; Minoru, Aoyagi

    2016-01-01

    The Department of Electrical and Electronic Engineering opened in 1978, as the Department of Electrical Engineering. In 1987, the Department of Electrical Engineering was renamed the Department of Electrical and Electronic Engineering. The Department of Electrical and Electronic Engineering has conducted basic educations and studies on electric and electronic engineering. In this paper, I will introduce an overview of recent researches and educations of the Department of Ele ctrical and Elect...

  9. Laboratory Research: A Question of When, Not If.

    Science.gov (United States)

    1985-03-01

    satisiaction. Journal of Applied Psychoiov. 64, i57-iE.5. - &unkel, F. j., & McGrath. J. E. t?7L). Research on human oehavior: A svstematic aulae to...Arlington Annex Washington, D.C. 20350 LIST 4 NAVMAT & NPRDC Program Administrator for Manpower, Naval Material Command Personnel, and Training... Material Coummand Management Training Center Naval Personnel R&D Center (4) NAVMAT 09M32 Technical Director Jefferson Plaza, Bldg #2, Rm 150 Director

  10. U.S. Army Research Laboratory Annual Review 2011

    Science.gov (United States)

    2011-12-01

    and the 20th Support Command (Chemical, Biological, Radiological, Nuclear and High-Yield Explosives (CBRNE)). This training consisted of...enable the conversion of waste biomass to electricity and lead to future applications for the Soldier, such as renewable bio-energy production and... bioremediation of wastewater. The researchers created a functional atomic circuit with stationary barrier. This “atom circuit” is composed of ultra

  11. Robotics Laboratory to Enhance the STEM Research Experience

    Science.gov (United States)

    2015-04-30

    Research Platforms Clearpath Robotics 2 $66,118 Open IMU system integrated with Husky SICK LMS Outdoor LIDAR Outdoor PTZ Camera NovAtel...PLA) 3D printer by Hyrel Hyrel, LLC 3 $14,710 Engineering & Design Software Project Total $4,897 25 seat MATLAB and Simulink Software...models of the UGV systems using the Simulink software purchased during the re-budgeting process. MATLAB will likely be used to develop and test many

  12. FY 1999 Laboratory Directed Research and Development annual report

    Energy Technology Data Exchange (ETDEWEB)

    PJ Hughes

    2000-06-13

    A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.

  13. Models for Estimating Research and Development Manpower in Navy Laboratories

    Science.gov (United States)

    1988-10-01

    Mathematics Policy Research, Inc. under subcontract to Mathtech, Inc. of Falls Church, Virginia, under contract N00123-83- D-0520. The contracting officer’s...primary objective of forecasting staffing requirements for the SPAWAR R&D Centers. Besides changing policy variables and projecting the effects on...known values. For NOSC, NSWC, DTNSRDC, NUSC, and NCSC, the models were used to backcast FY83. For NADC, the model was used to backcast FY84. For

  14. U.S. Army Research Laboratory 2010 Annual Review

    Science.gov (United States)

    2010-12-01

    that increases velocity and reduces muzzle flash . The M855A1 EPR was fielded in June 2010. Pictures of the M855A1 projectile and its internal...NLOS) covert communications for unattended ground sensors, and rocket propelled grenade/sniper UV flash detection. ARL’s research addresses...powder processing have been transferred to sintering technology to make electromagnetic domes . • The increase in the size and quality of hot-pressed

  15. Baseline Skills Assessment of the US Army Research Laboratory

    Science.gov (United States)

    2015-01-01

    efforts underway to look at competencies in different areas of the workforce. These efforts initially began with a focus on human resource ... management ) 9 Small arms research 6 Synthetic environment for training 2 Fig. C-2 Instances chosen for Human Sciences Campaign Competencies for...32 Human machine interaction 39 … 11 50 Reliability 10 … … 10 Mechanism state awareness (Health) 10 … … 10 ^Usage management 2 … … 2 +Warfighter

  16. Exposing the Film Apparatus: The Film Archive as a Research Laboratory [Rezension

    NARCIS (Netherlands)

    Dellmann, S.

    2016-01-01

    Review of the edited volume Exposing the Film Apparatus: The Film Archive as a Research Laboratory by Giovanna Fossati and Annie van den Oever (eds.): Amsterdam: Amsterdam UP 2016 (Framing Film), ISBN 9789462983168, EUR 39,90

  17. Laboratory Directed Research & Development Program. Annual report to the Department of Energy, Revised December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments.

  18. Development and Assessment of Green, Research-Based Instructional Materials for the General Chemistry Laboratory

    Science.gov (United States)

    Cacciatore, Kristen L.

    2010-01-01

    This research entails integrating two novel approaches for enriching student learning in chemistry into the context of the general chemistry laboratory. The first is a pedagogical approach based on research in cognitive science and the second is the green chemistry philosophy. Research has shown that inquiry-based approaches are effective in…

  19. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  20. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  1. Development and Assessment of Green, Research-Based Instructional Materials for the General Chemistry Laboratory

    Science.gov (United States)

    Cacciatore, Kristen L.

    2010-01-01

    This research entails integrating two novel approaches for enriching student learning in chemistry into the context of the general chemistry laboratory. The first is a pedagogical approach based on research in cognitive science and the second is the green chemistry philosophy. Research has shown that inquiry-based approaches are effective in…

  2. Government-industry-uUniversity and rResearch lLaboratories cCoordination for new product development: Session 2. Government research laboratory perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kuzay, T.M.

    1997-09-01

    This talk is the second in an expanded series of presentations on the Government-Industry-University and Research Laboratories Coordination for new product development, which is a timely and important public policy issue. Such interactions have become particularly timely in light of the present decline in funding for research and development (R&D) in the nation`s budget and in the private sector. These interactions, at least in principle, provide a means to maximize benefits for the greater good of the nation by pooling the diminishing resources. National laboratories, which traditionally interacted closely with the universities in educational training, now are able to also participate closely with industry in joint R&D thanks to a number of public laws legislated since the early 80s. A review of the experiences with such interactions at Argonne National Laboratory, which exemplifies the national laboratories, shows that, despite differences in their traditions and the missions, the national laboratory-industry-university triangle can work together.

  3. NATO Advanced Research Workshop on Earth Rotation : Solved and Unsolved Problems

    CERN Document Server

    1986-01-01

    The idea for organl.zl.ng an Advanced Research Workshop entirely devoted to the Earth rotation was born in 1983 when Professor Raymond Hide suggested this topic to the special NATO panel of global transport mechanism in the Geosciences. Such a specialized meeting did not take place since the GEOP research conference on the rotation of the Earth and polar motion which was held at the Ohio State University (USA) in 1973. In the last ten years, highly precise measurements of the Earth's rotation parameters and new global geophysical data have become available allowing major advance to be made in the under­ standing of the various irregularities affecting the Earth's rotation. The aim of the workshop was to bring together scientists who have made important contributions in this field during the last decade both at the observational and geophysical interpretation levels. The confe­ rence was divided into four main topics. The first session was dedicated to the definition, implementation and maintenance of the te...

  4. Research on existing problems and solving strategies——of English listening teaching in junior high school-taking a Nanchang high school as the example

    Institute of Scientific and Technical Information of China (English)

    万小妹

    2016-01-01

    In this article,we have made a deep research on existing problems and solving strategies of English listening teaching in junior high school,the goal of which is to improve the English listening teaching in the future.

  5. Laboratory experiments in innovation research: a methodological overview and a review of the current literature

    OpenAIRE

    Brüggemann, Julia; Bizer, Kilian

    2016-01-01

    Innovation research has developed a broad set of methodological approaches in recent decades. In this paper, we propose laboratory experiments as a fruitful methodological addition to the existing methods in innovation research. Therefore, we provide an overview of the existing methods, discuss the advantages and limitations of laboratory experiments, and review experimental studies dealing with different fields of innovation policy, namely intellectual property rights, financial instruments,...

  6. Scientometric Study of Doctoral Theses of the Physical Research Laboratory

    Science.gov (United States)

    Anilkumar, N.

    2010-10-01

    This paper presents the results of a study of bibliographies compiled from theses submitted in the period 2001-2005. The bibliographies have been studied to find out how research carried out at PRL is being used by the doctoral students. Resources are categorized by type of resource — book, journal article, proceedings, doctoral thesis, etc., to understand the usage of content procured by the library. The period of the study, 2001-2005, has been chosen because technology is changing so fast and so are the formats of scholarly communications. For the sake of convenience, only the "e-journals period" is considered for the sample.

  7. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. (ed.)

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  8. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. [ed.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  9. Open Air Laboratories (OPAL): A community-driven research programme

    Energy Technology Data Exchange (ETDEWEB)

    Davies, L., E-mail: l.davies@imperial.ac.uk [Imperial College London, London SW7 2AZ (United Kingdom); Bell, J.N.B.; Bone, J.; Head, M.; Hill, L. [Imperial College London, London SW7 2AZ (United Kingdom); Howard, C. [Natural History Museum, London SW7 5BD (United Kingdom); Hobbs, S.J. [Environment Department, University of York, Heslington, York YO10 5DD (United Kingdom); Jones, D.T. [Imperial College London, London SW7 2AZ (United Kingdom); Natural History Museum, London SW7 5BD (United Kingdom); Power, S.A. [Imperial College London, London SW7 2AZ (United Kingdom); Rose, N. [Department of Geography, University College London, London WC1E 6BT (United Kingdom); Ryder, C.; Seed, L. [Imperial College London, London SW7 2AZ (United Kingdom); Stevens, G. [Natural History Museum, London SW7 5BD (United Kingdom); Toumi, R.; Voulvoulis, N. [Imperial College London, London SW7 2AZ (United Kingdom); White, P.C.L. [Environment Department, University of York, Heslington, York YO10 5DD (United Kingdom)

    2011-08-15

    OPAL is an English national programme that takes scientists into the community to investigate environmental issues. Biological monitoring plays a pivotal role covering topics of: i) soil and earthworms; ii) air, lichens and tar spot on sycamore; iii) water and aquatic invertebrates; iv) biodiversity and hedgerows; v) climate, clouds and thermal comfort. Each survey has been developed by an inter-disciplinary team and tested by voluntary, statutory and community sectors. Data are submitted via the web and instantly mapped. Preliminary results are presented, together with a discussion on data quality and uncertainty. Communities also investigate local pollution issues, ranging from nitrogen deposition on heathlands to traffic emissions on roadside vegetation. Over 200,000 people have participated so far, including over 1000 schools and 1000 voluntary groups. Benefits include a substantial, growing database on biodiversity and habitat condition, much from previously unsampled sites particularly in urban areas, and a more engaged public. - Highlights: > Environmental research conducted jointly by the public and scientists. > Over 200,000 people involved, 8000 sites surveyed, uncertainty minimised. > New insights into urban pollution. > A more engaged and informed society. - Research is enriched where the public and scientists work together.

  10. The GATO gene annotation tool for research laboratories

    Directory of Open Access Journals (Sweden)

    A. Fujita

    2005-11-01

    Full Text Available Large-scale genome projects have generated a rapidly increasing number of DNA sequences. Therefore, development of computational methods to rapidly analyze these sequences is essential for progress in genomic research. Here we present an automatic annotation system for preliminary analysis of DNA sequences. The gene annotation tool (GATO is a Bioinformatics pipeline designed to facilitate routine functional annotation and easy access to annotated genes. It was designed in view of the frequent need of genomic researchers to access data pertaining to a common set of genes. In the GATO system, annotation is generated by querying some of the Web-accessible resources and the information is stored in a local database, which keeps a record of all previous annotation results. GATO may be accessed from everywhere through the internet or may be run locally if a large number of sequences are going to be annotated. It is implemented in PHP and Perl and may be run on any suitable Web server. Usually, installation and application of annotation systems require experience and are time consuming, but GATO is simple and practical, allowing anyone with basic skills in informatics to access it without any special training. GATO can be downloaded at [http://mariwork.iq.usp.br/gato/]. Minimum computer free space required is 2 MB.

  11. Land Reclamation Laboratory: Jim Bridger mine site description of research

    Energy Technology Data Exchange (ETDEWEB)

    Green, B. B.

    1977-02-01

    Four subprojects have been developed for the Jim Bridger Mine near Rock Springs, Wyoming. This research addresses the problems associated with vegetative response to stressed environments, water availability in reclaimed spoils, refaunation dynamics, and snowpack management for reclamation. A fifth project, soil microbiota recovery dynamics, will also be done at the mine site. Research on vegetative adaptations to stressed ecosystems concentrates on productivity, population dynamics and energy allocation strategies as indicators of plant response to stress. Water availability studies address erosion and spoil moisture characteristics of the native ecosystem and selected reclamation treatments. Design snowfence systems studies will develop methodologies to maximize the amount of the precipitation which is available to vegetation. Animal species composition and density on revegetated areas are also being examined. Wildlife studies are also investigating the impacts of small mammals on revegetation. The microbiological component of topsoil is being investigated in stored and native topsoil. These experiments are designed to provide insight into the reclamation of communities, not just revegetation of mine spoils.

  12. Collaborative Problem-Solving Environments; Proceedings for the Workshop CPSEs for Scientific Research, San Diego, California, June 20 to July 1, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Chin, George

    1999-01-11

    A workshop on collaborative problem-solving environments (CPSEs) was held June 29 through July 1, 1999, in San Diego, California. The workshop was sponsored by the U.S. Department of Energy and the High Performance Network Applications Team of the Large Scale Networking Working Group. The workshop brought together researchers and developers from industry, academia, and government to identify, define, and discuss future directions in collaboration and problem-solving technologies in support of scientific research.

  13. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2006

    Energy Technology Data Exchange (ETDEWEB)

    FOX, K.J.

    2006-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2006.

  14. A laboratory for life sciences research in space

    Science.gov (United States)

    Williams, B. A.; Klein, H. P.

    1982-01-01

    Biological studies hardware for Spacelab flights are described. The research animal holding facility has modular construction and is installed on a single ESA rack. A biotelemetry system will provide body temperature and EKG/heart rate data from a radio transmitter surgically implanted in the animals' stomachs. A plant growth unit (PGU) will be used to study micro-g plant lignin growth. The PGU is automated and can carry as many as 96 plants. A general purpose work station (GPWS) biohazard cabinet will be flown on Spacelab 4 to control liquid and chemical vapors released during experimentation. Spacelab 4 will be the premier flight of actual animal studies comprising measurements of hematology, muscle biochemistry, blood circulation, fluids and electrolytes, vestibular adaptation, etc., using rats and squirrel monkeys as subjects.

  15. SURVEY OF REMOTELY CONTROLLED LABORATORIES FOR RESEARCH AND EDUCATION

    Directory of Open Access Journals (Sweden)

    Tomasz CHMIELEWSKI

    2017-03-01

    Full Text Available The article presents the modeling and simulation of the crank-piston model of internal combustion engine. The object of the research was the engine of the vehicle from the B segment. The individual elements of the gasoline engine were digitizing using the process of reverse engineering. After converting the geometry, assembling was imported to MSC Adams software. The crank-piston system was specified by boundary conditions of piston forces applied on the pistons crowns. This force was obtain from the cylinder pressure recorded during the tests, that were carried out on a chassis dynamometer. The simulation studies allowed t determine the load distribution in a dynamic state for the selected kinematic pairs.

  16. Intelligence and Creativity in Problem Solving: The Importance of Test Features in Cognition Research.

    Science.gov (United States)

    Jaarsveld, Saskia; Lachmann, Thomas

    2017-01-01

    This paper discusses the importance of three features of psychometric tests for cognition research: construct definition, problem space, and knowledge domain. Definition of constructs, e.g., intelligence or creativity, forms the theoretical basis for test construction. Problem space, being well or ill-defined, is determined by the cognitive abilities considered to belong to the constructs, e.g., convergent thinking to intelligence, divergent thinking to creativity. Knowledge domain and the possibilities it offers cognition are reflected in test results. We argue that (a) comparing results of tests with different problem spaces is more informative when cognition operates in both tests on an identical knowledge domain, and (b) intertwining of abilities related to both constructs can only be expected in tests developed to instigate such a process. Test features should guarantee that abilities can contribute to self-generated and goal-directed processes bringing forth solutions that are both new and applicable. We propose and discuss a test example that was developed to address these issues.

  17. Intelligence and Creativity in Problem Solving: The Importance of Test Features in Cognition Research

    Science.gov (United States)

    Jaarsveld, Saskia; Lachmann, Thomas

    2017-01-01

    This paper discusses the importance of three features of psychometric tests for cognition research: construct definition, problem space, and knowledge domain. Definition of constructs, e.g., intelligence or creativity, forms the theoretical basis for test construction. Problem space, being well or ill-defined, is determined by the cognitive abilities considered to belong to the constructs, e.g., convergent thinking to intelligence, divergent thinking to creativity. Knowledge domain and the possibilities it offers cognition are reflected in test results. We argue that (a) comparing results of tests with different problem spaces is more informative when cognition operates in both tests on an identical knowledge domain, and (b) intertwining of abilities related to both constructs can only be expected in tests developed to instigate such a process. Test features should guarantee that abilities can contribute to self-generated and goal-directed processes bringing forth solutions that are both new and applicable. We propose and discuss a test example that was developed to address these issues. PMID:28220098

  18. Laboratory Directed Research and Development Program. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Romano, A.J.

    1992-12-01

    This report briefly discusses the following research: Advances in Geoexploration; Transvenous Coronary Angiography with Synchrotron X-Rays; Borehole Measurements of Global Warming; Molecular Ecology: Development of Field Methods for Microbial Growth Rate and Activity Measurements; A New Malaria Enzyme - A Potential Source for a New Diagnostic Test for Malaria and a Target for a New Antimalarial Drug; Basic Studies on Thoron and Thoron Precursors; Cloning of the cDNA for a Human Serine/Threonine Protein Kinase that is Activated Specifically by Double-Stranded DNA; Development of an Ultra-Fast Laser System for Accelerator Applications; Cluster Impact Fusion; Effect of a Bacterial Spore Protein on Mutagenesis; Structure and Function of Adenovirus Penton Base Protein; High Resolution Fast X-Ray Detector; Coherent Synchrotron Radiation Longitudinal Bunch Shape Monitor; High Grain Harmonic Generation Experiment; BNL Maglev Studies; Structural Investigations of Pt-Based Catalysts; Studies on the Cellular Toxicity of Cocaine and Cocaethylene; Human Melanocyte Transformation; Exploratory Applications of X-Ray Microscopy; Determination of the Higher Ordered Structure of Eukaryotic Chromosomes; Uranium Neutron Capture Therapy; Tunneling Microscopy Studies of Nanoscale Structures; Nuclear Techiques for Study of Biological Channels; RF Sources for Accelerator Physics; Induction and Repair of Double-Strand Breaks in the DNA of Human Lymphocytes; and An EBIS Source of High Charge State Ions up to Uranium.

  19. Experimental researches on power plant condensers performed at ENEA laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Fabrizi, F.; Girardi, G.; Palazzi, G. [ENEA, Casaccia (Italy). Area Energetica

    1993-09-01

    Improvement of Italian industrial design capability is the principal aim of the ENEA (Italian Agency for Energy, New Technologies and the Environment) R&D program which is studying the thermo-hydraulic aspects of shell-and-tube condensers. The principal experimental apparatus of this project allows researchers to perform tests for investigating in detail feed-water heater (FWH) thermo-hydraulic performance. A scaled-down test section was used in significant size to reproduce condensing, de-superheating and drain cooling zones. To approach condensation phenomena occurring in the FWH, a visualization test section was also built. A new model for condensation flow, perpendicular to the tubes, was developed using the films shot through the visualization test section. All the experimental data carried out in the program were used to assess an original code, named COND. Concerning the tube-side condenser design, an analysis of the velocity field in the front end head was performed to minimize erosion phenomena.

  20. Revealing all: misleading self-disclosure rates in laboratory-based online research.

    Science.gov (United States)

    Callaghan, Diana E; Graff, Martin G; Davies, Joanne

    2013-09-01

    Laboratory-based experiments in online self-disclosure research may be inadvertently compromising the accuracy of research findings by influencing some of the factors known to affect self-disclosure behavior. Disclosure-orientated interviews conducted with 42 participants in the laboratory and in nonlaboratory settings revealed significantly greater breadth of self-disclosure in laboratory interviews, with message length and intimacy of content also strongly related. These findings suggest that a contrived online setting with a researcher presence may stimulate motivation for greater self-disclosure than would occur naturally in an online environment of an individual's choice. The implications of these findings are that researchers should consider the importance of experimental context and motivation in self-disclosure research.

  1. Practicing biology: Undergraduate laboratory research, persistence in science, and the impact of self-efficacy beliefs

    Science.gov (United States)

    Berkes, Elizabeth

    As undergraduate laboratory research internships become more popular and universities devote considerable resources towards promoting them, it is important to clarify what students specifically gain through involvement in these experiences and it is important to understand their impact on the science pipeline. By examining recent findings describing the primary benefits of undergraduate research participation, along with self-efficacy theory, this study aims to provide more explanatory power to the anecdotal and descriptive accounts regarding the relationship between undergraduate research experiences and interest in continuing in science. Furthermore, this study characterizes practices that foster students' confidence in doing scientific work with detailed description and analysis of the interactions of researchers in a laboratory. Phase 1 of the study, a survey of undergraduate biology majors (n=71) at a major research university, investigates the relationships among participation in biology laboratory research internships, biology laboratory self-efficacy strength, and interest in persisting in science. Phase 2 of the study, a two-year investigation of a university biology research laboratory, investigates how scientific communities of practice develop self-efficacy beliefs. The findings suggest that participation in lab internships results in increased interest in continuing in life science/biology graduate school and careers. They also suggest that a significant proportion of that interest is related to the students' biology laboratory self-efficacy. The findings of this study point to two primary ways that undergraduate research participation might work to raise self-efficacy strength. First, university research laboratory communities can provide students with a variety of resources that scaffold them into biology laboratory mastery experiences. Second, university research laboratory communities can provide students with coping and mastery Discourse models

  2. The Advanced Interdisciplinary Research Laboratory: A Student Team Approach to the Fourth-Year Research Thesis Project Experience

    Science.gov (United States)

    Piunno, Paul A. E.; Boyd, Cleo; Barzda, Virginijus; Gradinaru, Claudiu C.; Krull, Ulrich J.; Stefanovic, Sasa; Stewart, Bryan

    2014-01-01

    The advanced interdisciplinary research laboratory (AIRLab) represents a novel, effective, and motivational course designed from the interdisciplinary research interests of chemistry, physics, biology, and education development faculty members as an alternative to the independent thesis project experience. Student teams are assembled to work…

  3. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare.

    Directory of Open Access Journals (Sweden)

    Gail F Davies

    Full Text Available Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs', work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving

  4. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare

    Science.gov (United States)

    Davies, Gail F.; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G. W.; Applebee, Ken; Bellingan, Laura C.; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J.; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J.; Jayne, Kimberley; Johnson, Adam M.; Johnson, Elizabeth R.; Konold, Timm; Leach, Matthew C.; Leonelli, Sabina; Lewis, David I.; Lilley, Elliot J.; Longridge, Emma R.; McLeod, Carmen M.; Miele, Mara; Nelson, Nicole C.; Ormandy, Elisabeth H.; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J.; Scudamore, Cheryl L.; Smith, Jane A.; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the ‘3Rs’), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, ‘cultures of care’, harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across

  5. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare.

    Science.gov (United States)

    Davies, Gail F; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G W; Applebee, Ken; Bellingan, Laura C; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J; Jayne, Kimberley; Johnson, Adam M; Johnson, Elizabeth R; Konold, Timm; Leach, Matthew C; Leonelli, Sabina; Lewis, David I; Lilley, Elliot J; Longridge, Emma R; McLeod, Carmen M; Miele, Mara; Nelson, Nicole C; Ormandy, Elisabeth H; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J; Scudamore, Cheryl L; Smith, Jane A; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs'), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across

  6. The evolution of drug design at Merck Research Laboratories.

    Science.gov (United States)

    Brown, Frank K; Sherer, Edward C; Johnson, Scott A; Holloway, M Katharine; Sherborne, Bradley S

    2017-03-01

    On October 5, 1981, Fortune magazine published a cover article entitled the "Next Industrial Revolution: Designing Drugs by Computer at Merck". With a 40+ year investment, we have been in the drug design business longer than most. During its history, the Merck drug design group has had several names, but it has always been in the "design" business, with the ultimate goal to provide an actionable hypothesis that could be tested experimentally. Often the result was a small molecule but it could just as easily be a peptide, biologic, predictive model, reaction, process, etc. To this end, the concept of design is now front and center in all aspects of discovery, safety assessment and early clinical development. At present, the Merck design group includes computational chemistry, protein structure determination, and cheminformatics. By bringing these groups together under one umbrella, we were able to align activities and capabilities across multiple research sites and departments. This alignment from 2010 to 2016 resulted in an 80% expansion in the size of the department, reflecting the increase in impact due to a significant emphasis across the organization to "design first" along the entire drug discovery path from lead identification (LID) to first in human (FIH) dosing. One of the major advantages of this alignment has been the ability to access all of the data and create an adaptive approach to the overall LID to FIH pathway for any modality, significantly increasing the quality of candidates and their probability of success. In this perspective, we will discuss how we crafted a new strategy, defined the appropriate phenotype for group members, developed the right skillsets, and identified metrics for success in order to drive continuous improvement. We will not focus on the tactical implementation, only giving specific examples as appropriate.

  7. The evolution of drug design at Merck Research Laboratories

    Science.gov (United States)

    Brown, Frank K.; Sherer, Edward C.; Johnson, Scott A.; Holloway, M. Katharine; Sherborne, Bradley S.

    2016-11-01

    On October 5, 1981, Fortune magazine published a cover article entitled the "Next Industrial Revolution: Designing Drugs by Computer at Merck". With a 40+ year investment, we have been in the drug design business longer than most. During its history, the Merck drug design group has had several names, but it has always been in the "design" business, with the ultimate goal to provide an actionable hypothesis that could be tested experimentally. Often the result was a small molecule but it could just as easily be a peptide, biologic, predictive model, reaction, process, etc. To this end, the concept of design is now front and center in all aspects of discovery, safety assessment and early clinical development. At present, the Merck design group includes computational chemistry, protein structure determination, and cheminformatics. By bringing these groups together under one umbrella, we were able to align activities and capabilities across multiple research sites and departments. This alignment from 2010 to 2016 resulted in an 80% expansion in the size of the department, reflecting the increase in impact due to a significant emphasis across the organization to "design first" along the entire drug discovery path from lead identification (LID) to first in human (FIH) dosing. One of the major advantages of this alignment has been the ability to access all of the data and create an adaptive approach to the overall LID to FIH pathway for any modality, significantly increasing the quality of candidates and their probability of success. In this perspective, we will discuss how we crafted a new strategy, defined the appropriate phenotype for group members, developed the right skillsets, and identified metrics for success in order to drive continuous improvement. We will not focus on the tactical implementation, only giving specific examples as appropriate.

  8. The evolution of drug design at Merck Research Laboratories

    Science.gov (United States)

    Brown, Frank K.; Sherer, Edward C.; Johnson, Scott A.; Holloway, M. Katharine; Sherborne, Bradley S.

    2017-03-01

    On October 5, 1981, Fortune magazine published a cover article entitled the "Next Industrial Revolution: Designing Drugs by Computer at Merck". With a 40+ year investment, we have been in the drug design business longer than most. During its history, the Merck drug design group has had several names, but it has always been in the "design" business, with the ultimate goal to provide an actionable hypothesis that could be tested experimentally. Often the result was a small molecule but it could just as easily be a peptide, biologic, predictive model, reaction, process, etc. To this end, the concept of design is now front and center in all aspects of discovery, safety assessment and early clinical development. At present, the Merck design group includes computational chemistry, protein structure determination, and cheminformatics. By bringing these groups together under one umbrella, we were able to align activities and capabilities across multiple research sites and departments. This alignment from 2010 to 2016 resulted in an 80% expansion in the size of the department, reflecting the increase in impact due to a significant emphasis across the organization to "design first" along the entire drug discovery path from lead identification (LID) to first in human (FIH) dosing. One of the major advantages of this alignment has been the ability to access all of the data and create an adaptive approach to the overall LID to FIH pathway for any modality, significantly increasing the quality of candidates and their probability of success. In this perspective, we will discuss how we crafted a new strategy, defined the appropriate phenotype for group members, developed the right skillsets, and identified metrics for success in order to drive continuous improvement. We will not focus on the tactical implementation, only giving specific examples as appropriate.

  9. Shaping the library of the future: Digital library developments at Los Alamos National Laboratory`s Research Library

    Energy Technology Data Exchange (ETDEWEB)

    Luce, R. E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    1994-10-01

    This paper offers an overview of current efforts at the Research Library, Los Alamos National Laboratory, (LANL), to develop digital library services. Current projects of LANL`s Library without Walls initiative are described. Although the architecture of digital libraries generally is experimental and subject to debate, one principle of LANL`s approach to delivering library information is the use of Mosaic as a client for the Research Library`s resources. Several projects under development have significant ramifications for delivering library services over the Internet. Specific efforts via Mosaic include support for preprint databases, providing access to citation databases, and access to a digital image database of unclassified Los Alamos technical reports.

  10. Shaping the library of the future: Digital library developments at Los Alamos National Laboratory`s Research Library

    Energy Technology Data Exchange (ETDEWEB)

    Luce, R. E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    1994-10-01

    This paper offers an overview of current efforts at the Research Library, Los Alamos National Laboratory, (LANL), to develop digital library services. Current projects of LANL`s Library without Walls initiative are described. Although the architecture of digital libraries generally is experimental and subject to debate, one principle of LANL`s approach to delivering library information is the use of Mosaic as a client for the Research Library`s resources. Several projects under development have significant ramifications for delivering library services over the Internet. Specific efforts via Mosaic include support for preprint databases, providing access to citation databases, and access to a digital image database of unclassified Los Alamos technical reports.

  11. Publication bias in laboratory animal research: a survey on magnitude, drivers, consequences and potential solutions.

    Directory of Open Access Journals (Sweden)

    Gerben ter Riet

    Full Text Available CONTEXT: Publication bias jeopardizes evidence-based medicine, mainly through biased literature syntheses. Publication bias may also affect laboratory animal research, but evidence is scarce. OBJECTIVES: To assess the opinion of laboratory animal researchers on the magnitude, drivers, consequences and potential solutions for publication bias. And to explore the impact of size of the animals used, seniority of the respondent, working in a for-profit organization and type of research (fundamental, pre-clinical, or both on those opinions. DESIGN: Internet-based survey. SETTING: All animal laboratories in The Netherlands. PARTICIPANTS: Laboratory animal researchers. MAIN OUTCOME MEASURE(S: Median (interquartile ranges strengths of beliefs on 5 and 10-point scales (1: totally unimportant to 5 or 10: extremely important. RESULTS: Overall, 454 researchers participated. They considered publication bias a problem in animal research (7 (5 to 8 and thought that about 50% (32-70 of animal experiments are published. Employees (n = 21 of for-profit organizations estimated that 10% (5 to 50 are published. Lack of statistical significance (4 (4 to 5, technical problems (4 (3 to 4, supervisors (4 (3 to 5 and peer reviewers (4 (3 to 5 were considered important reasons for non-publication (all on 5-point scales. Respondents thought that mandatory publication of study protocols and results, or the reasons why no results were obtained, may increase scientific progress but expected increased bureaucracy. These opinions did not depend on size of the animal used, seniority of the respondent or type of research. CONCLUSIONS: Non-publication of "negative" results appears to be prevalent in laboratory animal research. If statistical significance is indeed a main driver of publication, the collective literature on animal experimentation will be biased. This will impede the performance of valid literature syntheses. Effective, yet efficient systems should be explored to

  12. The Hunterian Neurosurgical Laboratory: the first 100 years of neurosurgical research.

    Science.gov (United States)

    Sampath, P; Long, D M; Brem, H

    2000-01-01

    research on calcium metabolism by William MacCallum and Carl Voegtlin and seminal preclinical work by Alfred Blalock and Vivian Thomas that led to the famous "blue baby" operation in 1944. With the introduction of the operating microscope in the 1950s, much of the focus in neurosurgical science shifted from the laboratory to the operating room. The old Hunterian building was demolished in 1956. The Hunterian laboratory for surgical and pathological research was rebuilt on its original site in 1987, and the Hunterian Neurosurgical Laboratory was reestablished in 1991, with a focus on novel treatments for brain tumors. The strong tradition of performing basic research with clinical relevance has continued.

  13. Radar research at The Pennsylvania State University Radar and Communications Laboratory

    Science.gov (United States)

    Narayanan, Ram M.

    2017-05-01

    The Radar and Communications Laboratory (RCL) at The Pennsylvania State University is at the forefront of radar technology and is engaged in cutting edge research in all aspects of radar, including modeling and simulation studies of novel radar paradigms, design and development of new types of radar architectures, and extensive field measurements in realistic scenarios. This paper summarizes the research at The Pennsylvania State University's Radar and Communications Laboratory and relevant collaborative research with several groups over the past 15 years in the field of radar and related technologies, including communications, radio frequency identification (RFID), and spectrum sensing.

  14. Using Independent Research Projects to Foster Learning in the Comparative Vertebrate Anatomy Laboratory

    Science.gov (United States)

    Ghedotti, Michael J.; Fielitz, Christopher; Leonard, Daniel J.

    2005-01-01

    This paper presents a teaching methodology involving an independent research project component for use in undergraduate Comparative Vertebrate Anatomy laboratory courses. The proposed project introduces cooperative, active learning in a research context to comparative vertebrate anatomy. This project involves pairs or groups of three students…

  15. Grundfagligt Speciale: An advanced laboratory-research course for nonphysicists taught by physicists

    DEFF Research Database (Denmark)

    Gordon, R A; Lebech, Jens; Mygind, Jesper;

    1979-01-01

    The pedagogical and research advantages of an advanced laboratory-research course for nonphysicists taught by physicists are discussed. The practical considerations which determine the structure and content of such a course are emphasized with particular attention given to those features which...

  16. The Laboratory Course Assessment Survey: A Tool to Measure Three Dimensions of Research-Course Design

    Science.gov (United States)

    Corwin, Lisa A.; Runyon, Christopher; Robinson, Aspen; Dolan, Erin L.

    2015-01-01

    Course-based undergraduate research experiences (CUREs) are increasingly being offered as scalable ways to involve undergraduates in research. Yet few if any design features that make CUREs effective have been identified. We developed a 17-item survey instrument, the Laboratory Course Assessment Survey (LCAS), that measures students' perceptions…

  17. A Graduate Laboratory Course on Biodiesel Production Emphasizing Professional, Teamwork, and Research Skills

    Science.gov (United States)

    Leavesley, West

    2011-01-01

    In this article we report on the use of a graduate "Special Topics" course to provide vital research and practical laboratory experience, within the context of developing a chemical process to manufacture biodiesel from algal sources. This course contained several key components that we believe are necessary skills in graduate research: 1) a…

  18. Promoting Science Outdoor Activities for Elementary School Children: Contributions from a Research Laboratory

    Science.gov (United States)

    Boaventura, Diana; Faria, Claudia; Chagas, Isabel; Galvao, Cecilia

    2013-01-01

    The purposes of the study were to analyse the promotion of scientific literacy through practical research activities and to identify children's conceptions about scientists and how they do science. Elementary school children were engaged in two scientific experiments in a marine biology research laboratory. A total of 136 students answered a…

  19. Promoting Science Outdoor Activities for Elementary School Children: Contributions from a Research Laboratory

    Science.gov (United States)

    Boaventura, Diana; Faria, Claudia; Chagas, Isabel; Galvao, Cecilia

    2013-01-01

    The purposes of the study were to analyse the promotion of scientific literacy through practical research activities and to identify children's conceptions about scientists and how they do science. Elementary school children were engaged in two scientific experiments in a marine biology research laboratory. A total of 136 students answered a…

  20. The Central Importance of Laboratories for Reducing Waste in Biomedical Research.

    Science.gov (United States)

    Stroth, Nikolas

    2016-12-01

    The global biomedical research enterprise is driving substantial advances in medicine and healthcare. Yet it appears that the enterprise is rather wasteful, falling short of its true innovative potential. Suggested reasons are manifold and involve various stakeholders, such that there is no single remedy. In the present paper, I will argue that laboratories are the basic working units of the biomedical research enterprise and an important site of action for corrective intervention. Keeping laboratories relatively small will enable better training and mentoring of individual scientists, which in turn will yield better performance of the scientific workforce. The key premise of this argument is that people are at the heart of the successes and failures of biomedical research, yet the human dimension of science has been unduly neglected in practice. Renewed focus on the importance of laboratories and their constituent scientists is one promising approach to reducing waste and increasing efficiency within the biomedical research enterprise.

  1. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule.

    Science.gov (United States)

    Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B

    2014-01-14

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world.

  2. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule

    Science.gov (United States)

    2014-01-01

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world. PMID:24501431

  3. The history of the oldest self-sustaining laboratory animal: 150 years of axolotl research.

    Science.gov (United States)

    Reiß, Christian; Olsson, Lennart; Hoßfeld, Uwe

    2015-07-01

    Today the Mexican axolotl is critically endangered in its natural habitat in lakes around Mexico City, but thrives in research laboratories around the world, where it is used for research on development, regeneration, and evolution. Here, we concentrate on the early history of the axolotl as a laboratory animal to celebrate that the first living axolotls arrived in Paris in 1864, 150 years ago. Maybe surprisingly, at first the axolotl was distributed across Europe without being tied to specific research questions, and amateurs engaged in acclimatization and aquarium movements played an important role for the rapid proliferation of the axolotl across the continent. But the aquarium also became an important part of the newly established laboratory, where more and more biological and medical research now took place. Early scientific interest focused on the anatomical peculiarities of the axolotl, its rare metamorphosis, and whether it was a larva or an adult. Later, axolotl data was used to argue both for (by August Weismann and others) and against (by e.g., Albert von Kölliker) Darwinism, and the axolotl even had a brief history as a laboratory animal used in a failed attempt to prove Lysenkoism in Jena, Germany. Nowadays, technical developments such as transgenic lines, and the very strong interest in stem cell and regeneration research has again catapulted the axolotl into becoming an important laboratory animal.

  4. USAF Summer Research Program - 1993 High School Apprenticeship Program Final Reports, Volume 12, Armstrong Laboratory

    Science.gov (United States)

    1993-12-01

    Page No: 16- 1 Tullahoma High School Tullahoma, TN 37388-0000 Bowlby , Andrea Laboratory: PL/GP Mudge Way Vol-Page No: 13- 1 Bedford High School Bedford...Ingram Rd. San Antonio, TX 78238 Dr. John Taboada Mentor Final Report for: AFOSR Summer Research Program Armstrong Laboratory Sponsored by: Air Force...Photoelectric Aerosol Sensor (PAS) as well as with other methods for studies involving aerosols and polycyclic aromatic hydrocarbons (PAH) (4-8). Dr. John

  5. Flexible System Integration and Advanced Hierarchical Control Architectures in the Microgrid Research Laboratory of Aalborg University

    DEFF Research Database (Denmark)

    Meng, Lexuan; Hernández, Adriana Carolina Luna; Diaz, Enrique Rodriguez

    2016-01-01

    This paper presents the system integration and hierarchical control implementation in an inverter-based microgrid research laboratory (MGRL) in Aalborg University, Denmark. MGRL aims to provide a flexible experimental platform for comprehensive studies of microgrids. The structure of the laboratory...... system supervision, advanced secondary and tertiary management are realized in a microgrid central controller. The software and hardware schemes are described. Several example case studies are introduced and performed in order to achieve power quality regulation, energy management and flywheel energy...

  6. Adverse pregnancy outcomes in offspring of fathers working in biomedical research laboratories

    DEFF Research Database (Denmark)

    Magnusson, Linda L; Bodin, Lennart; Wennborg, Helena

    2006-01-01

    BACKGROUND: Laboratory work may constitute a possible health hazard for workers as well as for their offspring, and involves a wide range of exposures, such as organic solvents, carcinogenic agents, ionizing radiation, and/or microbiological agents. Adverse pregnancy outcomes in the offspring...... of male employees in biomedical research laboratories are examined. METHODS: Offspring to males employed 1970-1989 at four Swedish universities were identified via the Medical Birth Register (MBR), along with other pregnancy parameters. Offspring of fathers with laboratory work (n = 2,281) is considered...

  7. Requirement analysis for an electronic laboratory notebook for sustainable data management in biomedical research.

    Science.gov (United States)

    Menzel, Julia; Weil, Philipp; Bittihn, Philip; Hornung, Daniel; Mathieu, Nadine; Demiroglu, Sara Y

    2013-01-01

    Sustainable data management in biomedical research requires documentation of metadata for all experiments and results. Scientists usually document research data and metadata in laboratory paper notebooks. An electronic laboratory notebook (ELN) can keep metadata linked to research data resulting in a better understanding of the research results, meaning a scientific benefit [1]. Besides other challenges [2], the biggest hurdles for introducing an ELN seem to be usability, file formats, and data entry mechanisms [3] and that many ELNs are assigned to specific research fields such as biology, chemistry, or physics [4]. We aimed to identify requirements for the introduction of ELN software in a biomedical collaborative research center [5] consisting of different scientific fields and to find software fulfilling most of these requirements.

  8. Cognitive Research and Elementary Science Instruction: From the Laboratory, to the Classroom, and Back

    Science.gov (United States)

    Klahr, David; Li, Junlei

    2005-06-01

    Can cognitive research generate usable knowledge for elementary science instruction? Can issues raised by classroom practice drive the agenda of laboratory cognitive research? Answering yes to both questions, we advocate building a reciprocal interface between basic and applied research. We discuss five studies of the teaching, learning, and transfer of the "Control of Variables Strategy" in elementary school science. Beginning with investigations motivated by basic theoretical questions, we situate subsequent inquiries within authentic educational debates—contrasting hands-on manipulation of physical and virtual materials, evaluating direct instruction and discovery learning, replicating training methods in classroom, and narrowing science achievement gaps. We urge research programs to integrate basic research in "pure" laboratories with field work in "messy" classrooms. Finally, we suggest that those engaged in discussions about implications and applications of educational research focus on clearly defined instructional methods and procedures, rather than vague labels and outmoded "-isms."

  9. Guidelines for the care and use of laboratory animals in biomedical research.

    Science.gov (United States)

    Jones-Bolin, Susan

    2012-12-01

    This unit provides a general overview on topics related to the practical care and use of laboratory animals in biomedical research. These topics are briefly described and provide Web sites and/or research articles that can be accessed for more detailed information. While the primary focus is on the care and use of rats and mice bred for biomedical research, many of the Web sites listed provide information on other species used for this purpose.

  10. Laboratory for development of open source geospatial technologies – role in education and research

    Directory of Open Access Journals (Sweden)

    Milan Kilibarda

    2014-06-01

    Full Text Available International Cartographic CBOs (International Cartographic Association- ICA in partnership with the Open Source Geospatial Foundation-OSGeo has started the initiative ICA-OSGeo Labs to promote and use open source technologies in education and research. For many years, the use and development of open source software and technologies have been present in the field of research and education at the Faculty of Civil Engineering at the Department of Geodesy and Geoinformatics, University of Belgrade. Additionally, at the University of Belgrade, Faculty of Civil Engineering a laboratory called "Laboratory for development of open source geospatial technologies - OSGL" has recently been established. This paper presents the current experience of the lab members in using open source software in geoinformatics, research and education as well as the perspectives and future activities of the newly formed laboratory.

  11. Optical laboratory facilities at the Finnish Meteorological Institute - Arctic Research Centre

    Science.gov (United States)

    Lakkala, Kaisa; Suokanerva, Hanne; Matti Karhu, Juha; Aarva, Antti; Poikonen, Antti; Karppinen, Tomi; Ahponen, Markku; Hannula, Henna-Reetta; Kontu, Anna; Kyrö, Esko

    2016-07-01

    This paper describes the laboratory facilities at the Finnish Meteorological Institute - Arctic Research Centre (FMI-ARC, http://fmiarc.fmi.fi). They comprise an optical laboratory, a facility for biological studies, and an office. A dark room has been built, in which an optical table and a fixed lamp test system are set up, and the electronics allow high-precision adjustment of the current. The Brewer spectroradiometer, NILU-UV multifilter radiometer, and Analytical Spectral Devices (ASD) spectroradiometer of the FMI-ARC are regularly calibrated or checked for stability in the laboratory. The facilities are ideal for responding to the needs of international multidisciplinary research, giving the possibility to calibrate and characterize the research instruments as well as handle and store samples.

  12. Semiconductor Electrical Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Electrical Measurements Laboratory is a research laboratory which complements the Optical Measurements Laboratory. The laboratory provides for Hall...

  13. Comparison of microbiological diagnosis of urinary tract infection in young children by routine health service laboratories and a research laboratory: Diagnostic cohort study

    Science.gov (United States)

    Birnie, Kate; Hay, Alastair D.; Wootton, Mandy; Howe, Robin; MacGowan, Alasdair; Whiting, Penny; Lawton, Michael; Delaney, Brendan; Downing, Harriet; Dudley, Jan; Hollingworth, William; Lisles, Catherine; Little, Paul; O’Brien, Kathryn; Pickles, Timothy; Rumsby, Kate; Thomas-Jones, Emma; Van der Voort, Judith; Waldron, Cherry-Ann; Harman, Kim; Hood, Kerenza; Butler, Christopher C.; Sterne, Jonathan A. C.

    2017-01-01

    Objectives To compare the validity of diagnosis of urinary tract infection (UTI) through urine culture between samples processed in routine health service laboratories and those processed in a research laboratory. Population and methods We conducted a prospective diagnostic cohort study in 4808 acutely ill children aged <5 years attending UK primary health care. UTI, defined as pure/predominant growth ≥105 CFU/mL of a uropathogen (the reference standard), was diagnosed at routine health service laboratories and a central research laboratory by culture of urine samples. We calculated areas under the receiver-operator curve (AUC) for UTI predicted by pre-specified symptoms, signs and dipstick test results (the “index test”), separately according to whether samples were obtained by clean catch or nappy (diaper) pads. Results 251 (5.2%) and 88 (1.8%) children were classified as UTI positive by health service and research laboratories respectively. Agreement between laboratories was moderate (kappa = 0.36; 95% confidence interval [CI] 0.29, 0.43), and better for clean catch (0.54; 0.45, 0.63) than nappy pad samples (0.20; 0.12, 0.28). In clean catch samples, the AUC was lower for health service laboratories (AUC = 0.75; 95% CI 0.69, 0.80) than the research laboratory (0.86; 0.79, 0.92). Values of AUC were lower in nappy pad samples (0.65 [0.61, 0.70] and 0.79 [0.70, 0.88] for health service and research laboratory positivity, respectively) than clean catch samples. Conclusions The agreement of microbiological diagnosis of UTI comparing routine health service laboratories with a research laboratory was moderate for clean catch samples and poor for nappy pad samples and reliability is lower for nappy pad than for clean catch samples. Positive results from the research laboratory appear more likely to reflect real UTIs than those from routine health service laboratories, many of which (particularly from nappy pad samples) could be due to contamination. Health service

  14. Establishment of a Laboratory for Biofuels Research at the University of Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Mark [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Crofcheck, Czarena [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Andrews, Rodney [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2013-03-29

    This project was aimed at the development of the biofuels industry in Kentucky by establishing a laboratory to develop improved processes for biomass utilization. The facility is based at the University of Kentucky Center for Applied Energy Research and the Department of Biosystems and Agricultural Engineering, and constitutes an “open” laboratory, i.e., its equipment is available to other Kentucky researchers working in the area. The development of this biofuels facility represents a significant expansion of research infrastructure, and will provide a lasting resource for biobased research endeavors at the University of Kentucky. In order to enhance the laboratory's capabilities and contribute to on-going biofuels research at the University of Kentucky, initial research at the laboratory has focused on the following technical areas: (i) the identification of algae strains suitable for oil production, utilizing flue gas from coal-fired power plants as a source of CO2; (ii) the conversion of algae to biofuels; and (iii) the development of methods for the analysis of lignin and its deconstruction products. Highlights from these activities include the development of catalysts for the upgrading of lipids to hydrocarbons by means of decarboxylation/decarbonylation (deCOx), a study of bio-oil production from the fast pyrolysis of algae (Scenedesmus), and the application of pyrolytic gas chromatography coupled with mass spectrometry (Py-GC-MS) to the characterization of high lignin biomass feedstocks.

  15. Annual Report FY2011: Establishment of a Laboratory for Biofuels Research at the University of Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Mark [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Crofcheck, Czarena [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Andrews, Rodney [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2011-12-21

    This project is aimed at the development of the biofuels industry in Kentucky by establishing a laboratory to develop improved processes for biomass utilization. The facility is based at the University of Kentucky Center for Applied Energy Research and the Department of Biosystems and Agricultural Engineering, and constitutes an open laboratory, i.e., its equipment is available to other Kentucky researchers working in the area. The development of this biofuels facility represents a significant expansion of research infrastructure, and will provide a lasting resource for biobased research endeavors at the University of Kentucky. In order to enhance the laboratory's capabilities and contribute to on-going biofuels research at the University of Kentucky, initial research at the laboratory has focused on the following technical areas: (i) the identification of algae strains suitable for oil production, utilizing flue gas from coal-fired power plants as a source of CO2; (ii) the conversion of algae to biofuels; and (iii) thermochemical methods for the deconstruction of lignin. Highlights from these activities include a detailed study of bio-oil production from the fast pyrolysis of microalgae (Scenedesmus sp.) and the application of pyrolytic gas chromatography coupled with mass spectrometry (Py-GC-MS) to the characterization of high lignin biomass feedstocks.

  16. New ion beam materials laboratory for materials modification and irradiation effects research

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: Zhangy1@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Crespillo, M.L.; Xue, H.; Jin, K.; Chen, C.H. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Fontana, C.L. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Graham, J.T. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Weber, W.J., E-mail: wjweber@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2014-11-01

    A new multifunctional ion beam materials laboratory (IBML) has been established at the University of Tennessee, in partnership with Oak Ridge National Laboratory. The IBML is currently equipped with two ion sources, a 3 MV tandem accelerator, three beamlines and three endstations. The IBML is primarily dedicated to fundamental research on ion–solid interaction, ion beam analysis, ion beam modification, and other basic and applied research on irradiation effects in a wide range of materials. An overview of the IBML facility is provided, and experimental results are reported to demonstrate the specific capabilities.

  17. New Ion Beam Materials Laboratory for Materials Modification and Irradiation Effects Research

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwen [ORNL; Crespillo, Miguel L [University of Tennessee (UT); Xue, Haizhou [University of Tennessee, Knoxville (UTK); Jin, Ke [University of Tennessee, Knoxville (UTK); Chen, Chien-Hung [University of Tennessee, Knoxville (UTK); Fontana, Cristiano L [ORNL; Graham, Dr. Joseph T. [The University of Tennessee; Weber, William J [ORNL

    2014-11-01

    A new multifunctional ion beam materials laboratory (IBML) has been established at the University of Tennessee, in partnership with Oak Ridge National Laboratory. The IBML is currently equipped with two ion sources, a 3 MV tandem accelerator, three beamlines and three endstations. The IBML is primarily dedicated to fundamental research on ion-solid interaction, ion beam analysis, ion beam modification, and other basic and applied research on irradiation effects in a wide range of materials. An overview of the IBML facility is provided, and experimental results are reported to demonstrate the specific capabilities.

  18. Pacific Northwest Laboratory annual report for 1990 to the DOE Office of Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1991-06-01

    This report summarizes progress on OHER human health, biological, and general life sciences research programs conducted at PNL in FY 1990. The research develops the knowledge and scientific principles necessary to identify understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased of understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns epidemiological and statistical studies for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program.

  19. THE PELLETS APPLICATION IN LABORATORY RESEARCHING OF INHIBITIVE MUD/SHALE INTERACTION

    Directory of Open Access Journals (Sweden)

    Borivoje Pašić

    2012-12-01

    Full Text Available Wellbore instability appears to be a serious problem during drilling process through shale. Shales instability cause basically comes out of its mineralogical composition (especially clay minerals content and physico-chemical properties. Many research activities about shale instability causes and shale properties (affecting shale behavior during interaction with water phase of different drilling muds definition have been carried out by now. In these laboratory tests were used original shales samples given by coring process or collecting shale cuttings from shale shakers, and different shale samples from outcrop. From this reason is very difficult compare laboratory tests results given by different authors. Possible solution is use artificial shale samples (pellets with exact mineralogical composition, enabling extensive laboratory tests and tests results comparison. In this paper presented laboratory tests of pellets swelling in inhibitive muds (the paper is published in Croatian.

  20. NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Kotta, P R; Sketchley, J A

    2008-08-20

    The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon

  1. Argonne National Laboratory High Energy Physics Division semiannual report of research activities, January 1, 1989--June 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This paper discuss the following areas on High Energy Physics at Argonne National Laboratory: experimental program; theory program; experimental facilities research; accelerator research and development; and SSC detector research and development.

  2. Connecting Biology and Organic Chemistry Introductory Laboratory Courses through a Collaborative Research Project

    Science.gov (United States)

    Boltax, Ariana L.; Armanious, Stephanie; Kosinski-Collins, Melissa S.; Pontrello, Jason K.

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an…

  3. Fundamental Research in Engineering Education. Student Learning in Industrially Situated Virtual Laboratories

    Science.gov (United States)

    Koretsky, Milo D.; Kelly, Christine; Gummer, Edith

    2011-01-01

    The instructional design and the corresponding research on student learning of two virtual laboratories that provide an engineering task situated in an industrial context are described. In this problem-based learning environment, data are generated dynamically based on each student team's distinct choices of reactor parameters and measurements.…

  4. Using Green Chemistry Principles as a Framework to Incorporate Research into the Organic Laboratory Curriculum

    Science.gov (United States)

    Lee, Nancy E.; Gurney, Rich; Soltzberg, Leonard

    2014-01-01

    Despite the accepted pedagogical value of integrating research into the laboratory curriculum, this approach has not been widely adopted. The activation barrier to this change is high, especially in organic chemistry, where a large number of students are required to take this course, special glassware or setups may be needed, and dangerous…

  5. Infusing Bioinformatics and Research-Like Experience into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Nogaj, Luiza A.

    2014-01-01

    A nine-week laboratory project designed for a sophomore level molecular biology course is described. Small groups of students (3-4 per group) choose a tumor suppressor gene (TSG) or an oncogene for this project. Each group researches the role of their TSG/oncogene from primary literature articles and uses bioinformatics engines to find the gene…

  6. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.H.

    1996-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).

  7. Transitioning from Expository Laboratory Experiments to Course-Based Undergraduate Research in General Chemistry

    Science.gov (United States)

    Clark, Ted M.; Ricciardo, Rebecca; Weaver, Tyler

    2016-01-01

    General chemistry courses predominantly use expository experiments that shape student expectations of what a laboratory activity entails. Shifting within a semester to course-based undergraduate research activities that include greater decision-making, collaborative work, and "messy" real-world data necessitates a change in student…

  8. Fundamental Research in Engineering Education. Student Learning in Industrially Situated Virtual Laboratories

    Science.gov (United States)

    Koretsky, Milo D.; Kelly, Christine; Gummer, Edith

    2011-01-01

    The instructional design and the corresponding research on student learning of two virtual laboratories that provide an engineering task situated in an industrial context are described. In this problem-based learning environment, data are generated dynamically based on each student team's distinct choices of reactor parameters and measurements.…

  9. Simplifying Complexity: Miriam Blake--Los Alamos National Laboratory Research Library, NM

    Science.gov (United States)

    Library Journal, 2004

    2004-01-01

    The holy grail for many research librarians is one-stop searching: seamless access to all the library's resources on a topic, regardless of the source. Miriam Blake, Library Without Walls Project Leader at Los Alamos National laboratory (LANL), is making this vision a reality. Blake is part of a growing cadre of experts: a techie who is becoming a…

  10. The Research Laboratory of Electronics Progress Report Number 133, January 1-December 1990

    Science.gov (United States)

    1990-12-31

    form of a working Beam Epitaxy (MOMBE) of research facility in 1990. The substantial labora- ZnSe tory renovation was completed in February; the CBE...colleagues at Bernstein Waves in Toroidal Plasmas." Pro- the Italian laboratories of E.N.E.A. ( Energia ceedings of the International Sherwood Theory

  11. Discovering Inexpensive, Effective Catalysts for Solar Energy Conversion: An Authentic Research Laboratory Experience

    Science.gov (United States)

    Shaner, Sarah E.; Hooker, Paul D.; Nickel, Anne-Marie; Leichtfuss, Amanda R.; Adams, Carissa S.; de la Cerda, Dionisia; She, Yuqi; Gerken, James B.; Pokhrel, Ravi; Ambrose, Nicholas J.; Khaliqi, David; Stahl, Shannon S.; Schuttlefield Christus, Jennifer D.

    2016-01-01

    Electrochemical water oxidation is a major focus of solar energy conversion efforts. A new laboratory experiment has been developed that utilizes real-time, hands-on research to discover catalysts for solar energy conversion. The HARPOON, or Heterogeneous Anodes Rapidly Perused for Oxygen Overpotential Neutralization, experiment allows an array of…

  12. Second-language acquisition research in the laboratory: possibilities and limitations

    NARCIS (Netherlands)

    Hulstijn, J.H.

    1997-01-01

    This paper discusses some possibilities and limitations of laboratory research methods for testing theories of second language acquisition. The paper includes a review of 20 experimental lab studies. The review focuses on the motivation for conducting lab studies, the use of artificial or semiartifi

  13. Simplifying Complexity: Miriam Blake--Los Alamos National Laboratory Research Library, NM

    Science.gov (United States)

    Library Journal, 2004

    2004-01-01

    The holy grail for many research librarians is one-stop searching: seamless access to all the library's resources on a topic, regardless of the source. Miriam Blake, Library Without Walls Project Leader at Los Alamos National laboratory (LANL), is making this vision a reality. Blake is part of a growing cadre of experts: a techie who is becoming a…

  14. Discovering Inexpensive, Effective Catalysts for Solar Energy Conversion: An Authentic Research Laboratory Experience

    Science.gov (United States)

    Shaner, Sarah E.; Hooker, Paul D.; Nickel, Anne-Marie; Leichtfuss, Amanda R.; Adams, Carissa S.; de la Cerda, Dionisia; She, Yuqi; Gerken, James B.; Pokhrel, Ravi; Ambrose, Nicholas J.; Khaliqi, David; Stahl, Shannon S.; Schuttlefield Christus, Jennifer D.

    2016-01-01

    Electrochemical water oxidation is a major focus of solar energy conversion efforts. A new laboratory experiment has been developed that utilizes real-time, hands-on research to discover catalysts for solar energy conversion. The HARPOON, or Heterogeneous Anodes Rapidly Perused for Oxygen Overpotential Neutralization, experiment allows an array of…

  15. Using Green Chemistry Principles as a Framework to Incorporate Research into the Organic Laboratory Curriculum

    Science.gov (United States)

    Lee, Nancy E.; Gurney, Rich; Soltzberg, Leonard

    2014-01-01

    Despite the accepted pedagogical value of integrating research into the laboratory curriculum, this approach has not been widely adopted. The activation barrier to this change is high, especially in organic chemistry, where a large number of students are required to take this course, special glassware or setups may be needed, and dangerous…

  16. Transitioning from Expository Laboratory Experiments to Course-Based Undergraduate Research in General Chemistry

    Science.gov (United States)

    Clark, Ted M.; Ricciardo, Rebecca; Weaver, Tyler

    2016-01-01

    General chemistry courses predominantly use expository experiments that shape student expectations of what a laboratory activity entails. Shifting within a semester to course-based undergraduate research activities that include greater decision-making, collaborative work, and "messy" real-world data necessitates a change in student…

  17. A laboratory facility for research on wind-driven rain intrusion in building envelope assemblies

    Science.gov (United States)

    Samuel V. Glass

    2010-01-01

    Moisture management is critical for durable, energy-efficient buildings. To address the need for research on wind-driven rain intrusion in wall assemblies, the U.S. Forest Products Laboratory is developing a new facility. This paper describes the underlying principle of this facility and its capabilities.

  18. Research of the problems of Ukrainian intellectual and innovative technologies market and development of the ways of their solving

    Directory of Open Access Journals (Sweden)

    A.P. Kosenko

    2015-06-01

    Full Text Available The aim of the article. The aim of the article is to justify the methodical recommendations on formation and implementation of a mechanism for assessing the current state of technological market of Ukraine, to identify the problems of its development and to form the ways to eliminate them. The results of the analysis. The analysis of current state and prospects of the Ukrainian market of intellectual and innovative technologies development is made. It is proposed a set of indicators that can characterize the current state of modern technological market. The author offered to include indicators of intellectual and innovative activity of Ukraine, which will characterize he level of patent activity, the level of inventive activity, the level of implementation of inventive capacity, the level of technological dependence of the country, the level of intellectual independence of the country, the level of technological distribution, the quality level of domestic scientific and technological developments. It is proposed to assess the state of technological market of the country using citation indexes of scientific research (Hirsch index. The author conducted a questionnaire survey of machine-building industrial enterprises of Kharkiv region to clarify the most significant constraint on industrial enterprises innovative development, adversely affect patent activity, not conducive to the development of inventions and the development of intellectual and innovative technologies. It is identified the most significant factors hindering innovation development, adversely affect patent activity, not conducive to the development of inventions and the development of intellectual and innovative technologies. The ways of solving problems of technological development of machine-building enterprises are suggested. Conclusions and directions of further researches. The following provisions of innovation policy subject are proposed on the basis of the research: (a

  19. Solar energy research at Sandia Laboratories and its effects on health and safety

    Energy Technology Data Exchange (ETDEWEB)

    Young, L.L. III

    1977-10-01

    Various solar energy research and development projects at Sandia Laboratories are discussed with emphasis on the primary health and safety hazard associated with solar concentration systems. This limiting hazard is chorioretinal damage. The unique safety and health hazards associated with solar energy collector and receiver systems cannot be measured yet, but progress is being made rapidly. Research is continuing, especially for eye hazards, with more extensive work planned.

  20. Energetic materials research and development activities at Sandia National Laboratories supported under DP-10 programs

    Energy Technology Data Exchange (ETDEWEB)

    Ratzel, A.C. III

    1998-09-01

    This report provides summary descriptions of Energetic Materials (EM) Research and Development activities performed at Sandia National Laboratories and funded through the Department of Energy DP-10 Program Office in FY97 and FY98. The work falls under three major focus areas: EM Chemistry, EM Characterization, and EM Phenomenological Model Development. The research supports the Sandia component mission and also Sandia's overall role as safety steward for the DOE Nuclear Weapons Complex.

  1. The research program of the Liquid Scintillation Detector (LSD) in the Mont Blanc Laboratory

    Science.gov (United States)

    Dadykin, V. L.; Yakushev, V. F.; Korchagin, P. V.; Korchagin, V. B.; Malgin, A. S.; Ryassny, F. G.; Ryazhskaya, O. G.; Talochkin, V. P.; Zatsepin, G. T.; Badino, G.

    1985-01-01

    A massive (90 tons) liquid scintillation detector (LSD) has been running since October 1984 in the Mont Blanc Laboratory at a depth of 5,200 hg/sq cm of standard rock. The research program of the experiment covers a variety of topics in particle physics and astrophysics. The performance of the detector, the main fields of research are presented and the preliminary results are discussed.

  2. USAF Summer Research Program - 1993 Summer Research Extension Program Final Reports, Volume 1A, Armstrong Laboratory

    Science.gov (United States)

    1994-11-01

    Laboratory VOLUME 4A Report Title Report # Author’s University Report Author 1 Integrated Estimator/Guidance/ Autopilot for Homing Missiles Dr. S...Evaluation of Variable Structure Control for Missile Autopilots Dr. Mario Innocenti Using Reaction Aerospace Engineering Auburn University, Auburn, AL...is typically several Tesla (T), e.g., 6-10 T. With the existing technologies, superconductive magnets are feasible to reach such field strength. (With

  3. USAF Summer Research Program - 1995 Summer Faculty Research Program Final Reports, Volume 5A, Wright Laboratory

    Science.gov (United States)

    1995-12-01

    Laboratories as the prime contractor with participation from Philips Consumer Electronics Company, Best Products Co., Inc., and Philips Plastics Corporation...stator exit and the rotor inlet can be modeled with overlapping H-grids and a time-space phase-lag procedure, originally developed by Erdos (1977). The...Blade Row Approach," AIAA Paper 95-0179. Erdos , J. I., Alzner, E. and McNally, W., 1977, "Numerical Solution of Periodic Transonic Flow through a Fan

  4. 21 CFR 312.160 - Drugs for investigational use in laboratory research animals or in vitro tests.

    Science.gov (United States)

    2010-04-01

    ... research animals or in vitro tests. 312.160 Section 312.160 Food and Drugs FOOD AND DRUG ADMINISTRATION... Drugs for Investigational Use in Laboratory Research Animals or In Vitro Tests § 312.160 Drugs for investigational use in laboratory research animals or in vitro tests. (a) Authorization to ship. (1)(i) A...

  5. The MSFC Noble Gas Research Laboratory (MNGRL): A NASA Investigator Facility

    Science.gov (United States)

    Cohen, Barbara

    2016-01-01

    Noble-gas isotopes are a well-established technique for providing detailed temperature-time histories of rocks and meteorites. We have established the MSFC Noble Gas Research Laboratory (MNGRL) at Marshall Space Flight Center to serve as a NASA investigator facility in the wake of the closure of the JSC laboratory formerly run by Don Bogard. The MNGRL lab was constructed to be able to measure all the noble gases, particularly Ar-Ar and I-Xe radioactive dating to find the formation age of rocks and meteorites, and Ar/Kr/Ne cosmic-ray exposure ages to understand when the meteorites were launched from their parent planets.

  6. LDRD 2014 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, Diane [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2014, as required. In FY 2014, the BNL LDRD Program funded 40 projects, 8 of which were new starts, at a total cost of $9.6M.

  7. LDRD 2015 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-12-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2015, as required. In FY 2015, the BNL LDRD Program funded 43 projects, 12 of which were new starts, at a total cost of $9.5M.

  8. Laboratory directed research and development: Annual report to the Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    As one of the premier scientific laboratories of the DOE, Brookhaven must continuously foster the development of new ideas and technologies, promote the early exploration and exploitation of creative and innovative concepts, and develop new fundable R and D projects and programs. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments are described in this report. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.

  9. An alternative perspective on how laboratory medicine can contribute to solve the health care crisis: a model to save costs by acquiring excellence in diagnostic systems.

    Science.gov (United States)

    Mussap, Michele

    2014-01-01

    The rapid escalation in health care costs has led to the idea to deliver better care at lower costs, reshaping the responsibilities of the health care system to achieve the goal of creating value for the patient. The pressure for fiscal containment and the progressive reduction in available health care resources originated very short term strategies consisting of abrupt reductions in expenditure, specifically in the provision of clinical pathology laboratory medicine services. However, the impact of laboratory test results on diagnostic and therapeutic interventions has increased enormously in the past decade, due to advances in personalized medicine and to the strictly correlated requirement to use new biomarkers with increasing sensitivity and specificity in clinical practice. In order to create savings by delivering better care there is the need to invest financial resources in purchasing high technology and new sophisticated tests and to promote the expertise of clinical pathologists and laboratory medicine professionals. This approach to creating value in patient health care is more productive and sustainable ethically, morally and economically as a long-term strategy. It can be successfully achieved by applying defined rules that make public-private cooperation clearer, skipping incompatible solutions such as transforming clinical laboratories to 'industrially productive premises', outsourcing laboratory medicine services and using central acquisition of diagnostic systems.

  10. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2003

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2003-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 41 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  11. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2004

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2004-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $460 million. There are about 2,800 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  12. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2001-12-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas

  13. Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University`s Institute of Ecology. The laboratory`s overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M&O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the following areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give.

  14. Collaborative Research in Teaching: Collaboration between Laboratory Courses at Neighboring Institutions.

    Science.gov (United States)

    Yates, Jennifer R; Curtis, Nancy; Ramus, Seth J

    2006-01-01

    The concept of collaboration is central to many scientific endeavors. Here we present a model for collaborative research between laboratory courses in behavioral neuroscience at different institutions (or for that matter, multiple classrooms at a single institution). This course design engages undergraduate students in novel scientific research inside the classroom, and in discussion of that research between classrooms. In addition to exposing students to scientific collaboration, teaching these courses in tandem allows for the sharing of a number of resources while allowing collection of potentially publishable data and training students to conduct continuing independent research. For the 2003 and 2004 school years, we have run in collaboration the Laboratory in Brain and Behavior course at Colby College and the Laboratory in Behavioral Neuroscience: Learning and Memory course at Bowdoin College. The students enrolled in these courses have conducted primary, novel research projects designed by the instructors using animal subjects. Students learn experimental design, and surgery, behavioral testing, and histological techniques. Enrollments are limited in these courses, so having both groups of students perform the same protocols increases the number of subjects in these studies, and therefore, the statistical power of the experiment. The physical distance between the schools requires that technology be used to bring students in the two courses together. We have used threaded discussion groups accessible to students at both schools for everyday exchange of methodological information and have used videoconferencing for "lab meetings" addressing methodological issues and data analysis.

  15. Pacific Northwest Laboratory annual report for 1990 to the DOE Office of Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. F.; Kreml, S. A.; Wildung, R. E.; Hefty, M. G.; Perez, D. A.; Chase, K. K.; Elderkin, C. E.; Owczarski, E. L.; Toburen, L. H.; Parnell, K. A.; Faust, L. G.; Moraski, R. V.; Selby, J. M.; Hilliard, D. K.; Tenforde, T. S.

    1991-02-01

    This report summarizes progress in the environmental sciences research conducted by Pacific Northwest Laboratory (PNL) for the Office of Health and Environment Research in FY 1990. Research is directed toward developing the knowledge needed to guide government policy and technology development for two important environmental problems: environmental restoration and global change. The report is organized by major research areas contributing to resolution of these problems. Additional sections summarize exploratory research, educational institutional interactions, technology transfer, and publications. The PNL research program continues make contributions toward defining and quantifying processes that effect the environment at the local, regional, and global levels. Each research project forms a component in an integrated laboratory, intermediate-scale, and field approach designed to examine multiple phenomena at increasing levels of complexity. This approach is providing system-level insights into critical environmental processes. University liaisons continue to be expanded to strengthen the research and to use PNL resources to train the scientists needed to address long-term environmental problems.

  16. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research. Part 3, Atmospheric and climate research

    Energy Technology Data Exchange (ETDEWEB)

    Schrempf, R.E. [ed.

    1993-04-01

    Within the US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the ESD, the Atmospheric Chemistry Program (ACP) continues DOE`s long-term commitment to study the continental and oceanic fates of energy-related air pollutants. Research through direct measurement, numerical modeling, and laboratory studies in the ACP emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, oxidant species, nitrogen-reservoir species, and aerosols. The Atmospheric Studies in Complex Terrain (ASCOT) program continues to apply basic research on density-driven circulations and on turbulent mixing and dispersion in the atmospheric boundary layer to the micro- to mesoscale meteorological processes that affect air-surface exchange and to emergency preparedness at DOE and other facilities. Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and Quantitative Links programs to form DOE`s contribution to the US Global Change Research Program.

  17. Annual Technical Report, Materials Research Laboratory, 1 July 1984 - 30 June 1986.

    Science.gov (United States)

    1986-06-30

    N D-RI79 76 6 N NUL TECHNICAL REPORT N TERIALS RESEARCH L ROR T RY 1 1/2.. 1JULY 1964 - 30 JUN 1996(U) BROMN UNIV PROVIDENCE RI MATERIALS RESEARCH...A July 1, 1984-June 30, 1985 00 Providence,~. RhdeIlad021 disti~° ih : " (!0 N.i. I : . 0 0’ ’ C-)" . iJ. -4. Brown University AULa 198 Providence...Rhode Island 02912 A ° "i--: P.- . ’ 2 ’, ANNUAL TECHNICAL REPORT MATERIALS RESEARCH LABORATORY BROWN UNIVERSITY PROVIDENCE, RHODE ISLAND 02912 A

  18. Publications and geothermal sample library facilities of the Earth Science Laboratory, University of Utah Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Phillip M.; Ruth, Kathryn A.; Langton, David R.; Bullett, Michael J.

    1990-03-30

    The Earth Science Laboratory of the University of Utah Research Institute has been involved in research in geothermal exploration and development for the past eleven years. Our work has resulted in the publication of nearly 500 reports, which are listed in this document. Over the years, we have collected drill chip and core samples from more than 180 drill holes in geothermal areas, and most of these samples are available to others for research, exploration and similar purposes. We hope that scientists and engineers involved in industrial geothermal development will find our technology transfer and service efforts helpful.

  19. Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics.

  20. Optics research at the U.S. Navy System Commands Laboratories: introduction.

    Science.gov (United States)

    Mullen, Linda

    2016-11-01

    The purpose of this feature issue is to highlight optics research being performed at the U.S. Navy System Commands. Contributed papers cover a range of topics related to the various components of optical systems, including the optical source, the intervening medium, and the optical receiver, and processing techniques that are used to obtain information from the detected signal. While research from only two of the Navy System Commands is represented in this feature issue, it will hopefully enlighten the readers to the variety and high caliber of research being conducted in our Navy's laboratories and pave the way for additional features in the future.

  1. Plant research '79: report of the Michigan State University, Department of Energy, Plant Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Botanical research conducted at MSU during 1979 is described. Areas of study include cell wall biosynthesis, hormonal regulation, responses of plants to environmental stresses, and molecular studies. (ACR)

  2. LDRD 2016 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2C dated October 22, 2015. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2016, as required. In FY 2016, the BNL LDRD Program funded 48 projects, 21 of which were new starts, at a total cost of $11.5M. The investments that BNL makes in its LDRD program support the Laboratory’s strategic goals. BNL has identified four Critical Outcomes that define the Laboratory’s scientific future and that will enable it to realize its overall vision. Two operational Critical Outcomes address essential operational support for that future: renewal of the BNL campus; and safe, efficient laboratory operations.

  3. Solid modeling research at Lawrence Livermore National Laboratory: 1982-1985

    Energy Technology Data Exchange (ETDEWEB)

    Kalibjian, J.R.

    1985-09-01

    The Lawrence Livermore National Laboratory has sponsored solid modeling research for the past four years to assess this new technology and to determine its potential benefits to the Nuclear Weapons Complex. We summarize here the results of five projects implemented during our effort. First, we have installed two solid modeler codes, TIPS-1 (Technical Information Processing System-1) and PADL-2 (Part and Assembly Description Language), on the Laboratory's CRAY-1 computers. Further, we have extended the geometric coverage and have enhanced the graphics capabilities of the TIPS-1 modeler. To enhance solid modeler performance on our OCTOPUS computer system, we have also developed a method to permit future use of the Laboratory's network video system to provide high-resolution, shaded images at users' locations. Finally, we have begun to implement code that will link solid-modeler data bases to finite-element meshing codes.

  4. Bringing the Excitement and Motivation of Research to Students; Using Inquiry and Research-Based Learning in a Year-Long Biochemistry Laboratory: Part I--Guided Inquiry--Purification and Characterization of a Fusion Protein--Histidine Tag, Malate Dehydrogenase, and Green Fluorescent Protein

    Science.gov (United States)

    Knutson, Kristopher; Smith, Jennifer; Wallert, Mark A.; Provost, Joseph J.

    2010-01-01

    A successful laboratory experience provides the foundation for student success, creating active participation in the learning process. Here, we describe a new approach that emphasizes research, inquiry and problem solving in a year-long biochemistry experience. The first semester centers on the purification, characterization, and analysis of a…

  5. Assessment of implementation of quality management system in laboratory research and food analysis

    Directory of Open Access Journals (Sweden)

    Daniel Mariano Leite

    2009-12-01

    Full Text Available The reliability of the results generated in analytical laboratory either for the development of new methods or for the appropriate use of methodologies already regulated, is essential to ensure that consumers are receiving a nutritionally adequate and safe food. In this context, traceability has been one of the main requirements required in the analysis, once this allows comparability between results of measurements carried out in different situations, usingvalues of metrological references, clearly defined, within internationally accepted criteria. The objective of this research was to assess the activities developed in a laboratory for research and analysis of food, about the accordance of item 4, which is established requirements of Direction, and the item 5, technical requirements of ISO/IEC 17025:2005, to guide correction of non conformities and internal organization. Initially there was a check list for verification of compliance for the activities developed in the laboratory. When the non-conformities were found, the staff was trained and was applied the 5S System. In applying the first check list in accordance with the item 4, the laboratory was classified in Group 3 of the Standard, with 57.14% of non-conformities, after training and implementation of corrective measures. In a new application of check list, the laboratory was classified in Group 2, and was occurred reduction of 37.5% of non-conformities. As to item 5, the laboratory was classified in Group 2, with 44.44% of non-conformities. After the training and corrective measures, there was reduction of 54% of non-conformities. It can be concluded that for elimination of nonconformance is required to train staff and implement tools such as 5S System and especially encourage the involvement of employees

  6. Cyclotron laboratory of the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Tonev, D.; Goutev, N.; Georgiev, L. S.

    2016-06-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that could be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99m Tc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, solid state physics, applied research, new materials and for education in all these fields including nuclear energy. The building of the laboratory will be constructed nearby the Institute for Nuclear Research and Nuclear Energy and the cyclotron together with all the equipment needed will be installed there.

  7. Laboratory directed research and development. FY 1991 program activities: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle``; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  8. Strengthening LLNL Missions through Laboratory Directed Research and Development in High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Willis, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-01

    High performance computing (HPC) has been a defining strength of Lawrence Livermore National Laboratory (LLNL) since its founding. Livermore scientists have designed and used some of the world’s most powerful computers to drive breakthroughs in nearly every mission area. Today, the Laboratory is recognized as a world leader in the application of HPC to complex science, technology, and engineering challenges. Most importantly, HPC has been integral to the National Nuclear Security Administration’s (NNSA’s) Stockpile Stewardship Program—designed to ensure the safety, security, and reliability of our nuclear deterrent without nuclear testing. A critical factor behind Lawrence Livermore’s preeminence in HPC is the ongoing investments made by the Laboratory Directed Research and Development (LDRD) Program in cutting-edge concepts to enable efficient utilization of these powerful machines. Congress established the LDRD Program in 1991 to maintain the technical vitality of the Department of Energy (DOE) national laboratories. Since then, LDRD has been, and continues to be, an essential tool for exploring anticipated needs that lie beyond the planning horizon of our programs and for attracting the next generation of talented visionaries. Through LDRD, Livermore researchers can examine future challenges, propose and explore innovative solutions, and deliver creative approaches to support our missions. The present scientific and technical strengths of the Laboratory are, in large part, a product of past LDRD investments in HPC. Here, we provide seven examples of LDRD projects from the past decade that have played a critical role in building LLNL’s HPC, computer science, mathematics, and data science research capabilities, and describe how they have impacted LLNL’s mission.

  9. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Robert K.

    1999-07-07

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the nature of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.

  10. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Schrempf, R.E. (ed.)

    1993-04-01

    Within the US Department of Energy's (DOE's) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the ESD, the Atmospheric Chemistry Program (ACP) continues DOE's long-term commitment to study the continental and oceanic fates of energy-related air pollutants. Research through direct measurement, numerical modeling, and laboratory studies in the ACP emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, oxidant species, nitrogen-reservoir species, and aerosols. The Atmospheric Studies in Complex Terrain (ASCOT) program continues to apply basic research on density-driven circulations and on turbulent mixing and dispersion in the atmospheric boundary layer to the micro- to mesoscale meteorological processes that affect air-surface exchange and to emergency preparedness at DOE and other facilities. Research at PNL provides basic scientific underpinnings to DOE's program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and Quantitative Links programs to form DOE's contribution to the US Global Change Research

  11. Field and laboratory notes on instream research - Research and Development of New Marking and Monitoring Technologies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project addresses how to expand the current fish-tracking technologies to enable the fisheries community to successfully carry out the actions, research, and...

  12. Adaptive Training and Education Research at the US Army Research Laboratory: Bibliography (2013-2015)

    Science.gov (United States)

    2016-03-01

    education research program. This includes journal articles, technical reports, and conference papers produced by ARL employees and contractors to support...research program. The bibliography includes references for journal articles, technical reports, and conference papers produced by ARL employees and...2014. ISBN 978-0-9893923-3-4 (print version) and 978-0-9893923-2-7 ( digital version). Nye B, Sottilare R, Ragusa C, Hoffman M. Prologue: defining

  13. RIPOSTE: a framework for improving the design and analysis of laboratory-based research.

    Science.gov (United States)

    Masca, Nicholas Gd; Hensor, Elizabeth Ma; Cornelius, Victoria R; Buffa, Francesca M; Marriott, Helen M; Eales, James M; Messenger, Michael P; Anderson, Amy E; Boot, Chris; Bunce, Catey; Goldin, Robert D; Harris, Jessica; Hinchliffe, Rod F; Junaid, Hiba; Kingston, Shaun; Martin-Ruiz, Carmen; Nelson, Christopher P; Peacock, Janet; Seed, Paul T; Shinkins, Bethany; Staples, Karl J; Toombs, Jamie; Wright, Adam Ka; Teare, M Dawn

    2015-05-07

    Lack of reproducibility is an ongoing problem in some areas of the biomedical sciences. Poor experimental design and a failure to engage with experienced statisticians at key stages in the design and analysis of experiments are two factors that contribute to this problem. The RIPOSTE (Reducing IrreProducibility in labOratory STudiEs) framework has been developed to support early and regular discussions between scientists and statisticians in order to improve the design, conduct and analysis of laboratory studies and, therefore, to reduce irreproducibility. This framework is intended for use during the early stages of a research project, when specific questions or hypotheses are proposed. The essential points within the framework are explained and illustrated using three examples (a medical equipment test, a macrophage study and a gene expression study). Sound study design minimises the possibility of bias being introduced into experiments and leads to higher quality research with more reproducible results.

  14. Law in the laboratory a guide to the ethics of federally funded science research

    CERN Document Server

    Charrow, Robert P

    2010-01-01

    The National Institutes of Health and the National Science Foundation together fund more than $40 billon of research annually in the United States and around the globe. These large public expenditures come with strings, including a complex set of laws and guidelines that regulate how scientists may use NIH and NSF funds, how federally funded research may be conducted, and who may have access to or own the product of the research. Until now, researchers have had little instruction on the nature of these laws and how they work. But now, with Robert P. Charrow’s Law in the Laboratory, they have a readable and entertaining introduction to the major ethical and legal considerations pertaining to research under the aegis of federal science funding. For any academic whose position is grant funded, or for any faculty involved in securing grants, this book will be an essential reference manual. And for those who want to learn how federal legislation and regulations affect laboratory research, Charrow’s primer wil...

  15. Faculty and Student Teams and National Laboratories: Expanding the Reach of Research Opportunities and Workforce Development

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn,N.; White, K.; Stegman, M.

    2009-08-05

    The Faculty and Student Teams (FaST) Program, a cooperative effort between the US Department of Energy (DOE) Office of Science and the National Science Foundation (NSF), brings together collaborative research teams composed of a researcher at Brookhaven National Laboratory, and a faculty member with two or three undergraduate students from a college or university. Begun by the Department of Energy in 2000 with the primary goal of building research capacity at a faculty member's home institution, the FaST Program focuses its recruiting efforts on faculty from colleges and universities with limited research facilities and those institutions that serve populations under-represented in the fields of science, engineering and technology, particularly women and minorities. Once assembled, a FaST team spends a summer engaged in hands-on research working alongside a laboratory scientist. This intensely collaborative environment fosters sustainable relationships between the faulty members and BNL that allow faculty members and their BNL colleagues to submit joint proposals to federal agencies, publish papers in peer-reviewed journals, reform local curriculum, and develop new or expand existing research labs at their home institutions.

  16. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix II research laboratories and facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    This document contains summaries of the research facilities that support the Defense Programs Research and Technology Development Program for FY 1993. The nine program elements are aggregated into three program clusters as follows: (1) Advanced materials sciences and technologies; chemistry and materials, explosives, special nuclear materials (SNM), and tritium. (2) Design sciences and advanced computation; physics, conceptual design and assessment, and computation and modeling. (3) Advanced manufacturing technologies and capabilities; system engineering science and technology, and electronics, photonics, sensors, and mechanical components. Section I gives a brief summary of 23 major defense program (DP) research and technology facilities and shows how these major facilities are organized by program elements. Section II gives a more detailed breakdown of the over 200 research and technology facilities being used at the Laboratories to support the Defense Programs mission.

  17. The laboratory test rig with miniature jet engine to research aviation fuels combustion process

    OpenAIRE

    Gawron Bartosz; Białecki Tomasz

    2015-01-01

    This article presents laboratory test rig with a miniature turbojet engine (MiniJETRig – Miniature Jet Engine Test Rig), that was built in the Air Force Institute of Technology. The test rig has been developed for research and development works aimed at modelling and investigating processes and phenomena occurring in full scale jet engines. In the article construction of a test rig is described, with a brief discussion on the functionality of each of its main components. Additionally examples...

  18. Savannah River Laboratory environmental transport and effects research. Annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, T.V. (comp.)

    1979-11-01

    Research in the environmental sciences by the Savannah River Laboratory during 1978 is described in 43 articles. These articles are in the fields of terrestrial ecology, geologic studies, aquatic transport, aquatic ecology, atmospheric transport, emergency response, computer methods development, ocean program, and fuel cycle program. Thirty-seven of the articles were abstracted individually for ERA/EDB; those in scope were also included in INIS.

  19. Air Force Research Laboratory Sensors Directorate Communications Branch History from 1960-2011

    Science.gov (United States)

    2011-12-01

    antenna. An ethylene - glycol and water mixture was used as the coolant. The basic elements of the antenna were the radomes, reflector and feed, mount...CDL hardware market . In 1995 Unisys sold Paramax to Loral Corp, who sold it to Lockheed Martin in 1996. In 1997, Paramax was sold to the newly... Survey of Scintillation Data and Its Relationship to Satellite Communications; AFCRL-70-0053; Air Force Cambridge Research Laboratories; Hanscom AFB MA

  20. United States Air Force Weapons Laboratory Research Scholar Program, 1983-1984.

    Science.gov (United States)

    1984-10-01

    1983 Electromagnetic Compatibility -’"Symposium, p.47-,51, 1983. P Ricketts , L.W., J.E. Bridges, J. Milletta, EMP Radiation and Protective Techniques...to the Weapons Laboratory were established. These included nuclear physics, radiation effects, electramagnetics, laser optics and related applied...research opportunity. He wishes to thank the AFWL for its sponsorship and hospitality . He wishes to thank Major Raymond L. Bell for suggesting this

  1. Adapting and Using Scrum in a Software Research and Development Laboratory

    Directory of Open Access Journals (Sweden)

    LIMA, I. R.

    2012-06-01

    Full Text Available Agile software development has gained importance in the industry because of its approach on the issues of human agility and return on investment. This paper shows how Scrum agile software project management methodology has been deployed and adapted to the model of software project management of a research and development laboratory. As a result of this deployment, experiences and lessons learned in seven real projects developed by the authors are reported.

  2. Calibration of the ARL (Aeronautical Research Laboratories) Rain and Icing Facility.

    Science.gov (United States)

    1987-01-01

    Australian Airlines, Library Qantas Airways Limited Gas & Fuel Corporation of Vic., Manager Scientific Services~SEC of Vic., Herman Research Laboratory... limited resources available and the priority of other tasks it is not considered to be essential for efficient use of the facility. ACrnW ur ORKmf The...Yhis damnint "WY be NAMA*CD in catalogues and awrenss services available So _. No limitations . " b. Ci at.ion 1 offw purposes( .- .cA . ... .-- 0..y be

  3. The International Space Station as a Research Laboratory: A View to 2010 and Beyond

    Science.gov (United States)

    Uri, John J.; Sotomayor, Jorge L.

    2007-01-01

    Assembly of International Space Station (ISS) is expected to be complete in 2010, with operations planned to continue through at least 2016. As we move nearer to assembly complete, replanning activities by NASA and ISS International Partners have been completed and the final complement of research facilities on ISS is becoming more certain. This paper will review pans for facilities in the US On-orbit Segment of ISS, including contributions from International Partners, to provide a vision of the research capabilities that will be available starting in 2010. At present, in addition to research capabilities in the Russian segment, the United States Destiny research module houses nine research facilities or racks. These facilities include five multi-purpose EXPRESS racks, two Human Research Facility (HRF) racks, the Microgravity Science Glovebox (MSG), and the Minus Eighty-degree Laboratory Freezer for ISS (MELFI), enabling a wide range of exploration-related applied as well as basic research. In the coming years, additional racks will be launched to augment this robust capability: Combustion Integrated Rack (CIR), Fluids Integrated Rack (FIR), Window Observation Rack Facility (WORF), Microgravity Science Research Rack (MSRR), Muscle Atrophy Research Exercise System (MARES), additional EXPRESS racks and possibly a second MELFI. In addition, EXPRESS Logistics Carriers (ELC) will provide attach points for external payloads. The European Space Agency s Columbus module will contain five research racks and provide four external attach sites. The research racks are Biolab, European Physiology Module (EPM), Fluid Science Lab (FSL), European Drawer System (EDS) and European Transport Carrier (ETC). The Japanese Kibo elements will initially support three research racks, Ryutai for fluid science, Saibo for cell science, and Kobairo for materials research, as well as 10 attachment sites for external payloads. As we look ahead to assembly complete, these new facilities represent

  4. Solving the AI Planning Plus Scheduling Problem Using Model Checking via Automatic Translation from the Abstract Plan Preparation Language (APPL) to the Symbolic Analysis Laboratory (SAL)

    Science.gov (United States)

    Butler, Ricky W.; Munoz, Cesar A.; Siminiceanu, Radu I.

    2007-01-01

    This paper describes a translator from a new planning language named the Abstract Plan Preparation Language (APPL) to the Symbolic Analysis Laboratory (SAL) model checker. This translator has been developed in support of the Spacecraft Autonomy for Vehicles and Habitats (SAVH) project sponsored by the Exploration Technology Development Program, which is seeking to mature autonomy technology for the vehicles and operations centers of Project Constellation.

  5. Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96

    Energy Technology Data Exchange (ETDEWEB)

    Chase, L.

    1997-03-01

    This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

  6. Laboratory Directed Research and Development Program. Annual report to the Department of Energy, December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Searing, J.M.

    1997-12-01

    New ideas and opportunities fostering the advancement of technology are occurring at an ever increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and develops new fundable R and D projects and programs if BNL is to carry out its primary mission and support the basic Department of Energy activities. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.

  7. International research laboratory on the moon: a proposal for a national commitment

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.; Gelfand, E.M.

    1982-01-01

    To demonstrate its leadership in space, the US could focus its space program on an exciting and achievable goal: to establish a self-sustaining international research laboratory on the Moon before the year 2000. Scientists from all over the world would use the laboratory for basic and applied programs in natural and social sciences. The knowledge gained would benefit everyone. The lunar research facility would be built with a broadly based infrastructure of stations, vehicles, and programs that can be envisioned as a pyramid resting on the Earth and reaching to the Moon. The first element of the infrastructure is the reusable Space Shuttle; the second is a manned low-Earth-orbit platform. Next is an orbital transfer vehicle for hauling cargoes between low Earth orbit and low lunar orbit. The final element is the manned self-sustaining international research laboratory. A key feature of this proposal is that each element can be economically useful at the same time as it is promoting international cooperation on Earth. A vigorous civilian program like that proposed here is our best guarantee that outer space will be used to strengthen our economy and address basic problems on Earth.

  8. Laboratory Directed Research and Development Program annual report to the Department of Energy, December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    New ideas and opportunities fostering the advancement of technology are occurring at an ever increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and develops new fundable R and D projects and programs if BNL is to carry out its primary mission and support the basic Department of Energy activities. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.

  9. Service Integration to Enhance Research Data Management: RSpace Electronic Laboratory Notebook Case Study

    Directory of Open Access Journals (Sweden)

    Stuart Macdonald

    2015-02-01

    Full Text Available Research Data Management (RDM provides a framework that supports researchers and their data throughout the course of their research and is increasingly regarded as one of the essential areas of responsible conduct of research. New tools and infrastructures make possible the generation of large volumes of digital research data in a myriad of formats. This facilitates new ways to analyse, share and reuse these outputs, with libraries, IT services and other service units within academic institutions working together with the research community to develop RDM infrastructures to curate and preserve this type of research output and make them re-usable for future generations. Working on the principle that a rationalised and continuous flow of data between systems and across institutional boundaries is one of the core goals of information management, this paper will highlight service integration via Electronic Laboratory Notebooks (ELN, which streamline research data workflows, result in efficiency gains for researchers, research administrators and other stakeholders, and ultimately enhance the RDM process.

  10. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2000.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2000-12-31

    The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and I exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, ,projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2000. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All FY 2000 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2001. The BNL LDRD budget authority by DOE in FY 2000 was $6 million. The.actual allocation totaled $5.5 million. The following sections in this report contain the management processes, peer

  11. Discourse, Power, and Knowledge in the Management of "Big Science": The Production of Consensus in a Nuclear Fusion Research Laboratory.

    Science.gov (United States)

    Kinsella, William J.

    1999-01-01

    Extends a Foucauldian view of power/knowledge to the archetypical knowledge-intensive organization, the scientific research laboratory. Describes the discursive production of power/knowledge at the "big science" laboratory conducting nuclear fusion research and illuminates a critical incident in which the fusion research…

  12. Magnet Science and Technology for Basic Research at the High Field Laboratory for Superconducting Materials

    Institute of Scientific and Technical Information of China (English)

    渡辺和雄

    2007-01-01

    Since the first practical cryocooled superconducting magnet using a GM-cryocooler and high temperature superconducting current leads has been demonstrated successfully at the High Field Laboratory for Superconducting Materials (HFLSM), various kinds of cryocooled superconducting magnets in fields up to 15 T have been used to provide access for new research areas in fields of magneto-science. Recently, the HFLSM has succeeded in demonstrating a cryocooed 18 T high temperature superconducting magnet and a high field cryocooled 27.5 T hybrid magnet. Cryocooled magnet technology and basic research using high field magnets at the HFLSM are introduced.

  13. Research on fission induced plasmas and nuclear pumped lasers at the Los Alamos Scientific Laboratory

    Science.gov (United States)

    Helmick, H. H.

    1979-01-01

    A program of research on gaseous uranium and uranium plasmas is being conducted at The Los Alamos Scientific Laboratory under sponsorship of the National Aeronautics and Space Administration. The objective of this work is twofold: (1) to demonstrate the proof of principle of a gaseous uranium fueled reactor, and (2) pursue fundamental research on nuclear pumped lasers. The relevancy of the two parallel programs is embodied in the possibility of a high-performance uranium plasma reactor being used as the power supply for a nuclear pumped laser system. The accomplishments in the two above fields are summarized

  14. Saxton Transportation Operations Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Saxton Transportation Operations Laboratory (Saxton Laboratory) is a state-of-the-art facility for conducting transportation operations research. The laboratory...

  15. Biological and Environmental Research Program at Oak Ridge National Laboratory, FY 1992--1994

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This report is the 1992--1994 Program Director`s Overview Report for Oak Ridge National Laboratory`s (ORNL`s) Biological and Environmental Research (BER) Program, and as such it addresses KP-funded work at ORNL conducted during FY 1991 and in progress during FY 1992; it also serves as a planning document for the remainder of FY 1992 through FY 1994. Non-BER funded work at ORNL relevant to the mission of OHER is also discussed. The second section of the report describes ORNL facilities and resources used by the BER program. The third section addresses research management practices at ORNL. The fourth, fifth, and sixth sections address BER-funded research in progress, program accomplishments and research highlights, and program orientation for the remainder of FY 1992 through FY 1994, respectively. Work for non-BER sponsors is described in the seventh section, followed by a discussion of significant near and long-term issues facing BER work at ORNL in the eighth section. The last section provides a statistical summary of BER research at ORNL. Appendices supplement the above topics with additional detail.

  16. Pacific Northwest Laboratory annual report for 1994 to the DOE Office of Energy Research. Part 2: Atmospheric and climate research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    Atmospheric research at Pacific Northwest Laboratory (PNL) occurs in conjunction with the Atmospheric Chemistry Program (ACP) and with the Atmospheric Studies in Complex Terrain (ASCOT) Program. Solicitations for proposals and peer review were used to select research projects for funding in FY 1995. Nearly all ongoing projects were brought to a close in FY 1994. Therefore, the articles in this volume include a summary of the long-term accomplishments as well as the FY 1994 progress made on these projects. The following articles present summaries of the progress in FY 1994 under these research tasks: continental and oceanic fate of pollutants; research aircraft operations; ASCOT program management; coupling/decoupling of synoptic and valley circulations; interactions between surface exchange processes and atmospheric circulations; and direct simulations of atmospheric turbulence. Climate change research at PNL is aimed at reducing uncertainties in the fundamental processes that control climate systems that currently prevent accurate predictions of climate change and its effects. PNL is responsible for coordinating and integrating the field and laboratory measurement programs, modeling studies, and data analysis activities of the Atmospheric Radiation Measurements (ARM) program. In FY 1994, PNL scientists conducted 3 research projects under the ARM program. In the first project, the sensitivity of GCM grid-ad meteorological properties to subgrid-scale variations in surface fluxes and subgrid-scale circulation patterns is being tested in a single column model. In the second project, a new and computationally efficient scheme has been developed for parameterizing stratus cloud microphysics in general circulation models. In the last project, a balloon-borne instrument package is being developed for making research-quality measurements of radiative flux divergence profiles in the lowest 1,500 meters of the Earth`s atmosphere.

  17. High altitude, a natural research laboratory for the study of cardiovascular physiology and pathophysiology.

    Science.gov (United States)

    Scherrer, Urs; Allemann, Yves; Jayet, Pierre-Yves; Rexhaj, Emrush; Sartori, Claudio

    2010-01-01

    High altitude constitutes an exciting natural laboratory for medical research. Although initially, the aim of high-altitude research was to understand the adaption of the organism to hypoxia and find treatments for altitude-related diseases, during the past decade or so, the scope of this research has broadened considerably. Two important observations led the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema represents a unique model that allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Second, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we will review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.

  18. Neutron Imaging at the Oak Ridge National Laboratory: Application to Biological Research

    Energy Technology Data Exchange (ETDEWEB)

    Bilheux, Hassina Z [ORNL; Cekanova, Maria [University of Tennessee, Knoxville (UTK); Bilheux, Jean-Christophe [ORNL; Bailey, William Barton [ORNL; Keener, Wylie S [ORNL; Davis, Larry E [ORNL; Herwig, Kenneth W [ORNL

    2014-01-01

    The Oak Ridge National Laboratory Neutron Sciences Directorate (NScD) has recently installed a neutron imaging beamline at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beamline supports a broad range of user research spanning from engineering to material research, energy storage, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. The beamline performance (spatial resolution, field of view, etc.) and its utilization for biological research are presented. The NScD is also considering a proposal to build the VENUS imaging beamline (beam port 10) at the Spallation Neutron Source (SNS). Unlike CG-1D which provides cold neutrons, VENUS will offer a broad range of neutron wavelengths, from epithermal to cold, and enhanced contrast mechanisms. This new capability will also enable the imaging of thicker biological samples than is currently available at CG-1D. A brief overview of the VENUS capability for biological research is discussed.

  19. Development and assessment of green, research-based instructional materials for the general chemistry laboratory

    Science.gov (United States)

    Cacciatore, Kristen L.

    This research entails integrating two novel approaches for enriching student learning in chemistry into the context of the general chemistry laboratory. The first is a pedagogical approach based on research in cognitive science and the second is the green chemistry philosophy. Research has shown that inquiry-based approaches are effective in improving student learning outcomes in general chemistry when used comprehensively in the general chemistry laboratory. Little prior research exists about effects on student learning about green chemistry. A novel experimental protocol called Laboratory Report Templates (LRT) was designed, and three LRT experiments and supplemental materials for the general chemistry laboratory were created utilizing the principles of green chemistry and current research findings on student learning. These experiments were successfully field-tested and implemented in university and high school settings. This work represents an important contribution to science curriculum design because the LRT protocol uniquely motivates development of students' scientific communication skills and has wide potential applicability. A study comparing student learning of chemistry content and experimental design skills following completion of one of the LRT experiments or a traditional experiment on identical chemistry content was conducted. Study results indicate that students who completed the LRT experiment learned significantly more content and experimental skills directly related to the content of the experiment than did students who completed the traditional experiment. This study demonstrates that changing one lab in general chemistry curricula from traditional to research-based has a positive effect on student learning. This finding is important because incremental curricular change is a promising alternative to the wholesale curricular change that has been shown to be effective, because an incremental approach minimizes the most common barriers to change

  20. Summer Research Program (1992). Graduate Student Research Program (GSRP) Reports. Volume 8. Phillips Laboratory.

    Science.gov (United States)

    1992-12-28

    Department of Electrical Engineering Polytechnic University 333 Jay Street Brooklyn , New York 11201 Final Report for : AFOSR Summer Research Program...differen.. pont in! th moes The, 10- :.4 1- 0 1-20- 6.7 28-06..7 6.5 薶- 676.7 ൦ m 0 6 . 8 6 .. 8 40- 7.0 i.-40 808.1 8.1 50- i -50 0 20 40 60 So 100