WorldWideScience

Sample records for laboratory building corrective

  1. Corrective Action Decision Document, Area 15 Environmental Protection Agency Farm Laboratory Building, Corrective Action Unit No. 95, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-18

    This report is the Corrective Action Decision Document (CADD) for the Nevada Test Site (NTS) Area 15 U.S. Environmental Protection Agency (EPA) Farm, Laboratory Building (Corrective Action Unit [CAU] No. 95), at the Nevada Test Site, Nye County, Nevada. The scope of this CADD is to identify and evaluate potential corrective action alternatives for the decommissioning and decontamination (D and D) of the Laboratory Building, which were selected based on the results of investigative activities. Based on this evaluation, a preferred corrective action alternative is recommended. Studies were conducted at the EPA Farm from 1963 to 1981 to determine the animal intake and retention of radionuclides. The main building, the Laboratory Building, has approximately 370 square meters (4,000 square feet) of operational space. Other CAUS at the EPA Farm facility that will be investigated and/or remediated through other environmental restoration subprojects are not included in this CADD, with the exception of housekeeping sites. Associated structures that do not require classification as CAUS are considered in the evaluation of corrective action alternatives for CAU 95.

  2. Corrective Action Decision Document, Area 15 Environmental Protection Agency Farm Laboratory Building, Corrective Action Unit No. 95, Revision 0

    International Nuclear Information System (INIS)

    1997-01-01

    This report is the Corrective Action Decision Document (CADD) for the Nevada Test Site (NTS) Area 15 U.S. Environmental Protection Agency (EPA) Farm, Laboratory Building (Corrective Action Unit [CAU] No. 95), at the Nevada Test Site, Nye County, Nevada. The scope of this CADD is to identify and evaluate potential corrective action alternatives for the decommissioning and decontamination (D and D) of the Laboratory Building, which were selected based on the results of investigative activities. Based on this evaluation, a preferred corrective action alternative is recommended. Studies were conducted at the EPA Farm from 1963 to 1981 to determine the animal intake and retention of radionuclides. The main building, the Laboratory Building, has approximately 370 square meters (4,000 square feet) of operational space. Other CAUS at the EPA Farm facility that will be investigated and/or remediated through other environmental restoration subprojects are not included in this CADD, with the exception of housekeeping sites. Associated structures that do not require classification as CAUS are considered in the evaluation of corrective action alternatives for CAU 95

  3. Laboratory Building

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  4. Building the Korogwe Laboratory

    DEFF Research Database (Denmark)

    Knudsen, Jakob; von Seidlein, Lorenz; Richard, Jean Pierre

    2011-01-01

    An illustrated description of the building of a biomedical research laboratory in Korogwe, Tanzania.......An illustrated description of the building of a biomedical research laboratory in Korogwe, Tanzania....

  5. Closure plan for Corrective Action Unit 94: Building 650 Leachfield, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-03-01

    The Building 650 Leachfield, Corrective Action Unit (CAU) 94, will be clean closed by removal in accordance with the Resource Conservation and Recover Act (RCRA) operational permit and the Federal Facility Agreement and Consent Order. Historically, laboratory effluent was discharged through pipelines leading from the Radiochemistry Laboratory in Building 650 to a distribution box and a series of pipes dispersed across the leachfield. Effluent from the laboratory contained both hazardous and radioactive constituents. Discharge of hazardous and radioactive waste began in 1965. Discharge of radioactive waste ended in 1979 and hazardous waste discharge ended in 1987. From 1987 to 1993 the leachfield was used for the disposal of non-hazardous waste water. The piping leading to the leachfield was sealed in 1993

  6. Green Building Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, David Jean [Portland State Univ., Portland, OR (United States)

    2013-12-29

    This project provided support to the Green Building Research Laboratory at Portland State University (PSU) so it could work with researchers and industry to solve technical problems for the benefit of the green building industry. It also helped to facilitate the development of PSU’s undergraduate and graduate-level training in building science across the curriculum.

  7. Corrective Action Plan for CAU No. 95: Area 15 EPA Farm Laboratory Building, Decontamination and Demolition Closure Activities - Nevada Test Site. Rev. 0

    International Nuclear Information System (INIS)

    Olson, A.L.; Nacht, S.J.

    1997-11-01

    This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Environmental Protection Agency (EPA) Farm Laboratory Building 15-06 located in Area 15 of the Nevada Test Site (NTS), Nye County, Nevada. The facility is part of the Environmental Restoration Project managed by the U.S. Department of Energy/Nevada Operations Office (DOE/NV) under the Decontamination and Decommissioning (D ampersand D) Subproject which serves to manage and dispose of surplus facilities at the NTS in a manner that will protect personnel, the public, and the environment. It is identified as Corrective Action Unit (CAU) 95 in Appendix III of the Federal Facilities Agreement and Consent Order (FFACO). In July 1997, the DOE/NV verbally requested approval from the Nevada Division of Environmental Protection (NDEP) for the closure schedule to be accelerated. Currently, field activities are anticipated to be completed by September 30, 1997. In order to meet this new schedule NDEP has agreed to review this document as expeditiously as possible. Comments will be addressed in the Closure Report after field activities have been completed, unless significant issues require resolution during closure activities

  8. Corrective Action Plan for CAU No. 95: Area 15 EPA Farm Laboratory Building, Decontamination and Demolition Closure Activities - Nevada Test Site. Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Olson, A.L.; Nacht, S.J.

    1997-11-01

    This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Environmental Protection Agency (EPA) Farm Laboratory Building 15-06 located in Area 15 of the Nevada Test Site (NTS), Nye County, Nevada. The facility is part of the Environmental Restoration Project managed by the U.S. Department of Energy/Nevada Operations Office (DOE/NV) under the Decontamination and Decommissioning (D&D) Subproject which serves to manage and dispose of surplus facilities at the NTS in a manner that will protect personnel, the public, and the environment. It is identified as Corrective Action Unit (CAU) 95 in Appendix III of the Federal Facilities Agreement and Consent Order (FFACO). In July 1997, the DOE/NV verbally requested approval from the Nevada Division of Environmental Protection (NDEP) for the closure schedule to be accelerated. Currently, field activities are anticipated to be completed by September 30, 1997. In order to meet this new schedule NDEP has agreed to review this document as expeditiously as possible. Comments will be addressed in the Closure Report after field activities have been completed, unless significant issues require resolution during closure activities.

  9. Toward a virtual building laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Klems, J.H.; Finlayson, E.U.; Olsen, T.H.; Banks, D.W.; Pallis, J.M.

    1999-03-01

    In order to achieve in a timely manner the large energy and dollar savings technically possible through improvements in building energy efficiency, it will be necessary to solve the problem of design failure risk. The most economical method of doing this would be to learn to calculate building performance with sufficient detail, accuracy and reliability to avoid design failure. Existing building simulation models (BSM) are a large step in this direction, but are still not capable of this level of modeling. Developments in computational fluid dynamics (CFD) techniques now allow one to construct a road map from present BSM's to a complete building physical model. The most useful first step is a building interior model (BIM) that would allow prediction of local conditions affecting occupant health and comfort. To provide reliable prediction a BIM must incorporate the correct physical boundary conditions on a building interior. Doing so raises a number of specific technical problems and research questions. The solution of these within a context useful for building research and design is not likely to result from other research on CFD, which is directed toward the solution of different types of problems. A six-step plan for incorporating the correct boundary conditions within the context of the model problem of a large atrium has been outlined. A promising strategy for constructing a BIM is the overset grid technique for representing a building space in a CFD calculation. This technique promises to adapt well to building design and allows a step-by-step approach. A state-of-the-art CFD computer code using this technique has been adapted to the problem and can form the departure point for this research.

  10. SAFETY IN THE DESIGN OF SCIENCE LABORATORIES AND BUILDING CODES.

    Science.gov (United States)

    HOROWITZ, HAROLD

    THE DESIGN OF COLLEGE AND UNIVERSITY BUILDINGS USED FOR SCIENTIFIC RESEARCH AND EDUCATION IS DISCUSSED IN TERMS OF LABORATORY SAFETY AND BUILDING CODES AND REGULATIONS. MAJOR TOPIC AREAS ARE--(1) SAFETY RELATED DESIGN FEATURES OF SCIENCE LABORATORIES, (2) LABORATORY SAFETY AND BUILDING CODES, AND (3) EVIDENCE OF UNSAFE DESIGN. EXAMPLES EMPHASIZE…

  11. A History of Building 828, Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Rebecca

    1999-08-01

    This report documents the history of Building 828 in Sandia National Laboratories' Technical Area I. Building 828 was constructed in 1946 as a mechanical test laboratory for Los Alamos' Z-Division (later Sandia) as it moved to Sandia Base. The building has undergone significant remodeling over the years and has had a variety of occupants. The building was evaluated in compliance with the National Historic Preservation Act, but was not eligible for the National Register of Historic Places. Nevertheless, for many Labs employees, it was a symbol of Sandia's roots in World War II and the Manhattan Project.

  12. Guiding Principles for Sustainable Existing Buildings: Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Jason E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-11-11

    In 2006, the United States (U.S.) Department of Energy (DOE) signed the Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding (MOU), along with 21 other agencies. Pacific Northwest National Laboratory (PNNL) is exceeding this requirement and, currently, about 25 percent of its buildings are High Performance and Sustainable Buildings. The pages that follow document the Guiding Principles conformance effort for the Radiochemical Processing Laboratory (RPL) at PNNL. The RPL effort is part of continued progress toward a building inventory that is 100 percent compliant with the Guiding Principles.

  13. Corrective action investigation plan for Corrective Action Unit Number 423: Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    1997-01-01

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and the criteria for conducting site investigation activities at Corrective Action Unit (CAU) Number 423, the Building 03-60 Underground Discharge Point (UDP), which is located in Area 3 at the Tonopah Test Range (TTR). The TTR, part of the Nellis Air Force Range, is approximately 225 kilometers (140 miles) northwest of Las Vegas, Nevada. CAU Number 423 is comprised of only one Corrective Action Site (CAS) which includes the Building 03-60 UDP and an associated discharge line extending from Building 03-60 to a point approximately 73 meters (240 feet) northwest. The UDP was used between approximately 1965 and 1990 to dispose of waste fluids from the Building 03-60 automotive maintenance shop. It is likely that soils surrounding the UDP have been impacted by oil, grease, cleaning supplies and solvents as well as waste motor oil and other automotive fluids released from the UDP

  14. Corrective action investigation plan for Corrective Action Unit Number 423: Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-27

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and the criteria for conducting site investigation activities at Corrective Action Unit (CAU) Number 423, the Building 03-60 Underground Discharge Point (UDP), which is located in Area 3 at the Tonopah Test Range (TTR). The TTR, part of the Nellis Air Force Range, is approximately 225 kilometers (140 miles) northwest of Las Vegas, Nevada. CAU Number 423 is comprised of only one Corrective Action Site (CAS) which includes the Building 03-60 UDP and an associated discharge line extending from Building 03-60 to a point approximately 73 meters (240 feet) northwest. The UDP was used between approximately 1965 and 1990 to dispose of waste fluids from the Building 03-60 automotive maintenance shop. It is likely that soils surrounding the UDP have been impacted by oil, grease, cleaning supplies and solvents as well as waste motor oil and other automotive fluids released from the UDP.

  15. Fire preparedness measures in buildings with hot laboratories

    International Nuclear Information System (INIS)

    Oberlaender, B.C.

    2003-01-01

    Important hot laboratory safety issues are the general design/construction of the building with respect to fire, fire prevention, fire protection, administrative controls, and risk assessment. Within the network of the European Working Group Hot Laboratories and Remote Handling items concerning 'fire preparedness measures in hot laboratories' were screened and studied. Two questionnaires were sent to European hot laboratories; the first in November 2002 on 'fire preparedness measures, fire detection and fire suppression/extinguishing in lead shielded cells, concrete shielded cells' and the second in June 2003 on 'Fire preparedness measures in buildings with hot laboratories'. The questionnaires were filled in by a total of ten hot laboratories in seven European countries. On request of participants the answers were evaluated and 'anonymised' for presentation and discussion at the plenary meeting. The answers showed that many European hot laboratories are implementing improvements to their fire protection programmes to comply with more stringent requirements of the national authorities. The recommendations ('International guidelines for the fire protection of Nuclear Power Plants') given by the insurance pools are followed up with national variations. An ISO standard (ISO 17873) is in progress giving criteria for the design and the operation of ventilation systems as well as fire hazard management in nuclear installations others than reactors

  16. Building for changing-rooms, laundry, laboratories

    International Nuclear Information System (INIS)

    Nemeth, L.; Mezes, J.; Gulyas, F.; Hejj, A.; Matyas, J.

    1979-01-01

    This building accomodates important service sections of the power plant. The changing-rooms of the primary circuit are here, through which the employees, under the supervision of health physics service, pass to the radioactive contaminated jobs. Working-clothes are cleaned in laundries located on the ground-floor. The building houses the health measurement control rooms of the four reactor sets and the control centre of the power plant. The laboratories dealing with process control, electrical engineering, radiology, dosimetry, material tests and reactor physics will be located here. (author)

  17. Development of a building performance laboratory for South Africa

    CSIR Research Space (South Africa)

    Parsons, S

    2009-05-01

    Full Text Available The CSIR Building Science and Technology Competence area is currently in the process of establishing a Building Performance Laboratory (BPL). The BPL is aimed at becoming a centre at which the knowledge generation and technology development...

  18. Tools for building virtual laboratories

    International Nuclear Information System (INIS)

    Agarwal, Debora; Johnston, William E.; Loken, Stewart; Tierney, Brian

    1996-01-01

    There is increasing interest in making unique research facilities facilities accessible on the Internet. Computer systems, scientific databases and experimental apparatus can be used by international collaborations of scientists using high-speed networks and advanced software tools to support collaboration. We are building tools including video conferencing and electronic white boards that are being used to create examples of virtual laboratories. This paper describes two pilot projects which provide testbeds for the tools. The first is a virtual laboratory project providing remote access to LBNL's Advanced Light Source. The second is the Multidimensional Applications and Gigabit internet work Consortium (MAGIC) testbed which has been established to develop a very high-speed, wide-are network to deliver realtime data at gigabit-per-second rates. (author)

  19. Self-benchmarking Guide for Laboratory Buildings: Metrics, Benchmarks, Actions

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Paul; Greenberg, Steve; Sartor, Dale

    2009-07-13

    This guide describes energy efficiency metrics and benchmarks that can be used to track the performance of and identify potential opportunities to reduce energy use in laboratory buildings. This guide is primarily intended for personnel who have responsibility for managing energy use in existing laboratory facilities - including facilities managers, energy managers, and their engineering consultants. Additionally, laboratory planners and designers may also use the metrics and benchmarks described in this guide for goal-setting in new construction or major renovation. This guide provides the following information: (1) A step-by-step outline of the benchmarking process. (2) A set of performance metrics for the whole building as well as individual systems. For each metric, the guide provides a definition, performance benchmarks, and potential actions that can be inferred from evaluating this metric. (3) A list and descriptions of the data required for computing the metrics. This guide is complemented by spreadsheet templates for data collection and for computing the benchmarking metrics. This guide builds on prior research supported by the national Laboratories for the 21st Century (Labs21) program, supported by the U.S. Department of Energy and the U.S. Environmental Protection Agency. Much of the benchmarking data are drawn from the Labs21 benchmarking database and technical guides. Additional benchmark data were obtained from engineering experts including laboratory designers and energy managers.

  20. Corrective Action Investigation Plan for Corrective Action Unit No. 423: Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV

    1997-10-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV), the State of Nevada Division of Environmental Protection (NDEP), and the US Department of Defense. The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUS) or Corrective Action Sites (CASs) (FFACO, 1996). As per the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU No. 423, the Building 03-60 Underground Discharge Point (UDP), which is located in Area 3 at the Tonopah Test Range (TTR). The TTR, part of the Nellis Air Force Range, is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada (Figures 1-1 and 1-2). Corrective Action Unit No. 423 is comprised of only one CAS (No. 03-02-002-0308), which includes the Building 03-60 UDP and an associated discharge line extending from Building 03-60 to a point approximately 73 meters (m) (240 feet [ft]) northwest as shown on Figure 1-3.

  1. Characterization report for Area 23, Building 650 Leachfield, Corrective Action Unit Number 94, Nevada Test Site. Revision 1

    International Nuclear Information System (INIS)

    1998-01-01

    Corrective Action Unit (CAU) Number 94, Building 650 Leachfield, is an historic laboratory disposal unit located in Area 23 at the Nevada Test Site (NTS) in Nye County, Nevada. The objectives of this project were twofold: characterize subsurface conditions at the CAU with respect to the on-site disposal unit, and provide sufficient information to develop a closure strategy for the leachfield. To this end, subsurface sampling was conducted in the vicinity of the piping above the distribution box, under and around the distribution box, and within the leachfield

  2. Characterization report for Area 23, Building 650 Leachfield, Corrective Action Unit Number 94, Nevada Test Site. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-27

    Corrective Action Unit (CAU) Number 94, Building 650 Leachfield, is an historic laboratory disposal unit located in Area 23 at the Nevada Test Site (NTS) in Nye County, Nevada. The objectives of this project were twofold: characterize subsurface conditions at the CAU with respect to the on-site disposal unit, and provide sufficient information to develop a closure strategy for the leachfield. To this end, subsurface sampling was conducted in the vicinity of the piping above the distribution box, under and around the distribution box, and within the leachfield.

  3. Final Safety Analysis Document for Building 693 Chemical Waste Storage Building at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Salazar, R.J.; Lane, S.

    1992-02-01

    This Safety Analysis Document (SAD) for the Lawrence Livermore National Laboratory (LLNL) Building 693, Chemical Waste Storage Building (desipated as Building 693 Container Storage Unit in the Laboratory's RCRA Part B permit application), provides the necessary information and analyses to conclude that Building 693 can be operated at low risk without unduly endangering the safety of the building operating personnel or adversely affecting the public or the environment. This Building 693 SAD consists of eight sections and supporting appendices. Section 1 presents a summary of the facility designs and operations and Section 2 summarizes the safety analysis method and results. Section 3 describes the site, the facility desip, operations and management structure. Sections 4 and 5 present the safety analysis and operational safety requirements (OSRs). Section 6 reviews Hazardous Waste Management's (HWM) Quality Assurance (QA) program. Section 7 lists the references and background material used in the preparation of this report Section 8 lists acronyms, abbreviations and symbols. Appendices contain supporting analyses, definitions, and descriptions that are referenced in the body of this report

  4. Corrective action baseline report for underground storage tank 2331-U Building 9201-1

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this report is to provide baseline geochemical and hydrogeologic data relative to corrective action for underground storage tank (UST) 2331-U at the Building 9201-1 Site. Progress in support of the Building 9201-1 Site has included monitoring well installation and baseline groundwater sampling and analysis. This document represents the baseline report for corrective action at the Building 9201-1 site and is organized into three sections. Section 1 presents introductory information relative to the site, including the regulatory initiative, site description, and progress to date. Section 2 includes the summary of additional monitoring well installation activities and the results of baseline groundwater sampling. Section 3 presents the baseline hydrogeology and planned zone of influence for groundwater remediation

  5. Report of the laboratory building for late occurring injury

    International Nuclear Information System (INIS)

    1978-01-01

    In order to estimate the danger of low level radiation to human beings, the studies of the late-occurring injuries and internal exposure due to radionuclide deposition are necessary. In the National Institute of Radiological Sciences, research on the estimation of the danger of late-occurring injuries due to radiation is proceeding. In this connection, a late-occurring injury laboratory building has been completed recently. Basic ideas behind it are as follows. To carry out the above mentioned studies effectively and efficiently, many experimental animals of high quality must be kept under best possible environment. For the observation in a series of experiments, irradiation room and laboratory rooms are essential. The building comprises the following: the first floor for animal receiving, the second floor for laboratory rooms, the third floor for RI facility and X-ray irradiated animal keeping, the fourth floor for SPF animal keeping, and attic floor for water supply, etc. (J.P.N.)

  6. Seismic strengthening of building 111 at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Eli, M.; Coats, D.; Freeland, G.; Kamath, M.

    1991-01-01

    Since being designed and constructed in the late 1960s, the Director's Building (Building 111) at Lawrence Livermore National Laboratory (LLNL) has been evaluated for 1988 seismic criteria and has been upgraded to withstand a major earthquake in the Livermore area. During and immediately after a large earthquake in the Livermore area, Building 111 occupants would be able to exit safely without loss of life. Building 111 itself would be severely damaged, but would not collapse. Highlights of the seismic upgrade design criteria and of the design, analyses, and construction that resulted are presented in this paper

  7. Building an Agent-Based Laboratory Infrastructure for Higher Education

    Directory of Open Access Journals (Sweden)

    Muna Saqer

    2009-08-01

    Full Text Available We present an ongoing project at the University of Houston- Downtown (UHD that aims to build a grid as a laboratory environment to support undergraduate education. We intend to use this PC clusters centered grid to allow students to perform laboratory exercises through web interfaces. In order to accommodate lab packages of a growing number of courses, we design the system as a modular system using multi-agent modeling. Students are recruited to implement the units of the system as senior student project topics or research activities sponsored by the Scholar's Academy of UHD. Through these projects, we geared our research toward higher education and provided students with opportunities to participate in building a computational infrastructure for curriculum improvement. This is very important for a minority-serving institution (MSI with limited resources such as UHD.

  8. Build of virtual instrument laboratory related to nuclear species specialized

    International Nuclear Information System (INIS)

    Shan Jian; Zhao Guizhi; Zhao Xiuliang; Tang Lingzhi

    2009-01-01

    As rapid development of specialized related to nuclear science,the requirement of laboratory construct is analyzed in this article at first, One total conceive, One scheme deploy soft and hardware,three concrete characteristics targets and five different phases of put in practice of virtual instrument laboratory of specialized related to nuclear science are suggest in the paper,the concrete hardware structure and the headway of build of virtual instrument laboratory are described,and the first step effect is introduced.Lastly,the forward target and the further deliberateness that the virtual instrument laboratory construct are set forth in the thesis. (authors)

  9. Building a Laboratory-Scale Biogas Plant and Verifying its Functionality

    Science.gov (United States)

    Boleman, Tomáš; Fiala, Jozef; Blinová, Lenka; Gerulová, Kristína

    2011-01-01

    The paper deals with the process of building a laboratory-scale biogas plant and verifying its functionality. The laboratory-scale prototype was constructed in the Department of Safety and Environmental Engineering at the Faculty of Materials Science and Technology in Trnava, of the Slovak University of Technology. The Department has already built a solar laboratory to promote and utilise solar energy, and designed SETUR hydro engine. The laboratory is the next step in the Department's activities in the field of renewable energy sources and biomass. The Department is also involved in the European Union project, where the goal is to upgrade all existed renewable energy sources used in the Department.

  10. Error prevention at a radon measurement service laboratory

    International Nuclear Information System (INIS)

    Cohen, B.L.; Cohen, F.

    1989-01-01

    This article describes the steps taken at a high volume counting laboratory to avoid human, instrument, and computer errors. The laboratory analyzes diffusion barrier charcoal adsorption canisters which have been used to test homes and commercial buildings. A series of computer and human cross-checks are utilized to assure that accurate results are reported to the correct client

  11. Radon measurements during the building of a low-level laboratory

    CERN Document Server

    Antanasijevic, R; Bikit, I; Banjanac, R; Dragic, A; Joksimovic, D; Krmpotic, D; Udovicic, V; Vukovic, J

    1999-01-01

    Radon measurements were provided during the different stages of building of a low-level laboratory in Belgrade. The depth of the laboratory is 12 m, equivalent to 30 m of water with an area of 45 m sup 2. The whole of the laboratory is hermetically lined with 1 mm A1 foil and is ventilated with filtered air. Radon concentrations were measured with the CR-39 detector as well as via the gamma-ray spectroscopic measurements. The radon concentrations in the air were achieved to 20 Bqm sup - sup 3 and reduction of secondary and tertiary cosmic-ray fluxes is five times when ventilation, filtering and sealing was applied.

  12. Radon measurements during the building of a low-level laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Antanasijevic, R.; Anicin, I.; Bikit, I.; Banjanac, R.; Dragic, A.; Joksimovic, D.; Krmpotic, D.; Udovicic, V.; Vukovic, J

    1999-06-01

    Radon measurements were provided during the different stages of building of a low-level laboratory in Belgrade. The depth of the laboratory is 12 m, equivalent to 30 m of water with an area of 45 m{sup 2}. The whole of the laboratory is hermetically lined with 1 mm A1 foil and is ventilated with filtered air. Radon concentrations were measured with the CR-39 detector as well as via the gamma-ray spectroscopic measurements. The radon concentrations in the air were achieved to 20 Bqm{sup -3} and reduction of secondary and tertiary cosmic-ray fluxes is five times when ventilation, filtering and sealing was applied.

  13. Radon measurements during the building of a low-level laboratory

    International Nuclear Information System (INIS)

    Antanasijevic, R.; Anicin, I.; Bikit, I.; Banjanac, R.; Dragic, A.; Joksimovic, D.; Krmpotic, D.; Udovicic, V.; Vukovic, J.

    1999-01-01

    Radon measurements were provided during the different stages of building of a low-level laboratory in Belgrade. The depth of the laboratory is 12 m, equivalent to 30 m of water with an area of 45 m 2 . The whole of the laboratory is hermetically lined with 1 mm A1 foil and is ventilated with filtered air. Radon concentrations were measured with the CR-39 detector as well as via the gamma-ray spectroscopic measurements. The radon concentrations in the air were achieved to 20 Bqm -3 and reduction of secondary and tertiary cosmic-ray fluxes is five times when ventilation, filtering and sealing was applied

  14. Correction of stream quality trends for the effects of laboratory measurement bias

    Science.gov (United States)

    Alexander, Richard B.; Smith, Richard A.; Schwarz, Gregory E.

    1993-01-01

    We present a statistical model relating measurements of water quality to associated errors in laboratory methods. Estimation of the model allows us to correct trends in water quality for long-term and short-term variations in laboratory measurement errors. An illustration of the bias correction method for a large national set of stream water quality and quality assurance data shows that reductions in the bias of estimates of water quality trend slopes are achieved at the expense of increases in the variance of these estimates. Slight improvements occur in the precision of estimates of trend in bias by using correlative information on bias and water quality to estimate random variations in measurement bias. The results of this investigation stress the need for reliable, long-term quality assurance data and efficient statistical methods to assess the effects of measurement errors on the detection of water quality trends.

  15. Corrective Action Plan in response to the March 1992 Tiger Team Assessment of the Ames Laboratory

    International Nuclear Information System (INIS)

    1992-01-01

    On March 5, 1992, a Department of Energy (DOE) Tiger Team completed an assessment of the Ames Laboratory, located in Ames, Iowa. The purpose of the assessment was to provide the Secretary of Energy with a report on the status and performance of Environment, Safety and Health (ES ampersand H) programs at Ames Laboratory. Detailed findings of the assessment are presented in the report, DOE/EH-0237, Tiger Team Assessment of the Ames Laboratory. This document, the Ames Laboratory Corrective Action Plan (ALCAP), presents corrective actions to overcome deficiencies cited in the Tiger Team Assessment. The Tiger Team identified 53 Environmental findings, from which the Team derived four key findings. In the Safety and Health (S ampersand H) area, 126 concerns were identified, eight of which were designated Category 11 (there were no Category I concerns). Seven key concerns were derived from the 126 concerns. The Management Subteam developed 19 findings which have been summarized in four key findings. The eight S ampersand H Category 11 concerns identified in the Tiger Team Assessment were given prompt management attention. Actions to address these deficiencies have been described in individual corrective action plans, which were submitted to DOE Headquarters on March 20, 1992. The ALCAP includes actions described in this early response, as well as a long term strategy and framework for correcting all remaining deficiencies. Accordingly, the ALCAP presents the organizational structure, management systems, and specific responses that are being developed to implement corrective actions and to resolve root causes identified in the Tiger Team Assessment. The Chicago Field Office (CH), IowaState University (ISU), the Institute for Physical Research and Technology (IPRT), and Ames Laboratory prepared the ALCAP with input from the DOE Headquarters, Office of Energy Research (ER)

  16. Revised corrective action plan for underground storage tank 2331-U at the Building 9201-1 Site

    International Nuclear Information System (INIS)

    Bohrman, D.E.; Ingram, E.M.

    1993-09-01

    This document represents the Corrective Action Plan for underground storage tank (UST) 2331-U, previously located at Building 9201-1, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Tank 2331-U, a 560-gallon UST, was removed on December 14, 1988. This document presents a comprehensive summary of all environmental assessment investigations conducted at the Building 9201-1 Site and the corrective action measures proposed for remediation of subsurface petroleum product contamination identified at the site. This document is written in accordance with the regulatory requirements of the Tennessee Department of Environment and Conservation (TDEC) Rule 1200-1-15-.06(7)

  17. From customer satisfaction survey to corrective actions in laboratory services in a university hospital.

    Science.gov (United States)

    Oja, Paula I; Kouri, Timo T; Pakarinen, Arto J

    2006-12-01

    To find out the satisfaction of clinical units with laboratory services in a university hospital, to point out the most important problems and defects in services, to carry out corrective actions, and thereafter to identify the possible changes in satisfaction. and Senior physicians and nurses-in-charge of the clinical units at Oulu University Hospital, Finland. Customer satisfaction survey using a questionnaire was carried out in 2001, indicating the essential aspects of laboratory services. Customer-specific problems were clarified, corrective actions were performed, and the survey was repeated in 2004. In 2001, the highest dissatisfaction rates were recorded for computerized test requesting and reporting, turnaround times of tests, and the schedule of phlebotomy rounds. The old laboratory information system was not amenable to major improvements, and it was renewed in 2004-05. Several clinical units perceived turnaround times to be long, because the tests were ordered as routine despite emergency needs. Instructions about stat requesting were given to these units. However, no changes were evident in the satisfaction level in the 2004 survey. Following negotiations with the clinics, phlebotomy rounds were re-scheduled. This resulted in a distinct increase in satisfaction in 2004. Satisfaction survey is a screening tool that identifies topics of dissatisfaction. Without further clarifications, it is not possible to find out the specific problems of customers and to undertake targeted corrective actions. Customer-specific corrections are rarely seen as improvements in overall satisfaction rates.

  18. Building bridges between clinical and forensic toxicology laboratories.

    Science.gov (United States)

    Martin, Bernardino Barcelo; Gomila, Isabel; Noce, Valeria

    2018-05-09

    Clinical and forensic toxicology can be defined as the two disciplines involved the detection, identification and measurement of xenobiotics in biological and non-biological specimens to help in the diagnosis, treatment, prognosis, prevention of poisonings and to disclose causes and contributory causes of fatal intoxications, respectively. This article explores the close connections between clinical and forensic toxicology in overlapping areas of interest. An update has been carried out of the following seven areas of interest in analytical toxicology: doping control, sudden cardiac death (SCD), brain death, sudden infant death syndrome (SIDS) and Munchausen syndrome by proxy (MSBP), prenatal exposure to drugs and fetal alcohol syndrome (FAS), drug-facilitated crimes (DFC) and intoxications by new psychoactive substances (NPS). While issues such as SCD, SIDS or doping control are investigated mainly in forensic laboratories, other as prenatal exposure to drugs or FAS are mainly treated in clinical laboratories. On the other hand, areas such MSBP, DFC or the intoxications by NPS are of interest in both laboratories. Some of these topics are initially treated in hospital emergency departments, involving clinical laboratories and sometimes lately derived to forensic laboratories. Conversely, cases with initial medical-legal implications and fatalities are directly handled by forensic toxicology, but may trigger further studies in the clinical setting. Many areas of common interest between clinical and forensic laboratories are building bridges between them. The increasing relationships are improving the growth, the reliability and the robustness of both kind of laboratories. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Biosafety and Biosecurity: A Relative Risk-Based Framework for Safer, More Secure, and Sustainable Laboratory Capacity Building.

    Science.gov (United States)

    Dickmann, Petra; Sheeley, Heather; Lightfoot, Nigel

    2015-01-01

    Laboratory capacity building is characterized by a paradox between endemicity and resources: countries with high endemicity of pathogenic agents often have low and intermittent resources (water, electricity) and capacities (laboratories, trained staff, adequate regulations). Meanwhile, countries with low endemicity of pathogenic agents often have high-containment facilities with costly infrastructure and maintenance governed by regulations. The common practice of exporting high biocontainment facilities and standards is not sustainable and concerns about biosafety and biosecurity require careful consideration. A group at Chatham House developed a draft conceptual framework for safer, more secure, and sustainable laboratory capacity building. The draft generic framework is guided by the phrase "LOCAL - PEOPLE - MAKE SENSE" that represents three major principles: capacity building according to local needs (local) with an emphasis on relationship and trust building (people) and continuous outcome and impact measurement (make sense). This draft generic framework can serve as a blueprint for international policy decision-making on improving biosafety and biosecurity in laboratory capacity building, but requires more testing and detailing development.

  20. Biosafety and Biosecurity: A relative risk-based framework for safer, more secure and sustainable laboratory capacity building

    Directory of Open Access Journals (Sweden)

    Petra eDickmann

    2015-10-01

    Full Text Available Background: Laboratory capacity building is characterized by a paradox between endemicity and resources: Countries with high endemicity of pathogenic agents often have low and intermittent resources (water, electricity and capacities (laboratories, trained staff, adequate regulations. Meanwhile, countries with low endemicity of pathogenic agents often have high containment facilities with costly infrastructure and maintenance governed by regulations. The common practice of exporting high biocontainment facilities and standards is not sustainable and concerns about biosafety and biosecurity require careful consideration. Methods: A group at Chatham House developed a draft conceptual framework for safer, more secure and sustainable laboratory capacity building. Results: The draft generic framework is guided by the phrase ‘LOCAL – PEOPLE – MAKE SENSE’ that represents three major principles: capacity building according to local needs (local with an emphasis on relationship and trust-building (people and continuous outcome and impact measurement (make sense. Conclusions: This draft generic framework can serve as a blueprint for international policy decision-making on improving biosafety and biosecurity in laboratory capacity building, but requires more testing and detailing development.

  1. 75 FR 44138 - Build-In Gains and Losses Under Section 382(h); Correction

    Science.gov (United States)

    2010-07-28

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Part 1 [TD 9487] RIN 1545-BG03 Build-In Gains and Losses Under Section 382(h); Correction AGENCY: Internal Revenue Service (IRS), Treasury... providing guidance regarding the treatment of prepaid income under the built-in gain provisions of section...

  2. State-of-the art comparability of corrected emission spectra. 2. Field laboratory assessment of calibration performance using spectral fluorescence standards.

    Science.gov (United States)

    Resch-Genger, Ute; Bremser, Wolfram; Pfeifer, Dietmar; Spieles, Monika; Hoffmann, Angelika; DeRose, Paul C; Zwinkels, Joanne C; Gauthier, François; Ebert, Bernd; Taubert, R Dieter; Voigt, Jan; Hollandt, Jörg; Macdonald, Rainer

    2012-05-01

    In the second part of this two-part series on the state-of-the-art comparability of corrected emission spectra, we have extended this assessment to the broader community of fluorescence spectroscopists by involving 12 field laboratories that were randomly selected on the basis of their fluorescence measuring equipment. These laboratories performed a reference material (RM)-based fluorometer calibration with commercially available spectral fluorescence standards following a standard operating procedure that involved routine measurement conditions and the data evaluation software LINKCORR developed and provided by the Federal Institute for Materials Research and Testing (BAM). This instrument-specific emission correction curve was subsequently used for the determination of the corrected emission spectra of three test dyes, X, QS, and Y, revealing an average accuracy of 6.8% for the corrected emission spectra. This compares well with the relative standard uncertainties of 4.2% for physical standard-based spectral corrections demonstrated in the first part of this study (previous paper in this issue) involving an international group of four expert laboratories. The excellent comparability of the measurements of the field laboratories also demonstrates the effectiveness of RM-based correction procedures.

  3. A Laboratory Practical on the House Building Behaviour of Caddis Larvae

    Science.gov (United States)

    Hansell, M. H.

    1973-01-01

    Describes a laboratory practical on animal behavior suitable for senior secondary school or university biology classes. Several separate exercises relating to the house building behavior of caddis fly larvae are detailed, together with the time required for preparation. (JR)

  4. Avionics Systems Laboratory/Building 16. Historical Documentation

    Science.gov (United States)

    Slovinac, Patricia; Deming, Joan

    2011-01-01

    As part of this nation-wide study, in September 2006, historical survey and evaluation of NASA-owned and managed facilities that was conducted by NASA s Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The results of this study are presented in a report entitled, "Survey and Evaluation of NASA-owned Historic Facilities and Properties in the Context of the U.S. Space Shuttle Program, Lyndon B. Johnson Space Center, Houston, Texas," prepared in November 2007 by NASA JSC s contractor, Archaeological Consultants, Inc. As a result of this survey, the Avionics Systems Laboratory (Building 16) was determined eligible for listing in the NRHP, with concurrence by the Texas State Historic Preservation Officer (SHPO). The survey concluded that Building 5 is eligible for the NRHP under Criteria A and C in the context of the U.S. Space Shuttle program (1969-2010). Because it has achieved significance within the past 50 years, Criteria Consideration G applies. At the time of this documentation, Building 16 was still used to support the SSP as an engineering research facility, which is also sometimes used for astronaut training. This documentation package precedes any undertaking as defined by Section 106 of the NHPA, as amended, and implemented in 36 CFR Part 800, as NASA JSC has decided to proactively pursue efforts to mitigate the potential adverse affects of any future modifications to the facility. It includes a historical summary of the Space Shuttle program; the history of JSC in relation to the SSP; a narrative of the history of Building 16 and how it supported the SSP; and a physical description of the structure. In addition, photographs documenting the construction and historical use of Building 16 in support of the SSP, as well as photographs of the facility documenting the existing conditions, special technological features, and engineering details, are included. A contact sheet printed on archival paper, and an electronic copy of the work product on CD, are

  5. Integration of laboratory bioassays into the risk-based corrective action process

    International Nuclear Information System (INIS)

    Edwards, D.; Messina, F.; Clark, J.

    1995-01-01

    Recent data generated by the Gas Research Institute (GRI) and others indicate that residual hydrocarbon may be bound/sequestered in soil such that it is unavailable for microbial degradation, and thus possibly not bioavailable to human/ecological receptors. A reduction in bioavailability would directly equate to reduced exposure and, therefore, potentially less-conservative risk-based cleanup soil goals. Laboratory bioassays which measure bioavailability/toxicity can be cost-effectively integrated into the risk-based corrective action process. However, in order to maximize the cost-effective application of bioassays several site-specific parameters should be addressed up front. This paper discusses (1) the evaluation of parameters impacting the application of bioassays to soils contaminated with metals and/or petroleum hydrocarbons and (2) the cost-effective integration of bioassays into a tiered ASTM type framework for risk-based corrective action

  6. Corrective Action Decision Document for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2000-01-01

    This Corrective Action Decision Document identifies and rationalizes the US Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 254, R-MAD Decontamination Facility, under the Federal Facility Agreement and Consent Order. Located in Area 25 at the Nevada Test Site in Nevada, CAU 254 is comprised of Corrective Action Site (CAS) 25-23-06, Decontamination Facility. A corrective action investigation for this CAS as conducted in January 2000 as set forth in the related Corrective Action Investigation Plan. Samples were collected from various media throughout the CAS and sent to an off-site laboratory for analysis. The laboratory results indicated the following: radiation dose rates inside the Decontamination Facility, Building 3126, and in the storage yard exceeded the average general dose rate; scanning and static total surface contamination surveys indicated that portions of the locker and shower room floor, decontamination bay floor, loft floor, east and west decon pads, north and south decontamination bay interior walls, exterior west and south walls, and loft walls were above preliminary action levels (PALs). The investigation-derived contaminants of concern (COCs) included: polychlorinated biphenyls, radionuclides (strontium-90, niobium-94, cesium-137, uranium-234 and -235), total volatile and semivolatile organic compounds, total petroleum hydrocarbons, and total Resource Conservation and Recovery Act (Metals). During the investigation, two corrective action objectives (CAOs) were identified to prevent or mitigate human exposure to COCs. Based on these CAOs, a review of existing data, future use, and current operations at the Nevada Test Site, three CAAs were developed for consideration: Alternative 1 - No Further Action; Alternative 2 - Unrestricted Release Decontamination and Verification Survey; and Alternative 3 - Unrestricted

  7. Corrective Action Decision Document/Closure Report for Corrective Action Unit 266: Area 25 Building 3124 Leachfield, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NV

    2000-02-17

    This Corrective Action Decision Document/Closure Report (CADD/CR) was prepared for Corrective Action Unit (CAU) 266, Area 25 Building 3124 Leachfield, in accordance with the Federal Facility Agreement and Consent Order. Located in Area 25 at the Nevada Test Site in Nevada, CAU 266 includes Corrective Action Site (CAS) 25-05-09. The Corrective Action Decision Document and Closure Report were combined into one report because sample data collected during the corrective action investigation (CAI) indicated that contaminants of concern (COCs) were either not present in the soil, or present at concentrations not requiring corrective action. This CADD/CR identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's recommendation that no corrective action was necessary for CAU 266. From February through May 1999, CAI activities were performed as set forth in the related Corrective Action Investigation Plan. Analytes detected during the three-stage CAI of CAU 266 were evaluated against preliminary action levels (PALs) to determine COCs, and the analysis of the data generated from soil collection activities indicated the PALs were not exceeded for total volatile/semivolatile organic compounds, total petroleum hydrocarbons, polychlorinated biphenyls, total Resource Conservation and Recovery Act metals, gamma-emitting radionuclides, isotopic uranium/plutonium, and strontium-90 for any of the samples. However, COCs were identified in samples from within the septic tank and distribution box; and the isotopic americium concentrations in the two soil samples did exceed PALs. Closure activities were performed at the site to address the COCs identified in the septic tank and distribution box. Further, no use restrictions were required to be placed on CAU 266 because the CAI revealed soil contamination to be less than the 100 millirems per year limit established by DOE Order 5400.5.

  8. Corrective Action Decision Document/Closure Report for Corrective Action Unit 266: Area 25 Building 3124 Leachfield, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2000-01-01

    This Corrective Action Decision Document/Closure Report (CADD/CR) was prepared for Corrective Action Unit (CAU) 266, Area 25 Building 3124 Leachfield, in accordance with the Federal Facility Agreement and Consent Order. Located in Area 25 at the Nevada Test Site in Nevada, CAU 266 includes Corrective Action Site (CAS) 25-05-09. The Corrective Action Decision Document and Closure Report were combined into one report because sample data collected during the corrective action investigation (CAI) indicated that contaminants of concern (COCs) were either not present in the soil, or present at concentrations not requiring corrective action. This CADD/CR identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's recommendation that no corrective action was necessary for CAU 266. From February through May 1999, CAI activities were performed as set forth in the related Corrective Action Investigation Plan. Analytes detected during the three-stage CAI of CAU 266 were evaluated against preliminary action levels (PALs) to determine COCs, and the analysis of the data generated from soil collection activities indicated the PALs were not exceeded for total volatile/semivolatile organic compounds, total petroleum hydrocarbons, polychlorinated biphenyls, total Resource Conservation and Recovery Act metals, gamma-emitting radionuclides, isotopic uranium/plutonium, and strontium-90 for any of the samples. However, COCs were identified in samples from within the septic tank and distribution box; and the isotopic americium concentrations in the two soil samples did exceed PALs. Closure activities were performed at the site to address the COCs identified in the septic tank and distribution box. Further, no use restrictions were required to be placed on CAU 266 because the CAI revealed soil contamination to be less than the 100 millirems per year limit established by DOE Order 5400.5

  9. A Componentizable Server-Side Framework for Building Remote and Virtual Laboratories

    Directory of Open Access Journals (Sweden)

    Jesús Luis Muros-Cobos

    2012-12-01

    Full Text Available Abstract—Currently, virtual/remotes laboratories are often being built to improve learning and researching capabilities in some areas of knowledge. Generally these virtual/remotes laboratories are built from scratch again and again, instead of reusing software and hardware infrastructures. This paper presents a new framework, RVLab, to help developers building flexible and robust server-side virtual and remotes laboratories quickly. RVLab affords support for the basic requirements of these systems such as the user management or the resources (instruments and devices reservation. Unlike other lab systems, RVLab is adapted to devices and instruments of any real laboratory due to a secure and robust mechanism that allows the remote execution of lab programs. Moreover, it improves the user interaction with real labs, providing a real-time visualization of experiments and lab instruments by means of the control of video camera placed into lab, and the transmission of video streaming with different quality to users.

  10. Multi-site Field Verification of Laboratory Derived FDOM Sensor Corrections: The Good, the Bad and the Ugly

    Science.gov (United States)

    Saraceno, J.; Shanley, J. B.; Aulenbach, B. T.

    2014-12-01

    Fluorescent dissolved organic matter (FDOM) is an excellent proxy for dissolved organic carbon (DOC) in natural waters. Through this relationship, in situ FDOM can be utilized to capture both high frequency time series and long term fluxes of DOC in small streams. However, in order to calculate accurate DOC fluxes for comparison across sites, in situ FDOM data must be compensated for matrix effects. Key matrix effects, include temperature, turbidity and the inner filter effect due to color. These interferences must be compensated for to develop a reasonable relationship between FDOM and DOC. In this study, we applied laboratory-derived correction factors to real time data from the five USGS WEBB headwater streams in order to gauge their effectiveness across a range of matrix effects. The good news is that laboratory derived correction factors improved the predicative relationship (higher r2) between DOC and FDOM when compared to uncorrected data. The relative importance of each matrix effect (i.e. temperature) varied by site and by time, implying that each and every matrix effect should be compensated for when available. In general, temperature effects were more important on longer time scales, while corrections for turbidity and DOC inner filter effects were most prevalent during hydrologic events, when the highest instantaneous flux of DOC occurred. Unfortunately, even when corrected for matrix effects, in situ FDOM is a weaker predictor of DOC than A254, a common surrogate for DOC, implying that either DOC fluoresces at varying degrees (but should average out over time), that some matrix effects (e.g. pH) are either unaccounted for or laboratory-derived correction factors do not encompass the site variability of particles and organics. The least impressive finding is that the inherent dependence on three variables in the FDOM correction algorithm increases the likelihood of record data gaps which increases the uncertainty in calculated DOC flux values.

  11. Prevalence and risk factors for Sick Building Syndrome among Italian correctional officers: A pilot study

    Directory of Open Access Journals (Sweden)

    Francesco Chirico

    2017-03-01

    Full Text Available Introduction: Over the past two decades, numerous studies on indoor air and the Sick Building Syndrome (SBS have been conducted, mostly in office environments. However, there is little knowledge about SBS in police officers. This study was aimed to fill this gap. Methods: A cross-sectional questionnaire survey was conducted in 2016 at the Triveneto Penitentiary Center, Northern Italy. Chi-square was used to test the difference of prevalence between office workers (OWs and correctional officers (COs of personal characteristics, cases of SBS, and general and mucocutaneous symptoms associated with SBS. A binary logistic regression was used to identify among individual, environmental, and psychosocial characteristics, factors associated with correctional officers’ Sick Building Syndrome. Results: Chi-squared analyses revealed that there were statistically significant differences in the estimated prevalence of SBS general symptoms (χ2 (1 = 12.22, P < .05, SBS mucocutaneous symptoms (χ2 (1 = 9.04, P < .05, and cases of SBS (χ2 (1 = 4.39, P <.05 between COs and OWs. COs reported that their health had been affected by the passive smoking (β = 2.34, P < .05 and unpleasant odour (β = 2.51, P < .05 as environmental risk factors; work-family conflict (β = 2.14, P < .05, psychological and physical isolation (β = 2.07, P < .05, and negative public image (β = 2.06, P < .05 as psychosocial risk factors. Finally, atopy (β = 2.02, P < .05 and to be current smoker (β = 2.02, P < .05 were statistically significant behavioral predictors of SBS among correctional officers. Discussion: Our survey showed that symptoms compatible with the sick building syndrome are common in correctional officers and that psychosocial work climate and exposure to passive smoking could have a strong influence on the prevalence of both general and mucocutaneous symptoms associated with SBS. A health policy for passive tobacco smoking within prisons, and for work-related stress

  12. Optimization of Broadband Wavefront Correction at the Princeton High Contrast Imaging Laboratory

    Science.gov (United States)

    Groff, Tyler Dean; Kasdin, N.; Carlotti, A.

    2011-01-01

    Wavefront control for imaging of terrestrial planets using coronagraphic techniques requires improving the performance of the wavefront control techniques to expand the correction bandwidth and the size of the dark hole over which it is effective. At the Princeton High Contrast Imaging Laboratory we have focused on increasing the search area using two deformable mirrors (DMs) in series to achieve symmetric correction by correcting both amplitude and phase aberrations. Here we are concerned with increasing the bandwidth of light over which this correction is effective so we include a finite bandwidth into the optimization problem to generate a new stroke minimization algorithm. This allows us to minimize the actuator stroke on the DMs given contrast constraints at multiple wavelengths which define a window over which the dark hole will persist. This windowed stroke minimization algorithm is written in such a way that a weight may be applied to dictate the relative importance of the outer wavelengths to the central wavelength. In order to supply the estimates at multiple wavelengths a functional relationship to a central estimation wavelength is formed. Computational overhead and new experimental results of this windowed stroke minimization algorithm are discussed. The tradeoff between symmetric correction and achievable bandwidth is compared to the observed contrast degradation with wavelength in the experimental results. This work is supported by NASA APRA Grant #NNX09AB96G. The author is also supported under an NESSF Fellowship.

  13. Advanced fire prevention techniques for ITER-INDIA laboratory building, IPR

    International Nuclear Information System (INIS)

    Modi, D.V.; Channa Reddy, D.

    2016-01-01

    Just as air and water, survival of human life without fire is unimaginable. However, fire can be a boon as well as a bane. The ability to control the use of fire is an art towards improved industrial development. The same phenomenon is also applicable for research and development sector. Fire Safety is a key issue for any kind of research laboratories. Fire hazards in laboratories arise from the storage and use of flammable materials and electrical installations and from hazardous operations carried out there. The risk of damage due to fire depends on the combustible available, their physical arrangement, the geometry of the building, likelihood of the ignition, etc. The risk is also controlled by the fire protection measures in place, which relate to both fire prevention and fire control. (author)

  14. Acoustics. Measurement of sound insulation in buildings and of building elements. Laboratory measurements of the reduction of transmitted impact noise by floor coverings on a heavyweight standard floor

    CERN Document Server

    British Standards Institution. London

    1998-01-01

    Acoustics. Measurement of sound insulation in buildings and of building elements. Laboratory measurements of the reduction of transmitted impact noise by floor coverings on a heavyweight standard floor

  15. Sandia National Laboratories, Tonopah Test Range Assembly Building 9B (Building 09-54): Photographs and Written Historical and Descriptive Data

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Rebecca A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Corporate Archives and History Program

    2017-08-01

    Assembly Building 9B (Building 09-54) is a contributing element to the Sandia National Laboratories (SNL) Tonopah Test Range (TTR) Historic District. The SNL TTR Historic District played a significant role in U.S. Cold War history in the areas of stockpile surveillance and non-nuclear field testing of nuclear weapons designs. The district covers approximately 179,200 acres and illustrates Cold War development testing of nuclear weapons components and systems. This report includes historical information, architectural information, sources of information, project information, maps, blueprints, and photographs.

  16. Upgrades and Enclosure of Building 15 at Technical Area 40: Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Plimpton, Kathryn D [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garcia, Kari L. M [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brunette, Jeremy Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McGehee, Ellen D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    The U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office (Field Office) proposes to upgrade and enclose Building 15 at Technical Area (TA) 40, Los Alamos National Laboratory. Building TA-40-15, a Cold War-era firing site, was determined eligible for listing in the National Register of Historic Places (Register) in DX Division’s Facility Strategic Plan: Consolidation and Revitalization at Technical Areas 6, 8, 9, 14, 15, 22, 36, 39, 40, 60, and 69 (McGehee et al. 2005). Building TA-40-15 was constructed in 1950 to support detonator testing. The firing site will be enclosed by a steel building to create a new indoor facility that will allow for year-round mission capability. Enclosing TA-40-15 will adversely affect the building by altering the characteristics that make it eligible for the Register. In compliance with Section 106 of the National Historic Preservation Act of 1966, as amended, the Field Office is initiating consultation for this proposed undertaking. The Field Office is also requesting concurrence with the use of standard practices to resolve adverse effects as defined in the Programmatic Agreement among the U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office, the New Mexico State Historic Preservation Office and the Advisory Council on Historic Preservation Concerning Management of the Historic Properties at Los Alamos National Laboratory, Los Alamos, New Mexico.

  17. Investigations of radioactivity of building raw and materials

    International Nuclear Information System (INIS)

    Zak, A.; Biernacka, M.; Jagielak, J.; Lipinski, P.

    1993-01-01

    In 1980, Ministry of Building and Building Materials Industry, the Central Laboratory for Radiological Protection (abbreviated as CLRP), Ministry of Health and Social Welfare have agreed to issue the compulsory regulation of performing the validation of investigations of building raw and materials. Methods of measurement, apparatus and method of evaluation of results of the investigations have been recommended for the whole country. The following two criteria of usefulness of a building material for housing and public building have been accepted, f 1 = 0.00027 S K + 0.0027 S Ra0 .0043 S Th ≤ 1 (this one limit exposition of the whole body to gamma radiation); f 2 = S Ra ≤ 185 Bq/kg (this one limits exposition of lung epithelium to progeny of radon 222 Rn exhaled from the building walls). The CLRP and Institute of Building Technology supervise over correctness (agreement with the regulations) of operation of laboratories in Departments of Building Industry and Energy, organize training of the personnel and collect results of the measurements. From 1980 till 1991, results of measurements of 6550 samples from 550 localities were collected in computer data base organized in CLRP. In this paper, results of examination of selected groups of building raw and materials have been presented. Annual average values of the qualification coefficients f 1 and f 2 have been also analyzed. (author). 7 refs, 13 figs, 2 tabs

  18. Final environmental assessment: TRU waste drum staging building, Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    1996-01-01

    Much of the US Department of Energy's (DOE's) research on plutonium metallurgy and plutonium processing is performed at Los Alamos National Laboratory (LANL), in Los Alamos, New Mexico. LANL's main facility for plutonium research is the Plutonium Facility, also referred to as Technical Area 55 (TA-55). The main laboratory building for plutonium work within the Plutonium Facility (TA-55) is the Plutonium Facility Building 4, or PF-4. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if DOE were to stage sealed containers of transuranic (TRU) and TRU mixed waste in a support building at the Plutonium Facility (TA-55) that is adjacent to PF-4. At present, the waste containers are staged in the basement of PF-4. The proposed project is to convert an existing support structure (Building 185), a prefabricated metal building on a concrete foundation, and operate it as a temporary staging facility for sealed containers of solid TRU and TRU mixed waste. The TRU and TRU mixed wastes would be contained in sealed 55-gallon drums and standard waste boxes as they await approval to be transported to TA-54. The containers would then be transported to a longer term TRU waste storage area at TA-54. The TRU wastes are generated from plutonium operations carried out in PF-4. The drum staging building would also be used to store and prepare for use new, empty TRU waste containers

  19. Structural Analysis and Seismic Design for Cold Neutron Laboratory Building

    International Nuclear Information System (INIS)

    Wu, Sangik; Kim, Y. K.; Kim, H. R.

    2007-05-01

    This report describes all the major results of the dynamic structural analysis and seismic design for the Cold Neutron Laboratory Building which is classified in seismic class II. The results are summarized of the ground response spectrum as seismic input loads, mechanical properties of subsoil, the buoyancy stability due to ground water, the maximum displacement of the main frame under the seismic load and the member design. This report will be used as a basic design report to maintenance its structural integrity in future

  20. Enhancement of the basic seismic assessment of the Los Alamos National Laboratory facilities and buildings

    International Nuclear Information System (INIS)

    Fritz-de la Orta, G.O.

    1995-01-01

    This paper presents the results of a comparison of values obtained for the seismic security of 479 buildings and facilities at Los Alamos National Laboratory following the methodology adapted from Dr. Otto Frit's original System, and the requirements contained both in FEMA-154 ''Rapid Visual Screening of Buildings for Potential Hazards: A Handbook'' and FEMA-187 ''NEHRP Handbook for the Seismic Evaluation of Existing Buildings.'' These comparisons were made from five buildings chosen randomly illustrating a wide variety of construction types and building configurations. Each building is divided into sectors, defined as portions of it that are attached additions to the original building, or portions separated by an expansion joint between the structural systems. The five buildings studied contain a total of sixteen sectors. The paper is divided into the following sections: Introduction; Basic Concepts of the LANL Methodology; Basic Concepts of FEMA-178; Highlights of the Comparison; Comments on the Results; and Final Words

  1. A Laboratory for studying radon mitigation methods in high-rise office buildings in Hong Kong

    International Nuclear Information System (INIS)

    Leung, J.K.C.; Hung, L.C.; Tso, M.Y.W.

    1996-01-01

    A territory-wide survey of indoor radon level in 1993 showed that 17% of offices Hong Kong have radon concentrations above 200 Bq m -3 compared with 4% for dwellings. Consequently, the Radioisotope Unit Radon Analysis Laboratory (RURAL) is being built for studying radon mitigation methods applicable to high-rise office buildings. The laboratory consists of three rooms; the main exposure room is built of concrete and is surrounded by the buffer room; and all controls and operations are done inside the control room. The exposure room can, with the aid of the buffer room, simulate any environmental conditions that can be faced by a real building. The pressure, temperature and humidity can be adjusted to any meteorological conditions that can be found in Hong Kong. Pressure differential and temperature differential can be adjusted to simulate the arrival of fronts, troughs or typhoons. Aerosol concentration and distribution inside the exposure room are controllable as well as the ventilation conditions. Various mitigation methods will be tested under different conditions. Passive methods include application of radon barriers to building structures and active methods include the use of air cleaners; techniques to increase radon daughters plateout or reduce their attachment to aerosols; and various modifications to the ventilation systems. Mitigation techniques involving modifications to the building strictures and building services will also be developed with the help of the RURAL. (author)

  2. Experimental Bleaching of a Reef-Building Coral Using a Simplified Recirculating Laboratory Exposure System

    Science.gov (United States)

    Determining stressor-response relationships in reef building corals is a critical need for researchers because of global declines in coral reef ecosystems. A simplified recirculating coral exposure system for laboratory testing of a diversity of species and morphologies of reef b...

  3. The UV Sensor Onboard the Mars Science Laboratory Mission: Correction and Generation of UV Fluxes

    Science.gov (United States)

    Vicente-Retortillo, Á.; Martinez, G.; Renno, N. O.; Lemmon, M. T.; Gomez-Elvira, J.

    2017-12-01

    The Rover Environmental Monitoring Station UV sensor (UVS) onboard the Mars Science Laboratory mission has completed more than 1750 sols of measurements, providing an unprecedented coverage ranging from diurnal to interannual times scales [1,2]. The UVS is comprised of six photodiodes to measure the UV flux in the ranges 200-380, 320-380, 280-320, 200-280, 230-290 and 300-350 nm [3]. UV fluxes in units of W/m2 can be found in the NASA Planetary Data System (PDS). However, dust deposition on the UVS and a non-physical discontinuity in the calibration functions when the solar zenith angle is above 30º cause errors in these fluxes that increase with time. We have developed a technique to correct UV fluxes from the effects of dust degradation and inconsistencies in the angular response of the UVS. The photodiode output currents (available in the PDS as lower-level TELRDR products), ancillary data records (available in the PDS as ADR products) and dust opacity values derived from Mastcam observations are used for performing the corrections. The corrections have been applied to the UVA band (320-380 nm) for the first 1000 sols of the mission, providing excellent results [4]. We plan to correct the UV fluxes on each of the six UVS bands and to make these results available in the PDS. Data products generated by this study will allow comparisons of the UV radiation environment at Gale crater with that at the locations of the future missions ExoMars 2020 and Mars 2020, as well as the assessment of the potential survivability of biological contaminants brought to Mars from Earth. References: [1] Smith, M. D., et al. (2016), Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes, Icarus, 280, 234-248. [2] Vicente-Retortillo, Á., et al. (2017), Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements, Geophys. Res. Lett., 44, 3502-3508. [3] Gómez-Elvira, J., et al. (2012), REMS: The environmental sensor

  4. QT correction formulas and laboratory analysis on patients with metabolic syndrome and diabetes

    Science.gov (United States)

    Wong, Sara; Rivera, Pedro; Rodríguez, María. G.; Severeyn, Érika; Altuve, Miguel

    2013-11-01

    This article presents a study of ventricular repolarization in diabetic and metabolic syndrome subjects. The corrected QT interval (QTc) was estimated using four correction formulas commonly employed in the literature: Bazett, Fridericia, Framingham and Hodges. After extracting the Q, R and T waves from the electrocardiogram of 52 subjects (19 diabetic, 15 with metabolic syndrome and 18 control), using a wavelet-based approach, the RR interval and QT interval were determined. Then, QTc interval was computed using the formulas previously mentioned. Additionally, laboratory test (fasting glucose, cholesterol, triglycerides) were also evaluated. Results show that metabolic syndrome subjects have normal QTc. However, a longer QTc in this population may be a sign of future complication. The corrected QT interval by Fridericia's formula seems to be the most appropriated for metabolic syndrome subjects (low correlation coefficient between RR and QTc). Significant differences were obtained in the blood glucose and triglyceride levels, principally due to the abnormal sugar metabolization of metabolic syndrome and diabetic subjects. Further studies are focused on the acquisition of a larger database of metabolic syndrome and diabetics subjects and the repetition of this study using other populations, like high performance athletes.

  5. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

    2011-02-01

    The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

  6. Simulation Technology Laboratory Building 970 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.L.; Starr, M.D.

    1994-11-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters

  7. Highlighting High Performance: National Renewable Energy Laboratory's Thermal Test Facility, Golden, Colorado. Office of Building Technology State and Community Programs (BTS) Brochure

    International Nuclear Information System (INIS)

    Burgert, S.

    2001-01-01

    The National Renewable Energy Laboratory's Thermal Test Facility in Golden, Colorado, was designed using a whole-building approach-looking at the way the building's systems worked together most efficiently. Researchers monitor the performance of the 11,000-square-foot building, which boasts an energy cost savings of 63% for heating, cooling, and lighting. The basic plan of the building can be adapted to many needs, including retail and warehouse space. The Thermal Test Facility contains office and laboratory space; research focuses on the development of energy-efficiency and renewable energy technologies that are cost-effective and environmentally friendly

  8. Characterizing the Laboratory Market

    Energy Technology Data Exchange (ETDEWEB)

    Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ganeshalingam, Mohan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeMates, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sartor, Dale [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-11

    Laboratories are estimated to be 3-5 times more energy intensive than typical office buildings and offer significant opportunities for energy use reductions. Although energy intensity varies widely, laboratories are generally energy intensive due to ventilation requirements, the research instruments used, and other health and safety concerns. Because the requirements of laboratory facilities differ so dramatically from those of other buildings, a clear need exists for an initiative exclusively targeting these facilities. The building stock of laboratories in the United States span different economic sectors, include governmental and academic institution, and are often defined differently by different groups. Information on laboratory buildings is often limited to a small subsection of the total building stock making aggregate estimates of the total U.S. laboratories and their energy use challenging. Previous estimates of U.S. laboratory space vary widely owing to differences in how laboratories are defined and categorized. A 2006 report on fume hoods provided an estimate of 150,000 laboratories populating the U.S. based in part on interviews of industry experts, however, a 2009 analysis of the 2003 Commercial Buildings Energy Consumption Survey (CBECS) generated an estimate of only 9,000 laboratory buildings. This report draws on multiple data sources that have been evaluated to construct an understanding of U.S. laboratories across different sizes and markets segments. This 2016 analysis is an update to draft reports released in October and December 2016.

  9. Building a new predictor for multiple linear regression technique-based corrective maintenance turnaround time.

    Science.gov (United States)

    Cruz, Antonio M; Barr, Cameron; Puñales-Pozo, Elsa

    2008-01-01

    This research's main goals were to build a predictor for a turnaround time (TAT) indicator for estimating its values and use a numerical clustering technique for finding possible causes of undesirable TAT values. The following stages were used: domain understanding, data characterisation and sample reduction and insight characterisation. Building the TAT indicator multiple linear regression predictor and clustering techniques were used for improving corrective maintenance task efficiency in a clinical engineering department (CED). The indicator being studied was turnaround time (TAT). Multiple linear regression was used for building a predictive TAT value model. The variables contributing to such model were clinical engineering department response time (CE(rt), 0.415 positive coefficient), stock service response time (Stock(rt), 0.734 positive coefficient), priority level (0.21 positive coefficient) and service time (0.06 positive coefficient). The regression process showed heavy reliance on Stock(rt), CE(rt) and priority, in that order. Clustering techniques revealed the main causes of high TAT values. This examination has provided a means for analysing current technical service quality and effectiveness. In doing so, it has demonstrated a process for identifying areas and methods of improvement and a model against which to analyse these methods' effectiveness.

  10. Prevalence and risk factors for Sick Building Syndrome among Italian correctional officers: A pilot study

    OpenAIRE

    Francesco Chirico; Giuseppe Ferrari; Giuseppe Taino; Enrico Oddone; Ines Giorgi; Marcello Imbriani

    2017-01-01

    Introduction: Over the past two decades, numerous studies on indoor air and the Sick Building Syndrome (SBS) have been conducted, mostly in office environments. However, there is little knowledge about SBS in police officers. This study was aimed to fill this gap. Methods: A cross-sectional questionnaire survey was conducted in 2016 at the Triveneto Penitentiary Center, Northern Italy. Chi-square was used to test the difference of prevalence between office workers (OWs) and correctional of...

  11. Biosafety and Biosecurity: A Relative Risk-Based Framework for Safer, More Secure, and Sustainable Laboratory Capacity Building

    OpenAIRE

    Dickmann, Petra; Sheeley, Heather; Lightfoot, Nigel

    2015-01-01

    Background Laboratory capacity building is characterized by a paradox between endemicity and resources: countries with high endemicity of pathogenic agents often have low and intermittent resources (water, electricity) and capacities (laboratories, trained staff, adequate regulations). Meanwhile, countries with low endemicity of pathogenic agents often have high-containment facilities with costly infrastructure and maintenance governed by regulations. The common practice of exporting high ...

  12. Biosafety and Biosecurity: A relative risk-based framework for safer, more secure and sustainable laboratory capacity building

    OpenAIRE

    Petra eDickmann; Heather eSheeley; Nigel Francis Lightfoot; Nigel Francis Lightfoot

    2015-01-01

    Background: Laboratory capacity building is characterized by a paradox between endemicity and resources: Countries with high endemicity of pathogenic agents often have low and intermittent resources (water, electricity) and capacities (laboratories, trained staff, adequate regulations). Meanwhile, countries with low endemicity of pathogenic agents often have high containment facilities with costly infrastructure and maintenance governed by regulations. The common practice of exporting high bi...

  13. An Illustration of the Corrective Action Process, The Corrective Action Management Unit at Sandia National Laboratories/New Mexico

    International Nuclear Information System (INIS)

    Irwin, M.; Kwiecinski, D.

    2002-01-01

    Corrective Action Management Units (CAMUs) were established by the Environmental Protection Agency (EPA) to streamline the remediation of hazardous waste sites. Streamlining involved providing cost saving measures for the treatment, storage, and safe containment of the wastes. To expedite cleanup and remove disincentives, EPA designed 40 CFR 264 Subpart S to be flexible. At the heart of this flexibility are the provisions for CAMUs and Temporary Units (TUs). CAMUs and TUs were created to remove cleanup disincentives resulting from other Resource Conservation Recovery Act (RCRA) hazardous waste provisions--specifically, RCRA land disposal restrictions (LDRs) and minimum technology requirements (MTRs). Although LDR and MTR provisions were not intended for remediation activities, LDRs and MTRs apply to corrective actions because hazardous wastes are generated. However, management of RCRA hazardous remediation wastes in a CAMU or TU is not subject to these stringent requirements. The CAMU at Sandia National Laboratories in Albuquerque, New Mexico (SNL/NM) was proposed through an interactive process involving the regulators (EPA and the New Mexico Environment Department), DOE, SNL/NM, and stakeholders. The CAMU at SNL/NM has been accepting waste from the nearby Chemical Waste Landfill remediation since January of 1999. During this time, a number of unique techniques have been implemented to save costs, improve health and safety, and provide the best value and management practices. This presentation will take the audience through the corrective action process implemented at the CAMU facility, from the selection of the CAMU site to permitting and construction, waste management, waste treatment, and final waste placement. The presentation will highlight the key advantages that CAMUs and TUs offer in the corrective action process. These advantages include yielding a practical approach to regulatory compliance, expediting efficient remediation and site closure, and realizing

  14. Effectiveness of daylighting design and occupant visual satisfaction in a LEED gold laboratory building

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Ying; Oswald, Anne [Department of Design and Environmental Analysis, Cornell University, Ithaca, NY 14853 (United States); Yang, Xiaodi [School of Architecture, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)

    2011-01-15

    Using daylight as primary light source has been widely recognized as an important strategy to reduce building energy demand and enhance indoor environment quality. However, to design and operate a building to make full use of daylight, which is a dynamic light source, to meet diverse occupant needs remains a challenge. This paper reports a post-occupancy study of the visual environment in a laboratory building on a university campus, and puts a spotlight on the building occupants as it examines the effectiveness of the daylighting design and systems integration in creating a visual environment to support occupant comfort and satisfaction while reducing artificial lighting demand. Results show generally high satisfaction with daylit work environment and positive effect of the horizontal shading strategy. Issues about the integration between daylighting and electric lighting systems and level of occupant control are identified and discussed for improving the effectiveness of daylighting and enhancing the quality of the visual environment in the building of study. A multiple-tool methodology is developed and tested, which included occupant surveys, interviews, illuminance measurements, continuous data loggers, fisheye-lens camera and glare-identifying software, and documentation of spatial settings, systems features, and user behavior. (author)

  15. [Building and implementation of management system in laboratories of the National Institute of Hygiene].

    Science.gov (United States)

    Rozbicka, Beata; Brulińska-Ostrowska, Elzbieta

    2008-01-01

    The rules of good laboratory practice have always been observed in the laboratories of National Institute of Hygiene (NIH) and the reliability of the results has been carefully cared after when performing tests for clients. In 2003 the laboratories performing analyses related to food safety were designated as the national reference laboratories. This, added to the necessity of compliance with work standards and requirements of EU legislation and to the need of confirmation of competence by an independent organisation, led to a decision to seek accreditation of Polish Centre of Accreditation (PCA). The following stages of building and implementation of management system were presented: training, modifications of Institute's organisational structure, elaboration of management system's documentation, renovation and refurbishment of laboratory facilities, implementation of measuring and test equipment's supervision, internal audits and management review. The importance of earlier experiences and achievements with regard to validation of analytical methods and guarding of the quality of the results through organisation and participation in proficiency tests was highlighted. Current status of accreditation of testing procedures used in NIH laboratories that perform analyses in the field of chemistry, microbiology, radiobiology and medical diagnostic tests was presented.

  16. Thermal Texture Selection and Correction for Building Facade Inspection Based on Thermal Radiant Characteristics

    Science.gov (United States)

    Lin, D.; Jarzabek-Rychard, M.; Schneider, D.; Maas, H.-G.

    2018-05-01

    An automatic building façade thermal texture mapping approach, using uncooled thermal camera data, is proposed in this paper. First, a shutter-less radiometric thermal camera calibration method is implemented to remove the large offset deviations caused by changing ambient environment. Then, a 3D façade model is generated from a RGB image sequence using structure-from-motion (SfM) techniques. Subsequently, for each triangle in the 3D model, the optimal texture is selected by taking into consideration local image scale, object incident angle, image viewing angle as well as occlusions. Afterwards, the selected textures can be further corrected using thermal radiant characteristics. Finally, the Gauss filter outperforms the voted texture strategy at the seams smoothing and thus for instance helping to reduce the false alarm rate in façade thermal leakages detection. Our approach is evaluated on a building row façade located at Dresden, Germany.

  17. Low-Level, Measured Response of Los Alamos National Laboratories TA 16 - Building 411 and TA 8 - Building 23 to Direct Flash Attachment of Lightning

    International Nuclear Information System (INIS)

    Dinallo, Michael A.; Holmes, Parris; Merewether, Kimball O.; Morris, Marvin E.

    1999-01-01

    On September 24, 25, 28, and 29, 1998 and on October 19 and 23, 1998, transfer impedance measurements were made on Los Alamos National Laboratories TA 16 - Building 411 and TA 8-- Building 23 to characterize their interior open-circuit voltage response to a direct lightning flash attachment to the structures. The theory, history, measurement methods and equipment, and specific measured results are detailed. The measured results demonstrate that if the remaining metallic penetrations are bonded, then the rebar of the two structures is sufficiently well connected to form a Faraday cage that reduces the maximum open-circuit voltage inside the structure to a sufficiently low level that the required standoff distance to prevent arcing to explosive assemblies is 6.8 inches for TA 16 - Building 411 and is 11.5 inches for TA 8 - Building 23

  18. Some clinical and laboratory parameters of hemorrhagic fever with renal failure syndrome against the background correction of hyperhomocysteinemia

    Directory of Open Access Journals (Sweden)

    G. R. Syrtlanova

    2013-01-01

    Full Text Available The aim of the research was to curry out correction of hyperhomocysteinemia in patients with hemorrhagic fever with renal failure syndrome (HFRS and evaluate some clinical and laboratory parameters. The results of examining 91 men patients with HFRS at the age of 18 till 50 years old are presented. The vitamin complex «Angiovit» was used for hyperhomocysteinemia correction. The correction of hyperhomocysteinemia using the vitamin complex in all the three considered forms (mid, severs, complicated there are statistically significant decreases of homocysteine, the duration of oliguric stage and the concentration of creatinine in oliguric and diuretic stages in patients with HFRS compared with the group of patients having the generally basically therapy.

  19. Derived concentration guideline levels for Argonne National Laboratory's building 310 area.

    Energy Technology Data Exchange (ETDEWEB)

    Kamboj, S., Dr.; Yu, C ., Dr. (Environmental Science Division)

    2011-08-12

    The derived concentration guideline level (DCGL) is the allowable residual radionuclide concentration that can remain in soil after remediation of the site without radiological restrictions on the use of the site. It is sometimes called the single radionuclide soil guideline or the soil cleanup criteria. This report documents the methodology, scenarios, and parameters used in the analysis to support establishing radionuclide DCGLs for Argonne National Laboratory's Building 310 area.

  20. Final Status Survey Report for Corrective Action Unit 117 - Pluto Disassembly Facility, Building 2201, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    Gwin, Jeremy; Frenette, Douglas

    2010-01-01

    This document contains the process knowledge, radiological data and subsequent statistical methodology and analysis to support approval for the radiological release of Corrective Action Unit (CAU) 117 - Pluto Disassembly Facility, Building 2201 located in Area 26 of the Nevada National Security Site (NNSS). Preparations for release of the building began in 2009 and followed the methodology described in the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). MARSSIM is the DOE approved process for release of Real Property (buildings and landmasses) to a set of established criteria or authorized limits. The pre-approved authorized limits for surface contamination values and corresponding assumptions were established by DOE O 5400.5. The release criteria coincide with the acceptance criteria of the U10C landfill permit. The U10C landfill is the proposed location to dispose of the radiologically non-impacted, or ''clean,'' building rubble following demolition. However, other disposition options that include the building and/or waste remaining at the NNSS may be considered providing that the same release limits apply. The Final Status Survey was designed following MARSSIM guidance by reviewing historical documentation and radiological survey data. Following this review a formal radiological characterization survey was performed in two phases. The characterization revealed multiple areas of residual radioactivity above the release criteria. These locations were remediated (decontaminated) and then the surface activity was verified to be less than the release criteria. Once remediation efforts had been successfully completed, a Final Status Survey Plan (10-015, ''Final Status Survey Plan for Corrective Action Unit 117 - Pluto Disassembly Facility, Building 2201'') was developed and implemented to complete the final step in the MARSSIM process, the Final Status Survey. The Final Status Survey Plan consisted of categorizing each individual room into one

  1. BubbleZERO—Design, Construction and Operation of a Transportable Research Laboratory for Low Exergy Building System Evaluation in the Tropics

    Directory of Open Access Journals (Sweden)

    Arno Schlueter

    2013-09-01

    Full Text Available We present the design, construction and operation of a novel building systems laboratory, the BubbleZERO—Zero Emission Research Operation. Our objective was to design a space to evaluate the performance of Swiss-developed low exergy building systems in the tropical climate of Singapore using an integrated design approach. The method we employed for evaluation in the tropics was to design and build a test bed out of the shipping containers that transported the prototype low exergy systems from Switzerland to Singapore. This approach resulted in a novel laboratory environment containing radiant cooling panels and decentralized air supply, along with a self-shading, inflated “bubble” skin, experimental low emissivity (LowE glazing, LED lighting, wireless sensors and distributed control. The laboratory evaluates and demonstrates for the first time in Singapore an integrated high-temperature cooling system with separate demand-controlled ventilation adapted for the tropics. It is a functional lab testing system in real tropical conditions. As such, the results showing the ability to mitigate the risk of condensation by maintaining a dew point below 18 °C by the separate decentralized ventilation are significant and necessary for potential future implementation in buildings. In addition, the control system provides new proof of concept for distributed wireless sensors and control for reliable automation of the systems. These key results are presented along with the integrated design process and real-life tropical operation of the laboratory.

  2. Los Alamos Scientific Laboratory building cost index

    International Nuclear Information System (INIS)

    Lemon, G.D.; Morris, D.W.; McConnell, P.H.

    1977-11-01

    The Controller's budget request for FY-1979 established guidance for escalation rates at 6 to 8 percent for construction projects beyond FY-1976. The Los Alamos Scientific Laboratory (LASL) has chosen to use an annual construction escalation rate of 10 percent. Results of this study should contribute toward the establishment of realistic construction cost estimate totals and estimates of annual construction funding requirements. Many methods were used to arrive at the LASL escalation rate recommendation. First, a computer program was developed which greatly expanded the number of materials previously analyzed. The program calculated the 1970 to 76 weighted averages for labor, materials, and equipment for the base line project. It also plotted graphs for each category and composite indexes for labor and material/equipment. Second, estimated increases for 1977 were obtained from several sources. The Zia Company provided labor cost estimates. Projected increases for material and equipment were obtained through conversations with vendors and analysis of trade publications. Third, economic forecast reports and the Wall Street Journal were used for source material, narrative, and forecast support. Finally, we compared LASL Building Cost Index with the effects of escalation associated with three recently developed projects at LASL

  3. Los Alamos Scientific Laboratory building cost index

    Energy Technology Data Exchange (ETDEWEB)

    Lemon, G.D.; Morris, D.W.; McConnell, P.H.

    1977-11-01

    The Controller's budget request for FY-1979 established guidance for escalation rates at 6 to 8 percent for construction projects beyond FY-1976. The Los Alamos Scientific Laboratory (LASL) has chosen to use an annual construction escalation rate of 10 percent. Results of this study should contribute toward the establishment of realistic construction cost estimate totals and estimates of annual construction funding requirements. Many methods were used to arrive at the LASL escalation rate recommendation. First, a computer program was developed which greatly expanded the number of materials previously analyzed. The program calculated the 1970 to 76 weighted averages for labor, materials, and equipment for the base line project. It also plotted graphs for each category and composite indexes for labor and material/equipment. Second, estimated increases for 1977 were obtained from several sources. The Zia Company provided labor cost estimates. Projected increases for material and equipment were obtained through conversations with vendors and analysis of trade publications. Third, economic forecast reports and the Wall Street Journal were used for source material, narrative, and forecast support. Finally, we compared LASL Building Cost Index with the effects of escalation associated with three recently developed projects at LASL.

  4. Comprehensive resurvey program to prevent radiological incidents at a national laboratory

    International Nuclear Information System (INIS)

    Lipton, W.V.; Hunckler, C.A.

    1978-01-01

    A comprehensive resurvey program in a general purpose research building at Argonne National Laboratory is being implemented. The program was designed to prevent radiological incidents by increasing the awareness of Health Physics personnel of radiological hazards, initiating corrective actions, and providing information for improving routine survey schedules, and for establishing manpower requirements. The following aspects of the program are described: scheduling, surveys, records, follow-up, and statistics

  5. Monte Carlo correction factors for a Farmer 0.6 cm3 ion chamber dose measurement in the build-up region of the 6 MV clinical beam

    International Nuclear Information System (INIS)

    Pena, J; Sanchez-Doblado, F; Capote, R; Terron, J A; Gomez, F

    2006-01-01

    Reference dosimetry of photon fields is a well-established subject and currently available protocols (such as the IAEA TRS-398 and AAPM TG-51) provide methods for converting the ionization chamber (IC) reading into dose to water, provided reference conditions of charged particle equilibrium (CPE) are fulfilled. But these protocols cannot deal with the build-up region, where the lack of CPE limits the applicability of the cavity theorems and so the chamber correction factors become depth dependent. By explicitly including the IC geometry in the Monte Carlo simulations, depth-dependent dose correction factors are calculated for a PTW 30001 0.6 cm 3 ion chamber in the build-up region of the 6 MV photon beam. The corrected percentage depth dose (PDD) agrees within 2% with that measured using the NACP 02 plane-parallel ion chamber in the build-up region at depths greater than 0.4 cm, where the Farmer chamber wall reaches the phantom surface

  6. Final Environmental Impact Statement for the Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    2003-01-01

    NNSA, an agency within DOE, proposes to replace the Chemistry and Metallurgy Research (CMR) Building at Los Alamos National Laboratory (LANL). The CMRR EIS examines the potential environmental impacts associated with the Proposed Action of consolidating and relocating the mission-critical CMR capabilities from a degraded building to a new modern building(s). The existing CMR Building, constructed in the early 1950s, houses most of LANL's analytical chemistry and materials characterization AC and MC capabilities. Other capabilities at the CMR Building include actinide processing, waste characterization, and nondestructive analysis that support a variety of NNSA and DOE nuclear materials management programs. In 1992, DOE initiated planning and implementation of CMR Building upgrades to address specific safety, reliability, consolidation, and security and safeguards issues. Later, in 1997 and 1998, a series of operational, safety, and seismic issues surfaced regarding the long-term viability of the CMR Building. Because of these issues, DOE determined that the extensive upgrades originally planned would be much more expensive and time consuming and of only marginal effectiveness. As a result, DOE decided to perform only the upgrades necessary to ensure the safe and reliable operation of the CMR Building through 2010 and to seek an alternative path for long-term reliability. The CMRR EIS evaluates the potential direct, indirect, and cumulative environmental impacts associated with the Proposed Action. The Proposed Action is to replace the CMR Building. The Preferred Alternative is to construct a new CMRR Facility at Technical Area (TA) 55, consisting of two or three buildings. One of the new buildings would provide space for administrative offices and support functions. The other building(s) would provide secure laboratory spaces for research and analytical support activities. The buildings would be expected to operate for a minimum of 50 years. Tunnels could be

  7. Low-level waste drum staging building at Weapons Engineering Tritium Facility, TA-16, Los Alamos National Laboratory, Los Alamos, New Mexico. Environmental Assessment

    International Nuclear Information System (INIS)

    1994-08-01

    The proposed action is to place a 3 meter (m) by 4.5 m (10 ft x 15 ft) prefabricated storage building (transportainer) adjacent to the existing Weapons Engineering Tritium Facility (WETF) at Technical Area (TA-) 16, Los Alamos National Laboratory (LANL), and to use the building as a staging site for sealed 55 galllon drums of noncompactible waste contaminated with low levels of tritium (LLW). Up to eight drums of waste would be accumulated before the waste is moved by LANL Waste Management personnel to the existing on-site LLW disposal area at TA-54. The drum staging building would be placed on a bermed asphalt pad, near other existing accumulation structures for office trash and compactible LLW. The no-action alternative is to continue storing drums of LLW in the WETF laboratories where they occupy valuable work space, hamper movement of personnel and equipment, and require waste management personnel to enter those laboratories in order to remove filled drums. No new waste would be generated by implementing the proposed action; no changes or increases in WETF operations or waste production rate are anticipated as a result of staging drums of LLW outside the main laboratory building. The site for the LLW drum staging building would not impact any sensitive areas. Tritium emissions from the drums of LLW were included within the source term for normal operations at the WETF; the cumulative impacts would not be increased

  8. Confirmatory radiological survey of the BORAX-V turbine building Idaho National Engineering Laboratory, Idaho Falls, Idaho

    International Nuclear Information System (INIS)

    Stevens, G.H.; Coleman, R.L.; Jensen, M.K.; Pierce, G.A.; Egidi, P.V.; Mather, S.K.

    1993-01-01

    An independent assessment of the remediation of the BORAX-V (Boiling Water Reactor Experiment) turbine building at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho, was accomplished by the Oak Ridge National Laboratory Pollutant Assessments Group (ORNL/PAG). The purpose of the assessment was to confirm the site's compliance with applicable Department of Energy guidelines. The assessment included reviews of both the decontamination and decommissioning Plan and data provided from the pre- and post-remedial action surveys and an independent verification survey of the facility. The independent verification survey included determination of background exposure rates and soil concentrations, beta-gamma and gamma radiation scans, smears for detection of removable contamination, and direct measurements for alpha and beta-gamma radiation activity on the basement and mezzanine floors and the building's interior and exterior walls. Soil samples were taken, and beta-gamma and gamma radiation exposure rates were measured on areas adjacent to the building. Results of measurements on building surfaces at this facility were within established contamination guidelines except for elevated beta-gamma radiation levels located on three isolated areas of the basement floor. Following remediation of these areas, ORNL/PAG reviewed the remedial action contractor's report and agreed that remediation was effective in removing the source of the elevated direct radiation. Results of all independent soil analyses for 60 Co were below the detection limit. The highest 137 Cs analysis result was 4.6 pCi/g; this value is below the INEL site-specific guideline of 10 pCi/g

  9. Glass Formulation and Fabrication Laboratory, Building 864, Hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Banda, Z.; Wood, C.L.

    1995-08-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Glass Formulation and Fabrication Laboratory, Building 864. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 threshold is 96 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

  10. Problems Related to the Siting of the Laboratory Building for Civil Engineering Department at the University of Warmia and Mazury in Olsztyn, Poland

    Science.gov (United States)

    Zagroba, Marek

    2016-10-01

    This paper deals with the conditions underlying and the problems arising from the siting of a building with specialist laboratories in a developed part of the university campus in Olsztyn, Poland. The topography of the terrain and the need to house civil engineering laboratories in the planned building had an immense impact on the shape of the building and consequently on its foundations, whose dimensions responded to the ground conditions and the specification of various loads they would have to support, including the equipment for the laboratories. The siting of a building as a step in the construction process entails several problems, which are first taken into consideration at the stage of making preliminary concept plans and are subsequently verified while working on the final construction plan. The required information included geotechnical documentation, survey of the ground conditions and the data regarding the predicted loads on the building, necessary to select the right type of foundations. All these problems grow in importance when dealing with such unique buildings like the discussed example of a laboratory building for the Civil Engineering Department, built on a site within a conservation zone on the campus of the University of Warmia and Mazury in Olsztyn, Poland. The specific character of the building and the specialist equipment with which it was to be furnished (a resistance testing machine, a 17-meter-long wave flume) necessitated a series of analyses prior to the siting of the building and selecting suitable foundations. In turn, the fact that the new building was to be erected in the conservation zone meant that collaboration with the Heritage Conservation Office had to be undertaken at the stage of making the plan and continued during the construction works. The Heritage Officer's recommendations concerning the building's shape, divisions, dimensions, materials used, etc., created a situation where the team of designers and architects had to

  11. Postirradiation Testing Laboratory (327 Building)

    International Nuclear Information System (INIS)

    Kammenzind, D.E.

    1997-01-01

    A Standards/Requirements Identification Document (S/RID) is the total list of the Environment, Safety and Health (ES and H) requirements to be implemented by a site, facility, or activity. These requirements are appropriate to the life cycle phase to achieve an adequate level of protection for worker and public health and safety, and the environment during design, construction, operation, decontamination and decommissioning, and environmental restoration. S/RlDs are living documents, to be revised appropriately based on change in the site's or facility's mission or configuration, a change in the facility's life cycle phase, or a change to the applicable standards/requirements. S/RIDs encompass health and safety, environmental, and safety related safeguards and security (S and S) standards/requirements related to the functional areas listed in the US Department of Energy (DOE) Environment, Safety and Health Configuration Guide. The Fluor Daniel Hanford (FDH) Contract S/RID contains standards/requirements, applicable to FDH and FDH subcontractors, necessary for safe operation of Project Hanford Management Contract (PHMC) facilities, that are not the direct responsibility of the facility manager (e.g., a site-wide fire department). Facility S/RIDs contain standards/requirements applicable to a specific facility that are the direct responsibility of the facility manager. S/RlDs are prepared by those responsible for managing the operation of facilities or the conduct of activities that present a potential threat to the health and safety of workers, public, or the environment, including: Hazard Category 1 and 2 nuclear facilities and activities, as defined in DOE 5480.23. Selected Hazard Category 3 nuclear, and Low Hazard non-nuclear facilities and activities, as agreed upon by RL. The Postirradiation Testing Laboratory (PTL) S/RID contains standards/ requirements that are necessary for safe operation of the PTL facility, and other building/areas that are the direct

  12. Postirradiation Testing Laboratory (327 Building)

    Energy Technology Data Exchange (ETDEWEB)

    Kammenzind, D.E.

    1997-05-28

    A Standards/Requirements Identification Document (S/RID) is the total list of the Environment, Safety and Health (ES and H) requirements to be implemented by a site, facility, or activity. These requirements are appropriate to the life cycle phase to achieve an adequate level of protection for worker and public health and safety, and the environment during design, construction, operation, decontamination and decommissioning, and environmental restoration. S/RlDs are living documents, to be revised appropriately based on change in the site`s or facility`s mission or configuration, a change in the facility`s life cycle phase, or a change to the applicable standards/requirements. S/RIDs encompass health and safety, environmental, and safety related safeguards and security (S and S) standards/requirements related to the functional areas listed in the US Department of Energy (DOE) Environment, Safety and Health Configuration Guide. The Fluor Daniel Hanford (FDH) Contract S/RID contains standards/requirements, applicable to FDH and FDH subcontractors, necessary for safe operation of Project Hanford Management Contract (PHMC) facilities, that are not the direct responsibility of the facility manager (e.g., a site-wide fire department). Facility S/RIDs contain standards/requirements applicable to a specific facility that are the direct responsibility of the facility manager. S/RlDs are prepared by those responsible for managing the operation of facilities or the conduct of activities that present a potential threat to the health and safety of workers, public, or the environment, including: Hazard Category 1 and 2 nuclear facilities and activities, as defined in DOE 5480.23. Selected Hazard Category 3 nuclear, and Low Hazard non-nuclear facilities and activities, as agreed upon by RL. The Postirradiation Testing Laboratory (PTL) S/RID contains standards/ requirements that are necessary for safe operation of the PTL facility, and other building/areas that are the direct

  13. Termination of the Special Metallurgical (SM) Building at Mound Laboratory: a final report

    International Nuclear Information System (INIS)

    Harris, W.R.; Kokenge, B.R.; Marsh, G.C.

    1976-01-01

    The report describes and highlights the more important factors associated with the termination of the Special Metallurgical (SM) Building at Mound Laboratory. As a result, a written record of the more important techniques and procedures is now available for reference by others involved in similar termination efforts. Included in this report is a description of the organizational units that were used in this effort along with a description of their responsibilities. A general description of the SM Building and a discussion of the more relevant procedures and equipment that were used are also presented. In addition, pertinent Health Physics information, such as personnel exposure, final wipe levels in the terminated facility, and assays of the structure, are provided. Based on the experience gained from this project, recommendations were made regarding the design of future radioactive material handling facilities so that when they are ultimately terminated the effort can be accomplished more efficiently

  14. Technology of making healthy and correction of build of men of the first mature age

    Directory of Open Access Journals (Sweden)

    Stroganov S.V.

    2010-07-01

    Full Text Available Directions of search of ways of making healthy of population of mature age are considered. In an experiment 30 men took part 21-35 years. The men of experimental group conducted training on the basis of 4th of the monthly program of correction and making healthy. There was statistically meaningful divergence in the capacity of men of experimental group by comparison to the men of control group. Also in the subjective estimation of own build, feel for a day, at the end of workweek and after training. Employment on the developed technology induced the men of experimental group a greater measure to give up harmful habits.

  15. Fabrication and laboratory-based performance testing of a building-integrated photovoltaic-thermal roofing panel

    International Nuclear Information System (INIS)

    Chen, Fangliang; Yin, Huiming

    2016-01-01

    Highlights: • A BIPVT solar panel is designed and fabricated for energy efficient buildings. • A high-speed manufacture method is developed to produce the functionally graded materials. • Laboratory tests demonstrate BIPVT’s energy efficiency improvement and innovations. • The PV efficiency is enhanced ∼24% through temperature control of the panel by water flow. • The combined electric and thermal efficiency reaches >75% of solar irradiation. - Abstract: A building integrated photovoltaic-thermal (BIPVT) multifunctional roofing panel has been developed in this study to harvest solar energy in the form of PV electricity as well as heat energy through the collection of warm water. As a key component of the multifunctional building envelope, an aluminum/high-density polyethylene (HDPE) functionally graded material (FGM) panel embedded with aluminum water tubes has been fabricated through the vibration-sedimentation approach. The FGM layer gradually transits material phases from well-conductive side (with aluminum dominated) to another highly insulated side (with HDPE). The heat in the PV cells can be easily transferred into the conductive side of the FGM and then collected by the water flow in the embedded tubes. Therefore, the operational temperature of the PV cells can be significantly lowered down, which recovers the PV efficiency in hot weather. In this way, the developed BIPVT panel is able to efficiently harvest solar energy in the form of both PV electricity and heat. The performance of a prototype BIPVT panel has been evaluated in terms of its thermal efficiency via warm water collection and PV efficiency via the output electricity. The laboratory test results demonstrate that significant energy conversion efficiency improvement can be achieved for both electricity generation and heat collection by the presented BIPVT roofing system. Overall, the performance indicates a very promising prospective of the new BIPVT multifunctional roofing panel.

  16. The basic design and requirement for plant tissue culture laboratory in MINT

    International Nuclear Information System (INIS)

    Azraf Azman; Rosli Darmawan; Rusli Ibrahim; Mohd Nazir Basiran; Azhar Mohamad; Mohamed Najli Mohamed Yasin; Shuhaimi Shamsuddin

    2005-01-01

    The production of multiple species plantlets involves a relatively complex process and it is a highly specialized operation. Tissue culture technology is rapidly becoming a commercialized method for propagating new cultivars, rare species and difficult-to-propagate plant. Not only are skills and knowledge essential but the laboratory itself also plays an important role to ensure the successful growth of the plantlets. To produce quality plantlets, plant tissue culture laboratories should fulfill the basic requirements. The laboratory should have proper building and layout which comprise of media preparation and washing room, sterilization or autoclave room, transfer room and culture or growth room. The scope of this paper is to compare these fundamental requirements with the plant tissue culture laboratory in MINT. All the basic needs and differences will be discussed and the proposal for corrective actions will be presented. (Author)

  17. DECOMMISSIONING THE BROOKHAVEN NATIONAL LABORATORY BUILDING 830 GAMMA IRRADIATION FACILITY.

    Energy Technology Data Exchange (ETDEWEB)

    BOWERMAN, B.S.; SULLIVAN, P.T.

    2001-08-13

    The Building 830 Gamma Irradiation Facility (GIF) at Brookhaven National Laboratory (BNL) was decommissioned because its design was not in compliance with current hazardous tank standards and its cobalt-60 sources were approaching the end of their useful life. The facility contained 354 stainless steel encapsulated cobalt-60 sources in a pool, which provided shielding. Total cobalt-60 inventory amounted to 24,000 Curies when the sources were shipped for disposal. The decommissioning project included packaging, transport, and disposal of the sources and dismantling and disposing of all other equipment associated with the facility. Worker exposure was a major concern in planning for the packaging and disposal of the sources. These activities were planned carefully according to ALARA (As Low As Reasonably Achievable) principles. As a result, the actual occupational exposures experienced during the work were within the planned levels. Disposal of the pool water required addressing environmental concerns, since the planned method was to discharge the slightly contaminated water to the BNL sewage treatment plant. After the BNL evaluation procedure for discharge to the sewage treatment plant was revised and reviewed by regulators and BNL's Community Advisory Council, the pool water was discharged to the Building 830 sanitary system. Because the sources were sealed and the pool water contamination levels were low, most of the remaining equipment was not contaminated; therefore disposal was straightforward, as scrap metal and construction debris.

  18. Historic Context and Building Assessments for the Lawrence Livermore National Laboratory Built Environment

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, R. A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sullivan, M. A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2007-09-14

    This document was prepared to support u.s. Department of Energy / National Nuclear Security Agency (DOE/NNSA) compliance with Sections 106 and 110 of the National Historic Preservation Act (NHPA). Lawrence Livermore National Laboratory (LLNL) is a DOE/NNSA laboratory and is engaged in determining the historic status of its properties at both its main site in Livermore, California, and Site 300, its test site located eleven miles from the main site. LLNL contracted with the authors via Sandia National Laboratories (SNL) to prepare a historic context statement for properties at both sites and to provide assessments of those properties of potential historic interest. The report contains an extensive historic context statement and the assessments of individual properties and groups of properties determined, via criteria established in the context statement, to be of potential interest. The historic context statement addresses the four contexts within which LLNL falls: Local History, World War II History (WWII), Cold War History, and Post-Cold War History. Appropriate historic preservation themes relevant to LLNL's history are delineated within each context. In addition, thresholds are identified for historic significance within each of the contexts based on the explication and understanding of the Secretary of the Interior's Guidelines for determining eligibility for the National Register of Historic Places. The report identifies specific research areas and events in LLNL's history that are of interest and the portions of the built environment in which they occurred. Based on that discussion, properties of potential interest are identified and assessments of them are provided. Twenty individual buildings and three areas of potential historic interest were assessed. The final recommendation is that, of these, LLNL has five individual historic buildings, two sets of historic objects, and two historic districts eligible for the National Register. All are

  19. Chemical surety material decontamination and decommissioning of Los Alamos National Laboratory Chemical Surety Material Laboratory area TA-3, building SM-29, room 4009

    International Nuclear Information System (INIS)

    Moore, T.E.; Smith, J.M.

    1994-04-01

    From 1982 through 1987, Los Alamos National Laboratory (LANL) performed surety laboratory operations for the U.S. Army Medical Research and Development Command (MRDC). Room 4009 in building SM-29, TA-3, was used as the laboratory for work with the following chemical surety material (CSM) agents: sarin (GB), soman (GD), lewisite (L), and distilled mustard (HD) radio-labelled with H 3 or C 14 . The work was confined to three CSM-certified fume hoods, located in room 4009 (see diagram in Appendix C). The laboratory ceased all active operations during the late 1986 and early 1987 period. From 1987 until 1993 the laboratory was secured and the ventilation system continued to operate. During late 1992, the decision was made to utilize this laboratory space for other operations, thus a decision was made to dismantle and reconfigure this room. LANL sub-contracted Battelle Memorial Institute (BMI) to draw upon the CSM experience of the technical staff from the Hazardous Materials Research Facility (HMRF) to assist in developing a decontamination and decommissioning plan. BMI was subcontracted to devise a CSM safety training course, and a sampling and air monitoring plan for CSM material to ensure personnel safety during all disassembly operations. LANL subcontracted Johnson Controls personnel to perform all disassembly operations. Beginning in early 1993 BMI personnel from the HMRF visited the laboratory to develop both the safety plan and the sample and air monitoring plan. Execution of that plan began in September 1993 and was completed in January 1994

  20. Chemical surety material decontamination and decommissioning of Los Alamos National Laboratory Chemical Surety Material Laboratory area TA-3, building SM-29, room 4009

    Energy Technology Data Exchange (ETDEWEB)

    Moore, T.E.; Smith, J.M.

    1994-04-01

    From 1982 through 1987, Los Alamos National Laboratory (LANL) performed surety laboratory operations for the U.S. Army Medical Research and Development Command (MRDC). Room 4009 in building SM-29, TA-3, was used as the laboratory for work with the following chemical surety material (CSM) agents: sarin (GB), soman (GD), lewisite (L), and distilled mustard (HD) radio-labelled with H{sup 3} or C{sup 14}. The work was confined to three CSM-certified fume hoods, located in room 4009 (see diagram in Appendix C). The laboratory ceased all active operations during the late 1986 and early 1987 period. From 1987 until 1993 the laboratory was secured and the ventilation system continued to operate. During late 1992, the decision was made to utilize this laboratory space for other operations, thus a decision was made to dismantle and reconfigure this room. LANL sub-contracted Battelle Memorial Institute (BMI) to draw upon the CSM experience of the technical staff from the Hazardous Materials Research Facility (HMRF) to assist in developing a decontamination and decommissioning plan. BMI was subcontracted to devise a CSM safety training course, and a sampling and air monitoring plan for CSM material to ensure personnel safety during all disassembly operations. LANL subcontracted Johnson Controls personnel to perform all disassembly operations. Beginning in early 1993 BMI personnel from the HMRF visited the laboratory to develop both the safety plan and the sample and air monitoring plan. Execution of that plan began in September 1993 and was completed in January 1994.

  1. Corrective Action Investigation Plan for Corrective Action Unit 406: Area 3 Building 03-74 and Building 03-58 Under ground Discharge Points and Corrective Action Unit 429: Area 3 Building 03-55 and Area 9 Building 09-52 Underground Discharge Points, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV

    1999-05-20

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Underground Discharge Points (UDPs) included in both CAU 406 and CAU 429. The CAUs are located in Area 3 and Area 9 of the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada.

  2. Plant and equipment division laboratory services series: a ten-year building-maintenance cost history

    International Nuclear Information System (INIS)

    Keesee, H.F.

    1976-09-01

    Maintaining a multifacility national laboratory in a safe, reliable condition is a complex management responsibility in terms of budgets, costs, and proper utilization of personnel and material resources. Increasing wage rates and material costs, combined with decreased budgets and aging facilities, create unusual challenges to maintenance managers. A ten-year history of building-maintenance costs, a brief description of the maintenance program, analyses of personnel requirements, cost increase indexes, unit costs, cost controls, procedures, and a brief discussion of alterations and improvements are presented

  3. Laboratory capacity building for the International Health Regulations (IHR[2005]) in resource-poor countries: the experience of the African Field Epidemiology Network (AFENET).

    Science.gov (United States)

    Masanza, Monica Musenero; Nqobile, Ndlovu; Mukanga, David; Gitta, Sheba Nakacubo

    2010-12-03

    Laboratory is one of the core capacities that countries must develop for the implementation of the International Health Regulations (IHR[2005]) since laboratory services play a major role in all the key processes of detection, assessment, response, notification, and monitoring of events. While developed countries easily adapt their well-organized routine laboratory services, resource-limited countries need considerable capacity building as many gaps still exist. In this paper, we discuss some of the efforts made by the African Field Epidemiology Network (AFENET) in supporting laboratory capacity development in the Africa region. The efforts range from promoting graduate level training programs to building advanced technical, managerial and leadership skills to in-service short course training for peripheral laboratory staff. A number of specific projects focus on external quality assurance, basic laboratory information systems, strengthening laboratory management towards accreditation, equipment calibration, harmonization of training materials, networking and provision of pre-packaged laboratory kits to support outbreak investigation. Available evidence indicates a positive effect of these efforts on laboratory capacity in the region. However, many opportunities exist, especially to support the roll-out of these projects as well as attending to some additional critical areas such as biosafety and biosecuity. We conclude that AFENET's approach of strengthening national and sub-national systems provide a model that could be adopted in resource-limited settings such as sub-Saharan Africa.

  4. Decommissioning of the MTR-605 process water building at the Idaho National Engineering Laboratory. Final report

    International Nuclear Information System (INIS)

    Browder, J.H.; Wills, E.L.

    1985-01-01

    Decontamination and decommissioning (D and D) of the unused radioactively contaminated portions of the MTR-605 building at the Test Reactor Area of the Idaho National Engineering Laboratory has been completed; this final report describes the D and D project. The building is a two-story concrete structure that was used to house piping systems to channel and control coolant water flow for the Materials Testing Reactor (MTR), a 40 MW (thermal) light water test reactor that was operated from 1952 until 1970 and then deactivated. D and D project objectives were to reduce potential environmental and radioactive contamination hazards to levels as low a reasonably achievable. Primary tasks of the D and D project were: to remove contaminated piping (about 400 linear ft of 36- and 30-in.-dia stainless steel pipe) and valves from the primary coolant pipe tunnels, to remove a primary coolant pump and piping, and to remove the three 8-ft-dia by 25-ft-long evaporators from the building second floor

  5. M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report, First and Second Quarters 1999, Volume III

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during the first and second quarters 1999

  6. PHYSICAL AND MECHANICAL CHARACTERISTICS OF BUILDING MATERIALS OF HISTORIC BUILDINGS

    Directory of Open Access Journals (Sweden)

    Jiří Witzany

    2017-12-01

    Full Text Available The article presents partial results of laboratory research into physical and mechanical characteristics of materials most commonly used as walling units in masonry structures of historic and heritage buildings. Core boreholes and specimens for the laboratory research of selected characteristics were sampled from accessible places of historic buildings, which had not been restored or reconstructed. The results of the research brought new knowledge about the unreliability (variance of the properties of historical, mainly natural building materials, and, at the same time, pointed out the need for further research and extension of knowledge necessary for the assessment of residual physical and mechanical characteristics of historic masonry structures.

  7. Site characterization report for Building 3515 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1994-08-01

    Building 3515 at Oak Ridge National Laboratory (ORNL), also known as the Fission Product Pilot Plant, is a surplus facility in the main plant area to the east of the South Tank Farm slated for decontamination and decommissioning (D ampersand D). The building consists of two concrete cells (north and south) on a concrete pad and was used to extract radioisotopes of ruthenium, strontium, cesium, cerium, rhenium and other elements from aqueous fission product waste. Site characterization activities of the building were initiated. The objective of the site characterization was to provide information necessary for engineering evaluation and planning of D ampersand D approaches, planning for personal protection of D ampersand D workers, and estimating waste volumes from D ampersand D activities. This site characterization report documents the investigation with a site description, a summary of characterization methods, chemical and radiological sample analysis results, field measurement results, and waste volume estimates

  8. Building and Benefiting from Member State Laboratory Capacities

    International Nuclear Information System (INIS)

    2014-01-01

    The Department of Nuclear Sciences and Applications implement a number of activities that are designed to enhance and capitalize upon the capacities of Member States’ laboratories worldwide. The Nuclear Sciences and Applications (NA) laboratories strengthen Member States’ analytical capacities through activities such as proficiency tests and inter-laboratory comparisons, and share the capacities of Member States’ laboratories with other Member States through the coordination of relevant networks and participation in the IAEA Collaborating Centre scheme. An example of these activities is the collaborative work carried out by the Terrestrial Environment Laboratory (TEL). The TEL cooperates with the IAEA Environment Laboratories in Monaco to distribute 92 types of reference materials for characterizing radionuclides, stable isotopes, trace elements or organic contaminants. These materials serve as international standards for establishing and evaluating the reliability and accuracy of analytical measurements. This collaborative work between NA laboratories, Member States and laboratories around the globe contribute to the IAEA’s mandate of fostering scientific and technical exchanges for the peaceful use of nuclear science and technology throughout the world

  9. Decontamination and decommissioning of the SPERT-I Reactor Building at the Idaho National Engineering Laboratory. Final report

    International Nuclear Information System (INIS)

    Dolenc, M.R.

    1986-02-01

    This final report documents the decontamination and decommissioning of the SPERT-I Reactor Building. This 20- by 40-ft galvanized steel building was dismantled; and the resultant contaminated sludge, liquid, and carbon steel were disposed of at the Radioactive Waste Management Complex of the Idaho National Engineering Laboratory. This report presents the results of the characterization, decision analysis, planning, and decommissioning of the facility. The total cost of these activities was $139,500. Of this total, $103,500 was required for decommissioning operations. (This latter figure represents a 20% savings over the estimated costs generated during the planning effort.) The objectives of decommissioning this facility were to stabilize the seepage pit area and remove the reactor building. The D and D work was divided into two parts; the seepage pit was decommissioned in 1984, and the reactor building in 1985. The entire area was backfilled with radiologically clean soil, graded, and seeded. Two markers were installed to identify the locations of the pit and reactor building. The only isotopes found in either decommissioning operation were cesium-137 and uranium-235 in very low concentrations. Decommissioning operations of the reactor building were carried out during August 1985. The project generate 297 ft 3 of radioactive waste. No personnel radiation exposure above background was received by D and D workers

  10. Removal site evaluation report on Building 7602 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-09-01

    This removal site evaluation report for Building 7602 at Oak Ridge National Laboratory was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the facility pose a substantial risk to human health or the environment (i.e., a high probability of adverse effects) and whether remedial site evaluations or removal actions are, therefore, required. The scope of the project included (1) a search for, and review of, readily available historical records regarding operations and use of the facility (including hazardous substance usage and existing contamination); (2) interviews with facility personnel concerning current and past practices; and (3) a brief walk-through to visually inspect the facility and identify existing hazard areas requiring maintenance actions, removal actions, or remedial evaluation. The results of the removal site evaluation indicate that areas associated with Building 7602 pose no imminent hazards requiring maintenance actions. Adequate engineering and administrative controls are in place and enforced within the facility to ensure worker and environmental protection. Current actions that are being taken to prevent further release of contamination and ensure worker safety within Building 7602 are considered adequate until decontamination and decommissioning activities begin. Given the current status and condition of Building 7602, this removal site evaluation is considered complete and terminated

  11. BUILDING 341 Seismic Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Halle, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-15

    The Seismic Evaluation of Building 341 located at Lawrence Livermore National Laboratory in Livermore, California has been completed. The subject building consists of a main building, Increment 1, and two smaller additions; Increments 2 and 3.

  12. Site characterization report for Building 3506 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    Building 3506, also known as the Waste Evaporator Facility, is a surplus facility at Oak Ridge National Laboratory (ORNL) slated for decontamination and decommissioning (D&D). The building is located in the ORNL main plant area, to the west of the South Tank Farm and near the intersection of Central Avenue and Third Street. Characterization tasks consisted of three main activities: inspections, radiological measurements, and radiological and chemical sampling and analysis. Inspection reports document general facility conditions, as-built information, and specialized information such as structural evaluations. Radiological measurements define the quantity and distribution of radioactive contaminants; this information is used to calibrate a dose model of the facility and estimate the total activity, in curies, of each major radioactive isotope. The radiological information from sample analyses is used to refine the radiological model of the facility, and the radionuclide and hazardous chemical analyses are used for waste management planning. This report presents data from the field investigation and laboratory analyses in the form of a site description, as-built drawings, summary tables of radiological and chemical contaminant concentrations, and a waste volume estimate.

  13. Site characterization report for Building 3506 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1994-07-01

    Building 3506, also known as the Waste Evaporator Facility, is a surplus facility at Oak Ridge National Laboratory (ORNL) slated for decontamination and decommissioning (D ampersand D). The building is located in the ORNL main plant area, to the west of the South Tank Farm and near the intersection of Central Avenue and Third Street. Characterization tasks consisted of three main activities: inspections, radiological measurements, and radiological and chemical sampling and analysis. Inspection reports document general facility conditions, as-built information, and specialized information such as structural evaluations. Radiological measurements define the quantity and distribution of radioactive contaminants; this information is used to calibrate a dose model of the facility and estimate the total activity, in curies, of each major radioactive isotope. The radiological information from sample analyses is used to refine the radiological model of the facility, and the radionuclide and hazardous chemical analyses are used for waste management planning. This report presents data from the field investigation and laboratory analyses in the form of a site description, as-built drawings, summary tables of radiological and chemical contaminant concentrations, and a waste volume estimate

  14. [How do hospital clinical laboratories and laboratory testing companies cooperate and build reciprocal relations?].

    Science.gov (United States)

    Kawano, Seiji

    2014-12-01

    As the 2nd Joint Symposium of the Japanese Society of Laboratory Medicine and the Japanese Association of Laboratory Pathologists, the symposium on clinical test out-sourcing and branch laboratories was held at the 60th General Meeting of the Japanese Society of Laboratory Medicine on November 2nd, 2013 in Kobe. For the symposium, we conducted a questionnaire survey on the usage of clinical test out-sourcing and the introduction of branch laboratories to clinical laboratories of Japanese university hospitals, both private and public, between July 25th and August 20th, 2013. Seventy-two hospitals responded to the questionnaire survey, consisting of 41 public medical school hospitals and 31 private ones. According to the survey, the selection of each clinical test for out-sourcing was mainly determined by the capacities of hospital clinical laboratories and their equipment, as well as the profitability of each test. The main concerns of clinical laboratory members of university hospitals involved the continuity of measurement principles, traceability, and standardization of reference values for each test. They strongly requested the interchangeability and computerization of test data between laboratory testing companies. A branch laboratory was introduced to six hospitals, all of which were private medical college hospitals, out of 72 university hospitals, and eight of the other hospitals were open to its introduction. The merits and demerits of introducing a branch laboratory were also discussed. (Review).

  15. Pharmacia Building Q, Skokie, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    2002-12-01

    This case study was prepared as one in a series for the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new and retrofit laboratory buildings in both the public and the private sectors. The energy-efficient elements of the laboratory featured in this case study-Pharmacia Corporation's new Building Q in Skokie, Illinois-include sustainable design, light-filled interior spaces for daylighting, energy-efficient fume hoods and other equipment, occupancy sensors to reduce lighting loads, and spectrally selective glazing to allow more light and less heat into the building. Water-saving fixtures are used, as well. Building Q has been certified Gold (the second highest rating) through the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED) system.

  16. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    International Nuclear Information System (INIS)

    Wilcox, Brian; May, Doug; Howlett, Don; Bilinsky, Dennis

    2013-01-01

    Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and development associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m 2 . In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition

  17. Environmental assessment for the proposed construction and operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document is an Environmental Assessment (EA) for a proposed project to modify 14,900 square feet of an existing building (Building 64) at Lawrence Berkeley Laboratory (LBL) to operate as a Genome Sequencing Facility. This EA addresses the potential environmental impacts from the proposed modifications to Building 64 and operation of the Genome Sequencing Facility. The proposed action is to modify Building 64 to provide space and equipment allowing LBL to demonstrate that the Directed DNA Sequencing Strategy can be scaled up from the current level of 750,000 base pairs per year to a facility that produces over 6,000,000 base pairs per year, while still retaining its efficiency.

  18. Decommissioning the physics laboratory, building 777-10A, at the Savannah River Site (SRS)

    International Nuclear Information System (INIS)

    Musall, John C.; Cope, Jeff L.

    2008-01-01

    SRS recently completed a four year mission to decommission ∼250 excess facilities. As part of that effort, SRS decommissioned a 48,000 ft 2 laboratory that housed four low-power test reactors, formerly used by SRS to determine reactor physics. This paper describes and reviews the decommissioning, with a focus on component segmentation and handling (i.e. hazardous material removal, demolition, and waste handling). The paper is intended to be a resource for engineers, planners, and project managers, who face similar decommissioning challenges. Building 777-10A, located at the south end of SRS's A/M-Area, was built in 1953 and had a gross area of ∼48,000 ft 2 . Building 777-10A had two main areas: a west wing, which housed four experimental reactors and associated equipment; and an east wing, which housed laboratories, and shops, offices. The reactors were located in two separate areas: one area housed the Process Development Pile (PDP) reactor and the Lattice Test Reactor (LTR), while the second area housed the Standard Pile (SP) and the Sub-critical Experiment (SE) reactors. The west wing had five levels: three below and three above grade (floor elevations of -37', -28', -15', 0', +13'/+16' and +27' (roof elevation of +62')), while the east wing had two levels: one below and one above grade (floor elevations of -15' and 0' (roof elevation of +16')). Below-grade exterior walls were constructed of reinforced concrete, ∼1' thick. In general, above-grade exterior walls were steel frames covered by insulation and corrugated, asbestos-cement board. The two interior walls around the PDP/LTR were reinforced concrete ∼5' thick and ∼30' high, while the SP/SE reactors resided in a reinforced, concrete cell with 3.5'-6' thick walls/roof. All other interior walls were constructed of metal studs covered with either asbestos-cement or gypsum board. In general, the floors were constructed of reinforced concrete on cast-in-place concrete beams below-grade and concrete on

  19. Safety in the Chemical Laboratory: Safety in the Chemistry Laboratories: A Specific Program.

    Science.gov (United States)

    Corkern, Walter H.; Munchausen, Linda L.

    1983-01-01

    Describes a safety program adopted by Southeastern Louisiana University. Students are given detailed instructions on laboratory safety during the first laboratory period and a test which must be completely correct before they are allowed to return to the laboratory. Test questions, list of safety rules, and a laboratory accident report form are…

  20. Study for correction of neutron scattering in the calibration of the albedo individual monitor from the Neutron Laboratory (LN), IRD/CNEN-RJ, Brazil

    International Nuclear Information System (INIS)

    Freitas, B.M.; Silva, A.X. da

    2014-01-01

    The Instituto de Radioprotecao e Dosimetria (IRD) runs a neutron individual monitoring service with albedo type monitor and thermoluminescent detectors (TLD). Moreover the largest number of workers exposed to neutrons in Brazil is exposed to 241 Am-Be fields. Therefore a study of the response of albedo dosemeter due to neutron scattering from 241 Am-Be source is important for a proper calibration. In this work, it has been evaluated the influence of the scattering correction in two distances at the Low Scattering Laboratory of the Neutron Laboratory of the Brazilian National Laboratory (Lab. Nacional de Metrologia Brasileira de Radiacoes Ionizantes) in the calibration of that albedo dosemeter for a 241 Am-Be source. (author)

  1. T-branes and α{sup ′}-corrections

    Energy Technology Data Exchange (ETDEWEB)

    Marchesano, Fernando; Schwieger, Sebastian [Instituto de Física Teórica UAM-CSIC,Cantoblanco, 28049 Madrid (Spain)

    2016-11-21

    We study α’-corrections in multiple D7-brane configurations with non-commuting profiles for their transverse position fields. We focus on T-brane systems, crucial in F-theory GUT model building. There α{sup ′}-corrections modify the D-term piece of the BPS equations which, already at leading order, require a non-primitive Abelian worldvolume flux background. We find that α{sup ′}-corrections may either i) leave this flux background invariant, ii) modify the Abelian non-primitive flux profile, or iii) deform it to a non-Abelian profile. The last case typically occurs when primitive fluxes, a necessary ingredient to build 4d chiral models, are added to the system. We illustrate these three cases by solving the α{sup ′}-corrected D-term equations in explicit examples, and describe their appearance in more general T-brane backgrounds. Finally, we discuss implications of our findings for F-theory GUT local models.

  2. Preoperational test report, vent building ventilation system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  3. Corrective Action Plan for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Obi, C.M.

    2000-01-01

    The Area 25 Reactor Maintenance, Assembly, and Disassembly Decontamination Facility is identified in the Federal Facility Agreement and Consent Order (FFACO) as Corrective Action Unit (CAU) 254. CAU 254 is located in Area 25 of the Nevada Test Site and consists of a single Corrective Action Site CAS 25-23-06. CAU 254 will be closed, in accordance with the FFACO of 1996. CAU 254 was used primarily to perform radiological decontamination and consists of Building 3126, two outdoor decontamination pads, and surrounding soil within an existing perimeter fence. The site was used to decontaminate nuclear rocket test-car hardware and tooling from the early 1960s through the early 1970s, and to decontaminate a military tank in the early 1980s. The site characterization results indicate that, in places, the surficial soil and building materials exceed clean-up criteria for organic compounds, metals, and radionuclides. Closure activities are expected to generate waste streams consisting of nonhazardous construction waste. petroleum hydrocarbon waste, hazardous waste, low-level radioactive waste, and mixed waste. Some of the wastes exceed land disposal restriction limits and will require off-site treatment before disposal. The recommended corrective action was revised to Alternative 3- ''Unrestricted Release Decontamination, Verification Survey, and Dismantle Building 3126,'' in an addendum to the Correction Action Decision Document

  4. Analysis of environmental contamination resulting from catastrophic incidents: part 1. Building and sustaining capacity in laboratory networks.

    Science.gov (United States)

    Magnuson, Matthew; Ernst, Hiba; Griggs, John; Fitz-James, Schatzi; Mapp, Latisha; Mullins, Marissa; Nichols, Tonya; Shah, Sanjiv; Smith, Terry; Hedrick, Elizabeth

    2014-11-01

    Catastrophic incidents, such as natural disasters, terrorist attacks, and industrial accidents, can occur suddenly and have high impact. However, they often occur at such a low frequency and in unpredictable locations that planning for the management of the consequences of a catastrophe can be difficult. For those catastrophes that result in the release of contaminants, the ability to analyze environmental samples is critical and contributes to the resilience of affected communities. Analyses of environmental samples are needed to make appropriate decisions about the course of action to restore the area affected by the contamination. Environmental samples range from soil, water, and air to vegetation, building materials, and debris. In addition, processes used to decontaminate any of these matrices may also generate wastewater and other materials that require analyses to determine the best course for proper disposal. This paper summarizes activities and programs the United States Environmental Protection Agency (USEPA) has implemented to ensure capability and capacity for the analysis of contaminated environmental samples following catastrophic incidents. USEPA's focus has been on building capability for a wide variety of contaminant classes and on ensuring national laboratory capacity for potential surges in the numbers of samples that could quickly exhaust the resources of local communities. USEPA's efforts have been designed to ensure a strong and resilient laboratory infrastructure in the United States to support communities as they respond to contamination incidents of any magnitude. The efforts include not only addressing technical issues related to the best-available methods for chemical, biological, and radiological contaminants, but also include addressing the challenges of coordination and administration of an efficient and effective response. Laboratory networks designed for responding to large scale contamination incidents can be sustained by applying

  5. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-04-01

    This report describes background research for preparation of a plan for development of whole-building energy targets for new commercial buildings. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research development, and technology transfer activities with other interested organizations are actively pursued.

  6. Building and Rebuilding: The National Public Health Laboratory Systems and Services Before and After the Earthquake and Cholera Epidemic, Haiti, 2009-2015.

    Science.gov (United States)

    Jean Louis, Frantz; Buteau, Josiane; Boncy, Jacques; Anselme, Renette; Stanislas, Magalie; Nagel, Mary C; Juin, Stanley; Charles, Macarthur; Burris, Robert; Antoine, Eva; Yang, Chunfu; Kalou, Mireille; Vertefeuille, John; Marston, Barbara J; Lowrance, David W; Deyde, Varough

    2017-10-01

    Before the 2010 devastating earthquake and cholera outbreak, Haiti's public health laboratory systems were weak and services were limited. There was no national laboratory strategic plan and only minimal coordination across the laboratory network. Laboratory capacity was further weakened by the destruction of over 25 laboratories and testing sites at the departmental and peripheral levels and the loss of life among the laboratory health-care workers. However, since 2010, tremendous progress has been made in building stronger laboratory infrastructure and training a qualified public health laboratory workforce across the country, allowing for decentralization of access to quality-assured services. Major achievements include development and implementation of a national laboratory strategic plan with a formalized and strengthened laboratory network; introduction of automation of testing to ensure better quality of results and diversify the menu of tests to effectively respond to outbreaks; expansion of molecular testing for tuberculosis, human immunodeficiency virus, malaria, diarrheal and respiratory diseases; establishment of laboratory-based surveillance of epidemic-prone diseases; and improvement of the overall quality of testing. Nonetheless, the progress and gains made remain fragile and require the full ownership and continuous investment from the Haitian government to sustain these successes and achievements.

  7. 3Q/4Q98 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facility Groundwater Monitoring and Correction-Action Report, Volumes I, II, and III

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1998

  8. Overview of Commercial Building Partnerships in Higher Education

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, Glenn [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2013-03-01

    Higher education uses less energy per square foot than most commercial building sectors. However, higher education campuses house energy-intensive laboratories and data centers that may spend more than this average; laboratories, in particular, are disproportionately represented in the higher education sector. The Commercial Building Partnership (CBP), a public/private, cost-shared program sponsored by the U.S. Department of Energy (DOE), paired selected commercial building owners and operators with representatives of DOE, its national laboratories, and private-sector technical experts. These teams explored energy-saving measures across building systems–including some considered too costly or technologically challenging–and used advanced energy modeling to achieve peak whole-building performance. Modeling results were then included in new construction or retrofit designs to achieve significant energy reductions.

  9. Solar buildings program contract summary, calendar year 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-07

    The mission of the US Department of Energy's Solar Buildings Program is to advance the development and widespread deployment of competitive solar thermal technologies for use in buildings. The long-term goal of the Program is to combine solar energy technologies with energy-efficient construction techniques and create cost-effective buildings that have a zero net need for fossil fuel energy on an annual basis. The Solar Buildings Program conducts research and development on solar technologies that can deliver heat, light, and hot water to residential and commercial buildings. By working closely with manufacturers in both the buildings and solar energy industries and by supporting research at universities and national laboratories, the Solar Buildings Program brings together the diverse players developing reliable and affordable solar technologies for building applications. The National Renewable Energy Laboratory (NREL) in Golden, Colorado, and Sandia National Laboratories (SNL) in Albuquerque, New Mexico, jointly participate in the Solar Buildings Program. These two national laboratories work closely with industry researching new concepts, developing technology improvements, reducing manufacturing costs, monitoring system performance, promoting quality assurance, and identifying potential new markets. In calendar year 1999, the Solar Buildings Program focused primarily on solar hot water system research and development (R and D), US industry manufacturing assistance, and US market assistance. The Program also completed a number of other projects that were begun in earlier years. This Contract Summary describes the Program's contracted activities that were active during 1999.

  10. Project of an integrated calibration laboratory of instruments at IPEN

    International Nuclear Information System (INIS)

    Barros, Gustavo Adolfo San Jose

    2009-01-01

    The Calibration Laboratory of Instruments of Instituto de Pesquisas Energeticas e Nucleares offers calibration services of radiation detectors used in radioprotection, diagnostic radiology and radiotherapy, for IPEN and for external facilities (public and private). One part of its facilities is located in the main building, along with other laboratories and study rooms, and another part in an isolated building called Bunker. For the optimization, modernization and specially the safety, the laboratories in the main building shall be transferred to an isolated place. In this work, a project of an integrated laboratory for calibration of instruments was developed, and it will be an expansion of the current Calibration Laboratory of Instruments of IPEN. Therefore, a series of radiometric monitoring of the chosen localization of the future laboratory was realized, and all staff needs (dimensions and disposition of the study rooms and laboratories) were defined. In this project, the laboratories with X ray equipment, alpha and beta radiation sources were located at an isolated part of the building, and the wall shielding was determined, depending on the use of each laboratory. (author)

  11. Characterization of the Three Mile Island Unit-2 reactor building atmosphere prior to the reactor building purge

    International Nuclear Information System (INIS)

    Hartwell, J.K.; Mandler, J.W.; Duce, S.W.; Motes, B.G.

    1981-05-01

    The Three Mile Island Unit-2 reactor building atmosphere was sampled prior to the reactor building purge. Samples of the containment atmosphere were obtained using specialized sampling equipment installed through penetration R-626 at the 358-foot (109-meter) level of the TMI-2 reactor building. The samples were subsequently analyzed for radionuclide concentration and for gaseous molecular components (O 2 , N 2 , etc.) by two independent laboratories at the Idaho National Engineering Laboratory (INEL). The sampling procedures, analysis methods, and results are summarized

  12. Professional Development: A Capacity-Building Model for Juvenile Correctional Education Systems

    Science.gov (United States)

    Mathur, Sarup R.; Clark, Heather Griller; Schoenfeld, Naomi A.

    2009-01-01

    Youth in correctional facilities experience a broad range of educational, psychological, medical, and social needs. Professional development, a systemic process that improves the likelihood of student success by enhancing educator abilities, is a powerful way to positively affect student outcomes in correctional settings. This article offers a…

  13. Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 543: Liquid Disposal Units is listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO) which was agreed to by the state of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). CAU 543 sites are located in Areas 6 and 15 of the Nevada Test Site (NTS), which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven Corrective Action Sites (CASs) (Figure 1): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; and CAS 15-23-03, Contaminated Sump, Piping. All Area 15 CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm, which operated from 1963 to 1981 and was used to support animal experiments involving the uptake of radionuclides. Each of the Area 15 CASs, except CAS 15-23-01, is associated with the disposal of waste effluent from Building 15-06, which was the primary location of the various tests and experiments conducted onsite. Waste effluent disposal from Building 15-06 involved piping, sumps, outfalls, a septic tank with leachfield, underground storage tanks, and an aboveground storage tank (AST). CAS 15-23-01 was associated with decontamination activities of farm equipment potentially contaminated with radiological constituents, pesticides, and herbicides. While the building structures were removed before the investigation took place, all the original tanks, sumps, piping, and concrete building pads remain in place. The Area 6 CAS is located at the Decontamination Facility in Area 6, a facility which operated from 1971 to 2001 and was used to decontaminate vehicles, equipment, clothing, and other materials that had become contaminated during nuclear testing activities. The CAS includes the effluent collection and distribution systems for Buildings

  14. Research Staff | Buildings | NREL

    Science.gov (United States)

    Research Staff Research Staff Photo of Roderick Jackson Roderick Jackson Laboratory Program Manager -related research at NREL. He works closely with senior laboratory management to set the strategic agenda for NREL's buildings portfolio, including all research, development, and market implementation

  15. RESRAD-BUILD verification

    International Nuclear Information System (INIS)

    Kamboj, S.; Yu, C.; Biwer, B. M.; Klett, T.

    2002-01-01

    The results generated by the RESRAD-BUILD code (version 3.0) were verified with hand or spreadsheet calculations using equations given in the RESRAD-BUILD manual for different pathways. For verification purposes, different radionuclides--H-3, C-14, Na-22, Al-26, Cl-36, Mn-54, Co-60, Au-195, Ra-226, Ra-228, Th-228, and U-238--were chosen to test all pathways and models. Tritium, Ra-226, and Th-228 were chosen because of the special tritium and radon models in the RESRAD-BUILD code. Other radionuclides were selected to represent a spectrum of radiation types and energies. Verification of the RESRAD-BUILD code was conducted with an initial check of all the input parameters for correctness against their original source documents. Verification of the calculations was performed external to the RESRAD-BUILD code with Microsoft Excel to verify all the major portions of the code. In some cases, RESRAD-BUILD results were compared with those of external codes, such as MCNP (Monte Carlo N-particle) and RESRAD. The verification was conducted on a step-by-step basis and used different test cases as templates. The following types of calculations were investigated: (1) source injection rate, (2) air concentration in the room, (3) air particulate deposition, (4) radon pathway model, (5) tritium model for volume source, (6) external exposure model, (7) different pathway doses, and (8) time dependence of dose. Some minor errors were identified in version 3.0; these errors have been corrected in later versions of the code. Some possible improvements in the code were also identified

  16. A new building for testing magnets

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    A ceremony to mark the laying of the foundation stone of Building 311, which will house a magnetic measurement laboratory, took place on 22 September.   Olaf Dunkel, head of the Building 311 project, José Miguel Jiménez, head of the Technology Department, and Lluis Miralles, head of the Site Management and Buildings Department, during the ceremony for the laying of the foundation stone of Building 311. Lluis Miralles, head of the Site Management and Buildings Department, José Miguel Jiménez, head of the Technology Department, Roberto Losito, head of the Engineering Department, and Simon Baird, head of the Occupational Health and Safety and Environmental Protection Unit, officially laid the foundation stone of Building 311 during a ceremony on Thursday, 22 September. Situated beside the water tower, the building will house a magnetic measurement laboratory for the Technology Department. With a floor space of around 1400 square metres, it will comprise a...

  17. The Role of Energy Storage in Commercial Building

    Energy Technology Data Exchange (ETDEWEB)

    Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

    2010-09-30

    Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of

  18. Alternatives evaluation for the decontamination and decommissioning of buildings 3506 and 3515 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-01-01

    This is an alternative evaluation document that records the evaluation process and justification for choosing the alternative recommended for the decontamination and decommissioning (D ampersand D) of the 3506 and 3515 buildings at the Oak Ridge National Laboratory (ORNL). The alternatives for the D ampersand D of the two buildings were: (1) no action (continued surveillance and maintenance), (2) decontamination for free release, (3) entombment in place, (4) partial dismantlement, and (5) complete dismantlement. Soil remediation is not included in any of the alternatives. The recommended alternative for the D ampersand D of Building 3506 is partial dismantlement at an estimated cost of $936, 000 in escalated dollars. The cost estimate for complete dismantlement is $1,384,000. The recommended alternative for the D ampersand D of Building 3515 is complete dismantlement at an estimated cost of $3,733,000 in escalated dollars. This alternative is recommended, because the soils below the foundation of the 3515 building are highly contaminated, and removing the foundation in the D ampersand D project results in lower overall worker risk, costs, and improved post-D ampersand D site conditions. A further recommendation is to revise these cost estimates after the conclusion of the ongoing characterization study. The results of the characterization of the two buildings is expected to change some of the assumptions and resolve some of the uncertainties in the development of these estimates

  19. Decontamination and decommissioning of 61 plutonium gloveboxes in D-Wing, Building 212 Argonne National Laboratory-East: Final project report

    International Nuclear Information System (INIS)

    Cheever, C.L.; Rose, R.W.

    1996-09-01

    Argonne National Laboratory-East (ANL-E) is a government-owned, contractor operated, multipurpose research facility located 25 miles southwest of downtown Chicago on 689 hectares (1,700 acres) in DuPage County, Illinois, as shown in Figure 1.1. Building 212 is located in the central area of ANL-E, as shown in Figure 1.2. The purpose of this project was to eliminate the risk of radioactive material release from the contaminated glovebox systems and to make the laboratories available for unrestricted use. The following work objectives were established: (1) Identify and remove radioactive materials for return to ANL-E Special Materials control. (2) Remove and package the radioactively contaminated materials and equipment from the gloveboxes. (3) Decontaminate the gloveboxes to nontransuranic (non-TRU) levels. (4) Size-reduce and package the gloveboxes and support systems. (5) Document and dispose of the radioactive and mixed waste. (6) Decontaminate, survey, and release the nine laboratories and corridor areas for unrestricted use

  20. Site Characterization Plan for decontamination and decommissioning of Buildings 3506 and 3515 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-09-01

    Buildings 3506, the Waste Evaporator Facility, and 3515, the Fission Product Pilot Plant, at Oak Ridge National Laboratory (ORNL), are scheduled for decontamination and decommissioning (D and D). This Site Characterization Plan (SCP) presents the strategy and techniques to be used to characterize Buildings 3506/3515 for the purpose of planning D and D activities. The elements of the site characterization for Buildings 3506/3515 are planning and preparation, field investigation, and characterization reporting. Other level of effort activities will include management and oversight, project controls, meetings, and progress reporting. The objective of the site characterization is to determine the nature and extent of radioactive and hazardous materials and other industrial hazards in and around the buildings. This information will be used in subsequent planning to develop a detailed approach for final decommissioning of the facilities: (1) to evaluate decommissioning alternatives and design the most cost-effective D and D approach; (2) to determine the level and type of protection necessary for D and D workers; and (3) to estimate the types and volumes of wastes generated during D and D activities. The current D and D characterization scope includes the entire building, including the foundation and equipment or materials within the building. To estimate potential worker exposure from the soil during D and D, some subfoundation soil sample collection is planned. Buildings 3506/3515 are located in the ORNL main plant area, to the west and east, respectively, of the South Tank Farm. Building 3506 was built in 1949 to house a liquid waste evaporator and was subsequently used for an incinerator experiment. Partial D and D was done prior to abandonment, and most equipment has been removed. Building 3515 was built in 1948 to house fission product separation equipment. In about 1960, all entrances were sealed with concrete block and mortar. Building 3515 is expected to be

  1. The laboratory efficiencies initiative: partnership for building a sustainable national public health laboratory system.

    Science.gov (United States)

    Ridderhof, John C; Moulton, Anthony D; Ned, Renée M; Nicholson, Janet K A; Chu, May C; Becker, Scott J; Blank, Eric C; Breckenridge, Karen J; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners.

  2. Misure in laboratorio di acustica edilizia a bassa frequenza: un approccio modale - Laboratory measurements of building acoustics at low frequency: a modal approach

    Directory of Open Access Journals (Sweden)

    Andrea Prato

    2016-07-01

    Full Text Available Nei tipici ambienti ordinari e di laboratorio (40-80 m3 e a bassa frequenza (50-100 Hz, il campo acustico risulta non diffuso a causa della presenza dei modi. In tali condizioni, le misure classiche di acustica edilizia (isolamento acustico per via aerea e da impatto, tempi di riverbera-zione sono inadeguate per caratterizzare correttamente le proprietà acustiche di partizioni, si-stemi di pavimentazioni e spazi chiusi. L’approccio modale permette di valutare tali proprietà studiando il comportamento dei modi. Sulla base di ciò, appropriate procedure di misura e nuovi descrittori sono proposti e discussi in modo da fornire possibili soluzioni per tali problematiche. ------ In typical laboratory and ordinary rooms (40-80 m3 and at low frequencies (50-100 Hz, the acoustic field is non-diffuse due to the presence of room modes. Under such conditions, standard building acoustics measurements (airborne and impact sound insulation, reverberation time and descriptors are not adequate to correctly characterize the acoustic property of partitions, flooring systems and rooms. The modal approach allows to evaluate such properties by studying the behavior of modes. On the basis of this, proper measurement procedures and new descriptors are proposed and discussed in order to provide possible solutions for such issues.

  3. RCrane: semi-automated RNA model building.

    Science.gov (United States)

    Keating, Kevin S; Pyle, Anna Marie

    2012-08-01

    RNA crystals typically diffract to much lower resolutions than protein crystals. This low-resolution diffraction results in unclear density maps, which cause considerable difficulties during the model-building process. These difficulties are exacerbated by the lack of computational tools for RNA modeling. Here, RCrane, a tool for the partially automated building of RNA into electron-density maps of low or intermediate resolution, is presented. This tool works within Coot, a common program for macromolecular model building. RCrane helps crystallographers to place phosphates and bases into electron density and then automatically predicts and builds the detailed all-atom structure of the traced nucleotides. RCrane then allows the crystallographer to review the newly built structure and select alternative backbone conformations where desired. This tool can also be used to automatically correct the backbone structure of previously built nucleotides. These automated corrections can fix incorrect sugar puckers, steric clashes and other structural problems.

  4. Realizing High-Performance Buildings; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-02

    High-performance buildings (HPBs) are exceptional examples of both design and practice. Their energy footprints are small, and these are buildings that people want to work in because of their intelligent structure, operations, and coincident comfort. However, the operation of most buildings, even ones that are properly constructed and commissioned at the start, can deviate significantly from the original design intent over time, particularly due to control system overrides and growing plug and data center loads. With early planning for systems such as submetering and occupant engagement tools, operators can identify and remedy the problems. This guide is a primer for owners and owners’ representatives who are pursuing HPBs. It describes processes that have been successful in the planning, procurement, and operation of HPBs with exceptional energy efficiency. Much of the guidance offered results from a series of semi-structured conference calls with a technical advisory group of 15 owners and operators of prominent HPBs in the United States. The guide provides a prescription for planning, achieving, and maintaining an HPB. Although the guide focuses on the operations stage of buildings, many of the operations practices are specified during the planning stage.

  5. Anthropomorphic Test Drive (ATD) Certification Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The ATD Certification Laboratory consists of several test fixtures to ensure ATDs are functioning correctly and within specifications prior to use in any OP testing....

  6. Corrective action decision document, Second Gas Station, Tonopah test range, Nevada (Corrective Action Unit No. 403)

    International Nuclear Information System (INIS)

    1997-11-01

    This Corrective Action Decision Document (CADD) for Second Gas Station (Corrective Action Unit [CAU] No. 403) has been developed for the U.S. Department of Energy's (DOE) Nevada Environmental Restoration Project to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO) of 1996 as stated in Appendix VI, open-quotes Corrective Action Strategyclose quotes (FFACO, 1996). The Second Gas Station Corrective Action Site (CAS) No. 03-02-004-0360 is the only CAS in CAU No. 403. The Second Gas Station CAS is located within Area 3 of the Tonopah Test Range (TTR), west of the Main Road at the location of former Underground Storage Tanks (USTs) and their associated fuel dispensary stations. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air and approximately 56 km (35 mi) southeast of Tonopah, Nevada, by road. The TTR is bordered on the south, east, and west by the Nellis Air Force Range and on the north by sparsely populated public land administered by the Bureau of Land Management and the U.S. Forest Service. The Second Gas Station CAS was formerly known as the Underground Diesel Tank Site, Sandia Environmental Restoration Site Number 118. The gas station was in use from approximately 1965 to 1980. The USTs were originally thought to be located 11 meters (m) (36 feet [ft]) east of the Old Light Duty Shop, Building 0360, and consisted of one gasoline UST (southern tank) and one diesel UST (northern tank) (DOE/NV, 1996a). The two associated fuel dispensary stations were located northeast (diesel) and southeast (gasoline) of Building 0360 (CAU 423). Presently the site is used as a parking lot, Building 0360 is used for mechanical repairs of vehicles

  7. Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S ampersand M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S ampersand M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S ampersand M effort would be required to maintain the building safety envelope. Other than the minimal S ampersand M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S ampersand M until decommissioning activities begin

  8. Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S&M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S&M effort would be required to maintain the building safety envelope. Other than the minimal S&M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S&M until decommissioning activities begin.

  9. Characterization report for Buildings 3706 and 37006A

    International Nuclear Information System (INIS)

    Smith, D.S.

    1997-06-01

    The 3706 and 3706A Buildings were originally constructed to perform small-scale experiments in support of all Hanford Engineering Works production activities. The primary focus was to perform radiochemical trials aimed at improving the bismuth phosphate process. The facility housed 19 offices, 2 shops, a dark room, 2 storerooms, a lunchroom, locker room, ventilating equipment room, sanitary restrooms, and 57 laboratories, including a special laboratory with 0.6-m-(2-ft) thick concrete walls reserved for the hottest analytical work. The 3706 Building was decontaminated and remodeled in 1954 and 1955, and many of the laboratories were converted to offices at that time. By 1964, the facility was called the General Services Building, and although it still contained some analytical laboratories, the majority of the space was devoted to mail, duplicating, photographic, and drafting services; a first aid station, and the 300 Area Hanford Patrol headquarters. All laboratory work was eventually phased out by the end of the 1980's. The primary objective of the characterization activities described in this report is to properly designate the building debris waste in preparation for demolition of the building and disposal at the Environmental Restoration Disposal Facility Waste. The scope of services for this characterization project included the following tasks: historical records review; facility inspection; radiological surveys; data quality objective; sampling and analysis instruction; field sampling and laboratory analysis; preparation of this characterization report

  10. Rethinking political correctness.

    Science.gov (United States)

    Ely, Robin J; Meyerson, Debra E; Davidson, Martin N

    2006-09-01

    Legal and cultural changes over the past 40 years ushered unprecedented numbers of women and people of color into companies' professional ranks. Laws now protect these traditionally underrepresented groups from blatant forms of discrimination in hiring and promotion. Meanwhile, political correctness has reset the standards for civility and respect in people's day-to-day interactions. Despite this obvious progress, the authors' research has shown that political correctness is a double-edged sword. While it has helped many employees feel unlimited by their race, gender, or religion,the PC rule book can hinder people's ability to develop effective relationships across race, gender, and religious lines. Companies need to equip workers with skills--not rules--for building these relationships. The authors offer the following five principles for healthy resolution of the tensions that commonly arise over difference: Pause to short-circuit the emotion and reflect; connect with others, affirming the importance of relationships; question yourself to identify blind spots and discover what makes you defensive; get genuine support that helps you gain a broader perspective; and shift your mind-set from one that says, "You need to change," to one that asks, "What can I change?" When people treat their cultural differences--and related conflicts and tensions--as opportunities to gain a more accurate view of themselves, one another, and the situation, trust builds and relationships become stronger. Leaders should put aside the PC rule book and instead model and encourage risk taking in the service of building the organization's relational capacity. The benefits will reverberate through every dimension of the company's work.

  11. Environmental Assessment for the proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California

    International Nuclear Information System (INIS)

    1995-08-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), (DOE/EA-1087) evaluating the proposed action to modify existing Building 51B at Lawrence Berkeley National Laboratory (LBNL) to install and conduct experiments on a new Induction Linear Accelerator System. LBNL is located in Berkeley, California and operated by the University of California (UC). The project consists of placing a pre-fabricated building inside Building 51B to house a new 10 MeV heavy ion linear accelerator. A control room and other support areas would be provided within and directly adjacent to Building 51B. The accelerator system would be used to conduct tests, at reduced scale and cost, many features of a heavy-ion accelerator driver for the Department of Energy's inertial fusion energy program. Based upon information and analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969. Therefore, an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI)

  12. Components of laboratory accreditation.

    Science.gov (United States)

    Royal, P D

    1995-12-01

    Accreditation or certification is a recognition given to an operation or product that has been evaluated against a standard; be it regulatory or voluntary. The purpose of accreditation is to provide the consumer with a level of confidence in the quality of operation (process) and the product of an organization. Environmental Protection Agency/OCM has proposed the development of an accreditation program under National Environmental Laboratory Accreditation Program for Good Laboratory Practice (GLP) laboratories as a supplement to the current program. This proposal was the result of the Inspector General Office reports that identified weaknesses in the current operation. Several accreditation programs can be evaluated and common components identified when proposing a structure for accrediting a GLP system. An understanding of these components is useful in building that structure. Internationally accepted accreditation programs provide a template for building a U.S. GLP accreditation program. This presentation will discuss the traditional structure of accreditation as presented in the Organization of Economic Cooperative Development/GLP program, ISO-9000 Accreditation and ISO/IEC Guide 25 Standard, and the Canadian Association for Environmental Analytical Laboratories, which has a biological component. Most accreditation programs are managed by a recognized third party, either privately or with government oversight. Common components often include a formal review of required credentials to evaluate organizational structure, a site visit to evaluate the facility, and a performance evaluation to assess technical competence. Laboratory performance is measured against written standards and scored. A formal report is then sent to the laboratory indicating accreditation status. Usually, there is a scheduled reevaluation built into the program. Fee structures vary considerably and will need to be examined closely when building a GLP program.

  13. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 113: Reactor Maintenance, Assembly, and Disassembly Building Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Smith

    2001-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure in place of Corrective Action Unit (CAU) 113 Area 25 Reactor Maintenance, Assembly, and Disassembly Facility (R-MAD). CAU 113 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (NDEP, 1996). The CAU is located in Area 25 of the Nevada Test Site (NTS) and consists of Corrective Action Site (CAS) 25-04-01, R-MAD Facility (Figures 1-2). This plan provides the methodology for closure in place of CAU 113. The site contains radiologically impacted and hazardous material. Based on preassessment field work, there is sufficient process knowledge to close in place CAU 113 using the SAFER process. At a future date when funding becomes available, the R-MAD Building (25-3110) will be demolished and inaccessible radiologic waste will be properly disposed in the Area 3 Radiological Waste Management Site (RWMS).

  14. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 113: Reactor Maintenance, Assembly, and Disassembly Building Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Smith, J. L.

    2001-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure in place of Corrective Action Unit (CAU) 113 Area 25 Reactor Maintenance, Assembly, and Disassembly Facility (R-MAD). CAU 113 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (NDEP, 1996). The CAU is located in Area 25 of the Nevada Test Site (NTS) and consists of Corrective Action Site (CAS) 25-04-01, R-MAD Facility (Figures 1-2). This plan provides the methodology for closure in place of CAU 113. The site contains radiologically impacted and hazardous material. Based on preassessment field work, there is sufficient process knowledge to close in place CAU 113 using the SAFER process. At a future date when funding becomes available, the R-MAD Building (25-3110) will be demolished and inaccessible radiologic waste will be properly disposed in the Area 3 Radiological Waste Management Site (RWMS)

  15. Environmental assessment for the proposed CMR Building upgrades at the Los Alamos National Laboratory, Los Alamos, New Mexico. Final document

    International Nuclear Information System (INIS)

    1997-01-01

    In order to maintain its ability to continue to conduct uninterrupted radioactive and metallurgical research in a safe, secure, and environmentally sound manner, the US Department of Energy (DOE) proposes to upgrade the Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Building. The building was built in the early 1950s to provide a research and experimental facility for analytical chemistry, plutonium and uranium chemistry, and metallurgy. Today, research and development activities are performed involving nuclear materials. A variety of radioactive and chemical hazards are present. The CMR Building is nearing the end of its original design life and does not meet many of today's design codes and standards. The Proposed Action for this Environmental Assessment (EA) includes structural modifications to some portions of the CMR Building which do not meet current seismic criteria for a Hazard Category 2 Facility. Also included are upgrades and improvements in building ventilation, communications, monitoring, and fire protection systems. This EA analyzes the environmental effects of construction of the proposed upgrades. The Proposed Action will have no adverse effects upon agricultural and cultural resources, wetlands and floodplains, endangered and threatened species, recreational resources, or water resources. The Proposed Action would have negligible effects on human health and transportation, and would not pose a disproportionate adverse health or environmental impact on minority or low-income populations within an 80 kilometer (50 mile) radius of the CMR Building

  16. Environmental assessment for the proposed CMR Building upgrades at the Los Alamos National Laboratory, Los Alamos, New Mexico. Final document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-04

    In order to maintain its ability to continue to conduct uninterrupted radioactive and metallurgical research in a safe, secure, and environmentally sound manner, the US Department of Energy (DOE) proposes to upgrade the Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Building. The building was built in the early 1950s to provide a research and experimental facility for analytical chemistry, plutonium and uranium chemistry, and metallurgy. Today, research and development activities are performed involving nuclear materials. A variety of radioactive and chemical hazards are present. The CMR Building is nearing the end of its original design life and does not meet many of today`s design codes and standards. The Proposed Action for this Environmental Assessment (EA) includes structural modifications to some portions of the CMR Building which do not meet current seismic criteria for a Hazard Category 2 Facility. Also included are upgrades and improvements in building ventilation, communications, monitoring, and fire protection systems. This EA analyzes the environmental effects of construction of the proposed upgrades. The Proposed Action will have no adverse effects upon agricultural and cultural resources, wetlands and floodplains, endangered and threatened species, recreational resources, or water resources. The Proposed Action would have negligible effects on human health and transportation, and would not pose a disproportionate adverse health or environmental impact on minority or low-income populations within an 80 kilometer (50 mile) radius of the CMR Building.

  17. Classical Electron Model with QED Corrections

    OpenAIRE

    Lenk, Ron

    2010-01-01

    In this article we build a metric for a classical general relativistic electron model with QED corrections. We calculate the stress-energy tensor for the radiative corrections to the Coulomb potential in both the near-field and far-field approximations. We solve the three field equations in both cases by using a perturbative expansion to first order in alpha (the fine-structure constant) while insisting that the usual (+, +, -, -) structure of the stress-energy tensor is maintained. The resul...

  18. Environmental Assessment for the vacuum process laboratory (VPL) relocation at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-04-01

    This Environmental Assessment (EA) evaluates the potential environmental impacts of relocating a vacuum process laboratory (VPL) from Building 321 to Building 2231 at Lawrence Livermore National Laboratory (LLNL). The VPL provides the latest technology in the field of vacuum deposition of coatings onto various substrates for several weapons-related and energy-related programs at LLNL. Operations within the VPL at LLNL will not be expanded nor reduced by the relocation. No significant environmental impacts are expected as a result of the relocation of the VPL

  19. Final deactivation project report on the Source Development Laboratory, building 3029, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-05-01

    The purpose of this report is to document the condition of Building 3029 after completion of deactivation activities as outlined by the DOE Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the DOE Office of Environmental Restoration (EM-40). This report provides a history and profile of the facility prior to commencing deactivation activities and a profile of the building after completion of deactivation activities. Turnover items, such as the post-deactivation surveillance and maintenance (S ampersand M) plan, remaining hazardous materials, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the EM-60 turnover package are discussed. Building 3029 will require access to facilitate required S ampersand M activities to maintain the building safety envelope. building 3029 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S ampersand M effort would be required to maintain the building safety envelope. Other than the minimal S ampersand M activities, the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S ampersand M. 5 refs., 7 figs., 3 tabs

  20. Commercial Building Partnership General Merchandise Energy Savings Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  1. Teaching Early Readers to Self-Monitor and Self-Correct

    Science.gov (United States)

    Pratt, Sharon M.; Urbanowski, Melena

    2016-01-01

    Proficient readers self-monitor and self-correct to derive meaning from text. This article reviews research on how students learn to self-monitor and self-correct and describes a Reciprocal Teaching (RT) instructional routine that was successfully used with early readers to build their metacognitive processes. The RT routine included teacher…

  2. Final deactivation project report on the Integrated Process Demonstration Facility, Building 7602 Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of this report is to document the condition of the Integrated Process Demonstration Facility (Building 7602) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities by the High Ranking Facilities Deactivation Project (HRFDP). This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the U.S. Department of Energy (DOE) Environmental Restoration EM-40 Program. This report provides a history and description of the facility prior to commencing deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S ampersand M) Plan, remaining hazardous and radioactive materials inventory, radiological controls, Safeguards and Security, and supporting documentation provided in the Office of Nuclear Material and Facility Stabilization Program (EM-60) Turnover package are discussed

  3. Design/installation and structural integrity assessment under the Federal Facility Agreement for Bethel Valley Low-Level Waste Collection and Transfer System upgrade for Building 2026 (High Radiation Level Analytical Laboratory) and Building 2099 (Monitoring and Control Station) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-10-01

    This document presents a Design/Installation and Structural Integrity Assessment for a replacement tank system for portions of the Bethel Valley Low Level Waste (LLW) System, located at the Oak Ridge Reservation, Oak Ridge, Tennessee. This issue of the assessment covers the design aspects of the replacement tank system, and certifies that the design has sufficient structural integrity and is acceptable for the storing or treating of hazardous and/or radioactive substances. The present issue identifies specific activities that must be completed during the fabrication, installation, and testing of the replacement tank system in order to provide assurance that the final installation complies with governing requirements. Portions of the LLW system are several decades old, or older, and do not comply with current environmental protection regulations. Several subsystems of the LLW system have been designated to receive a state-of-the-art replacement and refurbishment. One such subsystem serves Building 2026, the High Radiation Level Analytical Laboratory. This assessment focuses on the scope of work for the Building 2026 replacement LLW Collection and Transfer System, including the provision of a new Monitoring and Control Station (Building 2099) to receive, store, and treat (adjust pH) low level radioactive waste

  4. Corrected Launch Speed for a Projectile Motion Laboratory

    Science.gov (United States)

    Sanders, Justin M.; Boleman, Michael W.

    2013-01-01

    At our university, students in introductory physics classes perform a laboratory exercise to measure the range of a projectile fired at an assigned angle. A set of photogates is used to determine the initial velocity of the projectile (the launch velocity). We noticed a systematic deviation between the experimentally measured range and the range…

  5. Low Energy Accelerator Laboratory Technical Area 53, Los Alamos National Laboratory. Environmental assessment

    International Nuclear Information System (INIS)

    1995-04-01

    This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the Department of Energy (DOE) were to construct and operate a small research and development laboratory building at Technical Area (TA) 53 at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. DOE proposes to construct a small building to be called the Low Energy Accelerator Laboratory (LEAL), at a previously cleared, bladed, and leveled quarter-acre site next to other facilities housing linear accelerator research activities at TA-53. Operations proposed for LEAL would consist of bench-scale research, development, and testing of the initial section of linear particle accelerators. This initial section consists of various components that are collectively called an injector system. The anticipated life span of the proposed development program would be about 15 years

  6. Maintenance performance improvement with System Dynamics : A Corrective Maintenance showcase

    NARCIS (Netherlands)

    Deenen, R.E.M.; Van Daalen, C.E.; Koene, E.G.C.

    2008-01-01

    This paper presents a case study of an analysis of a Corrective Maintenance process to realize performance improvement. The Corrective Maintenance process is supported by SAP, which has indicated the performance realisation problem. System Dynamics is used in a Group Model Building process to

  7. RCrane: semi-automated RNA model building

    International Nuclear Information System (INIS)

    Keating, Kevin S.; Pyle, Anna Marie

    2012-01-01

    RCrane is a new tool for the partially automated building of RNA crystallographic models into electron-density maps of low or intermediate resolution. This tool helps crystallographers to place phosphates and bases into electron density and then automatically predicts and builds the detailed all-atom structure of the traced nucleotides. RNA crystals typically diffract to much lower resolutions than protein crystals. This low-resolution diffraction results in unclear density maps, which cause considerable difficulties during the model-building process. These difficulties are exacerbated by the lack of computational tools for RNA modeling. Here, RCrane, a tool for the partially automated building of RNA into electron-density maps of low or intermediate resolution, is presented. This tool works within Coot, a common program for macromolecular model building. RCrane helps crystallographers to place phosphates and bases into electron density and then automatically predicts and builds the detailed all-atom structure of the traced nucleotides. RCrane then allows the crystallographer to review the newly built structure and select alternative backbone conformations where desired. This tool can also be used to automatically correct the backbone structure of previously built nucleotides. These automated corrections can fix incorrect sugar puckers, steric clashes and other structural problems

  8. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  9. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories' operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment

  10. Building Technologies Research and Integration Center (BTRIC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Building Technologies Research and Integration Center (BTRIC), in the Energy and Transportation Science Division (ETSD) of Oak Ridge National Laboratory (ORNL),...

  11. The correction of skilled athletes' constitution, specializing in bodybuilding in the preparatory period of the annual cycle.

    Directory of Open Access Journals (Sweden)

    Usychenko Vitalij Viktorovich

    2011-09-01

    Full Text Available The program of correction of build of highly skilled bodybuilders is developed. In researches took part 17 bodybuilders of high qualification. In examination the judges of international and national category were involved in bodybuilding. The biomechanics monitoring of build of sportsmen is conducted. Practical recommendations are developed in relation to the directed correction of build of highly skilled bodybuilders.

  12. TA-03-0035 Press Building – D&D

    Energy Technology Data Exchange (ETDEWEB)

    Hasenack, Marvin Leroy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-02

    The Press Building was constructed in 1954 with 15,073 ft2 of floor space. It was built to house a 5000 ton double action Lake Erie hydraulic press and a uranium casting area. Missions included uranium activities associated with the Nuclear Weapons and Rover Rocket programs. At the end of the Rover program, the building continued to support various uranium materials science projects until the building was placed into a cold and dark status in 2013 and then was demolished in 2017. The building interior, the press, and associated systems were radiological contaminated and disposed of as low level waste. The demolition of this building opened up valuable real estate in the TA-3 area for the future construction of an ~11,000 Sq. Ft. Biosafety Level 2 laboratory and office building. This building will support the ongoing Bioscience Division mission at the laboratory.

  13. Central African Field Epidemiology and Laboratory Training Program: building and strengthening regional workforce capacity in public health.

    Science.gov (United States)

    Andze, Gervais Ondobo; Namsenmo, Abel; Illunga, Benoit Kebella; Kazambu, Ditu; Delissaint, Dieula; Kuaban, Christopher; Mbopi-Kéou, Francois-Xavier; Gabsa, Wilfred; Mulumba, Leopold; Bangamingo, Jean Pierre; Ngulefac, John; Dahlke, Melissa; Mukanga, David; Nsubuga, Peter

    2011-01-01

    The Central African Field Epidemiology and Laboratory Training Program (CAFELTP) is a 2-year public health leadership capacity building training program. It was established in October 2010 to enhance capacity for applied epidemiology and public health laboratory services in three countries: Cameroon, Central African Republic, and the Democratic Republic of Congo. The aim of the program is to develop a trained public health workforce to assure that acute public health events are detected, investigated, and responded to quickly and effectively. The program consists of 25% didactic and 75% practical training (field based activities). Although the program is still in its infancy, the residents have already responded to six outbreak investigations in the region, evaluated 18 public health surveillance systems and public health programs, and completed 18 management projects. Through these various activities, information is shared to understand similarities and differences in the region leading to new and innovative approaches in public health. The program provides opportunities for regional and international networking in field epidemiology and laboratory activities, and is particularly beneficial for countries that may not have the immediate resources to host an individual country program. Several of the trainees from the first cohort already hold leadership positions within the ministries of health and national laboratories, and will return to their assignments better equipped to face the public health challenges in the region. They bring with them knowledge, practical training, and experiences gained through the program to shape the future of the public health landscape in their countries.

  14. School Building Organisation in Greece.

    Science.gov (United States)

    PEB Exchange, 2001

    2001-01-01

    Discusses the past and current organizational structure of Greece's School Building Organisation, a body established to work with government agencies in the design and construction of new buildings and the provisioning of educational equipment. Future planning to incorporate culture and creativity, sports, and laboratory learning in modern school…

  15. Area balance method for calculation of air interchange in fire-resesistance testing laboratory for building products and constructions

    Directory of Open Access Journals (Sweden)

    Sargsyan Samvel Volodyaevich

    2014-09-01

    Full Text Available Fire-resistance testing laboratory for building products and constructions is a production room with a substantial excess heat (over 23 W/m . Significant sources of heat inside the aforementioned laboratory are firing furnace, designed to simulate high temperature effects on structures and products of various types in case of fire development. The excess heat production in the laboratory during the tests is due to firing furnaces. The laboratory room is considered as an object consisting of two control volumes (CV, in each of which there may be air intake and air removal, pollutant absorption or emission. In modeling air exchange conditions the following processes are being considered: the processes connected with air movement in the laboratory room: the jet stream in a confined space, distribution of air parameters, air motion and impurity diffusion in the ventilated room. General upward ventilation seems to be the most rational due to impossibility of using local exhaust ventilation. It is connected with the peculiarities of technological processes in the laboratory. Air jets spouted through large-perforated surface mounted at the height of 2 m from the floor level, "flood" the lower control volume, entrained by natural convective currents from heat sources upward and removed from the upper area. In order to take advantage of the proposed method of the required air exchange calculation, you must enter additional conditions, taking into account the provision of sanitary-hygienic characteristics of the current at the entrance of the service (work area. Exhaust air containing pollutants (combustion products, is expelled into the atmosphere by vertical jet discharge. Dividing ventilated rooms into two control volumes allows describing the research process in a ventilated room more accurately and finding the air exchange in the lab room during the tests on a more reasonable basis, allowing to provide safe working conditions for the staff without

  16. Level 3 baseline risk evaluation for Building 3506 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Golden, K.M.; Robers, S.K.; Cretella, F.M.

    1994-12-01

    This report presents the results of the Level 3 Baseline Risk Evaluation (BRE) performed on Building 3506 located at the Oak Ridge National Laboratory (ORNL). This BRE is intended to provide an analysis of the potential for adverse health effects (current or future) posed by contaminants at the facility. The decision was made to conduct a Level 3 (least rigorous) BRE because only residual contamination exists in the building. Future plans for the facility (demolition) also preclude a rigorous analysis. Site characterization activities for Building 3506 were conducted in fall of 1993. Concrete core samples were taken from the floors and walls of both the cell and the east gallery. These cores were analyzed for radionuclides and organic and inorganic chemicals. Smear samples and direct radiation measurements were also collected. Sediment exists on the floor of the cell and was also analyzed. To adequately characterize the risks posed by the facility, receptors for both current and potential future land uses were evaluated. For the current land use conditions, two receptors were evaluated. The first receptor is a hypothetical maintenance worker who spends 250 days (8 hours/day) for 25 years working in the facility. The remaining receptor evaluated is a hypothetical S and M worker who spends 2 days (8 hours/day) per year for 25 years working within the facility. This particular receptor best exemplifies the current worker scenario for the facility. The two current exposure scenarios and parameters of exposure (e.g., inhalation and ingestion rates) have been developed to provide a conservative (i.e. health protective) estimate of potential exposure

  17. Removal site evaluation report on Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-09-01

    This removal site evaluation report on Building 3019B at Oak Ridge National Laboratory was prepared to provide the environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the facility pose a substantial risk to human health or the environment and whether remedial site evaluations or removal actions are, therefore, required. The scope of the project included (1) a search for, and review of, readily available historical records regarding operations and use of the facility (including hazardous substance usage and existing contamination); (2) interviews with facility personnel concerning current and past practices; and (3) a brief walk-through to visually inspect the facility nd identify existing hazard areas requiring maintenance actions or remedial evaluation. The results of the removal site evaluation indicate that areas inside Building 3019B pose no imminent hazard because adequate engineering and administrative controls are in place and enforced within the facility to ensure worker and environmental protection. A maintenance action, however, is being undertaken or proposed. Deteriorated and peeling exterior paint in areas on the west and south walls on the exterior of the building has an uninhibited pathway to the storm water drainage system and can potentially impact the local surface water during periods of storm water runoff. The paint is assumed to be lead based, thus posing a potential problem. In addition, the subsurface of all of the exterior walls may be radiologically contaminated. A maintenance action will be necessary to prevent further deterioration and dislodging of the paint

  18. Level 3 baseline risk evaluation for Building 3506 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Golden, K.M.; Robers, S.K.; Cretella, F.M.

    1994-12-01

    This report presents the results of the Level 3 Baseline Risk Evaluation (BRE) performed on Building 3506 located at the Oak Ridge National Laboratory (ORNL). This BRE is intended to provide an analysis of the potential for adverse health effects (current or future) posed by contaminants at the facility. The decision was made to conduct a Level 3 (least rigorous) BRE because only residual contamination exists in the building. Future plans for the facility (demolition) also preclude a rigorous analysis. Site characterization activities for Building 3506 were conducted in fall of 1993. Concrete core samples were taken from the floors and walls of both the cell and the east gallery. These cores were analyzed for radionuclides and organic and inorganic chemicals. Smear samples and direct radiation measurements were also collected. Sediment exists on the floor of the cell and was also analyzed. To adequately characterize the risks posed by the facility, receptors for both current and potential future land uses were evaluated. For the current land use conditions, two receptors were evaluated. The first receptor is a hypothetical maintenance worker who spends 250 days (8 hours/day) for 25 years working in the facility. The remaining receptor evaluated is a hypothetical S and M worker who spends 2 days (8 hours/day) per year for 25 years working within the facility. This particular receptor best exemplifies the current worker scenario for the facility. The two current exposure scenarios and parameters of exposure (e.g., inhalation and ingestion rates) have been developed to provide a conservative (i.e. health protective) estimate of potential exposure.

  19. Protein Laboratories in Single Location | Poster

    Science.gov (United States)

    By Andrew Stephen, Timothy Veenstra, and Gordon Whiteley, Guest Writers, and Ken Michaels, Staff Writer The Laboratory of Proteomics and Analytical Technologies (LPAT), Antibody Characterization Laboratory (ACL), and Protein Chemistry Laboratory (PCL), previously located on different floors or in different buildings, are now together on the first floor of C wing in the ATRF.

  20. 3Q/4Q99 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - Third and Fourth Quarters 1999 - Volumes I and II

    International Nuclear Information System (INIS)

    Chase, J.

    2000-01-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1999

  1. Mechanism for Corrective Action on Budget Imbalances

    Directory of Open Access Journals (Sweden)

    Ion Lucian CATRINA

    2014-02-01

    Full Text Available The European Fiscal Compact sets the obligation for the signatory states to establish an automatic mechanism for taking corrective action on budget imbalances. Nevertheless, the European Treaty says nothing about the tools that should be used in order to reach the desired equilibrium of budgets, but only that it should aim at correcting deviations from the medium-term objective or the adjustment path, including their cumulated impact on government debt dynamics. This paper is aiming at showing that each member state has to build the correction mechanism according to the impact of the chosen tools on economic growth and on general government revenues. We will also emphasize that the correction mechanism should be built not only exacerbating the corrective action through spending/ tax based adjustments, but on a high quality package of economic policies as well.

  2. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 97: Yucca Flat/Climax Mine Nevada National Security Site, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro, Las Vegas, NV (United States)

    2017-08-01

    This corrective action decision document (CADD)/corrective action plan (CAP) has been prepared for Corrective Action Unit (CAU) 97, Yucca Flat/Climax Mine, Nevada National Security Site (NNSS), Nevada. The Yucca Flat/Climax Mine CAU is located in the northeastern portion of the NNSS and comprises 720 corrective action sites. A total of 747 underground nuclear detonations took place within this CAU between 1957 and 1992 and resulted in the release of radionuclides (RNs) in the subsurface in the vicinity of the test cavities. The CADD portion describes the Yucca Flat/Climax Mine CAU data-collection and modeling activities completed during the corrective action investigation (CAI) stage, presents the corrective action objectives, and describes the actions recommended to meet the objectives. The CAP portion describes the corrective action implementation plan. The CAP presents CAU regulatory boundary objectives and initial use-restriction boundaries identified and negotiated by DOE and the Nevada Division of Environmental Protection (NDEP). The CAP also presents the model evaluation process designed to build confidence that the groundwater flow and contaminant transport modeling results can be used for the regulatory decisions required for CAU closure. The UGTA strategy assumes that active remediation of subsurface RN contamination is not feasible with current technology. As a result, the corrective action is based on a combination of characterization and modeling studies, monitoring, and institutional controls. The strategy is implemented through a four-stage approach that comprises the following: (1) corrective action investigation plan (CAIP), (2) CAI, (3) CADD/CAP, and (4) closure report (CR) stages.

  3. Commercial Building Partnership Retail Food Sales Energy Savings Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  4. Building Connecticut's clinical biodosimetry laboratory surge capacity to mitigate the health consequences of radiological and nuclear disasters: A collaborative approach between the state biodosimetry laboratory and Connecticut's medical infrastructure

    International Nuclear Information System (INIS)

    Albanese, Joseph; Martens, Kelly; Arnold, Jeffrey L.; Kelley, Katherine; Kristie, Virginia; Forte, Elaine; Schneider, Mark; Dainiak, Nicholas

    2007-01-01

    further optimize biodosimetry specimen processing protocols in Connecticut. Based on our findings, we conclude that clinical laboratory professionals are an important resource for assisting with the processing biodosimetry specimens that are used for triage of patients from accidental or terrorist-related mass-casualty radiological or nuclear catastrophies. The approach described in this paper to enroll and train clinical laboratorians in sample preparation for dicentric analysis forms the basis for the next step (namely, further training on harvesting cultured cells and preparing cytogenetic slides) in collaborative efforts between the State of Connecticut's Biodosimetry Laboratory and the state's medical infrastructure towards building laboratory surge capacity to estimate radiation dose in victims of a mass casualty event

  5. Five-Year NRHP Re-Evaluation of Historic Buildings Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, R A; Heidecker, K R

    2011-09-12

    The Lawrence Livermore National Laboratory (LLNL) 'Draft Programmatic Agreement among the Department of Energy and the California State Historic Preservation Officer Regarding Operation of Lawrence Livermore National Laboratory' requires a review and re-evaluation of the eligibility of laboratory properties for the National Register of Historic Places (NRHP) every five years. The original evaluation was published in 2005; this report serves as the first five-year re-evaluation. This re-evaluation includes consideration of changes within LLNL to management, to mission, and to the built environment. it also determines the status of those buildings, objects, and districts that were recommended as NRHP-eligible in the 2005 report. Buildings that were omitted from the earlier building list, those that have reached 50 years of age since the original assessment, and new buildings are also addressed in the re-evaluation.

  6. D and D alternatives risk assessment for Building 3515 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Robers, S.K.; Golden, K.M.

    1995-09-01

    This report presents the results of the Level 3 Decontamination and Decommissioning (D and D) Alternatives Risk Assessment (DARA) performed on Building 3515 located at the Oak Ridge National Laboratory (ORNL). The goal of the risk evaluation process is to provide risk information necessary to assist decision making for Environmental Restoration (ER) Program D and D facilities. This risk information is developed in the baseline risk assessment (BRA) and in the DARA. The BRA provides risk information necessary for determining whether or not a facility represents an unacceptable risk and requires remediation. In addition, the BRA also provides an estimation of the risks associated with the no-action alternative for use in the DARA. The objective of this Level 3 DARA is to evaluate and document the potential risks to human health, human safety, and the environment associated with the proposed remedial action at Building 3515. A Level 3 assessment is the least rigorous type of DARA. The decision to conduct a Level 3 DARA was based on the fact that characterization data from the facility are limited, and currently only one remedial alternative (complete dismantlement) is being evaluated in addition to the no-action alternative. The results of the DARA along with cost and engineering information may be used by project managers in making decisions regarding the final disposition of Building 3515. This Level 3 assessment meets the requirements of the streamlined risk assessment necessary for an Engineering Evaluation/Cost Analysis (EE/CA)

  7. Building Automation Systems.

    Science.gov (United States)

    Honeywell, Inc., Minneapolis, Minn.

    A number of different automation systems for use in monitoring and controlling building equipment are described in this brochure. The system functions include--(1) collection of information, (2) processing and display of data at a central panel, and (3) taking corrective action by sounding alarms, making adjustments, or automatically starting and…

  8. Sandia National Laboratories, Tonopah Test Range Fire Control Bunker (Building 09-51): Photographs and Written Historical and Descriptive Data

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Rebecca A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Corporate Archives and History Program

    2017-08-01

    The Fire Control Bunker (Building 09-51) is a contributing element to the Sandia National Laboratories (SNL) Tonopah Test Range (TTR) Historic District. The SNL TTR Historic District played a significant role in U.S. Cold War history in the areas of stockpile surveillance and non-nuclear field testing of nuclear weapons design. The district covers approximately 179,200 acres and illustrates Cold War development testing of nuclear weapons components and systems. This report includes historical information, architectural information, sources of information, project information, maps, blueprints, and photographs.

  9. Optimized design of low energy buildings

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Esbensen, Peter Kjær; Svendsen, Sv Aa Højgaard

    1999-01-01

    concern which can be seen during the construction of new buildings. People want energy-friendly solutions, but they should be economical optimized. An exonomical optimized building design with respect to energy consumption is the design with the lowest total cost (investment plus operational cost over its...... to evaluate different separate solutions when they interact in the building.When trying to optimize several parameters there is a need for a method, which will show the correct price-performance of each part of a building under design. The problem with not having such a method will first be showed...

  10. Perimeter security for Minnesota correctional facilities

    Energy Technology Data Exchange (ETDEWEB)

    Crist, D. [Minnesota Department of Corrections, St. Paul, MN (United States); Spencer, D.D. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31

    For the past few years, the Minnesota Department of Corrections, assisted by Sandia National Laboratories, has developed a set of standards for perimeter security at medium, close, and maximum custody correctional facilities in the state. During this process, the threat to perimeter security was examined and concepts about correctional perimeter security were developed. This presentation and paper will review the outcomes of this effort, some of the lessons learned, and the concepts developed during this process and in the course of working with architects, engineers and construction firms as the state upgraded perimeter security at some facilities and planned new construction at other facilities.

  11. Georgia Public Health Laboratory, Decatur, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    2002-12-01

    This case study was prepared as one in a series for the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new and retrofit laboratory buildings in both the public and the private sectors. The energy-efficient elements of the laboratory featured in this case study-the Georgia Public Health Laboratory, Decatur, Georgia-include sustainable design features, light-filled interior spaces for daylighting, closely grouped loads (such as freezers), the use of recirculated air in administrative areas, direct digital controls for heating and cooling equipment, sunscreens, and low-emissivity window glazing. These elements, combined with an attractive design and well-lighted work spaces, add up to a building that ranks high in comfort and low in energy use.

  12. Performance evaluation of tuberculosis smear microscopists working at rechecking laboratories in Ethiopia

    Directory of Open Access Journals (Sweden)

    Habtamu Asrat

    2017-04-01

    Objective: This study assessed the performance of tuberculosis smear microscopists at external quality assessment rechecking laboratories in Ethiopia. Methods: A cross-sectional study was conducted at 81 laboratories from April to July 2015. Panel slides were prepared and validated at the National Tuberculosis Reference Laboratory. The validated panel slides were used to evaluate the performance of microscopists at these laboratories compared with readers from the reference laboratory. Results: A total of 389 external quality assessment rechecking laboratory microscopists participated in the study, of which 268 (68.9% worked at hospitals, 241 (62% had more than five years of work experience, 201 (51.7% held Bachelors degrees, and 319 (82% reported tuberculosis smear microscopy training. Overall, 324 (83.3% participants scored ≥ 80%. Sensitivity for detecting tuberculosis bacilli was 84.5% and specificity was 93.1%. The overall percent agreement between participants and reference readers was 87.1 (kappa=0.72. All 10 slides were correctly read (i.e., scored 100% by 80 (20.6% participants, 156 (40.1% scored 90% – 95%, 88 (22.6% scored 80% – 85% and 65 (16.7% scored below 80%. There were 806 (20.7% total errors, with 143 (3.7% major and 663 (17% minor errors. Conclusion: The overall performance of participants in reading the slides showed good agreement with the reference readers. Most errors were minor, and the ability to detect tuberculosis bacilli can be improved through building the capacity of professionals.

  13. Environmental Sustainability and Mold Hygiene in Buildings.

    Science.gov (United States)

    Wu, Haoxiang; Ng, Tsz Wai; Wong, Jonathan Wc; Lai, Ka Man

    2018-04-04

    Environmental sustainability is one of the key issues in building management. In Hong Kong, one of the initiatives is to reduce the operation hours of air-conditioning in buildings to cut down energy consumption. In this study, we reported a mold contamination case in a newly refurbished laboratory, in which the air-conditioner was switched from 24- to 18-h mode after refurbishment. In order to prevent mold recurrence, the air-conditioner was switched back to 24-h mode in the laboratory. During the mold investigation, visible mold patches in the laboratory were searched and then cultured, counted and identified. Building and environmental conditions were recorded, and used to deduce different causes of mold contamination. Eight contaminated sites including a wall, a bench, some metal and plastic surfaces and seven types of molds including two Cladosporium spp., two Aspergillus spp., one Rhizopus sp., one Trichoderma sp., and one Tritirachium sp. were identified. Cladosporium spp. were the most abundant and frequently found molds in the laboratory. The contaminated areas could have one to five different species on them. Based on the mold and environmental conditions, several scenarios causing the mold contamination were deduced, and different mold control measures were discussed to compare them with the current solution of using 24-h air-conditioning to control mold growth. This study highlights the importance of mold hygiene in sustainable building management.

  14. Environmental Sustainability and Mold Hygiene in Buildings

    Directory of Open Access Journals (Sweden)

    Haoxiang Wu

    2018-04-01

    Full Text Available Environmental sustainability is one of the key issues in building management. In Hong Kong, one of the initiatives is to reduce the operation hours of air-conditioning in buildings to cut down energy consumption. In this study, we reported a mold contamination case in a newly refurbished laboratory, in which the air-conditioner was switched from 24- to 18-h mode after refurbishment. In order to prevent mold recurrence, the air-conditioner was switched back to 24-h mode in the laboratory. During the mold investigation, visible mold patches in the laboratory were searched and then cultured, counted and identified. Building and environmental conditions were recorded, and used to deduce different causes of mold contamination. Eight contaminated sites including a wall, a bench, some metal and plastic surfaces and seven types of molds including two Cladosporium spp., two Aspergillus spp., one Rhizopus sp., one Trichoderma sp., and one Tritirachium sp. were identified. Cladosporium spp. were the most abundant and frequently found molds in the laboratory. The contaminated areas could have one to five different species on them. Based on the mold and environmental conditions, several scenarios causing the mold contamination were deduced, and different mold control measures were discussed to compare them with the current solution of using 24-h air-conditioning to control mold growth. This study highlights the importance of mold hygiene in sustainable building management.

  15. DECOMMISSIONING THE HIGH PRESSURE TRITIUM LABORATORY AT LOS ALAMOS NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    Peifer, M.J.; Rendell, K.; Hearnsberger, D.W.

    2003-01-01

    In May 0f 2000, the Cerro Grande wild land fire burned approximately 48,000 acres in and around Los Alamos. In addition to the many buildings that were destroyed in the town site, many structures were also damaged and destroyed within the 43 square miles that comprise the Los Alamos National Laboratory (LANL). A special Act of Congress provided funding to remove Laboratory structures that were damaged by the fire, or that could be threatened by subsequent catastrophic wild land fires. The High Pressure Tritium Laboratory (HPTL) is located at Technical Area (TA) 33, building 86 in the far southeast corner of the Laboratory property. It is immediately adjacent to Bandelier National Park. Because it was threatened by both the Cerro Grande fire in 2000, and the 16,000- acre Dome fire in 1996, the former tritium processing facility was placed on the list of facilities scheduled for Decontamination and Decommissioning under the Cerro Grande Rehabilitation Project. The work was performed through the Facilities and Waste Operations (FWO) Division and is integrated with other Laboratory D and D efforts. The primary demolition contractor was Clauss Construction of San Diego, California. Earth Tech Global Environmental Services of San Antonio, Texas was sub-contracted to Clauss Construction, and provided radiological decontamination support to the project. Although the forty-seven year old facility had been in a state of safe-shutdown since operations ceased in 1990, a significant amount of tritium remained in the rooms where process systems were located. Tritium was the only radiological contaminant associated with this facility. Since no specific regulatory standards have been set for the release of volumetrically contaminated materials, concentration guidelines were derived in order to meet other established regulatory criteria. A tritium removal system was developed for this project with the goal of reducing the volume of tritium concentrated in the concrete of the

  16. Decontamination and decommission of a radiochemical laboratory building complex

    International Nuclear Information System (INIS)

    Zoubek, Norbert

    2008-01-01

    Full text: Handling of unsealed radioactive substances for research and development purposes in chemical or pharmaceutical industries or research centres as well as production of radioactive substances (e.g. for applications in nuclear medicine or industry) requires operation of special radiochemical laboratories. In general, operation of radiochemical laboratories is strongly regulated by the government and national authorities. The operator needs a permit related to radiological protection. In general, technical requirements for such facilities are very high. To ensure high safety standards with respect to the employees and the environment, several radiological protection measures have to be taken. These measures (for example special shielding or ventilation and waste water systems) depend on various factors, e.g. activity in use, kind of nuclides, chemical properties and volatility of substances. In order to close-down such radiochemical laboratories some radiological protection measures have to be maintained to ensure protection of both humans and the environment induced by possible residual contaminations within the facility including technical inventory. However, a later reuse of the facility as a non-radioactive facility requires removal of all radioactive contamination with respect to national regulation. Resulting radioactive wastes have to be disposed of under control of competent authorities. Based on the experience of a decontamination and decommission project for a former radiochemical laboratory complex, the main steps necessary to release such a facility are discussed. Analytical aspects of initial conditions, necessary organisational structures within the project, resources needed estimation and exploration of the radiological situation in the laboratory, elaboration of a measuring strategy and decontamination methods as well as different waste disposal routes in relation to different waste types are reported. (author)

  17. Verification Survey of the Building 315 Zero Power Reactor-6 Facility, Argonne National Laboratory-East, Argonne, Illinois

    International Nuclear Information System (INIS)

    W. C. Adams

    2007-01-01

    Oak Ridge Institute for Science and Education (ORISE) conducted independent verification radiological survey activities at Argonne National Laboratory's Building 315, Zero Power Reactor-6 facility in Argonne, Illinois. Independent verification survey activities included document and data reviews, alpha plus beta and gamma surface scans, alpha and beta surface activity measurements, and instrumentation comparisons. An interim letter report and a draft report, documenting the verification survey findings, were submitted to the DOE on November 8, 2006 and February 22, 2007, respectively (ORISE 2006b and 2007). Argonne National Laboratory-East (ANL-E) is owned by the U.S. Department of Energy (DOE) and is operated under a contract with the University of Chicago. Fundamental and applied research in the physical, biomedical, and environmental sciences are conducted at ANL-E and the laboratory serves as a major center of energy research and development. Building 315, which was completed in 1962, contained two cells, Cells 5 and 4, for holding Zero Power Reactor (ZPR)-6 and ZPR-9, respectively. These reactors were built to increase the knowledge and understanding of fast reactor technology. ZPR-6 was also referred to as the Fast Critical Facility and focused on fast reactor studies for civilian power production. ZPR-9 was used for nuclear rocket and fast reactor studies. In 1967, the reactors were converted for plutonium use. The reactors operated from the mid-1960's until 1982 when they were both shut down. Low levels of radioactivity were expected to be present due to the operating power levels of the ZPR's being restricted to well below 1,000 watts. To evaluate the presence of radiological contamination, DOE characterized the ZPRs in 2001. Currently, the Melt Attack and Coolability Experiments (MACE) and Melt Coolability and Concrete Interaction (MCCI) Experiments are being conducted in Cell 4 where the ZPR-9 is located (ANL 2002 and 2006). ANL has performed final

  18. Next Steps on the Road to Zero Energy Buildings: Report on October 23-24, 2000 Meeting Held at the National Renewable Energy Laboratory, Golden, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Comer, Jerry [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2000-11-01

    This report summarizes a 2-day meeting held October 23-24, 2000 at the National Renewable Energy Laboratory in Golden, Colorado. Approximately 60 individuals attended the meeting from the following segments: building industry; solar thermal manufacturers (solar hot water, SHW); photovoltaic manufacturers (PV); generalists (consultants and interested parties involved in renewable energy); National Renewable Energy Laboratory (NREL) and Sandia National Laboratory (SNL); and US Department of Energy. The objectives of the meeting included: acquaint attendees with the Zero Energy Buildings (ZEB) goal; determine the most cost effective methods of incorporating solar technologies in production-built homes; identify 'make or break' areas to focus on; outline 6 month, 1 year, 5 year strategies and tactics; and create action plan with designated responsibilities. The format of the meeting was designed to maximize interaction between all attendees and to create a 'working' environment where a roadmap and action plans to support ZEB efforts would be created. Presentations the morning of the first day set the context for the discussions and breakout sessions that followed. The agenda was modified at the end of the first day of meetings to reflect the input of attendees. The revised agenda is included in the Appendix.

  19. Issues ignored in laboratory quality surveillance

    International Nuclear Information System (INIS)

    Zeng Jing; Li Xingyuan; Zhang Tingsheng

    2008-01-01

    According to the work requirement of the related laboratory quality surveillance in ISO17025, this paper analyzed and discussed the issued ignored in the laboratory quality surveillance. In order to solve the present problem, it is required to understand the work responsibility in the quality surveillance correctly, to establish the effective working routine in the quality surveillance, and to conduct, the quality surveillance work. The object in the quality surveillance shall be 'the operator' who engaged in the examination/calibration directly in the laboratory, especially the personnel in training (who is engaged in the examination/calibration). The quality supervisors shall be fully authorized, so that they can correctly understand the work responsibility in quality surveillance, and are with the rights for 'full supervision'. The laboratory also shall arrange necessary training to the quality supervisor, so that they can obtain sufficient guide in time and are with required qualification or occupation prerequisites. (authors)

  20. Small- and Medium-Sized Commercial Building Monitoring and Controls Needs: A Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas; Underhill, Ronald M.; Goddard, James K.; Taasevigen, Danny J.; Piette, M. A.; Granderson, J.; Brown, Rich E.; Lanzisera, Steven M.; Kuruganti, T.

    2012-10-31

    Buildings consume over 40% of the total energy consumption in the U.S. A significant portion of the energy consumed in buildings is wasted because of the lack of controls or the inability to use existing building automation systems (BASs) properly. Much of the waste occurs because of our inability to manage and controls buildings efficiently. Over 90% of the buildings are either small-size (<5,000 sf) or medium-size (between 5,000 sf and 50,000 sf); these buildings currently do not use BASs to monitor and control their building systems from a central location. According to Commercial Building Energy Consumption Survey (CBECS), about 10% of the buildings in the U.S. use BASs or central controls to manage their building system operations. Buildings that use BASs are typically large (>100,000 sf). Lawrence Berkeley National Laboratory (LBNL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) were asked by the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP) to identify monitoring and control needs for small- and medium-sized commercial buildings and recommend possible solutions. This study documents the needs and solutions for small- and medium-sized buildings.

  1. Implementing the Corrective Action Management Unit at Sandia National Laboratories, New Mexico

    International Nuclear Information System (INIS)

    Moore, Darlene R.; Schrader, Scott A.; King, Gabriel G.; Cormier, John

    2000-01-01

    In September 1997, following significant public and regulator interaction, Sandia Corporation (Sandia) was granted a Resource Conservation and Recovery Act (RCRA) and Hazardous Solid Waste Amendment (HSWA) permit modification allowing construction and operation of a Correction Action Management Unit (CAMU). The CAMU follows recent regulatory guidance that allows for cost-effective, expedient cleanup of contaminated sites and management of hazardous remediation wastes. The CAMU was designed to store, treat, and provide long-term management for Environmental Restoration (ER) derived wastes. The 154 square meter CAMU site at Sandia National Laboratories, New Mexico (SNL/NM), includes facilities for storing bulk soils and containerized wastes, for treatment of bulk soils, and has a containment cell for long-term disposition of waste. Proposed treatment operations include soil washing and low temperature thermal desorption. The first waste was accepted into the CAMU for temporary storage in January 1999. Construction at the CAMU was completed in March 1999, and baseline monitoring of the containment cell has commenced. At completion of operations the facility will be closed, the waste containment cell will be covered, and long-term post-closure monitoring will begin. Sandia's CAMU is the only such facility within the US Department of Energy (DOE) complex. Implementing this innovative approach to ER waste management has required successful coordination with community representatives, state and federal regulators, the DOE, Sandia corporate management, and contractors. It is expected that cost savings to taxpayers will be significant. The life-cycle CAMU project cost is currently projected to be approximately $12 million

  2. 1Q/2Q00 M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - First and Second Quarters 2000 - Volumes I, II, and II

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    2000-10-24

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River site (SRS) during first and second quarters of 2000.

  3. 1Q/2Q00 M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - First and Second Quarters 2000 - Volumes I, II, and II

    International Nuclear Information System (INIS)

    Chase, J.

    2000-01-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River site (SRS) during first and second quarters of 2000

  4. Automatic Contextual Text Correction Using The Linguistic Habits Graph Lhg

    Directory of Open Access Journals (Sweden)

    Marcin Gadamer

    2009-01-01

    Full Text Available Automatic text correction is an essential problem of today text processors and editors. Thispaper introduces a novel algorithm for automation of contextual text correction using a LinguisticHabit Graph (LHG also introduced in this paper. A specialist internet crawler hasbeen constructed for searching through web sites in order to build a Linguistic Habit Graphafter text corpuses gathered in polish web sites. The achieved correction results on a basis ofthis algorithm using this LHG were compared with commercial programs which also enableto make text correction: Microsoft Word 2007, Open Office Writer 3.0 and search engineGoogle. The achieved results of text correction were much better than correction made bythese commercial tools.

  5. Building trust and confidence in laboratory ES and H policy and practices

    Energy Technology Data Exchange (ETDEWEB)

    Graf, J.

    2000-08-01

    This report describes a successful pilot event among LANL employees that can see as a model for employee involvement and community input. The conference was designed to begin building trust and confidence in Laboratory policy and practices in the area of Environment, Safety, and Health (ES and H). It represents a concrete step toward fostering better relationships among Lab employees and creating a new, innovative approach to communication that can also be used to build trust in the larger community. Based on the proven methods of the National Issues Forums and the Jefferson Center Citizen Jury Process, this conference enabled management to learn more about the thoughts and advice of LANL employees, During the course of the day, a random sample of Lab employees representing the LANL workforce learned about issues of health, safety and the environment, and some of the options available to increase trustworthiness in these areas. These Employee Advisors then discussed the options at some length and presented recommendations to senior Lab managers in the role of Decision Makers. At the end of the day, the participants offered their reflections and discussed what they learned during the conference, and Decision Makers responded to what they heard. The most common view expressed by the Employee Advisors was that a bottom-up approach was necessary to develop more relevant ES and H policies. They were unanimous in their desire for more employee inclusion into the decision making process. All Employee Advisors were in support of a Lab wide survey to determine employee concerns about ES and H issues. After listening to the deliberation, the Decision Makers responded with several commitments. The most significant was the pledge to meet with Employee Advisors by the end of February to discuss the status of their recommendations on ES and H policy and practices. The ensuing follow-up meeting explored employee concerns in greater depth resulting in forward-looking action steps

  6. On the Atmospheric Correction of Antarctic Airborne Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Martin Black

    2014-05-01

    Full Text Available The first airborne hyperspectral campaign in the Antarctic Peninsula region was carried out by the British Antarctic Survey and partners in February 2011. This paper presents an insight into the applicability of currently available radiative transfer modelling and atmospheric correction techniques for processing airborne hyperspectral data in this unique coastal Antarctic environment. Results from the Atmospheric and Topographic Correction version 4 (ATCOR-4 package reveal absolute reflectance values somewhat in line with laboratory measured spectra, with Root Mean Square Error (RMSE values of 5% in the visible near infrared (0.4–1 µm and 8% in the shortwave infrared (1–2.5 µm. Residual noise remains present due to the absorption by atmospheric gases and aerosols, but certain parts of the spectrum match laboratory measured features very well. This study demonstrates that commercially available packages for carrying out atmospheric correction are capable of correcting airborne hyperspectral data in the challenging environment present in Antarctica. However, it is anticipated that future results from atmospheric correction could be improved by measuring in situ atmospheric data to generate atmospheric profiles and aerosol models, or with the use of multiple ground targets for calibration and validation.

  7. Removal design report for the 108-F Biological Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Most of the 100-F facilities were deactivated with the reactor and have since been demolished. Of the dozen or so reactor-related structures, only the 105-F Reactor Building and the 108-F Biology Laboratory remain standing today. The 108-F Biology Laboratory was intended to be used as a facility for the mixing and addition of chemicals used in the treatment of the reactor cooling water. Shortly after F Reactor began operation, it was determined that the facility was not needed for this purpose. In 1949, the building was converted for use as a biological laboratory. In 1962, the lab was expanded by adding a three-story annex to the original four-story structure. The resulting lab had a floor area of approximately 2,883 m{sup 2} (main building and annex) that operated until 1973. The building contained 47 laboratories, a number of small offices, a conference room, administrative section, lunch and locker rooms, and a heavily shielded, high-energy exposure cell. The purpose of this removal design report is to establish the methods of decontamination and decommissioning and the supporting functions associated with facility removal and disposal.

  8. Removal design report for the 108-F Biological Laboratory

    International Nuclear Information System (INIS)

    1997-09-01

    Most of the 100-F facilities were deactivated with the reactor and have since been demolished. Of the dozen or so reactor-related structures, only the 105-F Reactor Building and the 108-F Biology Laboratory remain standing today. The 108-F Biology Laboratory was intended to be used as a facility for the mixing and addition of chemicals used in the treatment of the reactor cooling water. Shortly after F Reactor began operation, it was determined that the facility was not needed for this purpose. In 1949, the building was converted for use as a biological laboratory. In 1962, the lab was expanded by adding a three-story annex to the original four-story structure. The resulting lab had a floor area of approximately 2,883 m 2 (main building and annex) that operated until 1973. The building contained 47 laboratories, a number of small offices, a conference room, administrative section, lunch and locker rooms, and a heavily shielded, high-energy exposure cell. The purpose of this removal design report is to establish the methods of decontamination and decommissioning and the supporting functions associated with facility removal and disposal

  9. Progressing beyond SLMTA: Are internal audits and corrective action the key drivers of quality improvement?

    Science.gov (United States)

    Maina, Robert N; Mengo, Doris M; Mohamud, Abdikher D; Ochieng, Susan M; Milgo, Sammy K; Sexton, Connie J; Moyo, Sikhulile; Luman, Elizabeth T

    2014-01-01

    Kenya has implemented the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme to facilitate quality improvement in medical laboratories and to support national accreditation goals. Continuous quality improvement after SLMTA completion is needed to ensure sustainability and continue progress toward accreditation. Audits were conducted by qualified, independent auditors to assess the performance of five enrolled laboratories using the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist. End-of-programme (exit) and one year post-programme (surveillance) audits were compared for overall score, star level (from zero to five, based on scores) and scores for each of the 12 Quality System Essential (QSE) areas that make up the SLIPTA checklist. All laboratories improved from exit to surveillance audit (median improvement 38 percentage points, range 5-45 percentage points). Two laboratories improved from zero to one star, two improved from zero to three stars and one laboratory improved from three to four stars. The lowest median QSE scores at exit were: internal audit; corrective action; and occurrence management and process improvement (service, internal audit and information management (≥ 50 percentage points). The two laboratories with the greatest overall improvement focused heavily on the internal audit and corrective action QSEs. Whilst all laboratories improved from exit to surveillance audit, those that focused on the internal audit and corrective action QSEs improved substantially more than those that did not; internal audits and corrective actions may have acted as catalysts, leading to improvements in other QSEs. Systematic identification of core areas and best practices to address them is a critical step toward strengthening public medical laboratories.

  10. Pacific Northwest Laboratory facilities radionuclide inventory assessment CY 1992-1993

    International Nuclear Information System (INIS)

    Sula, M.J.; Jette, S.J.

    1994-09-01

    Assessments for evaluating compliance with airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAPs - U.S. Code of Federal Regulations, Title 40 Part 61, Subparts H and I) were performed for 33 buildings at the U.S. Department of Energy's (DOE) Pacific Northwest Laboratory on the Hanford Site, and for five buildings owned and operated by Battelle, Pacific Northwest Laboratories in Richland, Washington. The assessments were performed using building radionuclide inventory data obtained in 1992 and 1993. Results of the assessments are summarized in Table S.1 for DOE-PNL buildings and in Table S.2 for Battelle-owned buildings. Based on the radionuclide inventory assessments, four DOE-PNL buildings (one with two emission points) require continuous sampling for radionuclides per 40 CFR 61. None of the Battelle-owned buildings require continuous emission sampling

  11. The Influence of Building Codes on Recreation Facility Design.

    Science.gov (United States)

    Morrison, Thomas A.

    1989-01-01

    Implications of building codes upon design and construction of recreation facilities are investigated (national building codes, recreation facility standards, and misperceptions of design requirements). Recreation professionals can influence architectural designers to correct past deficiencies, but they must understand architectural and…

  12. Building 2000

    International Nuclear Information System (INIS)

    Den Ouden, C.; Steemers, T.C.

    1992-01-01

    This is the second volume of Building 2000, a pilot project of the Commission's R and D-programme 'Solar Energy Applications to Buildings' with the purpose of encouraging the adoption of solar architecture in large buildings. In this second rich illustrated volume the results of the design studies illustrating passive solar architecture in buildings in the European Community are presented in particular for the building categories as mentioned in the subtitle. In the first volume, a similar series of studies is presented for the building categories: schools, laboratories and universities, and sports and educational centres. Several Design Support Workshops were organized during the Building 2000 programme during which Building 2000 design teams could directly exchange ideas with the various design advice experts represented at these workshops. In the second part of the Building 2000 final report a summary of a selection of many reports is presented (11 papers), as produced by Design Support experts. Most of the design support activities resulted in changes of the various designs, as have been reported by the design teams in the brochures presented in the first part of this book. It is to be expected that design aids and simulation tools for passive solar options, daylighting concepts, comfort criteria etc., will be utilized more frequently in the future. This will result in a better exchange of information between the actual design practitioners and the European R and D community. This technology transfer will result in buildings with a higher quality with respect to energy and environmental issues

  13. Building 2000

    Energy Technology Data Exchange (ETDEWEB)

    Den Ouden, C [EGM Engineering BV, Dordrecht (Netherlands); Steemers, T C [Commission of the European Communities, Brussels (Belgium)

    1992-01-01

    This is the second volume of Building 2000, a pilot project of the Commission's R and D-programme 'Solar Energy Applications to Buildings' with the purpose of encouraging the adoption of solar architecture in large buildings. In this second rich illustrated volume the results of the design studies illustrating passive solar architecture in buildings in the European Community are presented in particular for the building categories as mentioned in the subtitle. In the first volume, a similar series of studies is presented for the building categories: schools, laboratories and universities, and sports and educational centres. Several Design Support Workshops were organized during the Building 2000 programme during which Building 2000 design teams could directly exchange ideas with the various design advice experts represented at these workshops. In the second part of the Building 2000 final report a summary of a selection of many reports is presented (11 papers), as produced by Design Support experts. Most of the design support activities resulted in changes of the various designs, as have been reported by the design teams in the brochures presented in the first part of this book. It is to be expected that design aids and simulation tools for passive solar options, daylighting concepts, comfort criteria etc., will be utilized more frequently in the future. This will result in a better exchange of information between the actual design practitioners and the European R and D community. This technology transfer will result in buildings with a higher quality with respect to energy and environmental issues.

  14. Correction of build-up factor one x-ray hvl measurement

    International Nuclear Information System (INIS)

    Yuliati, Helfi; Akhadi, Mukhlis

    2000-01-01

    Research to obtain the value build-up factor (b) on half value layers (HVL) measurement of diagnostic X-Rays using pocket dosimeter behind aluminium (AI) filter with its thickness vary from 1 to 4 mm. From the measurement it was obtained HVL value of 1.997, 2.596 and 2.718 mmAI for X-Rays of kVp : 80 Kv with 1, 2, 3 and 4 mm filter thickness respectively. HVL value significantly increase with increasing AI filter thickness. Increasing of HVL means increasing filter thickness. From the calculation it was obtained increasing b value relative to 1 mm AI filter of 18.26 and 46% for filter thickness of 2, 3 and 4 mm respectively. Experiment result shows the need of involving b value in HVL calculation of X-Rays if the filter is relatively thick. Calculation of HVL of X-Rays can be carried out with thin layers filter. Key words : x-rays, half value layer, build up factor

  15. A concentration correction scheme for Lagrangian particle model and its application in street canyon air dispersion modelling

    Energy Technology Data Exchange (ETDEWEB)

    Jiyang Xia [Shanghai Jiao Tong University, Shanghai (China). Department of Engineering Mechanics; Leung, D.Y.C. [The University of Hong Kong (Hong Kong). Department of Mechanical Engineering

    2001-07-01

    Pollutant dispersion in street canyons with various configurations was simulated by discharging a large number of particles into the computation domain after developing a time-dependent wind field. Trajectory of the released particles was predicted using a Lagrangian particle model developed in an earlier study. A concentration correction scheme, based on the concept of 'visibility', was adopted for the Lagrangian particle model to correct the calculated pollutant concentration field in street canyons. The corrected concentrations compared favourably with those from wind tunnel experiments and a linear relationship between the computed concentrations and wind tunnel data were found. The developed model was then applied to four simulations to test for the suitability of the correction scheme and to study pollutant distribution in street canyons with different configurations. For those cases with obstacles presence in the computation domain, the correction scheme gives more reasonable results compared with the one without using it. Different flow regimes are observed in the street canyons, which depend on building configurations. A counter-clockwise rotating vortex may appear in a two-building case with wind flow from left to right, causing lower pollutant concentration at the leeward side of upstream building and higher concentration at the windward side of downstream building. On the other hand, a stable clockwise rotating vortex is formed in the street canyon with multiple identical buildings, resulting in poor natural ventilation in the street canyon. Moreover, particles emitted in the downstream canyon formed by buildings with large height-to-width ratios will be transported to upstream canyons. (author)

  16. A Guide to Building Commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.

    2011-09-01

    Commissioning is the process of verifying that a building's heating, ventilation, and air conditioning (HVAC) and lighting systems perform correctly and efficiently. Without commissioning, system and equipment problems can result in higher than necessary utility bills and unexpected and costly equipment repairs. This report reviews the benefits of commissioning, why it is a requirement for Leadership in Energy and Environmental Design (LEED) certification, and why building codes are gradually adopting commissioning activities into code.

  17. Design of metrology laboratory and microfab center against vibration from shakers laboratory of the new Hong Kong University of Science and Technology

    Science.gov (United States)

    Hong, Westwood K. W.; Boulter, Nicholas

    1992-02-01

    The design of vibration-sensitive laboratories normally requires the protection of these areas from incoming vibration generated by plant, road traffic and footfall impacts. The compact nature of the new HKUST campus requires a more exact design than one would find for a spacious campus with laboratory buildings nicely separated. The HKUST user required a centralized laboratory service with easy access to the major testing facilities. This resulted in the location of vibration sensitive areas (micro-fabrication center and metrology laboratory) close to a Structural Laboratory housing large shakers. These were to be used for seismic and modal testing of structural elements and prototypes. The design of the support structure for the shakers, known as the reaction floor, was critical to the success of the building. Particular attention was paid to the design and construction of the foundations for the reaction floor. For controlling the vibration generated by 10-ton-force rated shakers, a massive structure with caisson supports was designed for the reaction floor and reaction wall. Finite element models were employed to calculate the response of the laboratory floors located above the reaction floor in other parts of the building. The metrology laboratory structure and the foundation design of the reaction floor and a wafer fab built in the U.K. will be presented.

  18. Manufacturing of NAA laboratory clean room

    International Nuclear Information System (INIS)

    Suwoto; Hasibuan, Djaruddin

    2001-01-01

    The ''NAA laboratory clean room'' has been built in the Reactor Serba Guna G.A. Siwabessy building. The erection of ''AAN laboratory clean room'' doing by started of preparation of the ''manufacturing procedure'' refer to ''Design and manufacturing neutron activation analysis clean room laboratory''. Manufacturing process and erection doing refer to procedures makes. By providing of the ''AAN laboratory clean room'' can be cocluded that the research activity and the user sevises in P2TRR well meet to be done

  19. High-performance laboratories and cleanrooms; TOPICAL

    International Nuclear Information System (INIS)

    Tschudi, William; Sartor, Dale; Mills, Evan; Xu, Tengfang

    2002-01-01

    The California Energy Commission sponsored this roadmap to guide energy efficiency research and deployment for high performance cleanrooms and laboratories. Industries and institutions utilizing these building types (termed high-tech buildings) have played an important part in the vitality of the California economy. This roadmap's key objective to present a multi-year agenda to prioritize and coordinate research efforts. It also addresses delivery mechanisms to get the research products into the market. Because of the importance to the California economy, it is appropriate and important for California to take the lead in assessing the energy efficiency research needs, opportunities, and priorities for this market. In addition to the importance to California's economy, energy demand for this market segment is large and growing (estimated at 9400 GWH for 1996, Mills et al. 1996). With their 24hr. continuous operation, high tech facilities are a major contributor to the peak electrical demand. Laboratories and cleanrooms constitute the high tech building market, and although each building type has its unique features, they are similar in that they are extremely energy intensive, involve special environmental considerations, have very high ventilation requirements, and are subject to regulations-primarily safety driven-that tend to have adverse energy implications. High-tech buildings have largely been overlooked in past energy efficiency research. Many industries and institutions utilize laboratories and cleanrooms. As illustrated, there are many industries operating cleanrooms in California. These include semiconductor manufacturing, semiconductor suppliers, pharmaceutical, biotechnology, disk drive manufacturing, flat panel displays, automotive, aerospace, food, hospitals, medical devices, universities, and federal research facilities

  20. Ventilation measurements as an adjunct to radon measurements in buildings

    International Nuclear Information System (INIS)

    Knutson, E.O.; Franklin, H.

    1977-01-01

    The concentration of radon in a building is a function of the radon sources within the building and of the building's ventilation characteristics. To complement its radon measurement program, HASL is currently assessing apparatus and procedures for measuring building ventilation. Results are reported from ventilation measurements made in the laboratory and in a residential building

  1. Building Magnets at Brookhaven National Laboratory - An Account

    Energy Technology Data Exchange (ETDEWEB)

    Willen, E. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-02-01

    The development of superconducting wire and cable in the late 20th century enabled high field magnets and thus much higher beam collision energies in accelerators. These higher collision energies have allowed experiments to probe further into the structure of matter at the most fundamental, subatomic level. The behavior of the early universe, where these high energies prevailed, and its evolution over time are what these experiments seek to investigate. The subject has aroused the curiosity of not only scientists but of the public as well and has facilitated the support needed to build and operate such expensive machines and experiments. The path forward has not been easy, however. Success in most projects has been mixed with failure, progress with ineptitude. The building of high energy accelerators is mostly a story of capable people doing their best to develop new and unusual technology toward some defined goal, with success and failure in uneven measure along the way. It is also a story of administrative imperatives that have had unpredictable effects on a project’s success, depending mostly on the people in the administrative roles and the decisions that they have made.

  2. Pre Incident Planning For The Los Alamos National Laboratory

    Science.gov (United States)

    2017-12-01

    laboratory was asked to design and build the world’s first atomic bomb . The Los Alamos Fire Department (LAFD) provides emergency response services to...Project: the newly established laboratory was asked to design and build the world’s first atomic bomb . The Los Alamos Fire Department (LAFD) provides...lower priority despite its importance to the responders’ scene safety.20 In a Carolina Fire Rescue EMS Journal article, retired New York City

  3. Electric Propulsion Research Building (EPRB)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electric Propulsion Research Building (EPRB) capability centers on its suite of vacuum chambers, which are configured to meet the unique requirements related to...

  4. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  5. Lawrence and his laboratory

    International Nuclear Information System (INIS)

    Hellbron, J.L.; Seidel, R.W.

    1989-01-01

    The birthplace of nuclear chemistry and nuclear medicine is the subject of this study of the Radiation Laboratory in Berkeley, California, where Ernest Lawrence used local and national technological, economic, and manpower resources to build the cyclotron

  6. Laboratory Study of Polychlorinated Biphenyl (PCB) Contamination and Mitigation in Buildings -- Part 4. Evaluation of the Activated Metal Treatment System (AMTS) for On-site Destruction of PCBs

    Science.gov (United States)

    This is the fourth, also the last, report of the report series entitled “Laboratory Study of Polychlorinated Biphenyl (PCB) Contamination and Mitigation in Buildings.” This report evaluates the performance of an on-site PCB destruction method, known as the AMTS method, developed ...

  7. Armstrong's Building 703 in Palmdale

    Data.gov (United States)

    Federal Laboratory Consortium — NASA Armstrong Flight Research Center's (AFRC) Building 703 is located in Palmdale, Calif., 70 miles northeast of downtown Los Angeles. NASA has leased the facility,...

  8. Experimental study of a laboratory concrete material representative of containment buildings: desorption isotherms and permeability determination

    International Nuclear Information System (INIS)

    Semete, P.; Fevrier, B.; Delorme, J.; Sanahuja, J.; Desgree, P.; Le Pape, Y.

    2015-01-01

    The isotherm sorption curve is a first order parameter for the calculations of concrete drying and/or creep using Finite Element Analysis. An experimental campaign was undertaken by EDF MMC in order to characterize the first desorption isotherm at room temperature of a laboratory material representative of concrete containment buildings. Long term drying tests were carried out on cement paste and on three samples geometries on concrete (with radial and axial one-dimensional drying on thin disks and multi-dimensional drying on Representative Elementary Volumes). The measurements results (porosity, densities and mass loss curves) are provided and the isotherms obtained for the four different configurations are compared. Several analyses of the results are proposed including the assessment of a criterion for the determination of the moisture content final balance (estimation of the asymptotic mass loss) and the back-analysis of equivalent permeability. (authors)

  9. Indoor air quality investigation and health risk assessment at correctional institutions.

    Science.gov (United States)

    Ofungwu, Joseph

    2005-04-01

    A comprehensive indoor air-quality (IAQ) investigation was conducted at a state correctional facility in New Jersey, USA with a lengthy history of IAQ problems. The IAQ investigation comprised preliminary indoor air screening using direct readout instrumentation, indoor air/surface wipe sampling and laboratory analysis, as well as a heating, ventilation, and air-conditioning system evaluation, and a building envelope survey. In addition to air sampling, a human health risk assessment was performed to evaluate the potential for exposure to site-related air contaminants with respect to the inmate and worker populations. The risk assessment results for the prison facility indicated the potential for significant health risks for the inmate population, possibly reflecting the effects of their confinement and extended exposure to indoor air contaminants, as compared to the prison guard and worker population. Based on the results of the risk assessment, several mitigation measures are recommended to minimize prison population health risks and improve indoor air quality at prison facilities.

  10. INL High Performance Building Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  11. Decontamination and decommissioning of the Argonne National Laboratory Building 350 Plutonium Fabrication Facility. Final report

    International Nuclear Information System (INIS)

    Kline, W.H.; Moe, H.J.; Lahey, T.J.

    1985-02-01

    In 1973, Argonne National Laboratory began consolidating and upgrading its plutonium-handling operations with the result that the research fuel-fabrication facility located in Building 350 was shut down and declared surplus. Sixteen of the twenty-three gloveboxes which comprised the system were disassembled and relocated for reuse or placed into controlled storage during 1974 but, due to funding constraints, full-scale decommissioning did not start until 1978. Since that time the fourteen remaining contaminated gloveboxes, including all internal and external equipment as well as the associated ventilation systems, have been assayed for radioactive content, dismantled, size reduced to fit acceptable packaging and sent to a US Department of Energy (DOE) transuranic retrievable-storage site or to a DOE low-level nuclear waste burial ground. The project which was completed in 1983, required 5 years to accomplish, 32 man years of effort, produced some 540 m 3 (19,000 ft 3 ) of radioactive waste of which 60% was TRU, and cost 2.4 million dollars

  12. Research on self-absorption corrections for laboratory γ spectral analysis of soil samples

    International Nuclear Information System (INIS)

    Tian Zining; Jia Mingyan; Li Huibin; Cheng Ziwei; Ju Lingjun; Shen Maoquan; Yang Xiaoyan; Yan Ling; Fen Tiancheng

    2010-01-01

    Based on the calibration results of the point sources,dimensions of HPGe crystal were characterized.Linear attenuation coefficients and detection efficiencies of all kinds of samples were calculated,and the function F(μ) of φ75 mm x 25 mm sample was established. Standard surface source was used to simulate the source of different heights in the soil sample. And the function ε(h) which reflect the relationship between detection efficiencies and heights of the surface sources was determined. The detection efficiency of calibration source can be obtained by integration, F(μ) functions of soil samples established is consistent with the result of MCNP calculation code. Several φ75 mm x 25 mm soil samples were measured by the HPGe spectrometer,and the function F(μ) was used to correct the self absorption. F(μ) functions of soil samples of various dimensions can be calculated by MCNP calculation code established, and self absorption correction can be done. To verify the efficiency of calculation results, φ75 mm x 75 mm soil samples were measured. Several φ75 mm x 25 mm soil samples from aerosphere nuclear testing field was measured by the HPGe spectrometer,and the function F(μ) was used to correct the self absorption. The function F(m) was established, and the technical method which is used to correct the soil samples of unknown area is also given. The correction method of surface source greatly improves the gamma spectrum's metrical accuracy, and it will be widely applied to environmental radioactive investigation. (authors)

  13. Building America Research Benchmark Definition, Updated December 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engebrecht, Cheryn [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-01-01

    To track progress toward aggressive multi-year, whole-house energy savings goals of 40%–70% and on-site power production of up to 30%, the U.S. Department of Energy (DOE) Residential Buildings Program and the National Renewable Energy Laboratory (NREL) developed the Building America (BA) Research Benchmark in consultation with the Building America industry teams.

  14. Laboratory safety handbook

    Science.gov (United States)

    Skinner, E.L.; Watterson, C.A.; Chemerys, J.C.

    1983-01-01

    Safety, defined as 'freedom from danger, risk, or injury,' is difficult to achieve in a laboratory environment. Inherent dangers, associated with water analysis and research laboratories where hazardous samples, materials, and equipment are used, must be minimized to protect workers, buildings, and equipment. Managers, supervisors, analysts, and laboratory support personnel each have specific responsibilities to reduce hazards by maintaining a safe work environment. General rules of conduct and safety practices that involve personal protection, laboratory practices, chemical handling, compressed gases handling, use of equipment, and overall security must be practiced by everyone at all levels. Routine and extensive inspections of all laboratories must be made regularly by qualified people. Personnel should be trained thoroughly and repetitively. Special hazards that may involve exposure to carcinogens, cryogenics, or radiation must be given special attention, and specific rules and operational procedures must be established to deal with them. Safety data, reference materials, and texts must be kept available if prudent safety is to be practiced and accidents prevented or minimized.

  15. Specific application for Oak Ridge National Laboratory dismantlement of Building 3004. Appendix A - Quality assurance plan; Appendix B - Records management plan

    International Nuclear Information System (INIS)

    1997-03-01

    This quality assurance (QA) plan defines the QA requirements for the dismantlement and removal of Building 3004 at Oak Ridge National Laboratory (ORNL). The building is a four-story wooden trained structure with wooden siding, which resides approximately 150 ft west of the Bulk Shielding Reactor, and only several feet away from the visitors entrance to the Graphite Reactor museum. Complete descriptions and sketches are in the Performance Specification document for this project. This project is being conducted as a non-CERCLA maintenance action. This plan is an appendix to the QA plan for the ORNL Environmental Restoration (ER) Program. ORNL/ER-225, which is the source of the project QA requirements, tailors those QA requirements to the specific needs of this project as defined in ORNL/ER-225. Project-specific description and organization are also provided in this plan. Appendix B, Records Management Plan, is included

  16. Decontamination of concrete surfaces in Building 3019, Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Parrott, J.R. Sr.

    1980-01-01

    This building was built in 1943 to serve as a pilot plant for separating isotopes from irradiated fuels. A chemical explosion leading to widespread Pu contamination occurred on Nov. 20, 1959, and the steps taken to treat the building afterwards are discussed, in particular the floor and the cells. The experience shows how hard it is to decontaminate concrete; smooth coatings should be utilized

  17. Home and Building Energy Management Systems | Grid Modernization | NREL

    Science.gov (United States)

    Home and Building Energy Management Systems Home and Building Energy Management Systems NREL researchers are developing tools to understand the impact of changes in home and building energy use and how researchers who received a record of invention for a home energy management system in a smart home laboratory

  18. Results of Laboratory Testing of Advanced Power Strips

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-08-01

    Presented at the ACEEE Summer Study on Energy Efficiency in Buildings on August 12-17, 2012, this presentation reports on laboratory tests of 20 currently available advanced power strip products, which reduce wasteful electricity use of miscellaneous electric loads in buildings.

  19. Post remedial action survey report for Building 003, Santa Susana Field Laboratories, Rockwell International, Ventura County, California, October 1981; April 1982. Surplus Facilities Management Program

    International Nuclear Information System (INIS)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

    1983-10-01

    Rockwell International's Santa Susana Laboratories in Ventura County, California, have been the site of numerous Federally-funded projects involving the use of radioactive materials. One such project was the System for Nuclear Auxiliary Power (SNAP) Program. Building 003 on the Santa Susana site was used in conjunction with the SNAP Program and contained a highly shielded area designed for remote manipulation of radioactive materials. Such facilities are commonly referred to as hot caves. During the SNAP Program, fuel burnup samples were analyzed and irradiation experiments were evaluated in the Building 003 hot cave. Use of the hot cave facility ended when the SNAP Program was terminated in 1973. Subsequently, the Building 003 facilities were declared excess and were decontaminaed and decommissioned during the first half of calendar year 1975. At that time, the building was given a preliminary release. In 1981, a post-remedial-action (certification) survey of Building 003 was conducted at the request of the Department of Energy. Significant levels of residual contamination were found in various parts of the building. Consequently, additional decontamination was conducted by Rockwell International. A final post-remedial-action survey was conducted during April 1982, and those areas in Building 003 that had been found contaminated in 1981 were now found to be free of detectable radioactive contamination. Sludge samples taken from the sewer sump showed elevated levels of enriched uranium contaminant. Hence, all sewer lines within Building 003 were removed. This permitted unconditional release of the building for unrestricted use. However, the sewer lines exterior to the building, which remain in place, must be considered potentially contaminated and, therefore, subject to restricted use

  20. Building technologies program. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, S.E.

    1996-05-01

    The 1995 annual report discusses laboratory activities in the Building Technology Program. The report is divided into four categories: windows and daylighting, lighting systems, building energy simulation, and advanced building systems. The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building-sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. Past efforts have focused on windows and lighting, and on the simulation tools needed to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. Current research is based on an integrated systems and life-cycle perspective to create cost-effective solutions for more energy-efficient, comfortable, and productive work and living environments. Sixteen subprograms are described in the report.

  1. A laboratory exercise on systematic effects in gamma ray spectrometry

    International Nuclear Information System (INIS)

    Henrik Ramebaeck

    2015-01-01

    A laboratory exercise for calculation of true coincidence summing correction factors as well as calculating the effect of deviations between sample and standard source (filling height) was developed. This laboratory exercise was held in a masters course in nuclear chemistry the first time during fall 2013. The aim of the exercise was to high-light the importance of correcting for biases due to different systematic effects in gamma spectrometric measurements. (author)

  2. NRAO Central Development Laboratory (CDL)

    Data.gov (United States)

    Federal Laboratory Consortium — The mission of the CDL is to support the evolution of NRAO's existing facilities and to provide the technology and expertise needed to build the next generation of...

  3. Correcting for variable laser-target distances of laser-induced breakdown spectroscopy measurements with ChemCam using emission lines of Martian dust spectra

    Energy Technology Data Exchange (ETDEWEB)

    Melikechi, N.; Mezzacappa, A. [Optical Science Center for Applied Research, Delaware State University, Dover, DE (United States); Cousin, A.; Lanza, N.L. [Los Alamos National Laboratory, Los Alamos, NM (United States); Lasue, J. [Institut de Recherche en Astophysique et Planetologie (IRAP), Universite' Paul Sabatier, Toulouse (France); Clegg, S.M. [Los Alamos National Laboratory, Los Alamos, NM (United States); Berger, G. [Institut de Recherche en Astophysique et Planetologie (IRAP), Universite' Paul Sabatier, Toulouse (France); Wiens, R.C. [Los Alamos National Laboratory, Los Alamos, NM (United States); Maurice, S. [Institut de Recherche en Astophysique et Planetologie (IRAP), Universite' Paul Sabatier, Toulouse (France); Tokar, R.L.; Bender, S. [Planetary Science Institute, Flagstaff, AZ (United States); Forni, O. [Institut de Recherche en Astophysique et Planetologie (IRAP), Universite' Paul Sabatier, Toulouse (France); Breves, E.A.; Dyar, M.D. [Dept. of Astronomy, Mount Holyoke College, South Hadley, MA (United States); Frydenvang, J. [The Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark); Delapp, D. [Los Alamos National Laboratory, Los Alamos, NM (United States); Gasnault, O. [Institut de Recherche en Astophysique et Planetologie (IRAP), Universite' Paul Sabatier, Toulouse (France); Newsom, H.; Ollila, A.M. [Earth and Planetary Sciences, University of New Mexico, Alburquerque, NM (United States); Lewin, E. [Institut des Sciences de la Terre, Universite Grenoble l-CNRS, Grenoble (France); and others

    2014-06-01

    As part of the Mars Science Laboratory, the ChemCam instrument acquires remote laser induced breakdown spectra at distances that vary between 1.56 m and 7 m. This variation in distance affects the intensities of the measured LIBS emission lines in non-trivial ways. To determine the behavior of a LIBS emission line with distance, it is necessary to separate the effects of many parameters such as laser energy, laser spot size, target homogeneity, and optical collection efficiency. These parameters may be controlled in a laboratory on Earth but for field applications or in space this is a challenge. In this paper, we show that carefully selected ChemCam LIBS emission lines acquired from the Martian dust can be used to build an internal proxy spectroscopic standard. This in turn, allows for a direct measurement of the effects of the distance of various LIBS emission lines and hence can be used to correct ChemCam LIBS spectra for distance variations. When tested on pre-launch LIBS calibration data acquired under Martian-like conditions and with controlled and well-calibrated targets, this approach yields much improved agreement between targets observed at various distances. This work lays the foundation for future implementation of automated routines to correct ChemCam spectra for differences caused by variable distance. - Highlights: • Selected Martian dust emission lines are used to correct for variable laser-target distances. • The correction model yields improved agreement between targets observed at various distances. • The impact of the model reduces the bias between predicted and actual compositions by as much as 70%. • When implemented, the model will yield spectral corrections for various ChemCam measurements. • This work is a foundation to perform novel stand-off LIBS measurements on Earth and other planets.

  4. Building electro-optical systems making it all work

    CERN Document Server

    Hobbs, Philip C D

    2009-01-01

    Praise for the First Edition ""Now a new laboratory bible for optics researchers has joined the list: it is Phil Hobbs's Building Electro-Optical Systems: Making It All Work.""-Tony Siegman, Optics & Photonics News Building a modern electro-optical instrument may be the most interdisciplinary job in all of engineering. Be it a DVD player or a laboratory one-off, it involves physics, electrical engineering, optical engineering, and computer science interacting in complex ways. This book will help all kinds of technical people sort through the complexit

  5. Building 107 for surface treatment

    CERN Multimedia

    Brice, Maximilien

    2018-01-01

    A brand new state-of-the-art building hosting laboratories for the surface treatment of vacuum equipment and workshops for the manufacturing and treatment of printed circuit boards was completed in 2017.

  6. Corrections Education. Washington's Community and Technical Colleges

    Science.gov (United States)

    Washington State Board for Community and Technical Colleges, 2015

    2015-01-01

    The Washington State Department of Corrections contracts with community colleges to provide basic education and job training at each of the state's 12 adult prisons so upon release, individuals are more likely to get jobs and less likely to return. Washington State community colleges build a bridge for offenders to successfully re-enter…

  7. The European Energy Performance of Buildings Directive

    DEFF Research Database (Denmark)

    Petersen, Steffen; Hviid, Christian Anker

    This paper investigates the actual energy use for building operation with the calculated energy use according to the Danish implementation of the European Energy Performance of Buildings Directive (EPBD). This is important to various stakeholders in the building industry as the calculated energy...... performance is used for estimating investment security, operating budgets and for policy making. A case study shows that the actual and calculated energy use is practically the same in an average scenario. In the worst-case uncertainty scenario, the actual energy use is 20 % higher than the corrected...

  8. Retailing Laboratory: Delivering Skills through Experiential Learning

    Science.gov (United States)

    Franco Valdez, Ana Dolores; Valdez Cervantes, Alfonso

    2018-01-01

    Building from a theoretical foundation of active learning, this article describes how using a retail laboratory in an educational curriculum can benefit both students and strategic partners. Students work alongside strategic partners, and the retail laboratory enables them to probe and design novel retailing strategies, such as launching new…

  9. Going paperless: implementing an electronic laboratory notebook in a bioanalytical laboratory.

    Science.gov (United States)

    Beato, Brian; Pisek, April; White, Jessica; Grever, Timothy; Engel, Brian; Pugh, Michael; Schneider, Michael; Carel, Barbara; Branstrator, Laurel; Shoup, Ronald

    2011-07-01

    AIT Bioscience, a bioanalytical CRO, implemented a highly configurable, Oracle-based electronic laboratory notebook (ELN) from IDBS called E-WorkBook Suite (EWBS). This ELN provides a high degree of connectivity with other databases, including Watson LIMS. Significant planning and training, along with considerable design effort and template validation for dozens of laboratory workflows were required prior to EWBS being viable for either R&D or regulated work. Once implemented, EWBS greatly reduced the need for traditional quality review upon experiment completion. Numerous real-time error checks occur automatically when conducting EWBS experiments, preventing the majority of laboratory errors by pointing them out while there is still time to correct any issues. Auditing and reviewing EWBS data are very efficient, because all data are forever securely (and even remotely) accessible, provided a reviewer has appropriate credentials. Use of EWBS significantly increases both data quality and laboratory efficiency.

  10. Waste oil management at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Oakes, T.W.; Bird, J.C.; Shank, K.E.; Kelley, B.A.; Harrison, L.L.; Clark, B.R.; Rogers, W.F.

    1980-01-01

    It is the policy of the Oak Ridge National Laboratory (ORNL) to require that oily substances be handled and disposed of in a manner that protects the environment and personnel from harm. Federal regulations prohibit the discharge of oil into navigable waters, with stiff penalties possible to violators. A strict waste oil management program has been developed and implemented because of the potential for oil problems resulting from the large and varied uses of oil at the Laboratory. Also, past records of improper discharges of oil have mandated immediate corrective actions. In order to resolve the problems of waste oil at the Laboratory, the ORNL Waste Oil Investigation Committee was formed on March 14, 1979. The work of the committee included a survey of every building and area of the Laboratory to locate the presence of oil and the pathways of oil discharges to the environment. The committee also provided a basis for the development of oil spill procedures and waste oil disposal. The Department of Environmental Management (DEM) of the Industrial Safety and Applied Health Physics Division at ORNL has the responsibility of developing environmental protection procedures for the handling and disposal of oil. It approves storage and collection facilities, disposal methods, and disposal sites for oil-containing wastes. The DEM has developed and implemented an ORNL Environmental Protection Procedure for oils and an oil spill prevention and countermeasure plan. In order to familiarize ORNL personnel with the problems and procedures of waste oil, the DEM has held seminars on the subject. This report reviews the findings of the Waste Oil Investigation Committee and the actions of the laboratory management and the DEM in dealing with the waste oil problem at ORNL

  11. 209-E Building -- Response to ventilation failure evaluation

    International Nuclear Information System (INIS)

    Foust, D.J.

    1998-01-01

    This document provides an evaluation and recommendations for radiological workplace air monitoring and response to ventilation failure for the Critical Mass Laboratory, 209-E Building. The Critical Mass Laboratory, part of the 209-E Building, was designed to provide a heavily shielded room where plutonium and uranium liquid solutions could be brought into various critical configurations under readily controlled and monitored conditions. The facility is contained within a one-story L-shaped concrete block and reinforced concrete building. One wing houses offices, a control room, shops, and a common area while the other wing includes an equipment room, the change room, work areas, and the two-story Critical Assembly Room (CAR). Three of the rooms contain radiologically contaminated equipment and materials

  12. The activities of the IAEA laboratories Vienna. Annual report - 1980

    International Nuclear Information System (INIS)

    Taylor, C.B.G.

    1982-03-01

    The report outlines the activities of the laboratory of the International Atomic Energy Agency at Seibersdorf in the province of Lower Austria. The report covers the following sections of the laboratory: chemistry, medical applications, dosimetry, soil science, entomology, plant breeding, electronics and measurement laboratory, isotope hydrology and the safeguards analytical laboratory. The extension to the main laboratory buildings - a new wing for medical applications and dosimetry - was fitted out and fully integrated into the laboratory by the end of the year. In July 1980 the high-level cobalt-60 dosimetry equipment (a teletherapy unit) was transferred from the old IAEA headquarters building in the centre of Vienna and installed in a specially designed annex to the new wing. A successful 8 week training course was given in the agriculture laboratory and arrangements were made for several of the course members to stay on as research fellows for several months after the course had ended

  13. Assessing the Security Vulnerabilities of Correctional Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, G.S.; Spencer, D.S.

    1998-10-27

    The National Institute of Justice has tasked their Satellite Facility at Sandia National Laboratories and their Southeast Regional Technology Center in Charleston, South Carolina to devise new procedures and tools for helping correctional facilities to assess their security vulnerabilities. Thus, a team is visiting selected correctional facilities and performing vulnerability assessments. A vulnerability assessment helps to identi~ the easiest paths for inmate escape, for introduction of contraband such as drugs or weapons, for unexpected intrusion fi-om outside of the facility, and for the perpetration of violent acts on other inmates and correctional employees, In addition, the vulnerability assessment helps to quantify the security risks for the facility. From these initial assessments will come better procedures for performing vulnerability assessments in general at other correctional facilities, as well as the development of tools to assist with the performance of such vulnerability assessments.

  14. The Influence of Laboratory Safety on Capital Planning.

    Science.gov (United States)

    Francis, Robert A.

    1980-01-01

    Discusses state and federal legislation concerning the handling of dangerous materials and its impact on the design of college and university buildings. Lists federal legislation affecting laboratory safety, the objectives of each act, and the influence of each act on laboratory safety. (IRT)

  15. Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996

    International Nuclear Information System (INIS)

    None

    1997-01-01

    OAK A271 Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996. The Rockwell International Hot Laboratory (RIHL) is one of a number of former nuclear facilities undergoing decontamination and decommissioning (D and D) at the Santa Susana Field Laboratory (SSFL). The RIHL facility is in the later stages of dismantlement, with the final objective of returning the site location to its original natural state. This report documents the decontamination and dismantlement activities performed at the facility over the time period 1988 through 1996. At this time, the support buildings, all equipment associated with the facility, and the entire above-ground structure of the primary facility building (Building 020) have been removed. The basement portion of this building and the outside yard areas (primarily asphalt and soil) are scheduled for D and D activities beginning in 1997

  16. Electromedical devices test laboratories accreditation

    International Nuclear Information System (INIS)

    Murad, C; Rubio, D; Ponce, S; Alvarez Abri, A; Terron, A; Vicencio, D; Fascioli, E

    2007-01-01

    In the last years, the technology and equipment at hospitals have been increase in a great way as the risks of their implementation. Safety in medical equipment must be considered an important issue to protect patients and their users. For this reason, test and calibrations laboratories must verify the correct performance of this kind of devices under national and international standards. Is an essential mission for laboratories to develop their measurement activities taking into account a quality management system. In this article, we intend to transmit our experience working to achieve an accredited Test Laboratories for medical devices in National technological University

  17. Tornado risk analysis at Savannah River Plant using windspeed damage thresholds and single building strike frequencies

    International Nuclear Information System (INIS)

    Taylor, D.H.; McDonald, J.R.; Twisdale, L.A.

    1985-01-01

    Tornado risk analysis at the Savannah River Plant has taken a two pronged approach: (1) developing a catalogue of damage thresholds as a function of windspeed for processing buildings and other representative site structures; (2) developing a method of estimating, for each building, the probability of a tornado exceeding each damage threshold. Wind resistance of building construction at SRP varies widely depending on the function of the structure. It was recognized that all tornadoes do not necessarily seriously damage buildings, but the damage thresholds were unknown. In order to evaluate the safety of existing structures and properly design new structures, an analysis of tornado resistance was conducted by J.R. McDonald on each process building at SRP and other buildings by type. Damage estimates were catalogued for each Fujita class windspeed interval and windspeeds were catalogued as a function of increased levels of damage. Tornado single point and structure specific strike probabilities for the SRP site were determined by L.A. Twisdale using the TORRISK computer code. To calculate the structure specific strike probability, a correction factor is determined from a set of curves using building area and aspect ratio (length/width relative to north) as parameters. The structure specific probability is then the product of the correction factor and the point probability. The correction factor increases as a function of building size and windspeed. For large buildings (10 5 ft 2 ) and very intense storms (250 mph), the correction factor is equal to or greater than 4. The cumulative probability of a tornado striking any building type (process, personnel, etc.) was also calculated

  18. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, Leen; D' haeseleer, William [Division of Applied Mechanics and Energy Conversion, University of Leuven (K.U.Leuven), Celestijnenlaan 300 A, B-3001 Leuven (Belgium); Dear, Richard de [Division of Environmental and Life Sciences, Macquarie University, Sydney (Australia); Hensen, Jan [Faculty of Architecture, Building and Planning, Technische Universiteit Eindhoven, Vertigo 6.18, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2009-05-15

    Building Energy Simulation (BES) programmes often use conventional thermal comfort theories to make decisions, whilst recent research in the field of thermal comfort clearly shows that important effects are not incorporated. The conventional theories of thermal comfort were set up based on steady state laboratory experiments. This, however, is not representing the real situation in buildings, especially not when focusing on residential buildings. Therefore, in present analysis, recent reviews and adaptations are considered to extract acceptable temperature ranges and comfort scales. They will be defined in an algorithm, easily implementable in any BES code. The focus is on comfortable temperature levels in the room, more than on the detailed temperature distribution within that room. (author)

  19. From a Proven Correct Microkernel to Trustworthy Large Systems

    Science.gov (United States)

    Andronick, June

    The seL4 microkernel was the world's first general-purpose operating system kernel with a formal, machine-checked proof of correctness. The next big step in the challenge of building truly trustworthy systems is to provide a framework for developing secure systems on top of seL4. This paper first gives an overview of seL4's correctness proof, together with its main implications and assumptions, and then describes our approach to provide formal security guarantees for large, complex systems.

  20. The radiological services laboratory

    International Nuclear Information System (INIS)

    Hardt, T.L.; Schutt, S.M.; Doran, K.S.; Dihel, D.L.; Lucas, R.O. II; Eifert, T.K.

    1992-01-01

    A new state of the art radiochemistry laboratory incorporating advanced design and environmental control elements has been constructed in Atlanta, Georgia. The design of the facility is oriented to the efficient production of analytical sample results which meet regulatory requirements while at the same time provides an atmosphere that is pleasurable for analysts and visitors alike. The laboratory building contains two separate and distinct laboratories under one roof. This allows the facility to handle samples with low levels of radioactivity on one side of the lab without fear of contamination of environmental work on the other side. Unlike most laboratories, this facility utilizes a scrubber system and liquid waste holdup system to prevent accidental releases to the environment. The potential spread of radioactive contamination is controlled through the use of negative pressure ventillation zones. Construction techniques, laboratory systems, instrumentation and ergonomic considerations will also be discussed. (author) 1 fig

  1. Challenges and Opportunities To Achieve 50% Energy Savings in Homes. National Laboratory White Papers

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marcus V.A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-07-01

    This report summarizes the key opportunities, gaps, and barriers identified by researchers from four national laboratories (Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory) that must be addressed to achieve the longer term 50% saving goal for Building America to ensure coordination with the Building America industry teams who are focusing their research on systems to achieve the near-term 30% savings goal. Although new construction was included, the focus of the effort was on deep energy retrofits of existing homes.

  2. Implementation science: the laboratory as a command centre.

    Science.gov (United States)

    Boeras, Debrah I; Nkengasong, John N; Peeling, Rosanna W

    2017-03-01

    Recent advances in point-of-care technologies to ensure universal access to affordable quality-assured diagnostics have the potential to transform patient management, surveillance programmes, and control of infectious diseases. Decentralization of testing can put tremendous stresses on fragile health systems if the laboratory is not involved in the planning, introduction, and scale-up strategies. The impact of investments in novel technologies can only be realized if these tests are evaluated, adopted, and scaled up within the healthcare system with appropriate planning and understanding of the local contexts in which these technologies will be used. In this digital age, the laboratory needs to take on the role of the Command Centre for technology introduction and implementation. Implementation science is needed to understand the political, cultural, economic, and behavioural context for technology introduction. The new paradigm should include: building a comprehensive system of laboratories and point-of-care testing sites to provide quality-assured diagnostic services with good laboratory-clinic interface to build trust in test results and linkage to care; building and coordinating a comprehensive national surveillance and communication system for disease control and global health emergencies; conducting research to monitor the impact of new tools and interventions on improving patient care.

  3. What happens in the lab does not stay in the lab [corrected]: Applying midstream modulation to enhance critical reflection in the laboratory.

    Science.gov (United States)

    Schuurbiers, Daan

    2011-12-01

    In response to widespread policy prescriptions for responsible innovation, social scientists and engineering ethicists, among others, have sought to engage natural scientists and engineers at the 'midstream': building interdisciplinary collaborations to integrate social and ethical considerations with research and development processes. Two 'laboratory engagement studies' have explored how applying the framework of midstream modulation could enhance the reflections of natural scientists on the socio-ethical context of their work. The results of these interdisciplinary collaborations confirm the utility of midstream modulation in encouraging both first- and second-order reflective learning. The potential for second-order reflective learning, in which underlying value systems become the object of reflection, is particularly significant with respect to addressing social responsibility in research practices. Midstream modulation served to render the socio-ethical context of research visible in the laboratory and helped enable research participants to more critically reflect on this broader context. While lab-based collaborations would benefit from being carried out in concert with activities at institutional and policy levels, midstream modulation could prove a valuable asset in the toolbox of interdisciplinary methods aimed at responsible innovation.

  4. Building Magnets at Brookhaven National Laboratory: A Condensed Account

    Science.gov (United States)

    Willen, Erich

    2017-09-01

    The development of superconducting wire and cable in the late twentieth century enabled high-field magnets and thus much higher beam-collision energies in accelerators. These higher collision energies have allowed experimentalists to probe further into the structure of matter at the most fundamental, subatomic level. The behavior of the early universe, where these high energies prevailed, and its evolution over time are the realm their experiments seek to investigate. The subject has aroused the curiosity of the public as well as scientists and has facilitated the support needed to build and operate such expensive machines and experiments. The path forward has not been easy, however. Success in most projects has been mixed with failure, progress with ineptitude. The building of high energy accelerators is mostly a story of capable people doing their best to develop new and unusual technology toward some defined goal, facing both success and failure along the way. It is also a story of administrative imperatives that had unpredictable effects on a project's success, depending mostly on the people in the administrative roles and the decisions that they made.

  5. Safety analysis report 231-Z Building

    Energy Technology Data Exchange (ETDEWEB)

    Powers, C.S.

    1989-03-01

    This report provides an intensive review of the nuclear safety of the operation of the 231-Z Building. For background information complete descriptions of the floor plan, building services, alarm systems, and glove box systems are included in this report. In addition, references are included to The Plutonium Laboratory Radiation Work Procedures, Safety Guides, 231-Z Operating Procedures Manual and Nuclear Materials accountability Procedures. Engineered and administrative features contribute to the overall safety of personnel, the building, and environs. The consequences of credible incidents were considered and are discussed.

  6. High Performance Building Mockup in FLEXLAB

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kohler, Christian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lee, Eleanor S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Selkowitz, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-30

    Genentech has ambitious energy and indoor environmental quality performance goals for Building 35 (B35) being constructed by Webcor at the South San Francisco campus. Genentech and Webcor contracted with the Lawrence Berkeley National Laboratory (LBNL) to test building systems including lighting, lighting controls, shade fabric, and automated shading controls in LBNL’s new FLEXLAB facility. The goal of the testing is to ensure that the systems installed in the new office building will function in a way that reduces energy consumption and provides a comfortable work environment for employees.

  7. Automated Continuous Commissioning of Commercial Buildings

    Science.gov (United States)

    2011-10-01

    through an Ethernet connection. The sampling interval is 5 minutes. The data then is transferred to the Postgre structured query language (SQL...and how corrective actions should be prioritized. BACnet Interface EnergyPlus Interface EnergyPlus Building Model Matlab Data Diagnostics Postgre

  8. Design, Monitoring, and Validation of a High Performance Sustainable Building

    Science.gov (United States)

    2013-08-01

    ES-1 1.0 INTRODUCTION ...better quality in the overall building construction (e.g., plumbing the building correctly). 1 1.0 INTRODUCTION The U.S. DUSEPArtment of...al, 2006 U.S. Department of Defense (DoD) Directive 4170.11. 2009. Department of Defense Instruction- Installation Energy Mangement . December 11

  9. 1995 building energy codes and standards workshops: Summary and documentation

    Energy Technology Data Exchange (ETDEWEB)

    Sandahl, L.J.; Shankle, D.L.

    1996-02-01

    During the spring of 1995, Pacific Northwest National Laboratory (PNNL) conducted four two-day Regional Building Energy Codes and Standards workshops across the US. Workshops were held in Chicago, Denver, Rhode Island, and Atlanta. The workshops were designed to benefit state-level officials including staff of building code commissions, energy offices, public utility commissions, and others involved with adopting/updating, implementing, and enforcing building energy codes in their states. The workshops provided an opportunity for state and other officials to learn more about residential and commercial building energy codes and standards, the role of the US Department of Energy and the Building Standards and Guidelines Program at Pacific Northwest National Laboratory, Home Energy Rating Systems (HERS), Energy Efficient Mortgages (EEM), training issues, and other topics related to the development, adoption, implementation, and enforcement of building energy codes. Participants heard success stories, got tips on enforcement training, and received technical support materials. In addition to receiving information on the above topics, workshop participants had an opportunity to provide input on code adoption issues, building industry training issues, building design issues, and exemplary programs across the US. This paper documents the workshop planning, findings, and follow-up processes.

  10. Cloud-Based Virtual Laboratory for Network Security Education

    Science.gov (United States)

    Xu, Le; Huang, Dijiang; Tsai, Wei-Tek

    2014-01-01

    Hands-on experiments are essential for computer network security education. Existing laboratory solutions usually require significant effort to build, configure, and maintain and often do not support reconfigurability, flexibility, and scalability. This paper presents a cloud-based virtual laboratory education platform called V-Lab that provides a…

  11. Corrective action decision document for the Roller Coaster Lagoons and North Disposal Trench (Corrective Action Unit Number 404)

    International Nuclear Information System (INIS)

    1997-01-01

    The North Disposal Trench, located north of the eastern most lagoon, was installed in 1963 to receive solid waste and construction debris from the Operation Roller Coaster man camp. Subsequent to Operation Roller Coaster, the trench continued to receive construction debris and range cleanup debris (including ordnance) from Sandia National Laboratories and other operators. A small hydrocarbon spill occurred during Voluntary Corrective Action (VCA) activities (VCA Spill Area) at an area associated with the North Disposal Trench Corrective Action Site (CAS). Remediation activities at this site were conducted in 1995. A corrective action investigation was conducted in September of 1996 following the Corrective Action Investigation Plan (CAIP); the detailed results of that investigation are presented in Appendix A. The Roller Coaster Lagoons and North Disposal Trench are located at the Tonopah Test Range (TTR), a part of the Nellis Air Force Range, which is approximately 225 kilometers (140 miles) northwest of Las Vegas, Nevada, by air

  12. Lawrence Berkeley Laboratory upgrading approaches to existing facilities

    International Nuclear Information System (INIS)

    Engle, H.M. Jr.

    1985-01-01

    The Lawrence Berkeley Laboratory Plant Engineering Department instituted a seismic risk investigation and seismic upgrade program in 1970. This paper covers the upgrade of two buildings with dissimilar framing systems; Building No. 10, a World War II vintage heavy timber frame building, and Building No. 80, a steel frame structure constructed in 1954. The seismic upgrade task for both structures required that the buildings be kept in service during rehabilitation with a minimum of disruption to occupants. Rehabilitations were phased over two and three year periods with construction management and supervision performed by LBL Plant Engineering staff

  13. Controlling qubit drift by recycling error correction syndromes

    Science.gov (United States)

    Blume-Kohout, Robin

    2015-03-01

    Physical qubits are susceptible to systematic drift, above and beyond the stochastic Markovian noise that motivates quantum error correction. This parameter drift must be compensated - if it is ignored, error rates will rise to intolerable levels - but compensation requires knowing the parameters' current value, which appears to require halting experimental work to recalibrate (e.g. via quantum tomography). Fortunately, this is untrue. I show how to perform on-the-fly recalibration on the physical qubits in an error correcting code, using only information from the error correction syndromes. The algorithm for detecting and compensating drift is very simple - yet, remarkably, when used to compensate Brownian drift in the qubit Hamiltonian, it achieves a stabilized error rate very close to the theoretical lower bound. Against 1/f noise, it is less effective only because 1/f noise is (like white noise) dominated by high-frequency fluctuations that are uncompensatable. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  14. Building 774: open for business

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    In July 2012, the demolition of Building 936 on the Prévessin site marked the start of the Building 774 project. On 23 February, less than three years later, the new 3900 m2 building was handed over to the BE department.   The brand new Building 774. (Credits: Francesco Soppelsa) Located near to the CERN Control Centre, Building 774 contains offices, laboratories and meeting rooms, as well as a huge public area consisting of a 104-seat auditorium, a changing room/shower area in the basement and a pleasant cafeteria open from 8 a.m. to 5 p.m., offering a wide range of refreshments including hot meals at lunchtime. “There were a few twists and turns during the construction of this building, but it all turned out well in the end!" says Michael Poehler, a member of the GS-SE group and the technical coordinator of the project. (Credits: Francesco Soppelsa) The 120 occupants of the building have just moved into their brand new home, bringing all the members of the...

  15. AUTOMATIC BUILDING OUTLINING FROM MULTI-VIEW OBLIQUE IMAGES

    Directory of Open Access Journals (Sweden)

    J. Xiao

    2012-07-01

    Full Text Available Automatic building detection plays an important role in many applications. Multiple overlapped airborne images as well as lidar point clouds are among the most popular data sources used for this purpose. Multi-view overlapped oblique images bear both height and colour information, and additionally we explicitly have access to the vertical extent of objects, therefore we explore the usability of this data source solely to detect and outline buildings in this paper. The outline can then be used for further 3D modelling. In the previous work, building hypotheses are generated using a box model based on detected façades from four directions. In each viewing direction, façade edges extracted from images and height information by stereo matching from an image pair is used for the façade detection. Given that many façades were missing due to occlusion or lack of texture whilst building roofs can be viewed in most images, this work mainly focuses on improve the building box outline by adding roof information. Stereo matched point cloud generated from oblique images are combined with the features from images. Initial roof patches are located in the point cloud. Then AdaBoost is used to integrate geometric and radiometric attributes extracted from oblique image on grid pixel level with the aim to refine the roof area. Generalized contours of the roof pixels are taken as building outlines. The preliminary test has been done by training with five buildings and testing around sixty building clusters. The proposed method performs well concerning covering the irregular roofs as well as improve the sides location of slope roof buildings. Outline result comparing with cadastral map shows almost all above 70% completeness and correctness in an area-based assessment, as well as 20% to 40% improvement in correctness with respect to our previous work.

  16. An easy-to-build remote laboratory with data transfer using the Internet School Experimental System

    Science.gov (United States)

    Schauer, František; Lustig, František; Dvořák, Jiří; Ožvoldová, Miroslava

    2008-07-01

    The present state of information communication technology makes it possible to devise and run computer-based e-laboratories accessible to any user with a connection to the Internet, equipped with very simple technical means and making full use of web services. Thus, the way is open for a new strategy of physics education with strongly global features, based on experiment and experimentation. We name this strategy integrated e-learning, and remote experiments across the Internet are the foundation for this strategy. We present both pedagogical and technical reasoning for the remote experiments and outline a simple system based on a server-client approach, and on web services and Java applets. We give here an outline of the prospective remote laboratory system with data transfer using the Internet School Experimental System (ISES) as hardware and ISES WEB Control kit as software. This approach enables the simple construction of remote experiments without building any hardware and virtually no programming, using a paste and copy approach with typical prebuilt blocks such as a camera view, controls, graphs, displays, etc. We have set up and operate at present seven experiments, running round the clock, with more than 12 000 connections since 2005. The experiments are widely used in practical teaching of both university and secondary level physics. The recording of the detailed steps the experimentor takes during the measurement enables detailed study of the psychological aspects of running the experiments. The system is ready for a network of universities to start covering the basic set of physics experiments. In conclusion we summarize the results achieved and experiences of using remote experiments built on the ISES hardware system.

  17. An easy-to-build remote laboratory with data transfer using the Internet School Experimental System

    International Nuclear Information System (INIS)

    Schauer, Frantisek; Ozvoldova, Miroslava; Lustig, Frantisek; Dvorak, JirI

    2008-01-01

    The present state of information communication technology makes it possible to devise and run computer-based e-laboratories accessible to any user with a connection to the Internet, equipped with very simple technical means and making full use of web services. Thus, the way is open for a new strategy of physics education with strongly global features, based on experiment and experimentation. We name this strategy integrated e-learning, and remote experiments across the Internet are the foundation for this strategy. We present both pedagogical and technical reasoning for the remote experiments and outline a simple system based on a server-client approach, and on web services and Java applets. We give here an outline of the prospective remote laboratory system with data transfer using the Internet School Experimental System (ISES) as hardware and ISES WEB Control kit as software. This approach enables the simple construction of remote experiments without building any hardware and virtually no programming, using a paste and copy approach with typical prebuilt blocks such as a camera view, controls, graphs, displays, etc. We have set up and operate at present seven experiments, running round the clock, with more than 12 000 connections since 2005. The experiments are widely used in practical teaching of both university and secondary level physics. The recording of the detailed steps the experimentor takes during the measurement enables detailed study of the psychological aspects of running the experiments. The system is ready for a network of universities to start covering the basic set of physics experiments. In conclusion we summarize the results achieved and experiences of using remote experiments built on the ISES hardware system

  18. An easy-to-build remote laboratory with data transfer using the Internet School Experimental System

    Energy Technology Data Exchange (ETDEWEB)

    Schauer, Frantisek; Ozvoldova, Miroslava [Trnava University, Faculty of Pedagogy, Department of Physics, Trnava (Slovakia); Lustig, Frantisek; Dvorak, JirI [Charles University, Faculty of Mathematics and Physics, Department of Didactics of Physics, Prague (Czech Republic)], E-mail: fschauer@ft.utb.cz

    2008-07-15

    The present state of information communication technology makes it possible to devise and run computer-based e-laboratories accessible to any user with a connection to the Internet, equipped with very simple technical means and making full use of web services. Thus, the way is open for a new strategy of physics education with strongly global features, based on experiment and experimentation. We name this strategy integrated e-learning, and remote experiments across the Internet are the foundation for this strategy. We present both pedagogical and technical reasoning for the remote experiments and outline a simple system based on a server-client approach, and on web services and Java applets. We give here an outline of the prospective remote laboratory system with data transfer using the Internet School Experimental System (ISES) as hardware and ISES WEB Control kit as software. This approach enables the simple construction of remote experiments without building any hardware and virtually no programming, using a paste and copy approach with typical prebuilt blocks such as a camera view, controls, graphs, displays, etc. We have set up and operate at present seven experiments, running round the clock, with more than 12 000 connections since 2005. The experiments are widely used in practical teaching of both university and secondary level physics. The recording of the detailed steps the experimentor takes during the measurement enables detailed study of the psychological aspects of running the experiments. The system is ready for a network of universities to start covering the basic set of physics experiments. In conclusion we summarize the results achieved and experiences of using remote experiments built on the ISES hardware system.

  19. Rising damp in building walls: the wall base ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, A.S.; Delgado, J.M.P.Q.; Freitas, V.P. de [Faculdade de Engenharia da Universidade do Porto, Laboratorio de Fisica das Construcoes (LFC), Departamento de Engenharia Civil, Porto (Portugal)

    2012-12-15

    This work intends to validate a new system for treating rising damp in historic buildings walls. The results of laboratory experiments show that an efficient way of treating rising damp is by ventilating the wall base, using the HUMIVENT technique. The analytical model presented describes very well the observed features of rising damp in walls, verified by laboratory tests, who contributed for a simple sizing of the wall base ventilation system that will be implemented in historic buildings. (orig.)

  20. Prescribing in prison: minimizing psychotropic drug diversion in correctional practice.

    Science.gov (United States)

    Pilkinton, Patricia D; Pilkinton, James C

    2014-04-01

    Correctional facilities are a major provider of mental health care throughout the United States. In spite of the numerous benefits of providing care in this setting, clinicians are sometimes concerned about entering into correctional care because of uncertainty in prescribing practices. This article provides an introduction to prescription drug use, abuse, and diversion in the correctional setting, including systems issues in prescribing, commonly abused prescription medications, motivation for and detection of prescription drug abuse, and the use of laboratory monitoring. By understanding the personal and systemic factors that affect prescribing habits, the clinician can develop a more rewarding correctional practice and improve care for inmates with mental illness.

  1. Cursory radiological assessment: Battelle Columbus Laboratory Decommissioning and Decontamination Project

    International Nuclear Information System (INIS)

    Smith, W.H.; Munyon, W.J.; Mosho, G.D.; Robinet, M.J.; Wynveen, R.A.

    1988-10-01

    This document reports on the results obtained from a cursory radiological assessment of various properties at the Battelle Columbus Laboratory, Columbia, Ohio. The cursory radiological assessment is part of a preliminary investigation for the Battelle Columbus Laboratory Decommissioning and Decontamination Project. The radiological assessment of Battelle Columbus Laboratory's two sites included conducting interior and exterior building surveys and collecting and analyzing air, sewer system, and soil samples. Direct radiological surveys were made of floor, wall, and overhead areas. Smear surveys were made on various interior building surfaces as well as the exterior building vents. Air samples were collected in select areas to determine concentrations of Rn-222, Rn-220, and Rn-219 daughters, in addition to any long-lived radioactive particulates. Radon-222 concentrations were continuously monitored over a 24-hr period at several building locations using a radon gas monitoring system. The sanitary sewer systems at King Avenue, West Jefferson-North, and West Jefferson-South were each sampled at select locations. All samples were submitted to the Argonne Analytical Chemistry Laboratory for various radiological and chemical analyses. Environmental soil corings were taken at both the King Avenue and West Jefferson sites to investigate the potential for soil contamination within the first 12-inches below grade. Further subsurface investigations at the West Jefferson-North and West Jefferson-South areas were conducted using soil boring techniques. 4 refs., 10 figs., 10 tabs

  2. A weighted least-squares lump correction algorithm for transmission-corrected gamma-ray nondestructive assay

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Sprinkle, J.K. Jr.; Sheppard, G.A.

    1993-01-01

    With transmission-corrected gamma-ray nondestructive assay instruments such as the Segmented Gamma Scanner (SGS) and the Tomographic Gamma Scanner (TGS) that is currently under development at Los Alamos National Laboratory, the amount of gamma-ray emitting material can be underestimated for samples in which the emitting material consists of particles or lumps of highly attenuating material. This problem is encountered in the assay of uranium and plutonium-bearing samples. To correct for this source of bias, we have developed a least-squares algorithm that uses transmission-corrected assay results for several emitted energies and a weighting function to account for statistical uncertainties in the assay results. The variation of effective lump size in the fitted model is parameterized; this allows the correction to be performed for a wide range of lump-size distributions. It may be possible to use the reduced chi-squared value obtained in the fit to identify samples in which assay assumptions have been violated. We found that the algorithm significantly reduced bias in simulated assays and improved SGS assay results for plutonium-bearing samples. Further testing will be conducted with the TGS, which is expected to be less susceptible than the SGS to systematic source of bias

  3. Autonomous Quantum Error Correction with Application to Quantum Metrology

    Science.gov (United States)

    Reiter, Florentin; Sorensen, Anders S.; Zoller, Peter; Muschik, Christine A.

    2017-04-01

    We present a quantum error correction scheme that stabilizes a qubit by coupling it to an engineered environment which protects it against spin- or phase flips. Our scheme uses always-on couplings that run continuously in time and operates in a fully autonomous fashion without the need to perform measurements or feedback operations on the system. The correction of errors takes place entirely at the microscopic level through a build-in feedback mechanism. Our dissipative error correction scheme can be implemented in a system of trapped ions and can be used for improving high precision sensing. We show that the enhanced coherence time that results from the coupling to the engineered environment translates into a significantly enhanced precision for measuring weak fields. In a broader context, this work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.

  4. Corrective Action Investigation Plan for Corrective Action Unit 232: Area 25 Sewage Lagoons, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    1999-01-01

    The Corrective Action Investigation Plan for Corrective Action Unit 232, Area 25 Sewage Lagoons, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U.S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 232 consists of Corrective Action Site 25-03-01, Sewage Lagoon. Corrective Action Unit 232, Area 25 Sewage Lagoons, received sanitary effluent from four buildings within the Test Cell ''C'' Facility from the mid-1960s through approximately 1996. The Test Cell ''C'' Facility was used to develop nuclear propulsion technology by conducting nuclear test reactor studies. Based on the site history collected to support the Data Quality Objectives process, contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, petroleum hydrocarbons, polychlorinated biphenyls, pesticides, herbicides, gamma emitting radionuclides, isotopic plutonium, isotopic uranium, and strontium-90. A detailed conceptual site model is presented in Section 3.0 and Appendix A of this Corrective Action Investigation Plan. The conceptual model serves as the basis for the sampling strategy. Under the Federal Facility Agreement and Consent Order, the Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of corrective action alternatives in the Corrective Action Decision Document

  5. Corrective Action Investigation Plan for Corrective Action Unit 232: Area 25 Sewage Lagoons, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    USDOE/NV

    1999-05-01

    The Corrective Action Investigation Plan for Corrective Action Unit 232, Area 25 Sewage Lagoons, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U.S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 232 consists of Corrective Action Site 25-03-01, Sewage Lagoon. Corrective Action Unit 232, Area 25 Sewage Lagoons, received sanitary effluent from four buildings within the Test Cell ''C'' Facility from the mid-1960s through approximately 1996. The Test Cell ''C'' Facility was used to develop nuclear propulsion technology by conducting nuclear test reactor studies. Based on the site history collected to support the Data Quality Objectives process, contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, petroleum hydrocarbons, polychlorinated biphenyls, pesticides, herbicides, gamma emitting radionuclides, isotopic plutonium, isotopic uranium, and strontium-90. A detailed conceptual site model is presented in Section 3.0 and Appendix A of this Corrective Action Investigation Plan. The conceptual model serves as the basis for the sampling strategy. Under the Federal Facility Agreement and Consent Order, the Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of corrective action alternatives in the Corrective Action Decision Document.

  6. Proceedings of the workshop on cool building materials

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H.; Fishman, B. [Lawrence Berkeley Lab., CA (United States); Frohnsdorff, G. [National Inst. of Standards and Technology (NEL), Gaithersburg, MD (United States). Building Materials Div.] [eds.

    1994-04-01

    The Option 9, Cool Communities, of the Clinton-Gore Climate Change Action Plan (CCAP) calls for mobilizing community and corporate resources to strategically plant trees and lighten the surfaces of buildings and roads in order to reduce cooling energy use of the buildings. It is estimated that Cool Communities Project will potentially save over 100 billion kilowatt-hour of energy per year corresponding to 27 million tons of carbon per year by the year 2015. To pursue the CCAP`s objectives, Lawrence Berkeley Laboratory (LBL) on behalf of the Department of Energy and the Environmental Protection Agency, in cooperation with the Building and Fire Research Laboratory of the National Institute of Standards and Technology (NIST), organized a one-day meeting to (1) explore the need for developing a national plan to assess the technical feasibility and commercial potential of high-albedo (``cool``) building materials, and if appropriate, to (2) outline a course of action for developing the plan. The meeting took place on February 28, 1994, in Gaithersburg, Maryland. The proceedings of the conference, Cool Building Materials, includes the minutes of the conference and copies of presentation materials distributed by the conference participants.

  7. Biosafety and biosecurity in veterinary laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Finley, Melissa R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Astuto-Gribble, Lisa M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brass, Van Hildren [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-08-01

    Here, with recent outbreaks of MERS-Cov, Anthrax, Nipah, and Highly Pathogenic Avian Influenza, much emphasis has been placed on rapid identification of infectious agents globally. As a result, laboratories are building capacity, conducting more advanced and sophisticated research, increasing laboratory staff, and establishing collections of dangerous pathogens in an attempt to reduce the impact of infectious disease outbreaks and characterize disease causing agents. With this expansion, the global laboratory community has started to focus on laboratory biosafety and biosecurity to prevent the accidental and/or intent ional release o f these agents. Laboratory biosafety and biosecurity systems are used around the world to help mit igate the risks posed by dangerous pathogens in the laboratory. Veterinary laboratories carry unique responsibilities to workers and communities to safely and securely handle disease causing microorganisms. Many microorganisms studied in veterinary laboratories not only infect animals, but also have the potential to infect humans. This paper will discuss the fundamentals of laboratory biosafety and biosecurity.

  8. General vibration monitoring: Utility Building, August 1992

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1993-01-01

    This vibration data was generated from measurements made on 8/12/92. The contents are self explanatory. They are baseline measurements and no exceptionally large vibration amplitude or response was observed. These measurements represent baseline measurements, i.e., measurements with no driving forces active, made on the utility building, a service building for the Advanced Photon Source at Argonne National Laboratory

  9. [Errors in laboratory daily practice].

    Science.gov (United States)

    Larrose, C; Le Carrer, D

    2007-01-01

    Legislation set by GBEA (Guide de bonne exécution des analyses) requires that, before performing analysis, the laboratory directors have to check both the nature of the samples and the patients identity. The data processing of requisition forms, which identifies key errors, was established in 2000 and in 2002 by the specialized biochemistry laboratory, also with the contribution of the reception centre for biological samples. The laboratories follow a strict criteria of defining acceptability as a starting point for the reception to then check requisition forms and biological samples. All errors are logged into the laboratory database and analysis report are sent to the care unit specifying the problems and the consequences they have on the analysis. The data is then assessed by the laboratory directors to produce monthly or annual statistical reports. This indicates the number of errors, which are then indexed to patient files to reveal the specific problem areas, therefore allowing the laboratory directors to teach the nurses and enable corrective action.

  10. 77 FR 40358 - Federal Management Regulation; FMR Bulletin PBS-2012-03; Redesignations of Federal Buildings...

    Science.gov (United States)

    2012-07-09

    ... Management Regulation; FMR Bulletin PBS-2012-03; Redesignations of Federal Buildings: Correction AGENCY: Public Buildings Service (PBS), General Services Administration (GSA). ACTION: Notice of a bulletin..., 2012, a bulletin announcing the designation and redesignation of three Federal buildings. Inadvertently...

  11. Building America Systems Integration Research Annual Report: FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gestwick, M.

    2013-05-01

    This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  12. Building America Systems Integration Research Annual Report. FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gestwick, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-05-01

    This Building America FY2012 Annual Report includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  13. Corrective Action Investigation Plan for Corrective Action Unit 542: Disposal Holes, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Laura Pastor

    2006-01-01

    locate previously unidentified features at CASs 03-20-07, 03-20-09, 03-20-10, 03-20-11, and 06-20-03. (4) Perform field screening. (5) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present. (6) Collect quality control samples for laboratory analyses to evaluate the performance of measurement systems and controls based on the requirements of the data quality indicators. (7) If COCs are present at the surface/near surface (< 15 feet below ground surface), collect additional step-out samples to define the extent of the contamination. (8) If COCs are present in the subsurface (i.e., base of disposal hole), collect additional samples to define the vertical extent of contamination. A conservative use restriction will be used to encompass the lateral extent of subsurface contamination. (9) Stake or flag sample locations in the field, and record coordinates through global positioning systems surveying. (10) Collect samples of investigation-derived waste, as needed, for waste management and minimization purposes. This Corrective Action Investigation Plan has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the ''Federal Facility Agreement and Consent Order'', this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan

  14. Building laboratory capacity to support HIV care in Nigeria: Harvard/APIN PEPFAR, 2004-2012.

    Science.gov (United States)

    Hamel, Donald J; Sankalé, Jean-Louis; Samuels, Jay Osi; Sarr, Abdoulaye D; Chaplin, Beth; Ofuche, Eke; Meloni, Seema T; Okonkwo, Prosper; Kanki, Phyllis J

    From 2004-2012, the Harvard/AIDS Prevention Initiative in Nigeria, funded through the US President's Emergency Plan for AIDS Relief programme, scaled up HIV care and treatment services in Nigeria. We describe the methodologies and collaborative processes developed to improve laboratory capacity significantly in a resource-limited setting. These methods were implemented at 35 clinic and laboratory locations. Systems were established and modified to optimise numerous laboratory processes. These included strategies for clinic selection and management, equipment and reagent procurement, supply chains, laboratory renovations, equipment maintenance, electronic data management, quality development programmes and trainings. Over the eight-year programme, laboratories supported 160 000 patients receiving HIV care in Nigeria, delivering over 2.5 million test results, including regular viral load quantitation. External quality assurance systems were established for CD4+ cell count enumeration, blood chemistries and viral load monitoring. Laboratory equipment platforms were improved and standardised and use of point-of-care analysers was expanded. Laboratory training workshops supported laboratories toward increasing staff skills and improving overall quality. Participation in a World Health Organisation-led African laboratory quality improvement system resulted in significant gains in quality measures at five laboratories. Targeted implementation of laboratory development processes, during simultaneous scale-up of HIV treatment programmes in a resource-limited setting, can elicit meaningful gains in laboratory quality and capacity. Systems to improve the physical laboratory environment, develop laboratory staff, create improvements to reduce costs and increase quality are available for future health and laboratory strengthening programmes. We hope that the strategies employed may inform and encourage the development of other laboratories in resource-limited settings.

  15. Sandia, California Tritium Research Laboratory transition and reutilization project

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T.B. [Sandia National Lab., Albuquerque, NM (United States)

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  16. Determination of the air attenuation correction factor for a free air ionization chamber

    International Nuclear Information System (INIS)

    Silva, Natalia F.; Cintra, Felipe B.; Castro, Maysa C. de; Caldas, Linda V.E.

    2016-01-01

    The objective of this work is to present the experimental and simulation results for the air attenuation correction factor for a free air ionization chamber with concentric cylinders of Victoreen, model 481-5. This correction factor was obtained for the standard mammography qualities established in the Instrument Calibration Laboratory (LCI) of IPEN. The values were compared with the results from the German primary standard laboratory Physikalisch- Technische Bundesanstalt (PTB), and maximum differences of 0.40% in relation to the experimental value and 0.31% in relation to the simulated value were obtained. (author)

  17. Customizable Electronic Laboratory Online (CELO): A Web-based Data Management System Builder for Biomedical Research Laboratories

    Science.gov (United States)

    Fong, Christine; Brinkley, James F.

    2006-01-01

    A common challenge among today’s biomedical research labs is managing growing amounts of research data. In order to reduce the time and resource costs of building data management tools, we designed the Customizable Electronic Laboratory Online (CELO) system. CELO automatically creates a generic database and web interface for laboratories that submit a simple web registration form. Laboratories can then use a collection of predefined XML templates to assist with the design of a database schema. Users can immediately utilize the web-based system to query data, manage multimedia files, and securely share data remotely over the internet. PMID:17238541

  18. Integrated building (and) airflow simulation: an overview

    NARCIS (Netherlands)

    Hensen, J.L.M.

    2002-01-01

    This paper aims to give a broad overview of building airflow simulation, and advocates that the essential ingredients for quality assurance are: domain knowledge; selection of appropriate level of resolution; calibration and validation; and a correct performance assessment methodology. Directions

  19. LANL seismic screening method for existing buildings

    International Nuclear Information System (INIS)

    Dickson, S.L.; Feller, K.C.; Fritz de la Orta, G.O.

    1997-01-01

    The purpose of the Los Alamos National Laboratory (LANL) Seismic Screening Method is to provide a comprehensive, rational, and inexpensive method for evaluating the relative seismic integrity of a large building inventory using substantial life-safety as the minimum goal. The substantial life-safety goal is deemed to be satisfied if the extent of structural damage or nonstructural component damage does not pose a significant risk to human life. The screening is limited to Performance Category (PC) -0, -1, and -2 buildings and structures. Because of their higher performance objectives, PC-3 and PC-4 buildings automatically fail the LANL Seismic Screening Method and will be subject to a more detailed seismic analysis. The Laboratory has also designated that PC-0, PC-1, and PC-2 unreinforced masonry bearing wall and masonry infill shear wall buildings fail the LANL Seismic Screening Method because of their historically poor seismic performance or complex behavior. These building types are also recommended for a more detailed seismic analysis. The results of the LANL Seismic Screening Method are expressed in terms of separate scores for potential configuration or physical hazards (Phase One) and calculated capacity/demand ratios (Phase Two). This two-phase method allows the user to quickly identify buildings that have adequate seismic characteristics and structural capacity and screen them out from further evaluation. The resulting scores also provide a ranking of those buildings found to be inadequate. Thus, buildings not passing the screening can be rationally prioritized for further evaluation. For the purpose of complying with Executive Order 12941, the buildings failing the LANL Seismic Screening Method are deemed to have seismic deficiencies, and cost estimates for mitigation must be prepared. Mitigation techniques and cost-estimate guidelines are not included in the LANL Seismic Screening Method

  20. Object-based Morphological Building Index for Building Extraction from High Resolution Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    LIN Xiangguo

    2017-06-01

    Full Text Available Building extraction from high resolution remote sensing images is a hot research topic in the field of photogrammetry and remote sensing. In this article, an object-based morphological building index (OBMBI is constructed based on both image segmentation and graph-based top-hat reconstruction, and OBMBI is used for building extraction from high resolution remote sensing images. First, bidirectional mapping relationship between pixels, objects and graph-nodes are constructed. Second, the OBMBI image is built based on both graph-based top-hat reconstruction and the above mapping relationship. Third, a binary thresholding is performed on the OBMBI image, and the binary image is converted into vector format to derive the building polygons. Finally, the post-processing is made to optimize the extracted building polygons. Two images, including an aerial image and a panchromatic satellite image, are used to test both the proposed method and classic PanTex method. The experimental results suggest that our proposed method has a higher accuracy in building extraction than the classic PanTex method. On average, the correctness, the completeness and the quality of our method are respectively 9.49%, 11.26% and 14.11% better than those of the PanTex.

  1. Teaching and Assessment of Mathematical Principles for Software Correctness Using a Reasoning Concept Inventory

    Science.gov (United States)

    Drachova-Strang, Svetlana V.

    2013-01-01

    As computing becomes ubiquitous, software correctness has a fundamental role in ensuring the safety and security of the systems we build. To design and develop software correctly according to their formal contracts, CS students, the future software practitioners, need to learn a critical set of skills that are necessary and sufficient for…

  2. Courthouse Prototype Building

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Mini [ORNL; New, Joshua Ryan [ORNL; Im, Piljae [ORNL

    2018-02-01

    As part of DOE's support of ANSI/ASHRAE/IES Standard 90.1 and IECC, researchers at Pacific Northwest National Laboratory (PNNL) apply a suite of prototype buildings covering 80% of the commercial building floor area in the U.S. for new construction. Efforts have started on expanding the prototype building suite to cover 90% of the commercial building floor area in the U.S., by developing prototype models for additional building types including place of worship, public order and safety, public assembly. Courthouse is courthouse is a sub-category under the “Public Order and Safety" building type category; other sub-categories include police station, fire station, and jail, reformatory or penitentiary.ORNL used building design guides, databases, and documented courthouse projects, supplemented by personal communication with courthouse facility planning and design experts, to systematically conduct research on the courthouse building and system characteristics. This report documents the research conducted for the courthouse building type and proposes building and system characteristics for developing a prototype building energy model to be included in the Commercial Building Prototype Model suite. According to the 2012 CBECS, courthouses occupy a total of 436 million sqft of floor space or 0.5% of the total floor space in all commercial buildings in the US, next to fast food (0.35%), grocery store or food market (0.88%), and restaurant or cafeteria (1.2%) building types currently included in the Commercial Prototype Building Model suite. Considering aggregated average, courthouse falls among the larger with a mean floor area of 69,400 sqft smaller fuel consumption intensity building types and an average of 94.7 kBtu/sqft compared to 77.8 kBtu/sqft for office and 80 kBtu/sqft for all commercial buildings.Courthouses range in size from 1000 sqft to over a million square foot building gross square feet and 1 courtroom to over 100 courtrooms. Small courthouses

  3. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds

    Science.gov (United States)

    Xiong, B.; Oude Elberink, S.; Vosselman, G.

    2014-07-01

    In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.

  4. ABACC's laboratory intercomparison program

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Esteban, Adolfo; Almeida, Silvio G. de; Araujo, Radier M. de; Rocha, Zildete

    1996-01-01

    A Laboratory Intercomparison Program involving Brazilian and Argentine laboratories, with the special participation of New Brunswick Laboratory - DOE and IAEA Seibersdorf Safeguards Laboratory, was implanted by ABACC having as main purpose to qualify a network to provide analytical services to this Agency on its role as administrator of the Common System of Accountability and Control of Nuclear Materials. For the first round robin of this Program, 15 laboratories were invited to perform elemental analysis on UO 2 samples, by using any desired method. Thirteen confirmed the participation and 10 reported the results. After an evaluation of the results by using a Two-Way Variance Analysis applied to a nested error model, it was found that 5 of them deviate less than 0.1% from the reference value established for the UO 2 uranium contents, being thus situated within the limits adopted for the target values, while the remaining ones reach a maximal deviation of 0.44%. The outcome of this evaluation, was sent to the laboratories, providing them with a feedback to improve their performance by applying corrective actions to the detected sources of errors or bias related to the methods techniques and procedures. (author)

  5. Study of thermosiphon and radiant panel passive heating systems for metal buildings

    Energy Technology Data Exchange (ETDEWEB)

    Biehl, F.A.; Schnurr, N.M.; Wray, W.O.

    1983-01-01

    A study of passive-heating systems appropriate for use on metal buildings is being conducted at Los Alamos National Laboratory for the Naval Civil Engineering Laboratory, Port Hueneme, California. The systems selected for study were chosen on the basis of their appropriateness for retrofit applications, although they are also suitable for new construction: simple radiant panels that communicate directly with the building interior and a backflow thermosiphon that provides heat indirectly.

  6. The makeover of the Lakeshore General Hospital laboratories.

    Science.gov (United States)

    Estioko-Taimuri, Teresa

    2006-01-31

    This article describes the expansion and reorganization of a moderate-sized Canadian laboratory from Day One to "Live Day." The key factors to the success of this project were organized planning by the laboratory staff and the introduction of core lab theories, team building, and organized training sessions. The successful makeover resulted in improved turnaround time for STAT tests, especially those coming from the Emergency Unit. The efforts of the laboratory personnel toward the improvement of laboratory services, in spite of budget, human resources constraints, and resistance to change, are addressed.

  7. Effect of methods of myopia correction on visual acuity, contrast sensitivity, and depth of focus

    NARCIS (Netherlands)

    Nio, YK; Jansonius, NM; Wijdh, RHJ; Beekhuis, WH; Worst, JGF; Noorby, S; Kooijman, AC

    Purpose. To psychophysically measure spherical and irregular aberrations in patients with various types of myopia correction. Setting: Laboratory of Experimental Ophthalmology, University of Groningen, Groningen, The Netherlands. Methods: Three groups of patients with low myopia correction

  8. Critical review of the building downwash algorithms in AERMOD.

    Science.gov (United States)

    Petersen, Ron L; Guerra, Sergio A; Bova, Anthony S

    2017-08-01

    The only documentation on the building downwash algorithm in AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model), referred to as PRIME (Plume Rise Model Enhancements), is found in the 2000 A&WMA journal article by Schulman, Strimaitis and Scire. Recent field and wind tunnel studies have shown that AERMOD can overpredict concentrations by factors of 2 to 8 for certain building configurations. While a wind tunnel equivalent building dimension study (EBD) can be conducted to approximately correct the overprediction bias, past field and wind tunnel studies indicate that there are notable flaws in the PRIME building downwash theory. A detailed review of the theory supported by CFD (Computational Fluid Dynamics) and wind tunnel simulations of flow over simple rectangular buildings revealed the following serious theoretical flaws: enhanced turbulence in the building wake starting at the wrong longitudinal location; constant enhanced turbulence extending up to the wake height; constant initial enhanced turbulence in the building wake (does not vary with roughness or stability); discontinuities in the streamline calculations; and no method to account for streamlined or porous structures. This paper documents theoretical and other problems in PRIME along with CFD simulations and wind tunnel observations that support these findings. Although AERMOD/PRIME may provide accurate and unbiased estimates (within a factor of 2) for some building configurations, a major review and update is needed so that accurate estimates can be obtained for other building configurations where significant overpredictions or underpredictions are common due to downwash effects. This will ensure that regulatory evaluations subject to dispersion modeling requirements can be based on an accurate model. Thus, it is imperative that the downwash theory in PRIME is corrected to improve model performance and ensure that the model better represents reality.

  9. Knowledge and practices of pharmaceutical laboratory workers on laboratory safety

    Directory of Open Access Journals (Sweden)

    Esra Emerce

    2017-09-01

    Full Text Available Laboratories are classified as very hazardous workplaces. Objective: The aim of this descriptive study was to determine the knowledge and practice of laboratory safety by analysts and technicians in the laboratories of the Turkish Medicine and Medical Devices Agency. Methods:  85.0% (n=93 of the workers (n=109 was reached. A pre-tested, laboratory safety oriented, self-administered questionnaire was completed under observation. Results: Participants were mostly female (66,7%, had 12.8±8.2 years of laboratory experience and worked 24.6±10.3 hours per week. 53.8% of the employees generally worked with flammable and explosive substances, 29.0% with acute toxic or carcinogenic chemicals and 30.1% with physical dangers. Of all surveyed, 14.0% had never received formal training on laboratory safety. The proportion of ‘always use’ of laboratory coats, gloves, and goggles were 84.9%, 66.7%, and 6.5% respectively. 11.9% of the participants had at least one serious injury throughout their working lives and 24.7% had at least one small injury within the last 6 months. Among these injuries, incisions, bites and tears requiring no stiches (21.0% and the inhalation of chemical vapors (16.1% took first place. The mean value for the number of correct responses to questions on basic safety knowledge was 65.4±26.5, out of a possible 100. Conclusion: Overall, the participants have failed in some safety practices and have been eager to get regular education on laboratory safety.  From this point onwards, it would be appropriate for the employers to organize periodic trainings on laboratory safety.Keywords: Health personnel, laboratory personnel, occupational health, occupational safety, pharmacy

  10. Tensor Networks and Quantum Error Correction

    Science.gov (United States)

    Ferris, Andrew J.; Poulin, David

    2014-07-01

    We establish several relations between quantum error correction (QEC) and tensor network (TN) methods of quantum many-body physics. We exhibit correspondences between well-known families of QEC codes and TNs, and demonstrate a formal equivalence between decoding a QEC code and contracting a TN. We build on this equivalence to propose a new family of quantum codes and decoding algorithms that generalize and improve upon quantum polar codes and successive cancellation decoding in a natural way.

  11. Implementation of Energy Code Controls Requirements in New Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hatten, Mike [Solarc Energy Group, LLC, Seattle, WA (United States); Jones, Dennis [Group 14 Engineering, Inc., Denver, CO (United States); Cooper, Matthew [Group 14 Engineering, Inc., Denver, CO (United States)

    2017-03-24

    Most state energy codes in the United States are based on one of two national model codes; ANSI/ASHRAE/IES 90.1 (Standard 90.1) or the International Code Council (ICC) International Energy Conservation Code (IECC). Since 2004, covering the last four cycles of Standard 90.1 updates, about 30% of all new requirements have been related to building controls. These requirements can be difficult to implement and verification is beyond the expertise of most building code officials, yet the assumption in studies that measure the savings from energy codes is that they are implemented and working correctly. The objective of the current research is to evaluate the degree to which high impact controls requirements included in commercial energy codes are properly designed, commissioned and implemented in new buildings. This study also evaluates the degree to which these control requirements are realizing their savings potential. This was done using a three-step process. The first step involved interviewing commissioning agents to get a better understanding of their activities as they relate to energy code required controls measures. The second involved field audits of a sample of commercial buildings to determine whether the code required control measures are being designed, commissioned and correctly implemented and functioning in new buildings. The third step includes compilation and analysis of the information gather during the first two steps. Information gathered during these activities could be valuable to code developers, energy planners, designers, building owners, and building officials.

  12. The use of portable equipment for the activity concentration index determination of building materials: method validation and survey of building materials on the Belgian market

    International Nuclear Information System (INIS)

    Stals, M.; Verhoeven, S.; Bruggeman, M.; Pellens, V.; Schroeyers, W.; Schreurs, S.

    2014-01-01

    The Euratom BSS requires that in the near future (2015) the building materials for application in dwellings or buildings such as offices or workshops are screened for NORM nuclides. The screening tool is the activity concentration index (ACI). Therefore it is expected that a large number of building materials will be screened for NORM and thus require ACI determination. Nowadays, the proposed standard for determination of building material ACI is a laboratory analyses technique with high purity germanium spectrometry and 21 days equilibrium delay. In this paper, the B-NORM method for determination of building material ACI is assessed as a faster method that can be performed on-site, alternative to the aforementioned standard method. The B-NORM method utilizes a LaBr 3 (Ce) scintillation probe to obtain the spectral data. Commercially available software was applied to comprehensively take into account the factors determining the counting efficiency. The ACI was determined by interpreting the gamma spectrum from 226 Ra and its progeny; 232 Th progeny and 40 K. In order to assess the accuracy of the B-NORM method, a large selection of samples was analyzed by a certified laboratory and the results were compared with the B-NORM results. The results obtained with the B-NORM method were in good correlation with the results obtained by the certified laboratory, indicating that the B-NORM method is an appropriate screening method to assess building material ACI. The B-NORM method was applied to analyze more than 120 building materials on the Belgian market. No building materials that exceed the proposed reference level of 1 mSv/year were encountered. -- Highlights: • Many building materials will have to be tested for NORM activity concentrations. • An on-site NORM analysis method has been developed and validated. • Over 120 building materials on the Belgian market have been analyzed with this method. • The Euratom BSS reference level of 1 mSv/year excess dose will

  13. Moisture dynamics in building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Peuhkuri, R.

    2003-07-01

    The overall scope of this Thesis 'Moisture dynamics in building envelopes' has been to characterise how the various porous insulation materials investigated performed hygro thermally under conditions similar to those in a typical building envelope. As a result of the changing temperature and moisture conditions in the exterior weather and indoor climate the materials dynamically absorb and release moisture. The complexity of the impact of these conditions on the resulting moisture transport and content of the materials has been studied in this Thesis with controlled laboratory tests. (au)

  14. Neutron and X-ray facilities in new Purnima extension building

    International Nuclear Information System (INIS)

    Sarkar, P.S.; Patel, Tarun; Gadkari, S.C.

    2017-01-01

    Neutron and X-ray Physics Section of Technical Physics Division has laboratories involving X-ray, gamma ray and neutrons in the New Purnima Extension Building (NPEB), behind Purnima Laboratories, BARC. Research activities related to X-ray, Gamma and neutron based detection and imaging for societal, departmental and security applications are being carried out in these laboratories

  15. Federal High Performance and Sustainable Buildings: Guiding Principles for the Laboratory Support Building (LSB)

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Jason E.

    2014-09-01

    This report documents the federal Guiding Principles conformance effort for LSB at PNNL. The effort is part of continued progress toward a campus building inventory that is 100% compliant with the Guiding Principles. The report documentation provides a narrative of how the LSB complies with each of the Guiding Principles requirements. These narratives draw from the many sources that are explained in the text and rely on extensive data collection. The descriptions point to each of these sources, providing the reader with specific policies, procedures, and data points.

  16. Challenges and Opportunities To Achieve 50% Energy Savings in Homes: National Laboratory White Papers

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, M. V. A.

    2011-07-01

    In 2010, researchers from four of the national laboratories involved in residential research (Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory) were asked to prepare papers focusing on the key longer term research challenges, market barriers, and technology gaps that must be addressed to achieve the longer term 50% saving goal for Building America to ensure coordination with the Building America industry teams who are focusing their research on systems to achieve the near-term 30% savings goal. Although new construction was included, the focus of the effort was on deep energy retrofits of existing homes. This report summarizes the key opportunities, gaps, and barriers identified in the national laboratory white papers.

  17. A Buildings Module for the Stochastic Energy Deployment System

    Energy Technology Data Exchange (ETDEWEB)

    Lacommare, Kristina S H; Marnay, Chris; Stadler, Michael; Borgeson, Sam; Coffey, Brian; Komiyama, Ryoichi; Lai, Judy

    2008-05-15

    The U.S. Department of Energy (USDOE) is building a new long-range (to 2050) forecasting model for use in budgetary and management applications called the Stochastic Energy Deployment System (SEDS), which explicitly incorporates uncertainty through its development within the Analytica(R) platform of Lumina Decision Systems. SEDS is designed to be a fast running (a few minutes), user-friendly model that analysts can readily run and modify in its entirety through a visual programming interface. Lawrence Berkeley National Laboratory is responsible for implementing the SEDS Buildings Module. The initial Lite version of the module is complete and integrated with a shared code library for modeling demand-side technology choice developed by the National Renewable Energy Laboratory (NREL) and Lumina. The module covers both commercial and residential buildings at the U.S. national level using an econometric forecast of floorspace requirement and a model of building stock turnover as the basis for forecasting overall demand for building services. Although the module is fundamentally an engineering-economic model with technology adoption decisions based on cost and energy performance characteristics of competing technologies, it differs from standard energy forecasting models by including considerations of passive building systems, interactions between technologies (such as internal heat gains), and on-site power generation.

  18. Modernisation of the intermediate physics laboratory

    Science.gov (United States)

    Kontro, Inkeri; Heino, Olga; Hendolin, Ilkka; Galambosi, Szabolcs

    2018-03-01

    The intermediate laboratory courses at the Department of Physics, University of Helsinki, were reformed using desired learning outcomes as the basis for design. The reformed laboratory courses consist of weekly workshops and small-group laboratory sessions. Many of the laboratory exercises are open-ended and have several possible ways of execution. They were designed around affordable devices, to allow for the purchase of multiple sets of laboratory equipment. This allowed students to work on the same problems simultaneously. Thus, it was possible to set learning goals which build on each other. Workshop sessions supported the course by letting the students solve problems related to conceptual and technical aspects of each laboratory exercise. The laboratory exercises progressed biweekly to allow for iterative problem solving. Students reached the learning goals well and the reform improved student experiences. Neither positive or negative changes in expert-like attitudes towards experimental physics (measured by E-CLASS questionnaire) were observed.

  19. Non-Destructive Testing for Building Diagnostics and Monitoring: Experience Achieved with Case Studies

    Directory of Open Access Journals (Sweden)

    Tavukçuoğlu Ayşe

    2018-01-01

    Full Text Available Building inspection on site, in other words in-situ examinations of buildings is a troublesome work that necessitates the use of non-destructive investigation (NDT techniques. One of the main concerns of non-destructive testing studies is to improve in-situ use of NDT techniques for diagnostic and monitoring studies. The quantitative infrared thermography (QIRT and ultrasonic pulse velocity (UPV measurements have distinct importance in that regard. The joint use of QIRT and ultrasonic testing allows in-situ evaluation and monitoring of historical structures and contemporary ones in relation to moisture, thermal, materials and structural failures while the buildings themselves remain intact. For instances, those methods are useful for detection of visible and invisible cracks, thermal bridges and damp zones in building materials, components and functional systems as well as for soundness assessment of materials and thermal performance assessment of building components. In addition, those methods are promising for moisture content analyses in materials and monitoring the success of conservation treatments or interventions in structures. The in-situ NDT studies for diagnostic purposes should start with the mapping of decay forms and scanning of building surfaces with infrared images. Quantitative analyses are shaped for data acquisition on site and at laboratory from representative sound and problem areas in structures or laboratory samples. Laboratory analyses are needed to support in-situ examinations and to establish the reference data for better interpretation of in situ data. Advances in laboratory tests using IRT and ultrasonic testing are guiding for in-situ materials investigations based on measurable parameters. The knowledge and experience on QIRT and ultrasonic testing are promising for the innovative studies on today’s materials technologies, building science and conservation/maintenance practices. Such studies demand a multi

  20. Exploration of a Buried Building Foundation and a Septic Tank Plume Dispersion Using a Laboratory-fabricated Resistivity Apparatus

    Science.gov (United States)

    Lachhab, A.; Stepanik, N.; Booterbaugh, A.

    2010-12-01

    In the following study, an electrical resistivity device was built and used in both a laboratory setup and in the field to accurately identify the location of a septic tank and the foundation of Gustavus Adolphus (GA); a building that was burned at Susquehanna University in 1964. The entire apparatus, which costs a fraction of the price of a typical electrical resistivity device, was tested for accuracy in the laboratory prior to its use in the field. The electrical resistivity apparatus consists of a deep-cycle twelve volt battery, an AC to DC inverter and two multimeters to measure the potential and the current intensity from four linear electrodes via a wireless data transmission system. This apparatus was constructed by using basic inexpensive electrical and electronic equipments. The recorded potential and current values were used to calculate the apparent resistivity of different materials adopting the Wenner array for both investigations. Several tests were performed on the tabletop bench, producing consistent results when applied to find small bricks structures with different geometrical arrangement buried under a mixed sand-soil formation. The apparatus was also used to investigate a subsurface salty water plume in the same formation. The horizontal resistivity profile obtained over the vertical small brick wall matched the theoretical apparent resistivity of resistivity versus displacement on a vertical dike in a homogeneous material. In addition, the two-dimensional resistivity profile replicate the salty plume size conformably. Following the success on the small-scale laboratory tabletop bench, the electrical resistivity apparatus was implemented in the field to explore the foundation of GA in one location and the septic tank in another. An array of transects were performed, analyzed and plotted using MATLAB. The three dimensional contours of apparent resistivity depicted exactly the locations of the buried foundation walls, the septic tank and the

  1. Radiological Characterization and Final Facility Status Report Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Garcia, T.B.; Gorman, T.P.

    1996-08-01

    This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC ampersand FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate

  2. Design assessment for the Bethel Valley FFA Upgrades at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    This report describes the proposed upgrades to Building 3025 and the Evaporator Area at Oak Ridge National Laboratory. Design assessments, specifications and drawings are provided. Building 3025 is a general purpose research facility utilized by the Materials and Ceramics Division to conduct research on irradiated materials. The Evaporator Area, building 2531, serves as the collection point for all low-level liquid wastes generated at the Oak Ridge National Laboratory

  3. Metrics for building performance assurance

    Energy Technology Data Exchange (ETDEWEB)

    Koles, G.; Hitchcock, R.; Sherman, M.

    1996-07-01

    This report documents part of the work performed in phase I of a Laboratory Directors Research and Development (LDRD) funded project entitled Building Performance Assurances (BPA). The focus of the BPA effort is to transform the way buildings are built and operated in order to improve building performance by facilitating or providing tools, infrastructure, and information. The efforts described herein focus on the development of metrics with which to evaluate building performance and for which information and optimization tools need to be developed. The classes of building performance metrics reviewed are (1) Building Services (2) First Costs, (3) Operating Costs, (4) Maintenance Costs, and (5) Energy and Environmental Factors. The first category defines the direct benefits associated with buildings; the next three are different kinds of costs associated with providing those benefits; the last category includes concerns that are broader than direct costs and benefits to the building owner and building occupants. The level of detail of the various issues reflect the current state of knowledge in those scientific areas and the ability of the to determine that state of knowledge, rather than directly reflecting the importance of these issues; it intentionally does not specifically focus on energy issues. The report describes work in progress and is intended as a resource and can be used to indicate the areas needing more investigation. Other reports on BPA activities are also available.

  4. The Walls Come Tumbling Down: Decontamination and Demolition of 29 Manhattan Project and Cold War-Era Buildings and Structures at Los Alamos National Laboratory-12301

    Energy Technology Data Exchange (ETDEWEB)

    Chaloupka, Allan B.; Finn, Kevin P.; Parsons, Duane A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-01

    When the nation's top scientists and military leaders converged on Los Alamos, New Mexico in the 1943, to work on the Manhattan Project, the facilities they used to conduct their top-secret work were quickly constructed and located in the middle of what eventually became the Los Alamos town site. After one of these early facilities caught on fire, it seemed wise to build labs and production facilities farther away from the homes of the town's residents. They chose to build facilities on what was then known as Delta Prime (DP) Mesa and called it Technical Area 21, or TA-21. With wartime urgency, a number of buildings were built at TA-21, some in as little as a few months. Before long, DP Mesa was populated with several nondescript metal and cinder-block buildings, including what became, immediately following the war, the world's first plutonium production facility. TA-21 also housed labs that used hazardous chemicals and analyzed americium, tritium and plutonium. TA-21 was a bustling center of research and production for the next several decades. Additional buildings were built there in the 1960's, but by the 1990's many of them had reached the end of their service lives. Labs and offices were moved to newer, more modern buildings. When Los Alamos National Laboratory received $212 million in funding from the American Recovery and Reinvestment Act in July 2009 for environmental cleanup projects, about $73 million of the funds were earmarked to decontaminate and demolish 21 of the old buildings at TA-21. Although some D and D of TA-21 buildings was performed in the 1990's, many of the facilities at DP Site remained relatively untouched for nearly three decades following their final operational use. In 2006, there were over three dozen buildings or structures on the mesa to be removed so that soil cleanup could be completed (and the land made available for transfer and reuse). The total footprint of buildings across the mesa was

  5. Building Design Guidelines of Interior Architecture for Bio safety Levels of Biology Laboratories

    International Nuclear Information System (INIS)

    ElDib, A.A.

    2014-01-01

    This paper discusses the pivotal role of the Interior Architecture As one of the scientific disciplines minute to complete the Architectural Sciences, which relied upon the achievement and development of facilities containing scientific research laboratories, in terms of planning and design, particularly those containing biological laboratories using radioactive materials, adding to that, the application of the materials or raw materials commensurate with each discipline of laboratory and its work nature, and by the discussion the processing of design techniques and requirements of interior architecture dealing with Research Laboratory for electronic circuits an their applications with the making of its prototypes

  6. Development of a methodology for defining whole-building energy design targets for commercial buildings: Phase 2, Development concept stage report

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.W. (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (USA)); Deringer, J.J. (Deringer Group, Riva, MD (USA)); Hall, J.D. (American Inst. of Architects, Washington, DC (USA)) (comps.)

    1990-09-01

    The Whole-Building Energy Design Targets project is being conducted for the US Department of Energy (DOE) by the Pacific Northwest Laboratory (PNL). The objective of the project is to develop a flexible methodology for setting energy performance guidelines with which architects, engineers, planners, and owners can assess energy efficiency in commercial building design. This volume, the third in the four-volume report on the Targets project concept stage, contains the minutes of the workshops as well as summaries of the expert's written comments prepared at the close of each workshop. In Section 2, the building energy simulation workshop is summarized. Section 3 provides a summary of the building cost workshop.

  7. Project of an integrated calibration laboratory of instruments at IPEN; Projeto de um laboratorio integrado de calibracao de instrumentos no IPEN

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Gustavo Adolfo San Jose

    2009-07-01

    The Calibration Laboratory of Instruments of Instituto de Pesquisas Energeticas e Nucleares offers calibration services of radiation detectors used in radioprotection, diagnostic radiology and radiotherapy, for IPEN and for external facilities (public and private). One part of its facilities is located in the main building, along with other laboratories and study rooms, and another part in an isolated building called Bunker. For the optimization, modernization and specially the safety, the laboratories in the main building shall be transferred to an isolated place. In this work, a project of an integrated laboratory for calibration of instruments was developed, and it will be an expansion of the current Calibration Laboratory of Instruments of IPEN. Therefore, a series of radiometric monitoring of the chosen localization of the future laboratory was realized, and all staff needs (dimensions and disposition of the study rooms and laboratories) were defined. In this project, the laboratories with X ray equipment, alpha and beta radiation sources were located at an isolated part of the building, and the wall shielding was determined, depending on the use of each laboratory. (author)

  8. THE USE OF ELECTRONIC DATA PROCESSING IN CORRECTIONS AND LAW ENFORCEMENT,

    Science.gov (United States)

    Reviews the reasons, methods, accomplishments and goals of the use of electronic data processing in the fields of correction and law enforcement . Suggest...statistical and case history data in building a sounder theoretical base in the field of law enforcement . (Author)

  9. Corrective Action Decision Document/Closure Report for Corrective Action Unit 560: Septic Systems, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2010-04-01

    Corrective Action Unit 560 comprises seven corrective action sites (CASs): •03-51-01, Leach Pit •06-04-02, Septic Tank •06-05-03, Leach Pit •06-05-04, Leach Bed •06-59-03, Building CP-400 Septic System •06-59-04, Office Trailer Complex Sewage Pond •06-59-05, Control Point Septic System The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure of CAU 560 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from October 7, 2008, through February 24, 2010, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 560: Septic Systems, Nevada Test Site, Nevada, and Record of Technical Change No. 1. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: •Determine whether contaminants of concern (COCs) are present. •If COCs are present, determine their nature and extent. •Provide sufficient information and data to complete appropriate corrective actions. The CAU 560 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. The following contaminants were determined to be present at concentrations exceeding their corresponding FALs: •No contamination exceeding the FALs was identified at CASs 03-51-01, 06-04-02, and 06-59-04. •The soil at the base of the leach pit chamber at CAS 06-05-03 contains arsenic above the FAL of 23 milligrams per kilogram (mg/kg) and polychlorinated biphenyl (PCBs) above the FAL of 0.74 mg/kg, confined vertically from a depth of approximately 5 to 20 feet (ft) below ground surface. The contamination is confined laterally to the walls of the

  10. The modular small-angle X-ray scattering data correction sequence.

    Science.gov (United States)

    Pauw, B R; Smith, A J; Snow, T; Terrill, N J; Thünemann, A F

    2017-12-01

    Data correction is probably the least favourite activity amongst users experimenting with small-angle X-ray scattering: if it is not done sufficiently well, this may become evident only during the data analysis stage, necessitating the repetition of the data corrections from scratch. A recommended comprehensive sequence of elementary data correction steps is presented here to alleviate the difficulties associated with data correction, both in the laboratory and at the synchrotron. When applied in the proposed order to the raw signals, the resulting absolute scattering cross section will provide a high degree of accuracy for a very wide range of samples, with its values accompanied by uncertainty estimates. The method can be applied without modification to any pinhole-collimated instruments with photon-counting direct-detection area detectors.

  11. Corrective measures evaluation report for technical area-v groundwater.

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Johnathan L (North Wind, Inc., Idaho Falls, ID); Orr, Brennon R. (North Wind, Inc., Idaho Falls, ID); Dettmers, Dana L. (North Wind, Inc., Idaho Falls, ID); Hall, Kevin A. (North Wind, Inc., Idaho Falls, ID); Howard, Hope (North Wind, Inc., Idaho Falls, ID)

    2005-07-01

    This Corrective Measures Evaluation Report was prepared as directed by the Compliance Order on Consent issued by the New Mexico Environment Department to document the process of selecting the preferred remedial alternative for contaminated groundwater at Technical Area V. Supporting information includes background information about the site conditions and potential receptors and an overview of work performed during the Corrective Measures Evaluation. Evaluation of remedial alternatives included identification and description of four remedial alternatives, an overview of the evaluation criteria and approach, qualitative and quantitative evaluation of remedial alternatives, and selection of the preferred remedial alternative. As a result of the Corrective Measures Evaluation, it was determined that monitored natural attenuation of all contaminants of concern (trichloroethene, tetrachloroethene, and nitrate) was the preferred remedial alternative for implementation as the corrective measure to remediate contaminated groundwater at Technical Area V of Sandia National Laboratories/New Mexico. Finally, design criteria to meet cleanup goals and objectives and the corrective measures implementation schedule for the preferred remedial alternative are presented.

  12. 324 Building fire hazards analysis implementation plan

    International Nuclear Information System (INIS)

    Eggen, C.D.

    1998-01-01

    In March 1998, the 324 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the US Department of Energy, Richland Operations Office (DOE-RL) for implementation by B and W Hanford Company (BWHC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in six areas and provided 20 recommendations to bring the 324 Building into compliance with DOE Order 5480.7A. Additionally, one observation was provided. To date, four of the recommendations and the one observation have been completed. Actions identified for seven of the recommendations are currently in progress. Exemption requests will be transmitted to DOE-RL for three of the recommendations. Six of the recommendations are related to future shut down activities of the facility and the corrective actions are not being addressed as part of this plan. The actions for recommendations associated with the safety related part of the 324 Building and operation of the cells and support areas were evaluated using the Unreviewed Safety Question (USQ) process. Major Life Safety Code concerns have been corrected. The status of the recommendations and actions was confirmed during the July 1998 Fire Protection Assessment. BVMC will use this Implementation Plan to bring the 324 Building and its operation into compliance with DOE Order 5480.7A and RLID 5480.7

  13. Clearance Laboratory - Capability and measurement sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Hedemann Jensen, P.; Lauridsen, B.; Silva, J.; Soegaard-Hansen, J.; Warming, L.

    2005-08-01

    A new low-level Clearance Laboratory has been built at the Risoe-site. Building materials with a low content of naturally occurring radionuclides have been used. To minimize transport of radon gas from soil into the laboratory the foundation has been supplied with a membrane. The laboratory has been equipped with two high-efficiency germanium detectors. These detectors will be used for clearance measurements on the predicted amount of 15,000 - 18,000 tonnes of non-active or nearly non-active materials, which will originate from the decommissioning of all the nuclear facilities at the Risoe-site. They will be used also for clearance measurements on buildings and land. Objects and materials to be measured for clearance are placed on a rotation table that can carry up to one tonne and can rotate once a minute to simulate some averaging of inhomogeneously distributed activity. Sensitivity and background measurements reveal that measuring times of 20 - 50 minutes would normally be sufficient to detect radionuclide concentrations of only a small fraction of the nuclide-specific clearance levels with a sufficiently low uncertainty. Probability calculations of the measurement capacity of the Clearance Laboratory indicate that the mean value of the total measuring time for all materials that potentially can be cleared would be 13 years with a 95% probability of being less than 25 years. The mean value of the annual amount of materials that can be measured in the laboratory is 600 tonnes with a 95% probability of being less than 1,200 tonnes. If needed, there is room for additional measuring systems to increase the capacity of the laboratory. (au)

  14. Clearance Laboratory - Capability and measurement sensitivity

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.; Lauridsen, B.; Silva, J.; Soegaard-Hansen, J.; Warming, L.

    2005-09-01

    A new low-level Clearance Laboratory has been built at the Risoe-site. Building materials with a low content of naturally occurring radionuclides have been used. To minimize transport of radon gas from soil into the laboratory the foundation has been supplied with a membrane. The laboratory has been equipped with two high-efficiency germanium detectors. These detectors will be used for clearance measurements on the predicted amount of 15,000 - 18,000 tonnes of non-active or nearly non-active materials, which will originate from the decommissioning of all the nuclear facilities at the Risoe-site. They will be used also for clearance measurements on buildings and land. Objects and materials to be measured for clearance are placed on a rotation table that can carry up to one tonne and can rotate once a minute to simulate some averaging of inhomogeneously distributed activity. Sensitivity and background measurements reveal that measuring times of 20 - 50 minutes would normally be sufficient to detect radionuclide concentrations of only a small fraction of the nuclide-specific clearance levels with a sufficiently low uncertainty. Probability calculations of the measurement capacity of the Clearance Laboratory indicate that the mean value of the total measuring time for all materials that potentially can be cleared would be 13 years with a 95% probability of being less than 25 years. The mean value of the annual amount of materials that can be measured in the laboratory is 600 tonnes with a 95% probability of being less than 1,200 tonnes. If needed, there is room for additional measuring systems to increase the capacity of the laboratory. (au)

  15. Building America House Simulation Protocols - Revised October 2010

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    This document was developed to track and manage progress toward multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent reference point. This report corrects editorial errors that were in the original publication.

  16. Decommissioning of surplus facilities at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stout, D.S.

    1995-01-01

    Decommissioning Buildings 3 and 4 South at Technical Area 21, Los Alamos National Laboratory, involves the decontamination, dismantlement, and demolition of two enriched-uranium processing buildings containing process equipment and ductwork holdup. The Laboratory has adopted two successful management strategies to implement this project: Rather than characterize an entire site, upfront, investigators use the ''observational approach,'' in which they collect only enough data to begin decommissioning activities and then determine appropriate procedures for further characterization as the work progresses. Project leaders augment work packages with task hazard analyses to fully define specific tasks and inform workers of hazards; all daily work activities are governed by specific work procedures and hazard analyses

  17. Rutherford Appleton Laboratory

    International Nuclear Information System (INIS)

    1993-01-01

    Rutherford Appleton Laboratory (RAL), described in this document, supports a wide variety of projects. Each year more than 1000 scientists and engineers visit RAL to use its world-class laser and neutron-scattering facilities. RAL staff design and build instruments which circle the Earth in satellites, increasing our understanding of ozone depletion and global warming, of the life cycles of stars and galaxies and, indeed, of the origin of the Universe itself. They work with their academic colleagues at international laboratories such as European Organization for Nuclear Research (CERN), Geneva, where massive underground machines probe the microstructure of the atomic nucleus. Vastly complex calculations are carried out on the design of anti-cancer drugs, for example, using supercomputers at RAL. (author)

  18. Building laboratory capacity to support HIV care in Nigeria: Harvard/APIN PEPFAR, 2004–2012

    Science.gov (United States)

    Hamel, Donald J.; Sankalé, Jean-Louis; Samuels, Jay Osi; Sarr, Abdoulaye D.; Chaplin, Beth; Ofuche, Eke; Meloni, Seema T.; Okonkwo, Prosper; Kanki, Phyllis J.

    2015-01-01

    Introduction From 2004–2012, the Harvard/AIDS Prevention Initiative in Nigeria, funded through the US President’s Emergency Plan for AIDS Relief programme, scaled up HIV care and treatment services in Nigeria. We describe the methodologies and collaborative processes developed to improve laboratory capacity significantly in a resource-limited setting. These methods were implemented at 35 clinic and laboratory locations. Methods Systems were established and modified to optimise numerous laboratory processes. These included strategies for clinic selection and management, equipment and reagent procurement, supply chains, laboratory renovations, equipment maintenance, electronic data management, quality development programmes and trainings. Results Over the eight-year programme, laboratories supported 160 000 patients receiving HIV care in Nigeria, delivering over 2.5 million test results, including regular viral load quantitation. External quality assurance systems were established for CD4+ cell count enumeration, blood chemistries and viral load monitoring. Laboratory equipment platforms were improved and standardised and use of point-of-care analysers was expanded. Laboratory training workshops supported laboratories toward increasing staff skills and improving overall quality. Participation in a World Health Organisation-led African laboratory quality improvement system resulted in significant gains in quality measures at five laboratories. Conclusions Targeted implementation of laboratory development processes, during simultaneous scale-up of HIV treatment programmes in a resource-limited setting, can elicit meaningful gains in laboratory quality and capacity. Systems to improve the physical laboratory environment, develop laboratory staff, create improvements to reduce costs and increase quality are available for future health and laboratory strengthening programmes. We hope that the strategies employed may inform and encourage the development of other

  19. LAB building a home for scientists

    CERN Document Server

    Fishman, Mark C

    2017-01-01

    Laboratories are both monasteries and space stations, redolent of the great ideas of generations past and of technologies to propel the future. Yet standard lab design has changed only little over recent years. Here Mark Fishman describes how to build labs as homes for scientists, to accommodate not just their fancy tools, but also their personalities. This richly illustrated book explores the roles of labs through history, from the alchemists of the Middle Ages to the chemists of the 19th and 20th centuries, and to the geneticists and structural biologists of today, and then turns to the special features of the laboratories Fishman helped to design in Cambridge, Shanghai, and Basel. Anyone who works in, or plans to build a lab, will enjoy this book, which will encourage them to think about how this special environment drives or impedes their important work.

  20. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Science.gov (United States)

    2010-10-27

    ... Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings; Correction AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... the fossil fuel- generated energy consumption [[Page 66009

  1. Building laboratory capacity to support HIV care in Nigeria: Harvard/APIN PEPFAR, 2004–2012

    Directory of Open Access Journals (Sweden)

    Donald J. Hamel

    2015-05-01

    Full Text Available Introduction: From 2004–2012, the Harvard/AIDS Prevention Initiative in Nigeria, funded through the US President’s Emergency Plan for AIDS Relief programme, scaled up HIV care and treatment services in Nigeria. We describe the methodologies and collaborative processes developed to improve laboratory capacity significantly in a resource-limited setting. These methods were implemented at 35 clinic and laboratory locations. Methods: Systems were established and modified to optimise numerous laboratory processes. These included strategies for clinic selection and management, equipment and reagent procurement, supply chains, laboratory renovations, equipment maintenance, electronic data management, quality development programmes and trainings. Results: Over the eight-year programme, laboratories supported 160 000 patients receiving HIV care in Nigeria, delivering over 2.5 million test results, including regular viral load quantitation. External quality assurance systems were established for CD4+ cell count enumeration, blood chemistries and viral load monitoring. Laboratory equipment platforms were improved and standardised and use of point-of-care analysers was expanded. Laboratory training workshops supported laboratories toward increasing staff skills and improving overall quality. Participation in a World Health Organisation-led African laboratory quality improvement system resulted in significant gains in quality measures at five laboratories. Conclusions: Targeted implementation of laboratory development processes, during simultaneous scale-up of HIV treatment programmes in a resource-limited setting, can elicit meaningful gains in laboratory quality and capacity. Systems to improve the physical laboratory environment, develop laboratory staff, create improvements to reduce costs and increase quality are available for future health and laboratory strengthening programmes. We hope that the strategies employed may inform

  2. Measurement control is one component of laboratory quality assurance: What are the others

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1986-01-01

    The value of a quality assurance program is that the overlooking, ignoring, or downgrading of useful functions and practices will be minimized. The principles of quality assurance make a great tool for minimizing problems and for helping to find and correct deficiencies and problems when they occur. Finding and correcting deficiencies and problems while they are still small - before they become monsters - will certainly make life easier in the operation of a laboratory. This takes diligence in being aware of what is going on in the laboratory and firm resolve by management to take effective corrective actions when necessary. It takes more than applying band aids to problems. 4 refs

  3. Comparison of calculation and simulation of evacuation in real buildings

    Science.gov (United States)

    Szénay, Martin; Lopušniak, Martin

    2018-03-01

    Each building must meet requirements for safe evacuation in order to prevent casualties. Therefore methods for evaluation of evacuation are used when designing buildings. In the paper, calculation methods were tested on three real buildings. The testing used methods of evacuation time calculation pursuant to Slovak standards and evacuation time calculation using the buildingExodus simulation software. If calculation methods have been suitably selected taking into account the nature of evacuation and at the same time if correct values of parameters were entered, we will be able to obtain almost identical times of evacuation in comparison with real results obtained from simulation. The difference can range from 1% to 27%.

  4. ATLAS accelerator laboratory report

    International Nuclear Information System (INIS)

    Den Hartog, P.

    1986-01-01

    The operation of the ATLAS Accelerator is reported. Modifications are reported, including the installation of conductive tires for the Pelletron chain pulleys, installation of a new high frequency sweeper system at the entrance to the linac, and improvements to the rf drive ports of eight resonators to correct failures in the thermally conductive ceramic insulators. Progress is reported on the positive-ion injector upgrade for ATLAS. Also reported are building modifications and possible new uses for the tandem injector

  5. Highlighting High Performance: National Renewable Energy Laboratory's Visitors Center, Golden, Colorado

    International Nuclear Information System (INIS)

    Burgert, S.

    2001-01-01

    The National Renewable Energy Laboratory Visitors Center, also known as the Dan Schaefer Federal Building, is a high-performance building located in Golden, Colorado. The 6,400-square-foot building incorporates passive solar heating, energy-efficient lighting, an evaporative cooling system, and other technologies to minimize energy costs and environmental impact. The Visitors Center displays a variety of interactive exhibits on energy efficiency and renewable energy, and the building includes an auditorium, a public reading room, and office space

  6. Phlebotomy, a bridge between laboratory and patient

    OpenAIRE

    Ialongo, Cristiano; Bernardini, Sergio

    2016-01-01

    The evidence-based paradigm has changed and evolved medical practice. Phlebotomy, which dates back to the age of ancient Greece, has gained experience through the evolution of medicine becoming a fundamental diagnostic tool. Nowadays it connects the patient with the clinical laboratory dimension building up a bridge. However, more often there is a gap between laboratory and phlebotomist that causes misunderstandings and burdens on patient safety. Therefore, the scope of this review is deliver...

  7. Acoustic testing and modeling: an advanced undergraduate laboratory.

    Science.gov (United States)

    Russell, Daniel A; Ludwigsen, Daniel O

    2012-03-01

    This paper describes an advanced laboratory course in acoustics, specifically targeted for students with an interest in engineering applications at a school with a strongly integrated industrial co-op program. The laboratory course is developed around a three-pronged approach to problem solving that combines and integrates theoretical models, computational models, and experimental data. The course is structured around modules that begin with fundamental concepts and build laboratory skills and expand the knowledge base toward a final project. Students keep a detailed laboratory notebook, write research papers in teams, and must pass laboratory certification exams. This paper describes the course layout and philosophy and shares personal experience from both faculty and student perspectives. © 2012 Acoustical Society of America

  8. Seismic evaluation of the LLNL plutonium facility (Building 332)

    International Nuclear Information System (INIS)

    Hall, W.J.; Sozen, M.A.

    1982-03-01

    The expected performance of the Lawrence Livermore National Laboratory (LLNL) Plutonium Facility (Building 332) subjected to earthquake ground motion has been evaluated. Anticipated behavior of the building, glove boxes, ventilation system and other systems critical for containment of plutonium is described for three severe postulated earthquake excitations. Based upon this evaluation, some damage to the building, glove boxes and ventilation system would be expected but no collapse of any structure is anticipated as a result of the postulated earthquake ground motions

  9. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    CERN Document Server

    Lesko, Kevin T; Alonso, Jose; Bauer, Paul; Chan, Yuen-Dat; Chinowsky, William; Dangermond, Steve; Detwiler, Jason A; De Vries, Syd; DiGennaro, Richard; Exter, Elizabeth; Fernandez, Felix B; Freer, Elizabeth L; Gilchriese, Murdock G D; Goldschmidt, Azriel; Grammann, Ben; Griffing, William; Harlan, Bill; Haxton, Wick C; Headley, Michael; Heise, Jaret; Hladysz, Zbigniew; Jacobs, Dianna; Johnson, Michael; Kadel, Richard; Kaufman, Robert; King, Greg; Lanou, Robert; Lemut, Alberto; Ligeti, Zoltan; Marks, Steve; Martin, Ryan D; Matthesen, John; Matthew, Brendan; Matthews, Warren; McConnell, Randall; McElroy, William; Meyer, Deborah; Norris, Margaret; Plate, David; Robinson, Kem E; Roggenthen, William; Salve, Rohit; Sayler, Ben; Scheetz, John; Tarpinian, Jim; Taylor, David; Vardiman, David; Wheeler, Ron; Willhite, Joshua; Yeck, James

    2011-01-01

    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multi...

  10. Monitoring laboratory data across manufacturers and laboratories--A prerequisite to make "Big Data" work.

    Science.gov (United States)

    Goossens, Kenneth; Van Uytfanghe, Katleen; Twomey, Patrick J; Thienpont, Linda M

    2015-05-20

    "The Percentiler" project provides quasi real-time access to patient medians across laboratories and manufacturers. This data can serve as "clearinghouse" for electronic health record applications, e.g., use of laboratory data for global health-care research. Participants send their daily outpatient medians to the Percentiler application. After 6 to 8weeks, the laboratory receives its login information, which gives access to the user interface. Data is assessed by peer group, i.e., 10 or more laboratories using the same test system. Participation is free of charge. Participation is global with, to date, >120 laboratories and >250 instruments. Up to now, several reports have been produced that address i) the general features of the project, ii) peer group observations; iii) synergisms between "The Percentiler" and dedicated external quality assessment surveys. Reasons for long-term instability and bias (calibration- or lot-effects) have been observed for the individual laboratory and manufacturers. "The Percentiler" project has the potential to build a continuous, global evidence base on in vitro diagnostic test comparability and stability. As such, it may be beneficial for all stakeholders and, in particular, the patient. The medical laboratory is empowered for contributing to the development, implementation, and management of global health-care policies. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Strategies for energy benchmarking in cleanrooms and laboratory-type facilities

    International Nuclear Information System (INIS)

    Sartor, Dale; Piette, Mary Ann; Tschudi, William; Fok, Stephen

    2000-01-01

    Buildings with cleanrooms and laboratories are growing in terms of total floor area and energy intensity. This building type is common in institutions such as universities and in many industries such as microelectronics and biotechnology. These buildings, with high ventilation rates and special environmental considerations, consume from 4 to 100 times more energy per square foot than conventional commercial buildings. Owners and operators of such facilities know they are expensive to operate, but have little way of knowing if their facilities are efficient or inefficient. A simple comparison of energy consumption per square foot is of little value. A growing interest in benchmarking is also fueled by: A new U.S. Executive Order removing the exemption of federal laboratories from energy efficiency goals, setting a 25% savings target, and calling for baseline guidance to measure progress; A new U.S. EPA and U.S. DOE initiative, Laboratories for the 21st Century, establishing voluntary performance goals and criteria for recognition; and A new PG and E market transformation program to improve energy efficiency in high tech facilities, including a cleanroom energy use benchmarking project. This paper identifies the unique issues associated with benchmarking energy use in high-tech facilities. Specific options discussed include statistical comparisons, point-based rating systems, model-based techniques, and hierarchical end-use and performance-metrics evaluations

  12. 76 FR 57982 - Building Energy Codes Cost Analysis

    Science.gov (United States)

    2011-09-19

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy [Docket No. EERE-2011-BT-BC-0046] Building Energy Codes Cost Analysis Correction In notice document 2011-23236 beginning on page...-23236 Filed 9-16-11; 8:45 am] BILLING CODE 1505-01-P ...

  13. Influence of Misalignment on High-Order Aberration Correction for Normal Human Eyes

    Science.gov (United States)

    Zhao, Hao-Xin; Xu, Bing; Xue, Li-Xia; Dai, Yun; Liu, Qian; Rao, Xue-Jun

    2008-04-01

    Although a compensation device can correct aberrations of human eyes, the effect will be degraded by its misalignment, especially for high-order aberration correction. We calculate the positioning tolerance of correction device for high-order aberrations, and within what degree the correcting effect is better than low-order aberration (defocus and astigmatism) correction. With fixed certain misalignment within the positioning tolerance, we calculate the residual wavefront rms aberration of the first-6 to first-35 terms along with the 3rd-5th terms of aberrations corrected, and the combined first-13 terms of aberrations are also studied under the same quantity of misalignment. However, the correction effect of high-order aberrations does not meliorate along with the increase of the high-order terms under some misalignment, moreover, some simple combined terms correction can achieve similar result as complex combinations. These results suggest that it is unnecessary to correct too much the terms of high-order aberrations which are difficult to accomplish in practice, and gives confidence to correct high-order aberrations out of the laboratory.

  14. Influence of Misalignment on High-Order Aberration Correction for Normal Human Eyes

    International Nuclear Information System (INIS)

    Hao-Xin, Zhao; Bing, Xu; Li-Xia, Xue; Yun, Dai; Qian, Liu; Xue-Jun, Rao

    2008-01-01

    Although a compensation device can correct aberrations of human eyes, the effect will be degraded by its misalignment, especially for high-order aberration correction. We calculate the positioning tolerance of correction device for high-order aberrations, and within what degree the correcting effect is better than low-order aberration (defocus and astigmatism) correction. With fixed certain misalignment within the positioning tolerance, we calculate the residual wavefront rms aberration of the first-6 to first-35 terms along with the 3rd-5th terms of aberrations corrected, and the combined first-13 terms of aberrations are also studied under the same quantity of misalignment. However, the correction effect of high-order aberrations does not meliorate along with the increase of the high-order terms under some misalignment, moreover, some simple combined terms correction can achieve similar result as complex combinations. These results suggest that it is unnecessary to correct too much the terms of high-order aberrations which are difficult to accomplish in practice, and gives confidence to correct high-order aberrations out of the laboratory

  15. Sandia National Laboratories/New Mexico Facilities and Safety Information Document [NOTE: Volume II, Chapter 12

    International Nuclear Information System (INIS)

    March, F.; Guerrero, J.V.; Johns, W.H.; Schetnan, R.; Bayliss, L.S.; Kuzio, K.A.

    1999-01-01

    Operations in Tech Area IV commenced in 1980 with the construction of Buildings 980 and 981 and the Electron Beam Fusion Accelerator, which at the time was a major facility in SNL's Inertial Confinement Fusion Program. The Electron Beam Fusion Accelerator was a third-generation fusion accelerator that followed Proto I and Proto II, which were operated in Tech Area V. Another accelerator, the Particle Beam Fusion Accelerator I, was constructed in Tech Area IV because there was not enough room in Tech Area V, a highly restricted area that contains SNL's reactor facilities. In the early 1980s, more fusion-related facilities were constructed in Tech Area IV. Building 983 was built to house a fourth-generation fusion accelerator, the Particle Beam Fusion Accelerator II, now called Z Machine, and Buildings 960 and 961 were built to house office space, electrical and mechanical laboratories, and highbay space for pulsed power research and development. In the mid 1980s, Building 970 was constructed to house the Simulation Technology Laboratory. The main facility in the Simulation Technology Laboratory is the High-Energy Radiation Megavolt Electron Source (HERMES) III, a third-generation gamma ray accelerator that is used primarily for the simulation of gamma rays produced by nuclear weapons. The previous generations, HERMES I and HERMES II, had been located in Tech Area V. In the late 1980s, Proto II was moved from Tech Area V to the Simulation Technology Laboratory and modified to function as an x-ray simulation accelerator, and construction of Buildings 962 and 963 began. These buildings comprised the Strategic Defense Facility, which was initially intended to support the nation's Strategic Defense Initiative or ''Star Wars'' program. It was to house a variety of pulsed power-related facilities to conduct research in such areas as directed-energy weapons (electron beams, lasers, and microwaves) and an earth-to-orbit launcher. With the reduction of the Strategic Defense

  16. Matching NLO QCD corrections in WHIZARD with the POWHEG scheme

    International Nuclear Information System (INIS)

    Nejad, Bijan Chokoufe; Reuter, Juergen; Kilian, Wolfgang; Weiss, Christian; Siegen Univ.

    2015-01-01

    Building on the new automatic subtraction of NLO amplitudes in WHIZARD, we present our implementation of the POWHEG scheme to match radiative corrections consistently with the parton shower. We apply this general framework to two linear collider processes, e + e - →t anti t and e + e - →t anti tH.

  17. Durability of building joint sealants

    Science.gov (United States)

    Christopher C. White; Kar Tean Tan; Donald L. Hunston; R. Sam Williams

    2009-01-01

    Predicting the service life of building joint sealants exposed to service environments in less than real time has been a need of the sealant community for many decades. Despite extensive research efforts to design laboratory accelerated tests to duplicate the failure modes occurring in field exposures, little success has been achieved using conventional durability...

  18. A new nuclear materials laboratory at Queen's University

    International Nuclear Information System (INIS)

    Holt, R.A.; Daymond, M.R.

    2015-01-01

    The Reactor Materials Testing Laboratory (RMTL) at Queen's University and the results of commissioning tests are described. RMTL uses energetic protons (up to 8MeV) to simulate fast neutron damage in materials for reactor components. The laboratory is also capable of He implantation (up to 12 MeV) to simulate the effects of transmutation He in reactor components. The $17.5M laboratory comprises a new building, a 4MV tandem accelerator, two electron microscopes, mechanical testing and specimen preparation equipment, and a radiation detection laboratory. RMTL focusses on studying dynamic effects of irradiation (irradiation creep, irradiation growth, irradiation induced swelling, fatigue under irradiation) in-situ. (author)

  19. Surplus Facilities Management Program. Post-remedial-action survey report for SNAP-8 Experimental Reactor Facility, Building 010 site, Santa Susana Field Laboratories, Rockwell International, Ventura County, California

    International Nuclear Information System (INIS)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Mayes, C.B.; Justus, A.L.; Flynn, K.F.

    1984-04-01

    Based on the results of the radiological assessment, the Argonne National Laboratory Radiological Survey Group arrived at the following conclusions: (1) soil contaminated with the radionuclides 60 Co and 152 Eu of undetermined origin was detected in the southwest quadrant of the Building 010 site. 60 Co was also detected in one environmental sample taken from an area northwest of the site and in a borehole sample taken from the area that previously held the radioactive gas hold-up tanks. Uranium was detected in soil from a hole in the center of the building site and in a second hole southwest of the building site. In all cases, the radionuclide levels encountered in the soil were well below the criteria set by DOE for this site; and (2) the direct instrument readings at the surface of the site were probably the result of natural radiation (terrestrial and celestial), as well as shine from the material being stored at the nearby RMDF facility. There was no evidence that the contaminated soil under the asphalt pad contributed detectable levels to the total background readings

  20. Low and medium activity nuclear waste disposal characterisation laboratory. Example of Spanish E1 Cabril Disposal Centre Laboratory

    International Nuclear Information System (INIS)

    Boulanger, G.; Augustin, X.

    1993-01-01

    Low and medium activity radioactive waste generated in Spain by power reactors, research laboratories, etc. is stored in the E1 Cabril Disposal Centre. This Centre, based on a French design, provides a characterisation function for the stored waste and corresponding containers. Technicatome, prime contractor for the French disposal centre, and contributing to the design and construction of the E1 Cabril Centre, played an important part in the R and D work for this laboratory, and the manufacture of certain items of equipment. This laboratory, applying experience acquired in France by the CEA, comprises a set of buildings providing for active and inactive test operations

  1. Open BIM in course on advanced building design

    DEFF Research Database (Denmark)

    Karlshøj, Jan

    2016-01-01

    shall hand in BIM models in open BIM, specifically in IFC-format. The paper describes how the course and use of BIM is evaluated by the students, and the finding correcting the delivered BIM models in IFC-format. Use of model servers and BCF are briefly described. Issues regarding challenges...... in coordination, teamwork building and mutual dependencies were registered from students’ evaluation of the course. Overall, the students reported becoming familiar with open BIM and experienced the freedom to choose their preferred BIM tool for each specific job to see if it was possible to coordinate a building...... design project using open BIM. Graduate students working in the building construction industry expressed satisfaction with the course....

  2. Laboratory use of industrial control systems

    International Nuclear Information System (INIS)

    Rijllart, A.; Avot, L.; Brahy, D.; Jegou, D.; Saban, R.

    1994-01-01

    Industrial control system manufacturers supply the building blocks for the control of industrial equipment or specific process control applications. Although the laboratory environment is different in many aspects (prototyping, evolution and frequent reconfiguration), the use of these building blocks remain attractive because of their general purpose nature, their cost and the large spectrum of available types. In this paper we present three projects which have been implemented using both industrial control system building blocks (PLCs, controllers, digital and analogue plug-in I/O cards) and commercial software packages (LabView and VisualBasic) for the man-machine interface, the data acquisition and archiving, and the process control. This approach has proved to be economical, easy and fast to implement. ((orig.))

  3. Model-Based Illumination Correction for Face Images in Uncontrolled Scenarios

    NARCIS (Netherlands)

    Boom, B.J.; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.

    2009-01-01

    Face Recognition under uncontrolled illumination conditions is partly an unsolved problem. Several illumination correction methods have been proposed, but these are usually tested on illumination conditions created in a laboratory. Our focus is more on uncontrolled conditions. We use the Phong model

  4. Electrica.l Insta.lla.tions in Multi-storey Buildings

    African Journals Online (AJOL)

    different diversity factors of the individual sections. However .... auxiliary drives for the heating system and ventila- tion, as well as ... For multi-storey buildings preference is generally given to ... Group p. f correction is expedient if large banks of.

  5. Simulation of the GHG Abatement Potentials in the U.S. Building Sector by 2050

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; DeForest, Nicholas; Marnay, Chris; Bonnet, Florence; Lai, Judy; Phan, Trucy

    2010-10-01

    Given the substantial contribution of the U.S. building sector to national carbon emissions, it is clear that to address properly the issue of climate change, one must first consider innovative approaches to understanding and encouraging the introduction of new, low-carbon technologies to both the commercial and residential building markets. This is the motivation behind the development of the Stochastic Lite Building Module (SLBM), a long range, open source model to forecast the impact of policy decisions and consumer behavior on the market penetration of both existing and emerging building technologies and the resulting carbon savings. The SLBM, developed at Lawrence Berkeley National Laboratory (LBNL), is part of the Stochastic Energy Deployment System (SEDS) project, a multi-laboratory effort undertaken in conjunction with the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL) and private companies. The primary purpose of SEDS is to track the performance of different U.S. Department of Energy (USDOE) Research and Development (R&D) activities on technology adoption, overall energy efficiency, and CO{sub 2} reductions throughout the whole of the U.S. economy. The tool is fundamentally an engineering-economic model with a number of characteristics to distinguish it from existing energy forecasting models. SEDS has been written explicitly to incorporate uncertainty in its inputs leading to uncertainty bounds on the subsequent forecasts. It considers also passive building systems and their interactions with other building service enduses, including the cost savings for heating, cooling, and lighting due to different building shell/window options. Such savings can be compared with investments costs in order to model real-world consumer behavior and forecast adoption rates. The core objective of this paper is to report on the new window and shell features of SLBM and to show the implications of

  6. Equilibrium thermal characteristics of a building integrated photovoltaic tiled roof

    Energy Technology Data Exchange (ETDEWEB)

    Mei, L.; Gottschalg, R.; Loveday, D.L. [Centre for Renewable Energy Systems Technology (CREST), Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom); Infield, D.G. [Institute of Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Davies, D.; Berry, M. [Solarcentury, 91-94 Lower Marsh Waterloo, London, SE1 7AB (United Kingdom)

    2009-10-15

    Photovoltaic (PV) modules attain high temperatures when exposed to a combination of high radiation levels and elevated ambient temperatures. The temperature rise can be particularly problematic for fully building integrated PV (BIPV) roof tile systems if back ventilation is restricted. PV laminates could suffer yield degradation and accelerated aging in these conditions. This paper presents a laboratory based experimental investigation undertaken to determine the potential for high temperature operation in such a BIPV installation. This is achieved by ascertaining the dependence of the PV roof tile temperature on incident radiation and ambient temperature. A theory based correction was developed to account for the unrealistic sky temperature of the solar simulator used in the experiments. The particular PV roof tiles used are warranted up to an operational temperature of 85 C, anything above this temperature will void the warranty because of potential damage to the integrity of the encapsulation. As a guide for installers, a map of southern Europe has been generated indicating locations where excessive module temperatures might be expected and thus where installation is inadvisable. (author)

  7. Construction of a Solid State Research Facility, Building 3150

    International Nuclear Information System (INIS)

    1993-07-01

    The Department of Energy (DOE) proposes to construct a new facility to house the Materials Synthesis Group (MSG) and the Semiconductor Physics Group (SPG) of the Solid State Division, Oak Ridge National Laboratory (ORNL). The location of the proposed action is Roane County, Tennessee. MSG is involved in the study of crystal growth and the preparation and characterization of advanced materials, such as high-temperature superconductors, while SPG is involved in semiconductor physics research. All MSG and a major pardon of SPG research activities are now conducted in Building 2000, a deteriorating structure constructed in the 1940. The physical deterioration of the roof; the heating, ventilation, and air conditioning (HVAC) system; and the plumbing make this building inadequate for supporting research activities. The proposed project is needed to provide laboratory and office space for MSG and SPG and to ensure that research activities can continue without interruption due to deficiencies in the building and its associated utility systems

  8. Reimagining Building Sensing and Control (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Polese, L.

    2014-06-01

    Buildings are responsible for 40% of US energy consumption, and sensing and control technologies are an important element in creating a truly sustainable built environment. Motion-based occupancy sensors are often part of these control systems, but are usually altered or disabled in response to occupants' complaints, at the expense of energy savings. Can we leverage commodity hardware developed for other sectors and embedded software to produce more capable sensors for robust building controls? The National Renewable Energy Laboratory's (NREL) 'Image Processing Occupancy Sensor (IPOS)' is one example of leveraging embedded systems to create smarter, more reliable, multi-function sensors that open the door to new control strategies for building heating, cooling, ventilation, and lighting control. In this keynote, we will discuss how cost-effective embedded systems are changing the state-of-the-art of building sensing and control.

  9. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  10. Building a Laboratory Information Management System Using Windows4GL

    International Nuclear Information System (INIS)

    Pickens, M.A.; Shaieb, M.R.

    1996-05-01

    The system discussed is currently implemented at LLNL in the Environmental Services program which operates out of the Chemistry ampersand Materials Science (C ampersand MS) directorate. Responsibility is to provide the C ampersand MS Environmental Services (CES) program with an enterprise-wide information system which will aid CES. The specific portion of the information system is the Sample Tracking, Analysis and Reporting System (STARS). Since CES was formed by merging two analytical laboratory organizations in May 1995, a new Laboratory Information Management System (LIMS) had to be developed. The development of a LIMS in Windows4GL was found to be satisfactory. The product STARS was well received by the user community, and it has improved business practices and efficiency in CES. The CES management staff has seen increased personnel productivity since STARS was release. We look forward to upgrading to CA-OpenROAD and taking advantage of its many improved and innovative features to further enhance STARS

  11. Building a Laboratory Information Management System Using Windows4GL

    Energy Technology Data Exchange (ETDEWEB)

    Pickens, M.A.; Shaieb, M.R.

    1996-05-01

    The system discussed is currently implemented at LLNL in the Environmental Services program which operates out of the Chemistry & Materials Science (C&MS) directorate. Responsibility is to provide the C&MS Environmental Services (CES) program with an enterprise-wide information system which will aid CES. The specific portion of the information system is the Sample Tracking, Analysis and Reporting System (STARS). Since CES was formed by merging two analytical laboratory organizations in May 1995, a new Laboratory Information Management System (LIMS) had to be developed. The development of a LIMS in Windows4GL was found to be satisfactory. The product STARS was well received by the user community, and it has improved business practices and efficiency in CES. The CES management staff has seen increased personnel productivity since STARS was release. We look forward to upgrading to CA-OpenROAD and taking advantage of its many improved and innovative features to further enhance STARS.

  12. Biomedical laboratories: architecture and radioprotection principles

    International Nuclear Information System (INIS)

    Lapa, Renata

    2005-01-01

    In institutions where biological research are made and some technologies make use of radioisotope, the radiation protection is an issue of biosecurity for conceptual reasons. In the process of architectural design of Biomedical Laboratories, engineering and architecture reveal interfaces with other areas of knowledge and specific concepts. Exploring the role of architectural design in favor of personal and environmental protection in biological containment laboratories that handle non-sealed sources in research, the work discusses the triad that compose the principle of containment in health environments: best practices, protective equipment, physical facilities, with greater emphasis on the latter component. The shortcomings of the design process are reflected in construction and in use-operation and maintenance of these buildings, with direct consequences on the occupational health and safety, environmental and credibility of work processes. In this context, the importance of adoption of alternatives to improve the design process is confirmed, taking into account the early consideration of several variables involved and providing subsidies to the related laboratories . The research, conducted at FIOCRUZ - a Brazilian health institution, developed from the analysis of the participants in the architectural project, aiming at the formulation of design guidelines which could contribute to the rationalisation of this kind of building construction

  13. Environmental Resource Management Issues in Agronomy: A Lecture/Laboratory Course

    Science.gov (United States)

    Munn, D. A.

    2004-01-01

    Environmental Sciences Technology T272 is a course with a laboratory addressing problems in soil and water quality and organic wastes utilization to serve students from associate degree programs in laboratory science and environmental resources management at a 2-year technical college. Goals are to build basic lab skills and understand the role…

  14. Laboratory Sequence in Computational Methods for Introductory Chemistry

    Science.gov (United States)

    Cody, Jason A.; Wiser, Dawn C.

    2003-07-01

    A four-exercise laboratory sequence for introductory chemistry integrating hands-on, student-centered experience with computer modeling has been designed and implemented. The progression builds from exploration of molecular shapes to intermolecular forces and the impact of those forces on chemical separations made with gas chromatography and distillation. The sequence ends with an exploration of molecular orbitals. The students use the computers as a tool; they build the molecules, submit the calculations, and interpret the results. Because of the construction of the sequence and its placement spanning the semester break, good laboratory notebook practices are reinforced and the continuity of course content and methods between semesters is emphasized. The inclusion of these techniques in the first year of chemistry has had a positive impact on student perceptions and student learning.

  15. ORBIT CORRECTION IN A NON-SCALING FFAG

    CERN Document Server

    Kelliher, D J; Sheehy, S L

    2010-01-01

    EMMA - the Electron Model of Many Applications - is to be built at the STFC Daresbury Laboratory in the UK and will be the first non-scaling FFAG ever constructed. The purpose of EMMA is to study beam dynamics in such an accelerator. The EMMA orbit correction scheme must deal with two characteristics of a non-scaling FFAG: i.e. the lack of a well defined reference orbit and the variation with momentum of the phase advance. In this study we present a novel orbit correction scheme that avoids the former problem by instead aiming to maximise both the symmetry of the orbit and the physical aperture of the beam. The latter problem is dealt with by optimising the corrector strengths over the energy range.

  16. Securing a better future for all: Nuclear techniques for global development and environmental protection. NA factsheet on nuclear sciences and applications laboratories. Supporting development: R and D, capacity building and technical services

    International Nuclear Information System (INIS)

    2012-01-01

    The system of twelve dedicated IAEA laboratory facilities is a unique feature in the United Nations. The laboratories support and implement programmatic activities that respond to the developmental needs of Member States in food and agriculture, human health, environmental monitoring and assessment, as well as the use of nuclear analytical instruments. The laboratories carry out three essential types of activity, which are simultaneously supported worldwide in Member State laboratories: (i) applied research and development; (ii) training and capacity building and (iii) technical and analytical services. Their primary aim is to assist in increasing the impact of related IAEA programmes. While the laboratories share certain types of activity, their fields of expertise range from food and agriculture, medical dosimetry to the environment and water resources. Most of the laboratories are based in Seibersdorf, a town about 35 km southeast of Vienna. There are five FAO-IAEA agriculture and biotechnology laboratories assisting Member States to develop and adapt new and existing agricultural technologies involving isotopes and radiation to suit local requirements and environmental conditions, and to provide the necessary training and analytical services pertaining to the efficient use of these technologies.

  17. Correction

    DEFF Research Database (Denmark)

    Pinkevych, Mykola; Cromer, Deborah; Tolstrup, Martin

    2016-01-01

    [This corrects the article DOI: 10.1371/journal.ppat.1005000.][This corrects the article DOI: 10.1371/journal.ppat.1005740.][This corrects the article DOI: 10.1371/journal.ppat.1005679.].......[This corrects the article DOI: 10.1371/journal.ppat.1005000.][This corrects the article DOI: 10.1371/journal.ppat.1005740.][This corrects the article DOI: 10.1371/journal.ppat.1005679.]....

  18. Contamination source review for Building E2370, Edgewood Area, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    O`Reilly, D.P.; Glennon, M.A.; Draugelis, A.K.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from this review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, and geophysical investigation. This report provides the results of the contamination source review for Building E2370. Many of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot-scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings and associated structures or appurtenances may contribute to environmental concerns at APG.

  19. Sick building syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Eyre, S

    1990-10-01

    Recently, there has been an upsurge in public awareness about the hazards of indoor air pollution. It is documented that respiratory tract infections, a common result of poor air quality, account for approximately 150 million lost work days, $15-billion of direct medical costs, and at least $59-billion of indirect costs of absenteeism per year. Indoor air pollutants result from a number of different sources including common office supplies and equipment, cleaning supplies, pesticides, clothing, furnishings, draperies and carpets. A recent summary of findings by Healthy Buildings International has found the three most common problems to be: poor ventilation, inadequate filtration and lack of hygiene. Only 25% of the buildings studied were well ventilated and 75% of the problems with contaminated air were due to ignorance of correct operating practices. Currently, there are no uniformly accepted regulations for environmental quality in buildings in Canada. Some approaches to this problem are discussed and it is noted that the solution to indoor air quality problems is prevention or proactive monitoring. The key to a successful monitoring program is that improvements made by implementing remedial actions can be quantified, and to place the focus of the program on the ventilation system. 1 fig.

  20. Contributions to indoor gamma dose rate from building materials

    International Nuclear Information System (INIS)

    Liu Xionghua; Li Guangming; Yang Xiangdong

    1990-01-01

    In the coures of construction of a building structured with bricks and concrets, the indoor gamma air absorbed dose rates were seperately measured from the floors, brick walls and prefabricated plates of concrets, etc.. It suggested that the indoor gamma dose rates from building materials are mainly attributed to the brick walls and the floors. A little contribution comes from other brilding materials. The dose rates can be calculated through a 4π-infinite thick model with a correction factor of 0.52

  1. Building resilience in urban settlements through conversion adaptation

    NARCIS (Netherlands)

    Wilkinson, S.J.; Remøy, H.T.

    2015-01-01

    The built environment contributes 40% to total global greenhouse gas emissions and 87% of the buildings we will have in 2050 are already built. If predicted climate changes are correct we need to adapt existing stock sustainably. Reuse is an inherently sustainable option, which reduces the amount of

  2. ecco: An error correcting comparator theory.

    Science.gov (United States)

    Ghirlanda, Stefano

    2018-03-08

    Building on the work of Ralph Miller and coworkers (Miller and Matzel, 1988; Denniston et al., 2001; Stout and Miller, 2007), I propose a new formalization of the comparator hypothesis that seeks to overcome some shortcomings of existing formalizations. The new model, dubbed ecco for "Error-Correcting COmparisons," retains the comparator process and the learning of CS-CS associations based on contingency. ecco assumes, however, that learning of CS-US associations is driven by total error correction, as first introduced by Rescorla and Wagner (1972). I explore ecco's behavior in acquisition, compound conditioning, blocking, backward blocking, and unovershadowing. In these paradigms, ecco appears capable of avoiding the problems of current comparator models, such as the inability to solve some discriminations and some paradoxical effects of stimulus salience. At the same time, ecco exhibits the retrospective revaluation phenomena that are characteristic of comparator theory. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Summary of Building Protection Factor Studies for External Exposure to Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Michael B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kane, Jave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homann, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pobanz, Brenda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-02-17

    Radiation dose assessments are used to help inform decisions to minimize health risks in the event of an atmospheric release of radioactivity including, for example, from a Radiological Dispersal Device, an Improvised Nuclear Device detonation, or a Nuclear Power Plant accident. During these incidents, radiation dose assessments for both indoor and outdoor populations are needed to make informed decisions. These dose assessments inform emergency plans and decisions including, for example, identifying areas in which people should be sheltered and determining when controlled population evacuations should be made. US dose assessment methodologies allow consideration of the protection, and therefore dose reduction, that buildings provide their occupants. However, these methodologies require an understanding of the protection provided by various building types that is currently lacking. To help address this need, Lawrence Livermore National Laboratory, in cooperation with Sandia National Laboratories and the Nuclear Regulatory Commission, was tasked with (a) identifying prior building protection studies, (b) extracting results relevant to US building construction, and (c) summarizing building protection by building type. This report focuses primarily on the protection against radiation from outdoor fallout particles (external gamma radiation).

  4. Summary of Building Protection Factor Studies for External Exposure to Ionizing Radiation

    International Nuclear Information System (INIS)

    Dillon, Michael B.; Kane, Jave; Nasstrom, John; Homann, Steve; Pobanz, Brenda

    2016-01-01

    Radiation dose assessments are used to help inform decisions to minimize health risks in the event of an atmospheric release of radioactivity including, for example, from a Radiological Dispersal Device, an Improvised Nuclear Device detonation, or a Nuclear Power Plant accident. During these incidents, radiation dose assessments for both indoor and outdoor populations are needed to make informed decisions. These dose assessments inform emergency plans and decisions including, for example, identifying areas in which people should be sheltered and determining when controlled population evacuations should be made. US dose assessment methodologies allow consideration of the protection, and therefore dose reduction, that buildings provide their occupants. However, these methodologies require an understanding of the protection provided by various building types that is currently lacking. To help address this need, Lawrence Livermore National Laboratory, in cooperation with Sandia National Laboratories and the Nuclear Regulatory Commission, was tasked with (a) identifying prior building protection studies, (b) extracting results relevant to US building construction, and (c) summarizing building protection by building type. This report focuses primarily on the protection against radiation from outdoor fallout particles (external gamma radiation).

  5. Assessment of alternatives to correct inventory difference statistical treatment deficiencies

    International Nuclear Information System (INIS)

    Byers, K.R.; Johnston, J.W.; Bennett, C.A.; Brouns, R.J.; Mullen, M.F.; Roberts, F.P.

    1983-11-01

    This document presents an analysis of alternatives to correct deficiencies in the statistical treatment of inventory differences in the NRC guidance documents and licensee practice. Pacific Northwest Laboratory's objective for this study was to assess alternatives developed by the NRC and a panel of safeguards statistical experts. Criteria were developed for the evaluation and the assessment was made considering the criteria. The results of this assessment are PNL recommendations, which are intended to provide NRC decision makers with a logical and statistically sound basis for correcting the deficiencies

  6. A Social Building? Prison Architecture and Staff–Prisoner Relationships

    NARCIS (Netherlands)

    Beijersbergen, Karin A.; Dirkzwager, Anja J.E.; van der Laan, Peter H.; Nieuwbeerta, Paul

    2016-01-01

    Relationships between correctional officers and prisoners are crucial to life in prison, and affect prison order and prisoners’ well-being. Research on factors influencing staff–prisoner relationships is scarce and has not included the design of prison buildings. This study examined the association

  7. A social building? Prison architecture and staff-prisoner relationships

    NARCIS (Netherlands)

    Beijersbergen, K. A.; Dirkzwager, A. J. E.; van der Laan, P. H.; Nieuwbeerta, P.

    2016-01-01

    Relationships between correctional officers and prisoners are crucial to life in prison, and affect prison order and prisoners' well-being. Research on factors influencing staff-prisoner relationships is scarce and has not included the design of prison buildings. This study examined the association

  8. Contamination source review for Building E3236, Edgewood Area, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, S.D.; Smits, M.P.; Draugelis, A.K.; Glennon, M.A.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from the review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, and review of available records regarding underground storage tanks associated with each building. This report provides the results of the contamination source review for Building E3236. Many of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot- scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings and associated structures or appurtenances may contribute to environmental concerns at APG.

  9. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 2, Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-08-01

    This is the second volume of the Phase 1 report and discusses the 10 tasks performed in Phase 1. The objective of this research is to develop a methodology for setting energy design targets to provide voluntary guidelines for the buildings industry. The whole-building energy targets project is being conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to encourage the construction of energy-efficient buildings by informing designers and owners about cost-effective goals for energy use in new commercial buildings. The outcome of this research will be a flexible methodology for setting such targets. The tasks are listed and discussed in this report as follows: Task 1 - Develop Detailed Project Goals and Objectives; Task 2 - Establish Buildings-Industry Liaison; Task 3 - Develop Approaches to the Energy Targets Model, Building Operations, and Climate; Task 4 - Develop an Approach for Treating Economic Considerations; Task 5 - Develop an Approach for Treating Energy Sources; Task 6 - Collect Energy-Use Data; Task 7 - Survey Energy Expert Opinion; Task 8 - Evaluation Procedure Specification and Integration; Task 9 - Phase 1 Report Development; and Task 10 - Phase 1 Review Planning.

  10. The value of building safety: A hedonic price approach

    Directory of Open Access Journals (Sweden)

    Yung Yau

    2015-06-01

    Full Text Available Theoretical and empirical studies on how building performance is valued by the property market abound in the literature. Some of them investigate changes in property prices after building renovation, but little has been done on pricing the safety performance of buildings. This article presents a study that explores whether residential properties in safer buildings command higher market values in Hong Kong. Hong Kong is a good laboratory for this study because building failures can pose a serious threat in such a densely populated high-rise environment. The study measures the safety performance of a building by the weighted number of unauthorised building works (UBWs on the external walls of the buildings. By their nature, UBWs are building works that are constructed without prior approval and consent from the government. A hedonic price model is developed to assess the market value of building safety. For the model estimation, apart from the property transaction data, the number of unauthorised appendages (i.e., UBWs attached to the building facades in each building studied is obtained through a building survey. Based on the analysis results, several hypotheses built upon the theories of self-protection and self-insurance are tested.

  11. Lessons Learned from Field Evaluation of Six High-Performance Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, P.; Deru, M.; Griffith, B.; Long, N.; Pless, S.; Judkoff, R.; Crawley, D. B.

    2004-07-01

    The energy performance of six high-performance buildings around the United States was monitored in detail. The six buildings include the Visitor Center at Zion National Park; the National Renewable Energy Laboratory's Thermal Test Facility; the Chesapeake Bay Foundation's Merrill Center; The BigHorn Home Improvement Center; the Cambria DEP Office Building; and the Oberlin College Lewis Center. This paper discusses the design energy targets and actual performance.

  12. Corrective Action Investigation Plan for Corrective Action Unit 561: Waste Disposal Areas, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Grant Evenson

    2008-01-01

    Corrective Action Unit (CAU) 561 is located in Areas 1, 2, 3, 5, 12, 22, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 561 is comprised of the 10 corrective action sites (CASs) listed below: (1) 01-19-01, Waste Dump; (2) 02-08-02, Waste Dump and Burn Area; (3) 03-19-02, Debris Pile; (4) 05-62-01, Radioactive Gravel Pile; (5) 12-23-09, Radioactive Waste Dump; (6) 22-19-06, Buried Waste Disposal Site; (7) 23-21-04, Waste Disposal Trenches; (8) 25-08-02, Waste Dump; (9) 25-23-21, Radioactive Waste Dump; and (10) 25-25-19, Hydrocarbon Stains and Trench. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 561. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the Corrective Action Investigation for CAU 561 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct

  13. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    Science.gov (United States)

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.

  14. Research Support Facility (RSF): Leadership in Building Performance (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    This brochure/poster provides information on the features of the Research Support Facility including a detailed illustration of the facility with call outs of energy efficiency and renewable energy technologies. Imagine an office building so energy efficient that its occupants consume only the amount of energy generated by renewable power on the building site. The building, the Research Support Facility (RSF) occupied by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) employees, uses 50% less energy than if it were built to current commercial code and achieves the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED{reg_sign}) Platinum rating. With 19% of the primary energy in the U.S. consumed by commercial buildings, the RSF is changing the way commercial office buildings are designed and built.

  15. Lessons learned from the 2016 Kumamoto earthquake: Building damages and behavior of seismically isolated buildings

    Science.gov (United States)

    Morita, Keiko; Takayama, Mineo

    2017-10-01

    Powerful earthquakes stuck Kumamoto and Oita Prefectures in Kyushu, Japan. It began with the Magnitude 6.5 foreshock at 21:26 JST 14 April, followed by the Magnitude 7.3 mainshock at 1:25 JST 16 April, 2016. The sequence earthquakes also involved more than 1700 perceptible earthquakes as of 13 June. The entire sequence was named the 2016 Kumamoto earthquake by the Japan Meteorological Agency. Thousands of buildings and many roads were damaged, and landslides occurred. The Japanese building standard law is revised in 1981. Structural damages were concentrated on buildings constructed prior to 1981. The area of Mashiki and Southern Aso were most badly affected, especially wooden houses extremely damaged. In Japan, Prof. Hideyuki Tada (title at the time) undertook research on laminated rubber bearings in 1978, and put it into practical use in 1981. The single family house at Yachiyodai, Chiba Prefecture is completed in 1983, it's the first seismically isolated building which is installed laminated rubber bearings in Japan. Afterward, this system is gradually adopted to mainly office buildings, like a research laboratory, a hospital, a computer center and other offices. In the 1994 Northridge earthquake, the 1995 Kobe earthquake and 2011 Tohoku earthquake, seismically isolated buildings improve these good performances, and recently number of the buildings have increased, mainly high risk area of earthquakes. Many people believed that Kumamoto was a low risk area. But there were 24 seismically isolated buildings in Kumamoto Prefecture at the time. The seismically isolated buildings indicated excellent performances during the earthquakes. They protected people, buildings and other important facilities from damages caused by the earthquake. The purpose of this paper is to discuss lessons learned from the 2016 Kumamoto earthquake and behavior of seismically isolated buildings in the earthquake.

  16. Models test on dynamic structure-structure interaction of nuclear power plant buildings

    International Nuclear Information System (INIS)

    Kitada, Y.; Hirotani, T.

    1999-01-01

    A reactor building of an NPP (nuclear power plant) is generally constructed closely adjacent to a turbine building and other buildings such as the auxiliary building, and in increasing numbers of NPPs, multiple plants are being planned and constructed closely on a single site. In these situations, adjacent buildings are considered to influence each other through the soil during earthquakes and to exhibit dynamic behaviour different from that of separate buildings, because those buildings in NPP are generally heavy and massive. The dynamic interaction between buildings during earthquake through the soil is termed here as 'dynamic cross interaction (DCI)'. In order to comprehend DCI appropriately, forced vibration tests and earthquake observation are needed using closely constructed building models. Standing on this background, Nuclear Power Engineering Corporation (NUPEC) had planned the project to investigate the DCI effect in 1993 after the preceding SSI (soil-structure interaction) investigation project, 'model tests on embedment effect of reactor building'. The project consists of field and laboratory tests. The field test is being carried out using three different building construction conditions, e.g. a single reactor building to be used for the comparison purposes as for a reference, two same reactor buildings used to evaluate pure DCI effects, and two different buildings, reactor and turbine building models to evaluate DCI effects under the actual plant conditions. Forced vibration tests and earthquake observations are planned in the field test. The laboratory test is planned to evaluate basic characteristics of the DCI effects using simple soil model made of silicon rubber and structure models made of aluminum. In this test, forced vibration tests and shaking table tests are planned. The project was started in April 1994 and will be completed in March 2002. This paper describes an outline and the summary of the current status of this project. (orig.)

  17. Study of wind forces on low-rise hip-roof building

    African Journals Online (AJOL)

    DR OKE

    to predict the wind loads and the flow patterns around the hip-roof building. .... various wind angle attack on the roof using CFD simulation. .... SIMPLE algorithm substitutes the flux correction equations into the discrete continuity equation to ...

  18. Commercial Buildings Partnerships - Overview of Higher education projects

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, Kristen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Robinson, Alastair [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-02-01

    The Commercial Building Partnership (CBP), a public/private, cost-shared program sponsored by the U.S. Department of Energy (DOE), paired selected commercial building owners and operators with representatives of DOE, its national laboratories, and private-sector technical experts. These teams explored energy-saving measures across building systems – including some considered too costly or technologically challenging – and used advanced energy modeling to achieve peak whole-building performance. Modeling results were then included in new construction or retrofit designs to achieve significant energy reductions. CBP design goals aimed to achieve 50 percent energy savings compared to ANSI/ASHRAE/IES Standard 90.1-2004 for new construction, while retrofits are designed to consume at least 30 percent less energy than either Standard 90.1-2004 or current consumption. After construction and commissioning of the project, laboratory staff continued to work with partners to collect and analyze data for verification of the actual energy reduction. CBP projects represent diverse building types in commercial real estate, including lodging, grocery, retail, higher education, office, and warehouse/storage facilities. Partners also commit to replicating low-energy technologies and strategies from their CBP projects throughout their building portfolios. As a result of CBP projects, five sector overviews (Lodging, Food Sales, General Merchandise, Higher Education, Offices) were created to capture successful strategies and recommended energy efficiency measures that could broadly be applied across these sectors. These overviews are supplemented with individual case studies providing specific details on the decision criteria, modeling results, and lessons learned on specific projects. Sector overviews and CBP case studies will also be updated to reflect verified data and replication strategies as they become available.

  19. Thermal Comfort in a Naturally-Ventilated Educational Building

    OpenAIRE

    David Mwale Ogoli

    2012-01-01

    A comprehensive study of thermal comfort in a naturally ventilated education building (88,000 ft2) in a Chicago suburb will be conducted with 120 student subjects in 2007. This paper discusses some recent trends in worldwide thermal comfort studies and presents a proposal of research for this building through a series of questionnaire tables. Two research methods used inthermal comfort studies are field studies and laboratory experiments in climate-chambers. The various elements that constitu...

  20. Ames Laboratory annual site environmental report, calendar year 1996

    International Nuclear Information System (INIS)

    1998-04-01

    This report summarizes the environmental status of Ames Laboratory for calendar year 1996. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring programs. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies twelve buildings owned by the Department of Energy (DOE). The Laboratory also leases space in ISU owned buildings. Laboratory activities involve less than ten percent of the total chemical use and approximately one percent of the radioisotope use on the ISU campus. In 1996, the Office of Assurance and Assessment merged with the Environment, Safety and Health Group forming the Environment, Safety, Health and Assurance (ESH and A) office. In 1996, the Laboratory accumulated and disposed of wastes under US Environmental Protection Agency (EPA) issued generator numbers. Ames Laboratory submitted a Proposed Site Treatment Plan to EPA in December 1995. This plan complied with the Federal Facilities Compliance Act (FFCA). It was approved by EPA in January 1996. The consent agreement/consent order was issued in February 1996. Pollution awareness, waste minimization and recycling programs, implemented in 1990 and updated in 1994, continued through 1996. Included in these efforts were a waste white paper and green computer paper recycling program. Ames Laboratory also continued to recycle salvageable metal and used oil, and it recovered freon for recycling. All of the chemical and nearly all of the radiological legacy wastes were properly disposed by the end of 1996. Additional radiological legacy waste will be properly disposed during 1997

  1. Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada: Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-05-03

    The general purpose of this Corrective Action Investigation Plan is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective action alternatives (CAAs) for Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. Located in Areas 6 and 15 on the NTS, CAU 543 is comprised of a total of seven corrective action sites (CASs), one in Area 6 and six in Area 15. The CAS in Area 6 consists of a Decontamination Facility and its components which are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency Farm and are related to waste disposal activities at the farm. Sources of possible contamination at Area 6 include potentially contaminated process waste effluent discharged through a process waste system, a sanitary waste stream generated within buildings of the Decon Facility, and radiologically contaminated materials stored within a portion of the facility yard. At Area 15, sources of potential contamination are associated with the dairy operations and the animal tests and experiments involving radionuclide uptake. Identified contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, petroleum hydrocarbons, pesticides, herbicides, polychlorinated biphenyls, metals, and radionuclides. Three corrective action closure alternatives - No Further Action, Close in Place, or Clean Closure - will be recommended for CAU 543 based on an evaluation of all the data quality objective-related data. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document.

  2. Corrective Action Plan for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2011-01-01

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 562, Waste Systems, in accordance with the Federal Facility Agreement and Consent Order (1996; as amended March 2010). CAU 562 consists of 13 Corrective Action Sites (CASs) located in Areas 2, 23, and 25 of the Nevada National Security Site. Site characterization activities were performed in 2009 and 2010, and the results are presented in Appendix A of the Corrective Action Decision Document for CAU 562. The scope of work required to implement the recommended closure alternatives is summarized. (1) CAS 02-26-11, Lead Shot, will be clean closed by removing shot. (2) CAS 02-44-02, Paint Spills and French Drain, will be clean closed by removing paint and contaminated soil. As a best management practice (BMP), asbestos tile will be removed. (3) CAS 02-59-01, Septic System, will be clean closed by removing septic tank contents. As a BMP, the septic tank will be removed. (4) CAS 02-60-01, Concrete Drain, contains no contaminants of concern (COCs) above action levels. No further action is required; however, as a BMP, the concrete drain will be removed. (5) CAS 02-60-02, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. As a BMP, the drain grates and drain pipe will be removed. (6) CAS 02-60-03, Steam Cleaning Drain, will be clean closed by removing contaminated soil. As a BMP, the steam cleaning sump grate and outfall pipe will be removed. (7) CAS 02-60-04, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. (8) CAS 02-60-05, French Drain, will be clean closed by removing contaminated soil. (9) CAS 02-60-06, French Drain, contains no COCs above action levels. No further action is required. (10) CAS 02-60-07, French Drain, requires no further action. The french drain identified in historical documentation was not located during corrective action investigation

  3. Effect of renovating an office building on occupants' comfort and health

    DEFF Research Database (Denmark)

    Pejtersen, Jan; Brohus, H.; Hyldgaard, C. E.

    2001-01-01

    . Before the floor material was installed in the office building, a full-scale exposure experiment was performed in the laboratory. The new ventilation strategy and renovation of the HVAC system were selected on the basis of laboratory experiments on a full-scale mock-up of a cellular office. The severity...

  4. Final characterization report for the 108-F Biological Laboratory

    International Nuclear Information System (INIS)

    Harris, R.A.

    1996-09-01

    This report provides a compilation of characterization data for the 108-F Biological Laboratory collected during the period of May 7, 1996 through August 29, 1996. The 108-F Biology Laboratory is located on the Hanford Site in Richland, Washington. The characterization activities were organized and implemented to evaluate the radiological status of the laboratory and to identify hazardous materials. This report reflects the current conditions and status of the laboratory. Information in this report is intended to be utilized to prepare an accurate cost estimate for building demolition, to aid in planning decontamination and demolition activities, and allow proper disposal of demolition debris

  5. Reduction of density-modification bias by β correction

    International Nuclear Information System (INIS)

    Skubák, Pavol; Pannu, Navraj S.

    2011-01-01

    A cross-validation-based method for bias reduction in ‘classical’ iterative density modification of experimental X-ray crystallography maps provides significantly more accurate phase-quality estimates and leads to improved automated model building. Density modification often suffers from an overestimation of phase quality, as seen by escalated figures of merit. A new cross-validation-based method to address this estimation bias by applying a bias-correction parameter ‘β’ to maximum-likelihood phase-combination functions is proposed. In tests on over 100 single-wavelength anomalous diffraction data sets, the method is shown to produce much more reliable figures of merit and improved electron-density maps. Furthermore, significantly better results are obtained in automated model building iterated with phased refinement using the more accurate phase probability parameters from density modification

  6. STUDY ON BUILDING EXTRACTION FROM HIGH-RESOLUTION IMAGES USING MBI

    Directory of Open Access Journals (Sweden)

    Z. Ding

    2018-04-01

    Full Text Available Building extraction from high resolution remote sensing images is a hot research topic in the field of photogrammetry and remote sensing. However, the diversity and complexity of buildings make building extraction methods still face challenges in terms of accuracy, efficiency, and so on. In this study, a new building extraction framework based on MBI and combined with image segmentation techniques, spectral constraint, shadow constraint, and shape constraint is proposed. In order to verify the proposed method, worldview-2, GF-2, GF-1 remote sensing images covered Xiamen Software Park were used for building extraction experiments. Experimental results indicate that the proposed method improve the original MBI significantly, and the correct rate is over 86 %. Furthermore, the proposed framework reduces the false alarms by 42 % on average compared to the performance of the original MBI.

  7. Laboratory Directed Research and Development FY-10 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  8. Work of the IAEA laboratory

    International Nuclear Information System (INIS)

    1962-01-01

    Most of the IAEA laboratory facilities a r e now in full operation, and work has begun on a number of problems that can best be dealt with by an international centre. The laboratory at Seibersdorf, about 30 km from the Agency's headquarters in Vienna, started functioning in October last year, and a certain amount of work is also being done with a few facilities installed in the headquarters building. During the past year laboratory work has steadily increased and several programmes are now fully established. The Agency's laboratory is not intended to be a centre of independent research; in the main, its scope is governed by the scientific requirements of the Agency's programmes of assistance to its Member States and its role in connection with safety and security in atomic energy work. The functions of the laboratory are thus limited to (a) measurement of radionuclides and preparation of radioactive standards, (b) calibration and adaptation of measuring equipment, (c) quality control of special materials for nuclear technology, (d) measurement and analyses in connection with the Agency's safeguards and health and safety programme, and (e) services to Member States that can be provided with the facilities established for these tasks

  9. Radon classification of building ground

    International Nuclear Information System (INIS)

    Slunga, E.

    1988-01-01

    The Laboratories of Building Technology and Soil Mechanics and Foundation Engineering at the Helsinki University of Technology in cooperation with The Ministry of the Environment have proposed a radon classification for building ground. The proposed classification is based on the radon concentration in soil pores and on the permeability of the foundation soil. The classification includes four radon classes: negligible, normal, high and very high. Depending on the radon class the radon-technical solution for structures is chosen. It is proposed that the classification be done in general terms in connection with the site investigations for the planning of land use and in more detail in connection with the site investigations for an individual house. (author)

  10. LACTULOSE EFFICIENCY IN CONSTIPATION CORRECTION AMONG CHILDREN

    Directory of Open Access Journals (Sweden)

    L.N. Tsvetkova

    2007-01-01

    Full Text Available The article analyzes lactulose efficiency (Normase, dr. reddy's laboratories, ltd., India in correction of motor and evacuation and dysbiotic disorders among children, suffering from chronic constipations of the primary, secondary and functional genesis. The authors have observed 70 children (38 boys and 32 girls aged between 1 and 15 years old for 10 months, who received a full course of observation and treatment in the gastroenterological department of Izmaylovskaya children's city clinical hospital with follow up examination in ambulatory conditions. The research findings they have acquired showed high lactulose efficiency in treatment of constipations among children, which justifies recommendations for the given medication in correction of the motor and evacuation large intestine function and disorders of its microflora.Key words: constipations, causes, treatment, lactulose, children.

  11. Persons in correctional facilities in Canada: A key population for hepatitis C prevention and control.

    Science.gov (United States)

    Kouyoumdjian, Fiona G; McIsaac, Kathryn E

    2015-10-03

    About one in nine Canadians who are infected with hepatitis C spend time in a correctional facility each year. With high rates of current injection drug use and needle sharing, this population may account for a large proportion of new infections. Any national strategy to address hepatitis C should include a focus on persons in correctional facilities, and should build on existing evidence regarding primary, secondary and tertiary prevention.

  12. Corrective Action Investigation Plan for Corrective Action Unit 554: Area 23 Release Site, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Boehlecke, Robert F.

    2004-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 554: Area 23 Release Site, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 554 is located in Area 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 554 is comprised of one Corrective Action Site (CAS), which is: 23-02-08, USTs 23-115-1, 2, 3/Spill 530-90-002. This site consists of soil contamination resulting from a fuel release from underground storage tanks (USTs). Corrective Action Site 23-02-08 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for this CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document for CAU 554. Corrective Action Site 23-02-08 will be investigated based on the data quality objectives (DQOs) developed on July 15, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; and contractor personnel. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 554. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to CAS 23-02-08. The scope of the corrective action investigation

  13. Explorations of roundwood technology in buildings

    Science.gov (United States)

    Jeffrey Cook

    2001-01-01

    A report and critical commentary is presented on the use of small diameter roundwood in building construction in the United States and England. Examples are discussed of roundwood joinery being evaluated at the USDA Forest Service's Forest Products Laboratory, and joinery developed by the British engineering consulting firm Buro Happold, working over 15 years in...

  14. Transactive Control of Commercial Buildings for Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Hao, He; Corbin, Charles D.; Kalsi, Karanjit; Pratt, Robert G.

    2017-01-01

    Transactive control is a type of distributed control strategy that uses market mechanism to engage self-interested responsive loads to achieve power balance in the electrical power grid. In this paper, we propose a transactive control approach of commercial building Heating, Ventilation, and Air- Conditioning (HVAC) systems for demand response. We first describe the system models, and identify their model parameters using data collected from Systems Engineering Building (SEB) located on our Pacific Northwest National Laboratory (PNNL) campus. We next present a transactive control market structure for commercial building HVAC system, and describe its agent bidding and market clearing strategies. Several case studies are performed in a simulation environment using Building Control Virtual Test Bed (BCVTB) and calibrated SEB EnergyPlus model. We show that the proposed transactive control approach is very effective at peak clipping, load shifting, and strategic conservation for commercial building HVAC systems.

  15. Polychlorinated Biphenyl Sources, Emissions, and Environmental Levels in school Buildings (PCB Workshop presentation)

    Science.gov (United States)

    Measure PCB emission rates from primary sources in laboratory chambersMeasure transport and sorption by materials and dust in laboratory chambersCharacterize PCBs in school building materialsEstimate PCB emission rates from sources in schoolsExamine congener patterns in sources a...

  16. Evaluating laboratory key performance using quality indicators in Alexandria University Hospital Clinical Chemistry Laboratories.

    Science.gov (United States)

    Rizk, Mostafa M; Zaki, Adel; Hossam, Nermine; Aboul-Ela, Yasmin

    2014-12-01

    The performance of clinical laboratories plays a fundamental role in the quality and effectiveness of healthcare. To evaluate the laboratory performance in Alexandria University Hospital Clinical Laboratories using key quality indicators and to compare the performance before and after an improvement plan based on ISO 15189 standards. The study was carried out on inpatient samples for a period of 7 months that was divided into three phases: phase I included data collection for evaluation of the existing process before improvement (March-May 2012); an intermediate phase, which included corrective, preventive action, quality initiative and steps for improvement (June 2012); and phase II, which included data collection for evaluation of the process after improvement (July 2012-September 2012). In terms of the preanalytical indicators, incomplete request forms in phase I showed that the total number of received requests were 31 944, with a percentage of defected request of 33.66%; whereas in phase II, there was a significant reduction in all defected request items (Plaboratories.

  17. Annual Report on the State of the DOE National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-01-01

    This first Annual Report to Congress on the State of the DOE National Laboratories provides a comprehensive overview of the Lab system, covering S&T programs, management and strategic planning. The Department committed to prepare this report in response to recommendations from the Congressionally mandated Commission to Review the Effectiveness of the National Energy Laboratories (CRENEL) that the Department should better communicate the value that the Laboratories provide to the Nation. We expect that future annual reports will be much more compact, building on the extensive description of the Laboratories and of the governance structures that are part of this first report.

  18. An analysis of buildings-related energy use in manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Niefer, M.J.; Ashton, W.B.

    1997-04-01

    This report presents research by the Pacific Northwest National Laboratory (PNNL) to develop improved estimates of buildings-related energy use in US manufacturing facilities. The research was supported by the Office of Building Technology, State and Community Programs (BTS), Office of Energy Efficiency and Renewable Energy (EERE), US Department of Energy (DOE). The research scope includes only space conditioning and lighting end uses. In addition, this study also estimates the energy savings potential for application of selected commercial buildings technologies being developed by the BTS office to manufacturing and other industrial process facilities. 17 refs., 2 figs., 19 tabs.

  19. Corrective Action Plan for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5 Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Tobiason

    2000-08-01

    Area 3 Septic Waste Systems 1 and 5 are located in Area 3 of the Tonopah Test Range (TTR) (Figure 1). The site is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Unit (CAU) 428 and includes Corrective Action Sites 03-05-002-SW01 (Septic Waste System 1 [SWS 1]), and 03-05-002-SW05 (Septic Waste System 5 [SWS 5]). The site history for the CAU is provided in the Corrective Action Investigation Plan (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1999). SWS 1 consists of two leachfields and associated septic tanks. SWS 1 received effluent from both sanitary and industrial sources from various buildings in Area 3 of the TTR (Figure 2). SWS 5 is comprised of one leachfield and outfall with an associated septic tank. SWS 5 received effluent from sources in Building 03-50 in Area 3 of the TTR (Figure 2). Both systems were active until 1990 when a consolidated sewer system was installed. The purpose of this Corrective Action Plan (CAP) is to provide the strategy and methodology to close the Area 3 SWS 1 and 5. The CAU will be closed following state and federal regulations and the FFACO (1996). Site characterization was done during May and June 1999. Samples of the tank contents, leachfield soil, and soil under the tanks and pipes were collected. The results of the characterization were reported in the Corrective Action Decision Document (CADD) (DOE/NV, 2000). Additional sampling was done in May 2000, the results of which are presented in this plan. Soil sample results indicated that two constituents of concern were detected above Preliminary Action Levels (PALs). Total arsenic was detected at a concentration of 68.7 milligrams per kilogram (mg/kg). The arsenic was found under the center distribution line at the proximal end of the SWS 5 Leachfield (Figure 3). Total benzo(a)pyrene was detected at a concentration of 480 micrograms per kilogram ({micro}g/kg). The benzo(a)pyrene was found in the soil under the

  20. Computer Prediction of Air Quality in Livestock Buildings

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Bjerg, Bjarne

    In modem livestock buildings the design of ventilation systems is important in order to obtain good air quality. The use of Computational Fluid Dynamics for predicting the air distribution makes it possible to include the effect of room geometry and heat sources in the design process. This paper...... presents numerical prediction of air flow in a livestock building compared with laboratory measurements. An example of the calculation of contaminant distribution is given, and the future possibilities of the method are discussed....

  1. NASA Net Zero Energy Buildings Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  2. A Moveable Feast--A Progressive Approach to the Unit Operations Laboratory

    Science.gov (United States)

    Conner, Wm. Curtis, Jr.; Hammond, Karl D.; Laurence, Robert L.

    2011-01-01

    The authors describe an alternative format for the senior laboratory in which students are allowed--indeed, expected--to communicate with previous groups and build on their results. The effect is a unit operations laboratory in which students are empowered to propose the experiments they wish to do and in which the cumulative experience of the…

  3. COLAB: A Laboratory Environment for Studying Analyst Sensemaking and Collaboration

    National Research Council Canada - National Science Library

    Morrison, Clayton T; Cohen, Paul R

    2005-01-01

    COLAB is a laboratory for studying tools that facilitate collaboration and sensemaking among groups of human analysts as they build interpretations of unfolding situations based on accruing intelligence data...

  4. Indoor environmental and air quality characteristics, building-related health symptoms, and worker productivity in a federal government building complex.

    Science.gov (United States)

    Lukcso, David; Guidotti, Tee Lamont; Franklin, Donald E; Burt, Allan

    2016-01-01

    Building Health Sciences, Inc. (BHS), investigated environmental conditions by many modalities in 71 discreet areas of 12 buildings in a government building complex that had experienced persistent occupant complaints despite correction of deficiencies following a prior survey. An online health survey was completed by 7,637 building occupants (49% response rate), a subset of whom voluntarily wore personal sampling apparatus and underwent medical evaluation. Building environmental measures were within current standards and guidelines, with few outliers. Four environmental factors were consistently associated with group-level building-related health complaints: physical comfort/discomfort, odor, job stress, and glare. Several other factors were frequently commented on by participants, including cleanliness, renovation and construction activities, and noise. Low relative humidity was significantly associated with lower respiratory and "sick building syndrome"-type symptoms. No other environmental conditions (including formaldehyde, PM10 [particulate matter with an aerodynamic diameter work but at reduced capacity), and increase in reported symptom-days, including symptoms not related to respiratory disease. We found that in buildings without unusual hazards and with environmental and air quality indicators within the range of acceptable indoor air quality standards, there is an identifiable population of occupants with a high prevalence of asthma and allergic disease who disproportionately report discomfort and lost productivity due to symptoms and that in "normal" buildings these outcome indicators are more closely associated with host factors than with environmental conditions. We concluded from the experience of this study that building-related health complaints should be investigated at the work-area level and not at a building-wide level. An occupant-centric medical evaluation should guide environmental investigations, especially when screening results of building

  5. Laboratory study of the PCB transport from primary sources to building materials

    Science.gov (United States)

    The sorption of airborne polychlorinated biphenyls (PCBs) by twenty building materials and their subsequent re-emission (desorption) from concrete were investigated using two 53-L environmental chambers connected in series with a field-collected caulk in the source chamber servin...

  6. Laboratory design for high-performance electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Turner, John H.; Hetherington, Crispin J.D.; Cullis, A.G.; Carragher, Bridget; Jenkins, Ron; Milgrim, Julie; Milligan,Ronald A.; Potter, Clinton S.; Allard, Lawrence F.; Blom, Douglas A.; Degenhardt, Lynn; Sides, William H.

    2004-04-23

    Proliferation of electron microscopes with field emission guns, imaging filters and hardware spherical aberration correctors (giving higher spatial and energy resolution) has resulted in the need to construct special laboratories. As resolutions improve, transmission electron microscopes (TEMs) and scanning transmission electron microscopes (STEMs) become more sensitive to ambient conditions. State-of-the-art electron microscopes require state-of-the-art environments, and this means careful design and implementation of microscope sites, from the microscope room to the building that surrounds it. Laboratories have been constructed to house high-sensitive instruments with resolutions ranging down to sub-Angstrom levels; we present the various design philosophies used for some of these laboratories and our experiences with them. Four facilities are described: the National Center for Electron Microscopy OAM Laboratory at LBNL; the FEGTEM Facility at the University of Sheffield; the Center for Integrative Molecular Biosciences at TSRI; and the Advanced Microscopy Laboratory at ORNL.

  7. Building a Laboratory: the Work of Global University Rankers

    DEFF Research Database (Denmark)

    Lim, Miguel Antonio

    2015-01-01

    ’, and more relevant products. The metaphor allows us to understand the changeability of rankings and highlights that the process of making rankings can be influenced by the different audiences they are aimed at. University leaders are not passive players in the recognition of expertise in higher education...... evaluation. I present some of the ways in which these leaders are part of the process from the lesser known point-of-view of the ranking organisations. I propose three questions: 1) Can the university ranker be thought of as a ‘laboratory’? 2) How does the university ranking laboratory produce its ‘science...

  8. Process waste assessment for the Radiography Laboratory

    International Nuclear Information System (INIS)

    Phillips, N.M.

    1994-07-01

    This Process Waste Assessment was conducted to evaluate the Radiography Laboratory, located in Building 923. It documents the processes, identifies the hazardous chemical waste streams generated by these processes, recommends possible ways to minimize waste, and serves as a reference for future assessments of this facility. The Radiography Laboratory provides film radiography or radioscopy (electronic imaging) of weapon and nonweapon components. The Radiography Laboratory has six x-ray machines and one gamma ray source. It also has several other sealed beta- and gamma-ray isotope sources of low microcurie (μCi) activity. The photochemical processes generate most of the Radiography Laboratory's routinely generated hazardous waste, and most of that is generated by the DuPont film processor. Because the DuPont film processor generates the most photochemical waste, it was selected for an estimated material balance

  9. Analyses of Public Utility Building - Students Designs, Aimed at their Energy Efficiency Improvement

    Science.gov (United States)

    Wołoszyn, Marek Adam

    2017-10-01

    Public utility buildings are formally, structurally and functionally complex entities. Frequently, the process of their design involves the retroactive reconsideration of energy engineering issues, once a building concept has already been completed. At that stage, minor formal corrections are made along with the design of the external layer of the building in order to satisfy applicable standards. Architecture students do the same when designing assigned public utility buildings. In order to demonstrate energy-related defects of building designs developed by students, the conduct of analyses was proposed. The completed designs of public utility buildings were examined with regard to energy efficiency of the solutions they feature through the application of the following programs: Ecotect, Vasari, and in case of simpler analyses ArchiCad program extensions were sufficient.

  10. Closure Report for Corrective Action Unit 300: Surface Release Areas Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 300 is located in Areas 23, 25, and 26 of the Nevada Test Site, which is located approximately 65 miles northwest of Las Vegas, Nevada. CAU 300 is listed in the Federal Facility Agreement and Consent Order of 1996 as Surface Release Areas and is comprised of the following seven Corrective Action Sites (CASs), which are associated with the identified Building (Bldg): {sm_bullet} CAS 23-21-03, Bldg 750 Surface Discharge {sm_bullet} CAS 23-25-02, Bldg 750 Outfall {sm_bullet} CAS 23-25-03, Bldg 751 Outfall {sm_bullet} CAS 25-60-01, Bldg 3113A Outfall {sm_bullet} CAS 25-60-02, Bldg 3901 Outfall {sm_bullet} CAS 25-62-01, Bldg 3124 Contaminated Soil {sm_bullet} CAS 26-60-01, Bldg 2105 Outfall and Decon Pad The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 23-21-03, 23-25-02, and 23-25-03 is no further action. As a best management practice, approximately 48 feet of metal piping was removed from CAS 23-25-02 and disposed of as sanitary waste. The NDEP-approved corrective action alternative for CASs 25-60-01, 25-60-02, 25-62-01, and 26-60-01, is clean closure. Closure activities for these CASs included removing and disposing of soil impacted with total petroleum hydrocarbons-diesel range organics (TPH-DRO), polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and cesium (Cs)-137, concrete impacted with TPH-DRO, and associated piping impacted with TPH-DRO. CAU 300 was closed in accordance with the NDEP-approved CAU 300 Corrective Action Plan (CAP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006). The closure activities specified in the CAP were based on the recommendations presented in the CAU 300 Corrective Action Decision Document (NNSA/NSO, 2005). This Closure Report documents CAU 300 closure activities. During closure activities, approximately 40 cubic yards (yd3) of low-level waste consisting of TPH-DRO-, PCB

  11. Improving Gram stain proficiency in hospital and satellite laboratories that do not have microbiology.

    Science.gov (United States)

    Guarner, Jeannette; Street, Cassandra; Matlock, Margaret; Cole, Lisa; Brierre, Francoise

    2017-03-01

    Consolidation of laboratories has left many hospitals and satellite laboratories with minimal microbiologic testing. In many hospitals and satellite laboratories, Gram stains on primary specimens are still performed despite difficultly in maintaining proficiency. To maintain Gram stain proficiency at a community 450-bed hospital with an active emergency room we designed bimonthly challenges that require reporting Gram staining and morphology of different organisms. The challenges consist of five specimens prepared by the reference microbiology laboratory from cultures and primary specimens. Twenty to 23 medical laboratory scientists participate reading the challenges. Results from the challenges are discussed with each medical laboratory scientists. In addition, printed images from the challenges are presented at huddle to add microbiology knowledge. On the first three challenges, Gram staining was read correctly in 71%-77% of the time while morphology 53%-66%. In the last six challenges correct answers for Gram stain were 77%-99% while morphology 73%-96%. We observed statistically significant improvement when reading Gram stains by providing frequent challenges to medical laboratory scientists. The clinical importance of Gram stain results is emphasized during huddle presentations increasing knowledge and motivation to perform the test for patients.

  12. [Change of blood antioxidant capacity of experimental animals during nutritional correction under oxidative stress].

    Science.gov (United States)

    Basov, A A; Bykov, I M

    2013-01-01

    The effect of nutritional correction (a diet high in foods with antioxidant content) on blood parameters in laboratory animals with metabolic disorders associated with oxidative stress has been studied. In experimental models of laboratory animals (male rabbits weighing 3.5-4.0 kg, n = 40) with purulent septic diseases it has been demonstrated that the use of nutritive correction (replacement of 100 g of the cereal mixture through day on a mixture of cabbage 50 g, carrots 50 g, beet 25 g, apple 25 g, kiwi 10 g and garnet 10 g per 1 rabbit) is not inferior to its efficiency of glutathione use (2 g per day). The use of these antioxidants in laboratory animals significantly reduced the phenomenon of oxidative stress on the 5th day: blood antioxidant capacity significantly increased by 14.9 and 26.6%, and the area of the flash of luminol-dependent H2O2-induced chemiluminescence of blood plasma reduced by 44.2 and 48.6% in the experimental groups receiving respectively nutritive correction and glutathione. The low-molecula level of blood antioxidant capacity was restored and the balance of the activity of superoxide dismutase (decrease) and catalase (increase) was achieved on the 10th day of the experiment. These figures significantly (p < 0.05) differed from than in the group of animals receiving no antioxidant correction. The latter studied parameters of prooxidant-antioxidant system reached values comparable with those in intact animals (n = 10) only on the 30th day, confirming the advisability of appointing a complex antioxidant therapy.

  13. Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Scheib, J.; Pless, S.; Torcellini, P.

    2014-08-01

    NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy use requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.

  14. University building safety index measurement using risk and implementation matrix

    Science.gov (United States)

    Rahman, A.; Arumsari, F.; Maryani, A.

    2018-04-01

    Many high rise building constructed in several universities in Indonesia. The high-rise building management must provide the safety planning and proper safety equipment in each part of the building. Unfortunately, most of the university in Indonesia have not been applying safety policy yet and less awareness on treating safety facilities. Several fire accidents in university showed that some significant risk should be managed by the building management. This research developed a framework for measuring the high rise building safety index in university The framework is not only assessed the risk magnitude but also designed modular building safety checklist for measuring the safety implementation level. The safety checklist has been developed for 8 types of the university rooms, i.e.: office, classroom, 4 type of laboratories, canteen, and library. University building safety index determined using risk-implementation matrix by measuring the risk magnitude and assessing the safety implementation level. Building Safety Index measurement has been applied in 4 high rise buildings in ITS Campus. The building assessment showed that the rectorate building in secure condition and chemical department building in beware condition. While the library and administration center building was in less secure condition.

  15. Expansion of the Idaho National Engineering Laboratory Research Center: Environmental assessment

    International Nuclear Information System (INIS)

    1994-03-01

    The US Department of Energy (DOE) proposes to expand and upgrade facilities at the Idaho National Engineering Laboratory (INEL) Research Center (IRC) by constructing a research laboratory addition on the northeast corner of existing laboratory building; upgrading the fume hood system in the existing laboratory building; and constructing a hazardous waste handling facility and a chemical storage building. The DOE also proposes to expand the capabilities of biotechnology research programs by increasing use of radiolabeled compounds to levels in excess of current facility limits for three radionuclides (carbon-14, sulfur-35, and phosphorus-32). This Environmental assessment identifies the need for the new facilities, describes the proposed projects and environmental setting, and evaluates the potential environmental effects. Impacts associated with current operation are discussed and established as a baseline. Impacts associated with the proposed action and cumulative impacts are described against this background. Alternatives to the proposed action (No action; Locating proposed facilities at a different site) are discussed and a list of applicable regulations is provided. The no action alternative is continuation of existing operations at existing levels as described in Section 4 of this EA. Proposed facilities could be constructed at a different location, but these facilities would not be useful or practical since they are needed to provide a support function for IRC operations. Further, the potential environmental impacts would not be reduced if a different site was selected

  16. Sustainability Report: National Renewable Energy Laboratory (NREL) 2003 -- 2004

    Energy Technology Data Exchange (ETDEWEB)

    2004-09-01

    The National Renewable Energy Laboratory's (NREL) Sustainability Report for 2003-2004 highlights the Laboratory's comprehensive sustainability activities. These efforts demonstrate NREL's progress toward achieving overall sustainability goals. Sustainability is an inherent centerpiece of the Laboratory's work. NREL's mission--to develop renewable energy and energy efficiency technologies and practices and transfer knowledge and innovations to address the nation's energy and environmental goals--is synergistic with sustainability. The Laboratory formalized its sustainability activities in 2000, building on earlier ideas--this report summarizes the status of activities in water use, energy use, new construction, green power, transportation, recycling, environmentally preferable purchasing, greenhouse gas emissions, and environmental management.

  17. Conditions for building a community of practice in an advanced physics laboratory

    Science.gov (United States)

    Irving, Paul W.; Sayre, Eleanor C.

    2014-06-01

    We use the theory of communities of practice and the concept of accountable disciplinary knowledge to describe how a learning community develops in the context of an upper-division physics laboratory course. The change in accountable disciplinary knowledge motivates students' enculturation into a community of practice. The enculturation process is facilitated by four specific structural features of the course and supported by a primary instructional choice. The four structural features are "paucity of instructor time," "all in a room together," "long and difficult experiments," and "same experiments at different times." The instructional choice is the encouragement of the sharing and development of knowledge and understanding by the instructor. The combination of the instructional choice and structural features promotes the development of the learning community in which students engage in authentic practices of a physicist. This results in a classroom community that can provide students with the opportunity to have an accelerated trajectory towards being a more central participant of the community of a practice of physicists. We support our claims with video-based observations of laboratory classroom interactions and individual, semistructured interviews with students about their laboratory experiences and physics identity.

  18. Corrective Action Investigation Plan for Corrective Action Unit 555: Septic Systems Nevada Test Site, Nevada, Rev. No.: 0 with Errata

    International Nuclear Information System (INIS)

    Pastor, Laura

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 555: Septic Systems, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 555 is located in Areas 1, 3 and 6 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada, and is comprised of the five corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-59-01, Area 1 Camp Septic System; (2) CAS 03-59-03, Core Handling Building Septic System; (3) CAS 06-20-05, Birdwell Dry Well; (4) CAS 06-59-01, Birdwell Septic System; and (5) CAS 06-59-02, National Cementers Septic System. An FFACO modification was approved on December 14, 2005, to include CAS 06-20-05, Birdwell Dry Well, as part of the scope of CAU 555. The work scope was expanded in this document to include the investigation of CAS 06-20-05. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 555 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI

  19. Corrective Action Investigation Plan for Corrective Action Unit 555: Septic Systems Nevada Test Site, Nevada, Rev. No.: 0 with Errata

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, Laura

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 555: Septic Systems, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 555 is located in Areas 1, 3 and 6 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada, and is comprised of the five corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-59-01, Area 1 Camp Septic System; (2) CAS 03-59-03, Core Handling Building Septic System; (3) CAS 06-20-05, Birdwell Dry Well; (4) CAS 06-59-01, Birdwell Septic System; and (5) CAS 06-59-02, National Cementers Septic System. An FFACO modification was approved on December 14, 2005, to include CAS 06-20-05, Birdwell Dry Well, as part of the scope of CAU 555. The work scope was expanded in this document to include the investigation of CAS 06-20-05. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 555 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by

  20. Characterization of historic mortars and earthen building materials in Abu Dhabi Emirate, UAE

    International Nuclear Information System (INIS)

    Marcus, Benjamin L

    2012-01-01

    The Abu Dhabi Authority for Culture and Heritage (ADACH) is responsible for the conservation and management of historic buildings and archaeological sites in the Emirate. Laboratory analysis has been critical for understanding the composition of historic materials and establishing appropriate conservation treatments across a wide variety of building types, ranging from Iron Age earthen archaeological sites to late-Islamic stone buildings. Analysis was carried out on historic sites in Al Ain, Delma Island and Liwa Oasis using techniques such as micro-x-ray fluorescence (MXRF), scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM-EDX), polarized light microscopy (PLM), and x-ray diffraction (XRD). Testing was conducted through consultant laboratories and in collaboration with local universities. The initial aim of the analysis was to understand historic earthen materials and to confirm the suitability of locally sourced clays for the production of mud bricks and plasters. Another important goal was to characterize materials used in historic stone buildings in order to develop repair mortars, renders and grouts.

  1. The elegant lines of the new Building 774

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    Prévessin will shortly see an addition to its stock of buildings. Functional, elegant and in compliance with the latest regulations regarding energy consumption, it will bring a modern touch to CERN’s French site.   In July Building 936, which was too small, run-down and no longer suitable for requirements, disappeared from the map of the Prévessin site. It will be replaced by a new building - numbered 774 - whose construction is due to commence in September. More functional, modern and economical in its energy consumption, the new building will house the BE Department’s Controls (CO) Group from the end of 2013. Situated opposite the CERN Control Centre (CCC), this new four-storey building (basement, ground floor and two upper storeys), with over 3400 m² of usable space, will be capable of accommodating up to 110 people along with their laboratories, which means that the entire Controls Group can all be housed under one roof. With near-direc...

  2. On the impact of topography and building mask on time varying gravity due to local hydrology

    Science.gov (United States)

    Deville, S.; Jacob, T.; Chéry, J.; Champollion, C.

    2013-01-01

    We use 3 yr of surface absolute gravity measurements at three sites on the Larzac plateau (France) to quantify the changes induced by topography and the building on gravity time-series, with respect to an idealized infinite slab approximation. Indeed, local topography and buildings housing ground-based gravity measurement have an effect on the distribution of water storage changes, therefore affecting the associated gravity signal. We first calculate the effects of surrounding topography and building dimensions on the gravity attraction for a uniform layer of water. We show that a gravimetric interpretation of water storage change using an infinite slab, the so-called Bouguer approximation, is generally not suitable. We propose to split the time varying gravity signal in two parts (1) a surface component including topographic and building effects (2) a deep component associated to underground water transfer. A reservoir modelling scheme is herein presented to remove the local site effects and to invert for the effective hydrological properties of the unsaturated zone. We show that effective time constants associated to water transfer vary greatly from site to site. We propose that our modelling scheme can be used to correct for the local site effects on gravity at any site presenting a departure from a flat topography. Depending on sites, the corrected signal can exceed measured values by 5-15 μGal, corresponding to 120-380 mm of water using the Bouguer slab formula. Our approach only requires the knowledge of daily precipitation corrected for evapotranspiration. Therefore, it can be a useful tool to correct any kind of gravimetric time-series data.

  3. Addendum to the Closure Report for Corrective Action Unit 113: Area 25 R-MAD Facility, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2011-01-01

    This addendum to the Closure Report for Corrective Action Unit 113: Area 25, Reactor Maintenance, Assembly, and Disassembly Facility, Building 3110, Nevada Test Site, Nevada, DOE/NV--891-VOL I-Rev. 1, dated July 2003, provides details of demolition, waste disposal, and use restriction (UR) modification for Corrective Action Unit 113, Area 25 R-MAD Facility. Demolition was completed on July 15, 2010, when the last of the building debris was disposed. Final field activities were concluded on August 30, 2010, after all equipment was demobilized and UR signs were posted. This work was funded by the American Recovery and Reinvestment Act.

  4. The application of data from proficiency testing to laboratory accreditation according to ISO 17025

    DEFF Research Database (Denmark)

    Heydorn, Kaj

    2008-01-01

    Current methods of testing laboratories for their proficiency in reporting correct measurement results are liable to substantial errors of the 2nd kind. This means that laboratories with deflated uncertainties are accepted as proficient, even though their reported measurement results pave the way...

  5. Energy conservation in developing countries using green building idea

    International Nuclear Information System (INIS)

    Rashid, Akram; Qureshi, Ijaz Mansoor

    2013-01-01

    Green buildings uses processes that are environmentally responsible and resource-efficient throughout a building's life-cycle. In these buildings Certain energy conservative and environment friendly steps are considered and implemented from design, construction, operation, maintenance and renovation. In present era no doubt new technologies are constantly constructed and used in creating greener structures, energy efficient buildings. The common objective is to reduce the overall impact of the built environment on human health using available energy efficiently. To increase the efficiency of the System or the building, Onsite generation of renewable energy through solar power, wind power, hydro power, or biomasscan significantly reduce the environmental impact of the building. Power generation is generally the most expensive feature to add to a building. Any how power generation using renewable sources that is Solar system may further enhance energy conservation ideas. Power Factor improvement can also be another source of efficient tool for efficient use of Electrical Energy in green buildings. In developing countries a significant amount of Electrical Energy can be conserved and System efficiency as a whole can be increased by Power Factor correction. The reverse flow of power can be locally engaged instead of creating extra stress and opposition to the existing grid lines.

  6. Derivation of Building Energy Use Intensity Targets for ASHRAE Standard 100

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Terry R [ORNL

    2014-06-01

    The steps to develop the building energy use intensity targets for American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 100, Energy Efficiency in Existing Buildings are outlined in this report. The analyses were conducted by Oak Ridge National Laboratory (ORNL) in collaboration with the ASHRAE Standard 100 committee and Dr. Alexander Zhivov, the subcommittee chair responsible for targets development.

  7. Corrective Action Plan for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5 Tonopah Test Range, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    D. S. Tobiason

    2000-01-01

    Area 3 Septic Waste Systems 1 and 5 are located in Area 3 of the Tonopah Test Range (TTR) (Figure 1). The site is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Unit (CAU) 428 and includes Corrective Action Sites 03-05-002-SW01 (Septic Waste System 1[SWS 1]), and 03-05-002-SW05 (Septic Waste System 5[SWS 5]). The site history for the CAU is provided in the Corrective Action Investigation Plan (U.S. Department of Energy, Nevada Operations Office[DOE/NV], 1999). SWS 1 consists of two leachfields and associated septic tanks. SWS 1 received effluent from both sanitary and industrial sources from various buildings in Area 3 of the TTR (Figure 2). SWS 5 is comprised of one leachfield and outfall with an associated septic tank. SWS 5 received effluent from sources in Building 03-50 in Area 3 of the TTR (Figure 2). Both systems were active until 1990 when a consolidated sewer system was installed. The purpose of this Corrective Action Plan (CAP) is to provide the strategy and methodology to close the Area 3 SWS 1 and 5. The CAU will be closed following state and federal regulations and the FFACO (1996). Site characterization was done during May and June 1999. Samples of the tank contents, leachfield soil, and soil under the tanks and pipes were collected. The results of the characterization were reported in the Corrective Action Decision Document (CADD) (DOE/NV, 2000). Additional sampling was done in May 2000, the results of which are presented in this plan. Soil sample results indicated that two constituents of concern were detected above Preliminary Action Levels (PALs). Total arsenic was detected at a concentration of 68.7 milligrams per kilogram (mg/kg). The arsenic was found under the center distribution line at the proximal end of the SWS 5 Leachfield (Figure 3). Total benzo(a)pyrene was detected at a concentration of 480 micrograms per kilogram ((micro)g/kg). The benzo(a)pyrene was found in the soil under the discharge

  8. A Project-Based Laboratory for Learning Embedded System Design with Industry Support

    Science.gov (United States)

    Lee, Chyi-Shyong; Su, Juing-Huei; Lin, Kuo-En; Chang, Jia-Hao; Lin, Gu-Hong

    2010-01-01

    A project-based laboratory for learning embedded system design with support from industry is presented in this paper. The aim of this laboratory is to motivate students to learn the building blocks of embedded systems and practical control algorithms by constructing a line-following robot using the quadratic interpolation technique to predict the…

  9. A new nuclear materials laboratory at Queen's University

    Energy Technology Data Exchange (ETDEWEB)

    Holt, R.A.; Daymond, M.R., E-mail: holt@queensu.ca, E-mail: daymond@queensu.ca [Queen' s University, Department of Mechanical and Materials Engineering, Kingston, ON (Canada)

    2015-07-01

    The Reactor Materials Testing Laboratory (RMTL) at Queen's University and the results of commissioning tests are described. RMTL uses energetic protons (up to 8MeV) to simulate fast neutron damage in materials for reactor components. The laboratory is also capable of He implantation (up to 12 MeV) to simulate the effects of transmutation He in reactor components. The $17.5M laboratory comprises a new building, a 4MV tandem accelerator, two electron microscopes, mechanical testing and specimen preparation equipment, and a radiation detection laboratory. RMTL focusses on studying dynamic effects of irradiation (irradiation creep, irradiation growth, irradiation induced swelling, fatigue under irradiation) in-situ. (author)

  10. Final Report National Laboratory Professional Development Workshop for Underrepresented Participants

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Valerie [Texas Engineering Experiment Station, College Station, TX (United States)

    2016-11-07

    The 2013 CMD-IT National Laboratories Professional Development Workshop for Underrepresented Participants (CMD-IT NLPDev 2013) was held at the Oak Ridge National Laboratory campus in Oak Ridge, TN. from June 13 - 14, 2013. Sponsored by the Department of Energy (DOE) Advanced Scientific Computing Research Program, the primary goal of these workshops is to provide information about career opportunities in computational science at the various national laboratories and to mentor the underrepresented participants through community building and expert presentations focused on career success. This second annual workshop offered sessions to facilitate career advancement and, in particular, the strategies and resources needed to be successful at the national laboratories.

  11. Post-remedial-action radiological survey of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, Pennsylvania, October 1-8, 1981

    International Nuclear Information System (INIS)

    Flynn, K.F.; Justus, A.L.; Sholeen, C.M.; Smith, W.H.; Wynveen, R.A.

    1984-01-01

    The post-remedial-action radiological assessment conducted by the ANL Radiological Survey Group in October 1981, following decommissioning and decontamination efforts by Westinghouse personnel, indicated that except for the Advanced Fuels Laboratory exhaust ductwork and north wall, the interior surfaces of the Plutonium Laboratory and associated areas within Building 7 and the Advanced Fuels Laboratory within Building 8 were below both the ANSI Draft Standard N13.12 and NRC Guideline criteria for acceptable surface contamination levels. Hence, with the exceptions noted above, the interior surfaces of those areas within Buildings 7 and 8 that were included in the assessment are suitable for unrestricted use. Air samples collected at the involved areas within Buildings 7 and 8 indicated that the radon, thoron, and progeny concentrations within the air were well below the limits prescribed by the US Surgeon General, the Environmental Protection Agency, and the Department of Energy. The Building 7 drain lines are contaminated with uranium, plutonium, and americium. Radiochemical analysis of water and dirt/sludge samples collected from accessible Low-Bay, High-Bay, Shower Room, and Sodium laboratory drains revealed uranium, plutonium, and americium contaminants. The Building 7 drain lines hence are unsuitable for release for unrestricted use in their present condition. Low levels of enriched uranium, plutonium, and americium were detected in an environmental soil coring near Building 8, indicating release or spillage due to Advanced Reactors Division activities or Nuclear Fuel Division activities undr NRC licensure. 60 Co contamination was detected within the Building 7 Shower Room and in soil corings from the environs of Building 7. All other radionuclide concentrations measured in soil corings and the storm sewer outfall sample collected from the environs about Buildings 7 and 8 were within the range of normally expected background concentrations

  12. Trust-Building in Electronic Markets: Relative Importance and Interaction Effects of Trust-Building Mechanisms

    Science.gov (United States)

    Tams, Stefan

    We examine the relative and complementary effectiveness of trust-building strategies in online environments. While prior research has examined various antecedents to trust, we investigated two trust-building mechanisms more in depth: Web site trust and vendor reputation. We tried to understand the relative effectiveness of these two important mechanisms to provide online businesses with a clear recommendation of how to establish trust in an effective and efficient manner. Drawing from the literature on trust, we proposed vendor reputation to be more effective than Web site trust. Moreover, we examined a potential complementary effect of these mechanisms so as to provide online businesses with a deeper understanding of how to derive superior trust. We hypothesize a small such effect. The study proposes a laboratory experiment to test the model.

  13. 308 Building deactivation mission analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-01-01

    This report presents the results of the 308 Building (Fuels Development Laboratory) Deactivation Project mission analysis. Hanford systems engineering (SE) procedures call for a mission analysis. The mission analysis is an important first step in the SE process. The functions and requirements to successfully accomplish this mission, the selected alternatives and products will later be defined using the SE process

  14. Clearing the waters: Evaluating the need for site-specific field fluorescence corrections based on turbidity measurements

    Science.gov (United States)

    Saraceno, John F.; Shanley, James B.; Downing, Bryan D.; Pellerin, Brian A.

    2017-01-01

    In situ fluorescent dissolved organic matter (fDOM) measurements have gained increasing popularity as a proxy for dissolved organic carbon (DOC) concentrations in streams. One challenge to accurate fDOM measurements in many streams is light attenuation due to suspended particles. Downing et al. (2012) evaluated the need for corrections to compensate for particle interference on fDOM measurements using a single sediment standard in a laboratory study. The application of those results to a large river improved unfiltered field fDOM accuracy. We tested the same correction equation in a headwater tropical stream and found that it overcompensated fDOM when turbidity exceeded ∼300 formazin nephelometric units (FNU). Therefore, we developed a site-specific, field-based fDOM correction equation through paired in situ fDOM measurements of filtered and unfiltered streamwater. The site-specific correction increased fDOM accuracy up to a turbidity as high as 700 FNU, the maximum observed in this study. The difference in performance between the laboratory-based correction equation of Downing et al. (2012) and our site-specific, field-based correction equation likely arises from differences in particle size distribution between the sediment standard used in the lab (silt) and that observed in our study (fine to medium sand), particularly during high flows. Therefore, a particle interference correction equation based on a single sediment type may not be ideal when field sediment size is significantly different. Given that field fDOM corrections for particle interference under turbid conditions are a critical component in generating accurate DOC estimates, we describe a way to develop site-specific corrections.

  15. Electrical and magnetic properties of the energy-saver correction elements

    International Nuclear Information System (INIS)

    Johnson, M.; McInturff, A.; Raja, R.; Mantsch, P.

    1983-08-01

    The lattice of the Fermi National Accelerator Laboratory's Energy Saver/Doubler contains a group of superconducting correction windings associated with each quadrupole. These are housed in an element referred to as a spool. There are 192 spools in the ring plus 12 special power spools which contain the main buss 5000 ampere power input as well as correction elements. There will be constructed and tested 290 spools, including spares of each of the eight different types. There have been 266 individual spools tested to date. The spools were tested for (a) magnetic field quality, harmonic moments, transfer constants and coil angles, (b) high voltage integrity, (c) critical transport current, and (d) cryogenic operating characteristics (i.e., heatloads, thermometry calibration checks, etc.). Data are summarized for 318 cryogenic tests and magnetic field quality of the 266 different spools, which contain 1614 correction magnet coils

  16. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1979-12-01

    The research reported in this volume was undertaken during FY 1979 within the Energy & Environment Division of the Lawrence Berkeley Laboratory. This volume will comprise a section of the Energy & Environment Division 1979 Annual Report, to be published in the summer of 1980. Work reported relate to: thermal performance of building envelopes; building ventilation and indoor air quality; a computer program for predicting energy use in buildings; study focused specifically on inherently energy intensive hospital buildings; energy efficient windows and lighting; potential for energy conservation and savings in the buildings sector; and evaluation of energy performance standards for residential buildings.

  17. Corrective Action Investigation Plan for Corrective Action Unit 500: Test Cell A Septic System, Nevada Test Site, Nevada, Revision 0, DOE/NV--528 UPDATED WITH TECHNICAL CHANGE No.1

    Energy Technology Data Exchange (ETDEWEB)

    ITLV

    1998-12-01

    This Corrective Action Investigation Plan (CAIP) addresses one of three leachfield systems associated with Test Cell A, which is located in Area 25 at the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (see Leachfield Work Plan Figure 1-1). Corrective Action Unit 500 is comprised of the Test Cell A Septic System (CAS 25-04-05) and the associated leachfield system presented in Figure 1-1 (FFACO, 1996). The leachfield is located 60 meters (m) (200 feet [ft]) southeast of the Building 3124 gate, and approximately 45 m (150 ft) southwest of Building 3116 at Test Cell A. Test Cell A operated during the 1960s to support nuclear rocket reactor testing as part of the Nuclear Rocket Development Station (NRDS) (SNPO, 1970). Various operations within Buildings 3113B (Mechanical Equipment Room), 3115 (Helium Compressor Station), 3116 (Pump House), a water tank drain and overflow, a ''yard and equipment drain system'' outside of Building 3116, and a trailer have resulted in potentially hazardous effluent releases to the leachfield system (DOE, 1988a). The leachfield system components include discharge lines, manways, a septic tank, an outfall line, a diversion chamber, and a 15 by 30 m (50 by 100 ft) leachfield (see Leachfield Work Plan Figure 3-1 for explanation of terminology). In addition, engineering drawings show an outfall system that may or may not be connected to the CAU 500 leachfield. In general, effluent contributed to the leachfield was sanitary wastewater associated with floor drains, toilet and lavatory facilities in Building 3113B and floor drains in the remaining source buildings. The surface and subsurface soils in the vicinity of the collection system, outfall, and leachfield may have been impacted by effluent containing contaminants of potential concern (COPCs) generated by support activities associated with Test Cell A reactor testing operations.

  18. Ames Laboratory Site Environmental Report, Calendar year 1991

    International Nuclear Information System (INIS)

    Mathison, L.

    1991-01-01

    The summarized data and conclusions from the Ames Laboratory environmental monitoring program are presented in this Annual Site Environmental Report. This program is a working requirement of Department of Energy (DOE) Order 5484.1, ''Environmental Protection, Safety, and Health Protection Information Reporting Requirements'' and Order 5400.1, ''General Environmental Protection Program.'' Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies several buildings owned by the DOE. The Laboratory also leases space in ISU-owned buildings. Laboratory research activities involve less than ten percent of the total chemical use and one percent of the radioisotope use on the ISU campus. Ames Laboratory is responsible for a small chemical burial site, located on ISU property. The site was used for the disposal of chemical and metal slags from thorium and uranium production. Samples of water from existing test wells and upstream and downstream sites on the nearby Squaw Creek show no detectable migration of the contents of the burial site. A Site Assessment plan submitted to the State of Iowa Department of Natural Resources (DNR) was approved. A Remedial Investigation/Feasibility Study work plan has been completed for additional studies at the site. This has been reviewed and approved by the DOE Chicago Field Office and the DNR. A National Environmental Policy Act (NEPA) review of the site resulted in a categorical exclusion finding which has been approved by the DOE. Ames Laboratory has an area contaminated by diesel fuel at the location of a storage tank which was removed in 1970. Soil corings and groundwater have been analyzed for contamination and an assessment written. Pollution awareness and waste minimization programs and plans were implemented in 1990. Included in this effort was the implementation of a waste white paper and green computer paper recycling program

  19. Corrective Action Investigation Plan for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    David Strand

    2006-01-01

    Corrective Action Unit 166 is located in Areas 2, 3, 5, and 18 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit (CAU) 166 is comprised of the seven Corrective Action Sites (CASs) listed below: (1) 02-42-01, Cond. Release Storage Yd - North; (2) 02-42-02, Cond. Release Storage Yd - South; (3) 02-99-10, D-38 Storage Area; (4) 03-42-01, Conditional Release Storage Yard; (5) 05-19-02, Contaminated Soil and Drum; (6) 18-01-01, Aboveground Storage Tank; and (7) 18-99-03, Wax Piles/Oil Stain. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on February 28, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 166. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 166 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Perform field screening. (4) Collect and submit environmental samples for laboratory analysis to determine if

  20. PEER Testbed Study on a Laboratory Building: Exercising Seismic Performance Assessment

    OpenAIRE

    Comerio, Mary C.; Stallmeyer, John C.; Smith, Ryan; Makris, Nicos; Konstantinidis, Dimitrios; Mosalam, Khalid; Lee, Tae-Hyung; Beck, James L.; Porter, Keith A.; Shaikhutdinov, Rustem; Hutchinson, Tara; Chaudhuri, Samit Ray; Chang, Stephanie E.; Falit-Baiamonte, Anthony; Holmes, William T.

    2005-01-01

    From 2002 to 2004 (years five and six of a ten-year funding cycle), the PEER Center organized the majority of its research around six testbeds. Two buildings and two bridges, a campus, and a transportation network were selected as case studies to “exercise” the PEER performance-based earthquake engineering methodology. All projects involved interdisciplinary teams of researchers, each producing data to be used by other colleagues in their research. The testbeds demonstrat...

  1. Characteristics of the radiation prevention metrology laboratory 'Cajavec' - Banjaluka

    International Nuclear Information System (INIS)

    Tomljenovic, I.; Ninkovic, M.; Kolonic, Dz.

    2004-01-01

    Radiation metrology laboratory built in the factory 'Cajavec' in Banja Luka, planed for gauge the detectors of ionization radiation. Laboratory as part of the large factory building , thus projected and formed according to positive radiation principles. Walls are constructed of basic concrete, main entrance of lead, approaching the radiation bench from the back side. Sound and light signal system connected with dosemeter for showing mini dose of radiation creating conditions for safe work of the dosemeterists. (author) [sr

  2. Pacific Northwest Laboratory ALARA Report for Calendar Year 1993

    International Nuclear Information System (INIS)

    Keller, S.L.

    1994-07-01

    This report provides summary results of the Calendar Year (CY) 1993 As Low As Reasonably Achievable (ALARA) Program at the Pacific Northwest Laboratory (PNL). This report includes information regarding whole-body exposures to radiation, and skin contaminations. The collective whole-body radiation dose to employees during 1993 was 0.58 person-sievert (58 person-rem). This dose was 11 percent lower than the projected dose of 0.65 person-sievert (65 person-rem). The Radiation Protection Section's Field Dosimetry Services group projected that no PNL employee's dose would exceed 0.02 sievert (2 rem) based on dosimeters processed during the year; no worker actually exceeded the limit by the end of CY 1993. There were 15 reported cases of skin contamination for PNL employees during 1993. This number of 60 percent of the projected total of 25 cases. There were an additional 21 cases of personal-effects contamination to PNL staff: Nine of these contamination events occurred at the 324 Building, nine occurred at the 325 Building, one occurred in the 327 Building, one occurred in the 3720 Building, and one occurred in the 326 Building. Line management set numerous challenging and production ALARA goals for their facilities. Appendix A describes the final status of the 1993 ALARA goals. Appendix B describes the radiological ALARA goals for 1994. The Radiation Protection Section of the Laboratory Safety Dept. routinely perform audits of radiological ALARA requirements for specific facilities with significant potential for exposure. These ALARA audits are part of a comprehensive safety audit of the facility, designed to evaluate and improve total safety performance

  3. Maintenance Implementation Plan for the 222-S Laboratory

    International Nuclear Information System (INIS)

    Stark, T.E.

    1992-10-01

    This Maintenance Implementation Plan (MIP) has been developed for the 222-S Laboratory at Hanford. It is based on assessments of the existing maintenance program to the requirements specified by US Department of Energy (DOE) Order 4330.4A, Maintenance Management Program (DOE 1990), Chapter II, Change 3. The results of these assessments were evaluated to determine corrective actions required. The 222-S Laboratory is currently supporting the waste management, chemical processing, and environmental monitoring programs presently under Westinghouse Hanford Company (Westinghouse Hanford) responsibility. This is done through quality analytical and process chemistry services

  4. Radiation detectors laboratory; Laboratorio de detectores de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  5. Structural Identification And Seismic Analysis Of An Existing Masonry Building

    International Nuclear Information System (INIS)

    Del Monte, Emanuele; Galano, Luciano; Ortolani, Barbara; Vignoli, Andrea

    2008-01-01

    The paper presents the diagnostic investigation and the seismic analysis performed on an ancient masonry building in Florence. The building has historical interest and is subjected to conservative restrictions. The investigation involves a preliminary phase concerning the research of the historic documents and a second phase of execution of in situ and laboratory tests to detect the mechanical characteristics of the masonry. This investigation was conceived in order to obtain the 'LC2 Knowledge Level' and to perform the non-linear pushover analysis according to the new Italian Standards for seismic upgrading of existing masonry buildings

  6. The design of a new radiochemical laboratory complex

    International Nuclear Information System (INIS)

    Lewis, A.G.

    1984-01-01

    A brief account is given of the history and scope of Amersham International plc in the manufacture of radiopharmaceuticals and other labelled organic compounds, and radioactive sources. Extra facilities were needed and a new site was found, and contracts placed for new radiochemical laboratories. The two new laboratories, which are described in some detail, are intended as follows: (a) a Medical Products building for the production of a range of diagnostic kits for use in the treatment of thyroid and other disorders, the main isotope used being iodine-125; and (b) the Chemical Products building, for the development and manufacture of a wide range of organic compounds, which are labelled with either tritium or carbon-14. Particular emphasis is given to the description of the air conditioning and ventilation systems, the open work benches, and the special ventilated enclosures, and the drainage system. Planning for maximum flexibility is also stressed. (U.K.)

  7. Introduction to the Buildings Sector Module of SEDS

    Energy Technology Data Exchange (ETDEWEB)

    DeForest, Nicholas; Bonnet, Florence; Stadler, Michael; Marnay, Chris

    2010-12-31

    SEDS is a stochastic engineering-economics model that forecasts economy-wide energy consumption in the U.S. to 2050. It is the product of multi-laboratory collaboration among the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), Lawrence Berkeley National Laboratory (LBNL), and Lumina Decision Systems. Among national energy models, SEDS is unique, as it is the only model written to explicitly incorporate uncertainty in its inputs and outputs. The primary purpose of SEDS is to estimate the impact of various US Department of Energy (DOE)R&D and policy programs on the performance and subsequent adoption rates of technologies relating to every energy consuming sector of the economy (shown below). It has previously been used to assist DOE in complying with the Government Performance and Results Act of 1993 (GPRA). The focus of LBNL research has been exclusively on develop the buildings model (SBEAM), which is capable of running as a stand-alone forecasting model, or as a part of SEDS as a whole. The full version of SEDS, containing all sectors and interaction is also called the 'integrated' version and is managed by NREL. Forecasts from SEDS are often compared to those coming from National Energy Modeling System (NEMS). The intention of this document is to present new users and developers with a general description of the purpose, functionality and structure of the buildings module within the Stochastic Energy Deployment System (SEDS). The Buildings module, which is capable of running as a standalone model, is also called the Stochastic Buildings Energy and Adoption Model (SBEAM). This document will focus exclusively on SBEAM and its interaction with other major sector modules present within SEDS. The methodologies and major assumptions employed in SBEAM will also be discussed. The organization of this report will parallel the organization of the model itself, being divided into major

  8. Correction for the absorption of plutonium alpha particles in filter paper used for dust sampling

    Energy Technology Data Exchange (ETDEWEB)

    Simons, J G

    1956-01-01

    This sample of air-borne dust collected on a filter paper when laboratory air is monitored for plutonium with the 1195 portable dust sampling unit may be regarded, for counting purposes, as a thick source with a non-uniform distribution of alpha-active plutonium. Experiments have been carried out to determine a correction factor to be applied to the observed count on the filter paper sample to correct for internal absorption in the paper and on the dust layer. From the results obtained it is recommended that a correction factor of 2 be used.

  9. Building-level analyses to prospectively detect influenza outbreaks in long-term care facilities: New York City, 2013-2014.

    Science.gov (United States)

    Levin-Rector, Alison; Nivin, Beth; Yeung, Alice; Fine, Annie D; Greene, Sharon K

    2015-08-01

    Timely outbreak detection is necessary to successfully control influenza in long-term care facilities (LTCFs) and other institutions. To supplement nosocomial outbreak reports, calls from infection control staff, and active laboratory surveillance, the New York City (NYC) Department of Health and Mental Hygiene implemented an automated building-level analysis to proactively identify LTCFs with laboratory-confirmed influenza activity. Geocoded addresses of LTCFs in NYC were compared with geocoded residential addresses for all case-patients with laboratory-confirmed influenza reported through passive surveillance. An automated daily analysis used the geocoded building identification number, approximate text matching, and key-word searches to identify influenza in residents of LTCFs for review and follow-up by surveillance coordinators. Our aim was to determine whether the building analysis improved prospective outbreak detection during the 2013-2014 influenza season. Of 119 outbreaks identified in LTCFs, 109 (92%) were ever detected by the building analysis, and 55 (46%) were first detected by the building analysis. Of the 5,953 LTCF staff and residents who received antiviral prophylaxis during the 2013-2014 season, 929 (16%) were at LTCFs where outbreaks were initially detected by the building analysis. A novel building-level analysis improved influenza outbreak identification in LTCFs in NYC, prompting timely infection control measures. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  10. Using generic tool kits to build intelligent systems

    Science.gov (United States)

    Miller, David J.

    1994-01-01

    The Intelligent Systems and Robots Center at Sandia National Laboratories is developing technologies for the automation of processes associated with environmental remediation and information-driven manufacturing. These technologies, which focus on automated planning and programming and sensor-based and model-based control, are used to build intelligent systems which are able to generate plans of action, program the necessary devices, and use sensors to react to changes in the environment. By automating tasks through the use of programmable devices tied to computer models which are augmented by sensing, requirements for faster, safer, and cheaper systems are being satisfied. However, because of the need for rapid cost-effect prototyping and multi-laboratory teaming, it is also necessary to define a consistent approach to the construction of controllers for such systems. As a result, the Generic Intelligent System Controller (GISC) concept has been developed. This concept promotes the philosophy of producing generic tool kits which can be used and reused to build intelligent control systems.

  11. Low-Cost Bio-Based Phase Change Materials as an Energy Storage Medium in Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL; Abhari, Mr. Ramin [Renewable Energy Group, Inc.; Shukla, Dr. Nitin [Fraunhofer USA, Center for Sustainable Energy Systems (CSE), Boston; Kosny, Dr. Jan [Fraunhofer USA, Center for Sustainable Energy Systems (CSE), Boston

    2015-01-01

    A promising approach to increasing the energy efficiency of buildings is the implementation of phase change material (PCM) in building envelope systems. Several studies have reported the energy saving potential of PCM in building envelopes. However, wide application of PCMs in building applications has been inhibited, in part, by their high cost. This article describes a novel paraffin product made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application, with the ultimate goal of commercializing a low-cost PCM platform. The low-cost PCM pellets were mixed with cellulose insulation, installed in external walls and field-tested under natural weatherization conditions for a period of several months. In addition, several PCM samples and PCM-cellulose samples were prepared under controlled conditions for laboratory-scale testing. The laboratory tests were performed to determine the phase change properties of PCM-enhanced cellulose insulation both at microscopic and macroscopic levels. This article presents the data and analysis from the exterior test wall and the laboratory-scale test data. PCM behavior is influenced by the weather and interior conditions, PCM phase change temperature and PCM distribution within the wall cavity, among other factors. Under optimal conditions, the field data showed up to 20% reduction in weekly heat transfer through an external wall due to the PCM compared to cellulose-only insulation.

  12. Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites Nevada Test Site, Nevada, Rev. No.: 0

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2006-01-01

    Corrective Action Unit (CAU) 190 is located in Areas 11 and 14 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 190 is comprised of the four Corrective Action Sites (CASs) listed below: (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; and (4) 14-23-01, LTU-6 Test Area. These sites are being investigated because existing information is insufficient on the nature and extent of potential contamination to evaluate and recommend corrective action alternatives. Additional information will be obtained before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS by conducting a corrective action investigation (CAI). The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on August 24, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 190. The scope of the CAU 190 CAI includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling; (2) Conduct radiological and geophysical surveys; (3) Perform field screening; (4) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present; (5) If COCs are present, collect additional step-out samples to define the lateral and vertical extent of the contamination; (6) Collect samples of source material, if present

  13. The Effect of Sloshing on a Tank Pressure Build-up Unit

    OpenAIRE

    Banne, Håvard Bolstad

    2017-01-01

    This thesis work has aimed to identify how sloshing will affect a liquefied natural gas (LNG) fuel tank. The physical nature of LNG means it needs to be kept cooled and pressurized in order to remain in a liquid state. By implementing a pressure build-up unit (PBU) it is possible to pressurize the tank vaporizing the tank’s contents, for the vapour then to return to tank in a loop, building pressure in the process. A tank pressure build-up unit has been built in the laboratory ...

  14. Design, Specification and Construction of Specialized Measurement System in the Experimental Building

    Science.gov (United States)

    Fedorczak-Cisak, Malgorzata; Kwasnowski, Pawel; Furtak, Marcin; Hayduk, Grzegorz

    2017-10-01

    Experimental buildings for “in situ” research are a very important tool for collecting data on energy efficiency of the energy-saving technologies. One of the most advanced building of this type in Poland is the Maloposkie Laboratory of Energy-saving Buildings at Cracow University of Technology. The building itself is used by scientists as a research object and research tool to test energy-saving technologies. It is equipped with a specialized measuring system consisting of approx. 3 000 different sensors distributed in technical installations and structural elements of the building (walls, ceilings, cornices) and the ground. The authors of the paper will present the innovative design and technology of this specialized instrumentation. They will discuss issues arising during the implementation and use of the building.

  15. A refuge for inorganic chemistry: Bunsen's Heidelberg laboratory.

    Science.gov (United States)

    Nawa, Christine

    2014-05-01

    Immediately after its opening in 1855, Bunsen's Heidelberg laboratory became iconic as the most modern and best equipped laboratory in Europe. Although comparatively modest in size, the laboratory's progressive equipment made it a role model for new construction projects in Germany and beyond. In retrospect, it represents an intermediate stage of development between early teaching facilities, such as Liebig's laboratory in Giessen, and the new 'chemistry palaces' that came into existence with Wöhler's Göttingen laboratory of 1860. As a 'transition laboratory,' Bunsen's Heidelberg edifice is of particular historical interest. This paper explores the allocation of spaces to specific procedures and audiences within the laboratory, and the hierarchies and professional rites of passage embedded within it. On this basis, it argues that the laboratory in Heidelberg was tailored to Bunsen's needs in inorganic and physical chemistry and never aimed at a broad-scale representation of chemistry as a whole. On the contrary, it is an example of early specialisation within a chemical laboratory preceding the process of differentiation into chemical sub-disciplines. Finally, it is shown that the relatively small size of this laboratory, and the fact that after ca. 1860 no significant changes were made within the building, are inseparably connected to Bunsen's views on chemistry teaching.

  16. Capturing Energy-Saving Opportunities: Improving Building Efficiency in Rajasthan through Energy Code Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Qing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yu, Sha [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Evans, Meredydd [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mathur, Jyotirmay [Malaviya National Institute of Technology, Jaipur (India); Vu, Linh D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-01

    India adopted the Energy Conservation Building Code (ECBC) in 2007. Rajasthan is the first state to make ECBC mandatory at the state level. In collaboration with Malaviya National Institute of Technology (MNIT) Jaipur, Pacific Northwest National Laboratory (PNNL) has been working with Rajasthan to facilitate the implementation of ECBC. This report summarizes milestones made in Rajasthan and PNNL's contribution in institutional set-ups, capacity building, compliance enforcement and pilot building construction.

  17. Establishment of experimental equipments in irradiation technology development building

    International Nuclear Information System (INIS)

    Ishida, Takuya; Tanimoto, Masataka; Shibata, Akira; Kitagishi, Shigeru; Saito, Takashi; Ohmi, Masao; Nakamura, Jinichi; Tsuchiya, Kunihiko

    2011-06-01

    The Neutron Irradiation and Testing Reactor Center has developed new irradiation technologies to provide irradiation data with high technical value for the resume of the Japan Materials Testing Reactor (JMTR). For the purpose to perform assembling of capsules, materials tests, materials inspection and analysis of irradiation specimens for the development of irradiation capsules, improvement and maintenance of facilities were performed. From the viewpoint of effective use of existing buildings in the Oarai research and development center, the RI application development building was refurbished and maintained for above-mentioned purpose. The RI application development building is a released controlled area, and was used as storage of experimental equipments and stationeries. The building was named 'Irradiation Technology Development Building' after it refurbished and maintained. Eight laboratories were maintained based on the purpose of use, and the installation of the experimental apparatuses was started. A basic management procedure of the Irradiation Technology Development Building was established and has been operated. This report describes the refurbish work of the RI application development building, the installation and operation method of the experimental apparatuses and the basic management procedure of the Irradiation Technology Development Building. (author)

  18. An electron microscope for the aberration-corrected era

    Energy Technology Data Exchange (ETDEWEB)

    Krivanek, O.L. [Nion Co., 1102 8th Street, Kirkland, WA 98033 (United States)], E-mail: krivanek.ondrej@gmail.com; Corbin, G.J.; Dellby, N.; Elston, B.F.; Keyse, R.J.; Murfitt, M.F.; Own, C.S.; Szilagyi, Z.S.; Woodruff, J.W. [Nion Co., 1102 8th Street, Kirkland, WA 98033 (United States)

    2008-02-15

    Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown.

  19. An electron microscope for the aberration-corrected era

    International Nuclear Information System (INIS)

    Krivanek, O.L.; Corbin, G.J.; Dellby, N.; Elston, B.F.; Keyse, R.J.; Murfitt, M.F.; Own, C.S.; Szilagyi, Z.S.; Woodruff, J.W.

    2008-01-01

    Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown

  20. Energy savings potential from improved building controls for the US commercial building sector

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin; Xie, Yulong; Zhao, Mingjie

    2017-09-27

    The U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) sponsored a study to determine the potential national savings achievable in the commercial building sector through widespread deployment of best practice controls, elimination of system and component faults, and use of better sensing. Detailed characterization of potential savings was one source of input to set research, development, and deployment (RD&D) goals in the field of building sensors and controls. DOE’s building energy simulation software, EnergyPlus, was employed to estimate the potential savings from 34 measures in 9 building types and across 16 climates representing almost 57% of commercial building sector energy consumption. In addition to estimating savings from individual measures, three packages of measures were created to estimate savings from the packages. These packages represented an 1) efficient building, 2) typical building, and 3) inefficient building. To scale the results from individual measures or a package to the national scale, building weights by building type and climate locations from the Energy Information Administration’s 2012 Commercial Building Energy Consumption Survey (CBECS) were used. The results showed significant potential for energy savings across all building types and climates. The total site potential savings from individual measures by building type and climate location ranged between 0% and 25%. The total site potential savings by building type aggregated across all climates (using the CBECS building weights) for each measure varied between 0% and 16%. The total site potential savings aggregated across all building types and climates for each measure varied between 0% and 11%. Some individual measures had negative savings because correcting underlying operational problems (e.g., inadequate ventilation) resulted in increased energy consumption. When combined into packages, the overall national savings potential is estimated to be 29

  1. Smart Buildings: Business Case and Action Plan

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlich, Paul; Diamond, Rick

    2009-04-01

    General Services Administration (GSA) has been a pioneer in using Smart Building technologies but it has yet to achieve the full benefits of an integrated, enterprise-wide Smart Building strategy. In July 2008, GSA developed an initial briefing memorandum that identified five actions for a Smart Buildings feasibility study: (1) Identify and cluster the major building systems under consideration for a Smart Buildings initiative; (2) Identify GSA priorities for these clusters; (3) Plan for future adoption of Smart Building strategies by identifying compatible hardware; (4) Develop a framework for implementing and testing Smart Building strategies and converged networks; and (5) Document relevant GSA and industry initiatives in this arena. Based on this briefing memorandum, PBS and FAS retained consultants from Lawrence Berkeley National Laboratory, Noblis, and the Building Intelligence Group to evaluate the potential for Smart Buildings within GSA, and to develop this report. The project has included extensive interviews with GSA staff (See Appendix A), a review of existing GSA standards and documents, and an examination of relevant GSA and industry initiatives. Based on interviews with GSA staff and a review of GSA standards and documents, the project team focused on four goals for evaluating how Smart Building technology can benefit GSA: (1) Achieve Energy Efficiency Mandates--Use Smart Building technology as a tool to meet EISA 2007 and EO 13423 goals for energy efficiency. (2) Enhance Property Management--Deploy enterprise tools for improved Operations and Maintenance (O&M) performance and verification. (3) Implement Network as the Fourth Utility--Utilize a converged broadband network to support Smart Building systems and provide GSA clients with connectivity for voice, data and video. (4) Enhance Safety and Security--Harmonize Physical Access Control Systems (PACS) with Smart Building Systems.

  2. Submittal of SWMU Assessment Report for Building 9960 Surface Discharge

    Energy Technology Data Exchange (ETDEWEB)

    Dotson, Patrick Wells [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Sandia National Laboratories is a multi-purpose engineering and science laboratory owned by the U.S. Department of Energy (DOE)/National Nuclear Security Administration and managed and operated by Sandia Corporation (Sandia), a wholly-owned subsidiary of Lockheed Martin Corporation. This Solid Waste Management Unit (SWMU) Assessment Report (SAR) for the Sandia National Laboratories, New Mexico (SNL/NM), Coyote Test Field, Building 9960 Surface Discharge, has been prepared in accordance with Section V of the Compliance Order on Consent (the Consent Order) between the New Mexico Environment Department (NMED), DOE, and Sandia (NMED April 2004). The DOE and Sandia formally notified the NMED of this newly identified or suspected SWMU or Area of Concern (AOC) by letter dated December 9, 2014. This SAR is being submitted in accordance with the NMED Hazardous Waste Bureau (HWB) letter dated February 16, 2015 letter (Kieling February 2015). This SAR presents the available information for the Building 9960 Surface Discharge, including location, designation of type and function, a general description, the operational dates, waste characteristics, and a summary of existing analytical wastewater and soil data

  3. Evaluation of corrective action data for reportable events at commercial nuclear power plants

    International Nuclear Information System (INIS)

    Mays, G.T.

    1991-01-01

    805The Nuclear Regulatory Commission (NRC) approved the adoption of cause codes for reportable events as a new performance indicator (PI) in March 1989. Corrective action data associated with the causes of events were to be compiled also. The corrective action data was considered as supplemental information but not identified formally as a performance indicator. In support of NRC, the Nuclear Operations Analysis Center (NOAC) at the Oak Ridge National Laboratory (ORNL) has been routinely evaluating licensee event reports (LERs) for cause code and corrective action data since 1989. The compilation of corrective action data by NOAC represents the first systematic and comprehensive compilation of this type data. The thrust of analyzing the corrective action data was to identify areas where licensees allocated resources to solve problems and prevent the recurrence of personnel errors and equipment failures. The predominant areas of corrective action reported by licensees are to be evaluated by NRC to compare with NRC programs designed to improve plant performance. The set of corrective action codes used to correlate with individual cause codes and included in the analyses were: training, procedural modification, corrective discipline, management change, design modification, equipment replacement/adjustment, other, and unknown. 1 fig

  4. Best Practices Guide for High-Performance Indian Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Reshma [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sartor, Dale [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ghatikar, Girish [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-04-01

    This document provides best practice guidance and energy- efficiency recommendations for the design, construction, and operation of high-­performance office buildings in India. Through a discussion of learnings from exemplary projects and inputs from experts, it provides recommendations that can potentially help achieve (1) enhanced working environments, (2) economic construction/faster payback, (3) reduced operating costs, and (4) reduced greenhouse gas (GHG) emissions. It also provides ambitious (but achievable) energy performance benchmarks, both as adopted targets during building modeling (design phase) and during measurement and verification (operations phase). These benchmarks have been derived from a set of representative best-in-class office buildings in India. The best practices strategies presented in this guide would ideally help in delivering high-­performance in terms of a triad—of energy efficiency, cost efficiency, and occupant comfort and well-­being. These best practices strategies and metrics should be normalized—that is, corrected to account for building characteristics, diversity of operations, weather, and materials and construction methods.

  5. Light Guide Collector Prototype: Laboratory Testing

    OpenAIRE

    Jitka - Mohelnikova; Stanislav Darula; Ayodeji Omishore; Petr Mohelnik; Denis Micek

    2017-01-01

    The article reviews the potential of light guide system equipped by a concentrator device capturing daylight applicable for illumination of building interiors and presents results of experiments on performance of its prototype. The main goal is focused on the comparison of traditional solutions and newly developed prototype of the light guide system and presents examination of its light transmission efficiency based on the laboratory experiments.

  6. Laboratory assessment of hypoglycaemia due to malaria in children ...

    African Journals Online (AJOL)

    ... leading to hypoglycaemia in children could be attributed to poverty, malnutrition, inadequate management of uncomplicated malaria in the health centres as well as late arrival at the hospital. Early laboratory and clinical diagnosis, correct treatment and improved quality management are key strategies for malaria control.

  7. Lab-on-a-Chip Design-Build Project with a Nanotechnology Component in a Freshman Engineering Course

    Science.gov (United States)

    Allam, Yosef; Tomasko, David L.; Trott, Bruce; Schlosser, Phil; Yang, Yong; Wilson, Tiffany M.; Merrill, John

    2008-01-01

    A micromanufacturing lab-on-a-chip project with a nanotechnology component was introduced as an alternate laboratory in the required first-year engineering curriculum at The Ohio State University. Nanotechnology is introduced in related reading and laboratory tours as well as laboratory activities including a quarter-length design, build, and test…

  8. Corrective Action Decision Document for Corrective Action Unit 562: Waste Systems Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Krause

    2010-08-01

    This Corrective Action Decision Document (CADD) presents information supporting the selection of corrective action alternatives (CAAs) leading to the closure of Corrective Action Unit (CAU) 562, Waste Systems, in Areas 2, 23, and 25 of the Nevada Test Site, Nevada. This complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Corrective Action Unit 562 comprises the following corrective action sites (CASs): • 02-26-11, Lead Shot • 02-44-02, Paint Spills and French Drain • 02-59-01, Septic System • 02-60-01, Concrete Drain • 02-60-02, French Drain • 02-60-03, Steam Cleaning Drain • 02-60-04, French Drain • 02-60-05, French Drain • 02-60-06, French Drain • 02-60-07, French Drain • 23-60-01, Mud Trap Drain and Outfall • 23-99-06, Grease Trap • 25-60-04, Building 3123 Outfalls The purpose of this CADD is to identify and provide the rationale for the recommendation of CAAs for the 13 CASs within CAU 562. Corrective action investigation (CAI) activities were performed from July 27, 2009, through May 12, 2010, as set forth in the CAU 562 Corrective Action Investigation Plan. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: • Determine whether COCs are present. • If COCs are present, determine their nature and extent. • Provide sufficient information and data to complete appropriate corrective actions. A data quality assessment (DQA) performed on the CAU 562 data demonstrated the quality and acceptability of the data for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against appropriate final action levels (FALs) to identify the COCs for each CAS. The results of the CAI identified COCs at 10 of the 13 CASs in CAU 562, and thus corrective

  9. Guidelines for Building Science Education

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Cheryn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rashkin, Samuel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huelman, Pat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    building science education. This report summarizes the steps DOE has taken to develop guidance for building science education and outlines a path forward towards creating real change for an industry in need. The Guidelines for Building Science Education outlined in Appendix A of this report have been developed for external stakeholders to use to certify that their programs are incorporating the most important aspects of building science at the most appropriate proficiency level for their role. The guidelines are intended to be used primarily by training organizations, universities, and certification bodies. Each guideline can be printed or saved as a stand-alone document for ease-of-use by the respective stakeholder group. In 2015, DOE, with leadership from Pacific Northwest National Laboratory (PNNL), is launching a multi-year campaign to promote the adoption of the Guidelines for Building Science Education in a variety of training settings.

  10. Corrective Action Investigation Plan for Corrective Action Unit 561: Waste Disposal Areas, Nevada Test Site, Nevada with ROTC 1, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2008-07-01

    Corrective Action Unit (CAU) 561 is located in Areas 1, 2, 3, 5, 12, 22, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 561 is comprised of the 10 corrective action sites (CASs) listed below: • 01-19-01, Waste Dump • 02-08-02, Waste Dump and Burn Area • 03-19-02, Debris Pile • 05-62-01, Radioactive Gravel Pile • 12-23-09, Radioactive Waste Dump • 22-19-06, Buried Waste Disposal Site • 23-21-04, Waste Disposal Trenches • 25-08-02, Waste Dump • 25-23-21, Radioactive Waste Dump • 25-25-19, Hydrocarbon Stains and Trench These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 561. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the Corrective Action Investigation for CAU 561 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological surveys

  11. Reliable software systems via chains of object models with provably correct behavior

    International Nuclear Information System (INIS)

    Yakhnis, A.; Yakhnis, V.

    1996-01-01

    This work addresses specification and design of reliable safety-critical systems, such as nuclear reactor control systems. Reliability concerns are addressed in complimentary fashion by different fields. Reliability engineers build software reliability models, etc. Safety engineers focus on prevention of potential harmful effects of systems on environment. Software/hardware correctness engineers focus on production of reliable systems on the basis of mathematical proofs. The authors think that correctness may be a crucial guiding issue in the development of reliable safety-critical systems. However, purely formal approaches are not adequate for the task, because they neglect the connection with the informal customer requirements. They alleviate that as follows. First, on the basis of the requirements, they build a model of the system interactions with the environment, where the system is viewed as a black box. They will provide foundations for automated tools which will (a) demonstrate to the customer that all of the scenarios of system behavior are presented in the model, (b) uncover scenarios not present in the requirements, and (c) uncover inconsistent scenarios. The developers will work with the customer until the black box model will not possess scenarios (b) and (c) above. Second, the authors will build a chain of several increasingly detailed models, where the first model is the black box model and the last model serves to automatically generated proved executable code. The behavior of each model will be proved to conform to the behavior of the previous one. They build each model as a cluster of interactive concurrent objects, thus they allow both top-down and bottom-up development

  12. Building 772 - CERN’s new calibration facility for radiation protection instruments is ready to go

    CERN Document Server

    2014-01-01

    Building 772 is becoming the new home of CERN’s calibration facility for radiation protection instrumentation. The new laboratory in Prévessin will be a state-of-the-art calibration facility and the first of its kind in both France and Switzerland, offering a wide range of possibilities with respect to radiation fields and instrumentation.   New four-axis calibration bench for radiation protection instruments.   Civil engineering work started in November 2013 in Prévessin and Building 772 is now finished and ready for inauguration. CERN’s calibration facility was previously located in Building 172 in Meyrin. Although still very accurate, the technology used was becoming obsolete and needed replacement. “Having considered different options, the decision was taken to build a new facility fully designed and conceived to meet all international safety and technical requirements of such a laboratory,” says Pie...

  13. The target laboratory of the Pelletron Accelerator's facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ueta, Nobuko; Pereira Engel, Wanda Gabriel [Nuclear Physics Department - University of Sao Paulo (Brazil)

    2013-05-06

    A short report on the activities developed in the Target Laboratory, since 1970, will be presented. Basic target laboratory facilities were provided to produce the necessary nuclear targets as well as the ion beam stripper foils. Vacuum evaporation units, a roller, a press and an analytical balance were installed in the Oscar Sala building. A brief historical report will be presented in commemoration of the 40{sup th} year of the Pelletron Accelerator.

  14. Building Quakes: Detection of Weld Fractures in Buildings using High-Frequency Seismic Techniques

    Science.gov (United States)

    Heckman, V.; Kohler, M. D.; Heaton, T. H.

    2009-12-01

    Catastrophic fracture of welded beam-column connections in buildings was observed in the Northridge and Kobe earthquakes. Despite the structural importance of such connections, it can be difficult to locate damage in structural members underneath superficial building features. We have developed a novel technique to locate fracturing welds in buildings in real time using high-frequency information from seismograms. Numerical and experimental methods were used to investigate an approach for detecting the brittle fracture of welds of beam-column connections in instrumented steel moment-frame buildings through the use of time-reversed Green’s functions and wave propagation reciprocity. The approach makes use of a prerecorded catalogue of Green’s functions for an instrumented building to detect high-frequency failure events in the building during a later earthquake by screening continuous data for the presence of one or more of the events. This was explored experimentally by comparing structural responses of a small-scale laboratory structure under a variety of loading conditions. Experimentation was conducted on a polyvinyl chloride frame model structure with data recorded at a sample rate of 2000 Hz using piezoelectric accelerometers and a 24-bit digitizer. Green’s functions were obtained by applying impulsive force loads at various locations along the structure with a rubber-tipped force transducer hammer. We performed a blind test using cross-correlation techniques to determine if it was possible to use the catalogue of Green’s functions to pinpoint the absolute times and locations of subsequent, induced failure events in the structure. A finite-element method was used to simulate the response of the model structure to various source mechanisms in order to determine the types of elastic waves that were produced as well as to obtain a general understanding of the structural response to localized loading and fracture.

  15. 324 Building Baseline Radiological Characterization

    International Nuclear Information System (INIS)

    Reeder, R.J.; Cooper, J.C.

    2010-01-01

    This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building. A total of 85 technical (100 square centimeter (cm 2 )) smears were collected from the Room 147 hoods, the Shielded Materials Facility (SMF), and the Radiochemical Engineering Cells (REC). Exposure rate readings (window open and window closed) were taken at a distance of 2.5 centimeters (cm) and 30 cm from the surface of each smear. Gross beta-gamma and alpha counts of each smear were also performed. The smear samples were analyzed by gamma energy analysis (GEA). Alpha energy analysis (AEA) and strontium-90 analysis were also performed on selected smears. GEA results for one or more samples reported the presence of manganese-54, cobalt-60, silver-108m antimony-125, cesium-134, cesium-137, europium-154, europium-155, and americium-241. AEA results reported the presence of plutonium-239/240, plutonium-238/ 241 Am, curium-243/244, curium-242, and americium-243. Tables 5 through 9 present a summary by location of the estimated maximum removable and total contamination levels in the Room 147 hoods, the SMF, and the REC. The smear sample survey data and laboratory analytical results are presented in tabular form by sample in Appendix A. The Appendix A tables combine survey data documented in radiological survey reports found in Appendix B and laboratory analytical results reported in the 324 Building Physical and Radiological Characterization Study (Berk, Hill, and Landsman 1998), supplemented by the laboratory analytical results found in Appendix C.

  16. Geophysics: Building E5375 decommissioning, Aberdeen Proving Ground

    International Nuclear Information System (INIS)

    McGinnis, M.G.; McGinnis, L.D.; Miller, S.F.; Thompson, M.D.

    1992-08-01

    Building E5375 was one of ten potentially contaminated sites in the Canal Creek area of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar (GPR), were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. Several anomalies wear, noted: (1) An underground storage tank located 25 ft east of Building E5375 was identified with magnetic, resistivity, and GPR profiling. (2) A three-point resistivity anomaly, 12 ft east of the northeast comer of Building E5374 (which borders Building E5375) and 5 ft south of the area surveyed with the magnetometer, may be caused by another underground storage tank. (3) A 2,500-gamma magnetic anomaly near the northeast corner of the site has no equivalent resistivity anomaly, although disruption in GPR reflectors was observed. (4) A one-point magnetic anomaly was located at the northeast comer, but its source cannot be resolved. A chaotic reflective zone to the east represents the radar signature of Building E5375 construction fill

  17. Building America Performance Analysis Procedures: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.; Anderson, R.; Judkoff, R.; Christensen, C.; Eastment, M.; Norton, P.; Reeves, P.; Hancock, E.

    2004-06-01

    To measure progress toward multi-year Building America research goals, cost and performance trade-offs are evaluated through a series of controlled field and laboratory experiments supported by energy analysis techniques that use test data to''calibrate'' energy simulation models. This report summarizes the guidelines for reporting such analytical results using the Building America Research Benchmark (Version 3.1) in studies that also include consideration of current Regional and Builder Standard Practice. Version 3.1 of the Benchmark is generally consistent with the 1999 Home Energy Rating System (HERS) Reference Home, with additions that allow evaluation of all home energy uses.

  18. Life Science-Related Physics Laboratory on Geometrical Optics

    Science.gov (United States)

    Edwards, T. H.; And Others

    1975-01-01

    Describes a laboratory experiment on geometrical optics designed for life science majors in a noncalculus introductory physics course. The thin lens equation is used by the students to calculate the focal length of the lens necessary to correct a myopic condition in an optical bench simulation of a human eye. (Author/MLH)

  19. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    world-class engineers and scientists. The INEEL Education Initiatives Department, housed in the Human Resources (HR) Directorate believes a highly integrated systematic approach from university to laboratory is necessary to the effectiveness of the pipeline. Currently, a refocusing of INEEL educational programs including scholarships, fellowships, internships, faculty exchange, and educational outreach programs is being conducted under the direction of the Education Director and a executive level Education Advisory Council. Additionally a mentoring program is under development to facilitate the integration and transfer of knowledge from senior researchers to incoming graduates. While internal alignment efforts are underway, external alignment efforts must now be planned and developed. Anxious to learn from the experiences of others, INEEL's HR Directorate, the INSE, ANL-W, UI, and ISU will conduct a review of national and international best practices and case studies found in academic and industry literature to identify programs and approaches that might be applied to the INL and the subsequent opportunities and issues that they might represent. It is proposed that the results of this collaborative study be shared with the IAEA in paper and presentation format at the International conference on nuclear knowledge management: Strategies, information management and human resource development. A brief outline of the proposed paper and presentation follows: I. Introduction: a. Brief discussion of the historical role of the US DOE and national laboratory role in nuclear energy research and education. b. Brief discussion of the current state of US nuclear energy education. c. Explanation of the expected role of the INL in revitalizing nuclear engineering and nuclear science education in the US. II. Current collaborative efforts to build components of an HR pipeline from education through full integration into the research environment and transfer on knowledge from senior

  20. Occupancy-Based Energy Management in Buildings: Final Report to Sponsors

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Michael D.; Black, Douglas R.; Price, Phillip N.; Lin, Yiqing; Brahme, Rohini; Surana, Amit; Narayanan, Satish; Cerpa, Alberto; Ericson, Varick; Kamthe, Ankur

    2010-07-01

    The Lawrence Berkeley National Laboratory (LBNL), the University of California Merced (UCM), and the United Technologies Research Center (UTRC) conducted field studies and modeling analyses in the Classroom and Office Building (COB) and the Science and Engineering Building (S&E) at the University of California, Merced. In the first year, of a planned multiyear project, our goal was to study the feasibility and efficacy of occupancy-based energy management. The first-year research goals were twofold. The first was to explore the likely energy savings if we know the number and location of building occupants in a typical commercial building. The second was to model and estimate people movement in a building. Our findings suggest that a 10-14percent reduction in HVAC energy consumption is possible over typical HVAC operating conditions when we know occupancy throughout the building. With the conclusion of the first-year tasks, we plan to review these results further before this group pursues follow-on funding.