WorldWideScience

Sample records for labeled plant polyphenols

  1. Plant Polyphenol Antioxidants and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    INES URQUIAGA

    2000-01-01

    Full Text Available In recent years there has been a remarkable increment in scientific articles dealing with oxidative stress. Several reasons justify this trend: knowledge about reactive oxygen and nitrogen species metabolism; definition of markers for oxidative damage; evidence linking chronic diseases and oxidative stress; identification of flavonoids and other dietary polyphenol antioxidants present in plant foods as bioactive molecules; and data supporting the idea that health benefits associated with fruits, vegetables and red wine in the diet are probably linked to the polyphenol antioxidants they contain.In this review we examine some of the evidence linking chronic diseases and oxidative stress, the distribution and basic structure of plant polyphenol antioxidants, some biological effects of polyphenols, and data related to their bioavailability and the metabolic changes they undergo in the intestinal lumen and after absorption into the organism.Finally, we consider some of the challenges that research in this area currently faces, with particular emphasis on the contributions made at the International Symposium "Biology and Pathology of Free Radicals: Plant and Wine Polyphenol Antioxidants" held July 29-30, 1999, at the Catholic University, Santiago, Chile and collected in this special issue of Biological Research

  2. Quantum dots as optical labels for ultrasensitive detection of polyphenols.

    Science.gov (United States)

    Akshath, Uchangi Satyaprasad; Shubha, Likitha R; Bhatt, Praveena; Thakur, Munna Singh

    2014-07-15

    Considering the fact that polyphenols have versatile activity in-vivo, its detection and quantification is very much important for a healthy diet. Laccase enzyme can convert polyphenols to yield mono/polyquinones which can quench Quantum dots fluorescence. This phenomenon of charge transfer from quinones to QDs was exploited as optical labels to detect polyphenols. CdTe QD may undergo dipolar interaction with quinones as a result of broad spectral absorption due to multiple excitonic states resulting from quantum confinement effects. Thus, "turn-off" fluorescence method was applied for ultrasensitive detection of polyphenols by using laccase. We observed proportionate quenching of QDs fluorescence with respect to polyphenol concentration in the range of 100 µg to 1 ng/mL. Also, quenching of the photoluminescence was highly efficient and stable and could detect individual and total polyphenols with high sensitivity (LOD-1 ng/mL). Moreover, proposed method was highly efficient than any other reported methods in terms of sensitivity, specificity and selectivity. Therefore, a novel optical sensor was developed for the detection of polyphenols at a sensitive level based on the charge transfer mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Method for evaluating the potential of 14C labeled plant polyphenols to cross the blood-brain barrier using accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Janle, Elsa M.; Lila, Mary Ann; Grannan, Michael; Wood, Lauren; Higgins, Aine; Yousef, Gad G.; Rogers, Randy B.; Kim, Helen; Jackson, George S.; Weaver, Connie M.

    2010-01-01

    Bioactive compounds in botanicals may be beneficial in preventing age-related neurodegenerative diseases, but for many compounds conventional methods may be inadequate to detect if these compounds cross the blood-brain barrier or to track the pharmacokinetics in the brain. By combining a number of unique technologies it has been possible to utilize the power of AMS to study the pharmacokinetics of bioactive compounds in the brain at very low concentrations. 14 C labeled compounds can be biosynthesized by plant cell suspension cultures co-incubated with radioisotopically-labeled sucrose and isolated and separated into a series of bioactive fractions. To study the pharmacokinetics and tissue distribution of 14 C labeled plant polyphenols, rats were implanted with jugular catheters, subcutaneous ultrafiltration probes and brain microdialysis probes. Labeled fractions were dosed orally. Interstitial fluid (ISF) and brain microdialysate samples were taken in tandem with blood samples. It was often possible to determine 14 C in blood and ISF with a β-counter. However, brain microdialysate samples 14 C levels on the order of 10 7 atoms/sample required AMS technology. The Brain Microdialysate AUC /Serum AUC ranged from .021- to .029, with the higher values for the glycoside fractions. By using AMS in combination with traditional methods, it is possible to study uptake by blood, distribution to ISF and determine the amount of a dose which can reach the brain and follow the pharmacokinetics in the brain.

  4. Potential Health Benefits of Olive Oil and Plant Polyphenols.

    Science.gov (United States)

    Gorzynik-Debicka, Monika; Przychodzen, Paulina; Cappello, Francesco; Kuban-Jankowska, Alicja; Marino Gammazza, Antonella; Knap, Narcyz; Wozniak, Michal; Gorska-Ponikowska, Magdalena

    2018-02-28

    Beneficial effects of natural plant polyphenols on the human body have been evaluated in a number of scientific research projects. Bioactive polyphenols are natural compounds of various chemical structures. Their sources are mostly fruits, vegetables, nuts and seeds, roots, bark, leaves of different plants, herbs, whole grain products, processed foods (dark chocolate), as well as tea, coffee, and red wine. Polyphenols are believed to reduce morbidity and/or slow down the development of cardiovascular and neurodegenerative diseases as well as cancer. Biological activity of polyphenols is strongly related to their antioxidant properties. They tend to reduce the pool of reactive oxygen species as well as to neutralize potentially carcinogenic metabolites. A broad spectrum of health-promoting properties of plant polyphenols comprises antioxidant, anti-inflammatory, anti-allergic, anti-atherogenic, anti-thrombotic, and anti-mutagenic effects. Scientific studies present the ability of polyphenols to modulate the human immune system by affecting the proliferation of white blood cells, and also the production of cytokines or other factors that participate in the immunological defense. The aim of the review is to focus on polyphenols of olive oil in context of their biological activities.

  5. Potential Health Benefits of Olive Oil and Plant Polyphenols

    Directory of Open Access Journals (Sweden)

    Monika Gorzynik-Debicka

    2018-02-01

    Full Text Available Beneficial effects of natural plant polyphenols on the human body have been evaluated in a number of scientific research projects. Bioactive polyphenols are natural compounds of various chemical structures. Their sources are mostly fruits, vegetables, nuts and seeds, roots, bark, leaves of different plants, herbs, whole grain products, processed foods (dark chocolate, as well as tea, coffee, and red wine. Polyphenols are believed to reduce morbidity and/or slow down the development of cardiovascular and neurodegenerative diseases as well as cancer. Biological activity of polyphenols is strongly related to their antioxidant properties. They tend to reduce the pool of reactive oxygen species as well as to neutralize potentially carcinogenic metabolites. A broad spectrum of health-promoting properties of plant polyphenols comprises antioxidant, anti-inflammatory, anti-allergic, anti-atherogenic, anti-thrombotic, and anti-mutagenic effects. Scientific studies present the ability of polyphenols to modulate the human immune system by affecting the proliferation of white blood cells, and also the production of cytokines or other factors that participate in the immunological defense. The aim of the review is to focus on polyphenols of olive oil in context of their biological activities.

  6. Consumption of polyphenol plants may slow aging and associated diseases.

    Science.gov (United States)

    Uysal, Utku; Seremet, Sila; Lamping, Jeffrey W; Adams, Jerome M; Liu, Deede Y; Swerdlow, Russell H; Aires, Daniel J

    2013-01-01

    Slowing aging is a widely shared goal. Plant-derived polyphenols, which are found in commonly consumed food plants such as tea, cocoa, blueberry and grape, have been proposed to have many health benefits, including slowing aging. In-vivo studies have demonstrated the lifespan-extending ability of six polyphenol-containing plants. These include five widely consumed foods (tea, blueberry, cocoa, apple, pomegranate) and a flower commonly used as a folk medicine (betony). These and multiple other plant polyphenols have been shown to have beneficial effects on aging-associated changes across a variety of organisms from worm and fly to rodent and human.

  7. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity

    OpenAIRE

    Shimamura, Yuko; Aoki, Natsumi; Sugiyama, Yuka; Tanaka, Takashi; Murata, Masatsune; Masuda, Shuichi

    2016-01-01

    This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1-0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly i...

  8. Plant polyphenols and their anti-cariogenic properties: a review

    OpenAIRE

    Ferrazzano, G.F.; Amato, I.; Ingenito, A.; Zarrelli, A.; Pinto, G.; Pollio, A.

    2011-01-01

    Polyphenols constitute one of the most common groups of substances in plants. Polyphenolic compounds have been reported to have a wide range of biological activities, many of which are related to their conventional antioxidant action; however, increasing scientific knowledge has highlighted their potential activity in preventing oral disease, including the prevention of tooth decay. The aim of this review is to show the emerging findings on the anti-cariogenic properties of polyphenols, which...

  9. Antioxidant and antibacterial activities of polyphenols from ethnomedicinal plants of Burkina Faso

    NARCIS (Netherlands)

    Karou, D.; Dicko, M.H.; Simpore, J.; Traore, A.S.

    2005-01-01

    Polyphenols from four medicinal plants of Burkina Faso, Combretum micranthum, Khaya senegalensis, Pterocarpus erinaceus and Sida acuta, were screened for their antioxidant and antimicrobial activities against pathogenic bacteria. The medicinal plants displayed different polyphenols contents and

  10. Plant Polyphenolic Antioxidants in Management of Chronic Degenerative Diseases

    Directory of Open Access Journals (Sweden)

    R.K. Das

    2017-12-01

    Full Text Available With the over growing global population, degenerative diseases are on rise, despite using modern medicine for its cure. People prefer alternative systems of medicine like natural therapy and polyherbal therapy due to adverse effects of allopathic medication. According to W.H.O. report about 70% of world population relying on natural plant-based therapy. For a suitable, sustainable and cost effective cure use of polyphenolic natural antioxidants may be an appropriate tool. Now a day’s most food and pharmaceutical products contain synthetic antioxidants. But recent data indicating that, long term use of synthetic antioxidants could have carcinogenic effects on human cells. Thus, search for new natural and efficient antioxidants is need of the hour. Phenolic compounds (polyphenols are products of secondary metabolites and constitute one of the most widely distributed groups of substance in plant kingdom with more than 10,000 phenolic structures. Polyphenols are structurally characterized by the presence of one or more aromatic benzene ring compounds with one or more functional hydroxyl groups. Polyphenols are naturally occurring and most abundant antioxidants in human diets found largely in the fruits, vegetables and beverages. Plant flavonoids are the largest and best studied class of polyphenols which include more than 4000 compounds. Numerous studies confirm that, flavonoids exert a protective action on human health and are key components of a healthy and balanced diet. Epidemiological studies and associated meta-analysis correlate and strongly   suggest that, long term consumption of diets rich in plant flavonoids offer protection against development of chronic and degenerative diseases, such as cardiovascular diseases , diabetes , cancer, osteoporosis and neurodegenerative diseases. One of the main reasons for the age related diseases is linked with reduction in cellular oxidative stress. The involvement of reactive oxygen species (ROS in

  11. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity.

    Science.gov (United States)

    Shimamura, Yuko; Aoki, Natsumi; Sugiyama, Yuka; Tanaka, Takashi; Murata, Masatsune; Masuda, Shuichi

    2016-01-01

    This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1-0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL) significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning.

  12. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity.

    Directory of Open Access Journals (Sweden)

    Yuko Shimamura

    Full Text Available This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA. Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1-0.5 mg/mL inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning.

  13. Polyphenol-aluminum complex formation: Implications for aluminum tolerance in plants

    Science.gov (United States)

    Natural polyphenols may play an important role in aluminum detoxification in some plants. We examined the interaction between Al3+ and the purified high molecular weight polyphenols pentagalloyl glucose (940 Da) and oenothein B (1568 Da), and the related compound methyl gallate (184 Da) at pH 4 and ...

  14. [Review: plant polyphenols modulate lipid metabolism and related molecular mechanism].

    Science.gov (United States)

    Dai, Yan-li; Zou, Yu-xiao; Liu, Fan; Li, Hong-zhi

    2015-11-01

    Lipid metabolism disorder is an important risk factor to obesity, hyperlipidemia and type 2 diabetes as well as other chronic metabolic disease. It is also a key target in preventing metabolic syndrome, chronic disease prevention. Plant polyphenol plays an important role in maintaining or improving lipid profile in a variety of ways. including regulating cholesterol absorption, inhibiting synthesis and secretion of triglyceride, and lowering plasma low density lipoprotein oxidation, etc. The purpose of this article is to review the lipid regulation effects of plant polyphenols and its related mechanisms.

  15. Isolation, structural characterization and bioactivities of naturally occurring polysaccharide-polyphenolic conjugates from medicinal plants-A reivew.

    Science.gov (United States)

    Liu, Jun; Bai, Ruyu; Liu, Yunpeng; Zhang, Xin; Kan, Juan; Jin, Changhai

    2018-02-01

    In recent years, several medicinal plants have been demonstrated as valuable resources of naturally occurring polysaccharide-polyphenolic conjugates. For the first time, this article introduces recent advances of polysaccharide-polyphenolic conjugates isolated from different medicinal plants. The isolation, purification, structural characterization and biological activities of polysaccharide-polyphenolic conjugates are introduced in details. In general, polysaccharide-polyphenolic conjugates can be isolated by hot water or alkaline extraction followed by purification through anion exchange chromatography or gel filtration chromatography. The structures of conjugates are usually characterized by chemical composition analysis, UV-vis, Fourier-transform infrared and nuclear magnetic resonance spectroscopy. Moreover, polysaccharide-polyphenolic conjugates exhibit several biological activities including anticoagulant, antioxidant, radioprotective, anti-platelet, antitussive and bronchodilatory effects. Therefore, polysaccharide-polyphenolic conjugates isolated from medicinal plants are certain to have a bright prospect in the field of food and pharmaceutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Ultrasound-assisted extraction of polyphenols from native plants in the Mexican desert.

    Science.gov (United States)

    Wong Paz, Jorge E; Muñiz Márquez, Diana B; Martínez Ávila, Guillermo C G; Belmares Cerda, Ruth E; Aguilar, Cristóbal N

    2015-01-01

    Several plants that are rich in polyphenolic compounds and exhibit biological properties are grown in the desert region of Mexico under extreme climate conditions. These compounds have been recovered by classic methodologies in these plants using organic solvents. However, little information is available regarding the use of alternative extraction technologies, such as ultrasound. In this paper, ultrasound-assisted extraction (UAE) parameters, such as the liquid:solid ratio, solvent concentration and extraction time, were studied using response surface methodology (RSM) for the extraction of polyphenols from desert plants including Jatrophadioica,Flourensiacernua, Turneradiffusa and Eucalyptuscamaldulensis. Key process variables (i.e., liquid:solid ratio and ethanol concentration) exert the greatest influence on the extraction of all of the phenolic compounds (TPC) in the studied plants. The best conditions for the extraction of TPC involved an extraction time of 40min, an ethanol concentration of 35% and a liquid:solid ratio ranging from 8 to 12mlg(-1) depending on the plant. The highest antioxidant activity was obtained in the E. camaldulensis extracts. The results indicated the ability of UAE to obtain polyphenolic antioxidant preparations from desert plants. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation.

    Science.gov (United States)

    Kostyuk, Vladimir A; Potapovich, Alla I; Suhan, Tatyana O; de Luca, Chiara; Korkina, Liudmila G

    2011-05-11

    Oxidized low-density lipoproteins (oxLDL) play a critical role in the initiation of atherosclerosis through activation of inflammatory signaling. In the present work we investigated the role of antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation. Significant decrease in intracellular NO level and superoxide overproduction was found in human umbilical vein endothelial cells (HUVEC) treated with oxLDL, but not with LDL. The redox imbalance was prevented by the addition of quercetin or resveratrol. Expression analysis of 14 genes associated with oxidative stress and inflammation revealed oxLDL-mediated up-regulation of genes specifically involved in leukocyte recruitment and adhesion. This up-regulation could be partially avoided by the addition of verbascoside or resveratrol, while treatment with quercetin resulted in a further increase in the expression of these genes. Lipopolysaccharide (LPS)-treated HUVEC were also used for the evaluation of anti-inflammatory potency of plant polyphenols. Significant differences between HUVEC treaded with oxLDL and LPS were found in both the expression pattern of inflammation-related genes and the effects of plant polyphenols on cellular responses. The present data indicate that plant polyphenols may affect vascular inflammation not only as antioxidants but also as modulators of inflammatory redox signaling pathways. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  18. Plant polyphenols and their anti-cariogenic properties: a review.

    Science.gov (United States)

    Ferrazzano, Gianmaria F; Amato, Ivana; Ingenito, Aniello; Zarrelli, Armando; Pinto, Gabriele; Pollio, Antonino

    2011-02-11

    Polyphenols constitute one of the most common groups of substances in plants. Polyphenolic compounds have been reported to have a wide range of biological activities, many of which are related to their conventional antioxidant action; however, increasing scientific knowledge has highlighted their potential activity in preventing oral disease, including the prevention of tooth decay. The aim of this review is to show the emerging findings on the anti-cariogenic properties of polyphenols, which have been obtained from several in vitro studies investigating the effects of these bioactive molecules against Streptococcus mutans, as well as in vivo studies. The analysis of the literature supports the anti-bacterial role of polyphenols on cariogenic streptococci, suggesting (1) a direct effect against S. mutans; (2) an interaction with microbial membrane proteins inhibiting the adherence of bacterial cells to the tooth surface; and (3) the inhibition of glucosyl transferase and amylase. However, more studies, particularly in vivo and in situ, are necessary to establish conclusive evidence for the effectiveness and the clinical applications of these compounds in the prevention of dental caries. It is essential to better determine the nature and distribution of these compounds in our diet and to identify which of the hundreds of existing polyphenols are likely to provide the greatest effects.

  19. Plant Polyphenols and Their Anti-Cariogenic Properties: A Review

    Directory of Open Access Journals (Sweden)

    Gabriele Pinto

    2011-02-01

    Full Text Available Polyphenols constitute one of the most common groups of substances in plants. Polyphenolic compounds have been reported to have a wide range of biological activities, many of which are related to their conventional antioxidant action; however, increasing scientific knowledge has highlighted their potential activity in preventing oral disease, including the prevention of tooth decay. The aim of this review is to show the emerging findings on the anti-cariogenic properties of polyphenols, which have been obtained from several in vitro studies investigating the effects of these bioactive molecules against Streptococcus mutans, as well as in vivo studies. The analysis of the literature supports the anti-bacterial role of polyphenols on cariogenic streptococci, suggesting (1 a direct effect against S. mutans; (2 an interaction with microbial membrane proteins inhibiting the adherence of bacterial cells to the tooth surface; and (3 the inhibition of glucosyl transferase and amylase. However, more studies, particularly in vivo and in situ, are necessary to establish conclusive evidence for the effectiveness and the clinical applications of these compounds in the prevention of dental caries. It is essential to better determine the nature and distribution of these compounds in our diet and to identify which of the hundreds of existing polyphenols are likely to provide the greatest effects.

  20. Development of a Rapid and Simple Method to Remove Polyphenols from Plant Extracts

    Directory of Open Access Journals (Sweden)

    Imali Ranatunge

    2017-01-01

    Full Text Available Polyphenols are secondary metabolites of plants, which are responsible for prevention of many diseases. Polyvinylpolypyrrolidone (PVPP has a high affinity towards polyphenols. This method involves the use of PVPP column to remove polyphenols under centrifugal force. Standards of gallic acid, epigallocatechin gallate, vanillin, and tea extracts (Camellia sinensis were used in this study. PVPP powder was packed in a syringe with different quantities. The test samples were layered over the PVPP column and subjected to centrifugation. Supernatant was tested for the total phenol content. The presence of phenolic compounds and caffeine was screened by HPLC and measuring the absorbance at 280. The antioxidant capacity of standards and tea extracts was compared with the polyphenol removed fractions using DPPH scavenging assay. No polyphenols were found in polyphenolic standards or tea extracts after PVPP treatment. The method described in the present study to remove polyphenols is simple, inexpensive, rapid, and efficient and can be employed to investigate the contribution of polyphenols present in natural products to their biological activity.

  1. Effects of plant polyphenols and a-tocopherol on lipid oxidation, microbiological characteristics, and biogenic amines formation in dry-cured bacons

    Science.gov (United States)

    Effects of plant polyphenols (tea polyphenol, grape seed extract, and gingerol) and a-tocopherol on physicochemical parameters, microbiological counts, and biogenic amines were determined in dry-cured bacons at the end of ripening. Results showed that plant polyphenols and a-tocopherol significantly...

  2. Effects of plant polyphenols and α-tocopherol on lipid oxidation, microbiological characteristics, and biogenic amines formation in dry-cured bacons.

    Science.gov (United States)

    Wang, Yongli; Li, Feng; Zhuang, Hong; Li, Lianghao; Chen, Xiao; Zhang, Jianhao

    2015-03-01

    Effects of plant polyphenols (tea polyphenol [TP], grape seed extract [GSE], and gingerol) and α-tocopherol on physicochemical parameters, microbiological counts, and biogenic amines were determined in dry-cured bacons at the end of ripening. Results showed that plant polyphenols and α-tocopherol significantly decreased pH, thiobarbituric acid reactive substances content, and total volatile basic nitrogen (TVBN) compared with the control (P amine contents in dry-cured bacons were affected by plant polyphenols or α-tocopherol, with TP being the most effective (P amines, and spoilage microorganisms, whereas PC2 grouped the TVBN, tyramine, 2-phenylethylamine, yeast, and molds. These findings suggest that plant polyphenols, especially TP, could be used to process dry-cured bacons to improve the quality and safety of finished products. © 2015 Institute of Food Technologists®

  3. Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals.

    Science.gov (United States)

    Gessner, D K; Ringseis, R; Eder, K

    2017-08-01

    Polyphenols are secondary plant metabolites which have been shown to exert antioxidative and antiinflamma tory effects in cell culture, rodent and human studies. Based on the fact that conditions of oxidative stress and inflammation are highly relevant in farm animals, polyphenols are considered as promising feed additives in the nutrition of farm animals. However, in contrast to many studies existing with model animals and humans, potential antioxidative and antiinflammatory effects of polyphenols have been less investigated in farm animals so far. This review aims to give an overview about potential antioxidative and antiinflammatory effects in farm animals. The first part of the review highlights the occurrence and the consequences of oxidative stress and inflammation on animal health and performance. The second part of the review deals with bioavailability and metabolism of polyphenols in farm animals. The third and main part of the review presents an overview of the findings from studies which investigated the effects of polyphenols of various plant sources in pigs, poultry and cattle, with particular consideration of effects on the antioxidant system and inflammation. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  4. Strategies for the extraction and analysis of non-extractable polyphenols from plants.

    Science.gov (United States)

    Domínguez-Rodríguez, Gloria; Marina, María Luisa; Plaza, Merichel

    2017-09-08

    The majority of studies based on phenolic compounds from plants are focused on the extractable fraction derived from an aqueous or aqueous-organic extraction. However, an important fraction of polyphenols is ignored due to the fact that they remain retained in the residue of extraction. They are the so-called non-extractable polyphenols (NEPs) which are high molecular weight polymeric polyphenols or individual low molecular weight phenolics associated to macromolecules. The scarce information available about NEPs shows that these compounds possess interesting biological activities. That is why the interest about the study of these compounds has been increasing in the last years. Furthermore, the extraction and characterization of NEPs are considered a challenge because the developed analytical methodologies present some limitations. Thus, the present literature review summarizes current knowledge of NEPs and the different methodologies for the extraction of these compounds, with a particular focus on hydrolysis treatments. Besides, this review provides information on the most recent developments in the purification, separation, identification and quantification of NEPs from plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Novel Production Method for Plant Polyphenol from Livestock Excrement Using Subcritical Water Reaction

    Directory of Open Access Journals (Sweden)

    Mayu Yamamoto

    2008-01-01

    Full Text Available Plant polyphenol, including vanillin, is often used as the intermediate materials of the medicines and vanilla flavoring. In agriculture generally vanillin is produced from vanilla plant and in industry from lignin of disposed wood pulp. We have recently developed a method for the production of plant polyphenol with the excrement as a natural resource of lignin, of the herbivorous animals, by using the subcritical water. The method for using the subcritical water is superior to that of the supercritical water because in the latter complete decomposition occurs. We have successfully produced the vanillin, protocatechuic acid, vanillic acid, and syringic acid in products. Our method is simpler and more efficient not only because it requires the shorter treatment time but also because it releases less amount of carbon dioxide into the atmosphere.

  6. Inhibition of rat mammary microsomal oxidation of ethanol to acetaldehyde by plant polyphenols.

    Science.gov (United States)

    Maciel, María Eugenia; Castro, José Alberto; Castro, Gerardo Daniel

    2011-07-01

    We previously reported that the microsomal fraction from rat mammary tissue is able to oxidize ethanol to acetaldehyde, a mutagenic-carcinogenic metabolite, depending on the presence of NADPH and oxygen but not inhibited by carbon monoxide or other cytochrome P450 inhibitors. The process was strongly inhibited by diphenyleneiodonium, a known inhibitor of NADPH oxidase, and by nordihydroguaiaretic acid, an inhibitor of lipoxygenases. This led us to suggest that both enzymes could be involved. With the purpose of identifying natural compounds present in food with the ability to decrease the production of acetaldehyde in mammary tissue, in the present studies, several plant polyphenols having inhibitory effects on lipoxygenases and of antioxidant nature were tested as potential inhibitors of the rat mammary tissue microsomal pathway of ethanol oxidation. We included in the present screening study 32 polyphenols having ready availability and that were also tested against the rat mammary tissue cytosolic metabolism of ethanol to acetaldehyde. Several polyphenols were also able to inhibit the microsomal ethanol oxidation at concentrations as low was 10-50 μM. The results of these screening experiments suggest the potential of several plant polyphenols to prevent in vivo production and accumulation of acetaldehyde in mammary tissue.

  7. Total Content of Polyphenols and Antioxidant Activity of Different Melliferous Plants

    Directory of Open Access Journals (Sweden)

    Claudia Pasca

    2016-01-01

    Full Text Available In this study polyphenols content and antioxidant activity of melliferous plants for the following: mint (Mentha pulegium, burdock (Arctium lappa, comfrey (Symphytum officinale, plantain (Pantago lanceolata, thyme (Thymus vulgaris, sage (Salvia officinalis, marigold (Calendula officinalis, small marshmallow (Althaea officinalis, echinacea (Echinaceea angustifolia and black popular (Populus nigra were investigated, using two different extraction methods. High content of polyphenols and flavones were extracted from Populus nigra, with an average of both extractions 23.14 mg GAE/g and 78.07 mg QE/g flavones. Among the studied plants, Arctium lappa registered the highest antioxidant activity (0.129 mmol Trolox/mL in alcoholic extract and Echinaceea angustifolia with a value of 0.122 mmol Trolox/mL in aqueous extract. The lowest values were recorded for the antioxidant activity of Althaea officinalis (alcoholic extract and Arctium lappa (aqueous extract. The results show that Arctium lappa, Echinaceea angustifolia and Populus nigra can be considered melliferous plants for their high biologically active compounds potential and bee products (honey and pollen that having the composition of these plants will have high antioxidant and antibacterial properties.

  8. Polyphenols and Sunburn

    Directory of Open Access Journals (Sweden)

    Suzana Saric

    2016-09-01

    Full Text Available Polyphenols are antioxidant molecules found in many foods such as green tea, chocolate, grape seeds, and wine. Polyphenols have antioxidant, anti-inflammatory, and antineoplastic properties. Growing evidence suggests that polyphenols may be used for the prevention of sunburns as polyphenols decrease the damaging effects of ultraviolet A (UVA and ultraviolet B (UVB radiation on the skin. This review was conducted to examine the evidence for use of topically and orally ingested polyphenols in prevention of sunburns. The PubMed database was searched for studies that examined polyphenols and its effects on sunburns. Of the 27 studies found, 15 met the inclusion criteria. Seven studies were conducted on human subjects and eight on animals (mice and rats. Eleven studies evaluated the effects of topical polyphenols, two studies examined ingested polyphenols, and two studies examined both topical and ingested polyphenols. Polyphenol sources included the following plant origins: green tea, white tea, cocoa, Romanian propolis (RP, Calluna vulgaris (Cv, grape seeds, honeybush, and Lepidium meyenii (maca. Eight studies examined green tea. Overall, based on the studies, there is evidence that polyphenols in both oral and topical form may provide protection from UV damage and sunburn, and thus are beneficial to skin health. However, current studies are limited and further research is necessary to evaluate the efficacy, mechanism of action, and potential side effects of various forms and concentrations of polyphenols.

  9. Polyphenols and Sunburn.

    Science.gov (United States)

    Saric, Suzana; Sivamani, Raja K

    2016-09-09

    Polyphenols are antioxidant molecules found in many foods such as green tea, chocolate, grape seeds, and wine. Polyphenols have antioxidant, anti-inflammatory, and antineoplastic properties. Growing evidence suggests that polyphenols may be used for the prevention of sunburns as polyphenols decrease the damaging effects of ultraviolet A (UVA) and ultraviolet B (UVB) radiation on the skin. This review was conducted to examine the evidence for use of topically and orally ingested polyphenols in prevention of sunburns. The PubMed database was searched for studies that examined polyphenols and its effects on sunburns. Of the 27 studies found, 15 met the inclusion criteria. Seven studies were conducted on human subjects and eight on animals (mice and rats). Eleven studies evaluated the effects of topical polyphenols, two studies examined ingested polyphenols, and two studies examined both topical and ingested polyphenols. Polyphenol sources included the following plant origins: green tea, white tea, cocoa, Romanian propolis (RP), Calluna vulgaris (Cv), grape seeds, honeybush, and Lepidium meyenii (maca). Eight studies examined green tea. Overall, based on the studies, there is evidence that polyphenols in both oral and topical form may provide protection from UV damage and sunburn, and thus are beneficial to skin health. However, current studies are limited and further research is necessary to evaluate the efficacy, mechanism of action, and potential side effects of various forms and concentrations of polyphenols.

  10. Study of the Stereochemistry and Oxidation Mechanism of Plant Polyphenols, Assisted by Computational Chemistry.

    Science.gov (United States)

    Matsuo, Yosuke

    2017-01-01

    In recent years, plant polyphenols have attracted great attention due to their wide range of biological activities. Certain kinds of polyphenols have complex structures; therefore, it is difficult to elucidate their total structure, including stereochemistry. In this study, we reinvestigated the stereostructures of two major C-glycosidic ellagitannins contained in Quercus plants, vescalagin and castalagin, and revised their stereostructures based on theoretical calculations of spectroscopic data. We also determined the structures of quercusnins A and B, isolated from the sapwood of Quercus crispula, based on theoretical calculations of NMR data. The oxidation mechanism of polyphenols has not been entirely elucidated. Therefore, we have also studied the oxidation mechanism of tea catechins during black tea production. Our investigation of the oxidation mechanism of black tea pigment theaflavins revealed that the difference in the position of the galloyl ester affords different oxidation products of theaflavins. In addition, oxidation products of pyrogallol-type catechins could be classified into three types-dehydrotheasinensins, theacitrins, and proepitheaflagallins; their detailed production and degradation mechanisms were also examined.

  11. Predictive relationship between polyphenol and nonfat cocoa solids content of chocolate.

    Science.gov (United States)

    Cooper, Karen A; Campos-Giménez, Esther; Jiménez Alvarez, Diego; Rytz, Andreas; Nagy, Kornél; Williamson, Gary

    2008-01-09

    Chocolate is often labeled with percent cocoa solids content. It is assumed that higher cocoa solids contents are indicative of higher polyphenol concentrations, which have potential health benefits. However, cocoa solids include polyphenol-free cocoa butter and polyphenol-rich nonfat cocoa solids (NFCS). In this study the strength of the relationship between NFCS content (estimated by theobromine as a proxy) and polyphenol content was tested in chocolate samples with labeled cocoa solids contents in the range of 20-100%, grouped as dark (n = 46), milk (n = 8), and those chocolates containing inclusions such as wafers or nuts (n = 15). The relationship was calculated with regard to both total polyphenol content and individual polyphenols. In dark chocolates, NFCS is linearly related to total polyphenols (r2 = 0.73). Total polyphenol content appears to be systematically slightly higher for milk chocolates than estimated by the dark chocolate model, whereas for chocolates containing other ingredients, the estimates fall close to or slightly below the model results. This shows that extra components such as milk, wafers, or nuts might influence the measurements of both theobromine and polyphenol contents. For each of the six main polyphenols (as well as their sum), the relationship with the estimated NFCS was much lower than for total polyphenols (r2 chocolate type, indicating that they might still have some predictive capabilities.

  12. Plant polyphenols: chemical properties, biological activities, and synthesis.

    Science.gov (United States)

    Quideau, Stéphane; Deffieux, Denis; Douat-Casassus, Céline; Pouységu, Laurent

    2011-01-17

    Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Managing hypertension by polyphenols.

    Science.gov (United States)

    Fernández-Arroyo, Salvador; Camps, Jordi; Menendez, Javier A; Joven, Jorge

    2015-06-01

    Some polyphenols, obtained from plants of broad use, induce a favorable endothelial response in hypertension and beneficial effects in the management of other metabolic cardiovascular risks. Previous studies in our laboratories using the calyces of Hibiscus sabdariffa as a source of polyphenols show that significant effects on hypertension are noticeable in humans only when provided in high amounts. Available data are suggestive in animal models and ex vivo experiments, but data in humans are difficult to acquire. Additionally, and despite the low bioavailability of polyphenols, intervention studies provide evidence for the protective effects of secondary plant metabolites. Assumptions on public health benefits are limited by the lack of scientific knowledge, robust data derived from large randomized clinical trials, and an accurate assessment of the bioactive components provided by common foodstuff. Because it is likely that clinical effects are the result of multiple interactions among different polyphenols rather than the isolated action of unique compounds, to provide polyphenol-rich botanical extracts as dietary supplements is a suggestive option. Unfortunately, the lack of patent perspectives for the pharmaceutical industries and the high cost of production and release for alimentary industries will hamper the performance of the necessary clinical trials. Here we briefly discuss whether and how such limitations may complicate the extensive use of plant-derived products in the management of hypertension and which steps are the necessary to deal with the predictable complexity in a possible clinical practice. Georg Thieme Verlag KG Stuttgart · New York.

  14. A Review of Polyphenolics in Oak Woods

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2015-03-01

    Full Text Available Polyphenolics, which are ubiquitous in plants, currently are among the most studied phytochemicals because of their perceptible chemical properties and antioxidant activity. Oak barrels and their alternatives, which are widely used in winemaking nowadays, contribute polyphenolics to wines and are thought to play crucial roles in the development of wines during aging. This study summarizes the detailed information of polyphenolics in oak woods and their products by examining their structures and discussing their chemical reactions during wine aging. This paper evaluates the most recent developments in polyphenolic chemistry by summarizing their extraction, separation, and their identification by the use of chromatographic and spectral techniques. In addition, this paper also introduces polyphenol bioactive ingredients in other plant foods.

  15. Polyphenols: skin photoprotection and inhibition of photocarcinogenesis.

    Science.gov (United States)

    Afaq, F; Katiyar, S K

    2011-12-01

    Polyphenols are a large family of naturally occurring plant products and are widely distributed in plant foods, such as, fruits, vegetables, nuts, flowers, bark and seeds, etc. These polyphenols contribute to the beneficial health effects of dietary products. Clinical and epidemiological studies suggest that exposure of the skin to environmental factors/pollutants, such as solar ultraviolet (UV) radiation induce harmful effects and leads to various skin diseases including the risk of melanoma and non-melanoma skin cancers. The incidence of non-melanoma skin cancer, comprising of squamous cell carcinoma and basal cell carcinoma, is a significant public health concern world-wide. Exposure of the skin to solar UV radiation results in inflammation, oxidative stress, DNA damage, dysregulation of cellular signaling pathways and immunosuppression thereby resulting in skin cancer. The regular intake of natural plant products, especially polyphenols, which are widely present in fruits, vegetables, dry legumes and beverages have gained considerable attention as protective agents against the adverse effects of UV radiation. In this article, we first discussed the impact of polyphenols on human health based on their structure-activity relationship and bioavailability. We then discussed in detail the photoprotective effects of some selected polyphenols on UV-induced skin inflammation, proliferation, immunosuppression, DNA damage and dysregulation of important cellular signaling pathways and their implications in skin cancer management. The selected polyphenols include: green tea polyphenols, pomegranate fruit extract, grape seed proanthocyanidins, resveratrol, silymarin, genistein and delphinidin. The new information on the mechanisms of action of these polyphenols supports their potential use in skin photoprotection and prevention of photocarcinogenesis in humans.

  16. Polyphenols in Food: Cancer Prevention and Apoptosis Induction.

    Science.gov (United States)

    Sharma, Ashita; Kaur, Mandeep; Katnoria, Jatinder Kaur; Nagpal, Avinash Kaur

    2017-10-06

    Polyphenols are group of water-soluble organic compounds, mainly of natural origin. The compounds having about 5-7 aromatic rings and more than 12 phenolic hydroxyl groups are classified as polyphenols. These are the antioxidants which protect the body from oxidative damage. In plants, they are the secondary metabolites produced as a defense mechanism against stress factors. Antioxidant property of polyphenols is suggested to provide protection against many diseases associated with reactive oxygen species (ROS), including cancer. Various studies carried out across the world have suggested that polyphenols can inhibit the tumor generation, induce apoptosis in cancer cells and interfere in progression of tumors. This group of wonder compounds is present in surplus in natural plants and food products. Intake of polyphenols through diet can scavenge ROS and thus can help in cancer prevention. The plant derived products can also be used along with conventional chemotherapy to enhance the chemopreventive effects. The present review focuses on various in vitro and in vivo studies carried out to assess the anti-carcinogenic potential of polyphenols present in our food. Also, the pathways involved in cancer chemopreventive effects of various subclasses (flavonoids, lignans, stilbenes and phenolic acids) of polyphenols are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Plant polyphenols mobilize nuclear copper in human peripheral lymphocytes leading to oxidatively generated DNA breakage: implications for an anticancer mechanism.

    Science.gov (United States)

    Shamim, Uzma; Hanif, Sarmad; Ullah, M F; Azmi, Asfar S; Bhat, Showket H; Hadi, S M

    2008-08-01

    It was earlier proposed that an important anti-cancer mechanism of plant polyphenols may involve mobilization of endogenous copper ions, possibly chromatin-bound copper and the consequent pro-oxidant action. This paper shows that plant polyphenols are able to mobilize nuclear copper in human lymphocytes, leading to degradation of cellular DNA. A cellular system of lymphocytes isolated from human peripheral blood and comet assay was used for this purpose. Incubation of lymphocytes with neocuproine (a cell membrane permeable copper chelator) inhibited DNA degradation in intact lymphocytes. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. This study has further shown that polyphenols are able to degrade DNA in cell nuclei and that such DNA degradation is inhibited by neocuproine as well as bathocuproine (both of which are able to permeate the nuclear pore complex), suggesting that nuclear copper is mobilized in this reaction. Pre-incubation of lymphocyte nuclei with polyphenols indicates that it is capable of traversing the nuclear membrane. This study has also shown that polyphenols generate oxidative stress in lymphocyte nuclei which is inhibited by scavengers of reactive oxygen species (ROS) and neocuproine. These results indicate that the generation of ROS occurs through mobilization of nuclear copper resulting in oxidatively generated DNA breakage.

  18. Polyphenolic-polysaccharide conjugates from plants of Rosaceae/Asteraceae family as potential radioprotectors.

    Science.gov (United States)

    Zbikowska, Halina Malgorzata; Szejk, Magdalena; Saluk, Joanna; Pawlaczyk-Graja, Izabela; Gancarz, Roman; Olejnik, Alicja Klaudia

    2016-05-01

    Polyphenolic-polysaccharide macromolecular, water-soluble glycoconjugates, isolated from the selected medicinal plants of Rosaceae/Asteraceae family: from leaves of Fragaria vesca L., Rubus plicatus Whe. et N. E., and from flowering parts of Sanguisorba officinalis L., and Erigeron canadensis L., were investigated for their ability to protect proteins and lipids of human plasma against γ-radiation-induced oxidative damage. Treatment of plasma with plant conjugates (6, 30, 150 μg/ml) prior exposure to 100 Gy radiation resulted in a significant inhibition of lipid peroxidation, evaluated by TBARS levels; conjugates isolated from E. canadensis and R. plicatus and a reference flavonoid quercetin showed similar high potential (approx. 70% inhibition, at 6 μg/ml). The conjugates prevented radiation-induced oxidation of protein thiols and significantly improved plasma total antioxidant capacity, estimated with Ellman's reagent and ABTS(.+) assay, respectively. The results demonstrate by the first time a significant radioprotective capability of the polyphenolic-polysaccharide conjugates isolated from E. canadensis, R. plicatus, S. officinalis and to the less extent from F. vesca. The abilities of these substances to inhibit radiation-induced lipid peroxidation and thiol oxidation in plasma seems to be mediated, but not limited to ROS scavenging activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Modulation of plasma antioxidant activity in weaned piglets by plant polyphenols

    Directory of Open Access Journals (Sweden)

    Hai J. Zhang

    2014-06-01

    Full Text Available This study was conducted to evaluate the effect of plant polyphenols (PP on antioxidant activity in weaned piglets. First, a uniform design, one optimising an experimental technique that can rationally arrange the concentrations of mixture components, was used to obtain the best PP mixture of apple, grape seed, green tea and olive leaf polyphenols based on in vitro antioxidant capacity and inhibitory action on bacterial growth. Second, the optimised PP mixture was tested in vivo with an efficacy trial on piglets. The optimal effects of the mix were observed in vitro when apple, grape seed, green tea, olive leaf polyphenols and a carrier (silicon dioxide accounted for 16.5, 27.5, 30, 2.5 and 23.5%, respectively, of the mixture. Forty-eight weaned piglets were randomly allocated to two dietary treatments (6 replicates of 4 piglets each per treatment and fed a control diet (CTR or CTR supplemented with 0.1% of the optimised PP mixture. Dietary PP did not affect growth performance compared to the CTR group. Plasma total protein, urea nitrogen and lysozyme content were not affected by dietary treatment. No differences of E. coli or Clostridia counts in the faeces and caecum content between the CTR and PP groups were observed. A reduced malondialdehyde concentration in the PP group was observed on day 21 compared to the CTR group (P=0.02. In conclusion, the prepared PP mixture has the potential to improve plasma antioxidant activity.

  20. Dietary and plant polyphenols exert neuroprotective effects and improve cognitive function in cerebral ischemia.

    Science.gov (United States)

    Panickar, Kiran S; Jang, Saebyeol

    2013-08-01

    Cerebral ischemia is caused by an interruption of blood flow to the brain which generally leads to irreversible brain damage. Ischemic injury is associated with vascular leakage, inflammation, tissue injury, and cell death. Cellular changes associated with ischemia include impairment of metabolism, energy failure, free radical production, excitotoxicity, altered calcium homeostasis, and activation of proteases all of which affect brain functioning and also contribute to longterm disabilities including cognitive decline. Inflammation, mitochondrial dysfunction, increased oxidative/nitrosative stress, and intracellular calcium overload contribute to brain injury including cell death and brain edema. However, there is a paucity of agents that can effectively reduce cerebral damage and hence considerable attention has focused on developing newer agents with more efficacy and fewer side-effects. Polyphenols are natural compounds with variable phenolic structures and are rich in vegetables, fruits, grains, bark, roots, tea, and wine. Most polyphenols have antioxidant, anti-inflammatory, and anti-apoptotic properties and their protective effects on mitochondrial functioning, glutamate uptake, and regulating intracellular calcium levels in ischemic injury in vitro have been demonstrated. This review will assess the current status of the potential effects of polyphenols in reducing cerebral injury and improving cognitive function in ischemia in animal and human studies. In addition, the review will also examine available patents in nutrition and agriculture that relates to cerebral ischemic injury with an emphasis on plant polyphenols.

  1. Evaluation of antioxidant activity of medicinal plants containing polyphenol compounds. Comparison of two extraction systems

    Czech Academy of Sciences Publication Activity Database

    Kratchanova, M.; Denev, P.; Číž, Milan; Lojek, Antonín; Mihailov, A.

    2010-01-01

    Roč. 57, č. 2 (2010), s. 229-234 ISSN 0001-527X R&D Projects: GA MŠk(CZ) OC08058 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : medicinal plants * ORAC * polyphenols Subject RIV: BO - Biophysics Impact factor: 1.234, year: 2010

  2. Ion Channels Induced by Antimicrobial Agents in Model Lipid Membranes are Modulated by Plant Polyphenols Through Surrounding Lipid Media.

    Science.gov (United States)

    Efimova, Svetlana S; Zakharova, Anastasiia A; Medvedev, Roman Ya; Ostroumova, Olga S

    2018-03-16

    The potential therapeutic applications of plant polyphenols in various neurological, cardiovascular, metabolic and malignant disorders determine the relevance of studying the molecular mechanisms of their action on the cell membranes. Here, the quantitative changes in the physical parameters of model bilayer lipid membranes upon the adsorption of plant polyphenols were evaluated. It was shown that butein and naringenin significantly decreased the intrinsic dipole potential of cholesterol-free and cholesterol-enriched membranes. Cardamonin, 4'-hydroxychalcone, licochalcone A and liquiritigenin demonstrated the average efficiency, while resveratrol did not characterized by the ability to modulate the bilayer electrostatics. At the same time, the tested polyphenols affected melting of phospholipids with saturated acyl chains. The effects were attributed to the lipid disordering and a promotion of the positive curvature stress. According to DSC data and results of measurements of the threshold voltages that cause bilayer breakdown licochalcone A is the most effective agent. Furthermore, the role of the polyphenol induced changes in the electric and elastic properties of lipid host in the regulation of reconstituted ion channels was examined. The ability of the tested polyphenols to decrease the conductance of single ion channels produced by the antifungal cyclic lipopeptide syringomycin E was in agreement with their effects on the dipole potential of the lipid bilayers. The greatest effect of licochalcone A on the steady-state membrane conductance induced by the antifungal polyene macrolide antibiotic nystatin correlated with its greatest efficacy to induce the positive curvature stress. We also found that butein and naringenin bind specifically to a single pore formed by α-hemolysin from Staphylococcus aureus.

  3. Hypertension, nitric oxide, oxidants, and dietary plant polyphenols.

    Science.gov (United States)

    Galleano, Monica; Pechanova, Olga; Fraga, Cesar G

    2010-12-01

    Fruits and vegetables are key foods whose high ingestion is associated with the improvement of numerous pathological conditions, including hypertension. Such health promoting actions have been increasingly ascribed to the antioxidant characteristics of different polyphenols in fruits and vegetables. Consequently, based on this assumption, many beverages and foods rich in polyphenols, grape, tea, cocoa, and soy products and many of their chemical constituents purified, are being studied both, as antioxidants and antihypertensive agents. This paper reviews the current evidence linking high polyphenol consumption with reductions in blood pressure. Basic chemical aspects of flavanols, flavonols, isoflavones and stilbenes, as possible responsible for the observed effects of those foods on blood pressure are included. Human interventions studies by using grapes and wine, cocoa and chocolate, black and green tea, soy products, and purified compounds ((+)-catequin, quercetin, (-)-epigallocatechin gallate) are summarized. The discussed hypothesis, strongly supported by experimental data in animals, is that by regulating nitric oxide bioavailability, polyphenols present in fruits and vegetables affect endothelial function and as a consequence, blood pressure. Even when data are not definitive and many questions remain open, the whole evidence is encouraging to start considering diets that can provide a benefit to hypertensive subjects, and those benefits will be more significant in people that do not have controlled his/her elevated blood pressure.

  4. Plant nutraceuticals as antimicrobial agents in food preservation: terpenoids, polyphenols and thiols.

    Science.gov (United States)

    Gutiérrez-Del-Río, Ignacio; Fernández, Javier; Lombó, Felipe

    2018-05-16

    Synthetic food additives generate a negative perception in consumers. Therefore, food manufacturers search for safer natural alternatives as those involving phytochemicals and plant essential oils. These bioactives have antimicrobial activities widely proved in in vitro tests. Foodborne diseases cause thousands of deaths and millions of infections every year, mainly due to pathogenic bacteria as Salmonella spp., Campylobacter spp., Escherichia coli, Bacillus cereus, Listeria monocytogenes or Staphylococcus aureus. This review summarizes industrially interesting antimicrobial bioactivities, as well as their mechanisms of action, for three main types of plant nutraceuticals, terpenoids (as carnosic acid), polyphenols (as quercetin) and thiols (as allicin), which are important constituents of plant essential oils with a broad range of antimicrobial effects. These phytochemicals are widely distributed in fruits and vegetables and are really useful in food preservation as they inhibit microbial growth. Copyright © 2018. Published by Elsevier B.V.

  5. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects

    Directory of Open Access Journals (Sweden)

    Eva Brglez Mojzer

    2016-07-01

    Full Text Available Being secondary plant metabolites, polyphenols represent a large and diverse group of substances abundantly present in a majority of fruits, herbs and vegetables. The current contribution is focused on their bioavailability, antioxidative and anticarcinogenic properties. An overview of extraction methods is also given, with supercritical fluid extraction highlighted as a promising eco-friendly alternative providing exceptional separation and protection from degradation of unstable polyphenols. The protective role of polyphenols against reactive oxygen and nitrogen species, UV light, plant pathogens, parasites and predators results in several beneficial biological activities giving rise to prophylaxis or possibly even to a cure for several prevailing human diseases, especially various cancer types. Omnipresence, specificity of the response and the absence of or low toxicity are crucial advantages of polyphenols as anticancer agents. The main problem represents their low bioavailability and rapid metabolism. One of the promising solutions lies in nanoformulation of polyphenols that prevents their degradation and thus enables significantly higher concentrations to reach the target cells. Another, more practiced, solution is the use of mixtures of various polyphenols that bring synergistic effects, resulting in lowering of the required therapeutic dose and in multitargeted action. The combination of polyphenols with existing drugs and therapies also shows promising results and significantly reduces their toxicity.

  6. Polyphenols in foods are more complex than often thought.

    Science.gov (United States)

    Cheynier, Véronique

    2005-01-01

    Dietary polyphenols show a great diversity of structures, ranging from rather simple molecules (monomers and oligomers) to polymers. Higher-molecular-weight structures (with molecular weights of > 500) are usually designated as tannins, which refers to their ability to interact with proteins. Among them, condensed tannins (proanthocyanidins) are particularly important because of their wide distribution in plants and their contributions to major food qualities. All phenolic compounds are highly unstable and rapidly transformed into various reaction products when the plant cells are damaged (for instance, during food processing), thus adding to the complexity of dietary polyphenol composition. The polyphenol composition of plant-derived foods and beverages depends on that of the raw material used but also on the extraction process and subsequent biochemical and chemical reactions of plant polyphenols. The occurrence of specific tannin-like compounds (ie, thearubigins and theaflavins) arising from enzymatic oxidation is well documented in black tea. Various chemical reactions involving anthocyanins and/or flavanols have been demonstrated to occur during red wine aging. Current knowledge regarding the reaction mechanisms involved in some of these processes and the structures of the resulting products is reviewed. Their effects on organoleptic and nutritional quality are also discussed.

  7. Effects of plant polyphenols and a-tocopherol on lipid oxidation, residual nitrites, biogenic amines, and N-nitrosamines formation during ripening and storage of dry-cured bacon

    Science.gov (United States)

    Effects of plant polyphenols (green tea polyphenols (GTP) and grape seed extract (GSE) and a-tocopherol on physicochemical parameters, lipid oxidation, residual nitrite, microbiological counts, biogenic amines, and N-nitrosamines were determined in bacons during dry-curing and storage. Results show ...

  8. Cocoa Polyphenols and Inflammatory Markers of Cardiovascular Disease

    Science.gov (United States)

    Khan, Nasiruddin; Khymenets, Olha; Urpí-Sardà, Mireia; Tulipani, Sara; Garcia-Aloy, Mar; Monagas, María; Mora-Cubillos, Ximena; Llorach, Rafael; Andres-Lacueva, Cristina

    2014-01-01

    Epidemiological studies have demonstrated the beneficial effect of plant-derived food intake in reducing the risk of cardiovascular disease (CVD). The potential bioactivity of cocoa and its polyphenolic components in modulating cardiovascular health is now being studied worldwide and continues to grow at a rapid pace. In fact, the high polyphenol content of cocoa is of particular interest from the nutritional and pharmacological viewpoints. Cocoa polyphenols are shown to possess a range of cardiovascular-protective properties, and can play a meaningful role through modulating different inflammatory markers involved in atherosclerosis. Accumulated evidence on related anti-inflammatory effects of cocoa polyphenols is summarized in the present review. PMID:24566441

  9. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    Science.gov (United States)

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills.

  10. Antioxidant and antimicrobial activities of polyphenols from ...

    African Journals Online (AJOL)

    the medicinal plants were screened for their antioxidant and antimicrobial activities against pathogenic micro organisms (Staphylococcus aureus, Streptococcus pyogenes, Esherichia coli and Candida albicans). The medicinal plants displayed different polyphenols contents and antioxidant activities. In addition, varying ...

  11. 7 CFR 330.211 - Labeling of plant pests for movement under permits.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Labeling of plant pests for movement under permits... AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.211 Labeling of...

  12. In vitro micropropagation and mycorrhizal treatment influences the polyphenols content profile of globe artichoke under field conditions.

    Science.gov (United States)

    Pandino, Gaetano; Lombardo, Sara; Antonino, Lo Monaco; Ruta, Claudia; Mauromicale, Giovanni

    2017-09-01

    The commercial importance of plant tissue culture has grown in recent years, reflecting its application to vegetative propagation, disease elimination, plant improvement and the production of polyphenols. The level of polyphenols present in plant tissue is influenced by crop genotype, the growing environment, the crop management regime and the post-harvest processing practice. Globe artichoke is a significant component of the Mediterranean Basin agricultural economy, and is rich in polyphenols (phenolic acids and flavones). Most commercially grown plants are derived via vegetative propagation, with its attendant risk of pathogen build-up. Here, a comparison was drawn between the polyphenol profiles of conventionally propagated and micropropagated/mycorrhized globe artichoke plants. Micropropagation/mycorrhization appeared to deliver a higher content of caffeoylquinic acids. The accumulation of these compounds, along with luteolin and its derivatives, was not season-dependent. Luteolin aglycone was accumulated preferentially in the conventionally propagated plants. Overall, it appeared that micropropagation/mycorrhization enhanced the accumulation of polyphenols. Copyright © 2017. Published by Elsevier Ltd.

  13. Impact of Dietary Polyphenols on Carbohydrate Metabolism

    Directory of Open Access Journals (Sweden)

    Kati Hanhineva

    2010-03-01

    Full Text Available Polyphenols, including flavonoids, phenolic acids, proanthocyanidins and resveratrol, are a large and heterogeneous group of phytochemicals in plant-based foods, such as tea, coffee, wine, cocoa, cereal grains, soy, fruits and berries. Growing evidence indicates that various dietary polyphenols may influence carbohydrate metabolism at many levels. In animal models and a limited number of human studies carried out so far, polyphenols and foods or beverages rich in polyphenols have attenuated postprandial glycemic responses and fasting hyperglycemia, and improved acute insulin secretion and insulin sensitivity. The possible mechanisms include inhibition of carbohydrate digestion and glucose absorption in the intestine, stimulation of insulin secretion from the pancreatic b-cells, modulation of glucose release from the liver, activation of insulin receptors and glucose uptake in the insulin-sensitive tissues, and modulation of intracellular signalling pathways and gene expression. The positive effects of polyphenols on glucose homeostasis observed in a large number of in vitro and animal models are supported by epidemiological evidence on polyphenol-rich diets. To confirm the implications of polyphenol consumption for prevention of insulin resistance, metabolic syndrome and eventually type 2 diabetes, human trials with well-defined diets, controlled study designs and clinically relevant end-points together with holistic approaches e.g., systems biology profiling technologies are needed.

  14. Fate of 15N and 14C from labelled plant material

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Gjettermann, Birgitte; Eriksen, Jørgen

    2008-01-01

    strength of labelled plant residues in dissolved inorganic N (DIN) and dissolved organic N (DON) in pore water from the plough layer, and (ii) the plant uptake of organically bound N. Litterbags containing 14C- and 15N-labelled ryegrass or clover roots or leaves were inserted into the sward of a ryegrass......–clover mixture in early spring. The fate of the released 14C and 15N was monitored in harvested biomass, roots, soil, and pore water percolating from the plough layer. No evidence of plant uptake of dual-labelled organic compounds from the dual-labelled residues could be observed. N in pore water from the plough...

  15. Effects of dietary polyphenol-rich plant products from grape or hop on pro-inflammatory gene expression in the intestine, nutrient digestibility and faecal microbiota of weaned pigs.

    Science.gov (United States)

    Fiesel, Anja; Gessner, Denise K; Most, Erika; Eder, Klaus

    2014-09-04

    Feeding polyphenol-rich plant products has been shown to increase the gain:feed ratio in growing pigs. The reason for this finding has not yet been elucidated. In order to find the reasons for an increase of the gain:feed ratio, this study investigated the effect of two polyphenol-rich dietary supplements, grape seed and grape marc meal extract (GSGME) or spent hops (SH), on gut morphology, apparent digestibility of nutrients, microbial composition in faeces and the expression of pro-inflammatory genes in the intestine of pigs. Pigs fed GSGME or SH showed an improved gain:feed ratio in comparison to the control group (P value, lower levels of volatile fatty acids and lower counts of Streptococcus spp. and Clostridium Cluster XIVa in the faecal microbiota (P pro-inflammatory genes in duodenum, ileum and colon than the control group (P present study suggests that dietary plant products rich in polyphenols are able to improve the gain:feed ratio in growing pigs. It is assumed that an alteration in the microbial composition and anti-inflammatory effects of the polyphenol-rich plant products in the intestine might contribute to this effect.

  16. Preparation of labelled lipids by the use of plant cell cultures

    International Nuclear Information System (INIS)

    Mangold, H.K.

    1978-01-01

    The preparation of some radioacitvely labelled lipids by the use of plant cell cultures is discussed and further applications of the new method are suggested. Cell suspension cultures of rape (Brassica napus) and soya (Glycine max) have been used for the preparation of lipids labelled with radioisotopes. Radioactive acetic acid as well as various long-chain fatty acids are readily incorporated into the neutral and ionic lipids of plant cell cultures. In addition, 14 C-labelled glycerol, ethanolamine and choline are well utilized by the cells. Randomly labelled lipids have been obtained by incubating cell suspension cultures of rape and soya with [1- 14 C] acetic acid, and uniformly labelled lipids have been isolated from cultures that had been incubated with a mixture of [1- 14 C] acetic acid plus [2- 14 C] acetic acid. The use of techniques of plant cell cultures for the preparation of lipds labelled with stable or radioactive isotopesappears particularly rewarding because the uptake of precursors by the cells and their incorporation into various lipid compounds proceeds rapidly and often quanitatively.This new approach should be useful also for the biosynthesis of lipids whose acyl moieties contain a spn radical, a fluorescent group, or a light-sensitive label. Thus, plant cell cultures constitute valuable new tools for the biosynthetic preparation of a great variety of labelled lipids. (A.G.)

  17. Polyphenols as dietary supplements: A double-edged sword

    Directory of Open Access Journals (Sweden)

    Keith R Martin

    2009-12-01

    Full Text Available Keith R Martin, Christy L AppelNutrition Program, Healthy Lifestyles Research Center, College of Nursing and Health Innovation, Arizona State University, Mesa, AZ, USAAbstract: Increased consumption of fruits and vegetables is associated with a lower risk of chronic disease such as cardiovascular disease, some forms of cancer, and neurodegeneration. Pro-oxidant-induced oxidative stress contributes to the pathogenesis of numerous chronic diseases and, as such, dietary antioxidants can quench and/or retard such processes. Dietary polyphenols, ie, phenolic acids and flavonoids, are a primary source of antioxidants for humans and are derived from plants including fruits, vegetables, spices, and herbs. Based on compelling evidence regarding the health effects of polyphenol-rich foods, new dietary supplements and polyphenol-rich foods are being developed for public use. Consumption of such products can increase dietary polyphenol intake and subsequently plasma concentrations beyond expected levels associated with dietary consumption and potentially confer additional health benefits. Furthermore, bioavailability can be modified to further increase absorption and ultimately plasma concentrations of polyphenols. However, the upper limit for plasma concentrations of polyphenols before the elaboration of adverse effects is unknown for many polyphenols. Moreover, a considerable amount of evidence is accumulating which supports the hypothesis that high-dose polyphenols can mechanistically cause adverse effects through pro-oxidative action. Thus, polyphenol-rich dietary supplements can potentially confer additional benefits but high-doses may elicit toxicity thereby establishing a double-edge sword in supplement use.Keywords: antioxidant, bioavailability, flavonoids, polyphenols, supplement

  18. Interactions of polyphenols with carbohydrates, lipids and proteins.

    Science.gov (United States)

    Jakobek, Lidija

    2015-05-15

    Polyphenols are secondary metabolites in plants, investigated intensively because of their potential positive effects on human health. Their bioavailability and mechanism of positive effects have been studied, in vitro and in vivo. Lately, a high number of studies takes into account the interactions of polyphenols with compounds present in foods, like carbohydrates, proteins or lipids, because these food constituents can have significant effects on the activity of phenolic compounds. This paper reviews the interactions between phenolic compounds and lipids, carbohydrates and proteins and their impact on polyphenol activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The effect of polyphenolic-polysaccharide conjugates from selected medicinal plants of Asteraceae family on the peroxynitrite-induced changes in blood platelet proteins.

    Science.gov (United States)

    Saluk-Juszczak, Joanna; Pawlaczyk, Izabela; Olas, Beata; Kołodziejczyk, Joanna; Ponczek, Michal; Nowak, Pawel; Tsirigotis-Wołoszczak, Marta; Wachowicz, Barbara; Gancarz, Roman

    2010-12-01

    Lots of plants belonging to Asteraceae family are very popular in folk medicine in Poland. These plants are also known as being rich in acidic polysaccharides, due to the presence of hexuronic acids or its derivatives. Our preliminary experiments have shown that the extract from Conyza canadensis L. possesses various biological activity, including antiplatelet, antiocoagulant and antioxidant properties. The aim of our study was to assess if macromolecular glycoconjugates from selected herbal plants of Asteraceae family: Achillea millefolium L., Arnica montana L., Echinacea purpurea L., Solidago virgaurea L., Chamomilla recutita (L.) Rauschert., and Conyza canadensis L. protect platelet proteins against nitrative and oxidative damage induced by peroxynitrite, which is responsible for oxidative/nitrative modifications of platelet proteins: the formation of 3-nitrotyrosine and carbonyl groups. These modifications may lead to changes of blood platelet functions and can have pathological consequences. The role of these different medicinal plants in the defence against oxidative/nitrative stress in human platelets is still unknown, therefore the oxidative damage to platelet proteins induced by peroxynitrite and protectory effects of tested conjugates by the estimation of carbonyl group level and nitrotyrosine formation (a marker of protein nitration) were studied in vitro. The antioxidative properties of the polyphenolic-polysaccharide conjugates from selected tested medicinal plants were also compared with the action of a well characterized antioxidative commercial polyphenol - resveratrol (3,4',5-trihydroxystilbene). The obtained results demonstrate that the compounds from herbal plants: A. millefolium, A. montana, E. purpurea, C. recutita, S. virgaurea, possess antioxidative properties and protect platelet proteins against peroxynitrite toxicity in vitro, similar to the glycoconjugates from C. canadensis. However, in the comparative studies, the polyphenolic

  20. Enhancing the polyphenol content of a red-fleshed Japanese plum (Prunus salicina Lindl.) nectar by incorporating a polyphenol-rich extract from the skins.

    Science.gov (United States)

    de Beer, Dalene; Steyn, Naomi; Joubert, Elizabeth; Muller, Nina

    2012-10-01

    Plum skins are a waste product generated during production of plum juice or pulp. Polyphenols, shown to have various health-promoting properties, can be recovered from this waste product. Red-fleshed plum nectar formulations containing plum skin extract in varying amounts were characterised in terms of intensity of sensory attributes, consumer acceptability, colour, polyphenol content and antioxidant activity. Commercial beverages containing red fruits were used as benchmarks. The polyphenolic profile of the plum skin extract was similar to that of the pulp, including anthocyanins, flavonols, flavan-3-ols and a phenolic acid. Addition of the extract to plum nectar, which enhanced the colour, polyphenol content and antioxidant capacity, was limited by its negative sensory impact. The formulations were deemed acceptable by consumers, although a decrease in positive sensory attributes (plum flavour, plum aroma and sweetness) and an increase in negative sensory attributes (plant-like flavour, plant-like aroma, acidity and astringency) were observed with increasing skin extract content. The formulations compared favourably with commercial beverages in terms of colour total polyphenol content and antioxidant activity. Plum skins were successfully used to enhance the functional status of plum nectar. Use of a functional ingredient from plum skins is, therefore, a feasible value-addition strategy. Copyright © 2012 Society of Chemical Industry.

  1. Dietary Polyphenols in the Prevention of Stroke

    Directory of Open Access Journals (Sweden)

    A. Tressera-Rimbau

    2017-01-01

    Full Text Available Polyphenols have an important protective role against a number of diseases, such as atherosclerosis, brain dysfunction, stroke, cardiovascular diseases, and cancer. Cardiovascular diseases are the number one cause of death worldwide: more people die annually from cardiovascular diseases than from any other cause. The most important behavioural risk factors of heart disease and stroke are unhealthy diet, physical inactivity, tobacco use, and excess alcohol intake. The dietary consumption of polyphenols has shown to be inversely associated with morbidity and mortality by cardio- and cerebrovascular diseases. It is well-known that the protective effects of polyphenols in vivo depend on the grade how they are extracted from food and on their intestinal absorption, metabolism, and biological action with target tissues. The aim of this review was to summarise the relation between polyphenols of different plant sources and stroke in human intervention studies, animal models, and in vitro studies.

  2. Dietary Polyphenols in the Prevention of Stroke

    Science.gov (United States)

    Eder, M.

    2017-01-01

    Polyphenols have an important protective role against a number of diseases, such as atherosclerosis, brain dysfunction, stroke, cardiovascular diseases, and cancer. Cardiovascular diseases are the number one cause of death worldwide: more people die annually from cardiovascular diseases than from any other cause. The most important behavioural risk factors of heart disease and stroke are unhealthy diet, physical inactivity, tobacco use, and excess alcohol intake. The dietary consumption of polyphenols has shown to be inversely associated with morbidity and mortality by cardio- and cerebrovascular diseases. It is well-known that the protective effects of polyphenols in vivo depend on the grade how they are extracted from food and on their intestinal absorption, metabolism, and biological action with target tissues. The aim of this review was to summarise the relation between polyphenols of different plant sources and stroke in human intervention studies, animal models, and in vitro studies. PMID:29204249

  3. New insights into the antiangiogenic and proangiogenic properties of dietary polyphenols.

    Science.gov (United States)

    Diniz, Carmen; Suliburska, Joanna; Ferreira, Isabel M P L V O

    2017-06-01

    Polyphenols can be found in natural products of plant origin, including vegetables, fruits, and beverages. A large number of these plant origin compounds are an integral part of the human diet and in the past decade evidence has shown their beneficial properties in human health, by acting in several cell signaling pathways. Among other beneficial effects, polyphenols have been associated with angiogenesis. Increasing evidence highlighting the ability of dietary polyphenols to influence angiogenesis by interfering with multiple signaling pathways is debated. Particular emphasis is given to the mechanisms that ultimately may induce the formation of capillary-like structures (by increasing endothelial cell proliferation, migration, and invasion) or, conversely, may inhibit the steps of angiogenesis leading to the inhibition/regress of vascular development. Dietary polyphenols can, therefore, be viewed as promising nutraceuticals but important aspects have still to be further investigated, to deep knowledge concerning their concentration-mediated effects, effect of specific polyphenols, and respective metabolites, to ensure their appropriate and effective usefulness as proangiogenic or antiangiogenic nutraceuticals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Retaining Oxidative Stability of Emulsified Foods by Novel Nonmigratory Polyphenol Coated Active Packaging.

    Science.gov (United States)

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-07-13

    Oxidation causes lipid rancidity, discoloration, and nutrient degradation that decrease shelf life of packaged foods. Synthetic additives are effective oxidation inhibitors, but are undesirable to consumers who prefer "clean" label products. The aim of this study was to improve oxidative stability of emulsified foods by a novel nonmigratory polyphenol coated active packaging. Polyphenol coatings were applied to chitosan functionalized polypropylene (PP) by laccase assisted polymerization of catechol and catechin. Polyphenol coated PP exhibited both metal chelating (39.3 ± 2.5 nmol Fe(3+) cm(-2), pH 4.0) and radical scavenging (up to 52.9 ± 1.8 nmol Trolox eq cm(-2)) capacity, resulting in dual antioxidant functionality to inhibit lipid oxidation and lycopene degradation in emulsions. Nonmigratory polyphenol coated PP inhibited ferric iron promoted degradation better than soluble chelators, potentially by partitioning iron from the emulsion droplet interface. This work demonstrates that polyphenol coatings can be designed for advanced material chemistry solutions in active food packaging.

  5. Polyphenol-Rich Lentils and Their Health Promoting Effects.

    Science.gov (United States)

    Ganesan, Kumar; Xu, Baojun

    2017-11-10

    Polyphenols are a group of plant metabolites with potent antioxidant properties, which protect against various chronic diseases induced by oxidative stress. Evidence showed that dietary polyphenols have emerged as one of the prominent scientific interests due to their role in the prevention of degenerative diseases in humans. Possible health beneficial effects of polyphenols are measured based on the human consumption and their bioavailability. Lentil ( Lens culinaris ; Family: Fabaceae) is a great source of polyphenol compounds with various health-promoting properties. Polyphenol-rich lentils have a potential effect on human health, possessing properties such as antioxidant, antidiabetic, anti-obesity, anti-hyperlipidemic, anti-inflammatory and anticancer. Based on the explorative study, the current comprehensive review aims to give up-to-date information on nutritive compositions, bioactive compounds and the health-promoting effect of polyphenol-rich lentils, which explores their therapeutic values for future clinical studies. All data of in vitro , in vivo and clinical studies of lentils and their impact on human health were collected from a library database and electronic search (Science Direct, PubMed and Google Scholar). Health-promoting information was gathered and orchestrated in the suitable place in the review.

  6. Development of Molecularly Imprinted Polymers to Target Polyphenols Present in Plant Extracts

    Directory of Open Access Journals (Sweden)

    Catarina Gomes

    2017-11-01

    Full Text Available The development of molecularly imprinted polymers (MIPs to target polyphenols present in vegetable extracts was here addressed. Polydatin was selected as a template polyphenol due to its relatively high size and amphiphilic character. Different MIPs were synthesized to explore preferential interactions between the functional monomers and the template molecule. The effect of solvent polarity on the molecular imprinting efficiency, namely owing to hydrophobic interactions, was also assessed. Precipitation and suspension polymerization were examined as a possible way to change MIPs morphology and performance. Solid phase extraction and batch/continuous sorption processes were used to evaluate the polyphenols uptake/release in individual/competitive assays. Among the prepared MIPs, a suspension polymerization synthesized material, with 4-vinylpyridine as the functional monomer and water/methanol as solvent, showed a superior performance. The underlying cause of such a significant outcome is the likely surface imprinting process caused by the amphiphilic properties of polydatin. The uptake and subsequent selective release of polyphenols present in natural extracts was successfully demonstrated, considering a red wine solution as a case study. However, hydrophilic/hydrophobic interactions are inevitable (especially with complex natural extracts and the tuning of the polarity of the solvents is an important issue for the isolation of the different polyphenols.

  7. The influence of virus diseases on grape polyphenols of cv. 'Refosk'

    International Nuclear Information System (INIS)

    Tomazic, I.; Vrhovsek, U.; Korosec-Koruza, Z.

    2003-01-01

    External stimuli such as microbial infections, ultraviolet radiation, and chemical stressors can modulate the synthesis of polyphenols in the plants. Cv. 'Refosk' was used to show the influence of the GLRaV-1 and rugose wood (RW) on the polyphenols in grape. The infection shifted polyphenols from seeds to grape skins but had no impact on anthocyanins

  8. High nitrogen availability reduces polyphenol content in Sphagnum peat.

    Science.gov (United States)

    Bragazza, Luca; Freeman, Chris

    2007-05-15

    Peat mosses of the genus Sphagnum constitute the bulk of living and dead biomass in bogs. These plants contain peculiar polyphenols which hamper litter peat decomposition through their inhibitory activity on microbial breakdown. In the light of the increasing availability of biologically active nitrogen in natural ecosystems, litter derived from Sphagnum mosses is an ideal substrate to test the potential effects of increased atmospheric nitrogen deposition on polyphenol content in litter peat. To this aim, we measured total nitrogen and soluble polyphenol concentration in Sphagnum litter peat collected in 11 European bogs under a chronic gradient of atmospheric nitrogen deposition. Our results demonstrate that increasing nitrogen concentration in Sphagnum litter, as a consequence of increased exogenous nitrogen availability, is accompanied by a decreasing concentration of polyphenols. This inverse relationship is consistent with reports that in Sphagnum mosses, polyphenol and protein biosynthesis compete for the same precursor. Our observation of modified Sphagnum litter chemistry under chronic nitrogen eutrophication has implications in the context of the global carbon balance, because a lower content of decay-inhibiting polyphenols would accelerate litter peat decomposition.

  9. Dietary polyphenols and chromatin remodeling.

    Science.gov (United States)

    Russo, Gian Luigi; Vastolo, Viviana; Ciccarelli, Marco; Albano, Luigi; Macchia, Paolo Emidio; Ungaro, Paola

    2017-08-13

    Polyphenols are the most abundant phytochemicals in fruits, vegetables, and plant-derived beverages. Recent findings suggest that polyphenols display the ability to reverse adverse epigenetic regulation involved in pathological conditions, such as obesity, metabolic disorder, cardiovascular and neurodegenerative diseases, and various forms of cancer. Epigenetics, defined as heritable changes to the transcriptome, independent from those occurring in the genome, includes DNA methylation, histone modifications, and posttranscriptional gene regulation by noncoding RNAs. Sinergistically and cooperatively, these processes regulate gene expression by changing chromatin organization and DNA accessibility. Such induced epigenetic changes can be inherited during cell division, resulting in permanent maintenance of the acquired phenotype, but they may also occur throughout an individual life-course and may ultimately influence phenotypic outcomes (health and disease risk). In the last decade, a number of studies have shown that nutrients can affect metabolic traits by altering the structure of chromatin and directly regulate both transcription and translational processes. In this context, dietary polyphenol-targeted epigenetics becomes an attractive approach for disease prevention and intervention. Here, we will review how polyphenols, including flavonoids, curcuminoids, and stilbenes, modulate the establishment and maintenance of key epigenetic marks, thereby influencing gene expression and, hence, disease risk and health.

  10. The Antioxidant and Antihaemolytic Activities and the Polyphenolic Contents of Some Plants Seeds Extracts

    International Nuclear Information System (INIS)

    Atrooz, O.; Harb, M.; Al-Qato, M.

    2007-01-01

    Results of the this study which were carried out on yhe ethanol and acetone extracts of Prunus armeniaca, Cerasus vulgare, Nespole, Opuntia ficus-indica, Cucumis melo, and Vitis vinifera proved that theses extracts contain bioctive substances such as polyohenols and flavonids. The UV-VIS spectropgotometric assays showed that the extracted materials posses strong band in the range between 250-300 nm which confirm the presence of polyphenols and flavonoids. The concentration of these materials were different depending on the type pf plant seeds and the solvents used for extraction. The antioxidant and antihaemolytic activities of the extracts were determined by 1, 1-dipheny1-2picry1-hydeazy1 (DPPH) method, and red blood cells (RBCs) haemolysis test. Results of these extracts showed remarkable antioxidant activities depending on the origin of plant extracts. (Author's) 23 refs., 4 Tabs., 1fig

  11. Evaluation of polyphenol content in different parts of physalis ixocarpa

    International Nuclear Information System (INIS)

    Bakht, J.; Shafi, M.

    2016-01-01

    In the current study extracts of leaf, stem, fruit and calyx with different polarity was investigated for their phenolic content using high performance liquid chromatography and spectrophotometric assay. Among different parts, stem contain high concentration of total polyphenol and gallic acid. The effect of extraction solvent on polyphenol quantification was observed in both assays. Spectrophotometric analysis of the data regarding polyphenol content indicated that among different extracts from the stem, leaf and fruit tissues; ethyl acetate extracted fraction of stem measured maximum polyphenol content of 110.376 mgGAE/g of dry extract. The ethyl acetate extracted sample of leaf showed high polyphenol (Gallic acid) content of 95 mg GAE/g of dry extract using high performance liquid chromatography assay. The amounts of phenolic content (Gallic acid) extracted from the parts of the plant with the different solvent ranged from 0.0354- 95 mg GAE/g of the dry extract using HPLC, however, spectrophotometric assay indicated total polyphenol ranged from 38-110.37 mgGAE g-1 of the dry extract. The current study suggested that ethyl acetate is an effective solvent for the extraction of polyphenol in different parts of P. ixocarapa. (author)

  12. of polyphenolic compounds in Ilex Sp.

    Directory of Open Access Journals (Sweden)

    Zwyrzykowska Anna

    2015-11-01

    Full Text Available Natural compounds are an important source of desired biological activity which help to improve nutritional status, enhance productivity and bring many health benefits. The leaves of the Ilex paraguariensis (Aquifoliaceae are used for preparing a beverage known as yerba mate and represent a proven source of natural polyphenols which are known to foster biological activity with the emphasis on antioxidant properties. In present work we focused on the polyphenolic content of air-dried leaves of Ilex aquifolium L., Ilex aquifolium ‘Argentea Mariginata’, Ilex meserveae ‘Blue Angel’, and a commercially available mate as the reference product. Liquid chromatography combined with mass spectrometry (HPLC and LC-MS and thin layer chromatography (TLC, were used to establish polyphenolic substances content in aqueous methanolic extracts obtained from the biological matter. Up to 20 polyphenolic compounds were identified in the extracts, including rutin, quinic acid and its caffeoyl esters, i.e. chlorogenic acid and its isomers as well as dicaffeoyl derivatives. We took chlorogenic acid and rutin as reference compounds to quantify their levels in the extracts. It was determined that in all tested plants, high levels of these antioxidants were present. This led us to the conclusion that their leaves might serve as valuable food additives.

  13. Labelling of rice seedlings and rice plants with 32P

    International Nuclear Information System (INIS)

    Achmad Nasroh, K.

    1989-01-01

    Labelling of rice seedlings and rice plants with 32 P. Labelled rice seedlings can be used to tag insect pests that feed on. Radioactivity counting of 32 P in the endosperm and in the shoot of rice seeds that soaked for 72 hours in KH 2 32 PO 4 solution of 1 μCi/ml were 29,300 and 9,500 cpm respectively. When these labelled seedlings were grown in unlabelled medium the radioactivity in the shoot increased. It was due to the 32 P that was translocated to the shoot from the endosperm. The 32 P translocation reached maximum about one week after the seedling were grown in the unlabelled medium. Labelled seedlings could also be produced by growing 5, 10 and 15 days old seedlings hydroponically in Kimura B solution containing 32 P. Ten days after growing, the radioactivity concentration of the seedlings stem reached about 115,000; 85,000 and 170,000 cpm/mg dry weight for the 5, 10 and 15 days old seedlings respectively. For the implementation of this method, 20 ml labelled Kimura B was needed for labelling of one seedling. The seedlings should be prepared in tap water. During the growth the 32 P in the labelled seedlings was distributed throughout the plant, so that new leaves and tillers became also radioactive. (author). 5 refs

  14. Conventional, organic and biodynamic farming: differences in polyphenol content and antioxidant activity of Batavia lettuce.

    Science.gov (United States)

    Heimler, Daniela; Vignolini, Pamela; Arfaioli, Paola; Isolani, Laura; Romani, Annalisa

    2012-02-01

    Lactuca sativa L. ssp. acephala L., cv. Batavia red Mohican plants were cultivated under intensive conventional, organic and biodynamic farming and were analyzed for their polyphenol content and antiradical activity in order to demonstrate the influence of farming on yield, polyphenol content and antiradical activity. The yield of plants from conventional farming was the highest (2.89 kg m⁻²), while polyphenol content, measured by spectrophotometry, of these plants was lower at P flavonoid and hydroxycinnamic acid contents. Flavonoid, hydroxycinnamic acid and anthocyan patterns were not affected by the type of cultivation, while quantitative differences were demonstrated and some differences were found between conventional farming and organic or biodynamic farming. The yield of conventionally grown salads was the highest. Copyright © 2011 Society of Chemical Industry.

  15. One-pot synthesis of gold nanostars using plant polyphenols for cancer photoacoustic imaging and photothermal therapy

    International Nuclear Information System (INIS)

    Zhang, Xiao-Long; Zheng, Cheng; Zhang, Yun; Yang, Huang-Hao; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Branched plasmonic nanostructures have been found to exhibit strong enhancement of the electromagnetic field surrounding their multi-branched petals. This feature endows them with improved performance in catalysis, surface-enhanced Raman scattering, photoacoustic imaging, and photothermal therapy. Albeit several synthesis techniques have been developed, the precisely controlled growth of highly branched nanostructures with a one-pot surfactant-free procedure is still challenging. Herein, we present a simple seedless route to synthesize gold nanostars (AuNSs) using a natural plant polyphenol, gallic acid (GA), as a reducing and stabilizing agent. The size and shape of AuNSs can be tuned by simply adjusting the amount of added GA. Under the optimum condition, the as-prepared AuNSs with diameters about 100 nm exhibit strong near-infrared absorption, good photothermal efficiency, and high biocompatibility. We demonstrate that AuNSs can be utilized for simultaneous photoacoustic imaging and photothermal therapy in living cancer cells. This study highlights facile synthesized AuNSs could serve as a promising platform for cancer diagnosis and therapy.Graphical AbstractGold nanostars (AuNSs) are synthesized by a simple seedless route using a natural plant polyphenol, gallic acid (GA), as a reducing and stabilizing agent. The AuNSs can be utilized for simultaneous photoacoustic imaging and photothermal therapy in living cancer cells. This study highlights facile synthesized AuNSs could serve as a promising platform for cancer diagnosis and therapy.

  16. One-pot synthesis of gold nanostars using plant polyphenols for cancer photoacoustic imaging and photothermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Long [Mengchao Hepatobiliary Hospital of Fujian Medical University, The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province (China); Zheng, Cheng [Fuzhou University, The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, College of Chemistry (China); Zhang, Yun [Chinese Academy of Sciences, Xiamen Institute of Rare Earth Materials, Haixi Institute (China); Yang, Huang-Hao [Fuzhou University, The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, College of Chemistry (China); Liu, Xiaolong, E-mail: xiaoloong.liu@gmail.com; Liu, Jingfeng, E-mail: drjingfeng@126.com [Mengchao Hepatobiliary Hospital of Fujian Medical University, The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province (China)

    2016-07-15

    Branched plasmonic nanostructures have been found to exhibit strong enhancement of the electromagnetic field surrounding their multi-branched petals. This feature endows them with improved performance in catalysis, surface-enhanced Raman scattering, photoacoustic imaging, and photothermal therapy. Albeit several synthesis techniques have been developed, the precisely controlled growth of highly branched nanostructures with a one-pot surfactant-free procedure is still challenging. Herein, we present a simple seedless route to synthesize gold nanostars (AuNSs) using a natural plant polyphenol, gallic acid (GA), as a reducing and stabilizing agent. The size and shape of AuNSs can be tuned by simply adjusting the amount of added GA. Under the optimum condition, the as-prepared AuNSs with diameters about 100 nm exhibit strong near-infrared absorption, good photothermal efficiency, and high biocompatibility. We demonstrate that AuNSs can be utilized for simultaneous photoacoustic imaging and photothermal therapy in living cancer cells. This study highlights facile synthesized AuNSs could serve as a promising platform for cancer diagnosis and therapy.Graphical AbstractGold nanostars (AuNSs) are synthesized by a simple seedless route using a natural plant polyphenol, gallic acid (GA), as a reducing and stabilizing agent. The AuNSs can be utilized for simultaneous photoacoustic imaging and photothermal therapy in living cancer cells. This study highlights facile synthesized AuNSs could serve as a promising platform for cancer diagnosis and therapy.

  17. Polyphenol supplementation: benefits for exercise performance or oxidative stress?

    Science.gov (United States)

    Myburgh, Kathryn H

    2014-05-01

    Supplement use among athletes is widespread, including non-traditional and biological compounds. Despite increasing research, a comprehensive and critical review on polyphenol supplementation and exercise is still lacking. This review is relevant for researchers directly involved in the topic, as well as those with a broad interest in athletic performance enhancement and sports nutrition. The purpose of this review is to present background information on groups of polyphenols and their derivatives because their differing chemical structures influence mechanisms of action; to discuss the potential of plant, fruit and vegetable-based biological supplements, high in polyphenol content, to affect exercise performance and biomarkers of oxidative stress and exercise-induced muscle damage; and to critically discuss the exercise studies and biomarkers used. Subjects in the studies reviewed were either sedentary, healthy individuals, or active, recreationally trained or well-trained athletes. Polyphenol supplementation in exercise studies included mainly extracts (multicomponent or purified), juices, infusions or an increased intake of polyphenol-rich foods. This review includes details of supplement doses and exercise test protocols. Many studies considered only the performance or one or two selected biomarkers of antioxidant capacity instead of a comprehensive choice of biomarkers to assess damage to lipids or proteins. Evidence is insufficient to make recommendations for or against the use of polyphenol supplementation (neither specific polyphenols nor specific doses) for either recreational, competitive or elite athletes. Polyphenols have multiple biological effects, and future exercise studies must be designed appropriately and specifically to determine physiological interactions between exercise and the selected supplement, rather than considering performance alone.

  18. Intrinsic mineral labeling of edible plants: methods and uses

    International Nuclear Information System (INIS)

    Weaver, C.M.

    1985-01-01

    The fate of minerals can be conveniently studied through intrinsic labeling techniques. The mineral of interest is biologically incorporated into the food in a form that can be distinguished analytically from the natural form of the element. Radiolabels have traditionally been used to study such problems as the uptake of minerals by plants, the gross and subcellular mineral distribution in plant tissues, the form and associations of the deposited mineral, and the bioavailability of minerals to animals and humans. The use of stable (nonradioactive) isotopes as a label offers the potential of safely studying bioavailability of minerals from individual foods in human population groups of all ages using foods processed in normal food handling and processing facilities. 114 references

  19. Studies on total polyphenols and reducing power of aqueous extracts from selected lamiaceae species

    Directory of Open Access Journals (Sweden)

    Maria Cioroi

    2010-08-01

    Full Text Available Certain phytochemicals in species are attracting increased attention because of a wide range of biological activities especially the possible cancer preventive properties. Polyphenols, the naturalantioxidants are present in plant extracts and they play a key role in antioxidative defence mechanisms in biological systems and they act as free radicals scavenging agents. Polyphenols might thereforeinhibit development of coronary heart disease and cancers. Basil, oregano and sage are highly fragrant plants whose leaves are used as a seasoning herb for many different types of foods. Aqueous extractswere prepared from basil (Ocimum basilicum L., oregano (Origanum vulgare L. and sage (Salvia officinalis L.. To check the phenols presence, the UV-VIS spectrum was made. The amount of polyphenolic compounds from selected Lamiaceae species was determined by spectrophotometry method using the Folin - Ciocalteau reagent and gallic acid as standard. The range of polyphenols total was between 516,352 mg/100g dried species and 859,617 mg/100g dried species.Reducing power has been established by measuring the redox potential of aqueous extracts. Antioxidant activity was directly correlated with the total amount of polyphenols in the species extracts.The free reducing sugars in aqueous extracts from species were analyzed and correlated to the total content of polyphenols.

  20. Anti-Oxidative Polyphenolic Compounds of Cocoa.

    Science.gov (United States)

    Nabavi, Seyed F; Sureda, Antoni; Daglia, Maria; Rezaei, Parizad; Nabavi, Seyed M

    2015-01-01

    Oxidative stress plays a key role in the pathogenesis of different serious chronic diseases such as cancer, diabetes, cardiovascular and neurodegenerative disorders, etc. Recent research has been focused on the beneficial role of dietary antioxidants against oxidative stress both under in vitro and in vivo conditions. Theobroma cacao L. (cacao tree) is an evergreen tree which is native to South America. It is a plant of great economic importance and its seeds are commonly used to produce cocoa powder and chocolate. In addition to its uses in food industry, cocoa is a rich source of polyphenolic antioxidants. There is a plethora of in vitro and in vivo studies that report cocoa antioxidant capacity. The protective activity of cocoa seems to be due to its phytochemical constituents, especially catechins. However, bioavailability of cocoa polyphenolic constituents following oral administration is very low (nanomolar concentrations). In the present paper, we critically reviewed the available literature on the antioxidant and free radical scavenging activities of cocoa and its polyphenolic constituents. In addition to these, we provide brief information about cultivation, phytochemistry, bioavailability and clinical impacts of cocoa.

  1. Dietary polyphenol intake in Europe: the European Prospective Investigation into Cancer and Nutrition (EPIC) study

    NARCIS (Netherlands)

    Zamora-Ros, Raul; Knaze, Viktoria; Rothwell, Joseph A.; Hemon, Bertrand; Moskal, Aurelie; Overvad, Kim; Tjonneland, Anne; Kyro, Cecilie; Fagherazzi, Guy; Boutron-Ruault, Marie-Christine; Touillaud, Marina; Katzke, Verena; Kuehn, Tilman; Boeing, Heiner; Foerster, Jana; Trichopoulou, Antonia; Valanou, Elissavet; Peppa, Eleni; Palli, Domenico; Agnoli, Claudia; Ricceri, Fulvio; Tumino, Rosario; de Magistris, Maria Santucci; Peeters, Petra H. M.; Bueno-de-Mesquita, H. Bas; Engeset, Dagrun; Skeie, Guri; Hjartaker, Anette; Menendez, Virginia; Agudo, Antonio; Molina-Montes, Esther; Maria Huerta, Jose; Barricarte, Aurelio; Amiano, Pilar; Sonestedt, Emily; Nilsson, Lena Maria; Landberg, Rikard; Key, Timothy J.; Khaw, Kay-Thee; Wareham, Nicholas J.; Lu, Yunxia; Slimani, Nadia; Romieu, Isabelle; Riboli, Elio; Scalbert, Augustin

    Background/ObjectivesPolyphenols are plant secondary metabolites with a large variability in their chemical structure and dietary occurrence that have been associated with some protective effects against several chronic diseases. To date, limited data exist on intake of polyphenols in populations.

  2. INFLUENCE OF POLYPHENOLIC COMPOUNDS ON OCIMUM BASILICUM L. DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Adina Talmaciu

    2015-07-01

    Full Text Available The activities and role of phenolic compounds in the plant kingdom are well known. They are especially recognized for their function as plant growth regulators, but also for the important role in the biosynthesis process. Based on that, the aim of this work is to establish the influence of polyphenolic compounds, on the main physiological processes involved in basil cultivation under controlled conditions. Studies were carried out on sweet basil seeds (Ocimumbasilicum L. treated with different spruce bark polyphenolic extracts (aqueous extract and ultrasound assisted aqueous extract on several concentrations. The germination energy and germination capacity, plants vegetative organelles development and photoassimilatory pigments content were investigated. The results show that the Picea abies extracts, rich in phenolic compounds, have an influence on the global development of plantlets. An increased value for the growth parameters and pigments concentration was observed, compare with a control sample. Also it was shown that the effect of phenolic compounds on plants development significantly depends on their concentration.

  3. Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits

    Science.gov (United States)

    Ganesan, Kumar

    2017-01-01

    Polyphenols are plant metabolites with potent anti-oxidant properties, which help to reduce the effects of oxidative stress-induced dreaded diseases. The evidence demonstrated that dietary polyphenols are of emerging increasing scientific interest due to their role in the prevention of degenerative diseases in humans. Possible health beneficial effects of polyphenols are based on the human consumption and their bioavailability. Common beans (Phaseolus vulgaris L.) are a greater source of polyphenolic compounds with numerous health promoting properties. Polyphenol-rich dry common beans have potential effects on human health, and possess anti-oxidant, anti-diabetic, anti-obesity, anti-inflammatory and anti-mutagenic and anti-carcinogenic properties. Based on the studies, the current comprehensive review aims to provide up-to-date information on the nutritional compositions and health-promoting effect of polyphenol-rich common beans, which help to explore their therapeutic values for future clinical studies. Investigation of common beans and their impacts on human health were obtained from various library databases and electronic searches (Science Direct PubMed, and Google Scholar). PMID:29113066

  4. Polyphenols and Glycemic Control

    Directory of Open Access Journals (Sweden)

    Yoona Kim

    2016-01-01

    Full Text Available Growing evidence from animal studies supports the anti-diabetic properties of some dietary polyphenols, suggesting that dietary polyphenols could be one dietary therapy for the prevention and management of Type 2 diabetes. This review aims to address the potential mechanisms of action of dietary polyphenols in the regulation of glucose homeostasis and insulin sensitivity based on in vitro and in vivo studies, and to provide a comprehensive overview of the anti-diabetic effects of commonly consumed dietary polyphenols including polyphenol-rich mixed diets, tea and coffee, chocolate and cocoa, cinnamon, grape, pomegranate, red wine, berries and olive oil, with a focus on human clinical trials. Dietary polyphenols may inhibit α-amylase and α-glucosidase, inhibit glucose absorption in the intestine by sodium-dependent glucose transporter 1 (SGLT1, stimulate insulin secretion and reduce hepatic glucose output. Polyphenols may also enhance insulin-dependent glucose uptake, activate 5′ adenosine monophosphate-activated protein kinase (AMPK, modify the microbiome and have anti-inflammatory effects. However, human epidemiological and intervention studies have shown inconsistent results. Further intervention studies are essential to clarify the conflicting findings and confirm or refute the anti-diabetic effects of dietary polyphenols.

  5. Physical and antibacterial properties of edible films formulated with apple skin polyphenols.

    Science.gov (United States)

    Du, W-X; Olsen, C W; Avena-Bustillos, R J; Friedman, M; McHugh, T H

    2011-03-01

    Fruit and vegetable skins have polyphenolic compounds, terpenes, and phenols with antimicrobial and antioxidant activity. These flavoring plant essential oil components are generally regarded as safe. Edible films made from fruits or vegetables containing apple skin polyphenols have the potential to be used commercially to protect food against contamination by pathogenic bacteria. The main objective of this study was to evaluate physical properties as well as antimicrobial activities against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica of apple skin polyphenols at 0% to 10% (w/w) concentrations in apple puree film-forming solutions formulated into edible films. Commercial apple skin polyphenol powder had a water activity of 0.44 and high total soluble phenolic compounds and antioxidant capacity (995.3 mg chlorogenic acid/100 g and 14.4 mg Trolox/g, respectively). Antimicrobial activities of edible film containing apple skin polyphenols were determined by the overlay method. Apple edible film with apple skin polyphenols was highly effective against L. monocytogenes. The minimum concentration need to inactive L. monocytogenes was 1.5%. However, apple skin polyphenols did not show any antimicrobial effect against E. coli O157:H7 and S. enterica even at 10% level. The presence of apple skin polyphenols reduced water vapor permeability of films. Apple skin polyphenols increased elongation of films and darkened the color of films. The results of the present study show that apple skin polyphenols can be used to prepare apple-based antimicrobial edible films with good physical properties for food applications by direct contact.

  6. Field-Based Metabolomics of Vitis vinifera L. Stems Provides New Insights for Genotype Discrimination and Polyphenol Metabolism Structuring

    Directory of Open Access Journals (Sweden)

    Kévin Billet

    2018-06-01

    Full Text Available Grape accumulates numerous polyphenols with abundant health benefit and organoleptic properties that in planta act as key components of the plant defense system against diseases. Considerable advances have been made in the chemical characterization of wine metabolites particularly volatile and polyphenolic compounds. However, the metabotyping (metabolite-phenotype characterization of grape varieties, from polyphenolic-rich vineyard by-product is unprecedented. As this composition might result from the complex interaction between genotype, environment and viticultural practices, a field experiment was setting up with uniform pedo-climatic factors and viticultural practices of growing vines to favor the genetic determinism of polyphenol expression. As a result, UPLC-MS-based targeted metabolomic analyses of grape stems from 8 Vitis vinifera L. cultivars allowed the determination of 42 polyphenols related to phenolic acids, flavonoids, procyanidins, and stilbenoids as resveratrol oligomers (degree of oligomerization 1–4. Using a partial least-square discriminant analysis approach, grape stem chemical profiles were discriminated according to their genotypic origin showing that polyphenol profile express a varietal signature. Furthermore, hierarchical clustering highlights various degree of polyphenol similarity between grape varieties that were in agreement with the genetic distance using clustering analyses of 22 microsatellite DNA markers. Metabolite correlation network suggested that several polyphenol subclasses were differently controlled. The present polyphenol metabotyping approach coupled to multivariate statistical analyses might assist grape selection programs to improve metabolites with both health-benefit potential and plant defense traits.

  7. Nanoencapsulation of polyphenols for protective effect against colon-rectal cancer.

    Science.gov (United States)

    Santos, Isis S; Ponte, Bruno M; Boonme, Prapaporn; Silva, Amélia M; Souto, Eliana B

    2013-01-01

    The human population at large is exposed to many critical factors (e.g. bad food habits, chemical substances, and stress) leading to the development of serious diseases. Colon or colorectal cancer is one of the most prevalent types of cancer in many countries. Despite being a multi-factorial chronic disease, resulting from the interaction of multiple genetic and environmental factors, the critical factor is mostly a poor diet regimen. Therefore, an accumulation of constant mutations leads to a complex arrangement of events during tumor initiation, development and propagation. It is well known that many plants are rich in polyphenols with anti-oxidant, anti-atherogenic, anti-diabetic, anti-cancer, anti-viral, and anti-inflammatory properties. These compounds are secondary metabolites with the ability to donate electrons to free radicals through different mechanisms. In recent years, a large number of studies have attributed a protective effect to polyphenols and foods containing these compounds (e.g. plants, vegetables, cereals, tea, coffee or chocolate). Polyphenolic compounds have been described to inhibit cancer development and propagation, being used as chemopreventive agents. Some polyphenols reported a preventive action against colon cancer, e.g. curcumin, gallic acid, ellagic acid, and epigallocatechin-3-gallate. The present article focuses on the properties of these molecules as chemopreventive agents and the recent advances on their formulation in nanoparticulate systems for targeted therapy and increased bioavailability. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition*

    Science.gov (United States)

    Fan, Dong-mei; Fan, Kai; Yu, Cui-ping; Lu, Ya-ting; Wang, Xiao-chang

    2017-01-01

    Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols. PMID:28124839

  9. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition.

    Science.gov (United States)

    Fan, Dong-Mei; Fan, Kai; Yu, Cui-Ping; Lu, Ya-Ting; Wang, Xiao-Chang

    Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols.

  10. Possible application of labelled compounds in plant physiology, biochemistry and protection

    International Nuclear Information System (INIS)

    Hanker, I.

    1981-01-01

    Compounds labelled with 14 C, 32 P, 35 S, 54 Mn, 45 Ca, 65 Zn and 86 Rb were used for the study of side effects of insecticides, fungicides, herbicides and other substances used for the treatment of crop plants, of the effects of some plant diseases on biochemical processes in plants, and of the reasons of plant resistance to diseases, i.e., of factors responsible for this resistance. (author)

  11. Forging a modern generation of polyphenol-based therapeutics.

    Science.gov (United States)

    Wright, Bernice

    2013-06-01

    The long-standing debate that polyphenol secondary metabolites from dietary plants are important nutritional components continues due to compelling evidence for their abilities to ameliorate degenerative conditions including, cancer, neurological disorders and cardiovascular disease. The clinical use of polyphenols is not, however, mainstream as issues regarding poor selectivity, dosage, toxicity and delivery methods are unresolved. The paper by Rieder et al. suggests that the lack of selectivity, at least for the stilbene, resveratrol, may not be a major limiting factor. The present commentary is a critique of this significant finding that is focused on deciding how the use of resveratrol as clinical medicine could be advanced, and how this new information integrates with current knowledge of polyphenol physiological effects. This commentary suggests that the multi-target nature of polyphenols may be translated into reliable therapy using the current systems/network pharmacology approach concerned with developing viable therapeutic agents that achieve specific effects through interactions with a wide array of targets. This article is a commentary on Rieder et al., pp. 1244-1258 of BJP 167:6. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2012.02063.x. © 2013 The Author. British Journal of Pharmacology © 2013 The British Pharmacological Society.

  12. Fate of labelled allitin in bean plant and mosquito

    International Nuclear Information System (INIS)

    Banerji, A.; Chintalwar, G.J.; Ramakrishnan, V.

    1980-01-01

    Allitin, the insecticidal principle of garlic (Allium sativum L) is a mixture of diallyl di- and tri-sulfides. 35 S-labelled allitin has been synthesised using different methods and used for the evaluation of its persistence in water. Results of these experiments showed that allitin has low persistence; more than 80% of the initial radioactivity was lost in 24 hr. when an aqueous emulsion of labelled allitin was exposed under the laboratory conditions. Fate of labelled allitin was studied in larvae and pupae of mosquitoes, Culex pipiens quinquefasciatus Say. Assimilation of allitin was found to be faster in larva compared to pupa. Intake of allitin by bean plant was also studied. Implications of the results obtained in the above experiments will be discussed. (author)

  13. Effects of certain polyphenols and extracts on furans and acrylamide formation in model system, and total furans during storage.

    Science.gov (United States)

    Oral, Rasim Alper; Dogan, Mahmut; Sarioglu, Kemal

    2014-01-01

    Using a glucose-glycine and asparagine-fructose system as a Maillard reaction model, the effects of seven polyphenols and solid phase extracts of three plants on the formation of furans and acrylamide were investigated. The polyphenols and extracts were used in biscuit formulation and acrylamide formation was observed. They were used for the storage of the glycine-glucose model system at three different temperatures. The addition of some of the extracts and polyphenols significantly decreased furan formation to different extents. All phenolic compounds and plant extracts decreased in the range of 30.8-85% in the model system except for oleuropein, and all of them decreased in the range of 10.3-19.2% in biscuit. Total furan formation was inhibited by caffeic acid, punicalagin, epicatechin, ECE and PPE during storage. This study evaluated and found the inhibitory effect on the formation of furans and acrylamide in Maillard reactions by the use of some plant extracts and polyphenols. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Polyphenols produced during red wine ageing.

    Science.gov (United States)

    Brouillard, R; George, F; Fougerousse, A

    1997-01-01

    Over the past few years, it has been accepted that a moderate red wine consumption is a factor beneficial to human health. Indeed, people of France and Italy, the two major wine-producing European countries, eat a lot of fatty foods but suffer less from fatal heart strokes than people in North-America or in the northern regions of Europe, where wine is not consumed on a regular basis. For a time, ethanol was thought to be the "good" chemical species hiding behind what is known as the "French paradox". Researchers now have turned their investigations towards a family of natural substances called "polyphenols", which are only found in plants and are abundant in grapes. It is well known that these molecules behave as radical scavengers and antioxidants, and it has been demonstrated that they can protect cholesterol in the LDL species from oxidation, a process thought to be at the origin of many fatal heart attacks. However, taken one by one, it remains difficult to demonstrate which are the best polyphenols as far as their antioxidant activities are concerned. The main obstacle in that kind of research is not the design of the chemical and biological tests themselves, but surprisingly enough, the limited access to chemically pure and structurally elucidated polyphenolic compounds. In this article, particular attention will be paid to polyphenols of red wine made from Vitis vinifera cultivars. With respect to the "French paradox", we address the following question: are wine polyphenolic compounds identical to those found in grapes (skin, pulp and seed), or are there biochemical modifications specifically taking place on the native flavonoids when a wine ages? Indeed, structural changes occur during wine conservation, and one of the most studied of those changes concerns red wine colour evolution, called "wine ageing". As a wine ages, it has been demonstrated that the initially present grape pigments slowly turn into new more stable red pigments. That phenomenon goes on

  15. Dietary Polyphenols, Mediterranean Diet, Prediabetes, and Type 2 Diabetes: A Narrative Review of the Evidence

    Directory of Open Access Journals (Sweden)

    Marta Guasch-Ferré

    2017-01-01

    Full Text Available Dietary polyphenols come mainly from plant-based foods including fruits, vegetables, whole grains, coffee, tea, and nuts. Polyphenols may influence glycemia and type 2 diabetes (T2D through different mechanisms, such as promoting the uptake of glucose in tissues, and therefore improving insulin sensitivity. This review aims to summarize the evidence from clinical trials and observational prospective studies linking dietary polyphenols to prediabetes and T2D, with a focus on polyphenol-rich foods characteristic of the Mediterranean diet. We aimed to describe the metabolic biomarkers related to polyphenol intake and genotype-polyphenol interactions modulating the effects on T2D. Intakes of polyphenols, especially flavan-3-ols, and their food sources have demonstrated beneficial effects on insulin resistance and other cardiometabolic risk factors. Several prospective studies have shown inverse associations between polyphenol intake and T2D. The Mediterranean diet and its key components, olive oil, nuts, and red wine, have been inversely associated with insulin resistance and T2D. To some extent, these associations may be attributed to the high amount of polyphenols and bioactive compounds in typical foods conforming this traditional dietary pattern. Few studies have suggested that genetic predisposition can modulate the relationship between polyphenols and T2D risk. In conclusion, the intake of polyphenols may be beneficial for both insulin resistance and T2D risk.

  16. Anticancer Efficacy of Polyphenols and Their Combinations

    Directory of Open Access Journals (Sweden)

    Aleksandra Niedzwiecki

    2016-09-01

    Full Text Available Polyphenols, found abundantly in plants, display many anticarcinogenic properties including their inhibitory effects on cancer cell proliferation, tumor growth, angiogenesis, metastasis, and inflammation as well as inducing apoptosis. In addition, they can modulate immune system response and protect normal cells against free radicals damage. Most investigations on anticancer mechanisms of polyphenols were conducted with individual compounds. However, several studies, including ours, have indicated that anti-cancer efficacy and scope of action can be further enhanced by combining them synergistically with chemically similar or different compounds. While most studies investigated the anti-cancer effects of combinations of two or three compounds, we used more comprehensive mixtures of specific polyphenols and mixtures of polyphenols with vitamins, amino acids and other micronutrients. The mixture containing quercetin, curcumin, green tea, cruciferex, and resveratrol (PB demonstrated significant inhibition of the growth of Fanconi anemia head and neck squamous cell carcinoma and dose-dependent inhibition of cell proliferation, matrix metalloproteinase (MMP-2 and -9 secretion, cell migration and invasion through Matrigel. PB was found effective in inhibition of fibrosarcoma HT-1080 and melanoma A2058 cell proliferation, MMP-2 and -9 expression, invasion through Matrigel and inducing apoptosis, important parameters for cancer prevention. A combination of polyphenols (quercetin and green tea extract with vitamin C, amino acids and other micronutrients (EPQ demonstrated significant suppression of ovarian cancer ES-2 xenograft tumor growth and suppression of ovarian tumor growth and lung metastasis from IP injection of ovarian cancer A-2780 cells. The EPQ mixture without quercetin (NM also has shown potent anticancer activity in vivo and in vitro in a few dozen cancer cell lines by inhibiting tumor growth and metastasis, MMP-2 and -9 secretion, invasion

  17. Tentative identification of polyphenols in Sempervivum tectorum and assessment of the antimicrobial activity of Sempervivum L.

    Science.gov (United States)

    Abram, V; Donko, M

    1999-02-01

    Polyphenols were isolated from sliced fresh leaves of Sempervivum tectorum. After 21 h of extraction by methanol and removal of chlorophyll, ethyl acetate was used to separate oligomeric and polymeric polyphenols: 0.07% of oligomeric and 0.13% of polymeric polyphenols were found. After acidic hydrolysis of the oligomeric polyphenols, it was established by TLC, HPLC, and FAB mass spectra that kaempferol was the unique aglycon of the three main oligomeric constituents of S. tectorum. Paper chromatography suggested delphinidol to be the only anthocyanidin detectable in the material obtained by acidic hydrolysis of the polymeric polyphenol fraction. After Haslam degradation of the same polymeric polyphenol fraction, only 4-thiobenzyl-(-)-epigallocatechin and 4-thiobenzyl-(-)-epigallocatechin-3-gallate were found and tentatively identified. We concluded that procyanidins of B2 type could be the major components of the polymeric polyphenol fraction of this plant. Antimicrobial activity of Sempervivum L. leaves against six of seven selected microorganisms was observed.

  18. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms.

    Science.gov (United States)

    Nichols, Joi A; Katiyar, Santosh K

    2010-03-01

    Epidemiological, clinical and laboratory studies have implicated solar ultraviolet (UV) radiation in various skin diseases including, premature aging of the skin and melanoma and non-melanoma skin cancers. Chronic UV radiation exposure-induced skin diseases or skin disorders are caused by the excessive induction of inflammation, oxidative stress and DNA damage, etc. The use of chemopreventive agents, such as plant polyphenols, to inhibit these events in UV-exposed skin is gaining attention. Chemoprevention refers to the use of agents that can inhibit, reverse or retard the process of these harmful events in the UV-exposed skin. A wide variety of polyphenols or phytochemicals, most of which are dietary supplements, have been reported to possess substantial skin photoprotective effects. This review article summarizes the photoprotective effects of some selected polyphenols, such as green tea polyphenols, grape seed proanthocyanidins, resveratrol, silymarin and genistein, on UV-induced skin inflammation, oxidative stress and DNA damage, etc., with a focus on mechanisms underlying the photoprotective effects of these polyphenols. The laboratory studies conducted in animal models suggest that these polyphenols have the ability to protect the skin from the adverse effects of UV radiation, including the risk of skin cancers. It is suggested that polyphenols may favorably supplement sunscreens protection, and may be useful for skin diseases associated with solar UV radiation-induced inflammation, oxidative stress and DNA damage.

  19. Potential protection of green tea polyphenols against 1800 MHz electromagnetic radiation-induced injury on rat cortical neurons.

    Science.gov (United States)

    Liu, Mei-Li; Wen, Jian-Qiang; Fan, Yu-Bo

    2011-10-01

    Radiofrequency electromagnetic fields (EMF) are harmful to public health, but the certain anti-irradiation mechanism is not clear yet. The present study was performed to investigate the possible protective effects of green tea polyphenols against electromagnetic radiation-induced injury in the cultured rat cortical neurons. In this study, green tea polyphenols were used in the cultured cortical neurons exposed to 1800 MHz EMFs by the mobile phone. We found that the mobile phone irradiation for 24 h induced marked neuronal cell death in the MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-tetrazolium bromide) and TUNEL (TdT mediated biotin-dUTP nicked-end labeling) assay, and protective effects of green tea polyphenols on the injured cortical neurons were demonstrated by testing the content of Bcl-2 Assaciated X protein (Bax) in the immunoprecipitation assay and Western blot assay. In our study results, the mobile phone irradiation-induced increases in the content of active Bax were inhibited significantly by green tea polyphenols, while the contents of total Bax had no marked changes after the treatment of green tea polyphenols. Our results suggested a neuroprotective effect of green tea polyphenols against the mobile phone irradiation-induced injury on the cultured rat cortical neurons.

  20. Polyphenol Content and Modulatory Activities of Some Tropical Dietary Plant Extracts on the Oxidant Activities of Neutrophils and Myeloperoxidase

    Directory of Open Access Journals (Sweden)

    Thierry Franck

    2012-01-01

    Full Text Available Young leaves of Manihot esculenta Crantz (Euphorbiaceae, Abelmoschus esculentus (Malvaceae, Hibiscus acetosella (Malvaceae and Pteridium aquilinum (Dennstaedtiaceae are currently consumed as green vegetables by peoples in sub-Saharan Africa, Latin America, Asia and their migrants living in Western Europe. Sub-Saharan peoples use Manihot, Abelmoschus and Hibiscus also in the folk medicine to alleviate fever and pain, in the treatment of conjunctivitis, rheumatism, hemorrhoid, abscesses, ... The present study investigates the effects of aqueous extracts of those plants on the production of reactive oxygen species (ROS and the release of myeloperoxidase (MPO by equine neutrophils activated with phorbol 12-myristate 13-acetate (PMA. The ROS production was measured by lucigenin-enhanced chemiluminescence (CL, and the release of total MPO by an ELISA method. The study also investigates the effect of the extracts on the activity of MPO by studying its nitration activity on tyrosine and by using a new technique called SIEFED (Specific Immunological Extraction Followed by Enzymatic Detection that allows studying the direct interaction of compounds with the enzyme. In all experiments, the aqueous extracts of the plants developed concentration-dependent inhibitory effects. A moderate heat treatment did not significantly modify the inhibitory capacity of the extracts in comparison to not heated ones. Total polyphenol and flavonoid contents were determined with an HPLC-UV/DAD analysis and a spectroscopic method using Folin-Ciocalteu reagent. Some polyphenols with well-known antioxidant activities (caffeic acid, chlorogenic acid, hyperoside, rosmarinic acid and rutin were found in the extracts and may partly explain the inhibitory activities observed. The role of those dietary and medicinal plants in the treatment of ROS-dependent inflammatory diseases could have new considerations for health.

  1. The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion

    Directory of Open Access Journals (Sweden)

    Tran Lan T

    2012-08-01

    Full Text Available Abstract Background Plant polyphenol oxidases (PPOs are enzymes that typically use molecular oxygen to oxidize ortho-diphenols to ortho-quinones. These commonly cause browning reactions following tissue damage, and may be important in plant defense. Some PPOs function as hydroxylases or in cross-linking reactions, but in most plants their physiological roles are not known. To better understand the importance of PPOs in the plant kingdom, we surveyed PPO gene families in 25 sequenced genomes from chlorophytes, bryophytes, lycophytes, and flowering plants. The PPO genes were then analyzed in silico for gene structure, phylogenetic relationships, and targeting signals. Results Many previously uncharacterized PPO genes were uncovered. The moss, Physcomitrella patens, contained 13 PPO genes and Selaginella moellendorffii (spike moss and Glycine max (soybean each had 11 genes. Populus trichocarpa (poplar contained a highly diversified gene family with 11 PPO genes, but several flowering plants had only a single PPO gene. By contrast, no PPO-like sequences were identified in several chlorophyte (green algae genomes or Arabidopsis (A. lyrata and A. thaliana. We found that many PPOs contained one or two introns often near the 3’ terminus. Furthermore, N-terminal amino acid sequence analysis using ChloroP and TargetP 1.1 predicted that several putative PPOs are synthesized via the secretory pathway, a unique finding as most PPOs are predicted to be chloroplast proteins. Phylogenetic reconstruction of these sequences revealed that large PPO gene repertoires in some species are mostly a consequence of independent bursts of gene duplication, while the lineage leading to Arabidopsis must have lost all PPO genes. Conclusion Our survey identified PPOs in gene families of varying sizes in all land plants except in the genus Arabidopsis. While we found variation in intron numbers and positions, overall PPO gene structure is congruent with the phylogenetic

  2. The Antibacterial Activity of Date Syrup Polyphenols against S. aureus and E. coli.

    Science.gov (United States)

    Taleb, Hajer; Maddocks, Sarah E; Morris, R Keith; Kanekanian, Ara D

    2016-01-01

    Plant-derived products such as date syrup (DS) have demonstrated antibacterial activity and can inhibit bacteria through numerous different mechanisms, which may be attributed to bioactive compounds including plant-derived phenolic molecules. DS is rich in polyphenols and this study hypothesized that DS polyphenols demonstrate inherent antimicrobial activity, which cause oxidative damage. This investigation revealed that DS has a high content of total polyphenols (605 mg/100 g), and is rich in tannins (357 mg/100 g), flavonoids (40.5 mg/100 g), and flavanols (31.7 mg/100 g) that are known potent antioxidants. Furthermore, DS, and polyphenols extracted from DS, the most abundant bioactive constituent of DS are bacteriostatic to both Gram positive and Gram negative Escherichia coli and Staphylococcus aureus, respectively. It has further been shown that the extracted polyphenols independently suppress the growth of bacteria at minimum inhibitory concentration (MIC) of 30 and 20 mg/mL for E. coli and S. aureus, and have observed that DS behaves as a prooxidant by generating hydrogen peroxide that mediates bacterial growth inhibition as a result of oxidative stress. At sub-lethal MIC concentrations DS demonstrated antioxidative activity by reducing hydrogen peroxide, and at lethal concentrations DS demonstrated prooxidant activity that inhibited the growth of E. coli and S. aureus. The high sugar content naturally present in DS did not significantly contribute to this effect. These findings highlight that DS's antimicrobial activity is mediated through hydrogen peroxide generation in inducing oxidative stress in bacteria.

  3. Plant Polyphenols and Oxidative Metabolites of the Herbal Alkenylbenzene Methyleugenol Suppress Histone Deacetylase Activity in Human Colon Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Isabel Anna Maria Groh

    2013-01-01

    Full Text Available Evidence has been provided that diet and environmental factors directly influence epigenetic mechanisms associated with cancer development in humans. The inhibition of histone deacetylase (HDAC activity and the disruption of the HDAC complex have been recognized as a potent strategy for cancer therapy and chemoprevention. In the present study, we investigated whether selected plant constituents affect HDAC activity or HDAC1 protein status in the human colon carcinoma cell line HT29. The polyphenols (−-epigallocatechin-3-gallate (EGCG and genistein (GEN as well as two oxidative methyleugenol (ME metabolites were shown to inhibit HDAC activity in intact HT29 cells. Concomitantly, a significant decrease of the HDAC1 protein level was observed after incubation with EGCG and GEN, whereas the investigated ME metabolites did not affect HDAC1 protein status. In conclusion, dietary compounds were found to possess promising HDAC-inhibitory properties, contributing to epigenetic alterations in colon tumor cells, which should be taken into account in further risk/benefit assessments of polyphenols and alkenylbenzenes.

  4. Possible application of labelled compounds in plant physiology, biochemistry and protection

    Energy Technology Data Exchange (ETDEWEB)

    Hanker, I. (Vyzkumne Ustavy Rostlinne Vyroby, Prague (Czechoslovakia). Ustav Ochrany Rostlin)

    1981-06-01

    Compounds labelled with /sup 14/C, /sup 32/P, /sup 35/S, /sup 54/Mn, /sup 45/Ca, /sup 65/Zn and /sup 86/Rb were used for the study of side effects of insecticides, fungicides, herbicides and other substances used for the treatment of crop plants, of the effects of some plant diseases on biochemical processes in plants, and of the reasons of plant resistance to diseases, i.e., of factors responsible for this resistance.

  5. Sensitive Electrochemical Determination of Gallic Acid: Application in Estimation of Total Polyphenols in Plant Samples

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Sheikh-Mohseni

    2016-12-01

    Full Text Available A modified electrode was prepared by modification of the carbon paste electrode (CPE with graphene nano-sheets. The fabricated modified electrode exhibited an electrocatalytic activity toward gallic acid (GA oxidation because of good conductivity, low electron transfer resistance and catalytic effect. The graphene modified CPE had a lower overvoltage and enhanced electrical current respect to the bare CPE for the oxidation of GA. The oxidation potential of GA decreased more than 210 mV by the modified electrode. The modified electrode responded to the GA in the concentration range of 3.0 × 10-5-1.5 × 10-4 M with high sensitivity by the technique of differential pulse voltammetry. Also, detection limit of 1.1 × 10-7 M was obtained by this modified electrode for GA. This electrode was used for the successful determination of GA in plant samples. Therefore, the content of total polyphenols in plant samples can be determined by the proposed modified electrode based on the concentration of GA in the sample.

  6. Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan.

    Directory of Open Access Journals (Sweden)

    Rodrigo Dutra Nunes

    2016-10-01

    Full Text Available Mosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols.Here, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK. AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus.The present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses.

  7. Localization of viral antigens in leaf protoplasts and plants by immunogold labelling

    NARCIS (Netherlands)

    Lent, van J.W.M.

    1988-01-01

    This thesis describes the application of an immunocytochemical technique, immunogold labelling, new in the light and electron microscopic study of the plant viral infection. In Chapter 1 the present state of knowledge of the plant viral infection process, as revealed by

  8. UPLC-PDA-Q/TOF-MS Profile of Polyphenolic Compounds of Liqueurs from Rose Petals (Rosa rugosa).

    Science.gov (United States)

    Cendrowski, Andrzej; Ścibisz, Iwona; Kieliszek, Marek; Kolniak-Ostek, Joanna; Mitek, Marta

    2017-10-27

    Polyphenolic compounds, as a secondary metabolite of plants, possess great nutritional and pharmacological potential. Herein, we applied the green analytical method to study the nutrient profile of Rosa rugosa petals and liqueurs manufactured from them. Using the fast and validated ultra performance liquid chromatography-photodiode detector-quadrupole/time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS) method, we confirm the presence of the following compounds: phenolic acids, flavonols, flavan-3-ols and hydrolisable tannins (gallotannins and ellagitannins). R. rugosa petals contains up to 2175.43 mg polyphenols per 100 g fresh weight, therein 1517.01 mg ellagitannins per 100 g fresh weight. Liqueurs, traditionally manufactured from said petals using a conventional extraction method (maceration), also contain polyphenols in significant amounts (from 72% to 96% corresponding to percentage of theoretical polyphenol content in the used petals), therein ellagitannins amount to 69.7% on average. We confirmed that traditional maceration, most common for the isolation of polyphenols, is still suitable for the food industry due to its using aqueous ethanol, a common bio-solvent, easily available in high purity and completely biodegradable. Therefore R. rugosa used as a food may be considered as an ellagitannin-rich plant of economic importance. Manufactured rose liqueurs were stable and kept all their properties during the whole period of aging.

  9. Cell Systems to Investigate the Impact of Polyphenols on Cardiovascular Health

    Directory of Open Access Journals (Sweden)

    Charlotte Grootaert

    2015-11-01

    Full Text Available Polyphenols are a diverse group of micronutrients from plant origin that may serve as antioxidants and that contribute to human health in general. More specifically, many research groups have investigated their protective effect against cardiovascular diseases in several animal studies and human trials. Yet, because of the excessive processing of the polyphenol structure by human cells and the residing intestinal microbial community, which results in a large variability between the test subjects, the exact mechanisms of their protective effects are still under investigation. To this end, simplified cell culture systems have been used to decrease the inter-individual variability in mechanistic studies. In this review, we will discuss the different cell culture models that have been used so far for polyphenol research in the context of cardiovascular diseases. We will also review the current trends in cell culture research, including co-culture methodologies. Finally, we will discuss the potential of these advanced models to screen for cardiovascular effects of the large pool of bioactive polyphenols present in foods and their metabolites.

  10. Skin photoprotection by natural polyphenols: Anti-inflammatory, anti-oxidant and DNA repair mechanisms

    Science.gov (United States)

    Nichols, Joi A.; Katiyar, Santosh K.

    2009-01-01

    Epidemiological, clinical and laboratory studies have implicated solar ultraviolet (UV) radiation in various skin diseases including premature aging of the skin and melanoma and nonmelanoma skin cancers. Chronic UV radiation exposure-induced skin diseases or skin disorders are caused by the excessive induction of inflammation, oxidative stress and DNA damage, etc.. The use of chemopreventive agents, such as plant polyphenols, to inhibit these events in UV-exposed skin is gaining attention. Chemoprevention refers to the use of agents that can inhibit, reverse, or retard the process of these harmful events in the UV-exposed skin. A wide variety of polyphenols or phytochemicals, most of which are dietary supplements, have been reported to possess substantial skin photoprotective effects. This review article summarizes the photoprotective effects of some selected polyphenols, such as green tea polyphenols, grape seed proanthocyanidins, resveratrol, silymarin and genistein, on UV-induced skin inflammation, oxidative stress, and DNA damage, etc., with a focus on mechanisms underlying the photoprotective effects of these polyphenols. The laboratory studies conducted in animal models, suggest that these polyphenols have the ability to protect the skin from the adverse effects of UV radiation, including the risk of skin cancers. It is suggested that polyphenols may favorably supplement sunscreens protection, and may be useful for skin diseases associated with solar UV radiation-induced inflammation, oxidative stress and DNA damage. PMID:19898857

  11. Studies on total polyphenols and reducing power of aqueous extracts from selected lamiaceae species

    OpenAIRE

    Maria Cioroi; Daniela Dumitriu

    2010-01-01

    Certain phytochemicals in species are attracting increased attention because of a wide range of biological activities especially the possible cancer preventive properties. Polyphenols, the naturalantioxidants are present in plant extracts and they play a key role in antioxidative defence mechanisms in biological systems and they act as free radicals scavenging agents. Polyphenols might thereforeinhibit development of coronary heart disease and cancers. Basil, oregano and sage are highly fragr...

  12. Metabolite profiling of polyphenols in the Tunisian plant Tamarix aphylla (L.) Karst.

    Science.gov (United States)

    Mahfoudhi, Adel; Prencipe, Francesco Pio; Mighri, Zine; Pellati, Federica

    2014-10-01

    In this study, a detailed investigation on the composition of polyphenols of Tamarix aphylla (L.) Karst., consisting of phenolic acids and flavonoids, was carried out. In order to optimize the yield of secondary metabolites, three extraction techniques were compared, including dynamic maceration, ultrasound-assisted extraction and Soxhlet extraction. The latter technique provided the best results in terms of both recovery and selectivity, using ethyl acetate as extraction solvent for 2h. The analysis of T. aphylla polyphenols was performed by means of HPLC-UV/DAD, HPLC-ESI-MS and MS(2), using an ion trap mass analyzer. Phenolic acids and flavonoids were separated on an Ascentis C18 column (250mm×4.6mm I.D., 5μm), with a mobile phase composed of 0.1M formic acid in water and acetonitrile, under gradient elution. The proposed method was fully validated in agreement with ICH guidelines and then applied to the analysis of T. aphylla leaves and stems. A total of 14 phenolic compounds were characterized for the first time in this plant extracts by using UV, MS and MS(2) data. The amount of total phenolics was found to be 993.1±22.5μg/g in the leaves and 113.1±25.8μg/g in the stems, respectively. The most abundant constituents found in the leaves include ellagic acid (211.4±10.8μg/g), quercetin (125.7±4.7μg/g) and gallic acid (120.6±1.2μg/g), whereas those in the stems were ellagic acid (44.4±3.9μg/g), gallic acid (24.3±3.3μg/g) and kaempferol (16.3±1.6μg/g). The developed method can be considered a useful tool for the metabolite profiling of T. aphylla, which represents a potential source of bioactive compounds to be used in phytotherapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Absorption Profile of (PolyPhenolic Compounds after Consumption of Three Food Supplements Containing 36 Different Fruits, Vegetables, and Berries

    Directory of Open Access Journals (Sweden)

    Letizia Bresciani

    2017-02-01

    Full Text Available The market of plant-based nutraceuticals and food supplements is continuously growing due to the increased consumer demand. The introduction of new products with relevant nutritional characteristics represents a new way of providing bioactive compounds and (polyphenols to consumers, becoming a strategy to ideally guarantee the health benefits attributed to plant foodstuffs and allowing the increase of daily bioactive compound intake. A paramount step in the study of nutraceuticals is the evaluation of the bioavailability and metabolism of their putatively active components. Therefore, the aim of the present study was to investigate the absorption profile of the (polyphenolic compounds contained in three different plant-based food supplements, made of 36 different plant matrices, which were consumed by 20 subjects in an open one-arm study design. Blood samples were collected at baseline and 1, 2, 5, and 10 h after capsule intake. Twenty quantifiable metabolites deriving from different (polyphenolic compounds were identified. Results showed that the consumption of the three capsules allowed the effective absorption of several (polyphenolic compounds and metabolites appearing at different times in plasma, thereby indicating different absorption profiles. The capsules thus ensured potential health-promoting molecules to be potentially available to target tissues and organs.

  14. Absorption Profile of (Poly)Phenolic Compounds after Consumption of Three Food Supplements Containing 36 Different Fruits, Vegetables, and Berries.

    Science.gov (United States)

    Bresciani, Letizia; Martini, Daniela; Mena, Pedro; Tassotti, Michele; Calani, Luca; Brigati, Giacomo; Brighenti, Furio; Holasek, Sandra; Malliga, Daniela-Eugenia; Lamprecht, Manfred; Del Rio, Daniele

    2017-02-26

    The market of plant-based nutraceuticals and food supplements is continuously growing due to the increased consumer demand. The introduction of new products with relevant nutritional characteristics represents a new way of providing bioactive compounds and (poly)phenols to consumers, becoming a strategy to ideally guarantee the health benefits attributed to plant foodstuffs and allowing the increase of daily bioactive compound intake. A paramount step in the study of nutraceuticals is the evaluation of the bioavailability and metabolism of their putatively active components. Therefore, the aim of the present study was to investigate the absorption profile of the (poly)phenolic compounds contained in three different plant-based food supplements, made of 36 different plant matrices, which were consumed by 20 subjects in an open one-arm study design. Blood samples were collected at baseline and 1, 2, 5, and 10 h after capsule intake. Twenty quantifiable metabolites deriving from different (poly)phenolic compounds were identified. Results showed that the consumption of the three capsules allowed the effective absorption of several (poly)phenolic compounds and metabolites appearing at different times in plasma, thereby indicating different absorption profiles. The capsules thus ensured potential health-promoting molecules to be potentially available to target tissues and organs.

  15. DETERMINATION AND COMPARISON OF MAJOR POLYPHENOL OF FOUR RED FRUITS USING HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC WITH DIODE-ARRAY DETECTION

    Directory of Open Access Journals (Sweden)

    Khatereh Khorsandi

    2013-12-01

    Full Text Available Polyphenols are ubiquitous compounds in plants which are abundant micronutrients in our diet. They got more attention in recent years due to their bioactive functions and health effects on many diseases such as cancer. These components are secondary plant metabolites that function as antimicrobial, antiviral and anti-inflammatory compounds. Extraction of these compounds from plants and fruits and in vitro and in vivo study of their various health effects has been subject of many researches. The objective of this study was to investigate the profiles of polyphenolic compounds in apple, red grape, sour cherry and pomegranate fruit juices and comparison of the phenolic contents of various juices. Major polyphenolic compounds of four different concentrated fruit juices from various industries were analyzed and characterized by liquid chromatography. RP-HPLC-DAD was used in our study as powerful and accurate method. The total and individual polyphenolic compounds differed significantly among the four selected red fruit juices. Among the tested juices, sour cherry and apple juices had the highest and the lowest contents of phenolic compounds, respectively.

  16. Mineralization of 14C-labelled plant material by Porcellio scaber (Crustacea, Isopoda)

    International Nuclear Information System (INIS)

    Griffiths, B.S.; Wood, S.; Cheshire, M.V.

    1989-01-01

    Leaf litter was incubated in a mineral soil in the presence or absence of mature Porcellio scaber. The invertebrate caused an increase in the numbers of bacteria, ammonifying bacteria, actinomycetes and protozoa in the soil. The decomposition of 14 C-labelled Lemna gibba was significantly increased by the presence of P. scaber as determined by the total label remaining in the soil and the changes in sugars. 14 C-labelled faeces derived from L. gibba decomposed at a slower rate than the plant tissue from which it originated. (author)

  17. Anti-inflammatory and antioxidant activity of polyphenolic extracts from Lactuca sativa (var. Maravilla de Verano) under different farming methods.

    Science.gov (United States)

    Adesso, Simona; Pepe, Giacomo; Sommella, Eduardo; Manfra, Michele; Scopa, Antonio; Sofo, Adriano; Tenore, Gian Carlo; Russo, Mariateresa; Di Gaudio, Francesca; Autore, Giuseppina; Campiglia, Pietro; Marzocco, Stefania

    2016-09-01

    Besides their nutritional value, vegetables are a source of health-promoting compounds, such as polyphenols, and their content can be influenced by the particular farming method. In this study polyphenolic extracts from Lactuca sativa (var. Maravilla de verano) plants cultivated with different farming methods were chemically characterised and tested in vitro and ex vivo inflammation models. The tested extacts (250-2.5 µg mL(-1) ) were able to reduce both the inflammatory and oxidative stress in LPS-stimulated J774A.1 murine monocyte macrophage cells, by lowering the release of nitric oxide (NO) and reactive oxygen species (ROS) and promoting nuclear translocation of nuclear factor (erythroid-derived 2)-like 2; (Nrf2) and nuclear factor-κB (NF-κB). In this regard, quantitative profiles revealed different amounts of polyphenols, in particular quercetin levels were higher in plants under mineral fertilised treatment. Those extract showed an enhanced anti-inflammatory and antioxidant activity. Our data showed the anti-inflammatory and antioxidant potential of Maravilla de Verano polyphenolic extracts. The effect of farming methods on polyphenolic levels was highlighted. The higher reduction of inflammatory mediators release in extracts from plants cultivated under mineral fertilisation treatment was correlated to the higher amount of quercetin. These results can be useful for both nutraceutical or agronomic purposes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Future Applications in Quantitative Isotopic Tracing using Homogeneously Carbon-13 Labelled Plant Material

    International Nuclear Information System (INIS)

    Slaets, Johanna I.F.; Chen, Janet; Resch, Christian; Mayr, Leopold; Weltin, Georg; Heiling, Maria; Gruber, Roman; Dercon, Gerd

    2017-01-01

    Carbon-13 ("1"3C) and nitrogen-15 ("1"5N) labelled plant material is increasingly being used to trace the fate of plant-derived C and N into the atmosphere, soil, water and organisms in many studies, including those investigating the potential of soils to store greenhouse gases belowground. Storage of C in soils can offset and even reduce atmospheric levels of the greenhouse gas, CO_2, and interest in such studies is growing due to problems associated with anthropogenic greenhouse gas emissions impacting climate change. Reduction of N loss in soils is also of great interest, as it reduces release of the greenhouse gas, N_2O, into the atmosphere. However, accurate quantitative tracing of plant-derived C and N in such research is only possible if plant material is labelled both homogeneously and in sufficient quantities.

  19. Polyphenolic glycoconjugates from medical plants of Rosaceae/Asteraceae family protect human lymphocytes against γ-radiation-induced damage.

    Science.gov (United States)

    Szejk, Magdalena; Poplawski, Tomasz; Sarnik, Joanna; Pawlaczyk-Graja, Izabela; Czechowski, Franciszek; Olejnik, Alicja Klaudia; Gancarz, Roman; Zbikowska, Halina Malgorzata

    2017-01-01

    Radioprotective effects of the water-soluble polyphenolic glycoconjugates, isolated from flowers of Sanguisorba officinalis L.(SO) and Erigeron canadensis L.(EC), and from leaves of Fragaria vesca L. (FV) and Rubus plicatus Whe. Et N. E. (RP), against γ-radiation-induced toxicity in human peripheral blood lymphocytes were investigated. Cell treatment with glycoconjugates (1, 5 and 25μg/mL) prior exposure to 10/15Gy radiation resulted in concentration-dependent reduction of DNA damage including oxidative DNA lesions (comet assay), substantial inhibition of lipid peroxidation (TBARS) and restoration of superoxide dismutase and S-glutathione transferase activities. Glycoconjugates isolated from SO and EC ensured better protection versus these from RP and FV, with the SO product potential comparable to that of the reference quercetin. Strong antioxidant/radioprotective activity of the SO and EC glycoconjugates could be attributed to high abundance of syringol-type and ferulic acid units in their matrices, respectively. Moreover, polyphenolic glycoconjugates (25μg/mL), including RP and FV products, significantly decreased DNA damage when applied post-radiation suggesting their modulating effects on DNA repair pathways. Preliminary data on the glycoconjugate phenolic structural units, based on GLC/MS of the products of pyrolysis and in situ methylation, in relation to application of plant products as potential radioprotectors is promising and deserves further investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts.

    Science.gov (United States)

    Kidd, Parris M

    2009-09-01

    Plant-derived polyphenols are increasingly receiving attention as dietary supplements for the homeostatic management of inflammation, to support detoxication, and for anticancer, weight loss, and other benefits. Their pro-homeostatic effects on genes, transcription factors, enzymes, and cell signaling pathways are being intensively explored, but the poor bioavailability of some polyphenols likely contributes to poor clinical trial outcomes. This review covers four polyphenol preparations with poor bioavailability and their complexation into phytosomes to bypass this problem. Silybin and the other silymarin flavonolignans from milk thistle conserve tissue glutathione, are liver-protective, and have anticancer potential. Curcumin and its related diphenolic curcuminoids have potent antioxidant, anti-inflammatory, and anti-carcinogenic properties. The green tea flavan-3-ol catechins have antioxidant, anti-inflammatory, cardio- and neuro-protective effects, and anti-carcinogenic benefits, with fat oxidation effects coupled to weight loss. The complex grape seed proanthocyanidin mix (including catechin and epicatechin monomers and oligomers) counters oxidative stress and protects the circulatory system. For each of these preparations, conversion into phytosomes has improved efficacy without compromising safety. The phytosome technology creates intermolecular bonding between individual polyphenol molecules and one or more molecules of the phospholipid, phosphatidylcholine (PC). Molecular imaging suggests that PC molecule(s) enwrap each polyphenol; upon oral intake the amphipathic PC molecules likely usher the polyphenol through the intestinal epithelial cell outer membrane, subsequently accessing the bloodstream. PC itself has proven clinical efficacy that contributes to phytosome in vivo actions. As a molecular delivery vehicle, phytosome technology substantially improves the clinical applicabilities of polyphenols and other poorly absorbed plant medicinals.

  1. Polyphenol levels in human urine after intake of six different polyphenol-rich beverages.

    Science.gov (United States)

    Ito, Hideyuki; Gonthier, Marie-Paule; Manach, Claudine; Morand, Christine; Mennen, Louise; Rémésy, Christian; Scalbert, Augustin

    2005-10-01

    Dietary polyphenols are suggested to participate in the prevention of CVD and cancer. It is essential for epidemiological studies to be able to compare intake of the main dietary polyphenols in populations. The present paper describes a fast method suitable for the analysis of polyphenols in urine, selected as potential biomarkers of intake. This method is applied to the estimation of polyphenol recovery after ingestion of six different polyphenol-rich beverages. Fifteen polyphenols including mammalian lignans (enterodiol and enterolactone), several phenolic acids (chlorogenic, caffeic, m-coumaric, gallic, and 4-O-methylgallic acids), phloretin and various flavonoids (catechin, epicatechin, quercetin, isorhamnetin, kaempferol, hesperetin, and naringenin) were simultaneously quantified in human urine by HPLC coupled with electrospray ionisation mass-MS (HPLC-electrospray-tandem mass spectrometry) with a run time of 6 min per sample. The method has been validated with regard to linearity, precision, and accuracy in intra- and inter-day assays. It was applied to urine samples collected from nine volunteers in the 24 h following consumption of either green tea, a grape-skin extract, cocoa beverage, coffee, grapefruit juice or orange juice. Levels of urinary excretion suggest that chlorogenic acid, gallic acid, epicatechin, naringenin or hesperetin could be used as specific biomarkers to evaluate the consumption of coffee, wine, tea or cocoa, and citrus juices respectively.

  2. Use of 15N enriched plant material for labelling of soil nitrogen in legume dinitrogen fixation experiments

    International Nuclear Information System (INIS)

    Jensen, E.S.

    1989-06-01

    The soil nitrogen in a field plot was labelled with nitrogen-15 (15N) by incorporating labelled plant material derived from previous experiments. The plot was used the following 3 years for determination of the amount of N2 fixed by different leguminous plants. The atom % 15N excess in grains of cereals grown as reference crops was 0.20, 0.05 and 0.03 in the 3 years, respectively. In the first year the level of enrichment was adequate for estimating symbiotic nitrogen fixation. In the second and third year lack of precision in determination of the 15N/14N ratios of legume N, may have caused an error in estimates of nitrogen fixation. About 23% of the labelled N was taken up by plants during the 3 years of cropping; after 4 years about 44% of the labelled N was found still to be present in the top soil. The labelling of the soil nitrogen with organic bound 15N, compared to adding mineral 15N at sowing, is advantageous because the labelled N is released by mineralization so that the enrichment of the plant available soil N pool become more uniform during the growth season; and high levels of mineral N, which may depress the fixation process, is avoided. (author) 7 tabs., 1 ill., 30 refs

  3. Fibre and polyphenols of selected fruits, nuts and green leafy vegetables used in Serbian diet

    Directory of Open Access Journals (Sweden)

    Dodevska Margarita

    2015-01-01

    Full Text Available Fruits and vegetables are known as good sources of numerous bioactive compounds among which polyphenols and dietary fibre are considered essential because of their protective health effects. The aim of this study was to characterize the quality of selected plant foods of our region regarding amount of total phenols, fibres and ratio of certain fractions of fibre. Fifteen samples of plant foods (green leafy vegetables, fruits and nuts were evaluated for total antioxidant activity, total phenolic content, total, soluble and insoluble fibre and fractions of fibre: beta-glucans, arabinoxylan, cellulose and resistant starch. Generally nuts were the richest sources of fibre and total phenols. However, when serving size was taken into consideration, it appeared that raspberry and blackberry were the richest in total, soluble fibre and cellulose. At the same time, almonds and hazelnuts were particulary rich in insoluble fibre, while walnuts had the highest polyphenol content. Analyzed plant foods were poor sources of arabinoxylan and beta-glucan. Data on resistant starch presence in cashew nut is the first confirmation that resistant starch can be found in significant amount in some nuts. The results give rare insight into the quality of selected plant foods regarding dietary fibre and polyphenols from the nutritive point of view. [Projekat Ministarstva nauke Republike Srbije, br. III46001

  4. Evaluation of Polyphenol Content and Antioxidant Properties of some Fruit Seeds

    Directory of Open Access Journals (Sweden)

    Liana Claudia Salanţă

    2015-11-01

    Full Text Available A diversity of secondary plant metabolite with an antioxidant character are present in the vegetal extracts, such as: tocopherols, carotenoids, phenolic acids, flavonoids, etc. These compounds intervene in the cellular defense mechanisms against the free radicals and oxidative stress, as they possess anticancer and anti mutation effect. The aim of this work was to study the antioxidant capacity and polyphenol content of methanolic extracts obtained from seeds of fruits: Vitis vinifera, Malus domestica and Citrullus lanatus. Grape seeds have a high content of antioxidants and polyphenols compounds, due to this, it is recommended their used in obtaining functional food with benefit on the human body.

  5. Dietary polyphenol intake in Europe

    DEFF Research Database (Denmark)

    Zamora-Ros, Raul; Knaze, Viktoria; Rothwell, Joseph A

    2016-01-01

    were collected using a standardized 24-h dietary recall software administered to 36,037 adult subjects. Dietary data were linked with Phenol-Explorer, a database with data on 502 individual polyphenols in 452 foods and data on polyphenol losses due to cooking and food processing. RESULTS: Mean total....... The current cross-sectional analysis aimed at estimating dietary intakes of all currently known individual polyphenols and total intake per class and subclass, and to identify their main food sources in the European Prospective Investigation into Cancer and Nutrition cohort. METHODS: Dietary data at baseline...... polyphenol intake was the highest in Aarhus-Denmark (1786 mg/day in men and 1626 mg/day in women) and the lowest in Greece (744 mg/day in men and 584 mg/day in women). When dividing the subjects into three regions, the highest intake of total polyphenols was observed in the UK health-conscious group...

  6. [Correlation analysis of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata].

    Science.gov (United States)

    Wu, Dan; Luo, Shi-qiong; Yang, Zhan-nan; Ma, Jing; Hong, Liang

    2015-04-01

    The relationship of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata were investigated by measuring nutrients, enzyme activity, pH, concentrations of microbe phospholipid fatty acids (PLFAs) in soils, and determining concentrations of polyphenols and total flavonoids of H. cordata. The research is aimed to understand characteristics of the planting soils and improve the quality of cultivated H. cordata. The soils at different sample sites varied greatly in nutrients, enzyme activity, pH, microbic PLFAs and polyphenols and all flavonoids. The content of total PLFAs in sample sites was following: bacteria > fungi > actinomyces > nematode. The content of bacteria PLFAs was 37.5%-65.0% at different sample sites. Activities of polyphenol oxidease, concentrations of available P and content of PLFAs of bacteria, actinomyces and total microorganisms in soils were significantly and positively related to the concentrations of polyphenols and total flavonoids of H. cordata, respectively (P soils was significantly and negatively related to concentrations of polyphenols and total flavonoids of H. cordata, respectively (P soil nutrient, which may be improved due to transformation of soil microorganisms and enzymes to N and P in the soils, was beneficial to adaptation of H. cordata adapted to different soil conditions, and significantly affects metabolic accumulation of polyphenols and flavonoids of H. cordata.

  7. Polyphenols from Cymbopogon citratus leaves as topical anti-inflammatory agents.

    Science.gov (United States)

    Costa, Gustavo; Ferreira, João Pinto; Vitorino, Carla; Pina, Maria Eugénia; Sousa, João José; Figueiredo, Isabel Vitória; Batista, Maria Teresa

    2016-02-03

    A variety of plant polyphenols have been reported to have anti-inflammatory, frequently associated with erythema, edema, hyperplasia, skin photoaging and photocarcinogenesis. Cymbopogon citratus (DC). Stapf (Poaceae) is a worldwide known medicinal plant, used in traditional medicine in inflammation-related conditions. In this work, the anti-inflammatory potential of C. citratus infusion (CcI) and its polyphenols as topical agents was evaluated in vivo. The plant extract was prepared and its fractioning led two polyphenol-rich fractions: flavonoids fraction (CcF) and tannins fraction (CcT). An oil/water emulsion was developed with each active (CcI, CcF+CcT and diclofenac), pH and texture having been evaluated. Release tests were further performed using static Franz diffusion cells and all collected samples were monitored by HPLC-PDA. In vivo topical anti-inflammatory activity evaluation was performed by the carrageenan-induced rat paw edema model. The texture analysis revealed statistically significant differences for all tested parameters to CcF+CcT, supporting its topical application. Release experiments lead to the detection of the phenolic compounds from each sample in the receptor medium and the six major flavonoids were quantified, by HPLC-PDA: carlinoside, isoorientin, cynaroside, luteolin 7-O-neohesperidoside, kurilesin A and cassiaoccidentalin B. The CcF+CcT formulation prompted to the higher release rate for all these flavonoids. CcI4%, CcI1% and CcF+CcT exhibited an edema reduction of 43.18, 29.55 and 59.09%, respectively. Our findings highlight that CcI, containing luteolin 7-O-neohesperidoside, cassiaoccidentalin B, carlinoside, cynaroside and tannins have a potential anti-inflammatory topical activity, suggesting their promising application in the treatment of skin inflammatory pathologies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Interaction of plant phenols with food macronutrients: characterisation and nutritional-physiological consequences.

    Science.gov (United States)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Liu, Xianting; Jiang, Lu; Guo, Huiyuan; Ren, Fazheng

    2014-06-01

    Polyphenols are dietary constituents of plants associated with health-promoting effects. In the human diet, polyphenols are generally consumed in foods along with macronutrients. Because the health benefits of polyphenols are critically determined by their bioavailability, the effect of interactions between plant phenols and food macronutrients is a very important topic. In the present review, we summarise current knowledge, with a special focus on the in vitro and in vivo effects of food macronutrients on the bioavailability and bioactivity of polyphenols. The mechanisms of interactions between polyphenols and food macronutrients are also discussed. The evidence collected in the present review suggests that when plant phenols are consumed along with food macronutrients, the bioavailability and bioactivity of polyphenols can be significantly affected. The protein-polyphenol complexes can significantly change the plasma kinetics profile but do not affect the absorption of polyphenols. Carbohydrates can enhance the absorption and extend the time needed to reach a maximal plasma concentration of polyphenols, and fats can enhance the absorption and change the absorption kinetics of polyphenols. Moreover, as highlighted in the present review, not only a nutrient alone but also certain synergisms between food macronutrients have a significant effect on the bioavailability and biological activity of polyphenols. The review emphasises the need for formulations that optimise the bioavailability and in vivo activities of polyphenols.

  9. Diet-derived polyphenols inhibit angiogenesis by modulating the interleukin-6/STAT3 pathway

    International Nuclear Information System (INIS)

    Lamy, Sylvie; Akla, Naoufal; Ouanouki, Amira; Lord-Dufour, Simon; Béliveau, Richard

    2012-01-01

    Several epidemiological studies have indicated that abundant consumption of foods from plant origin is associated with a reduced risk of developing several types of cancers. This chemopreventive effect is related to the high content of these foods in phytochemicals, such as polyphenols, that interfere with several processes involved in cancer progression including tumor cell growth, survival and angiogenesis. In addition to the low intake of plant-based foods, increased body mass and physical inactivity have recently emerged as other important lifestyle factors influencing cancer risk, leading to the generation of low-grade chronic inflammatory conditions which are a key process involved in tumor progression. The objectives of the current study are to investigate the inhibitory effects of these polyphenols on angiogenesis triggered by an inflammatory cytokine (IL-6) and to determine the mechanisms underlying this action. We found that, among the tested polyphenols, apigenin and luteolin were the most potent angiogenesis inhibitors through their inhibitory effect on the inflammatory cytokine IL-6/STAT3 pathway. These effects resulted in modulation of the activation of extracellular signal-regulated kinase-1/2 signaling triggered by IL-6, as well as in a marked reduction in the proliferation, migration and morphogenic differentiation of endothelial cells. Interestingly, these polyphenols also modulated the expression of IL-6 signal transducing receptor (IL-6Rα) and the secretion of the extracellular matrix degrading enzyme MMP-2 as well as the expression of suppressor of cytokine signaling (SOCS3) protein. Overall, these results may provide important new information on the role of diet in cancer prevention.

  10. Diet-derived polyphenols inhibit angiogenesis by modulating the interleukin-6/STAT3 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, Sylvie; Akla, Naoufal; Ouanouki, Amira; Lord-Dufour, Simon; Beliveau, Richard, E-mail: oncomol@nobel.si.uqam.ca

    2012-08-01

    Several epidemiological studies have indicated that abundant consumption of foods from plant origin is associated with a reduced risk of developing several types of cancers. This chemopreventive effect is related to the high content of these foods in phytochemicals, such as polyphenols, that interfere with several processes involved in cancer progression including tumor cell growth, survival and angiogenesis. In addition to the low intake of plant-based foods, increased body mass and physical inactivity have recently emerged as other important lifestyle factors influencing cancer risk, leading to the generation of low-grade chronic inflammatory conditions which are a key process involved in tumor progression. The objectives of the current study are to investigate the inhibitory effects of these polyphenols on angiogenesis triggered by an inflammatory cytokine (IL-6) and to determine the mechanisms underlying this action. We found that, among the tested polyphenols, apigenin and luteolin were the most potent angiogenesis inhibitors through their inhibitory effect on the inflammatory cytokine IL-6/STAT3 pathway. These effects resulted in modulation of the activation of extracellular signal-regulated kinase-1/2 signaling triggered by IL-6, as well as in a marked reduction in the proliferation, migration and morphogenic differentiation of endothelial cells. Interestingly, these polyphenols also modulated the expression of IL-6 signal transducing receptor (IL-6R{alpha}) and the secretion of the extracellular matrix degrading enzyme MMP-2 as well as the expression of suppressor of cytokine signaling (SOCS3) protein. Overall, these results may provide important new information on the role of diet in cancer prevention.

  11. In situ DNA-RNA hybridization using in vitro 125I-labeled ribosomal RNA of higher plant

    International Nuclear Information System (INIS)

    Sato, Seiichi; Kikuchi, Tadatoshi; Ishida, M.R.; Tanaka, Ryuso.

    1975-01-01

    In situ hybridization using 125 I-labeled ribosomal RNA was applied to plant cells. Cytoplasmic 25 s rRNA, which was eluted from acrylamide gels after electrophoretic separation, was labeled in vitro with carrier-free 125 I and hybridized with the interphase nuclei in root tips of Vicia faba. In most of the preparations, the nucleoli were more heavily labeled than the other regions within nuclei, and several types of grain distribution were observed on the nucleoli. From these results, it was confirmed that in situ hybridization using 125 I-labeled rRNA can be used very effectively to detect the annealing sites of different molecular species of rRNA within the nuclei of plant cells, for which it is not as easy to obtain high specific radioactive rRNA in vivo as it is in the case of cultured animal cells. (auth.)

  12. Rational modular design of metabolic network for efficient production of plant polyphenol pinosylvin.

    Science.gov (United States)

    Wu, Junjun; Zhang, Xia; Zhu, Yingjie; Tan, Qinyu; He, Jiacheng; Dong, Mingsheng

    2017-05-03

    Efficient biosynthesis of the plant polyphenol pinosylvin, which has numerous applications in nutraceuticals and pharmaceuticals, is necessary to make biological production economically viable. To this end, an efficient Escherichia coli platform for pinosylvin production was developed via a rational modular design approach. Initially, different candidate pathway enzymes were screened to construct de novo pinosylvin pathway directly from D-glucose. A comparative analysis of pathway intermediate pools identified that this initial construct led to the intermediate cinnamic acid accumulation. The pinosylvin synthetic pathway was then divided into two new modules separated at cinnamic acid. Combinatorial optimization of transcriptional and translational levels of these two modules resulted in a 16-fold increase in pinosylvin titer. To further improve the concentration of the limiting precursor malonyl-CoA, the malonyl-CoA synthesis module based on clustered regularly interspaced short palindromic repeats interference was assembled and optimized with other two modules. The final pinosylvin titer was improved to 281 mg/L, which was the highest pinosylvin titer even directly from D-glucose without any additional precursor supplementation. The rational modular design approach described here could bolster our capabilities in synthetic biology for value-added chemical production.

  13. Cocoa Polyphenols: Evidence from Epidemiological Studies.

    Science.gov (United States)

    Matsumoto, Chisa

    2018-01-01

    Accumulating evidence suggests potential preventive effects of chocolate/cocoa on the risk of cardio vascular disease (CVD). However, cocoa products also contain high levels of sugar and fat, which increase CVD risk factors. Even, the identity of the substance in chocolate/cocoa that has a favorable effect on CVD and CVD risk factors remains unclear, growing evidence from experimental studies suggests that cocoa polyphenols might be a major contributor to cardiovascular-protective effects. However, epidemiological studies, which are necessary to evaluate an association between the risk of CVD and cocoa polyphenol, remain sparse. We will discuss recent evidence regarding the association between cocoa polyphenol consumption and the risks of CVD and its risk factors by reviewing recent epidemiological studies. We shall also provide some guidance for patient counseling and will discuss the public health implications for recommending cocoa polyphenol consumption to prevent CVD. Epidemiological studies evaluating the association between cocoa polyphenol itself and the risk of CVD are sparse. However, evidence from limited epidemiological studies suggests that cocoa polyphenol consumption may lower the risk of CVD. Given the potential adverse effects of the consumption of cocoa products with high fat and sugar and the fact that the most appropriate dose of cocoa polyphenol for cardio-protective effects has not yet been established, health care providers should remain cautious about recommending cocoa/cocoa polyphenol consumption to their patients to reduce the risk of CVD, taking the characteristics of individual patients into careful consideration. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Plant-Derived Polyphenols in Human Health: Biological Activity, Metabolites and Putative Molecular Targets.

    Science.gov (United States)

    Olivares-Vicente, Marilo; Barrajon-Catalan, Enrique; Herranz-Lopez, Maria; Segura-Carretero, Antonio; Joven, Jorge; Encinar, Jose Antonio; Micol, Vicente

    2018-01-01

    Hibiscus sabdariffa, Lippia citriodora, Rosmarinus officinalis and Olea europaea, are rich in bioactive compounds that represent most of the phenolic compounds' families and have exhibited potential benefits in human health. These plants have been used in folk medicine for their potential therapeutic properties in human chronic diseases. Recent evidence leads to postulate that polyphenols may account for such effects. Nevertheless, the compounds or metabolites that are responsible for reaching the molecular targets are unknown. data based on studies directly using complex extracts on cellular models, without considering metabolic aspects, have limited applicability. In contrast, studies exploring the absorption process, metabolites in the blood circulation and tissues have become essential to identify the intracellular final effectors that are responsible for extracts bioactivity. Once the cellular metabolites are identified using high-resolution mass spectrometry, docking techniques suppose a unique tool for virtually screening a large number of compounds on selected targets in order to elucidate their potential mechanisms. we provide an updated overview of the in vitro and in vivo studies on the toxicity, absorption, permeability, pharmacokinetics and cellular metabolism of bioactive compounds derived from the abovementioned plants to identify the potential compounds that are responsible for the observed health effects. we propose the use of targeted metabolomics followed by in silico studies to virtually screen identified metabolites on selected protein targets, in combination with the use of the candidate metabolites in cellular models, as the methods of choice for elucidating the molecular mechanisms of these compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Pilot-scale resin adsorption as a means to recover and fractionate apple polyphenols.

    Science.gov (United States)

    Kammerer, Dietmar R; Carle, Reinhold; Stanley, Roger A; Saleh, Zaid S

    2010-06-09

    The purification and fractionation of phenolic compounds from crude plant extracts using a food-grade acrylic adsorbent were studied at pilot-plant scale. A diluted apple juice concentrate served as a model phenolic solution for column adsorption and desorption trials. Phenolic concentrations were evaluated photometrically using the Folin-Ciocalteu assay and by HPLC-DAD. Recovery rates were significantly affected by increasing phenolic concentrations of the feed solutions applied to the column. In contrast, the flow rate during column loading hardly influenced adsorption efficiency, whereas the temperature and pH value were shown to be crucial parameters determining both total phenolic recovery rates and the adsorption behavior of individual polyphenols. As expected, the eluent composition had the greatest impact on the desorption characteristics of both total and individual phenolic compounds. HPLC analyses revealed significantly different elution profiles of individual polyphenols depending on lipophilicity. This technique allows fractionation of crude plant phenolic extracts, thus providing the opportunity to design the functional properties of the resulting phenolic fractions selectively, and the present study delivers valuable information with regard to the adjustment of individual process parameters.

  16. Multi-Targeted Molecular Effects of Hibiscus sabdariffa Polyphenols: An Opportunity for a Global Approach to Obesity.

    Science.gov (United States)

    Herranz-López, María; Olivares-Vicente, Mariló; Encinar, José Antonio; Barrajón-Catalán, Enrique; Segura-Carretero, Antonio; Joven, Jorge; Micol, Vicente

    2017-08-20

    Improper diet can alter gene expression by breaking the energy balance equation and changing metabolic and oxidative stress biomarkers, which can result in the development of obesity-related metabolic disorders. The pleiotropic effects of dietary plant polyphenols are capable of counteracting by modulating different key molecular targets at the cell, as well as through epigenetic modifications. Hibiscus sabdariffa (HS)-derived polyphenols are known to ameliorate various obesity-related conditions. Recent evidence leads to propose the complex nature of the underlying mechanism of action. This multi-targeted mechanism includes the regulation of energy metabolism, oxidative stress and inflammatory pathways, transcription factors, hormones and peptides, digestive enzymes, as well as epigenetic modifications. This article reviews the accumulated evidence on the multiple anti-obesity effects of HS polyphenols in cell and animal models, as well as in humans, and its putative molecular targets. In silico studies reveal the capacity of several HS polyphenols to act as putative ligands for different digestive and metabolic enzymes, which may also deserve further attention. Therefore, a global approach including integrated and networked omics techniques, virtual screening and epigenetic analysis is necessary to fully understand the molecular mechanisms of HS polyphenols and metabolites involved, as well as their possible implications in the design of safe and effective polyphenolic formulations for obesity.

  17. Multi-Targeted Molecular Effects of Hibiscus sabdariffa Polyphenols: An Opportunity for a Global Approach to Obesity

    Science.gov (United States)

    Herranz-López, María; Olivares-Vicente, Mariló; Barrajón-Catalán, Enrique; Segura-Carretero, Antonio; Joven, Jorge; Micol, Vicente

    2017-01-01

    Improper diet can alter gene expression by breaking the energy balance equation and changing metabolic and oxidative stress biomarkers, which can result in the development of obesity-related metabolic disorders. The pleiotropic effects of dietary plant polyphenols are capable of counteracting by modulating different key molecular targets at the cell, as well as through epigenetic modifications. Hibiscus sabdariffa (HS)-derived polyphenols are known to ameliorate various obesity-related conditions. Recent evidence leads to propose the complex nature of the underlying mechanism of action. This multi-targeted mechanism includes the regulation of energy metabolism, oxidative stress and inflammatory pathways, transcription factors, hormones and peptides, digestive enzymes, as well as epigenetic modifications. This article reviews the accumulated evidence on the multiple anti-obesity effects of HS polyphenols in cell and animal models, as well as in humans, and its putative molecular targets. In silico studies reveal the capacity of several HS polyphenols to act as putative ligands for different digestive and metabolic enzymes, which may also deserve further attention. Therefore, a global approach including integrated and networked omics techniques, virtual screening and epigenetic analysis is necessary to fully understand the molecular mechanisms of HS polyphenols and metabolites involved, as well as their possible implications in the design of safe and effective polyphenolic formulations for obesity. PMID:28825642

  18. Evaluation and comparison of the content of total polyphenols and antioxidant activity of selected species of the genus Allium

    Directory of Open Access Journals (Sweden)

    Marianna LENKOVÁ

    2016-12-01

    Full Text Available The species of the genus Allium are very important crops for human health. They contain many health beneficial substances, such as polyphenols (especially flavonoids, sulphur compounds, vitamins, mineral substances and substances with antioxidant activity. This work has focused on the comparison of total phenolic content and antioxidant activity of selected species of the genus Allium – garlic (Allium sativum L., chives (Allium schoenoprasum L., ramson (Allium ursinum L. and red, yellow and white onion (Allium cepa L.. Samples of plant material were collected at the stage of full maturity in the area of Nitra. Total polyphenols content was determined using the spectrophotometric method of Folin-Ciocalteu agents. Determined the content of total polyphenols were in the range 444.3 - 1591 mg*kg-1. Total polyphenols content in the observed crops declined in the following order: chives > red onion > garlic > yellow onion > ramson > white onion. Antioxidant activity was measured by the spectrophotometric method using a compound DPPH (2.2-diphenyl-1-picryhydrazyl. Determined the value of antioxidant activity ranged 12.29 – 76.57%. Antioxidant activity observed in crops declined in the following order: chives > ramson > red onion > yellow onion > garlic > white onion. In all the analysed crop plants was confirmed by the strong dependence of the antioxidant activity and the total content of polyphenolic substances.

  19. Effects of Polyphenols from Grape Seeds on Renal Lithiasis

    Directory of Open Access Journals (Sweden)

    Felix Grases

    2015-01-01

    Full Text Available Nephrolithiasis is a complex disease that results from a combination of factors related to both urine composition and kidney morphoanatomy. Development of calcium oxalate monohydrate papillary calculi is linked to initial subepithelial calcification of renal papilla. Progressive tissue calcification depends on preexisting injury and involves reactive oxygen species. Many plant extracts that protect against oxidative stress manifest antilithiasic activity. Our study focused on determining the effects of polyphenols on a lithiasis rat model. Rats were pretreated with polyphenols and grape seed extracts, followed by posterior induction of hyperoxalosis via treatment with ethylene glycol plus NH4Cl. The concentrations of calcium and other elements in kidney were determined, along with histological examination of kidney and 24 h urine analysis. Significant differences were observed in the renal calcium content between the control plus ethylene glycol-treated group and the epicatechin plus ethylene glycol-treated, red grape seed extract plus ethylene glycol-treated, and white grape seed extract plus ethylene glycol-treated groups, with reductions of about 50%. The antioxidant activity of polyphenols extracted from red and white grape seeds may be critical in the prevention of calcium oxalate monohydrate papillary calculus formation, particularly if calculi are induced by lesions caused by cytotoxic compounds with oxidative capacity.

  20. Characterization of Sugar and Polyphenolic Diversity in Floral Nectar of Different 'Oblačinska' Sour Cherry Clones.

    Science.gov (United States)

    Guffa, Basem; Nedić, Nebojša M; Dabić Zagorac, Dragana Č; Tosti, Tomislav B; Gašić, Uroš M; Natić, Maja M; Fotirić Akšić, Milica M

    2017-09-01

    'Oblačinska' sour cherry, an autochthonous cultivar, is the most planted cultivar in Serbian orchards. Since fruit trees in temperate zone reward insects by producing nectar which 'quality' affects the efficiency of insect pollination, the aim of this study was analyzing of sugars and polyphenolics in floral nectar of 16 'Oblačinska' sour cherry clones with different yielding potential. The contents of sugars and sugar alcohols were analyzed by ion chromatography, while polyphenolic profile was established using liquid chromatography/mass spectrometry technique. Fourteen sugars and six sugar alcohols were detected in nectar samples and the most abundant were fructose, glucose, and sucrose. Eleven polyphenols were quantified using available standards, while another 17 were identified according to their exact masses and characteristic fragmentations. Among quantified polyphenols, rutin, naringenin, and chrysin were the most abundant in nectar. Principal component analysis showed that some polyphenol components (naringin, naringenin, and rutin) together with sugars had high impact of spatial distribution of nectar samples on score plot. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  1. The Antidiabetic Mechanisms of Polyphenols Related to Increased Glucagon-Like Peptide-1 (GLP1 and Insulin Signaling

    Directory of Open Access Journals (Sweden)

    J. Abraham Domínguez Avila

    2017-05-01

    Full Text Available Type-2 diabetes mellitus (T2DM is an endocrine disease related to impaired/absent insulin signaling. Dietary habits can either promote or mitigate the onset and severity of T2DM. Diets rich in fruits and vegetables have been correlated with a decreased incidence of T2DM, apparently due to their high polyphenol content. Polyphenols are compounds of plant origin with several documented bioactivities related to health promotion. The present review describes the antidiabetic effects of polyphenols, specifically related to the secretion and effects of insulin and glucagon-like peptide 1 (GLP1, an enteric hormone that stimulates postprandial insulin secretion. The evidence suggests that polyphenols from various sources stimulate L-cells to secrete GLP1, increase its half-life by inhibiting dipeptidyl peptidase-4 (DPP4, stimulate β-cells to secrete insulin and stimulate the peripheral response to insulin, increasing the overall effects of the GLP1-insulin axis. The glucose-lowering potential of polyphenols has been evidenced in various acute and chronic models of healthy and diabetic organisms. Some polyphenols appear to exert their effects similarly to pharmaceutical antidiabetics; thus, rigorous clinical trials are needed to fully validate this claim. The broad diversity of polyphenols has not allowed for entirely describing their mechanisms of action, but the evidence advocates for their regular consumption.

  2. Potato and Mushroom Polyphenol Oxidase Activities Are Differently Modulated by Natural Plant Extracts

    NARCIS (Netherlands)

    Kuijpers, T.F.M.; Herk, van T.; Vincken, J.P.; Janssen, R.H.; Narh, D.L.; Berkel, van W.J.H.; Gruppen, H.

    2014-01-01

    Enzymatic browning is a major quality issue in fruit and vegetable processing and can be counteracted by different natural inhibitors. Often, model systems containing a single polyphenol oxidase (PPO) are used to screen for new inhibitors. To investigate the impact of the source of PPO on the

  3. Diet-derived polyphenols inhibit angiogenesis by modulating the interleukin-6/STAT3 pathway.

    Science.gov (United States)

    Lamy, Sylvie; Akla, Naoufal; Ouanouki, Amira; Lord-Dufour, Simon; Béliveau, Richard

    2012-08-01

    Several epidemiological studies have indicated that abundant consumption of foods from plant origin is associated with a reduced risk of developing several types of cancers. This chemopreventive effect is related to the high content of these foods in phytochemicals, such as polyphenols, that interfere with several processes involved in cancer progression including tumor cell growth, survival and angiogenesis. In addition to the low intake of plant-based foods, increased body mass and physical inactivity have recently emerged as other important lifestyle factors influencing cancer risk, leading to the generation of low-grade chronic inflammatory conditions which are a key process involved in tumor progression. The objectives of the current study are to investigate the inhibitory effects of these polyphenols on angiogenesis triggered by an inflammatory cytokine (IL-6) and to determine the mechanisms underlying this action. We found that, among the tested polyphenols, apigenin and luteolin were the most potent angiogenesis inhibitors through their inhibitory effect on the inflammatory cytokine IL-6/STAT3 pathway. These effects resulted in modulation of the activation of extracellular signal-regulated kinase-1/2 signaling triggered by IL-6, as well as in a marked reduction in the proliferation, migration and morphogenic differentiation of endothelial cells. Interestingly, these polyphenols also modulated the expression of IL-6 signal transducing receptor (IL-6Rα) and the secretion of the extracellular matrix degrading enzyme MMP-2 as well as the expression of suppressor of cytokine signaling (SOCS3) protein. Overall, these results may provide important new information on the role of diet in cancer prevention. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. The antibacterial activity of date syrup polyphenols against S. aureus and E. coli

    Directory of Open Access Journals (Sweden)

    Hajer eTaleb

    2016-02-01

    Full Text Available The increase in antibiotic-resistant bacteria poses a threat to health care worldwide; this has resulted in a revived interest in plant products as adjunct antimicrobial agents to control pathogenic microorganisms. A major plant group used for traditional medicinal applications is Phoenix Dactylifera L, more commonly known as the date palm. Fruit of the date palm have been used customarily in the treatment of intestinal disturbances, hypertension, oedema and gastrointestinal disease, the nomadic tribes in the Middle East have been known to use traditional date syrup as an antimicrobial agent for wound healing. In some cases these ailments can be attributed to or are strongly associated with a variety of bacterial infections and inflammation. Plant-derived products such as date syrup have demonstrated antibacterial activity and can inhibit bacteria through numerous different mechanisms, which may be attributed to bioactive compounds including plant-derived phenolic molecules. Many such products derive their inherent antimicrobial activity from the presence of polyphenols, which cause oxidative damage. This investigation demonstrated that date syrup, and polyphenols extracted from date syrup, the most abundant bioactive constituent of date syrup are bacteriostatic to both Gram positive and Gram negative Escherichia coli and Staphylococcus aureus. We have further shown that the extracted polyphenols independently suppress the growth of bacteria and have observed that date syrup behaves as a prooxidant by generating hydrogen peroxide that mediates bacterial growth inhibition as a result of oxidative stress. at sub-lethal MIC concentrations date syrup demonstrated antioxidative activity by reducing hydrogen peroxide, and at lethal concentrations date syrup demonstrated prooxidant activity that inhibited the growth of E. coli and S. aureus. The high sugar content naturally present in date syrup did not significantly contribute to this effect. These

  5. Cultivar Diversity of Grape Skin Polyphenol Composition and Changes in Response to Drought Investigated by LC-MS Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Lucie Pinasseau

    2017-10-01

    Full Text Available Phenolic compounds represent a large family of plant secondary metabolites, essential for the quality of grape and wine and playing a major role in plant defense against biotic and abiotic stresses. Phenolic composition is genetically driven and greatly affected by environmental factors, including water stress. A major challenge for breeding of grapevine cultivars adapted to climate change and with high potential for wine-making is to dissect the complex plant metabolic response involved in adaptation mechanisms. A targeted metabolomics approach based on ultra high-performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QqQ-MS analysis in the Multiple Reaction Monitoring (MRM mode has been developed for high throughput profiling of the phenolic composition of grape skins. This method enables rapid, selective, and sensitive quantification of 96 phenolic compounds (anthocyanins, phenolic acids, stilbenoids, flavonols, dihydroflavonols, flavan-3-ol monomers, and oligomers…, and of the constitutive units of proanthocyanidins (i.e., condensed tannins, giving access to detailed polyphenol composition. It was applied on the skins of mature grape berries from a core-collection of 279 Vitis vinifera cultivars grown with or without watering to assess the genetic variation for polyphenol composition and its modulation by irrigation, in two successive vintages (2014–2015. Distribution of berry weights and δ13C values showed that non irrigated vines were subjected to a marked water stress in 2014 and to a very limited one in 2015. Metabolomics analysis of the polyphenol composition and chemometrics analysis of this data demonstrated an influence of water stress on the biosynthesis of different polyphenol classes and cultivar differences in metabolic response to water deficit. Correlation networks gave insight on the relationships between the different polyphenol metabolites and related biosynthetic pathways. They also

  6. The effect of solvents on recovery of polyphenols from the pink fuji ...

    African Journals Online (AJOL)

    Flavonoids constitute a group of polyphenols widely distributed in plants and are assumed to have beneficial effects on human health when present in food. The phenolic content of apple fruit skin and leaves was determined at the developmental stage of each organ. Phenolic levels decreased on a dry weight basis during ...

  7. POTASSIUM AND ITS EFFECT ON THE CONTENT OF POLYPHENOLS IN ONION (ALLIUM CEPA L.

    Directory of Open Access Journals (Sweden)

    Petra Kavalcová

    2015-02-01

    Full Text Available Onion (Allium cepa L. is rich of chemoprotective compounds as polyphenols, flavonoids, anthocyanins, vitamins, sulphur compounds which have potential beneficial properties for human health. Potassium as important mineral abundant plays many vital roles in plant nutrition (reduces respiration, activates enzyme. In generally, potassium increases crop yield and improves quality of onion bulbs. The objectives of this work were to compare and evaluate the impact of potassium on the content of total polyphenols and antioxidant activity of onion (Allium cepa L.. The content of the total polyphenols was determined by using the Folin-Ciocalteu reagent (FCR. The absorbance was measured at 765 nm of wave length against blank. Antioxidant activity was measured using a compound DPPH˙ (2.2-diphenyl-1-picrylhydrazyl at 515.6 nm in the spectrophotometer. The content of total polyphenols in samples of onion during vegatation period moved in the range from 505.6 mg GAE/kg ±25.18 to 621.49 mgGAE/kg ±13.41. In this work was watched also the influence of potassium on antioxidant activity, where values were in interval from 32.20 %± 0.58 to 44.67 % ±0.68.

  8. Evaluation and comparison of the content of total polyphenols and antioxidant activity in garlic (Allium sativum L.

    Directory of Open Access Journals (Sweden)

    Marianna Lenková

    2017-01-01

    Full Text Available Garlic (Allium sativum L. is one of the oldest cultivated plants in the world and highly valued throughout the ages as a culinary spice. It is a hardy perennial belonging to the Alliaceae family. The garlic bulb is the most commonly used portion of the plant, composed of 5 - 20 individual. It is a very good source of manganese, selenium, vitamin C and vitamin B6 (pyridoxine. In addition, garlic is a good source of other minerals, including phosphorous, calcium, potassium, iron and copper. Many of the perceived therapeutic effects of garlic are thought to be due to its active ingredient allicin. This sulphur-containing compound gives garlic its distinctive pungent smell and taste. Garlic possesses antiviral, antibacterial, anti-fungal properties allowing it to stand against all infections. This work has focused on the evaluation and comparison of total content of polyphenols and antioxidant activity in five varieties of garlic - Mojmír, Záhorský, Lukan, Havran and Makoi. Samples of plant material were collected at the stage of full maturity in the area of Nitra. The total content of polyphenols was determined using the spectrophotometric method of Folin-Ciocalteu agents. Determined the content of total polyphenols in garlic were in the range 621.13 mg.kg-1 (Záhorský to 763.28 mg.kg-1 (Havran. Total polyphenols content in garlic declined in the following order: Havran >Mojmír >Makoi >Lukan >Záhorský. Antioxidant activity was measured by the spectrophotometric method using a compound DPPH (2.2-diphenyl-1-picryhydrazyl. Statistically significant highest value of antioxidant was recorded in 20.22% (Mojmír and the lowest value was in 13.61% (Záhorský. The values of antioxidant activity observed in the varieties of garlic may be arranged as follows: Mojmír >Havran >Lukan >Makoi >Záhorský. In all the analysed varieties of garlic was confirmed by the strong dependence of the antioxidant activity and the total content of polyphenols.

  9. Antimicrobial activity of polyphenol-rich fractions from Sida alba L. (Malvaceae) against co-trimoxazol-resistant bacteria strains.

    Science.gov (United States)

    Konaté, Kiessoun; Hilou, Adama; Mavoungou, Jacques François; Lepengué, Alexis Nicaise; Souza, Alain; Barro, Nicolas; Datté, Jacques Y; M'batchi, Bertrand; Nacoulma, Odile Germaine

    2012-02-24

    The increased resistance of microorganisms to the currently used antimicrobials has lead to the evaluation of other agents that might have antimicrobial activity. Medicinal plants are sources of phytochemicals which are able to initiate different biological activities including antimicrobials In vitro antibacterial (MIC, MBC and time-kill studies) of polyphenol-rich fractions from Sida alba L. (Malvaceae) was assessed using ten bacteria strains (Gram-negative and Gram-positive). All test bacteria were susceptible to the polyphenol-rich fractions. Time-kill results showed that after 5 h exposition there was no viable microorganism in the initial inoculum and the effect of polyphenol-rich fractions was faster on Enterococcus faecalis (Gram-positive bacterium) comparatively to the other bacteria strains. The data analysis indicates that the tested of polyphenol-rich fractions has significant effects when compared with the standard antibiotic. These results therefore justify the traditional use of sida alba L., alone or in combination with other herbs to treat bacterial infections.

  10. Practical polyphenolics: from structure to molecular recognition and physiological action, by Edwin Haslam.[Book review

    Science.gov (United States)

    Richard W. Hemingway

    1998-01-01

    Hemingway’s book review brings into focus Edwin Haslam's career, devoted to defining the significance of plant polyphenols. That historical perspective focuses on the progress made in this science over the last 30 years. Most important, this book demonstrates the myriad ways that plant polyphe­nols influence our lives. Professor Haslam makes a strong argument for...

  11. Analysis of supercooling activity of tannin-related polyphenols.

    Science.gov (United States)

    Kuwabara, Chikako; Wang, Donghui; Endoh, Keita; Fukushi, Yukiharu; Arakawa, Keita; Fujikawa, Seizo

    2013-08-01

    Based on the discovery of novel supercooling-promoting hydrolyzable gallotannins from deep supercooling xylem parenchyma cells (XPCs) in Katsura tree (see Wang et al. (2012) [38]), supercooling capability of a wide variety of tannin-related polyphenols (TRPs) was examined in order to find more effective supercooling-promoting substances for their applications. The TRPs examined were single compounds including six kinds of hydrolyzable tannins, 11 kinds of catechin derivatives, two kinds of structural analogs of catechin and six kinds of phenolcarboxylic acid derivatives, 11 kinds of polyphenol mixtures and five kinds of crude plant tannin extracts. The effects of these TRPs on freezing were examined by droplet freezing assays using various solutions containing different kinds of identified ice nucleators such as the ice nucleation bacterium (INB) Erwinia ananas, the INB Xanthomonas campestris, silver iodide and phloroglucinol as well as a solution containing only unintentionally included unidentified airborne ice nucleators. Among the 41 kinds of TRPs examined, all of the hydrolyzable tannins, catechin derivatives, polyphenol mixtures and crude plant tannin extracts as well as a few structural analogs of catechin and phenolcarboxylic acid derivatives exhibited supercooling-promoting activity (SCA) with significant differences (p>0.05) from at least one of the solutions containing different kinds of ice nucleators. It should be noted that there were no TRPs exhibiting ice nucleation-enhancing activity (INA) in all solutions containing identified ice nucleators, whereas there were many TRPs exhibiting INA with significant differences in solutions containing unidentified ice nucleators alone. An emulsion freezing assay confirmed that these TRPs did not essentially affect homogeneous ice nucleation temperatures. It is thought that not only SCA but also INA in the TRPs are produced by interactions with heterogeneous ice nucleators, not by direct interaction with water

  12. Natural polyphenols: Influence on membrane transporters

    Directory of Open Access Journals (Sweden)

    Saad Abdulrahman Hussain

    2016-03-01

    Full Text Available Accumulated evidences have focused on the use of natural polyphenolic compounds as nutraceuticals, since they showed a wide range of bioactivities and exhibited protection against variety of age related disorders. Polyphenols have variable potencies to interact, and hence alter the activities of various transporter proteins, many of them classified as ATP-Binding Cassette transporters, like multidrug resistance protein (MDRP, and p-glycoprotein (P-gp. Some of the efflux transporters are generally linked with anticancer and antiviral drug resistance; in this context, polyphenols may be beneficial in modulating drug resistance by increasing the efficacy of anticancer and antiviral drugs. Additionally, these effects were implicated to explain the influence of dietary polyphenols on drug efficacy as result of food-drug interactions. However, limited data are available about the influence of these components on uptake transporters. Therefore, the objective of this article is to review the potential efficacies of polyphenols in modulating the functional integrity of uptake transporter proteins, including those terminated the effect of neurotransmitters, and their possible influence in neuropharmacology. [J Complement Med Res 2016; 5(1.000: 97-104

  13. Molecular mechanisms of green tea polyphenols with protective effects against skin photoaging.

    Science.gov (United States)

    Roh, Eunmiri; Kim, Jong-Eun; Kwon, Jung Yeon; Park, Jun Seong; Bode, Ann M; Dong, Zigang; Lee, Ki Won

    2017-05-24

    Whereas green tea has historically been consumed in high quantities in Northeast Asia, its popularity is also increasing in many Western countries. Green tea is an abundant source of plant polyphenols exhibiting numerous effects that are potentially beneficial for human health. Accumulating evidence suggests that green tea polyphenols confer protective effects on the skin against ultraviolet (UV) irradiation-induced acceleration of skin aging, involving antimelanogenic, antiwrinkle, antioxidant, and anti-inflammatory effects as well as prevention of immunosuppression. Melanin pigmentation in the skin is a major defense mechanism against UV irradiation, but pigmentation abnormalities such as melasma, freckles, senile lentigines, and other forms of melanin hyperpigmentation can also cause serious health and aesthetic issues. Furthermore, UV irradiation initiates the degradation of fibrillar collagen and elastic fibers, promoting the process of skin aging through deep wrinkle formation and loss of tissue elasticity. UV irradiation-induced formation of free radicals also contributes to accelerated photoaging. Additionally, immunosuppression caused by UV irradiation plays an important role in photoaging and skin carcinogenesis. In this review, we summarize the current literature regarding the antimelanogenic, antiwrinkle, antioxidant, and immunosuppression preventive mechanisms of green tea polyphenols that have been demonstrated to protect against UV irradiation-stimulated skin photoaging, and gauge the quality of evidence supporting the need for clinical studies using green tea polyphenols as anti-photoaging agents in novel cosmeceuticals.

  14. Influence of diabetes on the pharmacokinetic behavior of natural polyphenols.

    Science.gov (United States)

    Xiao, Jianbo; Högger, Petra

    2014-01-01

    The development of food fortified with polyphenols and polyphenol-rich foods represents a novel approach to prevent or attenuate type 2 diabetes. It has been reported that type 2 diabetes may affect the pharmacokinetics of various drugs in several animal models. There is powerful evidence linking dietary polyphenols consumption with the risk factors defining type 2 diabetes, even if some opposite results occurred. This mini-review summarizes important advances on diabetes-associated changes in pharmacokinetics of natural polyphenols. The pharmacokinetic behavior between drugs and dietary polyphenols probably may be different due to (i) Ingested dose/amount per day. The dietary polyphenol intake per day is much higher than that of clinical drugs; (ii) Complexity of the components. Clinical drugs are well-characterized and typically small molecules. However, the polyphenols in diet are unimaginably complex; (iii) Interaction with food proteins. Although the effects of food proteins on the bioavailability of polyphenols are still not examined in much detail, direct binding interactions of polyphenols to proteins always occur; (iv) The most common polyphenols in the human diet have a low intrinsic activity and are poorly absorbed from the intestine, highly metabolized, or rapidly eliminated. Although there is very limited information available so far, it is proposed that type 2 diabetes influences the pharmacokinetic behavior of dietary polyphenols including: i) competition of glucose with polyphenols regarding binding to plasma proteins; ii) weakened non-covalent interaction affinities of plasma proteins for natural polyphenols due to protein glycation in type II diabetes; iii) the enhanced clearance of polyphenols in type 2 diabetes. An understanding of diabetes-associated changes in absorption, distribution, metabolism, elimination and bioactivities of natural polyphenols as well as the mechanism of the variability should lead to the improvement of the benefits of

  15. Polyphenols from cocoa and vascular health-a critical review.

    Science.gov (United States)

    Rimbach, Gerald; Melchin, Mona; Moehring, Jennifer; Wagner, Anika E

    2009-11-20

    Cocoa is a rich source of dietary polyphenols. In vitro as well as cell culture data indicate that cocoa polyphenols may exhibit antioxidant and anti-inflammatory, as well as anti-atherogenic activity. Several molecular targets (e.g., nuclear factor kappa B, endothelial nitric oxide synthase, angiotensin converting enzyme) have been recently identified which may partly explain potential beneficial cardiovascular effects of cocoa polyphenols. However cocoa polyphenol concentrations, as used in many cell culture studies, are not physiologically achievable. Bioavailability studies indicate that plasma concentrations of cocoa polyphenols following dietary intake are low and in the nanomolar range. Human studies regarding the effect of cocoa polyphenols on vascular health are often underpowered and lack a rigorous study design. If dietary cocoa polyphenol intake is due to chocolate its high energy content needs to be taken into account. In order to determine potential health benefits of cocoa polyphenols large scale, long term, randomized, placebo controlled studies, (ideally with a cross-over design) as well as prospective studies are warranted.

  16. Effect of fermentation and drying on cocoa polyphenols.

    Science.gov (United States)

    Albertini, Barbara; Schoubben, Aurélie; Guarnaccia, Davide; Pinelli, Filippo; Della Vecchia, Mirco; Ricci, Maurizio; Di Renzo, Gian Carlo; Blasi, Paolo

    2015-11-18

    Cocoa seed polyphenols have demonstrated interesting beneficial effects in humans. Most polyphenols contained in fresh seeds are chemically modified during fermentation, drying, and cocoa powder or chocolate production. The improvement of these procedures to obtain a high-polyphenol-content cocoa is highly desirable. To this aim, a field investigation on the effect of fermentation and natural drying on fine flavor National cocoa (cacao Nacional) was performed. Cocoa seeds were fermented for 6 days and, every day, samples were sun-dried and analyzed for polyphenol content and antioxidant power. During the first 2 days of fermentation, Folin-Ciocalteu and FRAP tests evidenced a significant reduction of polyphenol content and antioxidant capacity, respectively. Changes during the following days of fermentation were less significant. Epicatechin, the most studied member of the catechin family, followed a similar pathway of degradation. Data confirmed the high impact of fermentation and drying on cocoa seed polyphenols. Fermentation and drying are, on the one hand, necessary to obtain cocoa flavor and palatability but, on the other hand, are responsible for greatly compromising polyphenol content. To obtain high-polyphenol-content cocoa, the existing fermentation, drying, and manufacturing protocols should be scientifically reviewed to understand and modify the critical steps.

  17. THE RESEARCH OF TOTAL POLYPHENOLS CONTENT AND THEIR CHANGES IN DIFFERENT VARIETIES OF POTATOES

    Directory of Open Access Journals (Sweden)

    Beáta Volnová

    2015-02-01

    Full Text Available Polyphenols are secondary metabolites of plants with antioxidant properties. In this work we research the changes in the content of total polyphenols in five varieties of potatoes (Rumelia, Arwen, Megan, Malvína, Erídia. Potatoes were grown at the stage of full maturity from Matejovce nad Hornádom, region of Poprad. Total polyphenols we determined in whole peeled potatoes; in the outside part of peeled potato tubers (1 cm; in inside part of potato tubers (mean 2 cm and in the whole peel-boiled potatoes. The total polyphenols content was determined by spectrophotometry (λ = 765 nm and it was used lyophilized samples in ethanol extracts. In whole peeled potatoes was the content of total polyphenols in the range from 243.34 mg.kg-1 DM (cv. Rumelia to 446.38 mg.kg-1 DM (cv. Megan, in the outside part of peeled potato tubers was content in the range from 190.45 mg.kg-1 (cv. Rumelia to 446.84 mg.kg-1 DM (cv. Malvína and in inside part of potato tubers from 245.51 mg.kg-1 to 446.26 mg.kg-1 DM (Arwen < Rumelia < Megan < Erídia < Malvína. In the whole peel-boiled potatoes was the lowest content of total polyphenols in variety Rumelia (252.5 mg.kg-1 DM and the highest content in variety Megan (440.54 mg.kg-1 DM. Results were statistically evaluated by the Analysis of Variance (ANOVA – Multiple Range Tests, Method: 95.0 percent LSD using statistical software STATGRAPHICS (Centurion XVI.I, USA and the regression and correlation analysis (Microsoft Excel was used.

  18. Polyphenols from Cocoa and Vascular Health—A Critical Review

    Directory of Open Access Journals (Sweden)

    Anika E. Wagner

    2009-09-01

    Full Text Available Cocoa is a rich source of dietary polyphenols. In vitro as well as cell culture data indicate that cocoa polyphenols may exhibit antioxidant and anti-inflammatory, as well as anti-atherogenic activity. Several molecular targets (e.g., nuclear factor kappa B, endothelial nitric oxide synthase, angiotensin converting enzyme have been recently identified which may partly explain potential beneficial cardiovascular effects of cocoa polyphenols. However cocoa polyphenol concentrations, as used in many cell culture studies, are not physiologically achievable. Bioavailability studies indicate that plasma concentrations of cocoa polyphenols following dietary intake are low and in the nanomolar range. Human studies regarding the effect of cocoa polyphenols on vascular health are often underpowered and lack a rigorous study design. If dietary cocoa polyphenol intake is due to chocolate its high energy content needs to be taken into account. In order to determine potential health benefits of cocoa polyphenols large scale, long term, randomized, placebo controlled studies, (ideally with a cross-over design as well as prospective studies are warranted.

  19. Identification of Urinary Polyphenol Metabolite Patterns Associated with Polyphenol-Rich Food Intake in Adults from Four European Countries

    Directory of Open Access Journals (Sweden)

    Hwayoung Noh

    2017-07-01

    Full Text Available We identified urinary polyphenol metabolite patterns by a novel algorithm that combines dimension reduction and variable selection methods to explain polyphenol-rich food intake, and compared their respective performance with that of single biomarkers in the European Prospective Investigation into Cancer and Nutrition (EPIC study. The study included 475 adults from four European countries (Germany, France, Italy, and Greece. Dietary intakes were assessed with 24-h dietary recalls (24-HDR and dietary questionnaires (DQ. Thirty-four polyphenols were measured by ultra-performance liquid chromatography–electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS-MS in 24-h urine. Reduced rank regression-based variable importance in projection (RRR-VIP and least absolute shrinkage and selection operator (LASSO methods were used to select polyphenol metabolites. Reduced rank regression (RRR was then used to identify patterns in these metabolites, maximizing the explained variability in intake of pre-selected polyphenol-rich foods. The performance of RRR models was evaluated using internal cross-validation to control for over-optimistic findings from over-fitting. High performance was observed for explaining recent intake (24-HDR of red wine (r = 0.65; AUC = 89.1%, coffee (r = 0.51; AUC = 89.1%, and olives (r = 0.35; AUC = 82.2%. These metabolite patterns performed better or equally well compared to single polyphenol biomarkers. Neither metabolite patterns nor single biomarkers performed well in explaining habitual intake (as reported in the DQ of polyphenol-rich foods. This proposed strategy of biomarker pattern identification has the potential of expanding the currently still limited list of available dietary intake biomarkers.

  20. The Interleukin-6 inflammation pathway from cholesterol to aging – Role of statins, bisphosphonates and plant polyphenols in aging and age-related diseases

    Directory of Open Access Journals (Sweden)

    Omoigui Sota

    2007-03-01

    Full Text Available Abstract We describe the inflammation pathway from Cholesterol to Aging. Interleukin 6 mediated inflammation is implicated in age-related disorders including Atherosclerosis, Peripheral Vascular Disease, Coronary Artery Disease, Osteoporosis, Type 2 Diabetes, Dementia and Alzheimer's disease and some forms of Arthritis and Cancer. Statins and Bisphosphonates inhibit Interleukin 6 mediated inflammation indirectly through regulation of endogenous cholesterol synthesis and isoprenoid depletion. Polyphenolic compounds found in plants, fruits and vegetables inhibit Interleukin 6 mediated inflammation by direct inhibition of the signal transduction pathway. Therapeutic targets for the control of all the above diseases should include inhibition of Interleukin-6 mediated inflammation.

  1. Label Distribution in Tissues of Wheat Seedlings Cultivated with Tritium-Labeled Leonardite Humic Acid

    Science.gov (United States)

    Kulikova, Natalia A.; Abroskin, Dmitry P.; Badun, Gennady A.; Chernysheva, Maria G.; Korobkov, Viktor I.; Beer, Anton S.; Tsvetkova, Eugenia A.; Senik, Svetlana V.; Klein, Olga I.; Perminova, Irina V.

    2016-06-01

    Humic substances (HS) play important roles in the biotic-abiotic interactions of the root plant and soil contributing to plant adaptation to external environments. However, their mode of action on plants remains largely unknown. In this study the HS distribution in tissues of wheat seedlings was examined using tritium-labeled humic acid (HA) derived from leonardite (a variety of lignites) and microautoradiography (MAR). Preferential accumulation of labeled products from tritiated HA was found in the roots as compared to the shoots, and endodermis was shown to be the major control point for radial transport of label into vascular system of plant. Tritium was also found in the stele and xylem tissues indicating that labeled products from tritiated HA could be transported to shoot tissues via the transpiration stream. Treatment with HA lead to an increase in the content of polar lipids of photosynthetic membranes. The observed accumulation of labeled HA products in root endodermis and positive impact on lipid synthesis are consistent with prior reported observations on physiological effects of HS on plants such as enhanced growth and development of lateral roots and improvement/repairs of the photosynthetic status of plants under stress conditions.

  2. Label Distribution in Tissues of Wheat Seedlings Cultivated with Tritium-Labeled Leonardite Humic Acid

    Science.gov (United States)

    Kulikova, Natalia A.; Abroskin, Dmitry P.; Badun, Gennady A.; Chernysheva, Maria G.; Korobkov, Viktor I.; Beer, Anton S.; Tsvetkova, Eugenia A.; Senik, Svetlana V.; Klein, Olga I.; Perminova, Irina V.

    2016-01-01

    Humic substances (HS) play important roles in the biotic-abiotic interactions of the root plant and soil contributing to plant adaptation to external environments. However, their mode of action on plants remains largely unknown. In this study the HS distribution in tissues of wheat seedlings was examined using tritium-labeled humic acid (HA) derived from leonardite (a variety of lignites) and microautoradiography (MAR). Preferential accumulation of labeled products from tritiated HA was found in the roots as compared to the shoots, and endodermis was shown to be the major control point for radial transport of label into vascular system of plant. Tritium was also found in the stele and xylem tissues indicating that labeled products from tritiated HA could be transported to shoot tissues via the transpiration stream. Treatment with HA lead to an increase in the content of polar lipids of photosynthetic membranes. The observed accumulation of labeled HA products in root endodermis and positive impact on lipid synthesis are consistent with prior reported observations on physiological effects of HS on plants such as enhanced growth and development of lateral roots and improvement/repairs of the photosynthetic status of plants under stress conditions. PMID:27350412

  3. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis

    Science.gov (United States)

    Grasel, Fábio dos Santos; Ferrão, Marco Flôres; Wolf, Carlos Rodolfo

    2016-01-01

    Tannins are polyphenolic compounds of complex structures formed by secondary metabolism in several plants. These polyphenolic compounds have different applications, such as drugs, anti-corrosion agents, flocculants, and tanning agents. This study analyses six different type of polyphenolic extracts by Fourier transform infrared spectroscopy (FTIR) combined with multivariate analysis. Through both principal component analysis (PCA) and hierarchical cluster analysis (HCA), we observed well-defined separation between condensed (quebracho and black wattle) and hydrolysable (valonea, chestnut, myrobalan, and tara) tannins. For hydrolysable tannins, it was also possible to observe the formation of two different subgroups between samples of chestnut and valonea and between samples of tara and myrobalan. Among all samples analysed, the chestnut and valonea showed the greatest similarity, indicating that these extracts contain equivalent chemical compositions and structure and, therefore, similar properties.

  4. Polyphenols as enzyme inhibitors in different degraded peat soils: Implication for microbial metabolism in rewetted peatlands

    Science.gov (United States)

    Zak, Dominik; Roth, Cyril; Gelbrecht, Jörg; Fenner, Nathalie; Reuter, Hendrik

    2015-04-01

    Recently, more than 30,000 ha of drained minerotrophic peatlands (= fens) in NE Germany were rewetted to restore their ecological functions. Due to an extended drainage history, a re-establishment of their original state is not expected in the short-term. Elevated concentrations of dissolved organic carbon, ammonium and phosphate have been measured in the soil porewater of the upper degraded peat layers of rewetted fens at levels of one to three orders higher than the values in pristine systems; an indicator of increased microbial activity in the upper degraded soil layers. On the other hand there is evidence that the substrate availability within the degraded peat layer is lowered since the organic matter has formerly been subject to intense decomposition over the decades of drainage and intense agricultural use of the areas. Previously however, it was suggested that inhibition of hydrolytic enzymes by polyphenolic substances is suspended during aeration of peat soils mainly due to the decomposition of the inhibiting polyphenols by oxidising enzymes such as phenol oxidase. Accordingly we hypothesised a lack of enzyme inhibiting polyphenols in degraded peat soils of rewetted fens compared to less decomposed peat of more natural fens. We collected both peat samples at the soil surface (0-20 cm) and fresh roots of dominating vascular plants and mosses (as peat parent material) from five formerly drained rewetted sites and five more natural sites of NE Germany and NW Poland. Less decomposed peat and living roots were used to obtain an internal standard for polyphenol analysis and to run enzyme inhibition tests. For all samples we determined the total phenolic contents and in addition we distinguished between the contents of hydrolysable and condensed tannic substances. From a methodical perspective the advantage of internal standards compared to the commercially available standards cyanidin chloride and tannic acid became apparent. Quantification with cyanidin or

  5. Immunochemical detection of food-derived polyphenols in the aorta: macrophages as a major target underlying the anti-atherosclerotic activity of polyphenols.

    Science.gov (United States)

    Kawai, Yoshichika

    2011-01-01

    It has been suggested that polyphenol-rich diets decrease the risk of cardiovascular diseases. Although studies of the bioavailability of polyphenols, particularly their absorption and metabolism, have been reported recently, the tissue and cellular distributions underlying their biological mechanisms remain unknown. It is difficult to evaluate the specific localization of tissue and/or cellular polyphenols, because the method is limited to chromatography. To overcome these difficulties, we have developed anti-polyphenol antibodies to characterize immunohistochemically the localization of polyphenols and their metabolites in vivo. Two novel monoclonal antibodies were raised against quercetin and tea catechins, which represent flavonoid-type polyphenols distributed in foods and beverages, and are expected to exhibit anti-oxidative and anti-inflammatory activities in vivo. Using these antibodies, we identified activated macrophages as a specific target of these flavonoids during the development of atherosclerotic lesions. This review describes recent findings on the molecular actions of flavonoids that underly their anti-atherosclerotic activity in vivo.

  6. Decomposition of macrophytes with uniformly C-14-labelled plant material

    International Nuclear Information System (INIS)

    Blake, G.

    1979-01-01

    Uniform labelling of plant such as macrophytes is relatively difficult to obtain. In my experiments I used samples of ripe stems and leaves of labelled maize which had grown for 110 days in a 14 Co 2 atmosphere. These samples were laid in a glass bowl for in situ and in vitro experiments under similar conditions of light and temperature. The aim of this study was to determine the shift of carbon through chosen compartments of a core (water, sediments, bacteria, invertebrates, atmosphere) and to understand the mineralization process with type of particulate organic matter. At low temperature (7 0 C), leaching of organic matter in the first 5 days increases bacteria activity, then radioactivity-incorporation level declines to the 60th day; CO 2 production was measured during experiments and was varying between 60% and 75% of used carbon of the tissue. (orig.) [de

  7. Foliar absorption of 15N labeled urea by tea plant

    International Nuclear Information System (INIS)

    Hoshina, Tsuguo; Kozai, Shuji; Ishigaki, Kozo

    1978-01-01

    The effect of foliar application on the nitrogen nutrient status of tea shoots has been studied using 15 N labelled urea. Furthermore, the difference in nitrogen utilization by tea plant between foliar applied and top dressed nitrogen was investigated using 15 N labelled urea and ammonium sulfate. The foliar application of urea increased the amount of chlorophyll and total nitrogen in the new shoot, and the foliar application was more effective under shading condition. The urea sprayed upon old leaves prior to the opening of new leaf translocated to the new shoots. However, the foliar application after the opening of new leaf was more effective on nitrogen absorption by new shoots than one prior to that, and rather than top dressing for new shoots. It could be recognized that the foliar application of urea raises the nitrogen nutrient status of tea leaves in summer. (author)

  8. Red Wine Polyphenols for Cancer Prevention

    Science.gov (United States)

    He, Shan; Sun, Cuirong; Pan, Yuanjiang

    2008-01-01

    Conventional cancer therapies, the second leading cause of death worldwide, result in serious side effects and, at best, merely extend the patient's lifespan by a few years. Searching for effective prevention is of high priority in both basic and clinical sciences. In recent decades natural products have been considered to be an important source of cancer chemopreventive agents. Red wine polyphenols, which consisted of various powerful antioxidants such as flavonoids and stilbenes, have been implicated in cancer prevention and that promote human health without recognizable side effects. Since resveratrol, a major component of red wine polyphenols, has been studied and reviewed extensively for its chemopreventive activity to interfere with the multi-stage carcinogenesis, this review focuses on recent progress in studies on cancer chemopreventive activities of red wine polyphenol extracts and fractions as well as other red wine polyphenols, like procyanidin B5 analogues and myricetin. PMID:19325788

  9. Red Wine Polyphenols for Cancer Prevention

    Directory of Open Access Journals (Sweden)

    Yuanjiang Pan

    2008-05-01

    Full Text Available Conventional cancer therapies, the second leading cause of death worldwide, result in serious side effects and, at best, merely extend the patient's lifespan by a few years. Searching for effective prevention is of high priority in both basic and clinical sciences. In recent decades natural products have been considered to be an important source of cancer chemopreventive agents. Red wine polyphenols, which consisted of various powerful antioxidants such as flavonoids and stilbenes, have been implicated in cancer prevention and that promote human health without recognizable side effects. Since resveratrol, a major component of red wine polyphenols, has been studied and reviewed extensively for its chemopreventive activity to interfere with the multi-stage carcinogenesis, this review focuses on recent progress in studies on cancer chemopreventive activities of red wine polyphenol extracts and fractions as well as other red wine polyphenols, like procyanidin B5 analogues and myricetin.

  10. Sulfur mineralization of different plant materials labelled with 35 S

    International Nuclear Information System (INIS)

    Abreu Junior, Cassio H.

    1993-01-01

    This study was carried out, in green house conditions, with the objective of evaluating the effect of incorporation in soil of different plant materials labelled with 35 S and of incubation periods on the availability of sulfur to the bean test plants and on the dynamic of this element in the soil. The bean test plants dry matter yield ranged from 2.00 to 3.79 g/plant, the S content and absorption ranged from 118.20 to 194.04 mg/100 g and 2.61 to 6.34 mg/plant respectively. The 35 S derived from the incorporated bean plant material contributed with 12 to 256% of total S absorbed by bean test plant; rice plant material contributed with 12 to 22%; soybean plant material contributed 11 to 18%; corn plant material at rate of 7 g with, 11 to 19% and corn at rate of 3.5 g; with 7 to 1%. Plant material incorporation showed 35 S using efficiency by bean test plant of 21.41 to 9.94% by incorporated rice plant material, of 16.12 to 7.79% by rice material, of 13.11 to 6.49% by soybean material, of 10.24 to 6.21% by corn at rate of 3.5 g and of 7.41 to 3.81% by corn at rate of 7 g.Incorporated plant material with C/S relationship near 120, such as bean and rice, promoted desirable and favorable alteration in soil, while materials with C/S higher than 250, such as soybean and corn, led to unsatisfactory and undesirable alteration. The characteristic of incorporated plant materials which more affected its behavior was the C/S relationship, which depended on its physiological stage on collect timing. (author)

  11. Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives.

    Science.gov (United States)

    Urbatzka, Ralph; Freitas, Sara; Palmeira, Andreia; Almeida, Tiago; Moreira, João; Azevedo, Carlos; Afonso, Carlos; Correia-da-Silva, Marta; Sousa, Emilia; Pinto, Madalena; Vasconcelos, Vitor

    2018-05-10

    Obesity is an increasing epidemic worldwide and novel treatments are urgently needed. Polyphenols are natural compounds derived from plants, which are known in particular for their antioxidant properties. However, some polyphenols were described to possess anti-obesity activities in vitro and in vivo. In this study, we aimed to screen a library of 85 polyphenol derivatives for their lipid reducing activity and toxicity. Compounds were analyzed at 5 μM with the zebrafish Nile red fluorescence fat metabolism assay and for general toxicity in vivo. To improve the safety profile, compounds were screened at 50 μM in murine preadipocytes in vitro for cytotoxicity. Obtained activity data were used to create a 2D-QSAR (quantitative structure activity relationship) model. 38 polyphenols showed strong lipid reducing activity. Toxicity analysis revealed that 18 of them did not show any toxicity in vitro or in vivo. QSAR analysis revealed the importance of the number of rings, fractional partial positively charged surface area, relative positive charge, relative number of oxygen atoms, and partial negative surface area for lipid-reducing activity. The five most potent compounds with EC 50 values in the nanomolar range for lipid reducing activity and without any toxic effects are strong candidates for future research and development into anti-obesity drugs. Molecular profiling for fasn, sirt1, mtp and ppary revealed one compound that reduced significantly fasn mRNA expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Isolation of 14C labelled amino acids by biosynthesis in maize plants (Zea mais L.)

    International Nuclear Information System (INIS)

    Carreras, N.; Mazon, M.P.

    1983-01-01

    A method of obtaining 14 C labelled amino acids by biosynthesis in maize plants which had assimilated 14CO 2 , has been assayed. The plants were labelled for 60 minutes with 14 C O2 produced from Ba 14 C O3 (specific activity of 148 KBq/μmol). An extract of the soluble compounds was obtained with 80% ethanol and the amino acids were separated from the rest of the soluble compounds by ion exchange chromatography on column of Dowex 50-X8 resin. Finally, seventeen amino acids were isolated and identified from the purified extract. The acid amino acids were separated in anionic column (Dowex 1-X8) and the neutral and basic amino acids in cationic column (Dowex 50-X4). (Author) 56 refs

  13. Isolation of carbon 14 labelled amino acids by biosynthesis in maize plants (zea mais L.)

    International Nuclear Information System (INIS)

    Carreras, N.; Mazon, M.P.

    1983-01-01

    A method of obtaining 14 C labelled amino acids by biosynthesis in maize plants which had assimilated 14 CO 2 , has been assayed. The plants were labelled for 60 minutes with 14 CO 2 produced from Ba 14 CO 3 (specific activity of 148 KBq/μmol). An extract of the soluble compounds was obtained with 80% ethanol and the amino acids were separated from the rest of the soluble compounds by ion exchange chromatography on column of Dowex 50-X8 resin. Finally, seventeen amino acids were isolated and identified from the purified extract. The acid amino acids were separated in anionic column (Dowex 1-X8) and the neutral and basic amino acids in cationic columns (Dowex 50-X4). (author)

  14. The Relevance of Dietary Polyphenols in Cardiovascular Protection.

    Science.gov (United States)

    Murillo, Ana G; Fernandez, Maria L

    2017-01-01

    The chemical structure of polyphenols consisting of aromatic rings, capable of quenching free radicals, makes them ideal candidates to protect against oxidation. Polyphenols are present in a variety of foods including grapes, berries, dark chocolate, coffee and tea to mention a few. A number of studies have shown that dietary polyphenols exert a protective effect against hypertension, dyslipidemias, inflammation, endothelial function and atherosclerosis, conditions associated with increased risk for cardiovascular disease. Studies indicate that by decreasing cholesterol absorption, polyphenols alter hepatic cholesterol homeostasis resulting in decreases in plasma lipids and reduction in atherogenic lipoproteins thus having a protective effect against atherosclerosis; polyphenols have also been shown to decrease the activity of enzymes involved in the renin-angiotensinaldosterone system and improve blood pressure. Further, they have been recognized to increase nitric oxide production and to improve endothelial function. In this review we will present some of the evidence derived from epidemiological studies, clinical interventions as well as animal and cell studies supporting the cardioprotective effects of dietary polyphenols. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Polyphenol Oxidase Enzyme and Inactivation Methods

    Directory of Open Access Journals (Sweden)

    Leman Yılmaz

    2018-03-01

    Full Text Available Polyphenol oxidase enzyme is found in vegetables and fruits, as well as in some animal organs and microorganisms. Polyphenol oxidase enzyme responsible for enzymatic browning is a group of copper proteins that catalyses the oxidation of phenolic compounds to quinones, which produce brown pigments, commonly found in fruits and vegetables. During the industrial preparation of fruits and vegetables, results of catalytic effect of polyphenol oxidase causes enzymatic browning. Enzymatic browning impairs the appearance of products containing phenolic compounds along with undesirable colour, odor and taste formation and significant loss of nutritional value of the products. This affects the acceptability of the products by the consumers and causes economic losses. In this review, some characteristics of polyphenol oxidase enzyme in different fruits and vegetables have been reviewed and information about chemical antibrowning agents, thermal applications, irradiation applications and alternative methods such as high pressure processing, pulse electric field, supercritical carbon dioxide and ultrasound applications to inactivate this enzyme has been presented.

  16. Recent advances on tea polyphenols

    Science.gov (United States)

    Kanwar, Jyoti; Taskeen, Mujtaba; Mohammad, Imthiyaz; Huo, Congde; Chan, Tak Hang; Dou, Qing Ping

    2012-01-01

    Over the past decade many scientific and medical studies have focused on green tea for its long-purported health benefits. There is convincing evidence that tea is a cup of life. It has multiple preventive and therapeutic effects. This review thus focuses on the recent advances of tea polyphenols and their applications in the prevention and treatment of human cancers. Of the various polyphenols in tea, (−)-Epigallocatechin-3-gallate (EGCG) is the most abundant, and active compound studied in tea research. EGCG inhibits several molecular targets to inhibit cancer initiation and modulates several essential survival pathways to block cancer progression. Herein, we describe the various mechanisms of action of EGCG and also discuss previous and current ongoing clinical trials of EGCG and green tea polyphenols in different cancer types. PMID:22201858

  17. Reducing Breast Cancer Recurrence: The Role of Dietary Polyphenolics

    Directory of Open Access Journals (Sweden)

    Andrea J. Braakhuis

    2016-09-01

    Full Text Available Evidence from numerous observational and clinical studies suggest that polyphenolic phytochemicals such as phenolic acids in olive oil, flavonols in tea, chocolate and grapes, and isoflavones in soy products reduce the risk of breast cancer. A dietary food pattern naturally rich in polyphenols is the Mediterranean diet and evidence suggests those of Mediterranean descent have a lower breast cancer incidence. Whilst dietary polyphenols have been the subject of breast cancer risk-reduction, this review will focus on the clinical effects of polyphenols on reducing recurrence. Overall, we recommend breast cancer patients consume a diet naturally high in flavonol polyphenols including tea, vegetables (onion, broccoli, and fruit (apples, citrus. At least five servings of vegetables and fruit daily appear protective. Moderate soy protein consumption (5–10 g daily and the Mediterranean dietary pattern show the most promise for breast cancer patients. In this review, we present an overview of clinical trials on supplementary polyphenols of dietary patterns rich in polyphenols on breast cancer recurrence, mechanistic data, and novel delivery systems currently being researched.

  18. Real-time imaging of radioisotope labeled compounds in a living plant

    International Nuclear Information System (INIS)

    Kanno, S.; Ohya, T.; Hayashi, Y.; Tanoi, K.; Nakanishi, T.M.

    2007-01-01

    We developed a quantitative, real-time imaging system of labeled compounds in a living plant. The system was composed of CsI scintillator to convert β-rays to visible light and an image intensifier unit (composed of GaAsP semiconductor and MCP; micro channel plate) to detect extremely weak light. When the sensitivity and resolution of the image of our system was compared with that of an imaging plate (IP), the sensitivity of our system (with 20 minutes) was higher than that of an IP, with similar quality to that of an IP. Using this system, the translocation of 32 P in a soybean plant tissue was shown in successive images. (author)

  19. Wine polyphenols: potential agents in neuroprotection.

    Science.gov (United States)

    Basli, Abdelkader; Soulet, Stéphanie; Chaher, Nassima; Mérillon, Jean-Michel; Chibane, Mohamed; Monti, Jean-Pierre; Richard, Tristan

    2012-01-01

    There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols.

  20. Wine Polyphenols: Potential Agents in Neuroprotection

    Science.gov (United States)

    Basli, Abdelkader; Soulet, Stéphanie; Chaher, Nassima; Mérillon, Jean-Michel; Chibane, Mohamed; Monti, Jean-Pierre; Richard, Tristan

    2012-01-01

    There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols. PMID:22829964

  1. Polyphenol Concentrate from Kazakhstan Cabernet Sauvignon Collection of Grapes

    Directory of Open Access Journals (Sweden)

    Zarina Shulgau

    2014-12-01

    Full Text Available Introduction. Nowadays, most of the research in the field of gerontology is focused on the effects of the grape polyphenols. In particular, resveratrol has been shown to increase life expectancy of various living organisms, including mammals. Resveratrol also plays an important role in cancer prevention and decreases the risk of developing cardiovascular disease. In our research, we proposed the development of the therapeutic product from Cabernet Sauvignon grapes that would exhibit the beneficial properties of polyphenols. Standard operating procedures were developed in our laboratories to collect alcohol free concentrate of polyphenols from the Kazakhstan Cabernet Sauvignon collection of grapes. The purpose of the study was to investigate the composition, biological safety, and potential therapeutic effects of the polyphenol concentrate.Methods. The total polyphenol amount was determined using the Enology Analyzer Y15 (BioSystems, Spain. HPLC analysis of the polyphenol composition was performed using Agilent 1290 chromatograph. The polyphenol concentrate was analyzed for the microbiological purity and the presence of the toxic elements. The cytoprotective effect of the polyphenol concentrate was studied in experimental models of diabetes, toxic hepatitis, doxorubicin cardiomyopathy, and acute radiation sickness.Results. The total polyphenol amount in one sample was 12,819 mg/l. Polyphenol composition analysis showed presence of the following polyphenols: catechin, epicatechin, gallic acid, quercetin, miricetin, 3-glucosylkaempferol, epicatechin gallate, 3-(3,4-Dihydroxyphenyl-2-propenoic acid, catechin gallate, pitseid, kaempferol, n-hydroxy-cinnamic acid, resveratrol and chlorogenic acid. The concentrate was proven to be biologically safe and acceptable for use as a dietary supplement. The polyphenol concentrate demonstrated high antioxidant activity against ABTS and DPPH radicals in vitro. It also showed the following impacts on the various

  2. Polyphenol and Microbial Profile of On-farm Cocoa Beans Fermented with Selected Microbial Consortia

    Directory of Open Access Journals (Sweden)

    Tochukwu Vincent Balogu

    2017-09-01

    Full Text Available Background and Objective: Quality and preference of cocoa as raw material for various mcocoa products primarily depend on fermentation techniques that modulate the resultant flavour and the phytochemical properties. This study investigated the combined effect of selected microbial consortia and bioreactors on phytochemical profiles of fermented cocoa beans.Material and Methods: Three microbial consortia labeled as Treatments (T-1, T-2, T-3 were used as starter culture (≈105cells ml-1 for on-farm cocoa fermentation on three chambers (basket, woodbox, and plastic for 7 days. These novel consortia were T-1, Staphylococcus spp + Pseudomonas spp+ Bacillus spp, T-2, Staphylococcus spp + Pseudomonas spp +L. lactis, and T-3, Bacillus spp+ Lactobacillus spp + Saccharomyces spp+ Torulopsis spp.Results and Conclusion: The microbial profile were significantly (P≤0.05 altered by all treatments (T-1, T-2, T-3 and microbial frequency was enhanced by 5 -22.5%. T-3 and T-1 significantly altered phenolic content in basket chamber. Tannin was significantly (p≤0.05 varied by T-1(basket, plastic, wood box and T-2(plastic. Tannin: polyphenol conversion ratio adopted as fermented cocoa bean quality benchmark was significantly enhanced by T-1 (basket, woodbox and T-2 (plastic, but was significantly suppressed by T-3 (basket. This study evidently concluded that the appropriate synergy of microbial flora and fermenting chambers could achieve good cocoa quality with low polyphenol content (best for cocoa beverages or high polyphenol content (best for pharmaceutical, confectionery and nutraceutical industries. These findings would avail an economic alternative to the expensive polyphenol reconstitution of cocoa butter used for various industrial products, thereby maximizing economic benefits for both cocoa farmers and industrialists.Conflict of interest: The authors declare no conflict of interest.

  3. Antioxidant and antimicrobial activities of polyphenols from ...

    African Journals Online (AJOL)

    USER

    2010-05-17

    May 17, 2010 ... population depend on them as primary health care. (Akinyemi ... The mechanism of polyphenols toxicity against microbes may be related to ... and incubated at room temperature for 3 min. ..... polyphenols in copper foliage.

  4. Hibiscus and lemon verbena polyphenols modulate appetite-related biomarkers in overweight subjects: a randomized controlled trial.

    Science.gov (United States)

    Boix-Castejón, Marina; Herranz-López, María; Pérez Gago, Alberto; Olivares-Vicente, Mariló; Caturla, Nuria; Roche, Enrique; Micol, Vicente

    2018-06-04

    Plant-derived polyphenols have shown potential to alleviate obesity-related pathologies by a multi-targeted mechanism in animal models and human intervention studies. A dietary supplement based on a combination of Lippia citriodora (LC) and Hibiscus sabdariffa (HS) polyphenolic extracts was assayed in a double blind and placebo-controlled intervention study with 54 overweight subjects. Blood pressure, body weight, height, triceps, biceps and abdominal skinfold thickness, and arm and abdominal circumferences were taken at the baseline, 30 and 60 days of the intervention period. The validated Visual Analogue Scale used to record hunger and satiety-related sensations was passed at the beginning and at 15, 30, 45 and 60 days of the intervention. Subjective health status was assessed through the validated SF-36 questionnaire at the beginning and end of the study. Finally, plasma from fasting blood samples was obtained at the beginning, 30 and 60 days of the study. The results showed an improvement of anthropometric measurements, decreased blood pressure and heart rate and a more positive perception in the overall health status. We also observed that plant polyphenols increased anorexigenic hormones (glucagon-like peptide-1) and decreased orexigenic hormones (ghrelin). Based on previous evidence we postulate that AMP-activated protein kinase may have a role in such effects through its capability to modulate energy homeostasis, total daily energy expenditure and lipid management. Although further research may be required, we propose that this polyphenolic combination may be used for weight management by increasing long-term weight loss maintenance through the modulation of appetite biomarkers. This may help to avoid the undesired weight regain typical of calorie restriction diets.

  5. A New Laccase Biosensor For Polyphenols Determination

    Directory of Open Access Journals (Sweden)

    M. J.F. Rebelo

    2003-06-01

    Full Text Available The relevance of polyphenols in human health is a well known fact. Prompted by that, a very intensive research has been directed to get a method to detect them, wich will improve the current ones. Laccase (p-diphenol:dioxygen oxidoreductase EC 1.10.3.2 is a multi-copper oxidase, wich couples catalytic oxidation of phenolic substrates with four electron reduction of dioxygen to water [1]. A maximum catalytic response in oxigenated electrolyte was observed between 4.5 and 5.5 [2], while for pH > 6.9 the laccase was found to be inactive [3]. We prepared a biosensor with laccase immobilised on a polyether sulphone membrane, at pH 4.5, wich was applied at Universal Sensors base electrode. Reduction of the product of oxidation of several polyphenols, catalysed by laccase, was done at a potential for wich the polyphenol of interest was found to respond. Reduction of catechol was found to occur at a potential of -200mV, wich is often referred to in the literature for polyphenolic biosensors. However other polyphenols did not respond at that potential. It was observed that (+- catechin produced a very large cathodic current when +100mV were applied to the laccase biosensor, both in aqueous acetate and 12% ethanol acetate buffer, whereas caffeic acid responded at -50mV. Other polyphenols tested were gallic acid, malvidin, quercetin, rutin, trans-resveratrol

  6. Anti-inflammatory effects of polyphenols in arthritis.

    Science.gov (United States)

    Oliviero, Francesca; Scanu, Anna; Zamudio-Cuevas, Yessica; Punzi, Leonardo; Spinella, Paolo

    2018-03-01

    Polyphenols have been extensively investigated with regard to their antioxidant, anti-inflammatory, and immunomodulant properties in many inflammatory chronic conditions. The aim of this review is to summarise how these compounds can modulate the inflammatory pathways which characterise the most prevalent arthropathies including osteoarthritis, rheumatoid arthritis and crystal-induced arthritis. Among polyphenols, epigallocatechin gallate, carnosol, hydroxytyrosol, curcumin, resveratrol, kaempferol and genistein have been the most widely investigated in arthritis. The most important results of the studies outlined in this article show how polyphenolic compounds are able to inhibit the expression and the release of a number of pro-inflammatory mediators and proteolytic enzymes, the activity of different transcriptional factors and the production of reactive oxygen species in vitro. Studies on animal models of rheumatoid arthritis, osteoarthritis and gout show interesting results in terms of reduced tissue damage, restored cartilage homeostasis, and decreased levels of uric acid, respectively. Despite the multiple protective effects of polyphenols, there are no dietary recommendations for patients affected by rheumatic diseases. Future studies, including intervention trials, should be conducted to determine the relevance of polyphenols consumption or supplementation in arthritis. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Wine Polyphenols: Potential Agents in Neuroprotection

    Directory of Open Access Journals (Sweden)

    Abdelkader Basli

    2012-01-01

    Full Text Available There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson’s or Alzheimer’s diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols.

  8. Extraction of 14C-labeled photosynthate from aquatic plants with dimethyl sulfoxide (DMSO)

    International Nuclear Information System (INIS)

    Filbin, G.J.; Hough, R.A.

    1984-01-01

    DMSO was tested as a solvent to extract 14 C-labeled photosynthate from three species of aquatic plants in photosynthesis measurements and compared with the dry oxidation method for plant radioassay. Extraction of ca. 300 mg of fresh or rehydrated dry plant tissue samples in 10 ml of reagent-grade DMSO for 8h at 65 0 C resulted in a stable, nonviscous solution with excellent liquid scintillation counting characteristics. Extraction efficiency was in the range of 96-99% of fixed 14 C, and precision was comparable to, or better than, that obtained with dry oxidation. The method is simple and inexpensive, and for fresh tissue the same sample extracts can be used for chlorophyll analyses

  9. Polyphenolic characterization and chromatographic methods for fast assessment of culinary Salvia species from South East Europe.

    Science.gov (United States)

    Cvetkovikj, I; Stefkov, G; Acevska, J; Stanoeva, J Petreska; Karapandzova, M; Stefova, M; Dimitrovska, A; Kulevanova, S

    2013-03-22

    Although the knowledge and use of several Salvia species (Salvia officinalis, Salvia fruticosa, and Salvia pomifera) can be dated back to Greek Era and have a long history of culinary and effective medicinal use, still there is a remarkable interest concerning their chemistry and especially the polyphenolic composition. Despite the demand in the food and pharmaceutical industry for methods for fast quality assessment of the herbs and spices, even now there are no official requirements for the minimum content of polyphenols in sage covered by current regulations neither the European Pharmacopoeia monographs nor the ISO 11165 standard. In this work a rapid analytical method for extraction, characterization and quantification of the major polyphenolic constituents in Sage was developed. Various extractions (infusion - IE; ultrasound-assisted extraction - USE and microwave-assisted extraction - MWE) were performed and evaluated for their effectiveness. Along with the optimization of the mass-detector and chromatographic parameters, the applicability of three different reverse C18 stationary phases (extra-density bonded, core-shell technology and monolith column) for polyphenolics characterization was evaluated. A comprehensive overview of the very variable polyphenolic composition of 118 different plant samples of 68 populations of wild growing culinary Salvia species (S. officinalis: 101; S. fruticosa: 15; S. pomifera: 2) collected from South East Europe (SEE) was performed using HPLC-DAD-ESI-MS(n) and more than 50 different compounds were identified and quantified. With this work the knowledge about polyphenols of culinary Sage was expanded thus the possibility for gaining an insight into the chemodiversity of culinary Salvia species in South East Europe was unlocked. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A polyphenol-enriched diet and Ascaris suum infection modulate mucosal immune responses and gut microbiota composition in pigs

    DEFF Research Database (Denmark)

    Williams, Andrew R.; Krych, Lukasz; Ahmad, Hajar Fauzan

    2017-01-01

    . suum for 14 days to assess parasite establishment, acquisition of local and systemic immune responses and effects on the gut microbiome. Despite in vitro anthelmintic activity of GP-extracts, numbers of parasite larvae in the intestine were not altered by GP-supplementation. However, the bioactive diet......Polyphenols are a class of bioactive plant secondary metabolites that are thought to have beneficial effects on gut health, such as modulation of mucosal immune and inflammatory responses and regulation of parasite burdens. Here, we examined the interactions between a polyphenol-rich diet...... supplement and infection with the enteric nematode Ascaris suum in pigs. Pigs were fed either a basal diet or the same diet supplemented with grape pomace (GP), an industrial by-product rich in polyphenols such as oligomeric proanthocyanidins. Half of the animals in each group were then inoculated with A...

  11. State of polyphenols in the drying process of fruits and vegetables.

    Science.gov (United States)

    McSweeney, M; Seetharaman, K

    2015-01-01

    This review presents an overview of drying technologies and its impact on the polyphenol content of vegetables and fruits. Polyphenols contribute to many health benefits and can act as antioxidants. Specifically an increased intake of polyphenols has been shown to decrease the incidence of cardiovascular disease; furthermore, it has been shown to help reduce the risk of neurodegenerative diseases in humans. Many researchers have reported on the effect of different drying techniques on the polyphenol content in fruits and vegetables. Polyphenol degradation mechanisms proposed in literature and pretreatments that potentially lead to higher retention of polyphenols during drying are also discussed.

  12. Distribution, and uptake by rice plants of 15N-labeled ammonium applied in mudballs in paddy soils

    International Nuclear Information System (INIS)

    Ventura, Wilbur; Yoshida, Tomio

    1978-01-01

    A 1974 field experiment determined the distribution, and uptake by rice plants, of ammonium fertilizer at 60 kg N/ha applied in mudballs into the reduced layer of paddy soil. The fertilizer-carrying mudballs were placed at the center of four hills. At the center of the plot, one 15 N-labeled mudball was applied and the 15 N content of the plants surrounding the site of placement were determined. For comparison, labeled ammonium fertilizer was basally incorporated with the entire puddled layer and a topdress application was made 39 days before heading. There was little movement of the ammonium nitrogen horizontally from the site of placement so that the distribution of 15 N was restricted to the four adjacent plant hills. The distribution of incorporated ammonium fertilizer with the puddled layer was likewise restricted to the four adjacent rice plants but topdressing, with the unavoidable disturbance of the floodwater, resulted to a wide distribution of the 15 N-labeled fertilizer. In all the methods of application, there was an uneven uptake of 15 N among four plants adjacent to the site of placement. An increase of at least 10% in the efficiency of ammonium fertilizer was obtained by the deep placement of ammoniated mudballs as compared to the common practice of incorporating the fertilizer with the puddled soil layer. Topdressing at 39 days before heading, however, was as efficient as mudballs applied at the same stage of growth. There was no significant increase in grain yield by deep placement of fertilizer because of the high initial nitrogen content of the soil. (author)

  13. Study of irradiation effect on curcuma polyphenols

    International Nuclear Information System (INIS)

    Rejeb, Imen

    2008-01-01

    The present study was carried out to evaluate the effect of gamma irradiation on curcumin (Curcuma Longa rhizome) component, particularly the polyphenolic fraction. Powdered rhizome was irradiated at 0, 5, 10 and 15 KGy (dose rate of 6 KGy / H). Polyphenolics were extracted and total polyphenols conent (TPC) was quantified using the Folin-Ciocalteau method. The irradiation effect was also evaluated by the HPLC technique. The chromatographic analysis showed that the irradiated and non-irradiated curcumin spectrum gave similar data. The antioxidant and antibacterial activities of the phenolic extracts were also assessed. the anti oxidative potential of the sample was evaluated using two radical scavenging methods with DPPH and ABTS. The antimicrobial analysis showed that the phenolic extracts of curcumin inhibited the growth of the studied microorganisms. Our results showed that irradiated samples were not affected in terms of polyphenols content and characteristics. (Author)

  14. Polyphenols in preventing endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Sylwia Biegańska-Hensoldt

    2017-03-01

    Full Text Available One of the main causes of mortality in developed countries is atherosclerosis. The pathogenesis of atherosclerosis is associated with endothelial dysfunction. Consumption of food rich in natural antioxidants including polyphenols significantly improves endothelial cells functions.Polyphenols have a beneficial effect on the human body and play an important part in protecting the cardiovascular system. Polyphenols present in food have antioxidant, anti-inflammatory, antihypertensive, antithrombotic and antiproliferative properties. Catechins cause an increase in the activity of endothelial nitric oxide synthase (eNOS and increased production of nitric oxide (NO and decrease in blood pressure. Catechins also reduce platelet adhesion, lower the concentration of C-reactive protein and tumor necrosis factor alpha and interleukin-6. Resveratrol inhibits NADPH oxidase expression, increases the expression of eNOS and NO production as well as decreases the expression of proinflammatory cytokines, and also lowers the concentration of the soluble forms of adhesion molecules – sICAM-1 and sVCAM-1 in blood. Quercetin reduces the blood level of low density lipoprotein cholesterol, lowers blood pressure, reduces the concentration of C-reactive protein and F2-isoprostane level. Curcumin has antagonistic activity to homocysteine. Curcumin increases the expression of eNOS and reduces oxidative DNA damage in rat cardiomyocytes. Numerous attempts are taken for improving the bioavailability of polyphenols in order to increase their use in the body.

  15. Separation of polyphenols and arecoline from areca nut (Areca catechu L.) by solvent extraction, its antioxidant activity, and identification of polyphenols.

    Science.gov (United States)

    Chavan, Yogita V; Singhal, Rekha S

    2013-08-15

    Areca nut (Areca catechu L.) or betel nut, a commercial cash crop, is a rich source of polyphenols but also contains toxic alkaloids, mainly arecoline. Separation of these bioactive polyphenols from toxic constituents could propel the safe and beneficial use of betel nut; also it will help arecanut processing industries to produce arecoline-free products. With the aim to develop an effective method for maximum extraction of polyphenols with minimum arecoline, several factors such as nature of the solvent, pH (2-10), substrate concentration (6-14 %) and extraction time (30-150 min) under shaking conditions were evaluated. Qualitative analysis was done using spectrophotometry and high-performance liquid chromatography (HPLC). Maximum extraction of polyphenols (407.47 mg GAE g(-1)), total tannin and its antioxidant activity with minimum arecoline (1.73 mg g(-1) of sample) was achieved by using 80% acetone at pH 4 for 90 min with 10% w/v substrate under shaking conditions. Solvent extraction under optimized parameters gave maximum polyphenols with minimum extraction of arecoline, and highest ratio of polyphenols to arecoline. HPLC and liquid chromatography-mass spectrometry results confirmed the presence of catechin and epicatechin in the extract, which suggests its potential as a source of bioactives. © 2013 Society of Chemical Industry.

  16. Non-Invasive Methodology to Estimate Polyphenol Content in Extra Virgin Olive Oil Based on Stepwise Multilinear Regression.

    Science.gov (United States)

    Martínez Gila, Diego Manuel; Cano Marchal, Pablo; Gómez Ortega, Juan; Gámez García, Javier

    2018-03-25

    Normally the olive oil quality is assessed by chemical analysis according to international standards. These norms define chemical and organoleptic markers, and depending on the markers, the olive oil can be labelled as lampante, virgin, or extra virgin olive oil (EVOO), the last being an indicator of top quality. The polyphenol content is related to EVOO organoleptic features, and different scientific works have studied the positive influence that these compounds have on human health. The works carried out in this paper are focused on studying relations between the polyphenol content in olive oil samples and its spectral response in the near infrared spectra. In this context, several acquisition parameters have been assessed to optimize the measurement process within the virgin olive oil production process. The best regression model reached a mean error value of 156.14 mg/kg in leave one out cross validation, and the higher regression coefficient was 0.81 through holdout validation.

  17. Non-Invasive Methodology to Estimate Polyphenol Content in Extra Virgin Olive Oil Based on Stepwise Multilinear Regression

    Directory of Open Access Journals (Sweden)

    Diego Manuel Martínez Gila

    2018-03-01

    Full Text Available Normally the olive oil quality is assessed by chemical analysis according to international standards. These norms define chemical and organoleptic markers, and depending on the markers, the olive oil can be labelled as lampante, virgin, or extra virgin olive oil (EVOO, the last being an indicator of top quality. The polyphenol content is related to EVOO organoleptic features, and different scientific works have studied the positive influence that these compounds have on human health. The works carried out in this paper are focused on studying relations between the polyphenol content in olive oil samples and its spectral response in the near infrared spectra. In this context, several acquisition parameters have been assessed to optimize the measurement process within the virgin olive oil production process. The best regression model reached a mean error value of 156.14 mg/kg in leave one out cross validation, and the higher regression coefficient was 0.81 through holdout validation.

  18. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility

    Science.gov (United States)

    Ozdal, Tugba; Sela, David A.; Xiao, Jianbo; Boyacioglu, Dilek; Chen, Fang; Capanoglu, Esra

    2016-01-01

    As of late, polyphenols have increasingly interested the scientific community due to their proposed health benefits. Much of this attention has focused on their bioavailability. Polyphenol–gut microbiota interactions should be considered to understand their biological functions. The dichotomy between the biotransformation of polyphenols into their metabolites by gut microbiota and the modulation of gut microbiota composition by polyphenols contributes to positive health outcomes. Although there are many studies on the in vivo bioavailability of polyphenols, the mutual relationship between polyphenols and gut microbiota is not fully understood. This review focuses on the biotransformation of polyphenols by gut microbiota, modulation of gut microbiota by polyphenols, and the effects of these two-way mutual interactions on polyphenol bioavailability, and ultimately, human health. PMID:26861391

  19. Population-based nutrikinetic modeling of polyphenol exposure

    NARCIS (Netherlands)

    van Velzen, E.J.J.; Westerhuis, J.A.; Grün, C.H.; Jacobs, D.M.; Eilers, P.H.C.; Mulder, Th.P.; Foltz, M.; Garczarek, U.; Kemperman, R.; Vaughan, E. E.; van Duynhoven, J.P.M.; Smilde, A.K.

    2014-01-01

    The beneficial health effects of fruits and vegetables have been attributed to their polyphenol content. These compounds undergo many bioconversions in the body. Modeling polyphenol exposure of humans upon intake is a prerequisite for understanding the modulating effect of the food matrix and the

  20. Polyphenols From Cutch Tree (Acacia catechu Willd.: Normalize In Vitro Oxidative Stress and Exerts Antiproliferative Activity

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar

    2017-10-01

    Full Text Available ABSTRACT Oxidative stress, being the main cause of most of the human diseases, has always been the highlight of research worldwide. This stress can be overcome by administration of natural polyphenols. The Acacia catechu Willd. has many refrences available in Ayurveda as important disease curative plant. Its leaves are investigated for ameliorating oxidative stress in present work. Leaves of A. catechu were extracted with 80% methanol to get methanol extract (AME. It was assessed for antioxidant activity using DPPH, ABTS, CUPRAC, ferric ion reducing, superoxide scavenging and peroxyl radical scavenging assays. DNA protective activity was also investigated using plasmid nicking assay. Further, antiproliferative activity was determined using MTT assay in various human cancer cell lines. The quantification of polyphenols was done by UHPLC analysis. Results confirmed that polyphenols of A. catechu were successful in normalizing oxidative stress. AME was found to be most effective in scavenging ABTS radicals while least effective in scavenging ferric ions. UHPLC analysis showed abundance of ellagic acid, rutin and quercetin in AME. Further, AME showed maximum antiproliferative activity against Hep G2 cancer cells. It is concluded that the polyphenols from A. catechu effectively remediates oxidative stress and hence can be used in curing numerous dreadful diseases.

  1. Spirit drinks: a source of dietary polyphenols

    Directory of Open Access Journals (Sweden)

    Sanja Posavec

    2012-01-01

    Full Text Available There is a long tradition in the production of spirit drinks and using them in the human diet, especially in the Southeast European and Mediterranean regions. The objective of this study was to evaluate whether and which spirits can serve, and to what extent, as a source of biologically active compounds in the human diet. Polyphenolic compounds are biologically active compounds of fruits, vegetables and derived beverages, which have been implicated in their antioxidant activity. Therefore, the total polyphenol content (TPC and antioxidative properties of 46 spirit drinks and liqueurs produced in Croatia were examined. The total polyphenol content and antioxidant activity were estimated using spectrophotometric methods (Folin-Ciocalteu, DPPH and FRAP, while certain phenols were detected by the HPLC. It was established that spirit drinks aged in wooden casks, such as wine or plum brandy, contain polyphenols ranging from 40-90 mg GAE/L (gallic acid equivalents, whereas walnut or sour cherry liquors contain much more polyphenols ranging from 680-3360 mg GAE/L. The antioxidant activity of analyzed spirit drinks was in correlation with TPC. Walnut and sour cherry liqueur samples had very high antioxidant activity, within the range of those obtained with 1.26 mM Trolox-DPPH assay and 9.5 mM Trolox-FRAP assay.

  2. Interactions between CYP3A4 and Dietary Polyphenols

    Directory of Open Access Journals (Sweden)

    Loai Basheer

    2015-01-01

    Full Text Available The human cytochrome P450 enzymes (P450s catalyze oxidative reactions of a broad spectrum of substrates and play a critical role in the metabolism of xenobiotics, such as drugs and dietary compounds. CYP3A4 is known to be the main enzyme involved in the metabolism of drugs and most other xenobiotics. Dietary compounds, of which polyphenolics are the most studied, have been shown to interact with CYP3A4 and alter its expression and activity. Traditionally, the liver was considered the prime site of CYP3A-mediated first-pass metabolic extraction, but in vitro and in vivo studies now suggest that the small intestine can be of equal or even greater importance for the metabolism of polyphenolics and drugs. Recent studies have pointed to the role of gut microbiota in the metabolic fate of polyphenolics in human, suggesting their involvement in the complex interactions between dietary polyphenols and CYP3A4. Last but not least, all the above suggests that coadministration of drugs and foods that are rich in polyphenols is expected to stimulate undesirable clinical consequences. This review focuses on interactions between dietary polyphenols and CYP3A4 as they relate to structural considerations, food-drug interactions, and potential negative consequences of interactions between CYP3A4 and polyphenols.

  3. Specific polyphenols and tannins are associated with defense against insect herbivores in the tropical oak Quercus oleoides.

    Science.gov (United States)

    Moctezuma, Coral; Hammerbacher, Almuth; Heil, Martin; Gershenzon, Jonathan; Méndez-Alonzo, Rodrigo; Oyama, Ken

    2014-05-01

    The role of plant polyphenols as defenses against insect herbivores is controversial. We combined correlative field studies across three geographic regions (Northern Mexico, Southern Mexico, and Costa Rica) with induction experiments under controlled conditions to search for candidate compounds that might play a defensive role in the foliage of the tropical oak, Quercus oleoides. We quantified leaf damage caused by four herbivore guilds (chewers, skeletonizers, leaf miners, and gall forming insects) and analyzed the content of 18 polyphenols (including hydrolyzable tannins, flavan-3-ols, and flavonol glycosides) in the same set of leaves using high performance liquid chromatography and mass spectrometry. Foliar damage ranged from two to eight percent per region, and nearly 90% of all the damage was caused by chewing herbivores. Damage due to chewing herbivores was positively correlated with acutissimin B, catechin, and catechin dimer, and damage by mining herbivores was positively correlated with mongolinin A. By contrast, gall presence was negatively correlated with vescalagin and acutissimin B. By using redundancy analysis, we searched for the combinations of polyphenols that were associated to natural herbivory: the combination of mongolinin A and acutissimin B had the highest association to herbivory. In a common garden experiment with oak saplings, artificial damage increased the content of acutissimin B, mongolinin A, and vescalagin, whereas the content of catechin decreased. Specific polyphenols, either individually or in combination, rather than total polyphenols, were associated with standing leaf damage in this tropical oak. Future studies aimed at understanding the ecological role of polyphenols can use similar correlative studies to identify candidate compounds that could be used individually and in biologically meaningful combinations in tests with herbivores and pathogens.

  4. Green Tea and Other Tea Polyphenols: Effects on Sebum Production and Acne Vulgaris

    Directory of Open Access Journals (Sweden)

    Suzana Saric

    2016-12-01

    Full Text Available Polyphenols are antioxidant molecules found in many foods including nuts, fruits, vegetables, chocolate, wine, and tea. Polyphenols have antimicrobial, anti-inflammatory, and antineoplastic properties. Recent studies suggest that tea polyphenols may be used for reducing sebum production in the skin and for treatment of acne vulgaris. This review examines the evidence for use of topically and orally ingested tea polyphenols against sebum production and for acne treatment and prevention. The PubMed database was searched for studies on tea polyphenols, sebum secretion, and acne vulgaris. Of the 59 studies found, eight met the inclusion criteria. Two studies evaluated tea polyphenol effects on sebum production; six studies examined tea polyphenol effects on acne vulgaris. Seven studies evaluated topical tea polyphenols; one study examined systemic tea polyphenols. None of the studies evaluated both topical and systemic tea polyphenols. Tea polyphenol sources included green tea (six studies and tea, type not specified (two studies. Overall, there is some evidence that tea polyphenols in topical formulation may be beneficial in reducing sebum secretion and in treatment of acne. Research studies of high quality and with large sample sizes are needed to assess the efficacy of tea polyphenols in topical and oral prevention of acne vulgaris and lipid synthesis by the sebaceous glands.

  5. Antioxidant and Antimicrobial Activity of Polyphenol Extracts from ...

    African Journals Online (AJOL)

    Methods: Polyphenol content was determined using spectrophotometric and High performance liquid ... Keywords: European cornel, Blackthorn, Wild blackberry, Polyphenols, Antioxidant, Antimicrobial. Tropical ... Acetonitrile, and acetic acid of HPLC-grade were ..... Anthocyanin Quantification and radical scavenging.

  6. Analytical techniques for the study of polyphenol-protein interactions.

    Science.gov (United States)

    Poklar Ulrih, Nataša

    2017-07-03

    This mini review focuses on advances in biophysical techniques to study polyphenol interactions with proteins. Polyphenols have many beneficial pharmacological properties, as a result of which they have been the subject of intensive studies. The most conventional techniques described here can be divided into three groups: (i) methods used for screening (in-situ methods); (ii) methods used to gain insight into the mechanisms of polyphenol-protein interactions; and (iii) methods used to study protein aggregation and precipitation. All of these methods used to study polyphenol-protein interactions are based on modifications to the physicochemical properties of the polyphenols or proteins after binding/complex formation in solution. To date, numerous review articles have been published in the field of polyphenols. This review will give a brief insight in computational methods and biosensors and cell-based methods, spectroscopic methods including fluorescence emission, UV-vis adsorption, circular dichroism, Fourier transform infrared and mass spectrometry, nuclear magnetic resonance, X-ray diffraction, and light scattering techniques including small-angle X-ray scattering and small-angle neutron scattering, and calorimetric techniques (isothermal titration calorimetry and differential scanning calorimetry), microscopy, the techniques which have been successfully used for polyphenol-protein interactions. At the end the new methods based on single molecule detection with high potential to study polyphenol-protein interactions will be presented. The advantages and disadvantages of each technique will be discussed as well as the thermodynamic, kinetic or structural parameters, which can be obtained. The other relevant biophysical experimental techniques that have proven to be valuable, such electrochemical methods, hydrodynamic techniques and chromatographic techniques will not be described here.

  7. Nitrogen-15 labeling of Crotalaria juncea green manure

    International Nuclear Information System (INIS)

    Ambrosano, Edmilson Jose; Rossetto, Raffaella; Trivelin, Paulo Cesar Ocheuze; Muraoka, Takashi; Bendassolli, Jose Albertino; Cantarella, Heitor; Ambrosano, Glaucia Maria Bovi; Tamiso, Luciano Grassi; Vieira, Felipe de Campos; Prada Neto, Ithamar

    2003-01-01

    Most studies dealing with the utilization of 15 N labeled plant material do not present details about the labeling technique. This is especially relevant for legume species since biological nitrogen fixation difficult plant enrichment. A technique was developed for labeling leguminous plant tissue with 15 N to obtain labeled material for nitrogen dynamics studies. Sun hemp (Crotalaria juncea L.) was grown on a Paleudalf, under field conditions. An amount of 58.32 g of urea with 70.57± 0.04 atom % 15 N was sprayed three times on plants grown on eight 6-m2-plots. The labelled material presented 2.412 atom % 15 N in a total dry matter equivalent to 9 Mg ha -1 This degree of enrichment enables the use of the green manure in pot or field experiments requiring 15 N-labeled material. (author)

  8. Absorption, metabolism and protective role of fruits and vegetables polyphenols against gastric cancer.

    Science.gov (United States)

    Metere, A; Giacomelli, L

    2017-12-01

    Growing evidence links free radicals to the aging processes, degenerative diseases and cancer, underlying the important role played by some antioxidants, as polyphenols, present in fruits and vegetables, which seem able to counteract the toxic effects induced by oxidative stress. The gastrointestinal tract is continuously exposed to oxidant and antioxidant substances and, in particular in this district, the food rich in antioxidants could exert a protective effect against the risk of cancer. Polyphenols have a direct protective effect on the gastrointestinal tract, detoxifying the Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), preserving antioxidant proteins and complexing metals. Although polyphenols are a class of antioxidant largely represented in vegetables and fruits, we are still uncertain whether the beneficial effects of a diet rich in plant products, are mainly due to these compounds. Our knowledge does not allow to be sure about which antioxidants are capable of having therapeutic effects, through which mechanism, the exact therapeutic dose or how long they have to be taken to have a significant protective effect. In this review we take into account the most common antioxidants, usually found in the diet and the processes regulating their absorption, metabolism and excretion, in order to elucidate the mechanism that could be responsible for the protection against cancer.

  9. Antibacterial Activity of Different Plant Extracts and Phenolic Phytochemicals Tested on Paenibacillus Larvae Bacteria

    Directory of Open Access Journals (Sweden)

    Liviu Mărghitaş

    2011-10-01

    Full Text Available Paenibacillus larvae, a Gram-positive and spore-forming bacterium is responsible for American foulbrood disease inbees. The antimicrobial activity of different plant extracts and phenolic phytochemical was evaluated onPaenibacillus larvae bacteria. In addition possible correlation with antioxidant activity of the same plant extracts wasstudied. Extracts of the following plants were utilized: Achillea millefolium (yarrow, Ocimum basilicum (basil,Thymus vulgaris (thyme and Urtica dioica (nettle. The extracts that showed antimicrobial activity were later testedto determine the Minimal Inhibitory Concentration (MIC. Although nettle present the lowest polyphenolic contentcompared with the other plant extracts, exhibit the highest antimicrobial activity, measured as the inhibition zoneusing Mueller-Hinton agar plates. Basil presented both polyphenolic content and antimicrobial activity at higherlevels, while thyme had the lowest antimicrobial activity, even it present high amount of polyphenols.

  10. Estimated Dietary Polyphenol Intake and Major Food and Beverage Sources among Elderly Japanese

    Directory of Open Access Journals (Sweden)

    Chie Taguchi

    2015-12-01

    Full Text Available Estimating polyphenol intake contributes to the understanding of polyphenols’ health benefits. However, information about human polyphenol intake is scarce, especially in the elderly. This study aimed to estimate the dietary intake and major sources of polyphenols and to determine whether there is any relationship between polyphenol intake and micronutrient intake in healthy elderly Japanese. First, 610 subjects (569 men, 41 women; aged 67.3 ± 6.1 years completed food frequency questionnaires. We then calculated their total polyphenol intake using our polyphenol content database. Their average total polyphenol intake was 1492 ± 665 mg/day, the greatest part of which was provided by beverages (79.1%. The daily polyphenol intake differed largely among individuals (183–4854 mg/day, also attributable mostly to beverage consumption. Coffee (43.2% and green tea (26.6% were the major sources of total polyphenol; the top 20 food items accounted for >90%. The polyphenol intake did not strongly correlate with the intake of any micronutrient, suggesting that polyphenols may exert health benefits independently of nutritional intake. The polyphenol intake in this elderly population was slightly higher than previous data in Japanese adults, and beverages such as coffee and green tea contributed highly to the intake.

  11. Characterization of tea polyphenols as potential environment-friendly fire retardants

    Science.gov (United States)

    Yao, Fengqi; Zhai, Chunjie; Wang, Haihui; Tao, Junjun

    2018-02-01

    In this work we investigated the oxidation properties of tea polyphenols and their potential as the fire retardants. Two types of tea polyphenols were adopted, which were extracted from red tea and green tea leaves, respectively. Their macroscopic performance during pyrolysis and oxidation at elevated temperatures were examined by using a heating furnace. Mass change, heat evolution and gas products of tea polyphenols during heating in air were also monitored by using a thermo-gravimetric analyzer (TGA) integrated with a differential scanning calorimeter (DSC) in conjunction with online Fourier Transform Infrared Spectroscopy (FTIR) and mass spectroscopy (MS). A tea polyphenol sample first becomes a brown semi-fluid after heating, and gradually turns into highly-porous black chars with significantly expanded volume. By raising the temperature to ∼550 °C at a rate of 10 °C/min, the mass of a sample reduces by nearly 70% to form a large quantity of inert gases that are mainly composed of H2O and CO2. It was found that the aerial oxidation products of tea polyphenols in the solid phase possess good heat insulation property; meanwhile, the substantial release of a lot of water and its evaporation during oxidation of tea polyphenols removes a large amount of heat from a sample located in a heating environment. The heat insulation of tea polyphenols may withstand up to 550 °C. The present work confirms tea polyphenols as potential superior and environment-friendly fire retardants.

  12. Polyphenol Stilbenes from Fenugreek (Trigonella foenum-graecum L. Seeds Improve Insulin Sensitivity and Mitochondrial Function in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Gang Li

    2018-01-01

    Full Text Available Fenugreek (Trigonella foenum-graecum L. is a well-known annual plant that is widely distributed worldwide and has possessed obvious hypoglycemic and hypercholesterolemia characteristics. In our previous study, three polyphenol stilbenes were separated from fenugreek seeds. Here, we investigated the effect of polyphenol stilbenes on adipogenesis and insulin resistance in 3T3-L1 adipocytes. Oil Red O staining and triglyceride assays showed that polyphenol stilbenes differently reduced lipid accumulation by suppressing the expression of adipocyte-specific proteins. In addition, polyphenol stilbenes improved the uptake of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-ylamino-2-deoxyglucose (2-NBDG by promoting the phosphorylation of protein kinase B (AKT and AMP-activated protein kinase (AMPK. In present studies, it was found that polyphenol stilbenes had the ability to scavenge reactive oxygen species (ROS. Results from adenosine triphosphate (ATP production and mitochondrial membrane potentials suggested that mitochondria play a critical role in insulin resistance and related signaling activation, such as AKT and AMPK. Rhaponticin, one of the stilbenes from fenugreek, had the strongest activity among the three compounds in vitro. Future studies will focus on mitochondrial biogenesis and function.

  13. Labelling plants the Chernobyl way: A new approach for mapping rhizodeposition and biopore reuse

    Science.gov (United States)

    Banfield, Callum; Kuzyakov, Yakov

    2016-04-01

    A novel approach for mapping root distribution and rhizodeposition using 137Cs and 14C was applied. By immersing cut leaves into vials containing 137CsCl solution, the 137Cs label is taken up and partly released into the rhizosphere, where it strongly binds to soil particles, thus labelling the distribution of root channels in the long term. Reuse of root channels in crop rotations can be determined by labelling the first crop with 137Cs and the following crop with 14C. Imaging of the β- radiation with strongly differing energies differentiates active roots growing in existing root channels (14C + 137Cs activity) from roots growing in bulk soil (14C activity only). The feasibility of the approach was shown in a pot experiment with ten plants of two species, Cichorium intybus L., and Medicago sativa L. The same plants were each labelled with 100 kBq of 137CsCl and after one week with 500 kBq of 14CO2. 96 h later pots were cut horizontally at 6 cm depth. After the first 137Cs + 14C imaging of the cut surface, imaging was repeated with three layers of plastic film between the cut surface and the plate for complete shielding of 14C β- radiation to the background level, producing an image of the 137Cs distribution. Subtracting the second image from the first gave the 14C image. Both species allocated 18 - 22% of the 137Cs and about 30 - 40% of 14C activity below ground. Intensities far above the detection limit suggest that this approach is applicable to map the root system by 137Cs and to obtain root size distributions through image processing. The rhizosphere boundary was defined by the point at which rhizodeposited 14C activity declined to 5% of the activity of the root centre. Medicago showed 25% smaller rhizosphere extension than Cichorium, demonstrating that plant-specific rhizodeposition patterns can be distinguished. Our new approach is appropriate to visualise processes and hotspots on multiple scales: Heterogeneous rhizodeposition, as well as size and counts

  14. The changes of the polyphenol content and antioxidant activity in potato tubers (Solanum tuberosum L. due to nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Diana Hrabovská

    2013-11-01

    Full Text Available 96 Normal 0 false false false CS JA X-NONE Cultivar is one of the most important internal factors affecting polyphenol concentration in the plants. However, influence of the grown locality, climate conditions and way of cultivation belong to important external factors. In our experiment the influence of different nitrogen doses (0 - 40 - 80 - 120 - 160 - 240 kg N.ha-1 applied in the form of Vermikompost on the total polyphenol content and derived total antioxidant activity in cv. Sorento were investigated. While in the 1st - 5th variants the determined polyphenol content in dry mater of potato tubers decreased from 399.2 to 70.40 mg.kg-1, in the 6th variant that was twice higher in comparison to the 5th variants (135.6 mg.kg-1. The statistically significant differences in values of total polyphenol content between variants (polynomial function of 2nd degree were confirmed. The study also confirmed a strong statistical correlation between the content of polyphenols and the content of antioxidant activity has been confirmed (sign. F: 3.24E-10. The highest value of antioxidant activity was observed in the first variant. From the first to the fifth variant (7.62 - 4.84%, the value of antioxidant activity was decreasing and in the sixth variant this value increased to 6.31%.

  15. Interactions between yeast lees and wine polyphenols during simulation of wine aging. II. Analysis of desorbed polyphenol compounds from yeast lees.

    Science.gov (United States)

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2006-05-31

    In the first part of this work, the analysis of the polyphenolic compounds remaining in the wine after different contact times with yeast lees during simulation of red wine aging was undertaken. To achieve a more precise view of the wine polyphenols adsorbed on lees during red wine aging and to establish a clear balance between adsorbed and remnant polyphenol compounds, the specific analysis of the chemical composition of the adsorbed polyphenolic compounds (condensed tannins and anthocyanins) after their partial desorbtion from yeast lees by denaturation treatments was realized in the second part of the study. The total recovery of polyphenol compounds from yeast lees was not complete, since a rather important part of the initial wine colored polyphenols, especially those with a dominant blue color component, remained strongly adsorbed on yeast lees, as monitored by color tristimulus and reflectance spectra measurements. All anthocyanins were recovered at a rather high percentage (about 62%), and it was demonstrated that they were not adsorbed in relation with their sole polarity. Very few monomeric phenolic compounds were extracted from yeast lees. With the use of drastic denaturing treatments, the total recovery of condensed tannins reached 83%. Such tannins extracted from yeast lees exhibited very high polymeric size and a rather high percentage of galloylated residues by comparison with initial wine tannins, indicating that nonpolar tannins were preferentially desorbed from yeast lees by the extraction treatments.

  16. Polyphenols as Modulators of Aquaporin Family in Health and Disease

    Directory of Open Access Journals (Sweden)

    Diana Fiorentini

    2015-01-01

    Full Text Available Polyphenols are bioactive molecules widely distributed in fruits, vegetables, cereals, and beverages. Polyphenols in food sources are extensively studied for their role in the maintenance of human health and in the protection against development of chronic/degenerative diseases. Polyphenols act mainly as antioxidant molecules, protecting cell constituents against oxidative damage. The enormous number of polyphenolic compounds leads to huge different mechanisms of action not fully understood. Recently, some evidence is emerging about the role of polyphenols, such as curcumin, pinocembrin, resveratrol, and quercetin, in modulating the activity of some aquaporin (AQP isoforms. AQPs are integral, small hydrophobic water channel proteins, extensively expressed in many organs and tissues, whose major function is to facilitate the transport of water or glycerol over cell plasma membranes. Here we summarize AQP physiological functions and report emerging evidence on the implication of these proteins in a number of pathophysiological processes. In particular, this review offers an overview about the role of AQPs in brain, eye, skin diseases, and metabolic syndrome, focusing on the ability of polyphenols to modulate AQP expression. This original analysis can contribute to elucidating some peculiar effects exerted by polyphenols and can lead to the development of an innovative potential preventive/therapeutic strategy.

  17. Polyphenols as Modulators of Aquaporin Family in Health and Disease.

    Science.gov (United States)

    Fiorentini, Diana; Zambonin, Laura; Dalla Sega, Francesco Vieceli; Hrelia, Silvana

    2015-01-01

    Polyphenols are bioactive molecules widely distributed in fruits, vegetables, cereals, and beverages. Polyphenols in food sources are extensively studied for their role in the maintenance of human health and in the protection against development of chronic/degenerative diseases. Polyphenols act mainly as antioxidant molecules, protecting cell constituents against oxidative damage. The enormous number of polyphenolic compounds leads to huge different mechanisms of action not fully understood. Recently, some evidence is emerging about the role of polyphenols, such as curcumin, pinocembrin, resveratrol, and quercetin, in modulating the activity of some aquaporin (AQP) isoforms. AQPs are integral, small hydrophobic water channel proteins, extensively expressed in many organs and tissues, whose major function is to facilitate the transport of water or glycerol over cell plasma membranes. Here we summarize AQP physiological functions and report emerging evidence on the implication of these proteins in a number of pathophysiological processes. In particular, this review offers an overview about the role of AQPs in brain, eye, skin diseases, and metabolic syndrome, focusing on the ability of polyphenols to modulate AQP expression. This original analysis can contribute to elucidating some peculiar effects exerted by polyphenols and can lead to the development of an innovative potential preventive/therapeutic strategy.

  18. Effects of water blanching on polyphenol reaction kinetics and quality of cocoa beans

    Science.gov (United States)

    Menon, A. S.; Hii, C. L.; Law, C. L.; Suzannah, S.; Djaeni, M.

    2015-12-01

    Several studies have been reported on the potential health benefits of cocoa polyphenols. However, drying has an inhibitory effect on the substantial recovery of cocoa polyphenols. This is majorly because of the high degradation of polyphenol compounds as well as the enhanced activity of polyphenol oxidases; a pre-cursor for browning of polyphenols during drying. Pre-treatment technique such as water blanching (80° and 90°C for 5 min, 10 min and 15 min exposure times respectively) can inactivate the polyphenol oxidases enzyme and promote high percent of the polyphenol recovery in dried cocoa bean. The degradation kinetics of cocoa polyphenols during hot water blanching are analyzed; The rate constant for the polyphenol degradation after blanching was found to be ranging from 0.0208 to 0.0340 /min. The results for dried fresh cocoa beans showed an optimal level of polyphenol recovery (118 mg GAE/g) when blanched at 90°C for 5 minutes duration. The antioxidant activity is also analyzed using DPPH scavenging assay.

  19. Interactions between yeast lees and wine polyphenols during simulation of wine aging: I. Analysis of remnant polyphenolic compounds in the resulting wines.

    Science.gov (United States)

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2005-07-13

    Wine aging on yeast lees is a traditional enological practice used during the manufacture of wines. This technique has increased in popularity in recent years for the aging of red wines. Although wine polyphenols interact with yeast lees to a limited extent, such interactions have a large effect on the reactivity toward oxygen of wine polyphenolic compounds and yeast lees. Various domains of the yeast cell wall are protected by wine polyphenols from the action of extracellular hydrolytic enzymatic activities. Polysaccharides released during autolysis are thought to exert a significant effect on the sensory qualities of wine. We studied the chemical composition of polyphenolic compounds remaining in solution or adsorbed on yeast lees after various contact times during the simulation of wine aging. The analysis of the remnant polyphenols in the wine indicated that wine polyphenols adsorption on yeast lees follows biphasic kinetics. An initial and rapid fixation is followed by a slow, constant, and saturating fixation that reaches its maximum after about 1 week. Only very few monomeric phenolic compounds remained adsorbed on yeast lees, and no preferential adsorption of low or high polymeric size tannins occurred. The remnant condensed tannins in the wine contained fewer epigallocatechin units than the initial tannins, indicating that polar condensed tannins were preferentially adsorbed on yeast lees. Conversely, the efficiency of anthocyanin adsorption on yeast lees was unrelated to its polarity.

  20. Modulation of neurotrophic signaling pathways by polyphenols

    Directory of Open Access Journals (Sweden)

    Moosavi F

    2015-12-01

    Full Text Available Fatemeh Moosavi,1,2 Razieh Hosseini,1,2 Luciano Saso,3 Omidreza Firuzi1 1Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; 2Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran; 3Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy Abstract: Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK and phosphoinositide 3-kinase (PI3K/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate

  1. Circadian rhythm in ''1''5O-labeled water uptake manner of a soybean plant by PETIS (Positron Emitting Tracer Imaging System)

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.; Yokota, Harumi; Tanoi, Keitaro; Furukawa, Jun; Ikeue, Natsuko; Ookuni, Yoko; Uchida, Hiroshi; Tsuji, Atsunori

    2001-01-01

    We present a circadian rhythm of water uptake manner in a soybean plant through realtime imaging of water, labeled with 15 O. Nitrogen gas was irradiated with deuterons accelerated by a cyclotron at Hamamatsu Photonics Co. to produce 15 O-labeled water. Then the 15 O-labeled water was supplied to a soybean plant from the root and the realtime water uptake amount was measured for 20 min by Positron Emitting Tracer Imaging System (PETIS). All the targeting positions for the measurements were stems, two points at an internode between root and the first leaves, between the first leaves and the first trifoliates and between the first trifoliates and the second trifoliates. The water uptake amount was gradually increased and showed its maximum at around 13:00, especially at the basal part of the stem. Then the water uptake activity was gradually decreased until 17:00. The water amount taken up by a plant at 13:00 was about 40% higher than that at 17:00. (author)

  2. Metabolic fate of polyphenols in the human superorganism

    NARCIS (Netherlands)

    van Duynhoven, J.; Vaughan, E. E.; Jacobs, D.M.; Kemperman, R. A.; van Velzen, E.J.J.; Gross, G.; Roger, L. C.; Possemiers, S.; Smilde, A.K.; Doré, J.; Westerhuis, J.A.; van der Wiele, T.

    2011-01-01

    Dietary polyphenols are components of many foods such as tea, fruit, and vegetables and are associated with several beneficial health effects although, so far, largely based on epidemiological studies. The intact forms of complex dietary polyphenols have limited bioavailability, with low circulating

  3. Antioxidant and Antimicrobial Activity of Polyphenol Extracts from ...

    African Journals Online (AJOL)

    Purpose: To assess the antioxidant and antimicrobial activities of polyphenolic extracts of three wild red wild berry fruit species from Southeast Serbia, viz, European cornel (Cornus mas), blackthorn (Prunus spinosa L.) and wild blackberry (Rubus fruticosus). Methods: Polyphenol content was determined using ...

  4. Nanostructured lipid carriers employing polyphenols as promising anticancer agents: Quality by design (QbD) approach.

    Science.gov (United States)

    Bhise, Ketki; Kashaw, Sushil Kumar; Sau, Samaresh; Iyer, Arun K

    2017-06-30

    Cancer is one of the leading causes of death worldwide. There are several hurdles in cancer therapy because of side-effects which limits its usage. Nanoparticulate drug delivery systems have been tested against cancer in a range of scientific studies. In the recent years, advanced research on Nanostructured Lipid Carriers (NLCs) has garnered considerable attention owing to the advantages over their first-generation counterparts, Solid Lipid Nanoparticles (SLN). NLCs facilitate efficient loading of poorly water soluble drugs with simple methods of drug loading. Recently, there is an increased interest in polyphenols because of the evidence of their promising role in prevention of cancer. Polyphenols are produced as secondary metabolites by plants. Their role in prevention of development of tumors through variety of mechanisms and reduction of tumor cell mass has been reported. This article aims to review the science behind development of NLCs and role of polyphenols as promising anticancer agents. Principles of Quality by Design (QbD) have also been explained which are used in formulation-development of many nanoparticles, including NLCs, as reported in literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Bone health nutraceuticals alter microarray mRNA gene expression: A randomized, parallel, open-label clinical study.

    Science.gov (United States)

    Lin, Yumei; Kazlova, Valentina; Ramakrishnan, Shyam; Murray, Mary A; Fast, David; Chandra, Amitabh; Gellenbeck, Kevin W

    2016-01-15

    Dietary intake of fruits and vegetables has been suggested to have a role in promoting bone health. More specifically, the polyphenols they contain have been linked to physiological effects related to bone mineral density and bone metabolism. In this research, we use standard microarray analyses of peripheral whole blood from post-menopausal women treated with two fixed combinations of plant extracts standardized to polyphenol content to identify differentially expressed genes relevant to bone health. In this 28-day open-label study, healthy post-menopausal women were randomized into three groups, each receiving one of three investigational fixed combinations of plant extracts: an anti-resorptive (AR) combination of pomegranate fruit (Punica granatum L.) and grape seed (Vitis vinifera L.) extracts; a bone formation (BF) combination of quercetin (Dimorphandra mollis Benth) and licorice (Glycyrrhiza glabra L.) extracts; and a fixed combination of all four plant extracts (AR plus BF). Standard microarray analysis was performed on peripheral whole blood samples taken before and after each treatment. Annotated genes were analyzed for their association to bone health by comparison to a gene library. The AR combination down-regulated a number of genes involved in reduction of bone resorption including cathepsin G (CTSG) and tachykinin receptor 1 (TACR1). The AR combination also up-regulated genes associated with formation of extracellular matrix including heparan sulfate proteoglycan 2 (HSPG2) and hyaluronoglucosaminidase 1 (HYAL1). In contrast, treatment with the BF combination resulted in up-regulation of bone morphogenetic protein 2 (BMP-2) and COL1A1 (collagen type I α1) genes which are linked to bone and collagen formation while down-regulating genes linked to osteoclastogenesis. Treatment with a combination of all four plant extracts had a distinctly different effect on gene expression than the results of the AR and BF combinations individually. These results could

  6. Chromatographic Methods for the Analysis of Polyphenols in Wines

    Directory of Open Access Journals (Sweden)

    Medić-Šarić, M.

    2009-03-01

    Full Text Available Wine is an excellent source of various classes of polyphenols, including phenolic acids, flavonoids, and trihydroxystilbene resveratrol (Fig.1. Polyphenols play a major role in wine quality since they contribute to the sensory characteristics of wine, particularly color and astringency. A recent interest in these substances has been stimulated by abundant evidence of their beneficial effects on human health, such as anticarcinogenic, antiinflamatory and antimicrobial activities. Therefore, numerous studies have been performed in the attempt to analyze polyphenols in wine. This paper reviews the current advances in the determination of polyphenols in wine by the major chromatographic techniques such as thin-layer chromatography (TLC and high-performance liquid chromatography (HPLC.The great complexity of the polyphenolic content of wine and the difficulty in obtaining some of the standards usually require sample preparation before analysis. Two methods for sample preparation, liquid-liquid extraction and solid-phase extraction, are most commonly applied. Hydrolysis is applied frequently, but not exclusively, to remove the sugar moieties from glycosides.TLC on silica gel plates is useful for the rapid and low-cost separation and identification of the polyphenols present in wine (Fig. 2. Densitometric quantitative analysis of polyphenols in wine extracts is usually performed by scanning the TLC plates with UV light at wavelengths of 350–365 nm or 250–260 nm (Fig. 3. For the evaluation of the most efficient mobile phase and an optimal choice of the combination of two or more mobile phases, two methods may be applied: information theory and numerical taxonomy. HPLC currently represents the most popular technique for the analysis of polyphenols in wine. For this purpose, a reversed-phase HPLC method that uses gradient elution with binary elution system is usually employed. Routine detection is based on measurement of UV-Vis absorption with a diode

  7. Polyphenol-Rich Lentils and Their Health Promoting Effects

    Directory of Open Access Journals (Sweden)

    Kumar Ganesan

    2017-11-01

    Full Text Available Lentil (Lens culinaris; Family: Fabaceae is a potential functional dietary ingredient which has polyphenol-rich content. Several studies have demonstrated that the consumption of lentil is immensely connected to the reduction in the incidence of diseases such as diabetes, obesity, cancers and cardiovascular diseases due to its bioactive compounds. There has been increasing scientific interest in the study area of lentils as the functional food due to its high nutritive value, polyphenols, and other bioactive compounds. These polyphenols and the bioactive compounds found in lentil play an important role in the prevention of those degenerative diseases in humans. Besides that, it has health-promoting effects. Based on the in vitro, in-vivo and clinical studies, the present review focuses to provide more information on the nutritional compositions, bioactive compounds including polyphenols and health-promoting effects of lentils. Health-promoting information was gathered and orchestrated at a suitable place in the review.

  8. A Prospective Evaluation of Plasma Polyphenol Levels and Colon Cancer Risk

    DEFF Research Database (Denmark)

    Murphy, Neil; Achaintre, David; Zamora-Ros, Raul

    2018-01-01

    Polyphenols have been shown to exert biological activity in experimental models of colon cancer; however, human data linking specific polyphenols to colon cancer is limited. We assessed the relationship between pre-diagnostic plasma polyphenols and colon cancer risk in a case-control study nested...

  9. Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects

    Directory of Open Access Journals (Sweden)

    Francesca Taranto

    2017-02-01

    Full Text Available Enzymatic browning is a colour reaction occurring in plants, including cereals, fruit and horticultural crops, due to oxidation during postharvest processing and storage. This has a negative impact on the colour, flavour, nutritional properties and shelf life of food products. Browning is usually caused by polyphenol oxidases (PPOs, following cell damage caused by senescence, wounding and the attack of pests and pathogens. Several studies indicated that PPOs play a role in plant immunity, and emerging evidence suggested that PPOs might also be involved in other physiological processes. Genomic investigations ultimately led to the isolation of PPO homologs in several crops, which will be possibly characterized at the functional level in the near future. Here, focusing on the botanic families of Poaceae and Solanaceae, we provide an overview on available scientific literature on PPOs, resulting in useful information on biochemical, physiological and genetic aspects.

  10. Polyphenol profiles of French cider apple varieties (Malus domestica sp.).

    Science.gov (United States)

    Sanoner, P; Guyot, S; Marnet, N; Molle, D; Drilleau, J P

    1999-12-01

    The cortex of 14 French apple varieties (12 cider and 2 juice varieties), one English cider variety, and one dessert apple (i.e., Golden Delicious) were studied for their polyphenol composition. Total polyphenols were assayed by the Folin-Ciocalteu method, and the precise polyphenolic composition (monomeric catechins, proanthocyanidins, hydroxycinnamic acids, and dihydrochalcones) was obtained by HPLC following thiolysis. ESI-MS and ESI-MS/MS analyses showed that chlorogenic acid and p-coumaroylquinic acid were methylated under the conditions of thiolysis. Depending on the variety, the global polyphenol concentration varied from 1 to 7 g per kilogram of fresh cortex. Cider varieties globally showed a higher polyphenol concentration than the dessert apple Golden Delicious, bitter varieties being the more concentrated. The proportion of the polyphenol classes varied greatly from one cultivar to another. For all varieties, procyanidins were always the predominant class. They were mainly constituted of (-)-epicatechin units with a small proportion of (+)-catechin as a terminal unit. The average degree of polymerization ranged between 4.2 and 7.5 depending upon the variety with an exception for the sharp varieties Guillevic and Avrolles which showed significant concentrations of procyanidins with DPn of 40 and 50, respectively.

  11. Impact of polyphenolic extracts on resistance to fungal ...

    African Journals Online (AJOL)

    Our results lend support of the creation of varieties bean high in polyphenols, which act as natural preservatives and bio-effective agents, and offer an alternative to chemical agents for protection of harvested beans in storage structures. Keywords: Polyphenols, antifungal activity, dry bean. African Journal of Biotechnology ...

  12. Immunological and molecular comparison of polyphenol oxidase in Rosaceae fruit trees.

    Science.gov (United States)

    Haruta, M; Murata, M; Kadokura, H; Homma, S

    1999-03-01

    An antibody raised against apple polyphenol oxidase (PPO) cross-reacted with PPOs from Japanese pear (Pyrus pyrifolia), pear (Pyrus communis), peach (Prunus persica), Chinese quince (Pseudocydonia sinensis) and Japanese loquat (Eriobotrya japonica). Core fragments (681 bp) of the corresponding PPO genes were amplified and characterized. The deduced protein sequences showed identities of 85.3 to 97.5%. Chlorogenic acid oxidase activity of these PPOs showed higher activities when assayed at pH 4 than at pH 6. These results indicate that PPOs in Rosaceae plants are structurally and enzymatically similar.

  13. Polyphenol-enriched berry extracts naturally modulate reactive proteins in model foods.

    Science.gov (United States)

    Lila, Mary Ann; Schneider, Maggie; Devlin, Amy; Plundrich, Nathalie; Laster, Scott; Foegeding, E Allen

    2017-12-13

    Healthy foods like polyphenol-rich berries and high quality edible proteins are in demand in today's functional food marketplace, but it can be difficult to formulate convenient food products with physiologically-relevant amounts of these ingredients and still maintain product quality. In part, this is because proteins can interact with other food ingredients and precipitate destabilizing events, which can disrupt food structure and diminish shelf life. Proteins in foods can also interact with human receptors to provoke adverse consequences such as allergies. When proteins and polyphenols were pre-aggregated into stable colloidal particles prior to use as ingredients, highly palatable food formulations (with reduced astringency of polyphenols) could be prepared, and the overall structural properties of food formulations were significantly improved. All of the nutritive and phytoactive benefits of the proteins and concentrated polyphenols remained highly bioavailable, but the protein molecules in the particle matrix did not self-aggregate into networks or react with other food ingredients. Both the drainage half-life (a marker of structural stability) and the yield stress (resistance to flow) of model foams made with the protein-polyphenol particles were increased in a dose-dependent manner. Of high significance in this complexation process, the reactive allergenic epitopes of certain proteins were effectively blunted by binding with polyphenols, attenuating the allergenicity of the food proteins. Porcine macrophages produced TNF-α proinflammatory cytokine when provoked with whey protein, but, this response was blocked completely when the cells were stimulated with particles that complexed whey protein with cinnamon-derived polyphenols. Cytokine and chemokine production characteristic of allergic reactions were blocked by the polyphenols, allowing for the potential creation of hypoallergenic protein-berry polyphenol enriched foods.

  14. 9 CFR 112.2 - Final container label, carton label, and enclosure.

    Science.gov (United States)

    2010-01-01

    ... carton; (10) In the case of a product which contains an antibiotic added during the production process... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Final container label, carton label, and enclosure. 112.2 Section 112.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION...

  15. In vitro approaches to assess the effects of açai (Euterpe oleracea) digestion on polyphenol availability and the subsequent impact on the faecal microbiota.

    Science.gov (United States)

    Alqurashi, Randah M; Alarifi, Sehad N; Walton, Gemma E; Costabile, Adele F; Rowland, Ian R; Commane, Daniel M

    2017-11-01

    A considerable proportion of dietary plant-polyphenols reach the colon intact; determining the effects of these compounds on colon-health is of interest. We hypothesise that both fibre and plant polyphenols present in açai (Euterpe oleracea) provide prebiotic and anti-genotoxic benefits in the colon. We investigated this hypothesis using a simulated in vitro gastrointestinal digestion of açai pulp, and a subsequent pH-controlled, anaerobic, batch-culture fermentation model reflective of the distal region of the human large intestine. Following in vitro digestion, 49.8% of the total initial polyphenols were available. In mixed-culture fermentations with faecal inoculate, the digested açai pulp precipitated reductions in the numbers of both the Bacteroides-Prevotella spp. and the Clostridium-histolyticum groups, and increased the short-chain fatty acids produced compared to the negative control. The samples retained significant anti-oxidant and anti-genotoxic potential through digestion and fermentation. Dietary intervention studies are needed to prove that consuming açai is beneficial to gut health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Preparation of Biocolorant and Eco-Dyeing Derived from Polyphenols Based on Laccase-Catalyzed Oxidative Polymerization

    Directory of Open Access Journals (Sweden)

    Fubang Wang

    2018-02-01

    Full Text Available Natural products have been believed to be a promising source to obtain ecological dyes and pigments. Plant polyphenol is a kind of significant natural compound, and tea provides a rich source of polyphenols. In this study, biocolorant derived from phenolic compounds was generated based on laccase-catalyzed oxidative polymerization, and eco-dyeing of silk and wool fabrics with pigments derived from tea was investigated under the influence of pH variation. This work demonstrated that the dyeing property was better under acidic conditions compared to alkalinity, and fixation rate was the best when pH value was 3. Furthermore, breaking strength of dyed fabrics sharply reduced under the condition of pH 11. Eventually, the dyeing method was an eco-friendly process, which was based on bioconversion, and no mordant was added during the process of dyeing.

  17. Haematological and biochemical effects of polyphenolics in animal models.

    Science.gov (United States)

    Gnanamani, Arumugam; Sudha, Munusamy; Deepa, G; Sudha, M; Deivanai, K; Sadulla, S

    2008-07-01

    Polyphenols of natural and synthetic origin are exploited in tanning sector to convert putrescible skin/hide to non-putrescible leather. However, only 30-40% of the inputs have been taken up for processing, the remaining is released as unspent. The existing conventional wastewater treatment systems are inefficient in removing or degrading these unspent polyphenols and thus detrimental to ecosystem. The present study demonstrates the evaluation of impact of both synthetic and natural polyphenols on biochemical and haematological properties of blood and serum in animal models. The results reveal that concentrations of polyphenols play a major role. At higher concentrations, irrespective of their nature, there was a marked change in the lipid profile (81% reduction), followed by insignificant change in glucose levels, RBC and WBC counts and other haematological parameters. At lower concentrations, no significant changes in the above said properties were observed.

  18. Vanadium uptake and an effect of vanadium treatment on 18F-labeled water movement in a cowpea plant by positron emitting tracer imaging system (PETIS)

    International Nuclear Information System (INIS)

    Furukawa, J.; Yokota, H.; Tanoi, K.; Ueoka, S.; Nakanishi, T.M.; Uchida, H.; Tsuji, A.

    2001-01-01

    Real time vanadate (V 5+ ) uptake imaging in a cowpea plant by positron emitting tracer imaging system (PETIS) is presented. Vanadium-48 was produced by bombarding a Sc foil target with 50 MeV α-particles at Takasaki Ion Accelerators for Advanced Radiation application (TIARA) AVF cyclotron. Then 48 V was added to the culture solution to investigate the V distribution in a cowpea plant. The real time uptake of the 48 V was monitored by PETIS. Distribution of 48 V in a whole plant was measured after 3, 6 and 20 hours of V treatment by Bio-imaging Analyzer System (BAS). After the 20 hour treatment, vanadate was detected at the up-ground part of the plant. To know the effect of V uptake on plant activity, 18 F-labeled water uptake was analyzed by PETIS. When a cowpea plant was treated with V for 20 hours before 18 F-labeled water uptake experiment, the total amount of 18 F-labeled water absorption ws drastically decreased. Results suggest the inhibition of water uptake was mainly caused by the vanadate already moved to the up-ground part of the plant. (author)

  19. Modification of flavonoid biosynthesis in crop plants

    NARCIS (Netherlands)

    Schijlen, E.G.W.M.; Vos, de C.H.; Tunen, van A.J.; Bovy, A.G.

    2004-01-01

    Flavonoids comprise the most common group of polyphenolic plant secondary metabolites. In plants, flavonoids play an important role in biological processes. Beside their function as pigments in flowers and fruits, to attract pollinators and seed dispersers, flavonoids are involved in UV-scavenging,

  20. Polyphenol Bioaccessibility and Sugar Reducing Capacity of Black, Green, and White Teas

    Directory of Open Access Journals (Sweden)

    Shelly Coe

    2013-01-01

    Full Text Available Tea (Camellia sinensis is a widely consumed beverage and recognised for its potential enhancing effect on human health due to its rich polyphenol content. While a number of studies have investigated the quantity and type of polyphenols present in different tea samples, no study has reported the potential effect of digestive enzymes on the availability of tea polyphenols for human absorption or the subsequent impact on glycaemic response. The objectives of the present study were to assess the total polyphenol content of different teas, to assess the bioaccessibility of polyphenols in whole and bagged teas, and to determine the effect of black, white, and green tea infusions on sugar release. All of the teas were a significant source of polyphenols (10–116 mg Gallic acid equivalents/g. There was an overall increase in the release of polyphenols from both the bagged and the whole teas following in vitro digestion. Bagged green tea significantly ( reduced rapidly digestible starch from white bread samples compared to control and black and white bagged teas. The present study confirms that tea is a rich source of polyphenols and highlights the potential benefits it may have on modulating glycaemic response in humans.

  1. Differential protective effects of red wine polyphenol extracts (RWEs) on colon carcinogenesis.

    Science.gov (United States)

    Mazué, Frédéric; Delmas, Dominique; Murillo, Genoveva; Saleiro, Diana; Limagne, Emeric; Latruffe, Norbert

    2014-04-01

    Various epidemiological studies have shown that a regular and moderate consumption of red wine is correlated with a decreased relative risk of developing coronary heart disease and cancer. These health benefits are commonly attributed to high contents of polyphenols, particularly resveratrol, representing important sources of antioxidants. However, resveratrol does not seem to be the only bioactive compound present in the wine which contains numerous other polyphenols. The present study investigates the efficiency of red wine extracts (RWEs), containing different polyphenols, on colon cancer cell proliferation in vitro and on colonic aberrant crypt foci (ACF) in vivo. Proliferation, cell cycle analysis and incidence of ACF were monitored to examine the effects of RWEs. RWEs derived from a long vinification process exhibit superior anti-proliferative activity in colon cancer cells and prevent the appearance of ACF in mice. Interestingly, quercetin and resveratrol, representing two major bio-active polyphenols, exhibit synergistic anti-proliferative effects. These data suggest that the efficacy of RWEs on colon carcinogenesis may depend on the polyphenolic content, synergistic interaction of bio-active polyphenols and modulation of cellular uptake of polyphenols.

  2. The scavenging effects of tea polyphenol and quercetin on active oxygen species

    International Nuclear Information System (INIS)

    Fang Ruoying; Cheng Jiwu; Hu Tianxi; Tu Tiechen; Dong Jirong; Wang Wenfeng; Lin Nianyun

    1993-01-01

    The abilities of scavenging active oxygen species, O 2 free radical and OH., by tea polyphenols and quercetin have been studied by chemiluminescence, ESR and pulse radiolysis. Tea polyphenols and quercetin are all phenolic antioxidants. The synergetic studies show that both tea polyphenols and quercetin are strong free radical scavengers. Tea polyphenols are better than quercetin. the results from CL studies are in good accord with those from ESR and PR studies

  3. Cocoa and Dark Chocolate Polyphenols: From Biology to Clinical Applications

    OpenAIRE

    Thea Magrone; Matteo Antonio Russo; Emilio Jirillo; Emilio Jirillo

    2017-01-01

    It is well known that cocoa and dark chocolate possess polyphenols as major constituents whose dietary consumption has been associated to beneficial effects. In fact, cocoa and dark chocolate polyphenols exert antioxidant and anti-inflammatory activities switching on some important signaling pathways such as toll-like receptor 4/nuclear factor κB/signal transducer and activator of transcription. In particular, cocoa polyphenols induce release of nitric oxide (NO) through activation of endothe...

  4. Nutrition and Healthy Ageing: Calorie Restriction or Polyphenol-Rich “MediterrAsian” Diet?

    Directory of Open Access Journals (Sweden)

    Kathrin Pallauf

    2013-01-01

    Full Text Available Diet plays an important role in mammalian health and the prevention of chronic diseases such as cardiovascular disease (CVD. Incidence of CVD is low in many parts of Asia (e.g., Japan and the Mediterranean area (e.g., Italy, Spain, Greece, and Turkey. The Asian and the Mediterranean diets are rich in fruit and vegetables, thereby providing high amounts of plant bioactives including polyphenols, glucosinolates, and antioxidant vitamins. Furthermore, oily fish which is rich in omega-3 fatty acids is an important part of the Asian (e.g., Japanese and also of the Mediterranean diets. There are specific plant bioactives which predominantly occur in the Mediterranean (e.g., resveratrol from red wine, hydroxytyrosol, and oleuropein from olive oil and in the Asian diets (e.g., isoflavones from soybean and epigallocatechin gallate from green tea. Interestingly, when compared to calorie restriction which has been repeatedly shown to increase healthspan, these polyphenols activate similar molecular targets such as Sirt1. We suggest that a so-called “MediterrAsian” diet combining sirtuin-activating foods (= sirtfoods of the Asian as well as Mediterranean diet may be a promising dietary strategy in preventing chronic diseases, thereby ensuring health and healthy ageing. Future (human studies are needed which take the concept suggested here of the MediterrAsian diet into account.

  5. Modulation of endogenous antioxidant system by wine polyphenols in human disease.

    Science.gov (United States)

    Rodrigo, Ramón; Miranda, Andrés; Vergara, Leonardo

    2011-02-20

    Numerous studies indicate that moderate red wine consumption is associated with a protective effect against all-cause mortality. Since oxidative stress constitutes a unifying mechanism of injury of many types of disease processes, it should be expected that polyphenolic antioxidants account for this beneficial effect. Nevertheless, beyond the well-known antioxidant properties of these compounds, they may exert several other protective mechanisms. Indeed, the overall protective effect of polyphenols is due to their large array of biological actions, such as free radical-scavenging, metal chelation, enzyme modulation, cell signalling pathways modulation and gene expression effects, among others. Wine possesses a variety of polyphenols, being resveratrol its most outstanding representative, due to its pleiotropic biological properties. The presence of ethanol in wine aids to polyphenol absorption, thereby contributing to their bioavailability. Before absorption, polyphenols must be hydrolyzed by intestinal enzymes or by colonic microflora. Then, they undergo intestinal and liver metabolism. There have been no reported polyphenol adverse effects derived from intakes currently associated with the normal diet. However, supplements for health-protection should be cautiously used as no level definition has been given to make sure the dose is safe. The role of oxidative stress and the beneficial effects of wine polyphenols against cardiovascular, cancer, diabetes, microbial, inflammatory, neurodegenerative and kidney diseases and ageing are reviewed. Future large scale randomized clinical trials should be conducted to fully establish the therapeutic use of each individual wine polyphenol against human disease. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. 27 CFR 19.704 - Labels.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Labels. 19.704 Section 19... TREASURY LIQUORS DISTILLED SPIRITS PLANTS Samples of Spirits § 19.704 Labels. (a) On each container of spirits to be withdrawn under the provisions of § 19.701, the proprietor shall affix a label showing the...

  7. Chitosan/dextran multilayer microcapsules for polyphenol co-delivery

    International Nuclear Information System (INIS)

    Paini, Marco; Aliakbarian, Bahar; Casazza, Alessandro A.; Perego, Patrizia; Ruggiero, Carmelina; Pastorino, Laura

    2015-01-01

    Polysaccharide-based nanostructured polymeric microcapsules were fabricated by the electrostatic layer-by-layer self-assembly technique and used to encapsulate mixtures of four different polyphenols in order to achieve their controlled release. The real-time fabrication of the dextran/chitosan multilayer was monitored by quartz crystal microbalance with dissipation monitoring, and the morphology of the nanostructured polymeric capsules was characterized by scanning electron microscopy. The polyphenol encapsulation was obtained by reversible permeability variation of the capsule shell in ethanol:water mixtures. The loading efficiency in different water:ethanol mixtures and the release rate in acidic conditions were characterized by UV spectroscopy and HPLC. The higher loading efficiency was obtained with an ethanol:water 35:65 phenolic solution, equal to 42.0 ± 0.6%, with a total release of 11.5 ± 0.7 mg of total polyphenols per 11.3 μL of microcapsules after 240 min of incubation in acidic environment. The results suggest that polysaccharide-based capsules can be successfully used to encapsulate and release low water-soluble molecules, such as polyphenols. - Highlights: • Chitosan/dextran nanocapsules were made by layer-by-layer self-assembly technique. • Different ethanol:water mixtures of four polyphenols were encapsulated. • An encapsulation efficiency of 42.0 ± 0.6% was obtained using ethanol:water 35:65. • Release profiles in acidic environment were monitored by UV spectroscopy and HPLC. • Nanocapsules had shown a complete release after 60 min in acidic environment

  8. Chitosan/dextran multilayer microcapsules for polyphenol co-delivery

    Energy Technology Data Exchange (ETDEWEB)

    Paini, Marco, E-mail: marco.paini@unige.it [Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia 15, 16145 Genoa (Italy); Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity (BELONG), Via Montallegro 1, 16145 Genoa (Italy); Aliakbarian, Bahar; Casazza, Alessandro A.; Perego, Patrizia [Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia 15, 16145 Genoa (Italy); Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity (BELONG), Via Montallegro 1, 16145 Genoa (Italy); Ruggiero, Carmelina; Pastorino, Laura [Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via Opera Pia 13, 16145 Genoa (Italy)

    2015-01-01

    Polysaccharide-based nanostructured polymeric microcapsules were fabricated by the electrostatic layer-by-layer self-assembly technique and used to encapsulate mixtures of four different polyphenols in order to achieve their controlled release. The real-time fabrication of the dextran/chitosan multilayer was monitored by quartz crystal microbalance with dissipation monitoring, and the morphology of the nanostructured polymeric capsules was characterized by scanning electron microscopy. The polyphenol encapsulation was obtained by reversible permeability variation of the capsule shell in ethanol:water mixtures. The loading efficiency in different water:ethanol mixtures and the release rate in acidic conditions were characterized by UV spectroscopy and HPLC. The higher loading efficiency was obtained with an ethanol:water 35:65 phenolic solution, equal to 42.0 ± 0.6%, with a total release of 11.5 ± 0.7 mg of total polyphenols per 11.3 μL of microcapsules after 240 min of incubation in acidic environment. The results suggest that polysaccharide-based capsules can be successfully used to encapsulate and release low water-soluble molecules, such as polyphenols. - Highlights: • Chitosan/dextran nanocapsules were made by layer-by-layer self-assembly technique. • Different ethanol:water mixtures of four polyphenols were encapsulated. • An encapsulation efficiency of 42.0 ± 0.6% was obtained using ethanol:water 35:65. • Release profiles in acidic environment were monitored by UV spectroscopy and HPLC. • Nanocapsules had shown a complete release after 60 min in acidic environment.

  9. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    Science.gov (United States)

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Dynamic Labeling Reveals Temporal Changes in Carbon Re-Allocation within the Central Metabolism of Developing Apple Fruit

    Directory of Open Access Journals (Sweden)

    Wasiye F. Beshir

    2017-10-01

    Full Text Available In recent years, the application of isotopically labeled substrates has received extensive attention in plant physiology. Measuring the propagation of the label through metabolic networks may provide information on carbon allocation in sink fruit during fruit development. In this research, gas chromatography coupled to mass spectrometry based metabolite profiling was used to characterize the changing metabolic pool sizes in developing apple fruit at five growth stages (30, 58, 93, 121, and 149 days after full bloom using 13C-isotope feeding experiments on hypanthium tissue discs. Following the feeding of [U-13C]glucose, the 13C-label was incorporated into the various metabolites to different degrees depending on incubation time, metabolic pathway activity, and growth stage. Evidence is presented that early in fruit development the utilization of the imported sugars was faster than in later developmental stages, likely to supply the energy and carbon skeletons required for cell division and fruit growth. The declined 13C-incorporation into various metabolites during growth and maturation can be associated with the reduced metabolic activity, as mirrored by the respiratory rate. Moreover, the concentration of fructose and sucrose increased during fruit development, whereas concentrations of most amino and organic acids and polyphenols declined. In general, this study showed that the imported compounds play a central role not only in carbohydrate metabolism, but also in the biosynthesis of amino acid and related protein synthesis and secondary metabolites at the early stage of fruit development.

  11. Pulse radiolysis studies of bergenin, an isocoumarin polyphenolic derivative

    International Nuclear Information System (INIS)

    Singh, Umang; Srinivasan, R.; Barik, A.; Priyadarsini, K.I.

    2008-01-01

    Bergenin, a polyphenolic isocoumarin derivative, isolated from medicinal plant Caesalpinia digynae, has been subjected for OH and oxidizing radical reactions using pulse radiolysis technique coupled with absorption detection. OH radicals cause multiple reactions, producing transients absorbing with maxima at 440 nm and 500 nm. By comparing the spectra and decay kinetics with that produced by N 3 radicals, the species absorbing at 440 nm is assigned to phenoxyl type radical and the one absorbing at 500 nm to be a hydroxyl-radical adduct, which has been found to be reducing in nature. Bergenin also reacts with peroxyl radicals, with rate constants of 4.2 x 10 6 M -1 s -1 . (author)

  12. Pulse radiolysis studies of bergenin, an isocoumarin polyphenolic derivative

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Umang; Srinivasan, R; Barik, A; Priyadarsini, K I [Radiation and Photochemistry Div., Bhabha Atomic Research Centre, Mumbai (India)

    2008-01-15

    Bergenin, a polyphenolic isocoumarin derivative, isolated from medicinal plant Caesalpinia digynae, has been subjected for OH and oxidizing radical reactions using pulse radiolysis technique coupled with absorption detection. OH radicals cause multiple reactions, producing transients absorbing with maxima at 440 nm and 500 nm. By comparing the spectra and decay kinetics with that produced by N{sub 3} radicals, the species absorbing at 440 nm is assigned to phenoxyl type radical and the one absorbing at 500 nm to be a hydroxyl-radical adduct, which has been found to be reducing in nature. Bergenin also reacts with peroxyl radicals, with rate constants of 4.2 x 10{sup 6} M{sup -1}s{sup -1}. (author)

  13. The oxidant-scavenging abilities in the oral cavity may be regulated by a collaboration among antioxidants in saliva, microorganisms, blood cells and polyphenols: a chemiluminescence-based study.

    Directory of Open Access Journals (Sweden)

    Isaac Ginsburg

    Full Text Available Saliva has become a central research issue in oral physiology and pathology. Over the evolution, the oral cavity has evolved the antioxidants uric acid, ascorbate reduced glutathione, plasma-derived albumin and antioxidants polyphenols from nutrients that are delivered to the oral cavity. However, blood cells extravasated from injured capillaries in gingival pathologies, or following tooth brushing and use of tooth picks, may attenuate the toxic activities of H2O2 generated by oral streptococci and by oxidants generated by activated phagocytes. Employing a highly sensitive luminol-dependent chemiluminescence, the DPPH radical and XTT assays to quantify oxidant-scavenging abilities (OSA, we show that saliva can strongly decompose both oxygen and nitrogen species. However, lipophilic antioxidant polyphenols in plants, which are poorly soluble in water and therefore not fully available as effective antioxidants, can nevertheless be solubilized either by small amounts of ethanol, whole saliva or also by salivary albumin and mucin. Plant-derived polyphenols can also act in collaboration with whole saliva, human red blood cells, platelets, and also with catalase-positive microorganisms to decompose reactive oxygen species (ROS. Furthermore, polyphenols from nutrient can avidly adhere to mucosal surfaces, are retained there for long periods and may function as a "slow-release devises" capable of affecting the redox status in the oral cavity. The OSA of saliva is due to the sum result of low molecular weight antioxidants, albumin, polyphenols from nutrients, blood elements and microbial antioxidants. Taken together, saliva and its antioxidants are considered regulators of the redox status in the oral cavity under physiological and pathological conditions.

  14. The Oxidant-Scavenging Abilities in the Oral Cavity May Be Regulated by a Collaboration among Antioxidants in Saliva, Microorganisms, Blood Cells and Polyphenols: A Chemiluminescence-Based Study

    Science.gov (United States)

    Ginsburg, Isaac; Kohen, Ron; Shalish, Miri; Varon, David; Shai, Ella; Koren, Erez

    2013-01-01

    Saliva has become a central research issue in oral physiology and pathology. Over the evolution, the oral cavity has evolved the antioxidants uric acid, ascorbate reduced glutathione, plasma-derived albumin and antioxidants polyphenols from nutrients that are delivered to the oral cavity. However, blood cells extravasated from injured capillaries in gingival pathologies, or following tooth brushing and use of tooth picks, may attenuate the toxic activities of H2O2 generated by oral streptococci and by oxidants generated by activated phagocytes. Employing a highly sensitive luminol-dependent chemiluminescence, the DPPH radical and XTT assays to quantify oxidant-scavenging abilities (OSA), we show that saliva can strongly decompose both oxygen and nitrogen species. However, lipophilic antioxidant polyphenols in plants, which are poorly soluble in water and therefore not fully available as effective antioxidants, can nevertheless be solubilized either by small amounts of ethanol, whole saliva or also by salivary albumin and mucin. Plant-derived polyphenols can also act in collaboration with whole saliva, human red blood cells, platelets, and also with catalase-positive microorganisms to decompose reactive oxygen species (ROS). Furthermore, polyphenols from nutrient can avidly adhere to mucosal surfaces, are retained there for long periods and may function as a “slow- release devises” capable of affecting the redox status in the oral cavity. The OSA of saliva is due to the sum result of low molecular weight antioxidants, albumin, polyphenols from nutrients, blood elements and microbial antioxidants. Taken together, saliva and its antioxidants are considered regulators of the redox status in the oral cavity under physiological and pathological conditions. PMID:23658797

  15. Content of polyphenol compound in mangrove and macroalga extracts

    Science.gov (United States)

    Takarina, N. D.; Patria, M. P.

    2017-07-01

    Polyphenol or phenolic are compounds containing one or more hydroxyl group of the aromatic ring [1]. These compounds have some activities like antibacterial, antiseptic, and antioxidants. Natural resources like mangrove and macroalga were known containing these compounds. The purpose of the research was to investigate polyphenol content in mangrove and macroalga. Materials used in this research were mangrove (Avicennia sp.) leaves and the whole part of macroalga (Caulerpa racemosa). Samples were dried for 5 days then macerated in order to get an extract. Maceration were done using methanol for 48 hours (first) and 24 hours (second) continously. Polyphenol content was determined using phytochemical screening on both extracts. The quantitative test was carried out to determine catechin and tannin as polyphenol compound. The result showed that catechin was observed in both extracts while tannin in mangrove extract only. According to quantitative test, mangrove has a higher content of catechin and tannin which were 12.37-13.44 % compared to macroalga which was 2.57-4.58 %. Those indicated that both materials can be the source of polyphenol compound with higher content on mangrove. Moreover, according to this result, these resources can be utilized for advanced studies and human needs like medical drug.

  16. Physiological and Biochemical Changes in Brassica juncea Plants under Cd-Induced Stress

    Directory of Open Access Journals (Sweden)

    Dhriti Kapoor

    2014-01-01

    Full Text Available Plants of Brassica juncea L. var. RLC-1 were exposed for 30 days to different concentrations (0, 0.2, 0.4, and 0.6 mM of cadmium (Cd to analyze the Cd uptake, H2O2 content, hormonal profiling, level of photosynthetic pigments (chlorophyll, carotenoid, and flavonoid, gaseous exchange parameters (photosynthetic rate, vapour pressure deficit, intercellular CO2 concentration, and intrinsic mesophyll rate, antioxidative enzymes (superoxide dismutase, polyphenol oxidase, glutathione-S transferase, and glutathione peroxidase, antioxidant assays (DPPH, ABTS, and total phenolic content, and polyphenols. Results of the present study revealed the increased H2O2 content and Cd uptake with increasing metal doses. UPLC analysis of plants showed the presence of various polyphenols. Gaseous exchange measurements were done by infrared gas analyzer (IRGA, which was negatively affected by metal treatment. In addition, LC/MS study showed the variation in the expression of plant hormones. Level of photosynthetic pigments and activities of antioxidative enzymes were altered significantly in response to metal treatment. In conclusion, the antioxidative defence system of plants got activated due to heavy metal stress, which protects the plants by scavenging free radicals.

  17. Polyphenols as Promising Drugs against Main Breast Cancer Signatures

    Directory of Open Access Journals (Sweden)

    María Losada-Echeberría

    2017-11-01

    Full Text Available Breast cancer is one of the most common neoplasms worldwide, and in spite of clinical and pharmacological advances, it is still a clinical problem, causing morbidity and mortality. On the one hand, breast cancer shares with other neoplasms some molecular signatures such as an imbalanced redox state, cell cycle alterations, increased proliferation and an inflammatory status. On the other hand, breast cancer shows differential molecular subtypes that determine its prognosis and treatment. These are characterized mainly by hormone receptors especially estrogen receptors (ERs and epidermal growth factor receptor 2 (HER2. Tumors with none of these receptors are classified as triple negative breast cancer (TNBC and are associated with a worse prognosis. The success of treatments partially depends on their specificity and the adequate molecular classification of tumors. New advances in anticancer drug discovery using natural compounds have been made in the last few decades, and polyphenols have emerged as promising molecules. They may act on various molecular targets because of their promiscuous behavior, presenting several physiological effects, some of which confer antitumor activity. This review analyzes the accumulated evidence of the antitumor effects of plant polyphenols on breast cancer, with special attention to their activity on ERs and HER2 targets and also covering different aspects such as redox balance, uncontrolled proliferation and chronic inflammation.

  18. Polyphenols as Promising Drugs against Main Breast Cancer Signatures

    Science.gov (United States)

    Herranz-López, María; Micol, Vicente

    2017-01-01

    Breast cancer is one of the most common neoplasms worldwide, and in spite of clinical and pharmacological advances, it is still a clinical problem, causing morbidity and mortality. On the one hand, breast cancer shares with other neoplasms some molecular signatures such as an imbalanced redox state, cell cycle alterations, increased proliferation and an inflammatory status. On the other hand, breast cancer shows differential molecular subtypes that determine its prognosis and treatment. These are characterized mainly by hormone receptors especially estrogen receptors (ERs) and epidermal growth factor receptor 2 (HER2). Tumors with none of these receptors are classified as triple negative breast cancer (TNBC) and are associated with a worse prognosis. The success of treatments partially depends on their specificity and the adequate molecular classification of tumors. New advances in anticancer drug discovery using natural compounds have been made in the last few decades, and polyphenols have emerged as promising molecules. They may act on various molecular targets because of their promiscuous behavior, presenting several physiological effects, some of which confer antitumor activity. This review analyzes the accumulated evidence of the antitumor effects of plant polyphenols on breast cancer, with special attention to their activity on ERs and HER2 targets and also covering different aspects such as redox balance, uncontrolled proliferation and chronic inflammation. PMID:29112149

  19. Polyphenols as potential therapeutical agents against cardiovascular diseases.

    Science.gov (United States)

    Curin, Yann; Andriantsitohaina, Ramaroson

    2005-01-01

    Increasing evidence suggests that polyphenols from fruits, vegetables and beverages such as wine and tea may exert protective effects on the cardiovascular system. Indeed, research in the field of polyphenols points out their antioxidant and free radical scavenging properties, leading to lower low-density lipoprotein (LDL) oxidation and platelet aggregation. These compounds are also able to modulate the generation of nitric oxide (NO) from vascular endothelium and to interfere with the mechanisms leading to inflammation and endothelial apoptosis, contributing to the prevention of the endothelial dysfunction, known to play a central role in the pathogenesis of cardiovascular diseases. This article reviews the potential targets of polyphenols involved in the complex pathophysiological events occurring in cardiovascular diseases, such as hypertension, atherosclerosis and stroke.

  20. [Mass Transfer Kinetics Model of Ultrasonic Extraction of Pomegranate Peel Polyphenols].

    Science.gov (United States)

    Wang, Zhan-yi; Zhang, Li-hua; Wang, Yu-hai; Zhang, Yuan-hu; Ma, Li; Zheng, Dan-dan

    2015-05-01

    The dynamic mathematical model of ultrasonic extraction of polyphenols from pomegranate peel was constructed with the Fick's second law as the theoretical basis. The spherical model was selected, with mass concentrations of pomegranate peel polyphenols as the index, 50% ethanol as the extraction solvent and ultrasonic extraction as the extraction method. In different test conditions including the liquid ratio, extraction temperature and extraction time, a series of kinetic parameters were solved, such as the extraction process (k), relative raffinate rate, surface diffusion coefficient(D(S)), half life (t½) and the apparent activation energy (E(a)). With the extraction temperature increasing, k and D(S) were gradually increased with t½ decreasing,which indicated that the elevated temperature was favorable to the extraction of pomegranate peel polyphenols. The exponential equation of relative raffinate rate showed that the established numerical dynamics model fitted the extraction of pomegranate peel polyphenols, and the relationship between the reaction conditions and pomegranate peel polyphenols concentration was well reflected by the model. Based on the experimental results, a feasible and reliable kinetic model for ultrasonic extraction of polyphenols from pomegranate peel is established, which can be used for the optimization control of engineering magnifying production.

  1. Polyphenols as Possible Markers of Botanical Origin of Honey.

    Science.gov (United States)

    Gašić, Uroš M; Milojković-Opsenica, Dušanka M; Tešić, Živoslav Lj

    2017-07-01

    In recent years, the botanical and geographical origin of food has become an important topic in the context of food quality and safety, as well as consumer protection, in accordance with international standards. Finding chemical markers, especially phytochemicals, characteristic for some kind of food is the subject of interest of a significant number of researchers in the world. This paper is focused on the use of polyphenols as potential markers for the determination of botanical origin of honey. It includes a review of the polyphenols present in various honey samples and the methods for their separation and identification. Special emphasis in this paper is placed on the identification of honey polyphenols using advanced LC-MS techniques in order to find specific markers of botanical origin of honey. In this regard, this study gives an overview of the literature that describes the use of LC-MS techniques for the isolation and determination of honey polyphenols. This review focuses on the research performed in the past two decades.

  2. Minerals and Total Polyphenolic Content of Some Vegetal Powders

    Directory of Open Access Journals (Sweden)

    Roxana E. TUFEANU

    2017-11-01

    Full Text Available The total polyphenolic content and minerals were determined for chia seeds, Psyllium husks and watermelon rind powder. The minerals content was performed by using the Inductively Coupled Plasma Optical Emissions Spectrometer and Atomic Absorption Spectrometer, technique FIAS-Furnace (for Se. The sample with the highest content of polyphenols was chia (2.69 mg GAE/g s. followed by the watermelon rind powder. Reduced amounts of polyphenols were found in the Psyllium husks. Also, the total polyphenol concentration increased with the increase of the extraction time on the ultrasonic water bath. Minerals analysis indicated that powders obtained from chia seeds and watermelon rind contained large amounts of potassium, calcium, phosphorus and magnesium. The most abundant mineral in the Psyllium husks powder was found potassium, followed by calcium. In conclusion, these powders can be used as ingredients for functional food and food supplements production due to the high nutritional content and bioactive properties.

  3. The impact of polyphenols on chondrocyte growth and survival: a preliminary report

    Directory of Open Access Journals (Sweden)

    Salvador Fernández-Arroyo

    2015-10-01

    Full Text Available Background: Imbalances in the functional binding of fibroblast growth factors (FGFs to their receptors (FGFRs have consequences for cell proliferation and differentiation that in chondrocytes may lead to degraded cartilage. The toxic, proinflammatory, and oxidative response of cytokines and FGFs can be mitigated by dietary polyphenols. Objective: We explored the possible effects of polyphenols in the management of osteoarticular diseases using a model based on the transduction of a mutated human FGFR3 (G380R in murine chondrocytes. This mutation is present in most cases of skeletal dysplasia and is responsible for the overexpression of FGFR3 that, in the presence of its ligand, FGF9, results in toxic effects leading to altered cellular growth. Design: Different combinations of dietary polyphenols derived from plant extracts were assayed in FGFR3 (G380R mutated murine chondrocytes, exploring cell survival, chloride efflux, extracellular matrix (ECM generation, and grade of activation of mitogen-activated protein kinases. Results: Bioactive compounds from Hibiscus sabdariffa reversed the toxic effects of FGF9 and restored normal growth, suggesting a probable translation to clinical requests in humans. Indeed, these compounds activated the intracellular chloride efflux, increased ECM generation, and stimulated cell proliferation. The inhibition of mitogen-activated protein kinase phosphorylation was interpreted as the main mechanism governing these beneficial effects. Conclusions: These findings support the rationale behind the encouragement of the development of drugs that repress the overexpression of FGFRs and suggest the dietary incorporation of supplementary nutrients in the management of degraded cartilage.

  4. Quantifying the effect of plant growth on litter decomposition using a novel, triple-isotope label approach

    Science.gov (United States)

    Ernakovich, J. G.; Baldock, J.; Carter, T.; Davis, R. A.; Kalbitz, K.; Sanderman, J.; Farrell, M.

    2017-12-01

    Microbial degradation of plant detritus is now accepted as a major stabilizing process of organic matter in soils. Most of our understanding of the dynamics of decomposition come from laboratory litter decay studies in the absence of plants, despite the fact that litter decays in the presence of plants in many native and managed systems. There is growing evidence that living plants significantly impact the degradation and stabilization of litter carbon (C) due to changes in the chemical and physical nature of soils in the rhizosphere. For example, mechanistic studies have observed stimulatory effects of root exudates on litter decomposition, and greenhouse studies have shown that living plants accelerate detrital decay. Despite this, we lack a quantitative understanding of the contribution of living plants to litter decomposition and how interactions of these two sources of C build soil organic matter (SOM). We used a novel triple-isotope approach to determine the effect of living plants on litter decomposition and C cycling. In the first stage of the experiment, we grew a temperate grass commonly used for forage, Poa labillardieri, in a continuously-labelled atmosphere of 14CO2 fertilized with K15NO3, such that the grass biomass was uniformly labelled with 14C and 15N. In the second stage, we constructed litter decomposition mescososms with and without a living plant to test for the effect of a growing plant on litter decomposition. The 14C/15N litter was decomposed in a sandy clay loam while a temperate forage grass, Lolium perenne, grew in an atmosphere of enriched 13CO2. The fate of the litter-14C/15N and plant-13C was traced into soil mineral fractions and dissolved organic matter (DOM) over the course of nine weeks using four destructive harvests of the mesocosms. Our preliminary results suggest that living plants play a major role in the degradation of plant litter, as litter decomposition was greater, both in rate and absolute amount, for soil mesocosms

  5. SNARE zippering is hindered by polyphenols in the neuron

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yoosoo [Department of Genetic Engineering and Center for Human Interface Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Kim, Se-Hyun; Heo, Paul; Kong, Byoungjae; Shin, Jonghyeok; Jung, Young-Hun; Yoon, Keejung; Chung, Woo-Jae [Department of Genetic Engineering and Center for Human Interface Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shin, Yeon-Kyun [Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011 (United States); Kweon, Dae-Hyuk, E-mail: dhkweon@skku.edu [Department of Genetic Engineering and Center for Human Interface Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-07-18

    Highlights: • Membrane fusion driven by SNARE complex is hindered by several polyphenols. • Distinctive inhibitory effect of each polyphenol on SNARE zippering in neuron was examined. • FRET between fluorescence protein-tagged SNAREs probed well SNARE zippering in PC12 cells. • Delphinidin and cyanidin inhibit N-terminal SNARE nucleation in Ca{sup 2+}-independent manner. • Myricetin inhibits Ca{sup 2+}-dependent transmembrane association of SNARE complex. - Abstract: Fusion of synaptic vesicles with the presynaptic plasma membrane in the neuron is mediated by soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor (SNARE) proteins. SNARE complex formation is a zippering-like process which initiates at the N-terminus and proceeds to the C-terminal membrane-proximal region. Previously, we showed that this zippering-like process is regulated by several polyphenols, leading to the arrest of membrane fusion and the inhibition of neuroexocytosis. In vitro studies using purified SNARE proteins reconstituted in liposomes revealed that each polyphenol uniquely regulates SNARE zippering. However, the unique regulatory effect of each polyphenol in cells has not yet been examined. In the present study, we observed SNARE zippering in neuronal PC12 cells by measuring the fluorescence resonance energy transfer (FRET) changes of a cyan fluorescence protein (CFP) and a yellow fluorescence protein (YFP) fused to the N-termini or C-termini of SNARE proteins. We show that delphinidin and cyanidin inhibit the initial N-terminal nucleation of SNARE complex formation in a Ca{sup 2+}-independent manner, while myricetin inhibits Ca{sup 2+}-dependent transmembrane domain association of the SNARE complex in the cell. This result explains how polyphenols exhibit botulinum neurotoxin-like activity in vivo.

  6. Polyphenols from the stems of Morus alba and their inhibitory activity against nitric oxide production by lipopolysaccharide-activated microglia.

    Science.gov (United States)

    Rivière, Céline; Krisa, Stéphanie; Péchamat, Laurent; Nassra, Merian; Delaunay, Jean-Claude; Marchal, Axel; Badoc, Alain; Waffo-Téguo, Pierre; Mérillon, Jean-Michel

    2014-09-01

    Neuroinflammatory processes are involved in the pathogenesis of many neurodegenerative disorders. Microglial cells, the main immune cells of the central nervous system, represent a target of interest to search for naturally occurring anti-inflammatory products. In this study, we evaluated the anti-inflammatory properties of polyphenols obtained from the stems of Morus alba. This edible species, known as white mulberry, is frequently studied because of its traditional use in Asian medicine and its richness in different types of polyphenols, some of which are known to be phytoalexins. One new coumarin glycoside, isoscopoletin 6-(6-O-β-apiofuranosyl-β-glucopyranoside) (1) was mainly isolated by CPC (centrifugal partition chromatography) from this plant, together with seven known polyphenols (2-8). Their structures were established on the basis of spectroscopic analyses including extensive 2D NMR studies. The eight isolated compounds were evaluated for their inhibitory activities on nitric oxide (NO) production in lipopolysaccharide (LPS)-induced BV-2 microglial cells. The absence of cell toxicity is checked by a MTT assay. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. High-throughput and homogeneous 13C-labelling of plant material for fair carbon accounting

    International Nuclear Information System (INIS)

    Slaets, J.I.F.; Resch, C.; Mayr, L.; Weltin, G.; Heiling, M.; Gruber, R.; Dercon, G.

    2016-01-01

    With growing political acknowledgement of the anthropogenic drivers and consequences of climate change, the development of carbon accounting mechanisms is essential for fair greenhouse gas emission mitigation policies. Therefore, carbon storage and emission must be accurately quantified. Plant material labelled with 13 C can be used to measure carbon storage in soil and carbon losses via CO 2 emission to the atmosphere from various cropping practices through in situ and incubation experiments.

  8. Probing Xylan-Specific Raman Bands for Label-Free Imaging Xylan in Plant Cell Wall

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yining; Yarbrough, John M.; Mittal, Ashutosh; Tucker, Melvin P.; Vinzant, Todd; Himmel, Michael E.

    2015-06-15

    Xylan constitutes a significant portion of biomass (e.g. 22% in corn stover used in this study). Xylan is also an important source of carbohydrates, besides cellulose, for renewable and sustainable energy applications. Currently used method for the localization of xylan in biomass is to use fluorescence confocal microscope to image the fluorescent dye labeled monoclonal antibody that specifically binds to xylan. With the rapid adoption of the Raman-based label-free chemical imaging techniques in biology, identifying Raman bands that are unique to xylan would be critical for the implementation of the above label-free techniques for in situ xylan imaging. Unlike lignin and cellulose that have long be assigned fingerprint Raman bands, specific Raman bands for xylan remain unclear. The major challenge is the cellulose in plant cell wall, which has chemical units highly similar to that of xylan. Here we report using xylanase to specifically remove xylan from feedstock. Under various degree of xylan removal, with minimum impact to other major cell wall components, i.e. lignin and cellulose, we have identified Raman bands that could be further tested for chemical imaging of xylan in biomass in situ.

  9. Dietary polyphenol supplementation prevents alterations of spatial navigation in middle-aged mice

    Directory of Open Access Journals (Sweden)

    Julien eBensalem

    2016-02-01

    Full Text Available Spatial learning and memory deficits associated with hippocampal synaptic plasticity impairments are commonly observed during aging. Besides, the beneficial role of dietary polyphenols has been suggested as potential functional food candidates to prevent this memory decline. Indeed, polyphenols could potentiate the signaling pathways of synaptic plasticity underlying learning and memory. In this study, spatial learning deficits of middle-aged mice were first highlighted and characterized according to navigation patterns in the Morris water maze task. An eight-week polyphenol-enriched diet, containing a polyphenol-rich extract from grape and blueberry (PEGB (from the Neurophenols Consortium with high contents of flavonoids, stilbenes and phenolic acids, was then successful in reversing these age-induced effects. The use of spatial strategies was indeed delayed with aging whereas a polyphenol supplementation could promote the occurrence of spatial strategies. These behavioral results were associated with neurobiological changes: while the expression of hippocampal CaMKII mRNA levels was reduced in middle-aged animals, the polyphenol-enriched diet could rescue them. Besides, an increased expression of NGF mRNA levels was also observed in supplemented adult and middle-aged mice. Thus these data suggest that supplementation with polyphenols could be an efficient nutritional way to prevent age-induced cognitive decline.

  10. New cellulose–lignin hydrogels and their application in controlled release of polyphenols

    International Nuclear Information System (INIS)

    Ciolacu, Diana; Oprea, Ana Maria; Anghel, Narcis; Cazacu, Georgeta; Cazacu, Maria

    2012-01-01

    Novel superabsorbant cellulose–lignin hydrogels (CL) were prepared by a new two-step procedure consisting in dissolving cellulose in an alkaline solution with further mixing with lignin, followed by the chemical crosslinking with epichlorohydrin. The crosslinking occurrence was verified by Fourier Transform Infrared spectroscopy (FT-IR). The effect of the structure features of cellulose–lignin hydrogels on their dehydration heat was evaluated by Differential Scanning Calorimetry (DSC). The Scanning Electron Microscopy (SEM) images reveal some morphological aspects of the hydrogels. The degree as well as the rate of swelling in a mixture of water:ethanol = 19:1 were estimated. The possible application of these hydrogels as controlled release systems was tested. Polyphenols known as having a wide range of biological effects were selected to be incorporated in such hydrogels by an optimal procedure. The extract of grapes seeds from the Chambourcin type was used as a source of polyphenols (PF). The amount of the incorporated polyphenols was estimated by UV–VIS measurements. Characterization of the hydrogels containing polyphenols was performed by FTIR spectroscopy. Some parameters were estimated based on the registered spectra, as H-bond energy (E H ), the asymmetric index (a/b) and the enthalpy of H-bond formation (ΔH). The modifications of the thermal behavior and morphology induced by the presence of the polyphenols in hydrogels were highlighted by DSC and SEM, respectively. The release of polyphenols from CL hydrogels depended on the lignin content from matrices, as assessed by spectral studies. Both loading with polyphenols and their release can be controlled by the composition of the hydrogels. The kinetic of polyphenols release was studied. - Highlights: ► A unique method to obtain cellulose–lignin hydrogels. ► The application of these hydrogels as controlled release systems was tested. ► Polyphenols from grapes seed as active ingredient.

  11. Systematic analysis of the polyphenol metabolome using the Phenol-Explorer database.

    Science.gov (United States)

    Rothwell, Joseph A; Urpi-Sarda, Mireia; Boto-Ordoñez, Maria; Llorach, Rafael; Farran-Codina, Andreu; Barupal, Dinesh Kumar; Neveu, Vanessa; Manach, Claudine; Andres-Lacueva, Cristina; Scalbert, Augustin

    2016-01-01

    The Phenol-Explorer web database details 383 polyphenol metabolites identified in human and animal biofluids from 221 publications. Here, we exploit these data to characterize and visualize the polyphenol metabolome, the set of all metabolites derived from phenolic food components. Qualitative and quantitative data on 383 polyphenol metabolites as described in 424 human and animal intervention studies were systematically analyzed. Of these metabolites, 301 were identified without prior enzymatic hydrolysis of biofluids, and included glucuronide and sulfate esters, glycosides, aglycones, and O-methyl ethers. Around one-third of these compounds are also known as food constituents and corresponded to polyphenols absorbed without further metabolism. Many ring-cleavage metabolites formed by gut microbiota were noted, mostly derived from hydroxycinnamates, flavanols, and flavonols. Median maximum plasma concentrations (C(max)) of all human metabolites were 0.09 and 0.32 μM when consumed from foods or dietary supplements, respectively. Median time to reach maximum plasma concentration in humans (T(max)) was 2.18 h. These data show the complexity of the polyphenol metabolome and the need to take into account biotransformations to understand in vivo bioactivities and the role of dietary polyphenols in health and disease. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Inhibition of nicotine-DNA adduct formation by polyphenolic compounds in vitro

    International Nuclear Information System (INIS)

    Cheng Yan; Wang Haifang; Sun Hongfang; Li Hongli

    2004-01-01

    Nicotine[3-(1-methyl-2-pyrrolidinyl)-pyridine], a major alkaloid in tobacco products, has proven to be a potential genotoxic compound. Some polyphenolic compounds can suppress the DNA adduction, and hence act as the potential inhibitors of carcinogenesis. In this study, the inhibitory effects of three polyphenolic compounds, curcumin (diferuloylmethane), resveratrol (trans-3, 5, 4-trihydroxystilbene) and tea polyphenols, on the nicotine-DNA adduction have been investigated in vitro using radiolabelled nicotine and liquid scintillation counting (LSC) technique. Also, the inhibition mechanism of these chemopreventive agents in regard to the activity of the biotransformation enzymes, including cytochrome P450 (CYP450), cytochrome b 5 (CYb 5 ) and glutathione S-transferase (GST), has been studied. The results demonstrated that these three polyphenols induced marked dose-dependent decrease in nicotine-DNA adducts as compared with the controls. The elimination rate of adducts reached above 46% at the highest dose for all the three agents with 51.6% for resveratrol. Correspondingly, three polyphenols all suppressed CYP450 and CYb 5 , whereas curcumin and resveratrol induced GST. The authors may arrive at a point that the three polyphenols are beneficial to prevent the nicotine adduct formation, and thus may be used to block the potential carcinogenesis induced by nicotine. (authors)

  13. Polyphenol composition and antioxidant activity of Kei-apple (Dovyalis caffra) juice.

    Science.gov (United States)

    Loots, Du Toit; van der Westhuizen, Francois H; Jerling, Johann

    2006-02-22

    The polyphenolic and ascorbate (ASC) components as well as the antioxidant capacity of Kei-apple (Dovyalis caffra) juice were analyzed and compared to three other fruit juices. The Kei-apple juice had significantly the highest total polyphenolic concentrations (1013 mg gallic acid equivalent/L), and solid phase (C(18)) fractionation identified the majority of these polyphenols to be phenolic acids. The Kei-apple juice also had significantly the highest ASC concentrations (658 mg/L), which showed exceptional heat stability with very little conversion to dehydroascorbate (DHA). Antioxidant capacities of both the unfractionated fruit juices and their solid phase-extracted fractions, as determined by oxygen radical absorbance capacity and ferric reducing antioxidant power analyses, correlated well to the polyphenol concentrations. Gas chromatography-mass spectrometry analyses showed caffeic acid as the most abundant polyphenol present (128.7 mg/L) in the Kei-apple juice; it contributed to 63% of the total antioxidant capacity (of all of the individual compounds identified). Other notable polyphenols identified in higher concentrations included p-coumaric acid, p-hydroxyphenylacetic acid, and protocatechuic acid. Our results therefore support the putative high antioxidant value linked to this fruit and better define this potential in terms of the major antioxidants that exist in the Kei-apple.

  14. Literature review on production process to obtain extra virgin olive oil enriched in bioactive compounds. Potential use of byproducts as alternative sources of polyphenols.

    Science.gov (United States)

    Frankel, Edwin; Bakhouche, Abdelhakim; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2013-06-05

    This review describes the olive oil production process to obtain extra virgin olive oil (EVOO) enriched in polyphenol and byproducts generated as sources of antioxidants. EVOO is obtained exclusively by mechanical and physical processes including collecting, washing, and crushing of olives, malaxation of olive paste, centrifugation, storage, and filtration. The effect of each step is discussed to minimize losses of polyphenols from large quantities of wastes. Phenolic compounds including phenolic acids, alcohols, secoiridoids, lignans, and flavonoids are characterized in olive oil mill wastewater, olive pomace, storage byproducts, and filter cake. Different industrial pilot plant processes are developed to recover phenolic compounds from olive oil byproducts with antioxidant and bioactive properties. The technological information compiled in this review will help olive oil producers to improve EVOO quality and establish new processes to obtain valuable extracts enriched in polyphenols from byproducts with food ingredient applications.

  15. Alternatives to Chromatography in Plant Breeding

    Directory of Open Access Journals (Sweden)

    Keusgen, Michael

    2016-07-01

    Full Text Available Wild plants were taken into cultivation because of special features. Usually, medicinal plants or spices show distinct secondary metabolites combined with a specific pattern of these compounds. Typically, chromatographic methods like gas chromatography (GC or high performance liquid chromatography (HPLC were applied as standard methods for a meaningful analysis of secondary metabolites. However, these methods are labor and time intensive. In the breeding process, usually numerous single plants have to be analyzed and therefore, high throughput methods are required. In this article, some examples for alternative strategies are given. Besides spectroscopic methods like near infrared (NIR, also biosensoric approaches should be considered. For instance, several enzymes can oxidize or hydrolyze secondary metabolites in dependence of their functional groups. Polyphenols can be determined by laccases. Polyphenols like catechins and flavonoids contribute to the bioactivity of many medicinal plants. Also cysteine sulfoxides, which are typical for Allium species like garlic and onions, can be enzymatically determined with high specificity. Finally, toxic cyanogenic glycosides can be quantified by the enzyme cyanidase.

  16. Polyphenolic Profile and Targeted Bioactivity of Methanolic Extracts from Mediterranean Ethnomedicinal Plants on Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Antonino Pollio

    2016-03-01

    Full Text Available The methanol extracts of the aerial part of four ethnomedicinal plants of Mediterranean region, two non-seed vascular plants, Equisetum hyemale L. and Phyllitis scolopendrium (L. Newman, and two Spermatophyta, Juniperus communis L. (J. communis and Cotinus coggygria Scop. (C. coggygria, were screened against four human cells lines (A549, MCF7, TK6 and U937. Only the extracts of J. communis and C. coggygria showed marked cytotoxic effects, affecting both cell morphology and growth. A dose-dependent effect of these two extracts was also observed on the cell cycle distribution. Incubation of all the cell lines in a medium containing J. communis extract determined a remarkable accumulation of cells in the G2/M phase, whereas the C. coggygria extract induced a significant increase in the percentage of G1 cells. The novelty of our findings stands on the observation that the two extracts, consistently, elicited coherent effects on the cell cycle in four cell lines, independently from their phenotype, as two of them have epithelial origin and grow adherent and two are lymphoblastoid and grow in suspension. Even the expression profiles of several proteins regulating cell cycle progression and cell death were affected by both extracts. LC-MS investigation of methanol extract of C. coggygria led to the identification of twelve flavonoids (compounds 1–11, 19 and eight polyphenols derivatives (12–18, 20, while in J. communis extract, eight flavonoids (21–28, a α-ionone glycoside (29 and a lignin (30 were found. Although many of these compounds have interesting individual biological activities, their natural blends seem to exert specific effects on the proliferation of cell lines either growing adherent or in suspension, suggesting potential use in fighting cancer.

  17. Immobilization of the enzyme polyphenol oxidase on dendrispheres: In partial fulfilment of the degree Magister Scientiae

    CSIR Research Space (South Africa)

    Bannister, M

    2011-04-01

    Full Text Available OF THE ENZYME POLYPHENOL OXIDASE ON DENDRISPHERES IN PARTIAL FULFILMENT OF THE DEGREE MAGISTER SCIENTIAE Magdalien Bannister 26112664 April 2011 TEA (Camellia sinensis plant) ? CSIR 2011 Slide 2 Second most consumed beverage in the world Grouped into...: ?Green tea Non-fermented ?Oolong tea Partially fermented ?Black tea Fermented Catechins: ?Major component present in green tea leaves ?(-)-Epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG) and (-)-epicatechin...

  18. Plant-derived health: the effects of turmeric and curcuminoids.

    Science.gov (United States)

    Bengmark, S; Mesa, M D; Gil, A

    2009-01-01

    Plants contain numerous polyphenols, which have been shown to reduce inflammation and hereby to increase resistance to disease. Examples of such polyphenols are isothiocyanates in cabbage and broccoli, epigallocatechin in green tee, capsaicin in chili peppers, chalones, rutin and naringenin in apples, resveratrol in red wine and fresh peanuts and curcumin/curcuminoids in turmeric. Most diseases are maintained by a sustained discreet but obvious increased systemic inflammation. Many studies suggest that the effect of treatment can be improved by a combination of restriction in intake of proinflammatory molecules such as advanced glycation end products (AGE), advanced lipoperoxidation end products (ALE), and rich supply of antiinflammatory molecules such as plant polyphenols. To the polyphenols with a bulk of experimental documentation belong the curcuminoid family and especially its main ingredient, curcumin. This review summarizes the present knowledge about these turmericderived ingredients, which have proven to be strong antioxidants and inhibitors of cyclooxigenase-2 (COX-2), lipoxygenase (LOX) and nuclear factor kappa B (NF-kappaB) but also AGE. A plethora of clinical effects are reported in various experimental diseases, but clinical studies in humans are few. It is suggested that supply of polyphenols and particularly curcuminoids might be value as complement to pharmaceutical treatment, but also prebiotic treatment, in conditions proven to be rather therapy-resistant such as Crohn's, long-stayed patients in intensive care units, but also in conditions such as cancer, liver cirrhosis, chronic renal disease, chronic obstructive lung disease, diabetes and Alzheimer's disease.

  19. Bicarbonate as tracer for plant assimilated C and homogeneity of 14C and 15N distribution in ryegrass and white clover tissue by alternative labeling approaches

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Kusliene, Gedrime; Jacobsen, Ole Stig

    2013-01-01

    that 15N also had a heterogeneous distribution (up to two orders of magnitude). Conclusion Bicarbonate can efficiently be used to introduce 14C or 13C into plant via the leaf-labeling method. Both 14C and 15N showed heterogeneous distribution in the plant, although the distribution of 15N was more even......Aims: Application of carbon (C) and nitrogen (N) isotopes is an essential tool to study C and N flows in plant-soil-microorganisms systems. When targeting single plants in a community the tracers need to be added via e.g., leaf-labeling or stem-feeding approaches. In this study we: (i) investigated...... if bicarbonate can be used to introduce 14C (or 13C) into white clover and ryegrass, and (ii) compared the patterns of 14C and 15N allocation in white clover and ryegrass to evaluate the homogeneity of tracer distribution after two alternative labeling approaches. Methods Perennial ryegrass and white clover were...

  20. Resveratrol biosynthesis: plant metabolic engineering for nutritional improvement of food.

    Science.gov (United States)

    Giovinazzo, Giovanna; Ingrosso, Ilaria; Paradiso, Annalisa; De Gara, Laura; Santino, Angelo

    2012-09-01

    The plant polyphenol trans-resveratrol (3, 5, 4'-trihydroxystilbene) mainly found in grape, peanut and other few plants, displays a wide range of biological effects. Numerous in vitro studies have described various biological effects of resveratrol. In order to provide more information regarding absorption, metabolism, and bioavailability of resveratrol, various research approaches have been performed, including in vitro, ex vivo, and in vivo models. In recent years, the induction of resveratrol synthesis in plants which normally do not accumulate such polyphenol, has been successfully achieved by molecular engineering. In this context, the ectopic production of resveratrol has been reported to have positive effects both on plant resistance to biotic stress and the enhancement of the nutritional value of several widely consumed fruits and vegetables. The metabolic engineering of plants offers the opportunity to change the content of specific phytonutrients in plant - derived foods. This review focuses on the latest findings regarding on resveratrol bioproduction and its effects on the prevention of the major pathological conditions in man.

  1. 27 CFR 19.604 - Caution label.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Caution label. 19.604... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Containers and Marks Marks § 19.604 Caution label... denaturer may be printed on such label, but no other extraneous matter will be permitted thereon without the...

  2. Quality label 'Geothermal energy source' (quality-assurance system)

    International Nuclear Information System (INIS)

    Eugster, W. J.

    2005-01-01

    The design of borehole heat exchanger (BHE) plants is covered only marginally through the existing quality labels. And only for small and simple systems. Especially the middle and large sized BHE plants are excluded from the labels. And exactly those plants may be very difficult to treat and to handle. Two concepts of quality control are proposed. On one hand a quality label, which is based on an object sheet, that is both, a planning help and a quality proof. There is no duty for the heating/ventilation/air-conditioning (HVAC) engineers to acquire such a quality label. The label is based on a self quality declaration of the engineers. Therefore a controlling system is needed which induces costs to the labelled engineers. A market penetration of around 20% is predicted for the first three years. The second concept is based on a clear definition of the actual state of the art in designing a BHE plant in a formal standard by the Swiss Engineers and Architects Society (SIA). This concept is proposed for realisation. Nearly 90% of the Swiss BHE drilling market is penetrated by the labelled drilling companies which have agreed to demand from their HVAC engineers (planners) to apply the future SIA standard, either by their general drilling and delivery conditions or by a special agreement. This fact guarantees a fast spreading and application of such a new SIA standard. A collateral information offensive for the HVAC engineers working in the design of BHE plants needs to be stated in any way. This method is not only very cheap but also guarantees a fast and a broad market penetration which must have nearly the same grade as the quality label for drilling companies. But of course, the new standard has to be elaborated first, what should be possible within approximately one year. (author)

  3. Synthesis and application of labelled growth regulators

    International Nuclear Information System (INIS)

    Shyutte, G.R.

    1982-01-01

    For the investigation of the metabolism both of phytoeffectors like herbicides and plant growth regulators such compounds are needed in radioactive labelled form. The synthesis of radioactive labelled fluorodifen, nitrofen, ethephon, diphenylic acetic acid, 2,4-dichlorophenoxyisobutyric acid, abscisic acid, hydroxybenzoic acids and different conjugates are described. Some examples of these compounds metabolism in plants are discussed [ru

  4. Ultrasound-assisted extraction of polyphenols from Thymus serpyllum and its antioxidant activity

    Directory of Open Access Journals (Sweden)

    Jovanović Aleksandra A.

    2016-01-01

    Full Text Available The present study was designed to establish and optimize a method for extracting natural bioactive compounds from Thymus serpyllum which possess antioxidant, antimicrobial, antispasmotic and stimulant properties. Ultrasound-assisted extraction (UAE is a well-established method in the processing of plant material, particularly for extraction of bioactive substances such as polyphenols. The influential factors including extraction time (3, 7 and 10 minutes, solid:solvent ratio (1:10, 1:20 and 1:30 and particle size (0.3, 0.7 and 1.5 mm, have been studied to optimize the extraction process, while using 30% ethanol as an extraction medium and amplitude set to 65%. The yield of UAE was expressed via total phenol content and antioxidant activity of the obtained extracts. The optimum process paremeters were found to be: extraction time, 3 min; solid:solvent ratio, 1:30; particle size, 0.3 mm. Under these conditions, the yield of total polyphenols was raised up to 23.03 mg/L GA and the highest antioxidant activity was recorded (10.32 mmol/mg Trolox and IC50 3.00 mg/ml. [Projekat Ministarstva nauke Republike Srbije, br. 46010 i br. 46013

  5. Dietary intake of total polyphenol and polyphenol classes and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort

    DEFF Research Database (Denmark)

    Zamora-Ros, Raul; Cayssials, Valerie; Jenab, Mazda

    2018-01-01

    Polyphenols may play a chemopreventive role in colorectal cancer (CRC); however, epidemiological evidence supporting a role for intake of individual polyphenol classes, other than flavonoids is insufficient. We evaluated the association between dietary intakes of total and individual classes and ...

  6. Polyphenolic chemistry of tea and coffee: a century of progress.

    Science.gov (United States)

    Wang, Yu; Ho, Chi-Tang

    2009-09-23

    Tea and coffee, the most popular beverages in the world, have been consumed for thousands of years for their alluring flavors and health benefits. Polyphenols, particularly flavonoids and phenolic acids, are of great abundance in tea and coffee and contribute a lot to their flavor and health properties. This paper reviews the polyphenol chemistry of tea and coffee, specifically their stability, and scavenging ability of reactive oxygen species (ROS) and reactive carbonyl species (RCS). During the manufacturing and brewing process, green tea and black tea polyphenols undergo epimerization and oxidation, respectively. Meanwhile, the lactonization and the polymerization of chlorogenic acid are the major causes for the degradation of polyphenols in coffee. Tea catechins, besides having antioxidant properties, have the novel characteristic of trapping reactive carbonyl species. The A ring of the catechins is the binding site for RCS trapping, whereas the B ring is the preferred site for antioxidation.

  7. Quantification of almond skin polyphenols by liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Bolling, Bradley W; Dolnikowski, Gregory; Blumberg, Jeffrey B; Oliver Chen, C Y

    2009-01-01

    Reverse phase HPLC coupled to negative mode electrospray ionization (ESI) mass spectrometry (MS) was used to quantify 16 flavonoids and 2 phenolic acids from almond skin extracts. Calibration curves of standard compounds were run daily and daidzein was used as an internal standard. The inter-day relative standard deviation (RSD) of standard curve slopes ranged from 13% to 25% of the mean. On column (OC) limits of detection (LOD) for polyphenols ranged from 0.013 to 1.4 pmol, and flavonoid glycosides had a 7-fold greater sensitivity than aglycones. Limits of quantification were 0.043 to 2.7 pmol OC, with a mean of 0.58 pmol flavonoid OC. Mean inter-day RSD of polyphenols in almond skin extract was 6.8% with a range of 4% to 11%, and intra-day RSD was 2.4%. Liquid nitrogen (LN(2)) or hot water (HW) blanching was used to facilitate removal of the almond skins prior to extraction using assisted solvent extraction (ASE) or steeping with acidified aqueous methanol. Recovery of polyphenols was greatest in HW blanched almond extracts with a mean value of 2.1 mg/g skin. ASE and steeping extracted equivalent polyphenols, although ASE of LN(2) blanched skins yielded 52% more aglycones and 23% less flavonoid glycosides. However, the extraction methods did not alter flavonoid profile of HW blanched almond skins. The recovery of polyphenolic components that were spiked into almond skins before the steeping extraction was 97% on a mass basis. This LC-MS method presents a reliable means of quantifying almond polyphenols.

  8. Reducing effects of polyphenols on metmyoglobin and the in vitro regeneration of bright meat color by polyphenols in the presence of cysteine.

    Science.gov (United States)

    Miura, Yukari; Inai, Miyuki; Honda, Sari; Masuda, Akiko; Masuda, Toshiya

    2014-10-01

    The effect of polyphenols and related phenolic compounds on the reduction of metmyoglobin (MetMb) to oxymyoglobin (MbO2), in the presence of cysteine, was investigated. Caffeic acid, dihydrocaffeic acid, and hydroxtyrosol (600 μmol/L) did not show any reducing activity individually. However, their highly potent activity in the reduction of MetMb to MbO2 was observed in the presence of equimolar amounts of cysteine. On the basis of the analytical results for the redox reaction products generated during the MetMb-reducing reaction of caffeic acid, we proposed a mechanism for the polyphenol-mediated reduction of MetMb. As per the proposed mechanism, the antioxidant polyphenols having a catechol substructure can effectively reduce MetMb to MbO2 with chemical assistance from nucleophilic reactive thiol compounds such as cysteine. Moreover, cysteine-coupled polyphenols such as cysteinylcaffeic acids (which are coupling products of caffeic acid and cysteine) can be used as preserving agents for retaining the fresh meat color, because of their powerful reducing effect on MetMb. The reduction of MetMb to MbO2 changes the color of meat from brown to the more desirable bright red.

  9. VITAMIN EFFECT ON THE SYNTHESIS ОF POLYPHENOLIC SUBSTANCES BY BASIDIOMYCETES

    Directory of Open Access Journals (Sweden)

    Veligodska A. K.

    2013-12-01

    Full Text Available We studied the influence of certain vitamins on the intensity of the synthesis of polyphenolic compounds and carotenoids by some Basidiomycetes strains, such as Laetiporus sulphureus Ls-08, Fomes fomentarius Ff-1201 and Fistulina hepatica Fh-18. The registration of accumulation of dry biomass and content of polyphenols and carotenoids in the mycelia and culture filtrate of strains that were cultivated on glucose-peptone substrates (GPS with vitamins was performed. The vitamins A, E, C, B1, B12, and PP at the concentration of 0.005, 0.01 and 0.05 g/l were applied as modification of GPS. We founded the species effect on the synthesis of vitamins, polyphenols, and carotenoids. We suggested separate application of vitamins A, E, B1, and B12 at concentration of 0.01 g/ l to induce the synthesis of polyphenols and carotenoids. Results of the study will be used to develop a modification of GPS for the cultivation of strains of polyphenolic substances of basidiomycete origin.

  10. Towards functional effects of polyphenols : modulation of energy metabolism revealed

    NARCIS (Netherlands)

    Boer, de V.C.J.

    2007-01-01

    A diet rich in fruits and vegetables contains high levels of polyphenols (up to 1 gram per day). Epidemiological studies suggest that a high dietary intake of selected polyphenols can be protective against development of cardiovascular heart diseases in humans. In addition, mechanistic studies

  11. Polyphenols and Oxidative Stress in Atherosclerosis-Related Ischemic Heart Disease and Stroke

    Directory of Open Access Journals (Sweden)

    Yu-Chen Cheng

    2017-01-01

    Full Text Available Good nutrition could maintain health and life. Polyphenols are common nutrient mainly derived from fruits, vegetables, tea, coffee, cocoa, mushrooms, beverages, and traditional medicinal herbs. They are potential substances against oxidative-related diseases, for example, cardiovascular disease, specifically, atherosclerosis-related ischemic heart disease and stroke, which are health and economic problems recognized worldwide. In this study, we reviewed the risk factors for atherosclerosis, including hypertension, diabetes mellitus, hyperlipidemia, obesity, and cigarette smoking as well as the antioxidative activity of polyphenols, which could prevent the pathology of atherosclerosis, including endothelial dysfunction, low-density lipoprotein oxidation, vascular smooth muscle cell proliferation, inflammatory process by monocytes, macrophages or T lymphocytes, and platelet aggregation. The strong radical-scavenging properties of polyphenols would exhibit antioxidative and anti-inflammation effects. Polyphenols reduce ROS production by inhibiting oxidases, reducing the production of superoxide, inhibiting OxLDL formation, suppressing VSMC proliferation and migration, reducing platelet aggregation, and improving mitochondrial oxidative stress. Polyphenol consumption also inhibits the development of hypertension, diabetes mellitus, hyperlipidemia, and obesity. Despite the numerous in vivo and in vitro studies, more advanced clinical trials are necessary to confirm the efficacy of polyphenols in the treatment of atherosclerosis-related vascular diseases.

  12. Mango Polyphenolics Reduce Inflammation in Intestinal Colitis—Involvement of the miR-126/PI3K/AKT/mTOR Axis In Vitro and In Vivo

    Science.gov (United States)

    Kim, Hyemee; Banerjee, Nivedita; Barnes, Ryan C.; Pfent, Catherine M.; Talcott, Stephen T.; Dashwood, Roderick H.; Mertens-Talcott, Susanne U.

    2016-01-01

    This study sought to elucidate the mechanisms underlying the anti-inflammatory effect of mango (Mangifera Indica L.) polyphenolics containing gallic acid and gallotanins, and the role of the miR-126/PI3K/AKT/mTOR signaling axis in vitro and in vivo. Polyphenolics extracted from mango (var. Keitt) were investigated in lipopolysaccharide (LPS)-treated CCD-18Co cells. Rats received either a beverage with mango polyphenolics or a control beverage, and were exposed to three cycles of 3% dextran sodium sulfate (DSS) followed by a 2-wk recovery period. The mango extract (10 mg GAE/L) suppressed the protein expression of NF-κB, p-NF-κB, PI3K (p85β), HIF-1α, p70S6K1, and RPS6 in LPS-treated CCD-18Co cells. LPS reduced miR-126 expression, whereas, the mango extract induced miR-126 expression in a dose-dependent manner. The relationship between miR-126 and its target, PI3K (p85β), was confirmed by treating cells with miR-126 antagomiR where mango polyphenols reversed the effects of the antagomiR. In vivo, mango beverage protected against DSS-induced colonic inflammation (47%, P = 0.05) and decreased the Ki-67 labeling index in the central and basal regions compared to the control. Mango beverage significantly attenuated the expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and iNOS at the mRNA and protein level. Moreover, the expression of PI3K, AKT, and mTOR was reduced, whereas, miR-126 was upregulated by the mango treatment. These results suggest that mango polyphenols attenuated inflammatory response by modulating the PI3K/AKT/mTOR pathway at least in part through upregulation of miRNA-126 expression both in vitro and in vivo; thus, mango polyphenolics might be relevant as preventive agents in ulcerative colitis. PMID:27061150

  13. Aqueous Two-Phase Extraction of Polyphenols Using a Microchannel System – Process Optimization and Intensification

    Directory of Open Access Journals (Sweden)

    Ivana Rukavina

    2011-01-01

    Full Text Available Polyphenols are one of the most numerous and widespread groups of compounds in the plant world. Nowadays, organic solvents such as methanol, ethanol, acetone, dimethylformamide, ethyl acetate and diethylether are mainly used for the extraction of polyphenols. These solvents require special process conditions and special care in the disposal of the used solvents. In this paper, the extraction of polyphenols from the model solution was performed using the aqueous two-phase system which contains 80.90 % water and represents low burden on the environment. The aqueous solution of gallic acid (GA was used as a model solution of polyphenols. The extraction was performed in the aqueous two-phase system containing PEG6000/H2O/(NH42SO4 in a macroextractor (V=10 mL and microextractor (V=14 ƒμL. The influence of the process parameters, the concentration of gallic acid, pH and composition of the aqueous two-phase system was investigated in order to maximize the partition coefficient. The method of multifactor experimental planning was used to optimize the extraction process and the results were statistically analysed using the evolutionary operation method (EVOP. Optimal operating conditions of the extraction process were pH=6.50, γGA=4.50 g/L, the mass fraction of polyethylene glycol (PEG wPEG=0.1037 g/g and the mass fraction of ammonium sulphate (AMS wAMS=0.0925 g/g. Under these conditions the maximal partition coefficient of K=5.54 and the extraction efficiency of E=89.11 % were achieved and successfully applied for total phenol extraction from white wine in the macro- and microextractor. Approximately the same partition coefficients and extraction efficiency were achieved in the microextractor within a 60-fold shorter residence time.

  14. Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes*

    Science.gov (United States)

    Zheng, Hu-zhe; Hwang, In-Wook; Chung, Shin-Kyo

    2009-01-01

    The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to substrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50 °C for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents of p-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production. PMID:19946955

  15. Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes.

    Science.gov (United States)

    Zheng, Hu-zhe; Hwang, In-Wook; Chung, Shin-Kyo

    2009-12-01

    The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to substrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50 degrees C for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents of p-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production.

  16. Isolation of a polyphenol oxidase (PPO) cDNA from artichoke and expression analysis in wounded artichoke heads.

    Science.gov (United States)

    Quarta, Angela; Mita, Giovanni; Durante, Miriana; Arlorio, Marco; De Paolis, Angelo

    2013-07-01

    The polyphenol oxidase (PPO) enzyme, which can catalyze the oxidation of phenolics to quinones, has been reported to be involved in undesirable browning in many plant foods. This phenomenon is particularly severe in artichoke heads wounded during the manufacturing process. A full-length cDNA encoding for a putative polyphenol oxidase (designated as CsPPO) along with a 1432 bp sequence upstream of the starting ATG codon was characterized for the first time from [Cynara cardunculus var. scolymus (L.) Fiori]. The 1764 bp CsPPO sequence encodes a putative protein of 587 amino acids with a calculated molecular mass of 65,327 Da and an isoelectric point of 5.50. Analysis of the promoter region revealed the presence of cis-acting elements, some of which are putatively involved in the response to light and wounds. Expression analysis of the gene in wounded capitula indicated that CsPPO was significantly induced after 48 h, even though the browning process had started earlier. This suggests that the early browning event observed in artichoke heads was not directly related to de novo mRNA synthesis. Finally, we provide the complete gene sequence encoding for polyphenol oxidase and the upstream regulative region in artichoke. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Sensorial properties of red wine polyphenols: Astringency and bitterness.

    Science.gov (United States)

    Soares, Susana; Brandão, Elsa; Mateus, Nuno; de Freitas, Victor

    2017-03-24

    Polyphenols have been the subject of numerous research over the past years, being referred as the nutraceuticals of modern life. The healthy properties of these compounds have been associated to a natural chemoprevention of 21st century major diseases such as cancer and neurodegenerative diseases (e.g. Parkinson's and Alzheimer's). This association led to an increased consumption of foodstuffs rich in these compounds such as red wine. Related to the ingestion of polyphenols are the herein revised sensorial properties (astringency and bitterness) which are not still pleasant. This review intends to be an outline both at a sensory as a molecular level of the mechanisms underlying astringency and bitterness of polyphenols. Up-to-date knowledge of this matter is discussed in detail.

  18. Management of reproduction and pregnancy complications in maternal obesity: which role for dietary polyphenols?

    Science.gov (United States)

    Santangelo, Carmela; Varì, Rosaria; Scazzocchio, Beatrice; Filesi, Carmelina; Masella, Roberta

    2014-01-01

    Obesity is a global and dramatic public health problem; maternal obesity represents one of the main risk factors of infertility and pregnancy complications as it is associated with adverse maternal and offspring outcomes. In the last few years, adipose tissue dysfunction associated with altered adipocytokine secretion has been suggested to play a critical role in all the phases of reproductive process. Obesity is a nutrition-related disorder. In this regard, dietary intervention strategies, such as high intake of fruit and vegetables, have shown significant effects in both preserving health and counteracting obesity-associated diseases. Evidence has been provided that polyphenols, important constituents of plant-derived food, can influence developmental program of oocyte and embryo, as well as pregnancy progression by modulating several cellular pathways. This review will examine the controversial results so far obtained on adipocytokine involvement in fertility impairment and pregnancy complications. Furthermore, the different effects exerted by polyphenols on oocyte, embryo, and pregnancy development will be also taken in account. © 2013 International Union of Biochemistry and Molecular Biology.

  19. In silico approach for the discovery of new PPARγ modulators among plant-derived polyphenols

    Directory of Open Access Journals (Sweden)

    Encinar JA

    2015-11-01

    Full Text Available José Antonio Encinar,1 Gregorio Fernández-Ballester,1 Vicente Galiano-Ibarra,2 Vicente Micol1,3 1Molecular and Cell Biology Institute, 2Physics and Computer Architecture Department, Miguel Hernández University, Elche, Spain; 3CIBER: CB12/03/30038 Physiopathology of Obesity and Nutrition, CIBERobn, Instituto de Salud Carlos III, Palma de Mallorca, SpainAbstract: Peroxisome proliferator-activated receptor gamma (PPARγ is a well-characterized member of the PPAR family that is predominantly expressed in adipose tissue and plays a significant role in lipid metabolism, adipogenesis, glucose homeostasis, and insulin sensitization. Full agonists of synthetic thiazolidinediones (TZDs have been therapeutically used in clinical practice to treat type 2 diabetes for many years. Although it can effectively lower blood glucose levels and improve insulin sensitivity, the administration of TZDs has been associated with severe side effects. Based on recent evidence obtained with plant-derived polyphenols, the present in silico study aimed at finding new selective human PPARγ (hPPARγ modulators that are able to improve glucose homeostasis with reduced side effects compared with TZDs. Docking experiments have been used to select compounds with strong binding affinity (ΔG values ranging from -10.0±0.9 to -11.4±0.9 kcal/mol by docking against the binding site of several X-ray structures of hPPARγ. These putative modulators present several molecular interactions with the binding site of the protein. Additionally, most of the selected compounds have favorable druggability and good ADMET properties. These results aim to pave the way for further bench-scale analysis for the discovery of new modulators of hPPARγ that do not induce any side effects. Keywords: virtual screening, molecular docking, high-throughput computing, TZDs, human PPARγ, AutoDock/Vina, ADMET, phenolic compounds

  20. Variability of the polyphenolic composition of cider apple (Malus domestica) fruits and juices.

    Science.gov (United States)

    Guyot, Sylvain; Marnet, Nathalie; Sanoner, Philippe; Drilleau, Jean-François

    2003-10-08

    Five French cider apple varieties were compared on the basis of their detailed polyphenol profile in the cortex and in the juices. Among the factors studied, variety was the most important variability factor in fruits, whereas polyphenol profiles showed an overall stability from one year to another, and a limited decrease of polyphenol concentration was observed during the starch regression period of fruit maturation. In juices, procyanidins remained the preponderant polyphenol class with concentrations up to 2.4 g/L even in centrifuged juices. Compared to the fruits, the average degree of polymerization of procyanidins was significantly reduced in the juice. Centrifugation of the crude juice had only minor effects on the polyphenol composition. For one variety, highly polymerized procyanidins with average degrees of polymerization of 25 were shown to be soluble in the centrifuged juice at a concentration of close to 1.2 g/L. Oxygenation of the juices during processing resulted in a significant decrease of all classes of native polyphenols. Catechins and procyanidins were particularly affected by oxidation, whereas caffeoylquinic acid was partly preserved. The transfer of polyphenols after pressing was maximal for dihydrochalcones and minimal for procyanidins with extraction yield values close to 80 and 30%, respectively.

  1. Antioxidant properties of Mediterranean food plant extracts: geographical differences.

    Science.gov (United States)

    Schaffer, S; Schmitt-Schillig, S; Müller, W E; Eckert, G P

    2005-03-01

    Locally grown, wild food plants seasonally contribute a considerable portion of the daily diet in certain Mediterranean areas and it has been suggested that the beneficial effects of the Mediterranean diet on human health partly originate from the antioxidant effect of flavonoid-rich food plants. The nutrient content of most wild plants is higher than that of cultivated ones and may vary depending on the prevailing environmental conditions. Accordingly, three local Mediterranean plant foods (i.e. Cichorium intybus, Sonchus oleraceus, Papaver rhoeas) were collected in Greece (Crete), southern Italy, and southern Spain in order to assess possible differences in their in vitro antioxidant potential. The biological assays revealed diverse intra-plant specific antioxidant effects for the tested extracts ranging from no activity to almost complete protection. Furthermore, substantial differences in the polyphenol content were found for the nutritionally used part of the same plant originating from different locations. However, no clear correlations between the polyphenol content and the extracts' antioxidant activities were found. Taken together, the data suggest that certain local Mediterranean plant foods possess promising antioxidant activity and that the observed biological effects are possibly influenced by the geographically-dependent environmental conditions prevailing during plant growth.

  2. Cellular Targets of Dietary Polyphenol Resveratrol

    National Research Council Canada - National Science Library

    Wu, Joseph M

    2006-01-01

    To test the hypothesis that resveratrol, a grape derived polyphenol, exerts its chemopreventive properties against prostate cancer by interacting with specific cellular targets, denoted resveratrol targeting proteins (RTPs...

  3. Hormonal effect on polyphenol accumulation in Cassia tissues cultured in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Shah, R R; Subbaiah, K V; Mehta, A R

    1976-06-01

    Effects of auxin and kinetin on growth and production of phenolic compounds in cultured Cassia fistula L. tissues were examined. Initiation of polyphenols was largely determined by the auxin concentration in the medium. Growth of the cells in relation to accumulation of polyphenols was studied at different auxin and kinetin concentrations. The accumulation of phenolic materials was essentially restricted to the most rapid phase of the growth cycle. Progressive changes in the pattern of peroxidase activity were followed and their relationship with polyphenol synthesis is examined.

  4. Polyphenols: Benefits to the Cardiovascular System in Health and in Aging

    Directory of Open Access Journals (Sweden)

    Sandhya Khurana

    2013-09-01

    Full Text Available Numerous studies have demonstrated the importance of naturally occurring dietary polyphenols in promoting cardiovascular health and emphasized the significant role these compounds play in limiting the effects of cellular aging. Polyphenols such as resveratrol, epigallocatechin gallate (EGCG, and curcumin have been acknowledged for having beneficial effects on cardiovascular health, while some have also been shown to be protective in aging. This review highlights the literature surrounding this topic on the prominently studied and documented polyphenols as pertaining to cardiovascular health and aging.

  5. Flavonoid glycosides isolated from unique legume plant extracts as novel inhibitors of xanthine oxidase.

    Directory of Open Access Journals (Sweden)

    Chrysoula Spanou

    Full Text Available Legumes and the polyphenolic compounds present in them have gained a lot of interest due to their beneficial health implications. Dietary polyphenolic compounds, especially flavonoids, exert antioxidant properties and are potent inhibitors of xanthine oxidase (XO activity. XO is the main contributor of free radicals during exercise but it is also involved in pathogenesis of several diseases such as vascular disorders, cancer and gout. In order to discover new natural, dietary XO inhibitors, some polyphenolic fractions and pure compounds isolated from two legume plant extracts were tested for their effects on XO activity. The fractions isolated from both Vicia faba and Lotus edulis plant extracts were potent inhibitors of XO with IC(50 values range from 40-135 µg/mL and 55-260 µg/mL, respectively. All the pure polyphenolic compounds inhibited XO and their K(i values ranged from 13-767 µM. Ten of the compounds followed the non competitive inhibitory model whereas one of them was a competitive inhibitor. These findings indicate that flavonoid isolates from legume plant extracts are novel, natural XO inhibitors. Their mode of action is under investigation in order to examine their potential in drug design for diseases related to overwhelming XO action.

  6. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter.

    Science.gov (United States)

    Haddix, Michelle L; Paul, Eldor A; Cotrufo, M Francesca

    2016-06-01

    The formation and stabilization of soil organic matter (SOM) are major concerns in the context of global change for carbon sequestration and soil health. It is presently believed that lignin is not selectively preserved in soil and that chemically labile compounds bonding to minerals comprise a large fraction of the SOM. Labile plant inputs have been suggested to be the main precursor of the mineral-bonded SOM. Litter decomposition and SOM formation are expected to have temperature sensitivity varying with the lability of plant inputs. We tested this framework using dual (13) C and (15) N differentially labeled plant material to distinguish the metabolic and structural components within a single plant material. Big Bluestem (Andropogon gerardii) seedlings were grown in an enriched (13) C and (15) N environment and then prior to harvest, removed from the enriched environment and allowed to incorporate natural abundance (13) C-CO2 and (15) N fertilizer into the metabolic plant components. This enabled us to achieve a greater than one atom % difference in (13) C between the metabolic and structural components within the plant litter. This differentially labeled litter was incubated in soil at 15 and 35 °C, for 386 days with CO2 measured throughout the incubation. After 14, 28, 147, and 386 days of incubation, the soil was subsequently fractionated. There was no difference in temperature sensitivity of the metabolic and structural components with regard to how much was respired or in the amount of litter biomass stabilized. Only the metabolic litter component was found in the sand, silt, or clay fraction while the structural component was exclusively found in the light fraction. These results support the stabilization framework that labile plant components are the main precursor of mineral-associated organic matter. © 2016 John Wiley & Sons Ltd.

  7. Transformation of {sup 15}N-Labelled Ammonium during Aerobic Decomposition of Plant Material

    Energy Technology Data Exchange (ETDEWEB)

    Danneberg, O. H.; Haunold, E.; Kaindl, K. [Institute for Biology and Agriculture. Reactor Centre, Seibersdorf (Austria)

    1968-07-01

    Plant material from maize leaves with the addition of {sup 15}N-labelled (NH{sub 4}){sub 2}SO{sub 4} was composted for periods of 10 to 180 d. The nitrogen of the decomposing samples was fractionated and the {sup 15}N enrichment in the fractions was determined by mass spectrometry. The added {sup 15}NH{sub 4}{sup +} was incorporated into organic compounds mainly during the first 10 d. The largest amount was found in the 'protein' fraction. The total nitrogen of this fraction increased up to 30 d, thus showing a marked synthesis of microbial protein. It decreased afterwards, when the microbial substances themselves were decomposed. Apart from this there was a marked synthesis of humic substances, especially in the first 10 d as indicated by an increase of the acid-insoluble ''humin'' fraction. A rather small amount of labelled ammonium was incorporated into this fraction within this time and this amount remained constant during the whole experiment. Because of the greater decay resistance the ''humin'' fraction was enriched towards the end of the experiment. (author)

  8. Optimization of Conditions for Extraction of Polyphenols and the Determination of the Impact of Cooking on Total Polyphenolic, Antioxidant, and Anticholinesterase Activities of Potato

    Science.gov (United States)

    Laib, Imen; Barkat, Malika

    2018-01-01

    In this work we optimized the cooking and extraction conditions for obtaining high yields of total polyphenols from potato and studied the effect of three domestic methods of cooking on total phenols, antioxidant activity, and anticholinesterase activities. The optimization of the experiment was carried out by the experimental designs. The extraction of the polyphenols was carried out by maceration and ultrasonication. Determination of the polyphenols was performed by using the Folin-Ciocalteau reagent method. The antioxidant activity was evaluated by three methods: 1,1-diphenyl-2-picryl-hydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and CUPRAC(Cupric reducing antioxidant capacity), the anticholinesterase activity was evaluated by the method of Elmann. The optimum of total phenolic obtained was: 4.668 × 104, 1.406 × 104, 3357.009, 16,208.99 µg Gallic Acid Equivalent (GAE)/g of dry extract for crude potato, steamed potatoes, in boiling water, and by microwave, respectively. The three modes of cooking cause a decrease in the total polyphenol contents, antioxidant and anticholinesterase activities. PMID:29522482

  9. Antioxidant activity and nutrient release from polyphenol-enriched cheese in a simulated gastrointestinal environment.

    Science.gov (United States)

    Lamothe, Sophie; Langlois, Ariane; Bazinet, Laurent; Couillard, Charles; Britten, Michel

    2016-03-01

    Green tea polyphenols are recognized for their antioxidant properties and their effects on lipid digestion kinetics. Polyphenols are sensitive to degradation in the intestinal environment. Interactions with dairy proteins could modulate the stability and biological activity of polyphenols during digestion. The objective of this study was to evaluate the release of nutrients (polyphenols, fatty acids and peptides) and the antioxidant activity in polyphenol-enriched cheese containing different levels of calcium in a simulated gastrointestinal environment. The relationship between cheese matrix texture, matrix degradation and nutrient release during digestion was also studied. Green tea extract was added to milk at 0% or 0.1%, and cheeses were produced on a laboratory scale. The level of available calcium was adjusted to low (Ca(low)), regular (Ca(reg)) or high (Ca(high)) during the salting step of the cheese-making process. Cheeses were subjected to simulated digestion. The rate and extent of fatty acid release were 21% lower for Ca(low) cheese than for Ca(reg) and Ca(high) cheeses. The greater adhesiveness of Ca(low) cheese, which resulted in lower rates of matrix degradation and proteolysis, contributed to the reduced rate of lipolysis. The presence of green tea extract in cheese reduced the release of free fatty acids at the end of digestion by 7%. The addition of green tea extract increased cheese hardness but did not influence matrix degradation or proteolysis profiles. The formation of complexes between tea polyphenols and proteins within the cheese matrix resulted in a more than twofold increase in polyphenol recovery in the intestinal phase compared with the control (tea polyphenol extract incubated with polyphenol-free cheese). Antioxidant activity was 14% higher in the digest from polyphenol-enriched cheese than in the control. These results suggest that cheese is an effective matrix for the controlled release of nutrients and for the protection of green

  10. THE EFFECT OF SPRUCE BARK POLYPHENOLS EXTRACT IN COMBINATION WITH DEUTERIUM DEPLETED WATER (DDW ON GLYCINE MAX L. AND HELIANTHUS ANNUUS L. DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Corneliu Tanase

    2010-09-01

    Full Text Available The aim of this study was to evaluate the effect of spruce bark aqueous extract and deuterium depleted water (DDW as bioregulators on the plant growth Glycine max L. and Helianthus annuus. The following specific parameteres were closely monitorised: germination energy and germination capacity, plants vegetative organelles growth and development and photoassimilatory pigments concentrations. The results have shown that DDW presents different effects depending on tested plant species. In the case of soybean, DDW presented stimulatory effects on both germination energy and capacity, radicles elongation, primary leaves growth and development but inhibitory effects on photoassimilatory pigments. Spruce bark extract reduced the germination capacity of soybean seeds, but accelerated the germination process of sunflower seeds and present stimulatory effects on plantlets biomass accumulation. The combination of DDW with Picea abies polyphenolic extract promoted soybean plantlet elongation, especially the rootlets ones and stimulated green biomass accumulation for both soybean and sunflower plantlets. Analyzing the photoassimilatory pigments concentration for sunflower, it can be observed an increasing trend (almost 100% comparing with control when introduce into the growth medium DDW and P. abies polyphenolic extract. DDW and P. abies bark extract have shown an important role in plant growth and development, improving photoassimiliation process.

  11. Forage Polyphenol Oxidase and Ruminant Livestock Nutrition

    Directory of Open Access Journals (Sweden)

    Michael Richard F. Lee

    2014-12-01

    Full Text Available Polyphenol oxidase (PPO is associated with the detrimental effect of browning fruit and vegetables, however interest within PPO containing forage crops has grown since the brownng reaction was associated with reduced nitrogen (N losses in silo and the rumen. The reduction in protein breakdown in silo of red clover (high PPO forage increased the quality of protein, improving N-use efficiency (NUE when fed to ruminants. A further benefit of red clover silage feeding is a significant reduction in lipolysis in silo and an increase in the deposition of beneficial C18 polyunsaturated fatty acid (PUFA in animal products, which has also been linked to PPO activity. PPOs protection of plant protein and glycerol based-PUFA in silo is related to the deactivation of plant proteases and lipases. This deactivation occurs through PPO catalysing the conversion of diphenols to quinones which bind with cellular nucleophiles such as protein reforming a protein-bound phenol (PBP. If the protein is an enzyme the complexing denatures the enzyme. However, PPO is inactive in the anaerobic rumen and therefore any subsequent protection of plant protein and glycerol based-PUFA in the rumen must be as a result of events that occurred to the forage pre-ingestion. Reduced activity of plant proteases and lipases would have little effect on NUE and glycerol based-PUFA in the rumen due to the greater concentration of rumen microbial proteases and lipases. The mechanism for PPOs protection of plant protein in the rumen is a consequence of complexing plant protein, rather than protease deactivation per se. These complexed proteins reduce protein digestibility in the rumen and subsequently increase un-degraded dietary protein flow to the small intestine. The mechanism for protecting glycerol-based PUFA has yet to be fully elucidated but may be associated with entrapment within PBP reducing access to microbial lipases or differences in rumen digestion kinetics of red clover.

  12. A polyphenol-enriched diet and Ascaris suum infection modulate mucosal immune responses and gut microbiota composition in pigs.

    Directory of Open Access Journals (Sweden)

    Andrew R Williams

    Full Text Available Polyphenols are a class of bioactive plant secondary metabolites that are thought to have beneficial effects on gut health, such as modulation of mucosal immune and inflammatory responses and regulation of parasite burdens. Here, we examined the interactions between a polyphenol-rich diet supplement and infection with the enteric nematode Ascaris suum in pigs. Pigs were fed either a basal diet or the same diet supplemented with grape pomace (GP, an industrial by-product rich in polyphenols such as oligomeric proanthocyanidins. Half of the animals in each group were then inoculated with A. suum for 14 days to assess parasite establishment, acquisition of local and systemic immune responses and effects on the gut microbiome. Despite in vitro anthelmintic activity of GP-extracts, numbers of parasite larvae in the intestine were not altered by GP-supplementation. However, the bioactive diet significantly increased numbers of eosinophils induced by A. suum infection in the duodenum, jejunum and ileum, and modulated gene expression in the jejunal mucosa of infected pigs. Both GP-supplementation and A. suum infection induced significant and apparently similar changes in the composition of the prokaryotic gut microbiota, and both also decreased concentrations of isobutyric and isovaleric acid (branched-chain short chain fatty acids in the colon. Our results demonstrate that while a polyphenol-enriched diet in pigs may not directly influence A. suum establishment, it significantly modulates the subsequent host response to helminth infection. Our results suggest an influence of diet on immune function which may potentially be exploited to enhance immunity to helminths.

  13. Mass spectrometry in grape and wine chemistry. Part I: polyphenols.

    Science.gov (United States)

    Flamini, Riccardo

    2003-01-01

    Mass spectrometry, had and still has, a very important role for research and quality control in the viticulture and enology field, and its analytical power is relevant for structural studies on aroma and polyphenolic compounds. Polyphenols are responsible for the taste and color of wine, and confer astringency and structure to the beverage. The knowledge of the anthocyanic structure is very important to predict the aging attitude of wine, and to attempt to resolve problems about color stability. Moreover, polyphenols are the main compounds related to the benefits of wine consumption in the diet, because of their properties in the treatment of circulatory disorders such as capillary fragility, peripheral chronic venous insufficiency, and microangiopathy of the retina. Liquid Chromatography-Mass Spectrometry (LC-MS) techniques are nowadays the best analytical approach to study polyphenols in grape extracts and wine, and are the most effective tool in the study of the structure of anthocyanins. The MS/MS approach is a very powerful tool that permits anthocyanin aglycone and sugar moiety characterization. LC-MS allows the characterization of complex structures of grape polyphenols, such as procyanidins, proanthocyanidins, prodelphinidins, and tannins, and provides experimental evidence for structures that were previously only hypothesized. The matrix-assisted-laser-desorption-ionization-time-of-flight (MALDI-TOF) technique is suitable to determine the presence of molecules of higher molecular weight with high accuracy, and it has been applied with success to study procyanidin oligomers up to heptamers in the reflectron mode, and up to nonamers in the linear mode. The levels of resveratrol in wine, an important polyphenol well-known for its beneficial effects, have been determined by SPME and LC-MS, and the former approach led to the best results in terms of sensitivity. Copyright 2003 Wiley Periodicals, Inc.

  14. [Concentrations of alkaloids, cyanogenic glycosides, polyphenols and saponins in selected medicinal plants from Ecuador and their relationship with acute toxicity against Artemia salina].

    Science.gov (United States)

    Jaramillo Jaramillo, Carmita; Jaramillo Espinoza, Anyi; D'Armas, Haydelba; Troccoli, Luis; Rojas de Astudillo, Luisa

    2016-09-01

    Alkaloids, polyphenols, cyanogenic glycosides and saponins are among the main chemical compounds synthesized by plants but not considered essential for their basic metabolism. These compounds have different functions in plants, and have been recognized with medicinal and pharmacological properties. In this research, concentrations of the mentioned secondary metabolites were determined in the medicinal plants Artemisia absinthium, Cnidoscolus aconitifolius, Parthenium hysterophorus, Piper carpunya and Taraxacum officinale, from Ecuador, and related with cytotoxic effects against Artemia salina. Alcoholic and aqueous extracts from leaves of these selected plants were prepared at different concentrations. To assess cytotoxicity of these extracts, different bioassays with A. salina were undertaken, and the mortality rates and LC50 were obtained. Besides, concentrations of alkaloids, cyanogenic glycosides, phenols, tannins and saponins were determined by spectrophotometric methods; this constituted the first report of quantification of secondary metabolites in the selected plants from Ecuador. T. officinale had the highest concentration of total phenols (22.30 ± 0.23 mg/g) and tannins (11.70 ± 0.10 mg/g), C. aconitifolius of cyanogenic glycosides (5.02 ± 0.37 µg/g) and P. hysterophorus of saponins (6.12 ± 0.02 mg/g). Tannins values obtained were not adverse to their consumption. Alcoholic and aqueous extracts of selected plants had hemolytic activity depending on the concentration of saponins. Although the values of cyanogenic glycosides were permissible, it was necessary to monitor the presence of this metabolite in plants to minimize health problems. LC50 values ranged from extremely toxic (3.37 µg/mL) to highly toxic (274.34 μg/mL), in P. carpunya and T. officinale, respectively. From correlation analysis, it was observed that increase values of alkaloids concentrations had highly significant (pplants cytotoxicity decreased significantly (pplant extracts

  15. Selective methods for polyphenols and sulphur dioxide determination in wines.

    Science.gov (United States)

    García-Guzmán, Juan J; Hernández-Artiga, María P; Palacios-Ponce de León, Lourdes; Bellido-Milla, Dolores

    2015-09-01

    A critical review to the methods recommended by international bodies and widely used in the winery industry and research studies was performed. A Laccase biosensor was applied to the selective determination of polyphenols in wines. The biosensor response was characterised and it responds mainly to o-diphenols which are the principal polyphenols responsible for the stability and sensory qualities of wines. The spectrophotometric method to determine free and total sulphur dioxide recommended for beers was applied directly to wines. A sampling of 14 red and white wines was performed and they were analysed for biosensor polyphenol index (IBP) and sulphur dioxide concentration (SO2). The antioxidant capacity by the ABTS(+) spectrophotometric method was also determined. A correlation study was performed to elucidate the influence of the polyphenols and SO2 on the wines stability. High correlations were found between IBP and antioxidant capacity and low correlation between SO2 and antioxidant capacity. To evaluate the benefits of wine drinking a new parameter (IBP/SO2) is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Antidepressant-like effects of a cocoa polyphenolic extract in Wistar-Unilever rats.

    Science.gov (United States)

    Messaoudi, Michaël; Bisson, Jean-François; Nejdi, Amine; Rozan, Pascale; Javelot, Hervé

    2008-12-01

    Depression is a major public health problem affecting about 12% of the world population. Drugs exist but they have many side effects. In the last few years, natural substances (e.g. flavonoids) have been tested to cure such disorders. Cocoa polyphenolic extract is a complex compound prepared from non-roasted cocoa beans containing high levels of flavonoids. The antidepressant-like effect of cocoa polyphenolic extract was evaluated using the forced swimming test in rats. Cocoa polyphenolic extract significantly reduced the duration of immobility at both doses of 24 mg/kg/14 days and 48 mg/kg/14 days, although no change of motor dysfunction was observed with the two doses tested in the open field. The results of the forced swimming test after a subchronic treatment and after an additional locomotor activity test confirm the assumption that the antidepressant-like effect of cocoa polyphenolic extract in the forced swimming test model is specific. Further, it can be speculated that this effect might be related to its content of active polyphenols.

  17. Antibacterial activity of polyphenolic fraction of Kombucha against Vibrio cholerae: targeting cell membrane.

    Science.gov (United States)

    Bhattacharya, D; Ghosh, D; Bhattacharya, S; Sarkar, S; Karmakar, P; Koley, H; Gachhui, R

    2018-02-01

    The present study was undertaken to determine the mechanism of antibacterial activity of a polyphenolic fraction, composed of mainly catechin and isorhamnetin, previously isolated from Kombucha, a 14-day fermented beverage of sugared black tea, against the enteropathogen Vibrio cholerae N16961. Bacterial growth was found to be seriously impaired by the polyphenolic fraction in a dose-dependent manner. Scanning Electron Microscopy demonstrated morphological alterations in bacterial cells when exposed to the polyphenolic fraction in a concentration-dependent manner. Permeabilization assays confirmed that the fraction disrupted bacterial membrane integrity in both time- and dose-dependent manners, which were proportional to the production of intracellular reactive oxygen species (ROS). Furthermore, each of the polyphenols catechin and isorhamnetin showed the ability to permeate bacterial cell membranes by generating oxidative stress, thereby suggesting their role in the antibacterial potential of Kombucha. Thus, the basic mechanism of antibacterial activity of the Kombucha polyphenolic fraction against V. cholerae involved bacterial membrane permeabilization and morphological changes, which might be due to the generation of intracellular ROS. To the best of our knowledge, this is the first report on the investigation of antibacterial mechanism of Kombucha, which is mostly attributed to its polyphenolic content. The emergence of multidrug-resistant Vibrio cholerae strains has hindered an efficient anti-Vibrio therapy. This study has demonstrated the membrane damage-mediated antibacterial mechanism of Kombucha, a popular fermented beverage of sugared tea, which is mostly attributed to its polyphenolic content. This study also implies the exploitation of Kombucha as a potential new source of bioactive polyphenols against V. cholerae. © 2017 The Society for Applied Microbiology.

  18. Cancer Prevention by Tocopherols and Tea Polyphenols

    Science.gov (United States)

    Yang, Chung S.; Li, Guangxun; Yang, Zhihong; Guan, Fei; Chen, Amber; Ju, Jihyeung

    2013-01-01

    Tocopherols (vitamin E) and tea polyphenols have been reported to have cancer preventive activities. Large-scale human trials with high doses of alpha-tocopherol, however, have produced disappointing results. This review presents data showing that γ- and δ-tocopherols inhibit colon, lung, mammary and prostate carcinogenesis in animal models, whereas α-tocopherol is ineffective in animal and human studies. Possible mechanisms of action are discussed. A broad cancer preventive activity of green tea polyphenols has been demonstrated in animal models, and many mechanisms have been proposed. The cancer preventive activity of green tea in humans, however, has not been conclusively demonstrated and remains to be further investigated. PMID:23403075

  19. Interaction of tea polyphenols with serum albumins: A fluorescence spectroscopic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Adity, E-mail: adityc17j@gmail.com

    2016-01-15

    Interactions of some tea polyphenols, namely (−) Catechin (C), (−)-epicatechin (EC), (–) epicatechin-3-gallate (ECG), (−)-epigallocatechin (EGC) and (−)-epigallocatechin-3-gallate (EGCG) are outlined with the serum albumin proteins. These interactions had all resulted in binding with the proteins with a concomitant static quenching of the protein fluorescence. A fluorescence technique has been considered as the tool to comprehend the polyphenol–protein interactions mainly and simultaneously other spectroscopic techniques used to verify the results have been discussed. In this mini review the different types of equations usually employed to calculate the binding constant values have been outlined, namely, modified Stern Volmer plot, Scatchard plot and Lineweaver Burk equation, with their corresponding results. The n values (number of binding sites) had always been close to unity suggesting a 1:1 complexation with the polyphenols and the protein. A structural change in the polyphenols has been found to alter the binding constant value and the galloyl moiety attached to the C ring of the polyphenols have been found to play a crucial role in this regard. It has been found that an increase in galloyl moiety increases binding of the catechins with proteins. - Highlights: • Review on interactions of some tea polyphenols with the serum albumin proteins. • Tea polyphenols include Catechin, epigallocatechin-3-gallate, epigallocatechin, epicatechin-3-gallate and epicatechin. • Fluorescence spectroscopic technique is mainly outlined. • Binding constant studies have been given importance. • Galloyl moiety in the C ring is crucial in increasing binding constant.

  20. New Sample Preparation Method for Quantification of Phenolic Compounds of Tea (Camellia sinensis L. Kuntze: A Polyphenol Rich Plant

    Directory of Open Access Journals (Sweden)

    P. A. Nimal Punyasiri

    2015-01-01

    Full Text Available Chemical analysis of the Sri Lankan tea (Camellia sinensis, L. germplasm would immensely contribute to the success of the tea breeding programme. However, the polyphenols, particularly catechins (flavan-3-ols, are readily prone to oxidation in the conventional method of sample preparation. Therefore, optimization of the present sample preparation methodology for the profiling of metabolites is much important. Two sample preparation methodologies were compared, fresh leaves (as in the conventional procedures and freeze-dried leaves (a new procedure, for quantification of major metabolites by employing two cultivars, one is known to be high quality black tea and the other low quality black tea. The amounts of major metabolites such as catechins, caffeine, gallic acid, and theobromine, recorded in the new sampling procedure via freeze-dried leaves, were significantly higher than those recorded in the conventional sample preparation procedure. Additionally new method required less amount of leaf sample for analysis of major metabolites and facilitates storage of samples until analysis. The freeze-dried method would be useful for high throughput analysis of large number of samples in shorter period without chemical deterioration starting from the point of harvest until usage. Hence, this method is more suitable for metabolite profiling of tea as well as other phenol rich plants.

  1. Antioxidative Polyphenols from Defatted Oilseed Cakes: Effect of Solvents

    Directory of Open Access Journals (Sweden)

    Sue-Siang Teh

    2014-02-01

    Full Text Available Defatted hemp, flax and canola seed cakes were extracted with different solvent systems namely methanol, ethanol, acetone, methanol 80%, acetone 80% and mixed solvent of methanol:acetone:water (MAW, 7:7:6, v/v/v. Each extract was analyzed for antioxidant capacity using ferric reducing/antioxidant power (FRAP and 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging assays. MAW exhibited the highest extraction of phenolic and flavonoid contents in the seed cakes, followed by acetone 80% and methanol 80%. The antioxidant capacity was proportional to the polyphenols recovery in the extracts. Canola seed cakes possessed the highest recovery of polyphenols and antioxidant capacity, followed by hemp and flax seed cakes. MAW extract of canola contained total phenolic content, 2104.67 ± 2.52 mg GAE/100 g fresh weight; total flavonoids, 37.79 ± 0.04 mg LUE/100 g fresh weight; percentage inhibition of DPPH•, 33.03 ± 0.38%; FRAP assay, 8.78 ± 0.07 μmol Fe (II/g fresh weight. Identification of individual polyphenol compounds were performed HPLC. MAW extract of canola had the highest (P < 0.05 concentration of all individual polyphenols except gallic acid and catechin. Highest concentration of quercetin and luteolin in MAW extract of hemp was obtained among all solvent systems.

  2. Polyphenols of leaves of Apium graveolensinhibit in vitro protein glycationand protect RINm5F cells against methylglyoxal-induced cytotoxicity

    Directory of Open Access Journals (Sweden)

    Rosa Martha Perez-Gutierrez

    2018-03-01

    Full Text Available Background: The health benefits of edible plants have been widely investigated and disseminated. However, only polyphenols have been found to have sufficient therapeutic potential to be considered in clinical trials. Fewer manuscripts have other applications such as prospective health benefits and disease treatment. Other components of edible plants are responsible for a range of other benefits including antimalarial, burns, flu, cancer, inflammation, diabetes, glycation, antimicrobial, prevention of neurodegeneration, analgesic, antimigraine activity, sedative activities, etc. Accordingly, the public needs to be informed of the potential edible plants have to act on different targets and maintain better control over diabetes compared to commercial drugs which can be toxic, have side effects, do not have the capacity to maintain blood glucose at normal levels, and do not protect the patient from the complications of diabetes over time. Consequently, edible plants, such as Apium graveolen, which have therapeutic targets on AGEs formation, are potentially a better alternative treatment for diabetes. Methods: The leaves of celery were extracted with methanol (CM. Polyphenols contents in CM were investigated by liquid chromatography-electrospray ionization mass. The ability of the compounds to inhibit formation of AGEs was evaluated in vitro models using formation of AGE fluorescence intensity, level of fructosamine, Nε-(carboxymethyllysine (CML, methylglyoxal (MG-derived protein, and formation of amyloid cross β structure. Protein-oxidation was determined by thiol group and protein carbonyl content. Inhibition of MG-derived AGEs and MG-trapping ability were also measured. Additionally, insulin production was determined in methylglyoxal-treated pancreatic RINm5F cells assay. Results: Apigenin, kaempferol, apiin, rutin, caffeic acid, ferulic acid, chlorogenic acid, coumaroylquinic acid, and p-coumaric acid were the major polyphenols contained in CM

  3. Recovery of polyphenols from Pink Guava processing wastes by ultra filtration

    International Nuclear Information System (INIS)

    Lilis Sukeksi; Che Rosmani Che Hassan; Nik Meriam Sulaiman; Mohamed Kheireddine Aroua

    2010-01-01

    Full text: Processing of fruits are results in high amounts of waste material that is prone to microbial spoilage and usually represents a problem that is further aggravated by legal restrictions. Polyphenols are a wide variety of compounds that occur in pink guava fruit or others fruits and vegetables. Recovery from pink guava wastes seems to be promising in the case of polyphenols, which are of considerable interest due to their healthy and anti oxidative properties. In this work the performance of commercial tubular PVDF membrane FP 200 with nominal MWCO 200,000, was studied during pretreatment for recovery polyphenols from pink guava processing wastes. The experiments have been carried out at trans-membrane pressure of 0.5 until 2.5 Bar, and all permeate flux significantly decreased with time until a steady-state was established. The steady-state permeates flux reached a maximum at a trans-membrane pressure of about 1 bar. The first results obtained confirm the flux decline at 20 minutes was 35 % of the total flux. Meanwhile concentration of polyphenols at first step reached a steady state after 900 ml of permeate volume (47 %) and the concentration of polyphenols when the permeate volume at VCR = 4 or 3000 ml is 54 %. (author)

  4. Polyphenols: Potential Use in the Prevention and Treatment of Cardiovascular Diseases.

    Science.gov (United States)

    Giglio, Rosaria Vincenza; Patti, Angelo Maria; Cicero, Arrigo F G; Lippi, Giuseppe; Rizzo, Manfredi; Toth, Peter P; Banach, Maciej

    2018-01-01

    Polyphenols are bioactive compounds that can be found mostly in foods like fruits, cereals, vegetables, dry legumes, chocolate and beverages such as coffee, tea and wine. They are extensively used in the prevention and treatment of cardiovascular disease (CVD) providing protection against many chronic illnesses. Their effects on human health depend on the amount consumed and on their bioavailability. Many studies have demonstrated that polyphenols have also good effects on the vascular system by lowering blood pressure, improving endothelial function, increasing antioxidant defences, inhibiting platelet aggregation and low-density lipoprotein oxidation, and reducing inflammatory responses. This review is focused on some groups of polyphenols and their effects on several cardiovascular risk factors such as hypertension, oxidative stress, atherogenesis, endothelial dysfunction, carotid artery intima-media thickness, diabetes and lipid disorders. It is proved that these compounds have many cardio protective functions: they alter hepatic cholesterol absorption, triglyceride biosynthesis and lipoprotein secretion, the processing of lipoproteins in plasma, and inflammation. In some cases, human long-term studies did not show conclusive results because they lacked in appropriate controls and in an undefined polyphenol dosing regimen. Rigorous evidence is necessary to demonstrate whether or not polyphenols beneficially impact CVD prevention and treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Enhanced anodic Ru(bpy)32+ electrogenerated chemiluminescence by polyphenols

    International Nuclear Information System (INIS)

    Lei Rong; Xu Xiao; Xu Da; Zhu Gang; Li Na; Liu Huwei; Li Kean

    2008-01-01

    Anodic Ru(bpy) 3 2+ electrogenerated chemiluminescence (ECL) can be enhanced by polyphenols in alkaline solution. Spin trapping-electron spin resonance (ESR) experiments verified that reactive oxygen species (ROS) were generated during the electrolysis of Ru(bpy) 3 2+ in alkaline solution, and oxidation of quercetin enhanced Ru(bpy) 3 2+ ECL at anodic potential by producing additional ROS. This ECL enhancement can be used to analyze real sample and evaluate antioxidant activity of polyphenols

  6. Circadian rhythm in ''1''5O-labeled water uptake manner of a soybean plant by PETIS (Positron Emitting Tracer Imaging System)

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tomoko M.; Yokota, Harumi; Tanoi, Keitaro; Furukawa, Jun; Ikeue, Natsuko; Ookuni, Yoko [Tokyo Univ. (Japan). Graduate School of Agricultural and Life Sciences; Uchida, Hiroshi; Tsuji, Atsunori

    2001-05-01

    We present a circadian rhythm of water uptake manner in a soybean plant through realtime imaging of water, labeled with {sup 15}O. Nitrogen gas was irradiated with deuterons accelerated by a cyclotron at Hamamatsu Photonics Co. to produce {sup 15}O-labeled water. Then the {sup 15}O-labeled water was supplied to a soybean plant from the root and the realtime water uptake amount was measured for 20 min by Positron Emitting Tracer Imaging System (PETIS). All the targeting positions for the measurements were stems, two points at an internode between root and the first leaves, between the first leaves and the first trifoliates and between the first trifoliates and the second trifoliates. The water uptake amount was gradually increased and showed its maximum at around 13:00, especially at the basal part of the stem. Then the water uptake activity was gradually decreased until 17:00. The water amount taken up by a plant at 13:00 was about 40% higher than that at 17:00. (author)

  7. Microencapsulation and storage stability of polyphenols from Vitis vinifera grape wastes.

    Science.gov (United States)

    Aizpurua-Olaizola, Oier; Navarro, Patricia; Vallejo, Asier; Olivares, Maitane; Etxebarria, Nestor; Usobiaga, Aresatz

    2016-01-01

    Wine production wastes are an interesting source of natural polyphenols. In this work, wine wastes extracts were encapsulated through vibration nozzle microencapsulation using sodium alginate as polymer and calcium chloride as hardening reagent. An experimental design approach was used to obtain calcium-alginate microbeads with high polyphenol content and good morphological features. In this way, the effect of pressure, frequency, voltage and the distance to the gelling bath were optimized for two nozzles of 150 and 300 μm. Long-term stability of the microbeads was studied for 6 months taking into account different storage conditions: temperatures (4 °C and room temperature), in darkness and in presence of light, and the addition of chitosan to the gelling bath. Encapsulated polyphenols were found to be much more stable compared to free polyphenols regardless the encapsulation procedure and storage conditions. Moreover, slightly lower degradation rates were obtained when chitosan was added to the gelling bath. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Determination of polyphenol content and colour index in wines through PEDOT-modified electrodes.

    Science.gov (United States)

    Pigani, Laura; Rioli, Cristina; Foca, Giorgia; Ulrici, Alessandro; Seeber, Renato; Terzi, Fabio; Zanardi, Chiara

    2016-10-01

    Poly(3,4-ethylenedioxythiophene)-modified electrodes have been used for the estimation of the polyphenolic content and of the colour index of different samples of wines. Synthetic wine solutions, prepared with different amount of oenocyanins, have been analysed spectrophotometrically and electrochemically in order to find a correlation between the total polyphenolic content or colour index and the current peak. The regression curves obtained have been used as external calibration lines for the analysis of several commercial wines, ranging from white to dark red wines. In this way, a rapid estimation of the total polyphenolic content and of the colour index may be accomplished from a single voltammetric measurement. Furthermore, principal component analysis has also been used to evaluate the effect of total polyphenolic content and colour index on the whole voltammetric signals within a selected potential range, both for the synthetic solutions and for the commercial products. Graphical abstract Electrochemical sensors for the rapid determination of colour index and polyphenol content in wines.

  9. Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: online tracing of C translocation dynamics in poplar plants.

    Science.gov (United States)

    Ghirardo, Andrea; Gutknecht, Jessica; Zimmer, Ina; Brüggemann, Nicolas; Schnitzler, Jörg-Peter

    2011-02-28

    Globally plants are the primary sink of atmospheric CO(2), but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene) and other biogenic volatile organic compounds (BVOC). The prediction of plant carbon (C) uptake and atmospheric oxidation capacity are crucial to define the trajectory and consequences of global environmental changes. To achieve this, the biosynthesis of BVOC and the dynamics of C allocation and translocation in both plants and ecosystems are important. We combined tunable diode laser absorption spectrometry (TDLAS) and proton transfer reaction mass spectrometry (PTR-MS) for studying isoprene biosynthesis and following C fluxes within grey poplar (Populus x canescens) saplings. This was achieved by feeding either (13)CO(2) to leaves or (13)C-glucose to shoots via xylem uptake. The translocation of (13)CO(2) from the source to other plant parts could be traced by (13)C-labeled isoprene and respiratory (13)CO(2) emission. In intact plants, assimilated (13)CO(2) was rapidly translocated via the phloem to the roots within 1 hour, with an average phloem transport velocity of 20.3±2.5 cm h(-1). (13)C label was stored in the roots and partially reallocated to the plants' apical part one day after labeling, particularly in the absence of photosynthesis. The daily C loss as BVOC ranged between 1.6% in mature leaves and 7.0% in young leaves. Non-isoprene BVOC accounted under light conditions for half of the BVOC C loss in young leaves and one-third in mature leaves. The C loss as isoprene originated mainly (76-78%) from recently fixed CO(2), to a minor extent from xylem-transported sugars (7-11%) and from photosynthetic intermediates with slower turnover rates (8-11%). We quantified the plants' C loss as respiratory CO(2) and BVOC emissions, allowing in tandem with metabolic analysis to deepen our understanding of ecosystem C flux.

  10. Suppressive effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Natsume, Midori; Baba, Seigo

    2014-01-01

    Previous studies in humans have shown that the cacao polyphenols, (-)-epicatechin and its oligomers, prevent in vitro and ex vivo low-density lipoprotein oxidation mediated by free radical generators and metal ions and also reduce plasma LDL-cholesterol levels. The aim of this study was to examine the effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice. Mice aged 8 weeks (n = 90) were randomized into three groups, and fed either normal mouse chow (controls) or chow supplemented with 0.25 or 0.40 % cacao polyphenols for 16 weeks. The mean plaque area in cross-sections of the brachiocephalic trunk was measured and found to be lower in the 0.25 % cacao polyphenol group than in the control group (p cacao polyphenol group (p cacao polyphenols inhibit the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice by reducing oxidative stress and inflammatory responses.

  11. Polyphenols, Antioxidants and the Sympathetic Nervous System.

    Science.gov (United States)

    Bruno, Rosa Maria; Ghiadoni, Lorenzo

    2018-01-01

    A high dietary intake of polyphenols has been associated with a reduced cardiovascular mortality, due to their antioxidant properties. However, growing evidence suggests that counteracting oxidative stress in cardiovascular disease might also reduce sympathetic nervous system overactivity. This article reviews the most commonly used techniques to measure sympathetic activity in humans; the role of sympathetic activation in the pathophysiology of cardiovascular diseases; current evidence demonstrating that oxidative stress is involved in the regulation of sympathetic activity and how antioxidants and polyphenols might counteract sympathetic overactivity, particularly focusing on preliminary data from human studies. The main mechanisms by which polyphenols are cardioprotective are related to the improvement of vascular function and their anti-atherogenic effect. Furthermore, a blood pressure-lowering effect was consistently demonstrated in randomized controlled trials in humans, when the effect of flavonoid-rich foods, such as tea and chocolate, was tested. More recent studies suggest that inhibition of sympathetic overactivity might be one of the mechanisms by which these substances exert their cardioprotective effects. Indeed, an increased adrenergic traffic to the vasculature is a major mechanism of disease in a number of cardiovascular and extra-cardiac diseases, including hypertension, obesity, metabolic syndrome and heart failure. A considerable body of evidence, mostly from experimental studies, support the hypothesis that reactive oxygen species might exert sympathoexcitatory effects both at the central and at the peripheral level. Accordingly, supplementation with antioxidants might reduce adrenergic overdrive to the vasculature and blunt cardiovascular reactivity to stress. While supplementation with "classical" antioxidants such as ROS-scavengers has many limitations, increasing the intake of polyphenol-rich foods seems to be a promising novel therapeutic

  12. Polyphenol Oxidase as a Biochemical Seed Defense Mechanism

    Directory of Open Access Journals (Sweden)

    E. Patrick Fuerst

    2014-12-01

    Full Text Available Seed dormancy and resistance to decay are fundamental survival strategies, which allow a population of seeds to germinate over long periods of time. Seeds have physical, chemical, and biological defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. Here, we hypothesize that seeds also possess enzyme-based biochemical defenses, based on induction of the plant defense enzyme, polyphenol oxidase (PPO, when wild oat (Avena fatua L. caryopses and seeds were challenged with seed-decaying Fusarium fungi. These studies suggest that dormant seeds are capable of mounting a defense response to pathogens. The pathogen-induced PPO activity from wild oat was attributed to a soluble isoform of the enzyme that appeared to result, at least in part, from proteolytic activation of a latent PPO isoform. PPO activity was also induced in wild oat hulls (lemma and palea, non-living tissues that cover and protect the caryopsis. These results are consistent with the hypothesis that seeds possess inducible enzyme-based biochemical defenses arrayed on the exterior of seeds and these defenses represent a fundamental mechanism of seed survival and longevity in the soil. Enzyme-based biochemical defenses may have broader implications since they may apply to other defense enzymes as well as to a diversity of plant species and ecosystems.

  13. Modulatory Effects of Polyphenols on Apoptosis Induction: Relevance for Cancer Prevention

    Directory of Open Access Journals (Sweden)

    Claudio Giovannini

    2008-02-01

    Full Text Available Polyphenols, occurring in fruit and vegetables, wine, tea, extra virgin olive oil, chocolate and other cocoa products, have been demonstrated to have clear antioxidant properties in vitro, and many of their biological actions have been attributed to their intrinsic reducing capabilities. However, it has become clear that, in complex biological systems, polyphenols exhibit several additional properties which are yet poorly understood. Apoptosis is a genetically controlled and evolutionarily conserved form of cell death of critical importance for the normal embryonic development and for the maintenance of tissue homeostasis in the adult organism. The malfunction of the death machinery may play a primary role in various pathological processes, since too little or too much apoptosis can lead to proliferative or degenerative diseases, respectively. Cancer cells are characterized by a deregulated proliferation, and/or an inability to undergo programmed cell death. A large body of evidence indicates that polyphenols can exert chemopreventive effects towards different organ specific cancers, affecting the overall process of carcinogenesis by several mechanisms: inhibition of DNA synthesis, modulation of ROS production, regulation of cell cycle arrest, modulation of survival/proliferation pathways. In addition, polyphenols can directly influence different points of the apoptotic process, and/or the expression of Int. J. Mol. Sci. 2008, 9 214 regulatory proteins. Although the bulk of data has been obtained in in vitro systems, a number of clinical studies suggesting a preventive and therapeutic effectiveness of polyphenols in vivo is available. However, a deeper knowledge of the underlying mechanisms responsible for the modulation of apoptosis by polyphenols, and their real effectiveness, is necessary in order to propose them as potential chemopreventive and chemotherapeutic candidates for cancer treatment.

  14. Determination of total polyphenol index in wines employing a voltammetric electronic tongue

    International Nuclear Information System (INIS)

    Cetó, Xavier; Gutiérrez, Juan Manuel; Gutiérrez, Manuel; Céspedes, Francisco; Capdevila, Josefina; Mínguez, Santiago; Jiménez-Jorquera, Cecilia; Valle, Manel del

    2012-01-01

    Highlights: ► Array of voltammetric sensors modified with nanoparticles or conducting polymers. ► It has been applied in wine analysis to predict polyphenol content index. ► Uses data processing tools such as discrete wavelet transform and artificial neural network. ► Identification of phenolics like gallic acid, catechin, caffeic acid, catechol. ► Predicted polyphenol index agrees with Folin–Ciocalteau method and I 280 index. - Abstract: This work reports the application of a voltammetric electronic tongue system (ET) made from an array of modified graphite-epoxy composites plus a gold microelectrode in the qualitative and quantitative analysis of polyphenols found in wine. Wine samples were analyzed using cyclic voltammetry without any sample pretreatment. The obtained responses were preprocessed employing discrete wavelet transform (DWT) in order to compress and extract significant features from the voltammetric signals, and the obtained approximation coefficients fed a multivariate calibration method (artificial neural network-ANN-or partial least squares-PLS-) which accomplished the quantification of total polyphenol content. External test subset samples results were compared with the ones obtained with the Folin–Ciocalteu (FC) method and UV absorbance polyphenol index (I 280 ) as reference values, with highly significant correlation coefficients of 0.979 and 0.963 in the range from 50 to 2400 mg L −1 gallic acid equivalents, respectively. In a separate experiment, qualitative discrimination of different polyphenols found in wine was also assessed by principal component analysis (PCA).

  15. Antidiabetic effect of polyphenolic extracts from selected edible plants as α-amylase, α -glucosidase and PTP1B inhibitors, and β pancreatic cells cytoprotective agents - a comparative study.

    Science.gov (United States)

    Zakłos-Szyda, Małgorzata; Majewska, Iwona; Redzynia, Małgorzata; Koziołkiewicz, Maria

    2015-01-01

    Type 2 diabetes mellitus, which is usually a result of wrong dietary habits and reduced physical activity, represents 85-95% of all diabetes cases and among other diet related diseases is the major cause of deaths. The disease is characterized mainly by hyperglycemia, which is associated with attenuated insulin sensitivity or beta cells dysfunction caused by multiple stimuli, including oxidative stress and loss of insulin secretion. Since polyphenols possess multiple biological activities and constitute an important part of the human diet, they have recently emerged as critical phytochemicals in type 2 diabetes prevention and treatment. Their hypoglycemic action results from their antioxidative effect involved in recovering of altered antioxidant defenses and restoring insulin secreting machinery in pancreatic cells, or abilities to inhibit the activity of carbohydrates hydrolyzing enzymes (α-amylase and α-glucosidase) or protein tyrosine phosphatase 1B (PTP1B), which is known as the major negative regulator in insulin signaling. This study investigates the total phenolic content (Folin-Ciocalteu and HPLC methods) and antioxidant capacity (ABTS) of 20 polyphenolic extracts obtained from selected edible plants, which were screened in terms of α -amylase, α - glucosidase and protein tyrosine phosphatase 1B inhibitors or protective agents against oxidative stress induced by tertbutylhydroperoxide (t-BOOH) in βTC3 pancreatic beta cells used as a model target for antidiabetes drugs. The study concludes that Chaenomeles japonica, Oenothera paradoxa and Viburnum opulus may be promising natural sources for active compounds with antidiabetic properties.

  16. Neuroprotective Effect of Tea Polyphenols on Oxyhemoglobin Induced Subarachnoid Hemorrhage in Mice

    Directory of Open Access Journals (Sweden)

    Haizhen Mo

    2013-01-01

    Full Text Available Tea polyphenols are of great benefit to the treatment of several neurodegenerative diseases. In order to explore the neuroprotective effects of tea polyphenols and their potential mechanisms, an established in vivo subarachnoid hemorrhage (SAH model was used and alterations of mitochondrial function, ATP content, and cytochrome c (cyt c in cerebral cortex were detected. This study showed that the alteration of mitochondrial membrane potential was an early event in SAH progression. The trend of ATP production was similar to that of mitochondrial membrane potential, indicating that the lower the mitochondrial membrane potential, lesser the ATP produced. Due to mitochondrial dysfunction, more cyt c was released in the SAH group. Interestingly, the preadministration of tea polyphenols significantly rescued the mitochondrial membrane potential to basal level, as well as the ATP content and the cyt c level in the brain cortex 12 h after SAH. After pretreatment with tea polyphenols, the neurological outcome was also improved. The results provide strong evidence that tea polyphenols enhance neuroprotective effects by inhibiting polarization of mitochondrial membrane potential, increasing ATP content, and blocking cyt c release.

  17. Can Dietary Polyphenols Prevent the Formation of Toxic Compounds from Maillard Reaction?

    Science.gov (United States)

    Del Turco, Serena; Basta, Giuseppina

    2016-01-01

    Polyphenols are functional compounds in edible vegetable and food such as tea, coffee and red wine and increasing evidence demonstrates a positive link between consumption of polyphenol-rich foods and disease prevention. In this review we have focused on the current knowledge of the potential anti-glycation effects of polyphenols, particularly in regard to their influence on Maillard reaction, a non-enzymatic reaction between amino acids and reducing sugars that contributes to the production of toxic compounds, mainly reactive carbonyl species, advanced glycation end-products (AGEs) and other toxicants. The Maillard reaction occurs in the human body during hyperglycemic condition, but it is well known as browning reaction in thermally processed foods and it is responsible for flavor and toxicant formation. Dietary polyphenols can have anti-glycation effects and actively participate in Maillard reaction, mitigating the AGE formation and the heat-induced production of toxic compounds. In a time in which the role of a healthy diet in the prevention of chronic diseases is welcome and the borderline between food and medicine is becoming very thin, an improved mechanistic knowledge of how polyphenols can function to reduce harmful and unhealthy substances is mandatory.

  18. SCREENING OF CONTENT AND DYNAMIC OF ACCUMULATION OF POLYPHENOLS IN SOME BASIDIOMYCETES SPECIES

    Directory of Open Access Journals (Sweden)

    A. K. Veligodska

    2015-11-01

    Full Text Available The aim of the study was to investigate the total content of polyphenolic substances in Basidiomycetes carpophores from 50 species, of which 27 belong to the order Polyporales and 23 to the order Agaricales. Introduced 23 strains of 8 species of Basidiomycetes. Methods. Gathered wild carpophores dried and crushed to a particle size of 0,1 till 0,01 mm and searching strains were cultured in Erlenmeyyers flasks by surface method on standard glucose-peptone culture medium. Determination of total content of polyphenolic compounds was carried out in ethanol extracts of mycological material by a modified method of Folin-Chokalteu. Completely dry biomass of carpophores and mycelium was determined gravimetrically. Results. There was identified the species of polyporal fungi Ganoderma applanatum, Ganoderma lucidum, Laetiporus sulphureus and Fomes fomentarius and types of agarical mushrooms Stropharia rugosoannulata, Agrocybe cylindracea, Tricholoma flavovirens, Flammulina velutipes, Pleurotus ostreatus and Fistulina hepatica high in polyphenolic compounds. It was determined the content of polyphenols ranging from more than 60 mg / g completely dry biomass. For introduced strains established dynamics of growth and accumulation of polyphenolic compounds in the mycelium and culture filtrate during fermentation on glucose-peptone medium. All cultures reach a maximum accumulation of biomass on the 12th day of growth. Shizophyllum commune Sc-1101 and 10 and F. velutipes F-202 have been identified as the most productive strains. The lowest accumulation of absolutely dry biomass was recorded for strain P. ostreatus P-192 and strain F. fomentarius Ff-09. Cultures have investigated individual value growth such as biomass accumulation in the applied cultivation conditions, which probably reflects the suitability of the medium for their growth and genotypic characteristics. Strains are overwhelmingly able to accumulate polyphenolic compounds in both mycelium and

  19. Anti-inflammatory and antioxidant activities of the Impatiens noli-tangere and Stachys officinalis polyphenolic-rich extracts

    Directory of Open Access Journals (Sweden)

    Gabriela Paun

    Full Text Available ABSTRACT This study evaluated the anti-inflammatory and antioxidant activities of Impatiens noli-tangere L., Balsaminaceae, and of Stachys officinalis L., Lamiaceae, polyphenolic-rich extracts obtained by nanofiltration process. Results showed the great potential and efficiency of the nanofiltration process to concentrate the herbal extract's main polyphenolic compounds (over 91% phenolic acids and flavonoids retention. S. officinalis polyphenolic-rich extracts had high antioxidant activities (IC50 2.5 µg/ml compared to I. noli-tangere polyphenolic-rich extracts (IC50 19.3 µg/ml and similar with that of ascorbic acid. Polyphenolic-rich extracts were investigated to determine the pro-inflammatory enzymes lipoxygenase, cyclooxygenase-1 and cyclooxygenase-2 and their inhibitory activity. Furthermore, high inhibitory activity of the examined extracts was reported for the first time, for both lipoxygenase (IC50 2.46 and 1.22 µg/ml for I. noli-tangere and S. officinalis polyphenolic-rich extracts, respectively, cyclooxygenase-1 (IC50 18.4 and 10.1 µg/ml for I. noli-tangere and S. officinalis polyphenolic-rich extracts, respectively and cyclooxygenase-2 (IC50 = 1.9 and 1.2 mg/ml for I. noli-tangere and S. officinalis polyphenolic-rich extracts, respectively. Additionally, the in vivo studies showed that S. officinalis polyphenolic-rich extract has a higher anti-inflammatory effect, the hind-paw volume employed for both models determined that I. noli-tangere polyphenolic-rich extract and is also higher than that of diclofenac. It was noticed that their anti-inflammatory effect persists for more than 24 h. The I. noli-tangere and S. officinalis polyphenolic-rich extracts exert anti-inflammatory and antioxidant activities and these properties can be at least partly assigned to the presence of ursolic acid, caffeic acid, rosmarinic acid, quercetin and also anthocyanidins (genistin. The obtained results indicate the anti-inflammatory potential of the

  20. Distribution of 15N-labeled urea injected into field-grown corn plants

    International Nuclear Information System (INIS)

    Zhou, X.; Madrmootoo, C.A.; Mackenzie, A.F.; Smith, D.L.

    1998-01-01

    Nitrogen (N) assimilate supply to developing corn (Zea mays L.) ears plays a critical role in grain dry weight accumulation. The use of stem-perfused/injected 15N labeled compounds to determine the effects of an artificial N source on the subsequent distribution of injected N and grain weight of field-grown corn plants has not been reported previously. Our objective was to assess the distribution of N added via an artificial source. Three soil N fertilizer levels (0, 180, and 270 kg N ha-1) and three N solutions (distilled water control and 15N enriched urea at 15 and 30 mM N) were arranged in a split-plot design. Three N concentrations were injected using a pressurized stem injection technique. The injection started fifteen days after silking and continued until immediately prior to plant physiological maturity. The average uptake volume was 256 mL over the 30-day injection period. The N supplied via injection represented 1.5 to 3% of the total plant N. Neither soil applied N fertilizer nor injected N altered dry matter distribution among plant tissues. As the concentration of N in the injected solutions increased, N concentrations increased in the grain and upper stalks, and % 15N atom excess in ear+1 leaves and leaves increased. The relative degree of 15N enrichment for each of the tissues measured was injected internode grain upper stalks leaves lower stalks cob husk ear + 1 leaf ear leaf. This study indicated that the exogenous N supplied via stem-injection, was incorporated into all the measured plant parts, although not uniformly. The distribution of the injected 15N was affected both by the proximity of sinks to the point of injection and the strength of the various sinks

  1. Interaction of red pepper (Capsicum annum, Tepin) polyphenols with Fe(II)-induced lipid peroxidation in brain and liver

    Energy Technology Data Exchange (ETDEWEB)

    Oboh, G [Biochemistry Department, Federal University of Technology, Akure, Ondo State (Nigeria); [Departamento de Quimica, Universidade Federal de Santa Maria (UFSM), Campus Universitario - Camobi, Santa Maria RS (Brazil); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: goboh2001@yahoo.com; Rocha, J B.T. [Campus Universitario - Camobi, Santa Maria RS (Brazil)

    2006-03-15

    Polyphenols exhibit a wide range of biological effects because of their antioxidant properties. Several types of polyphenols (phenolic acids, hydrolyzable tannins, and flavonoids) show anticarcinogenic and antimutagenic effects. Comparative studies were carried on the protective ability of free and bound polyphenol extracts of red Capsicum annuum Tepin (CAT) on brain and liver - In vitro. Free polyphenols of red Capsicum annuum Tepin (CAT) were extracted with 80% acetone, while the bound polyphenols were extracted with ethyl acetate from acid and alkaline hydrolysis of the pepper residue from free polyphenols extract. The phenol content, Fe (II) chelating ability, OH radical scavenging ability and protective ability of the extract against Fe (II)-induced lipid peroxidation in brain and liver was subsequently determined. The results of the study revealed that the free polyphenols (218.2mg/100g) content of the pepper were significantly higher than the bound polyphenols (42.5mg/100g). Furthermore, the free polyphenol extract had a significantly higher (<0.05) Fe (II) chelating ability, OH radical scavenging ability than the bound polyphenols. In addition, both extracts significantly inhibited (P<0.05) basal and 25{mu}M Fe (II)- induced lipid peroxidation in Rat's brain and liver in a dose dependent. However, the free polyphenols caused a significantly higher inhibition in the MDA (Malondialdehyde) production in the brain and liver homogenates than the bound phenols. Furthermore, the polyphenols protected the liver more than the brain. In conclusion, free polyphenols from Capsicum annuum protects both the liver and brain from Fe{sup 2+} induced lipid peroxidation, and this is probably due to the higher Fe (II) chelating ability and OH radical scavenging ability of the free polyphenols from the pepper. (author)

  2. Do plants and animals differ in phenotypic plasticity?

    Indian Academy of Sciences (India)

    Unknown

    fits, of a plastic versus non-plastic phenotype in plants and animals. [Renee M Borges ... polyphenol oxidase and other oxidative enzymes in the defence repertoire of .... males in response to environmental stress (Cremer and. Heinze 2003).

  3. Antioxidant activity of polyphenol-enriched apple juice

    Directory of Open Access Journals (Sweden)

    Šumić Zdravko M.

    2009-01-01

    Full Text Available This paper shows that it is possible to improve antioxidant activity of apple juice by extraction of polyphenolic compounds from apple pomace, as waste, and their addition to the apple juice. Raw apple juice was prepared by pressing of apple mash. After thermal treatment of raw apple juice, depectinisation, additional clarification and filtration, the clarified juice was obtained. In raw and clarified apple juice soluble solids, acidity, reducing sugar, total sugars and brown component content were determined, as well as total dry matter, ash, acidity, reducing sugar, total sugars, total pectins, cellulose and starch content in apple mash and pomace. The total cotent of phenolics in clarified apple juice and apple pomace extract, determined spectrophotometrically using the Folin- Ciocalteu reagent, was 0.496 mg/ml and 6.505 mg/g, respectively. The antioxidant activity of clarified and polyphenol-enriched clarified juice (with addition of apple pomace extract in the concentrations 0.05 g, 0.1 g, 0.5 g and 1 g of phenolic compounds per liter of clarified apple juice was examined on stable 1,1-diphenyl-2-picrylhydrazyl (DPPH free radicals. Based on the obtained results it can be concluded that polyphenol-enriched clarified juice was more effective on DPPH radicals than the clarified apple juice.

  4. Role of dietary polyphenols in the management of peptic ulcer.

    Science.gov (United States)

    Farzaei, Mohammad Hosein; Abdollahi, Mohammad; Rahimi, Roja

    2015-06-07

    Peptic ulcer disease is a multifactorial and complex disease involving gastric and duodenal ulcers. Despite medical advances, the management of peptic ulcer and its complications remains a challenge, with high morbidity and death rates for the disease. An accumulating body of evidence suggests that, among a broad reach of natural molecules, dietary polyphenols with multiple biological mechanisms of action play a pivotal part in the management of gastric and duodenal ulcers. The current review confirmed that dietary polyphenols possess protective and therapeutic potential in peptic ulcer mediated by: improving cytoprotection, re-epithelialization, neovascularization, and angiogenesis; up-regulating tissue growth factors and prostaglandins; down-regulating anti-angiogenic factors; enhancing endothelial nitric oxide synthase-derived NO; suppressing oxidative mucosal damage; amplifying antioxidant performance, antacid, and anti-secretory activity; increasing endogenous mucosal defensive agents; and blocking Helicobacter pylori colonization associated gastric morphological changes and gastroduodenal inflammation and ulceration. In addition, anti-inflammatory activity due to down-regulation of proinflammatory cytokines and cellular and intercellular adhesion agents, suppressing leukocyte-endothelium interaction, inhibiting nuclear signaling pathways of inflammatory process, and modulating intracellular transduction and transcription pathways have key roles in the anti-ulcer action of dietary polyphenols. In conclusion, administration of a significant amount of dietary polyphenols in the human diet or as part of dietary supplementation along with conventional treatment can result in perfect security and treatment of peptic ulcer. Further well-designed preclinical and clinical tests are recommended in order to recognize higher levels of evidence for the confirmation of bioefficacy and safety of dietary polyphenols in the management of peptic ulcer.

  5. Targeting miRNAs by polyphenols: Novel therapeutic strategy for cancer.

    Science.gov (United States)

    Pandima Devi, Kasi; Rajavel, Tamilselvam; Daglia, Maria; Nabavi, Seyed Fazel; Bishayee, Anupam; Nabavi, Seyed Mohammad

    2017-10-01

    In the recent years, polyphenols have gained significant attention in scientific community owing to their potential anticancer effects against a wide range of human malignancies. Epidemiological, clinical and preclinical studies have supported that daily intake of polyphenol-rich dietary fruits have a strong co-relationship in the prevention of different types of cancer. In addition to direct antioxidant mechanisms, they also regulate several therapeutically important oncogenic signaling and transcription factors. However, after the discovery of microRNA (miRNA), numerous studies have identified that polyphenols, including epigallocatechin-3-gallate, genistein, resveratrol and curcumin exert their anticancer effects by regulating different miRNAs which are implicated in all the stages of cancer. MiRNAs are short, non-coding endogenous RNA, which silence the gene functions by targeting messenger RNA (mRNA) through degradation or translation repression. However, cancer associated miRNAs has emerged only in recent years to support its applications in cancer therapy. Preclinical experiments have suggested that deregulation of single miRNA is sufficient for neoplastic transformation of cells. Indeed, the widespread deregulation of several miRNA profiles of tumor and healthy tissue samples revealed the involvement of many types of miRNA in the development of numerous cancers. Hence, targeting the miRNAs using polyphenols will be a novel and promising strategy in anticancer chemotherapy. Herein, we have critically reviewed the potential applications of polyphenols on various human miRNAs, especially which are involved in oncogenic and tumor suppressor pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Interaction of red pepper (Capsicum annum, Tepin) polyphenols with Fe(II)-induced lipid peroxidation in brain and liver

    International Nuclear Information System (INIS)

    Oboh, G.; Rocha, J.B.T.

    2006-03-01

    Polyphenols exhibit a wide range of biological effects because of their antioxidant properties. Several types of polyphenols (phenolic acids, hydrolyzable tannins, and flavonoids) show anticarcinogenic and antimutagenic effects. Comparative studies were carried on the protective ability of free and bound polyphenol extracts of red Capsicum annuum Tepin (CAT) on brain and liver - In vitro. Free polyphenols of red Capsicum annuum Tepin (CAT) were extracted with 80% acetone, while the bound polyphenols were extracted with ethyl acetate from acid and alkaline hydrolysis of the pepper residue from free polyphenols extract. The phenol content, Fe (II) chelating ability, OH radical scavenging ability and protective ability of the extract against Fe (II)-induced lipid peroxidation in brain and liver was subsequently determined. The results of the study revealed that the free polyphenols (218.2mg/100g) content of the pepper were significantly higher than the bound polyphenols (42.5mg/100g). Furthermore, the free polyphenol extract had a significantly higher ( 2+ induced lipid peroxidation, and this is probably due to the higher Fe (II) chelating ability and OH radical scavenging ability of the free polyphenols from the pepper. (author)

  7. Polyphenols and phenolic acids in sweet potato (Ipomoea batatas L. roots

    Directory of Open Access Journals (Sweden)

    Janette Musilová

    2017-01-01

    Full Text Available Sweet potato (Ipomoea batatas L. is one of the most important food crops in the world. They are rich in polyphenols, proteins, vitamins, minerals and some functional microcomponents. Polyphenols are bioactive compounds, which can protect the human body from the oxidative stress which may cause many diseases including cancer, aging and cardiovascular problems.The polyphenol content is two to three times higher than in some common vegetables. Total polyphenols (determined spectrophotometrically and phenolic acids (i.e. caffeic acid, chlorogenic acid and isomers - using high performance liquid chromatography contents were determined in three varieties of sweet potatoes (O´Henry - white, Beauregard-orange and 414-purple. Phenolic compounds contents were determined in raw peeled roots, jackets of raw roots and water steamed sweet potato roots. For all analysis lyophilised samples were used. Total polyphenol content ranged from 1161 (O´Henry, flesh-raw to 13998 (414, peel-raw mg.kg-1 dry matter, caffeic acid content from the non-detected values (414, flesh-raw to 320.7 (Beauregard, peel-raw mg.kg-1 dry matter and 3-caffeoylquinic acid content from 57.57 (O´Henry, flesh-raw to 2392 (414, peel-raw mg.kg-1 dry matter. Statistically significant differences (p ≤0.05 existed between varieties, morphological parts of the root, or raw and heat-treated sweet potato in phenolic compounds contents.

  8. Antioxidant capacity and total polyphenol content in different apple varieties cultivated in Chile

    OpenAIRE

    Quitral, Vilma; Sepulveda, Marcela; Schwartz, Marco; Kern, Werther

    2014-01-01

    Three apple varieties cultivated in Chile were studied in total polyphenol content by Folin Ciocalteu method and antioxidant capacity by FRAP method: Granny Smith, Royal Gala and Fuji (whole and peeled apples). The total polyphenol content in whole and peeled apples do not show significant differences. The antioxidant capacity of the Granny Smith variety is significantly higher than Royal Gala and Fuji. Apple dehydration at 60 oC for 4 hours to obtain flakes keeps polyphenol content high. The...

  9. OPTIMIZING CONDITIONS FOR SPECTROPHOTOMETRIC DETERMINATION OF TOTAL POLYPHENOLS IN WINES USING FOLIN-CIOCALTEU REAGENT

    Directory of Open Access Journals (Sweden)

    Daniel Bajčan

    2013-02-01

    Full Text Available Wine is a complex beverage that obtains its properties mainly due to synergistic effect of alcohol, organic acids, arbohydrates, as well as the phenolic and aromatic substances. At present days, we can observe an increased interest in the study of polyphenols in wines that have antioxidant, antimicrobial, anti-inflammatory, anti-cancer and many other beneficial effects. Moderate and regular consumption of the red wine especially, with a high content of phenolic compounds, has a beneficial effect on human health. The aim of this work was to optimize conditions for spectrophotometric determination of total polyphenols in winwas to optimize conditions for spectrophotometric determination of total polyphenols in winwas to optimize conditions for spectrophotometric determination of total polyphenols in winwas to optimize conditions for pectrophotometric determination of total polyphenols in wine using Folin-Ciocaulteu reagent. Based on several studies, in order to minimize chemical use and optimize analysis time, we have proposed a method for the determination of total polyphenols using 0.25 ml Folin-Ciocaulteu reagent, 3 ml of 20% Na2CO3 solution and time of coloring complex 1.5 hour. We f

  10. Nutritional improvement of the endothelial control of vascular tone by polyphenols: role of NO and EDHF.

    Science.gov (United States)

    Schini-Kerth, Valérie B; Auger, Cyril; Kim, Jong-Hun; Etienne-Selloum, Nelly; Chataigneau, Thierry

    2010-05-01

    Numerous studies indicate that regular intake of polyphenol-rich beverages (red wine and tea) and foods (chocolate, fruit, and vegetables) is associated with a protective effect on the cardiovascular system in humans and animals. Beyond the well-known antioxidant properties of polyphenols, several other mechanisms have been shown to contribute to their beneficial cardiovascular effects. Indeed, both experimental and clinical studies indicate that polyphenols improve the ability of endothelial cells to control vascular tone. Experiments with isolated arteries have shown that polyphenols cause nitric oxide (NO)-mediated endothelium-dependent relaxations and increase the endothelial formation of NO. The polyphenol-induced NO formation is due to the redox-sensitive activation of the phosphatidylinositol3-kinase/Akt pathway leading to endothelial NO synthase (eNOS) activation subsequent to its phosphorylation on Ser 1177. Besides the phosphatidylinositol3-kinase/Akt pathway, polyphenols have also been shown to activate eNOS by increasing the intracellular free calcium concentration and by activating estrogen receptors in endothelial cells. In addition to causing a rapid and sustained activation of eNOS by phosphorylation, polyphenols can increase the expression level of eNOS in endothelial cells leading to an increased formation of NO. Moreover, the polyphenol-induced endothelium-dependent relaxation also involves endothelium-derived hyperpolarizing factor, besides NO, in several types of arteries. Altogether, polyphenols have the capacity to improve the endothelial control of vascular tone not only in several experimental models of cardiovascular diseases such as hypertension but also in healthy and diseased humans. Thus, these experimental and clinical studies highlight the potential of polyphenol-rich sources to provide vascular protection in health and disease.

  11. SEARCH PRODUCERS OF POLYPHENOLS AND SOME PIGMENTS AMONG BASIDIOMYCETES

    Directory of Open Access Journals (Sweden)

    Fedotov О. V.

    2014-02-01

    Full Text Available General content of polyphenols, carotenoids and melanin in basidiomycetes carpophorus was determined. 50 species were studied, 27 of which belong to the Polyporales form and 23 are to the Agaricales form. In order to determine the total content of phenolic substances spectrophotometric methods were used. Polyphenols were studied in alcoholic extracts through the modified Folin-Chokalteu procedure; melanin — by alkaline hydrolysis and calculated using a calibration curve (by pyrocatechol, carotenoids were studied in acetone extracts and calculated by the Vetshteyn formula. Statistical and cluster analysis of the data enabled to identify species of basidiomycetes that are perspective for biotechnology. The most promising in terms of total polyphenols, carotenoids and melanins of poliporal basidiomycetes are species Fomes fomentarius, Ganoderma applanatum, Ganoderma lucidum and Laetiporus sulphureus, and among agarikal fungi — Fistulina hepatica, Flammulina velutipes, Pleurotus ostreatus, Stropharia rugosoannulata, Agrocybe cylindracea and Tricholoma flavovirens. These species of Basidiomycetes were isolated in pure mycelia culture to find out their biosynthetic activity.

  12. Characteristic of fermented spinach (Amaranthus spp.) polyphenol by kombucha culture for antioxidant compound

    Science.gov (United States)

    Aspiyanto, Susilowati, Agustine; Iskandar, Jeti M.; Melanie, Hakiki; Maryati, Yati; Lotulung, Puspa D.

    2017-01-01

    Fermentation on spinach (Amaranthus sp.) vegetable by kombucha culture as an effort to get poliphenol as antioxidant compound had been done. Purification of fermented spinach extract suspension was carried out through microfiltration (MF) membrane (pore size 0.15 µm) fitted in dead-end Stirred Ultrafiltration Cell (SUFC) mode at fixed condition (stirrer rotation 400 rpm, room temperature, pressure 40 psia). Result of the experimental activity showed that long fermentation time increased total acids, total polyphenol and Total Plate Count (TPC), and decreased total solids and reducing sugar in biomass. The optimal fermentation time was reached for 2 weeks with total polyphenol recovery increasing of 92.76 % from before and after fermentation. On this optimal fermentation time, biomass had identified galic acid with relative intensity of 8 %, while as polyphenol monomer was resulted 5 kinds of polyphenol compounds with total intensity 27.97 % and molecular weight (MW) 191.1736, 193.1871 and 194.2170 at T2.5, T2.86 and T3.86. Long fermentation time increased functional properties of polyphenol as antioxidant.

  13. Variability of Polyphenol Compounds in Myrtus Communis L. (Myrtaceae Berries from Corsica

    Directory of Open Access Journals (Sweden)

    Nathalie Chiaramonti

    2010-11-01

    Full Text Available Polyphenol compounds were extracted from Myrtus communis L. berries (Myrtaceae by maceration in 70% ethanol and analysed by HPLC-DAD and electrospray mass spectrometry. The Myrtus berries were collected at maturity from seven localities on the island of Corsica (France and the sampling was carried out during three years. The polyphenol composition of Corsican Myrtus berries was characterized by two phenolic acids, four flavanols, three flavonols and five flavonol glycosides. The major compounds were myricetin-3-O-arabinoside and myricetin-3-O-galactoside. Principal components analysis (PCA is applied to study the chemical composition and variability of myrtle berries alcoholic extracts from the seven localities. Canonical analysis and PCA data distinguishes two groups of myrtle berries characterized by different concentrations of polyphenols according to soil and years of harvest. The variations in the polyphenol concentration were due to biotic and abiotic factors.

  14. Systematic NMR Analysis of Stable Isotope Labeled Metabolite Mixtures in Plant and Animal Systems: Coarse Grained Views of Metabolic Pathways

    Science.gov (United States)

    Chikayama, Eisuke; Suto, Michitaka; Nishihara, Takashi; Shinozaki, Kazuo; Hirayama, Takashi; Kikuchi, Jun

    2008-01-01

    Background Metabolic phenotyping has become an important ‘bird's-eye-view’ technology which can be applied to higher organisms, such as model plant and animal systems in the post-genomics and proteomics era. Although genotyping technology has expanded greatly over the past decade, metabolic phenotyping has languished due to the difficulty of ‘top-down’ chemical analyses. Here, we describe a systematic NMR methodology for stable isotope-labeling and analysis of metabolite mixtures in plant and animal systems. Methodology/Principal Findings The analysis method includes a stable isotope labeling technique for use in living organisms; a systematic method for simultaneously identifying a large number of metabolites by using a newly developed HSQC-based metabolite chemical shift database combined with heteronuclear multidimensional NMR spectroscopy; Principal Components Analysis; and a visualization method using a coarse-grained overview of the metabolic system. The database contains more than 1000 1H and 13C chemical shifts corresponding to 142 metabolites measured under identical physicochemical conditions. Using the stable isotope labeling technique in Arabidopsis T87 cultured cells and Bombyx mori, we systematically detected >450 HSQC peaks in each 13C-HSQC spectrum derived from model plant, Arabidopsis T87 cultured cells and the invertebrate animal model Bombyx mori. Furthermore, for the first time, efficient 13C labeling has allowed reliable signal assignment using analytical separation techniques such as 3D HCCH-COSY spectra in higher organism extracts. Conclusions/Significance Overall physiological changes could be detected and categorized in relation to a critical developmental phase change in B. mori by coarse-grained representations in which the organization of metabolic pathways related to a specific developmental phase was visualized on the basis of constituent changes of 56 identified metabolites. Based on the observed intensities of 13C atoms of

  15. No effect of the farming system (organic/conventional) on the bioavailability of apple (Malus domestica Bork., cultivar Golden Delicious) polyphenols in healthy men: a comparative study.

    Science.gov (United States)

    Stracke, Berenike A; Rüfer, Corinna E; Bub, Achim; Seifert, Stephanie; Weibel, Franco P; Kunz, Clemens; Watzl, Bernhard

    2010-08-01

    The organic food sales have been increasing during the recent years. It has been hypothesised that organically grown fruits are healthier based on their higher content of phytochemicals. However, data on the bioavailability of phytochemicals from organically or conventionally produced plant foods are scarce. Two human intervention studies were performed to compare the bioavailability of polyphenols in healthy men after ingestion of apples from different farming systems. The administered apples were grown organically and conventionally under defined conditions and characterised regarding their polyphenol content and antioxidant capacity. No significant differences in the polyphenol content and the antioxidant capacity from the organic and conventional farming system were observed. In the short-term intervention study, six men consumed either organically or conventionally produced apples in a randomized cross-over study. After intake of 1 kg apples, phloretin (C (max) 13 + or - 5 nmol/l, t (max) 1.7 + or - 1.2 h) and coumaric acid (C (max )35 + or - 12 nmol/l, t (max) 3.0 + or - 0.8 h) plasma concentrations increased significantly (P farming systems. In the long-term intervention study, 43 healthy volunteers consumed organically or conventionally produced apples (500 g/day; 4 weeks) or no apples in a double-blind, randomized intervention study. In this study, 24 h after the last dosing regime, the apple intake did not result in increasing polyphenol concentrations in plasma and urine compared to the control group suggesting no accumulation of apple polyphenols or degradation products in humans. Our study suggests that the two farming systems (organic/conventional) do not result in differences in the bioavailability of apple polyphenols.

  16. Green tea polyphenols provide photoprotection, increase microcirculation, and modulate skin properties of women.

    Science.gov (United States)

    Heinrich, Ulrike; Moore, Carolyn E; De Spirt, Silke; Tronnier, Hagen; Stahl, Wilhelm

    2011-06-01

    Dietary constituents including polyphenols and carotenoids contribute to endogenous photoprotection and modulate skin characteristics related to structure and function of the tissue. Animal and in-vitro studies indicate that green tea polyphenols affect skin properties. In a 12-wk, double-blind, placebo-controlled study, 60 female volunteers were randomized to an intervention or control group. Participants consumed either a beverage with green tea polyphenols providing 1402 mg total catechins/d or a control beverage. Skin photoprotection, structure, and function were measured at baseline (wk 0), wk 6, and wk 12. Following exposure of the skin areas to 1.25 minimal erythemal dose of radiation from a solar simulator, UV-induced erythema decreased significantly in the intervention group by 16 and 25% after 6 and 12 wk, respectively. Skin structural characteristics that were positively affected included elasticity, roughness, scaling, density, and water homeostasis. Intake of the green tea polyphenol beverage for 12 wk increased blood flow and oxygen delivery to the skin. Likewise, in a separate, randomized, double-blind, single-dose (0.5, 1.0, and 2.0 g) study of green tea polyphenols, blood flow was maximized at 30 min after ingestion. In summary, green tea polyphenols delivered in a beverage were shown to protect skin against harmful UV radiation and helped to improve overall skin quality of women.

  17. Determination of total polyphenol index in wines employing a voltammetric electronic tongue

    Energy Technology Data Exchange (ETDEWEB)

    Ceto, Xavier [Sensors and Biosensors Group, Department of Chemistry, Universitat Autonoma de Barcelona, Edifici Cn, 08193 Bellaterra (Spain); Gutierrez, Juan Manuel [Bioelectronics Section, Department of Electrical Engineering, CINVESTAV, 07360 Mexico D.F. (Mexico); Gutierrez, Manuel [Instituto de Microelectronica de Barcelona (IMB-CNM), CSIC, 08193 Bellaterra (Spain); Cespedes, Francisco [Sensors and Biosensors Group, Department of Chemistry, Universitat Autonoma de Barcelona, Edifici Cn, 08193 Bellaterra (Spain); Capdevila, Josefina; Minguez, Santiago [Estacio de Viticultura i Enologia, INCAVI, Vilafranca del Penedes (Spain); Jimenez-Jorquera, Cecilia [Instituto de Microelectronica de Barcelona (IMB-CNM), CSIC, 08193 Bellaterra (Spain); Valle, Manel del, E-mail: manel.delvalle@uab.cat [Sensors and Biosensors Group, Department of Chemistry, Universitat Autonoma de Barcelona, Edifici Cn, 08193 Bellaterra (Spain)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Array of voltammetric sensors modified with nanoparticles or conducting polymers. Black-Right-Pointing-Pointer It has been applied in wine analysis to predict polyphenol content index. Black-Right-Pointing-Pointer Uses data processing tools such as discrete wavelet transform and artificial neural network. Black-Right-Pointing-Pointer Identification of phenolics like gallic acid, catechin, caffeic acid, catechol. Black-Right-Pointing-Pointer Predicted polyphenol index agrees with Folin-Ciocalteau method and I{sub 280} index. - Abstract: This work reports the application of a voltammetric electronic tongue system (ET) made from an array of modified graphite-epoxy composites plus a gold microelectrode in the qualitative and quantitative analysis of polyphenols found in wine. Wine samples were analyzed using cyclic voltammetry without any sample pretreatment. The obtained responses were preprocessed employing discrete wavelet transform (DWT) in order to compress and extract significant features from the voltammetric signals, and the obtained approximation coefficients fed a multivariate calibration method (artificial neural network-ANN-or partial least squares-PLS-) which accomplished the quantification of total polyphenol content. External test subset samples results were compared with the ones obtained with the Folin-Ciocalteu (FC) method and UV absorbance polyphenol index (I{sub 280}) as reference values, with highly significant correlation coefficients of 0.979 and 0.963 in the range from 50 to 2400 mg L{sup -1} gallic acid equivalents, respectively. In a separate experiment, qualitative discrimination of different polyphenols found in wine was also assessed by principal component analysis (PCA).

  18. Changes in polyphenol profile of dried apricots containing SO2 at various concentrations during storage.

    Science.gov (United States)

    Altındağ, Melek; Türkyılmaz, Meltem; Özkan, Mehmet

    2018-05-01

    Changes in polyphenols have important effects on the quality (especially color) and health benefits of dried apricots. SO 2 concentration, storage and the activities of polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were factors which had significant effects on polyphenols. Polyphenol profile and activities of PPO and PAL in sulfured dried apricots (SDAs, 0, 451, 832, 2112 and 3241 mg SO 2 kg -1 ) were monitored during storage at 4, 20 and 30 °C for 379 days for the first time. Even the lowest SO 2 concentration (451 mg kg -1 ) was sufficient to inactivate PPO during the entire storage period. However, while SO 2 led to the increase in PAL activity of the samples (r = 0.767) before storage, PAL activities of SDAs decreased during storage. After 90 days of storage, PAL activity was determined in only non-sulfured dried apricots (NSDAs) and dried apricots containing 451 mg SO 2 kg -1 . Although the major polyphenol in NSDAs was epicatechin (611.4 mg kg -1 ), that in SDAs was chlorogenic acid (455-1508 mg kg -1 ), followed by epicatechin (0-426.8 mg kg -1 ), rutin (148.9-477.3 mg kg -1 ), ferulic acid (23.3-55.3 mg kg -1 ) and gallic acid (2.4-43.6 mg kg -1 ). After storage at 30 °C for 379 days, the major polyphenol in SDAs was gallic acid (706-2324 mg kg -1 ). However, the major polyphenol in NSDAs did not change after storage. The highest total polyphenol content was detected in SDAs containing 2112 mg SO 2 kg -1 and stored at 30 °C. To produce dried apricots having high polyphenol content, ∼2000 mg SO 2 kg -1 should be used. Low storage temperature (<30 °C) was not necessary for the protection of polyphenols. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Modulation of Nrf2 by Olive Oil and Wine Polyphenols and Neuroprotection

    Directory of Open Access Journals (Sweden)

    Miriam Martínez-Huélamo

    2017-09-01

    Full Text Available Strong adherence to a Mediterranean diet is associated with improved cognitive function and a lower prevalence of mild cognitive impairment. Olive oil and red wine are rich sources of polyphenols which are responsible in part for the beneficial effects on cognitive functioning. Polyphenols induce endogenous antioxidant defense mechanisms by modulating transcription factors such as the nuclear factor (erythroid-derived 2-like 2 (Nrf2. This review discusses the scientific data supporting the modulating effect of olive oil and red wine polyphenols on Nrf2 expression, and the potential health benefits associated with cognitive functioning.

  20. Polyphenols and brain health

    Directory of Open Access Journals (Sweden)

    Vauzour David

    2017-03-01

    Full Text Available Accumulating evidence suggests that diet and lifestyle can play an important role in delaying the onset or halting the progression of age-related health disorders and to improve cognitive function. A growing number of dietary intervention studies in humans and animals and in particular those using polyphenol-rich diets have been proposed to exert a multiplicity of neuroprotective actions within the brain, including a potential to protect neurons against injury induced by neurotoxins, an ability to suppress neuroinflammation and a potential to promote memory, learning, and cognitive functions. These effects appear to be underpinned by two common processes. First, they are capable of interactions with critical protein and lipid kinase signalling cascades in the brain, leading to an inhibition of apoptosis triggered by neurotoxic species and to a promotion of neuronal survival and synaptic plasticity. Second, they induce beneficial effects on the vascular system, leading to changes in cerebrovascular blood flow capable of causing enhance vascularisation and neurogenesis, two events important in the maintenance of cognitive performances. Together, these processes act to maintain brain homeostasis and play important roles in neuronal stress adaptation and thus polyphenols might have the potential to prevent the progression of neurodegenerative pathologies.

  1. Iron-59 absorption from soy hulls: intrinsic vs extrinsic labeling

    International Nuclear Information System (INIS)

    Lykken, G.I.; Mahalko, J.R.; Nielsen, E.J.; Dintzis, F.R.

    1986-01-01

    As part of an evaluation of the validity of the extrinsic labeling technique for measuring iron absorption, absorption from soy hulls extrinsically labeled ( 59 Fe added to bread dough) was compared with that from soy hulls intrinsically labeled ( 59 Fe incorporated into the soy plant during growth). Century soybeans were grown in a greenhouse. After pods had formed and were filling, each plant was stem injected twice, at 3 day intervals, with 22 μCi 59 Fe as FeCl 2 in 25 μl of 0.5 M HCl solution. After the plants had senesced, the soybeans were harvested, dried, shelled and the hulls removed. Standard meals containing 3.5 mg Fe/meal and up to 0.06 μCi 59 Fe in a soy hull bun were fed on 2 consecutive days to free-living volunteers in a crossover design. Absorption of 59 Fe was greater from intrinsically labeled soy hulls than from extrinsically labeled soy hulls, 20 +/- 20% vs 15 +/- 11% (n=14, p > 0.05 by paired t-test). Apparent absorption ranged from 1.3% to 77% from intrinsically labeled soy hulls and .5% to 29% from extrinsically labeled soy hulls with the highest absorption occurring in persons with low serum ferritin (S.F. < 8 ng/ml). These findings provide additional evidence that the extrinsic labeling method is a valid measure of iron bioavailability to humans

  2. Psychiatric Disorders and Polyphenols: Can They Be Helpful in Therapy?

    Directory of Open Access Journals (Sweden)

    Jana Trebatická

    2015-01-01

    Full Text Available The prevalence of psychiatric disorders permanently increases. Polyphenolic compounds can be involved in modulation of mental health including brain plasticity, behaviour, mood, depression, and cognition. In addition to their antioxidant ability other biomodulating properties have been observed. In the pathogenesis of depression disturbance in neurotransmitters, increased inflammatory processes, defects in neurogenesis and synaptic plasticity, mitochondrial dysfunction, and redox imbalance are observed. Ginkgo biloba, green tea, and Quercus robur extracts and curcumin can affect neuronal system in depressive patients. ADHD patients treated with antipsychotic drugs, especially stimulants, report significant adverse effects; therefore, an alternative treatment is searched for. An extract from Ginkgo biloba and from Pinus pinaster bark, Pycnogenol, could become promising complementary supplements in ADHD treatment. Schizophrenia is a devastating mental disorder, with oxidative stress involved in its pathophysiology. The direct interference of polyphenols with schizophrenia pathophysiology has not been reported yet. However, increased oxidative stress caused by haloperidol was inhibited ex vivo by different polyphenols. Curcumin, extract from green tea and from Ginkgo biloba, may have benefits on serious side effects associated with administration of neuroleptics to patients suffering from schizophrenia. Polyphenols in the diet have the potential to become medicaments in the field of mental health after a thorough study of their mechanism of action.

  3. Cocoa and Dark Chocolate Polyphenols: From Biology to Clinical Applications.

    Science.gov (United States)

    Magrone, Thea; Russo, Matteo Antonio; Jirillo, Emilio

    2017-01-01

    It is well known that cocoa and dark chocolate possess polyphenols as major constituents whose dietary consumption has been associated to beneficial effects. In fact, cocoa and dark chocolate polyphenols exert antioxidant and anti-inflammatory activities switching on some important signaling pathways such as toll-like receptor 4/nuclear factor κB/signal transducer and activator of transcription. In particular, cocoa polyphenols induce release of nitric oxide (NO) through activation of endothelial NO synthase which, in turn, accounts for vasodilation and cardioprotective effects. In the light of the above described properties, a number of clinical trials based on the consumption of cocoa and dark chocolate have been conducted in healthy subjects as well as in different categories of patients, such as those affected by cardiovascular, neurological, intestinal, and metabolic pathologies. Even if data are not always concordant, modifications of biomarkers of disease are frequently associated to improvement of clinical manifestations. Quite interestingly, following cocoa and dark chocolate ingestion, cocoa polyphenols also modulate intestinal microbiota, thus leading to the growth of bacteria that trigger a tolerogenic anti-inflammatory pathway in the host. Finally, many evidences encourage the consumption of cocoa and dark chocolate by aged people for the recovery of the neurovascular unit.

  4. Cocoa and Dark Chocolate Polyphenols: From Biology to Clinical Applications

    Directory of Open Access Journals (Sweden)

    Thea Magrone

    2017-06-01

    Full Text Available It is well known that cocoa and dark chocolate possess polyphenols as major constituents whose dietary consumption has been associated to beneficial effects. In fact, cocoa and dark chocolate polyphenols exert antioxidant and anti-inflammatory activities switching on some important signaling pathways such as toll-like receptor 4/nuclear factor κB/signal transducer and activator of transcription. In particular, cocoa polyphenols induce release of nitric oxide (NO through activation of endothelial NO synthase which, in turn, accounts for vasodilation and cardioprotective effects. In the light of the above described properties, a number of clinical trials based on the consumption of cocoa and dark chocolate have been conducted in healthy subjects as well as in different categories of patients, such as those affected by cardiovascular, neurological, intestinal, and metabolic pathologies. Even if data are not always concordant, modifications of biomarkers of disease are frequently associated to improvement of clinical manifestations. Quite interestingly, following cocoa and dark chocolate ingestion, cocoa polyphenols also modulate intestinal microbiota, thus leading to the growth of bacteria that trigger a tolerogenic anti-inflammatory pathway in the host. Finally, many evidences encourage the consumption of cocoa and dark chocolate by aged people for the recovery of the neurovascular unit.

  5. Cocoa and Dark Chocolate Polyphenols: From Biology to Clinical Applications

    Science.gov (United States)

    Magrone, Thea; Russo, Matteo Antonio; Jirillo, Emilio

    2017-01-01

    It is well known that cocoa and dark chocolate possess polyphenols as major constituents whose dietary consumption has been associated to beneficial effects. In fact, cocoa and dark chocolate polyphenols exert antioxidant and anti-inflammatory activities switching on some important signaling pathways such as toll-like receptor 4/nuclear factor κB/signal transducer and activator of transcription. In particular, cocoa polyphenols induce release of nitric oxide (NO) through activation of endothelial NO synthase which, in turn, accounts for vasodilation and cardioprotective effects. In the light of the above described properties, a number of clinical trials based on the consumption of cocoa and dark chocolate have been conducted in healthy subjects as well as in different categories of patients, such as those affected by cardiovascular, neurological, intestinal, and metabolic pathologies. Even if data are not always concordant, modifications of biomarkers of disease are frequently associated to improvement of clinical manifestations. Quite interestingly, following cocoa and dark chocolate ingestion, cocoa polyphenols also modulate intestinal microbiota, thus leading to the growth of bacteria that trigger a tolerogenic anti-inflammatory pathway in the host. Finally, many evidences encourage the consumption of cocoa and dark chocolate by aged people for the recovery of the neurovascular unit. PMID:28649251

  6. Potential Effects of Pomegranate Polyphenols in Cancer Prevention and Therapy.

    Science.gov (United States)

    Turrini, Eleonora; Ferruzzi, Lorenzo; Fimognari, Carmela

    2015-01-01

    Cancer is the second leading cause of death and is becoming the leading one in old age. Vegetable and fruit consumption is inversely associated with cancer incidence and mortality. Currently, interest in a number of fruits high in polyphenols has been raised due to their reported chemopreventive and/or chemotherapeutic potential. Pomegranate has been shown to exert anticancer activity, which is generally attributed to its high content of polyphenols. This review provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of pomegranate polyphenols as future anticancer agents. Pomegranate evokes antiproliferative, anti-invasive, and antimetastatic effects, induces apoptosis through the modulation of Bcl-2 proteins, upregulates p21 and p27, and downregulates cyclin-cdk network. Furthermore, pomegranate blocks the activation of inflammatory pathways including, but not limited to, the NF-κB pathway. The strongest evidence for its anticancer activity comes from studies on prostate cancer. Accordingly, some exploratory clinical studies investigating pomegranate found a trend of efficacy in increasing prostate-specific antigen doubling time in patients with prostate cancer. However, the genotoxicity reported for pomegranate raised certain concerns over its safety and an accurate assessment of the risk/benefit should be performed before suggesting the use of pomegranate or its polyphenols for cancer-related therapeutic purposes.

  7. Green Tea Polyphenols Attenuated Glutamate Excitotoxicity via Antioxidative and Antiapoptotic Pathway in the Primary Cultured Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Lin Cong

    2016-01-01

    Full Text Available Green tea polyphenols are a natural product which has antioxidative and antiapoptotic effects. It has been shown that glutamate excitotoxicity induced oxidative stress is linked to neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. In this study we explored the neuroprotective effect of green teen polyphenols against glutamate excitotoxicity in the primary cultured cortical neurons. We found that green tea polyphenols protected against glutamate induced neurotoxicity in the cortical neurons as measured by MTT and TUNEL assays. Green tea polyphenols were then showed to inhibit the glutamate induced ROS release and SOD activity reduction in the neurons. Furthermore, our results demonstrated that green tea polyphenols restored the dysfunction of mitochondrial pro- or antiapoptotic proteins Bax, Bcl-2, and caspase-3 caused by glutamate. Interestingly, the neuroprotective effect of green tea polyphenols was abrogated when the neurons were incubated with siBcl-2. Taken together, these results demonstrated that green tea polyphenols protected against glutamate excitotoxicity through antioxidative and antiapoptotic pathways.

  8. Polyphenolic Profile and Biological Activity of Chinese Hawthorn (Crataegus pinnatifida BUNGE Fruits

    Directory of Open Access Journals (Sweden)

    Tunde Jurikova

    2012-12-01

    Full Text Available Chinese hawthorn (Crataegus pinnatifida Bge. fruits are rich in polyphenols (e.g., epicatechin, procyanidin B2, procyanidin B5, procyanidin C1, hyperoside, isoquercitrin and chlorogenic acid—active compounds that exert beneficial effects. This review summarizes all information available on polyphenolic content and methods for their quantification in Chinese hawthorn berries and the relationships between individual polyphenolic compounds as well. The influence of species or cultivars, the locality of cultivation, the stage of maturity, and extract preparation conditions on the polyphenolic content were discussed as well. Currently, only fruits of C. pinnatifida and C. pinnatifida var. major are included in the Chinese Pharmacopoeia. Recent trials have demonstrated the efficacy of Chinese hawthorn fruit in lowering blood cholesterol and the risk of cardiovascular diseases. The fruit has also demonstrated anti-inflammatory and anti-tumour activities. This review deals mainly with the biological activity of the fruit related to its antioxidant properties.

  9. Hepatoprotective and Antioxidant Effect of Hibiscus Polyphenol Rich Extract (HPE) Against Carbon Tetrachloride (CCL4) - Induced Damage in Rats

    OpenAIRE

    Adetutu, Adewale; Owoade, Abiodun O.

    2013-01-01

    Aims: Hibiscus sabdariffa is a medicinal plant that is consumed for its health benefits in Africa. The study was designed to investigate the hepatoprotective potentials of Hibiscus polyphenolic rich extract (HPE), (a group of phenolic compounds occurring in the dried calyx of Hibiscus sabdariffa) against CCl4-induced damaged in rats. Place and Duration of Study: Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria, between January 2011 and June 2012. Method...

  10. Evaluation of Biological Value and Appraisal of Polyphenols and Glucosinolates from Organic Baby-Leaf Salads as Antioxidants and Antimicrobials against Important Human Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Maria J. Saavedra

    2013-04-01

    Full Text Available The present investigation has been carried out to investigate the biological role of four different types of baby-leaf salads and to study their potential as natural sources of antioxidants and antimicrobials against several isolates from important human pathogenic bacteria. Four single types of salads (green lettuce, red lettuce, rucola and watercress and two mixtures [(1 red lettuce+green lettuce; (2 green lettuce + red lettuce + watercress + rucola] were assayed. The HPLC analysis revealed interesting levels of polyphenols and glucosinolates. The results showed a significant variation (p < 0.05 of polyphenols and glucosinolates with plant material. Nine different types of polyphenols grouped in three major classes were found: gallic acid, chlorogenic acid, caffeic acid and dicaffeoyltartaric acid (phenolic acids; quercitin-3-O-rutinoside, quercitin-3-O-rhamnoside, luteolin-7-O-glucoside and isorhamnetin (flavonoids; and cyanidin-3-glucoside (anthocyanins. Only three different glucosinolates were found: glucoraphanin; gluconasturtiin and 4-methoxy-glucobrassicin. A positive correlation was detected between polyphenol contents and antioxidant activity. Red lettuce and mixture 1 were the baby-leaf salads with the highest antioxidant potential. As for the antimicrobial activity, the results showed a selective effect of chemicals against Gram-positive and Gram-negative bacteria and Enterococcus faecalis and Staphylococcus aureus were the bacteria most affected by the phytochemicals. Based on the results achieved baby-leaf salads represent an important source of natural antioxidants and antimicrobial substances.

  11. Two dietary polyphenols, fisetin and luteolin, reduce inflammation but augment DNA damage-induced toxicity in human RPE cells.

    Science.gov (United States)

    Hytti, Maria; Szabó, Dora; Piippo, Niina; Korhonen, Eveliina; Honkakoski, Paavo; Kaarniranta, Kai; Petrovski, Goran; Kauppinen, Anu

    2017-04-01

    Plant-derived polyphenols are known to possess anti-inflammatory and antioxidant effects. In recent years, several studies have investigated their potential benefits for treating chronic diseases associated with prolonged inflammation and excessive oxidative stress, such as age-related macular degeneration (AMD). Previously, two polyphenols, fisetin and luteolin, have been reported to increase the survival of retinal pigment epithelial (RPE) cells suffering from oxidative stress as well as decreasing inflammation but the benefits of polyphenol therapy seem to depend on the model system used. Our aim was to analyze the effects of fisetin and luteolin on inflammation and cellular viability in a model of nonoxidative DNA damage-induced cell death in human RPE (hRPE) cells. Pretreatment of ARPE-19 or primary hRPE cells with the polyphenols augmented etoposide-induced cell death as measured by the lactate dehydrogenase and 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. However, the treatment was able to reduce the release of two proinflammatory cytokines, IL-6 and IL-8, which were determined by enzyme-linked Immunosorbent assay. Analyses of caspase 3 activity, p53 acetylation and SIRT1 protein levels revealed the apoptotic nature of etoposide-evoked cell death and that fisetin and luteolin augmented the etoposide-induced acetylation of p53 and decreased SIRT1 levels. Taken together, our findings suggest that the cytoprotective effects of fisetin and luteolin depend on the stressor they need to combat, whereas their anti-inflammatory potential is sustained over a variety of model systems. Careful consideration of disease pathways will be necessary before fisetin or luteolin can be recommended as therapeutic agents for inflammatory diseases in general and specifically AMD. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Polyphenol-Rich Pomegranate Juice Reduces IgE Binding to Cashew Nut Allergens

    Science.gov (United States)

    Cashew nut allergy is mediated by IgE binding to seed-storage proteins including Ana o 1, 2, and 3. Cashew nuts commonly cause severe reactions and only small amounts are needed. Polyphenol rich juices and polyphenol compounds have been demonstrated to complex with peanut allergens. The interacti...

  13. Influence of gamma radiation on the levels of polyphenols and lethality of ethanol extracts of Anacardium occidentale Linn., against Biomphalaria glabrata

    International Nuclear Information System (INIS)

    Santos, G.H.F.; Silva, E.B.; Melo, A.M.M.A.; Lima, C.S.A; Amorim, E.L.C.; Peixoto Sobrinho, T.J.S.

    2013-01-01

    Plant materials rich in phenolic compounds, such as Anacardium occidentale Linn., Have been used as alternatives to synthetic pesticides in Biomphalaria glabrata control programs, intermediate host of Schistosoma mansoni. Studies show that ionizing radiation can influence the content of phenolic compounds and thus their biological actions. The aim of this study was to evaluate the influence of gamma radiation of 60 Co in polyphenol composition of hydroalcoholic extracts of bark and leaves of A. occidentale and evaluate the toxicity of these extracts to embryos and adults of B. glabrata. To achieve this goal this, the extracts were irradiated at 10 kGy, the controls being maintained from 0 kGy and positive (CaCO 3 ) and negative (H 2 O). We quantified the total phenols by the Folin-Ciocalteau and tannins by precipitation of casein. Extracts were used at a concentration of 100 mg/L. The results showed that the radiation caused the changes to the leaves, the percentage of polyphenols and tannins, and the percentage of lethality in embryos and adults Biomphalaria glabrata, these percentages being: 13 ± 5 (0 kGy) and 27 ± 2.5 (10 kGy), and 36.67 ± 5.77 (0 kGy), and 56.67 ± 5.77 (10 kGy), respectively. Gamma radiation caused significant changes in the levels of polyphenols in the extracts of leaves of Anacardium ocidentale Linn., translated by the increased toxicity of this extract against embryos and adults of Biomphalaria glabrata. This indicates that gamma radiation can be used as an agent potentiating the toxicity of plant extracts on the alternate use of these materials as molluscicides. (author)

  14. SCREENING OF CONTENT AND DYNAMIC OF ACCUMULATION OF POLYPHENOLS IN SOME BASIDIOMYCETES SPECIES

    Directory of Open Access Journals (Sweden)

    Veligodska A. K.

    2015-12-01

    Full Text Available The aim of the study was to investigate the total content of polyphenolic substances in Basidiomycetes carpophores from 50 species, of which 27 belong to the order Polyporales and 23 to the order Agaricales. Introduced 23 strains of 8 species of Basidiomycetes. Methods. Gathered wild carpophores dried and crushed to a particle size of 0,1 till 0,01 mm and searching strains were cultured in Erlenmeyyers flasks by surface method on standard glucose-peptone culture medium. Determination of total content of polyphenolic compounds was carried out in ethanol extracts of mycological material by a modified method of Folin-Chokalteu. Completely dry biomass of carpophores and mycelium was determined gravimetrically. Results. There was identified the species of polyporal fungi Ganoderma applanatum, Ganoderma lucidum, Laetiporus sulphureus and Fomes fomentarius and types of agarical mushrooms Stropharia rugosoannulata, Agrocybe cylindracea, Tricholoma flavovirens, Flammulina velutipes, Pleurotus ostreatus and Fistulina hepatica high in polyphenolic compounds. It was determined the content of polyphenols ranging from more than 60 mg / g completely dry biomass. For introduced strains established dynamics of growth and accumulation of polyphenolic compounds in the mycelium and culture filtrate during fermentation on glucose-peptone medium. All cultures reach a maximum accumulation of biomass on the 12th day of growth. Shizophyllum commune Sc-1101 and 10 and F. velutipes F-202 have been identified as the most productive strains. The lowest accumulation of absolutely dry biomass was recorded for strain P. ostreatus P-192 and strain F. fomentarius Ff-09. Cultures have investigated individual value growth such as biomass accumulation in the applied cultivation conditions, which probably reflects the suitability of the medium for their growth and genotypic characteristics. Strains are overwhelmingly able to accumulate polyphenolic compounds in both mycelium and

  15. [Health effects of sour cherries with unique polyphenolic composition in their fruits].

    Science.gov (United States)

    Hegedűs, Attila; Papp, Nóra; Blázovics, Anna; Stefanovitsné Bányai, Éva

    2018-05-01

    Health effects of fruit consumption are confirmed by many studies. Such effects are attributed to the polyphenolic compounds accumulating in fruit skin and mesocarp tissues. They contribute to the regulation on transcriptional, post-transcriptional and epigenetic levels. Since people consume much less fruits than the recommended quantities, a new approach includes the promotion of super fruits that are extremely rich sources of specific health compounds. A comparative analysis of Hungarian stone fruit cultivars detected a huge variability in fruit in vitro antioxidant capacity and total polyphenolic content. Two outstanding sour cherry cultivars ('Pipacs 1' and 'Fanal') were identified to accumulate elevated levels of polyphenolic compounds in their fruits. Sour cherries with different polyphenolic compositions were tested against alimentary induced hyperlipidemia using male Wistar rat model. Consumption of cherry fruit had different consequences for different cultivars: consumption of 'Pipacs 1' and 'Fanal' fruits resulted in 30% lower total cholesterol levels in the sera of hyperlipidemic animals after only 10 days of treatment. However, the consumption of 'Újfehértói fürtös' fruit has not induced significant alterations in the same parameter. Other lipid parameters also reflected the short-term beneficial effects of 'Pipacs 1' and 'Fanal' fruits. We suggest that not only some tropical and berry fruits might be considered as super fruits but certain genotypes of stone fruits as well. These have indeed marked physiological effects. Since 'Pipacs 1' and 'Fanal' are rich sources of colourless polyphenolics (e.g., phenolic acids and isoflavonoids) and anthocyanins, respectively, the protective effects associated with their consumption can be attributed to different polyphenolic compounds. Orv Hetil. 2018; 159(18): 720-725.

  16. Protective effect of polyphenols on presbycusis via oxidative/nitrosative stress suppression in rats.

    Science.gov (United States)

    Sánchez-Rodríguez, Carolina; Martín-Sanz, Eduardo; Cuadrado, Esperanza; Granizo, Juan José; Sanz-Fernández, Ricardo

    2016-10-01

    Age-related hearing loss (AHL) -presbycusis- is the number one neurodegenerative disorder and top communication deficit of our aged population. Experimental evidence suggests that mitochondrial dysfunction associated with reactive oxygen species (ROS) plays a central role in the aging process of cochlear cells. Dietary antioxidants, in particular polyphenols, have been found to be beneficial in protecting against the generation of ROS in various diseases associated with oxidative stress, such as cancer, neurodegenerative diseases and aging. This study was designed to investigate the effects of polyphenols on AHL and to determine whether oxidative stress plays a role in the pathophysiology of AHL. Sprague-Dawley rats (n=100) were divided into five groups according to their age (3, 6, 12, 18 and 24months old) and treated with 100mg/kg/day body weight of polyphenols dissolved in tap water for half of the life of the animal. Auditory steady-state responses (ASSR) threshold shifts were measured before sacrificing the rats. Then, cochleae were harvested to measure total superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, reactive oxidative and nitrogen species levels, superoxide anions and nitrotyrosine levels. Increased levels of ROS and RNS in cochlea observed with age decreases with polyphenol treatment. In addition, the activity of SOD and GPx enzymes in older rats recovered after the administration of polyphenols. The reduction in oxidative and nitrosative stress in the presence of polyphenols correlates with significant improvements in ASSR threshold shifts. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment.

    Science.gov (United States)

    Lamothe, Sophie; Azimy, Naheed; Bazinet, Laurent; Couillard, Charles; Britten, Michel

    2014-10-01

    The consumption of polyphenols in green tea has been associated with beneficial health effects. Although polyphenols are unstable in the intestinal environment, they may be protected by interactions with dairy proteins during digestion. The objectives of this study were to evaluate the effect of a green tea extract on the digestibility of different dairy matrices and to monitor the antioxidant activity of these matrices with or without the green tea extract during digestion in a simulated gastrointestinal environment. Milk, yogurt and cheese with similar fat-to-protein ratios were subjected to simulated digestion. Matrix degradation, protein and fat hydrolysis, polyphenol concentration and radical scavenging activity were analyzed during gastric and intestinal digestion phases. Cheese was the matrix most resistant to protein and fat digestion. The addition of the green tea extract significantly decreased proteolysis in the gastric phase but had no effect in the intestinal phase. The kinetics of fatty acid release was reduced by the presence of the green tea extract. Transition from the gastric phase to the intestinal phase induced a 50% decrease in the antioxidant activity of the control (tea extract dispersed in water) due to the degradation of polyphenols. The presence of dairy matrices significantly improved polyphenol stability in the intestinal phase and increased the antioxidant activity by 29% (cheese) to 42% (milk) compared to the control. These results suggest that simultaneous consumption of green tea and dairy products helps to maintain the integrity and antioxidant activity of polyphenols during digestion.

  18. Labeling of Tannic Acid with Technetium-99m for Diagnosis of Stomach Ulcer

    OpenAIRE

    Ibrahim, I. T.; El-Tawoosy, M.; Talaat, H. M.

    2011-01-01

    Tannic acid is a polyphenolic compound that could be labeled with technetium-99m. To produce about 90% yield of  99mTc-tannic acid in acidic media (pH), the conditions required were 150  g tin chloride, 30 min reaction time, and 200  g of the substrate. 99mTc-tannic was stable for 6 h. Oral biodistribution of 99mTc-tannic showed that it concentrated in the stomach ulcer to reach about 50% of the total injected dose at 1 h after orall administration. This concentration of 99mTc-tannic in s...

  19. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells.

    Science.gov (United States)

    Liang, Jin; Li, Feng; Fang, Yong; Yang, Wenjian; An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin; Hu, Qiuhui

    2014-03-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. Copyright © 2013. Published by

  20. Immunomodulating Activity of Aronia melanocarpa Polyphenols

    Directory of Open Access Journals (Sweden)

    Giang T. T. Ho

    2014-06-01

    Full Text Available The immunomodulating effects of isolated proanthocyanidin-rich fractions, procyanidins C1, B5 and B2 and anthocyanins of Aronia melanocarpa were investigated. In this work, the complement-modulating activities, the inhibitory activities on nitric oxide (NO production in LPS-induced RAW 264.7 macrophages and effects on cell viability of these polyphenols were studied. Several of the proanthocyanidin-rich fractions, the procyanidins C1, B5 and B2 and the cyanidin aglycone possessed strong complement-fixing activities. Cyanidin 3-glucoside possessed stronger activity than the other anthocyanins. Procyanidins C1, B5 and B2 and proanthocyanidin-rich fractions having an average degree of polymerization (PD of 7 and 34 showed inhibitory activities on NO production in LPS-stimulated RAW 264.7 mouse macrophages. All, except for the fraction containing proanthocyanidins with PD 34, showed inhibitory effects without affecting cell viability. This study suggests that polyphenolic compounds of A. melanocarpa may have beneficial effects as immunomodulators and anti-inflammatory agents.

  1. Effect of extraction solvents on polyphenols and antioxidant activity of medicinal halophytes

    International Nuclear Information System (INIS)

    Qasim, M.; Aziz, I.; Gul, B.

    2016-01-01

    This study was conducted to determine the most effective solvent for extraction of polyphenols and antioxidant activity of medicinally important coastal halophytes (Thespesia populneoides, Salvadora persica, Ipomoea pes-caprae, Suaeda fruticosa and Pluchea lanceolata) known for high antioxidant potential. Five different solvents (water, 80% methanol, 80% ethanol, acetone and chloroform) were used to quantify polyphenols including total phenolic (TPC), total flavonoid (TFC) and proanthocyanidin contents (PC) and antioxidant capacity using DPPH radical scavenging and Ferric reducing antioxidant power (FRAP) activities. Among solvents of different polarities 80% methanol appeared most effective for polyphenol extraction. Thespesia populneoides had the highest polyphenols (TPC, TFC and PC) followed by Salvadora persica. Highest antioxidant activity was also found in T. populneoides and S. persica using the same solvent (80% methanol) which appeared better than synthetic antioxidants (BHA and BHT). The correlation analyses of each solvent showed strong to weak relationships among all studied parameters with maximum values (r and R2) in methanol followed by ethanol and water. Weaker correlation of acetone and chloroform indicates low capacity of these solvents both for polyphenol extraction and antioxidant activity. Our results reveal that aqueous methanol extracts of coastal halophytes had comparatively higher antioxidant activity than commercial antioxidants which indicate both their prospective efficacy and potential to replace synthetic derivatives from edible and medicinal products. (abstract)

  2. Production and fractionation of 14CO2 labeled smooth cordgrass, Spartina alterniflora

    International Nuclear Information System (INIS)

    Fallon, R.D.; Pfaender, F.K.

    1976-01-01

    A simple chamber for use in radioactive carbon labeling of plants is described and used to successfully label Spartina Alterniflora. The plant material contained 5.5 +- 1.3 μCi/g (dry) mean activity after a 1-week pulse. The plant was chemically fractionated and the mean activity (+- standard error) was determined in four biochemical fractions: fiber = 2.6 +- 0.7 μCi/g (dry), organic acid 2.6 +- 0.1 μCi/g (dry), protein/nucleic acid = 2.4 +- 0.5 μCi/g (dry), and lipid = 27.3 +- 6.2 μCi/g (dry). The high activity of the lipid fraction indicates that it may serve as a carbon storage pool in the plant under the described growing conditions. The simple, low cost chamber can be used for plant biochemistry experiments, and for the production of labeled detritus and plant fractions

  3. Optimization of extraction of polyphenols from Sorghum Moench ...

    African Journals Online (AJOL)

    phenolic acid were assayed using high performance liquid (HPLC). ... quantification of antioxidants and phenolic compounds from Sorghum M, ... Keywords: Response surface methodology, Sorghum moench, Polyphenols, Antioxidants.

  4. Benefits of Wine Polyphenols on Human Health: A Review

    Directory of Open Access Journals (Sweden)

    Roxana Banc

    2014-11-01

    Full Text Available This paper presents  an overview of the health benefits of wine polyphenols, induced by a moderate consumption. Several studies have shown that moderate wine intake may have many beneficial effects on human health and these effects are mainly attributed to the phenolic derivatives, especially flavonoids. Beside flavonoid compounds, phenolic acids (hydroxybenzoic acids and hydroxycinnamic acids and stilbenes are important non-flavonoid compounds present in grapes and wine. In the present review, the biological role of these classes of polyphenols in wine is briefly introduced, together with the knowledge on their bioavailability. The health-protective properties of wines are mainly due to antioxidant activities and capability to eliminate free radicals of the phenolic compounds. Additionally, these compounds (e.g. catechin and their oligomers and proanthocyanidins, quercetin, resveratrol have been reported to have multiple biological activities, including cardioprotective, anti-carcinogenic, anti-atherogenic, anti-inflammatory, antiviral and antibacterial properties. Epidemiological and clinical studies have pointed out that regular and moderate red wine consumption (one to two glasses a day is associated with decreased incidence of cardiovascular disease, hypertension, diabetes, and certain types of cancer, including lung, esophagus, stomach, colon, endometrium, ovarian and prostate cancer. The bioavailability of phenolic compounds differs largely among different polyphenol molecules, thus the most abundant polyphenols in wines are not necessarily those leading to the highest levels of active metabolites in target tissues. Therefore, since wine is a complex mixture, it is likely that a multitude of chemical constituents, as well as their metabolites, act synergistically on human health.

  5. Anticarcinogenic effects of polyphenolics from mango (Mangifera indica) varieties.

    Science.gov (United States)

    Noratto, Giuliana D; Bertoldi, Michele C; Krenek, Kimberley; Talcott, Stephen T; Stringheta, Paulo C; Mertens-Talcott, Susanne U

    2010-04-14

    Many polyphenolics contained in mango have shown anticancer activity. The objective of this study was to compare the anticancer properties of polyphenolic extracts from several mango varieties (Francis, Kent, Ataulfo, Tommy Atkins, and Haden) in cancer cell lines, including Molt-4 leukemia, A-549 lung, MDA-MB-231 breast, LnCap prostate, and SW-480 colon cancer cells and the noncancer colon cell line CCD-18Co. Cell lines were incubated with Ataulfo and Haden extracts, selected on the basis of their superior antioxidant capacity compared to the other varieties, where SW-480 and MOLT-4 were statistically equally most sensitive to both cultivars followed by MDA-MB-231, A-549, and LnCap in order of decreasing efficacy as determined by cell counting. The efficacy of extracts from all mango varieties in the inhibition of cell growth was tested in SW-480 colon carcinoma cells, where Ataulfo and Haden demonstrated superior efficacy, followed by Kent, Francis, and Tommy Atkins. At 5 mg of GAE/L, Ataulfo inhibited the growth of colon SW-480 cancer cells by approximately 72% while the growth of noncancer colonic myofibroblast CCD-18Co cells was not inhibited. The growth inhibition exerted by Ataulfo and Haden polyphenolics in SW-480 was associated with an increased mRNA expression of pro-apoptotic biomarkers and cell cycle regulators, cell cycle arrest, and a decrease in the generation of reactive oxygen species. Overall, polyphenolics from several mango varieties exerted anticancer effects, where compounds from Haden and Ataulfo mango varieties possessed superior chemopreventive activity.

  6. Beneficial effect of a polyphenol-rich diet on cardiovascular risk: a randomised control trial.

    Science.gov (United States)

    Noad, Rebecca L; Rooney, Ciara; McCall, Damian; Young, Ian S; McCance, David; McKinley, Michelle C; Woodside, Jayne V; McKeown, Pascal P

    2016-09-01

    There is previous epidemiological evidence that intake of polyphenol-rich foods has been associated with reduced cardiovascular disease risk. We aimed to investigate the effect of increasing dietary polyphenol intake on microvascular function in hypertensive participants. All participants completed a 4-week run-in phase, consuming chocolate. Subjects were then randomised to continue with the low-polyphenol diet for 8 weeks or to consume a high-polyphenol diet of six portions F&V (including one portion of berries/day and 50 g of dark chocolate). Endothelium-dependent (acetylcholine, ACh) and endothelium-independent (sodium nitroprusside) vasodilator responses were assessed by venous occlusion plethysmography. Compliance with the intervention was measured using food diaries and biochemical markers. Final analysis of the primary endpoint was conducted on 92 participants. Between-group comparison of change in maximum % response to ACh revealed a significant improvement in the high-polyphenol group (p=0.02). There was a significantly larger increase in vitamin C, carotenoids and epicatechin in the high-polyphenol group (between-group difference pchocolate results in a significant improvement in an established marker of cardiovascular risk in hypertensive participants. NCT01319786. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Retention and distribution of polyphenols after pan-frying of French fries in oils enriched with olive leaf extract.

    Science.gov (United States)

    Chiou, A; Salta, F N; Kalogeropoulos, N; Mylona, A; Ntalla, I; Andrikopoulos, N K

    2007-10-01

    Palm oil, olive oil, and sunflower oil were supplemented with an extract rich in polyphenols obtained from olive tree (Olea europaea) leaves at levels of 120 and 240 mg total polyphenols per kilogram of oil. Pan-frying of potatoes was performed in both the enriched and the nonsupplemented oils under domestic frying conditions. Total polyphenol content was estimated by the Folin-Ciocalteau assay, oleuropein was determined by HPLC analysis, while other individual polyphenols by GC/MS analysis. Fourteen polyphenol species were identified in the olive leaf extract, among which oleuropein predominated (1.25 g/kg olive leaves). All the enriched oils contained oleuropein before and after frying. Oleuropein as well as other polyphenol species were detected in all French fries cooked in enriched oils. Polyphenol intake by consuming French fries pan-fried in the enriched oils was calculated to be 6 to 31 times higher than that in the case of French fries fried in commercial oils, being dependent on the frying oil type.

  8. Lipid Oxidation Inhibitory Effects and Phenolic Composition of Aqueous Extracts from Medicinal Plants of Colombian Amazonia

    Directory of Open Access Journals (Sweden)

    José Ignacio Ruiz-Sanz

    2012-05-01

    Full Text Available Diverse plants of ethnobotanic interest in Amazonia are commonly used in traditional medicine. We determined the antioxidant potential against lipid peroxidation, the antimicrobial activity, and the polyphenol composition of several Amazonian plants (Brownea rosademonte, Piper glandulosissimum, Piper krukoffii, Piper putumayoense, Solanum grandiflorum, and Vismia baccifera. Extracts from the plant leaf, bark, and stem were prepared as aqueous infusions, as used in folk medicine, and added to rat liver microsomes exposed to iron. The polyphenolic composition was detected by reverse-phase HPLC coupled to diode-array detector and MS/MS analysis. The antimicrobial activity was tested by the spot-on-a-lawn method against several indicator microorganisms. All the extracts inhibited lipid oxidation, except the P. glandulosissimum stem. The plant extracts exhibiting high antioxidant potential (V. baccifera and B. rosademonte contained high levels of flavanols (particularly, catechin and epicatechin. By contrast, S. grandiflorum leaf, which exhibited very low antioxidant activity, was rich in hydroxycinnamic acids. None of the extracts showed antimicrobial activity. This study demonstrates for the first time the presence of bioactive polyphenolic compounds in several Amazonian plants, and highlights the importance of flavanols as major phenolic contributors to antioxidant activity.

  9. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells

    International Nuclear Information System (INIS)

    Liang, Jin; Li, Feng; Fang, Yong; Yang, Wenjian; An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin; Hu, Qiuhui

    2014-01-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. - Highlights: • Tea polyphenol

  10. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jin [Key Laboratory of Tea Biochemistry and Biotechnology of Ministry of Education and Ministry of Agriculture, Anhui Agricultural University, Hefei 230036 (China); College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Li, Feng [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Fang, Yong; Yang, Wenjian [College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China); An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Hu, Qiuhui, E-mail: qiuhuihu@njau.edu.cn [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China)

    2014-03-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. - Highlights: • Tea polyphenol

  11. [Application of DNA labeling technology in forensic botany].

    Science.gov (United States)

    Znang, Xian; Li, Jing-Lin; Zhang, Xiang-Yu

    2008-12-01

    Forensic botany is a study of judicial plant evidence. Recently, researches on DNA labeling technology have been a mainstream of forensic botany. The article systematically reviews various types of DNA labeling techniques in forensic botany with enumerated practical cases, as well as the potential forensic application of each individual technique. The advantages of the DNA labeling technology over traditional morphological taxonomic methods are also summarized.

  12. POLYPHENOLS IN CHOSEN SPECIES OF LEGUME - A REVIEW

    Directory of Open Access Journals (Sweden)

    Judita Bystrická

    2010-11-01

    Full Text Available  Legumes belongs to the most important grain for human consumption. They have been cultivated for thousands of years, and have played an important role in the traditional diets of many regions throughout the world. The most legumes are widely consumed in fresh and processed forms. The traditional way of legume preparation includes soaking in water following by cooking and are usually consumed boiled as soup, occasionally as roasted grains too. Legume are widely known for their nutraceutical value, but there is relatively little information about their polyphenols content (with the exception of soya. Inspite of the fact that phenolics in general are not the substances with nutritious value, the interest in them is still persisting for their positive effects on human health. For these reasons this short review is focused on summary of legume polyphenols – identification and quantification of phenolic acids, flavonoids and tannins in raw or processed legumes and their role in these crops. Monitoring and surveying of the changes of polyphenolic compounds contents thus complete knowledge about bioactive substances content in legumes species. And seeing that legumes are considered an ideal complement to cereals in diets, they gain increasing attention as functional food items. doi:10.5219/81

  13. Characterization of the polyphenol oxidase gene family reveals a novel microRNA involved in posttranscriptional regulation of PPOs in Salvia miltiorrhiza

    OpenAIRE

    Li, Caili; Li, Dongqiao; Li, Jiang; Shao, Fenjuan; Lu, Shanfa

    2017-01-01

    Salvia miltiorrhiza is a well-known material of traditional Chinese medicine. Understanding the regulatory mechanisms of phenolic acid biosynthesis and metabolism are important for S. miltiorrhiza quality improvement. We report here that S. miltiorrhiza contains 19 polyphenol oxidases (PPOs), forming the largest PPO gene family in plant species to our knowledge. Analysis of gene structures and sequence features revealed the conservation and divergence of SmPPOs. SmPPOs were differentially exp...

  14. Ultrasound assisted extraction of polyphenols and their distribution in whole mung bean, hull and cotyledon.

    Science.gov (United States)

    Singh, Barinderjit; Singh, Narpinder; Thakur, Sheetal; Kaur, Amritpal

    2017-03-01

    In this study, extraction of polyphenols using different solvents (acetone, ethanol, methanol and water) with ultrasound and conventional method from whole mung bean (WMB), hull and cotyledon was conducted. Total phenolic content (TPC), total flavonoids content (TFC), total antioxidant activities (TAA), ferric reducing power (FRP) and DPPH radical scavenging activity were determined. Ultrasound treated extracts exhibited higher TPC, TFC, TAA, FRP and DPPH in different mung bean fractions than CSE. Among the solvents, acetone showed better TPC, TFC, TAA, FRP and DPPH. Hull had significantly higher TPC, TFC, TAA, FRP and DPPH than WMB and cotyledon. Sinapic acid (SA) was the major polyphenol in different fractions. Acetone extract of hull showed high polyphenol content. SA, ferulic acid, catechin, p-coumaric acid, resveratrol, quercetin and luteolin were the major contributors to antioxidant activity of acetone extract. Mung bean hull contained the maximum polyphenols and acetone was observed to be the best extraction medium for polyphenols in combination with ultrasound.

  15. Preparation of organogel with tea polyphenols complex for enhancing the antioxidation properties of edible oil.

    Science.gov (United States)

    Shi, Rong; Zhang, Qiuyue; Vriesekoop, Frank; Yuan, Qipeng; Liang, Hao

    2014-08-20

    Food-grade organogels are semisolid systems with immobilized liquid edible oil in a three-dimensional network of self-assembled gelators, and they are supposed to have a broad range of potential applications in food industries. In this work, an edible organogel with tea polyphenols was developed, which possesses a highly effective antioxidative function. To enhance the dispersibility of the tea polyphenols in the oil phase, a solid lipid-surfactant-tea polyphenols complex (organogel complex) was first prepared according to a novel method. Then, a food-grade organogel was prepared by mixing this organogel complex with fresh peanut oil. Compared with adding free tea polyphenols, the organogel complex could be more homogeneously distributed in the prepared organogel system, especially under heating condition. Furthermore, the organogel loading of tea polyphenols performed a 2.5-fold higher antioxidation compared with other chemically synthesized antioxidants (butylated hydroxytoluene and propyl gallate) by evaluating the peroxide value of the fresh peanut oil based organogel in accelerated oxidation conditions.

  16. Chemometric classification of apple juices according to variety and geographical origin based on polyphenolic profiles.

    Science.gov (United States)

    Guo, Jing; Yue, Tianli; Yuan, Yahong; Wang, Yutang

    2013-07-17

    To characterize and classify apple juices according to apple variety and geographical origin on the basis of their polyphenol composition, the polyphenolic profiles of 58 apple juice samples belonging to 5 apple varieties and from 6 regions in Shaanxi province of China were assessed. Fifty-one of the samples were from protected designation of origin (PDO) districts. Polyphenols were determined by high-performance liquid chromatography coupled to photodiode array detection (HPLC-PDA) and to a Q Exactive quadrupole-Orbitrap mass spectrometer. Chemometric techniques including principal component analysis (PCA) and stepwise linear discriminant analysis (SLDA) were carried out on polyphenolic profiles of the samples to develop discrimination models. SLDA achieved satisfactory discriminations of apple juices according to variety and geographical origin, providing respectively 98.3 and 91.2% success rate in terms of prediction ability. This result demonstrated that polyphenols could served as characteristic indices to verify the variety and geographical origin of apple juices.

  17. Total polyphenols contents in different grapevine varieties in highlands of southern brazil

    Directory of Open Access Journals (Sweden)

    Brighenti Emilio

    2017-01-01

    Full Text Available Phenolic compounds are one of the main parameters of wine quality and contribute to the organoleptic characteristics, particularly color, astringency and body. In the highlands of southern Brazil, low temperatures and high accumulation of global solar radiation favor the synthesis of total polyphenols in grapes. The objective of this work was to evaluate the concentration of total polyphenols of 10 white varieties and 13 red varieties produced in high altitude regions of southern Brazil. The vineyard is located in the Experimental Station of Santa Catarina State Agricultural Research and Rural Extension Agency (EPAGRI, in the city of São Joaquim (28° 16′30″S, 49° 56′09″W, Altitude 1,400 m, the evaluations occurred in 2015/2016 growing season. The content of total polyphenols was determined as proposed by Singleton & Rossi (1965, using the Folin-Ciocalteu method, with spectrophotometer readings. Polyphenol content ranged from 283.56 to 1,387.31 mg/L for white varieties, the varieties with the highest concentrations were Greco di Tufo (1,378.31 mg/L, Trebbiano Toscano (995.59 mg/L and Ribola Gialla (737.48 mg/L. For the red varieties, the total polyphenol content ranged from 523.87 to 4,929.57 mg/L, Ancellotta (4,929.57 mg/L, Uva di Troia (2,722.27 mg/L and Croatina (2,410 mg/L stood out for presenting the highest levels.

  18. Plant Polyphenols and Exendin-4 Prevent Hyperactivity and TNF-α Release in LPS-Treated In vitro Neuron/Astrocyte/Microglial Networks

    Directory of Open Access Journals (Sweden)

    Francesca Gullo

    2017-09-01

    Full Text Available Increasing evidence supports a decisive role for neuroinflammation in the neurodegenerative process of several central nervous system (CNS disorders. Microglia are essential mediators of neuroinflammation and can regulate a broad spectrum of cellular responses by releasing reactive oxygen intermediates, nitric oxide, proteases, excitatory amino acids, and cytokines. We have recently shown that also in ex-vivo cortical networks of neurons, astrocytes and microglia, an increased level of tumor necrosis factor-alpha (TNF-α was detected a few hours after exposure to the bacterial endotoxin lipopolysaccharide (LPS. Simultaneously, an atypical “seizure-like” neuronal network activity was recorded by multi-electrode array (MEA electrophysiology. These effects were prevented by minocycline, an established anti-inflammatory antibiotic. We show here that the same inhibitory effect against LPS-induced neuroinflammation is exerted also by natural plant compounds, polyphenols, such as curcumin (CU, curcuma longa, crocin (CR, saffron, and resveratrol (RE, grape, as well as by the glucagon like peptide-1 receptor (GLP-1R agonist exendin-4 (EX-4. The drugs tested also caused per-se early transient (variable changes of network activity. Since it has been reported that LPS-induced neuroinflammation causes rearrangements of glutamate transporters in astrocytes and microglia, we suggest that neural activity could be putatively increased by an imbalance of glial glutamate transporter activity, leading to prolonged synaptic glutamatergic dysregulation.

  19. Polyphenol-Retaining Decaffeinated Cocoa Powder Obtained by Supercritical Carbon Dioxide Extraction and Its Antioxidant Activity.

    Science.gov (United States)

    Kobori, Kinji; Maruta, Yuto; Mineo, Shigeru; Shigematsu, Toru; Hirayama, Masao

    2013-10-14

    Cocoa beans contain many functional ingredients such as theobromine and polyphenols, but also contain a relatively high amount of caffeine, which can negatively impact human health. It is therefore desirable to reduce caffeine levels in cocoa powder used to make chocolate or cocoa beverages while retaining functional ingredients. We have established conditions for supercritical carbon dioxide (SCCO₂) extraction that remove 80.1% of the caffeine from cocoa powder while retaining theobromine (94.1%) and polyphenols (84.7%). The antioxidant activity of the decaffeinated cocoa powder (DCP) made with this optimized SCCO₂ extraction method was 85.3% that of non-processed cocoa powder. The total procyanidin and total polyphenol concentrations of the DCPs resulting from various SCCO₂ extractions showed a significant positive correlation with oxygen radical absorbance capacity (ORAC). The correlation coefficient between total polyphenols and ORAC was higher than that between total procyanidins and ORAC; thus, the concentration of total polyphenols might be a greater factor in the antioxidant activity of DCP. These results indicate that we could remove large quantities of caffeine from conventional high-cocoa products while retaining the functional benefits of high polyphenol content. This SCCO₂ extraction method is expected to be applicable high-cocoa products, such as dark chocolate.

  20. Polyphenol-Retaining Decaffeinated Cocoa Powder Obtained by Supercritical Carbon Dioxide Extraction and Its Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Kinji Kobori

    2013-10-01

    Full Text Available Cocoa beans contain many functional ingredients such as theobromine and polyphenols, but also contain a relatively high amount of caffeine, which can negatively impact human health. It is therefore desirable to reduce caffeine levels in cocoa powder used to make chocolate or cocoa beverages while retaining functional ingredients. We have established conditions for supercritical carbon dioxide (SCCO2 extraction that remove 80.1% of the caffeine from cocoa powder while retaining theobromine (94.1% and polyphenols (84.7%. The antioxidant activity of the decaffeinated cocoa powder (DCP made with this optimized SCCO2 extraction method was 85.3% that of non-processed cocoa powder. The total procyanidin and total polyphenol concentrations of the DCPs resulting from various SCCO2 extractions showed a significant positive correlation with oxygen radical absorbance capacity (ORAC. The correlation coefficient between total polyphenols and ORAC was higher than that between total procyanidins and ORAC; thus, the concentration of total polyphenols might be a greater factor in the antioxidant activity of DCP. These results indicate that we could remove large quantities of caffeine from conventional high-cocoa products while retaining the functional benefits of high polyphenol content. This SCCO2 extraction method is expected to be applicable high-cocoa products, such as dark chocolate.

  1. The Effects of Polyphenol Oxidase and Cycloheximide on the Early Stage of Browning in Phalaenopsis Explants

    Directory of Open Access Journals (Sweden)

    Xu Chuanjun

    2015-11-01

    Full Text Available Explant browning is one of the major problems in the tissue culture process, and polyphenol oxidase (PPO, is the major proteases involved in plant tissue browning. We investigated the effects of polyphenol oxidase on the early stage of browning in explants of the orchid Phalaenopsis. Our results show that PPO activity was significantly higher in explants cultured for 3 d than in the 0 h control. The levels of PPO transcripts and PPO protein were significantly higher in explants cultured for 6 h compared to the 0 h control; these high expression levels were maintained over increasing cultivation time. Cycloheximide (CHX treatment reduced PPO transcript levels, PPO protein levels, and PPO enzyme activity. High levels of PPO mRNA and PPO protein were detected in the cytoplasm and vascular bundles of Phalaenopsis explants cultured for 6 h compared to explants cultured for 0 h, 24 h, and 3 d. CHX treatment did not significantly affect the distribution of PPO mRNA and PPO protein in explant tissues, but their levels were significantly lower than those of the untreated control.

  2. Detection of the polyphenolic components in[i] Ribes nigrum[/i] L.

    Directory of Open Access Journals (Sweden)

    Monica BUTNARIU

    2014-03-01

    Full Text Available Background. The blackcurrant ([i]Ribes nigrum [/i]L. is a species of native currant which contains a lot of polyphenolic antioxidants which is used medicinally and has a fundamental role in the maintenance health. Materials, methods and objective. Ultraviolet–visible spectrophotometry and ultraviolet range high performance liquid chromatography (HPLC were used to characterize the polyphenolic content of common Ribes nigrum collected in the western part of the Banat Region in Romania. Results. UV–visible spectrophotometry was a reliable tool for identifying the phenolic compounds class. Polyphenols calibration curves from the methanolic extracts showed a good linearity (r2>0.984 within test ranges and generated a well–designed absorption band with a local maximum at 273.2 nm band, which can be attributed to thr electronic transition of the n–p* type. Chromatographic separation and analysis of the methanol extract was useful for the structural epigallocatechin (EGC and epigallocatechin–3–gallate (EGCG characterization of primary antioxidant compounds. Conclusions. The new, slightly modified, chromatographic system can serve for the development of a quantitative assessment methodology of epigallocatechin and epigallocatechin–3–gallate compounds, as well as for the comparative characterisation mand standardisation of the dominant polyphenolic components in [i]Ribes nigrum[/i] using EGC and EGCG standards.

  3. Polyphenols in Raw and Cooked Cereals/Pseudocereals/Legume Pasta and Couscous.

    Science.gov (United States)

    Carcea, Marina; Narducci, Valentina; Turfani, Valeria; Giannini, Vittoria

    2017-09-11

    Pasta and couscous are popular foods manufactured (in their traditional form) from durum wheat semolina. In recent years, the consumers' quest for novel, functional, gluten-free, wholegrain foods has prompted the industry to manufacture new pasta and couscous products in which durum wheat has been partially or totally replaced by other vegetable flours. Besides dietary fibre, these raw materials might be an interesting source of phytochemicals. In this work, 16 commercial samples of pasta and four samples of couscous representative of the new products and made of refined and wholegrain flours of different species of cereals, pseudocereals and legumes were analysed for free, hydrolysable bound and total polyphenol content by means of the Folin-Ciocalteu procedure. Analyses were repeated on cooked samples to assess the quantity of polyphenols ingested by the consumers. The raw legume and pseudocereal products had a total polyphenol content higher than most cereal products (up to 1743.4 mg of Gallic Acid Equivalent (GAE) per 100 g dry weight). Wholegrain products had higher contents than refined products. The free fraction underwent up to 46% loss with cooking, probably because of solubility in water. The water absorption of pasta and couscous during cooking was in a ratio of 2:3, resulting in higher dilution of polyphenols in the cooked couscous.

  4. Estrogen Receptor α Participates to the Beneficial Effect of Red Wine Polyphenols in a Mouse Model of Obesity-Related Disorders.

    Science.gov (United States)

    Leonetti, Daniela; Soleti, Raffaella; Clere, Nicolas; Vergori, Luisa; Jacques, Caroline; Duluc, Lucie; Dourguia, Catherine; Martínez, Maria C; Andriantsitohaina, Ramaroson

    2016-01-01

    Red wine polyphenol extracts (polyphenols) ameliorate cardiovascular and metabolic disorders associated with obesity. Previously, we demonstrated that the alpha isoform of estrogen receptor (ERα) triggers the vascular protection of polyphenols. Here, we investigated the contribution of ERα on the effects of polyphenols on cardiovascular and metabolic alterations associated with obesity. We used ovariectomized wild type or ERα-deficient mice receiving standard (SD) or western (WD) diets, or SD and WD containing polyphenols (SD+polyphenols and WD+polyphenols, respectively) over a 12-week period. Body weight was measured during treatment. Echocardiography examination was performed before sacrifice. Blood and tissues were sampled for biochemical and functional analysis with respect to nitric oxide (NO • ) and oxidative stress. Vascular reactivity and liver mitochondrial complexes were analyzed. In WD-fed mice, polyphenols reduced adiposity, plasma triglycerides and oxidative stress in aorta, heart, adipose and liver tissues and enhanced NO • production in aorta and liver. ERα deletion prevented or reduced the beneficial effects of polyphenols, especially visceral adiposity, aortic and liver oxidative stresses and NO • bioavailability. ERα deletion, however, had no effect on polyphenol's ability to decrease the fat accumulation and oxidative stress of subcutaneous adipose tissue. Also, ERα deletion did not modify the decrease of ROS levels induced by polyphenols treatment in the visceral adipose tissue and heart from WD-fed mice. Dietary supplementation of polyphenols remarkably attenuates features of metabolic syndrome; these effects are partially mediated by ERα-dependent mechanisms. This study demonstrates the therapeutic potential of this extract in metabolic and cardiovascular alterations linked to excessive energy intake.

  5. Tracing in situ amino acid uptake in plants and microbes with15N13C labelled compounds

    DEFF Research Database (Denmark)

    Andresen, Louise Christoffersen; Michelsen, Anders; Jonasson, Sven Evert

    amino acids. Furthermore, tannin addition tended to reduce plant uptake of label. By combining data on 15N recovery after 1 day in shoots and roots (fine and coarse) of the dominant heathland plants: the evergreen dwarf shrub Calluna vulgaris and the graminoid Deschampsia flexuosa, in soil...... microorganisms (chloroform fumigation extraction) and in soil water, we discuss the relative importance of free amino acids and ammonium as plant nutrients and microbial substrates in natural N-limited ecosystems with a high proportion of soil N held in tannin-N complexes. ...

  6. Polyphenols in Cocoa and Cocoa Products: Is There a Link between Antioxidant Properties and Health?

    OpenAIRE

    Amin Ismail; Abbe Maleyki Mhd Jalil

    2008-01-01

    Cocoa and cocoa products have received much attention due to their significant polyphenol contents. Cocoa and cocoa products, namely cocoa liquor, cocoa powder and chocolates (milk and dark chocolates) may present varied polyphenol contents and possess different levels of antioxidant potentials. For the past ten years, at least 28 human studies have been conducted utilizing one of these cocoa products. However, questions arise on which of these products would deliver the best polyphenol conte...

  7. Analysis of cellulase and polyphenol oxidase production by southern pine beetle associated fungi

    Science.gov (United States)

    Abduvali Valiev; Zumrut B. Ogel; Dier D. Klepzig

    2009-01-01

    In this study, the production of extracellular enzymes by fungi associated with southern pine beetle was investigated for the first time. Cellulase and polyphenol oxidase production were analyzed for three beetle associated fungi. Only the mutualistic symbiont Entomocorticium sp. A was found to produce cellulases and polyphenol oxidase....

  8. Enzymatic biotransformation of polyphenolics increases antioxidant activity of red and white grape pomace

    Science.gov (United States)

    Grape pomace (GP) is a polyphenolic-rich byproduct of wine production. As most polyphenolics are either bound to cellular matrices or present as free polymeric forms, treatment with hydrolytic enzymes may act to increase GP functionalities. The aim of this study was to examine the impact of tannase ...

  9. Targeting multiple pathogenic mechanisms with polyphenols for the treatment of Alzheimer’s disease: Experimental approach and therapeutic implications

    Directory of Open Access Journals (Sweden)

    Jun eWang

    2014-03-01

    Full Text Available Alzheimer’s disease (AD is the most prevalent neurodegenerative disease of aging and currently has no cure. Its onset and progression are influenced by multiple factors. There is growing consensus that successful treatment will rely on simultaneously targeting multiple pathological features of AD. Polyphenol compounds have many proven health benefits. In this study, we tested the hypothesis that combining three polyphenolic preparations (grape seed extract, resveratrol and Concord grape juice extract, with different polyphenolic compositions and partially redundant bioactivities, may simultaneously and synergistically mitigate amyloid-β (Aβ mediated neuropathology and cognitive impairments in a mouse model of AD. We found that administration of the polyphenols in combination did not alter the profile of bioactive polyphenol metabolites in the brain. We also found that combination treatment resulted in better protection against cognitive impairments compared to individual treatments, in J20 AD mice. Electrophysiological examination showed that acute treatment with select brain penetrating polyphenol metabolites, derived from these polyphenols, improved oligomeric Aβ (oAβ-induced long term potentiation (LTP deficits in hippocampal slices. Moreover, we found greatly reduced total amyloid content in the brain following combination treatment. Our studies provided experimental evidence that application of polyphenols targeting multiple disease-mechanisms may yield a greater likelihood of therapeutic efficacy.

  10. Comparative Study between Ethanolic and β-Cyclodextrin Assisted Extraction of Polyphenols from Peach Pomace

    Directory of Open Access Journals (Sweden)

    Nada El Darra

    2018-01-01

    Full Text Available Peach byproducts are often regarded as food waste despite their high content in health-promoting components. Amongst the latter, polyphenols are bioactive molecules with significant health benefits. The present study investigated an eco-friendly and cost-effective method using a GRAS food additive, β-cyclodextrin (β-CD, for the recovery of polyphenols from peach pomace. β-CD assisted extraction of polyphenols was compared to that of conventional solvent (ethanol extraction at the same concentrations (10 mg/mL, 20 mg/mL, 30 mg/mL, 40 mg/mL, and 50 mg/mL in terms of quality (antiradical activity and quantity. The extract obtained by 50 mg/mL β-CD assisted extraction showed the highest polyphenol (0.72 mg GAE/g DM and flavonoid (0.35 mg catechin/g of DM concentrations as maximal antiradical activity (6.82% and a noted antibacterial activity. Our results showed the competitiveness of β-CD assisted extraction to recover a high quantity and quality of polyphenols from peach pomace suggesting β-CD as a green alternative method for phenolic extraction.

  11. Potential antiproliferative activity of polyphenol metabolites against human breast cancer cells and their urine excretion pattern in healthy subjects following acute intake of a polyphenol-rich juice of grumixama (Eugenia brasiliensis Lam.).

    Science.gov (United States)

    Teixeira, L L; Costa, G R; Dörr, F A; Ong, T P; Pinto, E; Lajolo, F M; Hassimotto, N M A

    2017-06-21

    The bioavailability and metabolism of anthocyanins and ellagitannins following acute intake of grumixama fruit, native Brazilian cherry, by humans, and its in vitro antiproliferative activity against breast cancer cells (MDA-MB-231) were investigated. A single dose of grumixama juice was administered to healthy women (n = 10) and polyphenol metabolites were analyzed in urine and plasma samples collected over 24 h. The majority of the metabolites circulating and excreted in urine were phenolic acids and urolithin conjugates, the gut microbiota catabolites of both classes of polyphenols, respectively. According to pharmacokinetic parameters, the subjects were divided into two distinct groups, high and low urinary metabolite excretors. The pool of polyphenol metabolites found in urine samples showed a significant inhibition of cell proliferation and G2/M cell cycle arrest in MDA-MB-231 cells. Our findings demonstrate the large interindividual variability concerning the polyphenol metabolism, which possibly could reflect in health promotion.

  12. Interactions of blacktea polyphenols with human gut microbiota: implications for gut and cardiovascular health

    NARCIS (Netherlands)

    Duynhoven, van J.P.M.; Vaughan, E.E.; Dorsten, van F.; Gomez-Roldan, V.; Vos, de R.; Vervoort, J.J.M.; Hooft, van der J.J.J.; Roger, L.; Draijer, R.; Jacobs, D.M.

    2013-01-01

    Epidemiologic studies have convincingly associated consumption of black tea with reduced cardiovascular risk. Research on the bioactive molecules has traditionally been focused on polyphenols, such as catechins. Black tea polyphenols (BTPs), however, mainly consist of high-molecular-weight species

  13. Curcuma longa polyphenols improve insulin-mediated lipid accumulation and attenuate proinflammatory response of 3T3-L1 adipose cells during oxidative stress through regulation of key adipokines and antioxidant enzymes.

    Science.gov (United States)

    Septembre-Malaterre, Axelle; Le Sage, Fanny; Hatia, Sarah; Catan, Aurélie; Janci, Laurent; Gonthier, Marie-Paule

    2016-07-08

    Plant polyphenols may exert beneficial action against obesity-related oxidative stress and inflammation which promote insulin resistance. This study evaluated the effect of polyphenols extracted from French Curcuma longa on 3T3-L1 adipose cells exposed to H2 O2 -mediated oxidative stress. We found that Curcuma longa extract exhibited high amounts of curcuminoids identified as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which exerted free radical-scavenging activities. Curcuma longa polyphenols improved insulin-mediated lipid accumulation and upregulated peroxisome proliferator-activated receptor-gamma gene expression and adiponectin secretion which decreased in H2 O2 -treated cells. Curcuminoids attenuated H2 O2 -enhanced production of pro-inflammatory molecules such as interleukin-6, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and nuclear factor κappa B. Moreover, they reduced intracellular levels of reactive oxygen species elevated by H2 O2 and modulated the expression of genes encoding superoxide dismutase and catalase antioxidant enzymes. Collectively, these findings highlight that Curcuma longa polyphenols protect adipose cells against oxidative stress and may improve obesity-related metabolic disorders. © 2016 BioFactors, 42(4):418-430, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  14. Application of Pattern Recognition Method for Color Assessment of Oriental Tobacco based on HPLC of Polyphenols

    Directory of Open Access Journals (Sweden)

    Dagnon S

    2014-12-01

    Full Text Available The color of Oriental tobaccos was organoleptically assayed, and high performance liquid chromatography (HPLC of polyphenols was performed. The major tobacco polyphenols (chlorogenic acid, its isomers, and rutin, as well as scopoletin and kaempferol-3-rutinoside were quantified. HPLC polyphenol profiles were processed by pattern recognition method (PRM, and the values of indexes of similarity (Is,% between the cultivars studied were determined. It was shown that data from organoleptic color assessment and from PRM based on HPLC profiles of polyphenols of the cultivars studied are largely compatible. Hence, PRM can be suggested as an additional tool for objective color evaluation and classification of Oriental tobacco.

  15. Pulse radiolysis studies of the interaction of tea polyphenol derivatives with oxidizing OH adduct of thymine

    International Nuclear Information System (INIS)

    Jiang Yue; Li Hucheng; Yao Side; Zuo Zhihua; Wang Zailan; Zhang Jiashan; Lin Nianyun

    1996-01-01

    The electron transfer reactions between oxidizing OH adduct of thymine with tea polyphenol derivatives has been investigated by pulse radiolysis. The tea polyphenol derivatives are identified as good antioxidants for reduction of oxidizing OH adducts of thymine. From buildup kinetic analysis of radical phenoxyl product, the rate constants for reactions of the N 3 radical with tea polyphenol derivatives have been determined to be (8-9) x 10 9 dm 3 /mol s, while the rate constants of electron transfer from tea polyphenol derivatives to oxidizing OH adducts of thymine was obtained to be around 10 9 dm 3 /mol s. Copyright direct C 1996 Elsevier Science Ltd

  16. Functional Analysis of Polyphenol Oxidases by Antisense/Sense Technology

    Directory of Open Access Journals (Sweden)

    Jutharat Attajarusit

    2007-07-01

    Full Text Available Polyphenol oxidases (PPOs catalyze the oxidation of phenolics to quinones, the secondary reactions of which lead to oxidative browning and postharvest losses of many fruits and vegetables. PPOs are ubiquitous in angiosperms, are inducible by both biotic and abiotic stresses, and have been implicated in several physiological processes including plant defense against pathogens and insects, the Mehler reaction, photoreduction of molecular oxygen by PSI, regulation of plastidic oxygen levels, aurone biosynthesis and the phenylpropanoid pathway. Here we review experiments in which the roles of PPO in disease and insect resistance as well as in the Mehler reaction were investigated using transgenic tomato (Lycopersicon esculentum plants with modified PPO expression levels (suppressed PPO and overexpressing PPO. These transgenic plants showed normal growth, development and reproduction under laboratory, growth chamber and greenhouse conditions. Antisense PPO expression dramatically increased susceptibility while PPO overexpression increased resistance of tomato plants to Pseudomonas syringae. Similarly, PPO-overexpressing transgenic plants showed an increase in resistance to various insects, including common cutworm (Spodoptera litura (F., cotton bollworm (Helicoverpa armigera (Hübner and beet army worm (Spodoptera exigua (Hübner, whereas larvae feeding on plants with suppressed PPO activity had higher larval growth rates and consumed more foliage. Similar increases in weight gain, foliage consumption, and survival were also observed with Colorado potato beetles (Leptinotarsa decemlineata (Say feeding on antisense PPO transgenic tomatoes. The putative defensive mechanisms conferred by PPO and its interaction with other defense proteins are discussed. In addition, transgenic plants with suppressed PPO exhibited more favorable water relations and decreased photoinhibition compared to nontransformed controls and transgenic plants

  17. Polyphenolic glycosides isolated from Pogostemon cablin (Blanco) Benth. as novel influenza neuraminidase inhibitors.

    Science.gov (United States)

    Liu, Fang; Cao, Wei; Deng, Chao; Wu, Zhaoquan; Zeng, Guangyao; Zhou, Yingjun

    2016-01-01

    Influenza is historically an ancient disease that causes annual epidemics and, at irregular intervals, pandemics. At present, the first-line drugs (oseltamivir and zanamivir) don't seem to be optimistic due to the spontaneously arising and spreading of oseltamivir resistance among influenza virus. Pogostemon cablin (Blanco) Benth. (P. cablin) is an important traditional Chinese medicine herb that has been widely used for treatment on common cold, nausea and fever. In our previous study, we have identified an extract derived from P. cablin as a novel selective neuraminidase (NA) inhibitor. A series of polyphenolic compounds were isolated from P. cablin for their potential ability to inhibit neuraminidase of influenza A virus. Two new octaketides (1, 2), together with other twenty compounds were isolated from P. cablin. These compounds showed better inhibitory activity against NA. The significant potent compounds of this series were compounds 2 (IC50 = 3.87 ± 0.19 μ mol/ml), 11, 12, 14, 15, 19 and 20 (IC50 was in 2.12 to 3.87 μ mol/ml), which were about fourfold to doubled less potent than zanamivir and could be used to design novel influenza NA inhibitors, especially compound 2, that exhibit increased activity based on these compounds. With the help of molecular docking, we had a preliminary understanding of the mechanism of the two new compounds (1-2)' NA inhibitory activity. Fractions 6 and polyphenolic compounds isolated from fractions 6 showed higher NA inhibition than that of the initial plant exacts. The findings of this study indicate that polyphenolic compounds and fractions 6 derived from P. cablin are potential NA inhibitors. This work is one of the evidence that P. cablin has better inhibitory activity against influenza, which not only enriches the compound library of P. cablin, but also facilitates further development and promises its therapeutic potential for the rising challenge of influenza diseases.

  18. Dietary sources of polyphenols in the Mediterranean healthy Eating, Aging and Lifestyle (MEAL) study cohort.

    Science.gov (United States)

    Godos, Justyna; Marventano, Stefano; Mistretta, Antonio; Galvano, Fabio; Grosso, Giuseppe

    2017-09-01

    The aim of this study was to estimate the dietary intake and major food sources of polyphenols in the Mediterranean healthy Eating, Aging and Lifestyles (MEAL) study cohort. A total of 1937 individuals (18 + y) of urban population of Catania, Italy, completed a validated 110-item food frequency questionnaire; Phenol-Explorer database was used to estimate polyphenol intake. Mean intake of polyphenols was 663.7 mg/d; the most abundant classes were phenolic acids (362.7 mg/d) and flavonoids (258.7 mg/d). The main dietary sources of total polyphenols were nuts, followed by tea and coffee as source of flavanols and hydroxycinnamic acids, respectively, fruits (i.e. cherries were sources of anthocyanins and citrus fruits of flavanones) and vegetables (i.e. artichokes and olives were sources of flavones and spinach and beans of flavonols); chocolate, red wine and pasta contributed to flavanols and tyrosols, respectively. These findings will be useful to assess the potential benefits of foods with high polyphenol content.

  19. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders

    Directory of Open Access Journals (Sweden)

    Magdalena Działo

    2016-02-01

    Full Text Available Phenolic compounds constitute a group of secondary metabolites which have important functions in plants. Besides the beneficial effects on the plant host, phenolic metabolites (polyphenols exhibit a series of biological properties that influence the human in a health-promoting manner. Evidence suggests that people can benefit from plant phenolics obtained either by the diet or through skin application, because they can alleviate symptoms and inhibit the development of various skin disorders. Due to their natural origin and low toxicity, phenolic compounds are a promising tool in eliminating the causes and effects of skin aging, skin diseases, and skin damage, including wounds and burns. Polyphenols also act protectively and help prevent or attenuate the progression of certain skin disorders, both embarrassing minor problems (e.g., wrinkles, acne or serious, potentially life-threatening diseases such as cancer. This paper reviews the latest reports on the potential therapy of skin disorders through treatment with phenolic compounds, considering mostly a single specific compound or a combination of compounds in a plant extract.

  20. Novel strategies for preventing diabetes and obesity complications with natural polyphenols.

    Science.gov (United States)

    Carpene, C; Gomez-Zorita, S; Deleruyelle, S; Carpene, M A

    2015-01-01

    During the last years, the list of resveratrol effects has grown in parallel with the number of other members of the polyphenol family described to modulate glucose or lipid handling. In the same time, more than ten human studies on the influence of resveratrol supplementation on two related metabolic diseases, obesity and diabetes, have indicated that impressive beneficial effects co-exist with lack of demonstration of clinical relevance, irrespective of the daily dose ingested (0.075 to 1.5 g per capita) or the number of studied patients. Such contrasting observations have been proposed to depend on the degree of insulin resistance of the patients incorporated in the study. To date, no definitive conclusion can be drawn on the antidiabetic or antiobesity benefits of resveratrol. On the opposite, studies on animal models of diabesity consistently indicated that resveratrol impairs diverse insulin actions in adipocytes, blunting glucose transport, lipogenesis and adipogenesis. Since resveratrol also favours lipolysis and limits the production of proinflammatory adipokines, its administration in rodents results in limitation of fat deposition, activation of hexose uptake into muscle, improvement of insulin sensitivity, and facilitation of glucose disposal. Facing to a somewhat disappointing extrapolation to man of these promising antidiabetic and antiobesity properties, attention must be paid to re-examine resveratrol targets, especially those attainable after polyphenol ingestion and to re-define the responses to low doses. In this context, human adipocytes are proposed as a convenient model for the screening of "novel" polyphenols that can reproduce, out class, or reinforce resveratrol metabolic actions, Moreover, the use of combination of polyphenols is proposed to treat diabesity complications in view of recently reported synergisms. Lastly, multidisciplinar approaches are recommended for future investigations, considering the wide range of polyphenol actions

  1. Changes in chlorophyll and polyphenols content in Camellia sinensis var. sinensis at different stage of leaf maturity

    Science.gov (United States)

    Prawira-Atmaja, M. I.; Shabri; Khomaini, H. S.; Maulana, H.; Harianto, S.; Rohdiana, D.

    2018-03-01

    Chlorophyll and polyphenols are chemical compound related to parameter quality of green tea. We studied the variation of chlorophyll and polyphenol in the development stage of tea leaves (bud, 1st, 2nd, 3rd, and 4th). Five clones of tea (Camelia sinensis var. sinensis) from Indonesia and a clone from Japan were used in this study. The results showed that total chlorophyll and total polyphenol content in bud between 1.59-2.15 mg/g (db) and 12.24-14.59% respectively. The concentration of chlorophyll increased significantly with developments stage of leaf while total polyphenol tended to decrease with leaf maturity. Pearson Correlation analysis showed that chlorophyll content was negatively correlated (r = -0.83; p = 0.05) with total polyphenol during developmental stage of tea leaves. Results suggests that five clones of tea from Indonesia have similar quality with tea clone from Japan in chlorophyll and polyphenol content. The present study also provides guidelines on application plucking standard to produce high quality of green tea.

  2. Utilization of tomato waste as a source of polyphenolic antioxidants

    Directory of Open Access Journals (Sweden)

    Savatović Slađana M.

    2010-01-01

    Full Text Available This study is concerned with the effects of two extraction procedures (using ultrasonic bath and high performance homogenizer on the extraction efficiency of polyphenolics present in the tomato waste. The isolation of flavonoid fraction of obtained extracts was performed by solid-phase extraction. The antioxidant activity of flavonoid fractions was determined using different spectrophotometric tests, including reducing power and 2,2- diphenyl-1-picrylhydrazyl (DPPH free radical scavenging assays. The content of total polyphenolics and flavonoids in extract obtained employing homogenizer (E2 was higher than in the extract obtained employing ultrasonic bath (E1, and it was 14.33 mg/g and 7.70 mg/g, respectively. The flavonoid fraction (EF2 of extract E2 showed higher antioxidant activity than flavonoid fraction (EF1 of extract E1. The DPPH free radical scavenging activity of fractions EF1 and EF2, expressed as EC50 value, were 0.78 mg/ml and 0.45 mg/ml, respectively. The obtained results show that tomato wastes can be used as an easily accessible source of antioxidant polyphenolics.

  3. Impact of canning and storage on apricot carotenoids and polyphenols.

    Science.gov (United States)

    Le Bourvellec, Carine; Gouble, Barbara; Bureau, Sylvie; Reling, Patrice; Bott, Romain; Ribas-Agusti, Albert; Audergon, Jean-Marc; Renard, Catherine M G C

    2018-02-01

    Apricot polyphenols and carotenoids were monitored after industrial and domestic cooking, and after 2months of storage for industrial processing. The main apricot polyphenols were flavan-3-ols, flavan-3-ol monomers and oligomers, with an average degree of polymerization between 4.7 and 10.7 and caffeoylquinic acids. Flavonols and anthocyanins were minor phenolic compounds. Upon processing procyanidins were retained in apricot tissue. Hydroxycinnamic acids, flavan-3-ol monomers, flavonols and anthocyanins leached in the syrup. Flavonol concentrations on per-can basis were significantly increased after processing. Industrial processing effects were higher than domestic cooking probably due to higher temperature and longer duration. After 2months of storage, among polyphenols only hydroxycinnamic acids, flavan-3-ol monomers and anthocyanins were reduced. Whichever the processing method, no significant reductions of total carotenoids were observed after processing. The cis-β-carotene isomer was significantly increased after processing but with a lower extent in domestic cooking. Significant decreased in total carotenoid compounds occurred during storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Interactions of grape tannins and wine polyphenols with a yeast protein extract, mannoproteins and β-glucan.

    Science.gov (United States)

    Mekoue Nguela, J; Poncet-Legrand, C; Sieczkowski, N; Vernhet, A

    2016-11-01

    At present, there is a great interest in enology for yeast derived products to replace aging on lees in winemaking or as an alternative for wine fining. These are yeast protein extracts (YPE), cell walls and mannoproteins. Our aim was to further understand the mechanisms that drive interactions between these components and red wine polyphenols. To this end, interactions between grape skin tannins or wine polyphenols or tannins and a YPE, a mannoprotein fraction and a β-glucan were monitored by binding experiments, ITC and DLS. Depending on the tannin structure, a different affinity between the polyphenols and the YPE was observed, as well as differences in the stability of the aggregates. This was attributed to the mean degree of polymerization of tannins in the polyphenol fractions and to chemical changes that occur during winemaking. Much lower affinities were found between polyphenols and polysaccharides, with different behaviors between mannoproteins and β-glucans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective

    Directory of Open Access Journals (Sweden)

    Davatgaran-Taghipour Y

    2017-04-01

    Full Text Available Yasamin Davatgaran-Taghipour,1,2 Salar Masoomzadeh,3 Mohammad Hosein Farzaei,4,5 Roodabeh Bahramsoltani,6 Zahra Karimi-Soureh,7 Roja Rahimi,6,8 Mohammad Abdollahi9,10 1Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; 2PhytoPharmacology Interest Group (PPIG, Universal Scientific Education and Research Network (USERN, Tehran, Iran; 3Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; 4Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; 5Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; 6Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran; 7School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 8Evidence-Based Medicine Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; 9Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; 10Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran Abstract: Cancer is defined as the abnormal cell growth that can cause life-threatening malignancies with high financial costs for patients as well as the health care system. Natural polyphenols have long been used for the prevention and treatment of several disorders due to their antioxidant, anti-inflammatory, cytotoxic, antineoplastic, and immunomodulatory effects discussed in the literature; thus, these phytochemicals are potentially able to act as chemopreventive and chemotherapeutic agents in different types of cancer. One of the problems regarding the use of polyphenolic compounds is their low

  6. Direct imaging of glycans in Arabidopsis roots via click labeling of metabolically incorporated azido-monosaccharides.

    Science.gov (United States)

    Hoogenboom, Jorin; Berghuis, Nathalja; Cramer, Dario; Geurts, Rene; Zuilhof, Han; Wennekes, Tom

    2016-10-10

    Carbohydrates, also called glycans, play a crucial but not fully understood role in plant health and development. The non-template driven formation of glycans makes it impossible to image them in vivo with genetically encoded fluorescent tags and related molecular biology approaches. A solution to this problem is the use of tailor-made glycan analogs that are metabolically incorporated by the plant into its glycans. These metabolically incorporated probes can be visualized, but techniques documented so far use toxic copper-catalyzed labeling. To further expand our knowledge of plant glycobiology by direct imaging of its glycans via this method, there is need for novel click-compatible glycan analogs for plants that can be bioorthogonally labelled via copper-free techniques. Arabidopsis seedlings were incubated with azido-containing monosaccharide analogs of N-acetylglucosamine, N-acetylgalactosamine, L-fucose, and L-arabinofuranose. These azido-monosaccharides were metabolically incorporated in plant cell wall glycans of Arabidopsis seedlings. Control experiments indicated active metabolic incorporation of the azido-monosaccharide analogs into glycans rather than through non-specific absorption of the glycan analogs onto the plant cell wall. Successful copper-free labeling reactions were performed, namely an inverse-electron demand Diels-Alder cycloaddition reaction using an incorporated N-acetylglucosamine analog, and a strain-promoted azide-alkyne click reaction. All evaluated azido-monosaccharide analogs were observed to be non-toxic at the used concentrations under normal growth conditions. Our results for the metabolic incorporation and fluorescent labeling of these azido-monosaccharide analogs expand the possibilities for studying plant glycans by direct imaging. Overall we successfully evaluated five azido-monosaccharide analogs for their ability to be metabolically incorporated in Arabidopsis roots and their imaging after fluorescent labeling. This expands

  7. New Method To Estimate Total Polyphenol Excretion: Comparison of Fast Blue BB versus Folin-Ciocalteu Performance in Urine.

    Science.gov (United States)

    Hinojosa-Nogueira, Daniel; Muros, Joaquín; Rufián-Henares, José A; Pastoriza, Silvia

    2017-05-24

    Polyphenols are bioactive substances of vegetal origin with a significant impact on human health. The assessment of polyphenol intake and excretion is therefore important. The Folin-Ciocalteu (F-C) method is the reference assay to measure polyphenols in foods as well as their excretion in urine. However, many substances can influence the method, making it necessary to conduct a prior cleanup using solid-phase extraction (SPE) cartridges. In this paper, we demonstrate the use of the Fast Blue BB reagent (FBBB) as a new tool to measure the excretion of polyphenols in urine. Contrary to F-C, FBBB showed no interference in urine, negating the time-consuming and costly SPE cleanup. In addition, it showed excellent linearity (r 2 = 0.9997), with a recovery of 96.4% and a precision of 1.86-2.11%. The FBBB method was validated to measure the excretion of polyphenols in spot urine samples from Spanish children, showing a good correlation between polyphenol intake and excretion.

  8. Microbial Biotransformation of a Polyphenol-Rich Potato Extract Affects Antioxidant Capacity in a Simulated Gastrointestinal Model

    Directory of Open Access Journals (Sweden)

    Joelle Khairallah

    2018-03-01

    Full Text Available A multistage human gastrointestinal model was used to digest a polyphenol-rich potato extract containing chlorogenic acid, caffeic acid, ferulic acid, and rutin as the primary polyphenols, to assess for their microbial biotransformation and to measure changes in antioxidant capacity in up to 24 h of digestion. The biotransformation of polyphenols was assessed by liquid chromatography–mass spectrometry. Antioxidant capacity was measured by the ferric reducing antioxidant power (FRAP assay. Among the colonic reactors, parent (polyphenols were detected in the ascending (AC, but not the transverse (TC or descending (DC colons. The most abundant microbial phenolic metabolites in all colonic reactors included derivatives of propionic acid, acetic acid, and benzoic acid. As compared to the baseline, an earlier increase in antioxidant capacity (T = 8 h was seen in the stomach and small intestine vessels as compared to the AC (T = 16 h and TC and DC (T = 24 h. The increase in antioxidant capacity observed in the DC and TC can be linked to the accumulation of microbial smaller-molecular-weight phenolic catabolites, as the parent polyphenolics had completely degraded in those vessels. The colonic microbial digestion of potato-based polyphenols could lead to improved colonic health, as this generates phenolic metabolites with significant antioxidant potential.

  9. Determination of biologically active phenols and polyphenols in various objects by chromatographic techniques

    International Nuclear Information System (INIS)

    Kochetova, M V; Semenistaya, E N; Larionov, Oleg G; Revina, A A

    2007-01-01

    Chromatographic techniques for determination of biologically active phenols and polyphenols are considered. Various methods for sample preparation and detection are compared. The advantages of high performance liquid chromatography with spectrophotometric detection for determination of antioxidants are demonstrated. Data on determination of biologically active phenols and polyphenols published in the period from 1995 to 2005 are analysed.

  10. Protective Effects of Green Tea Polyphenol Against Renal Injury Through ROS-Mediated JNK-MAPK Pathway in Lead Exposed Rats.

    Science.gov (United States)

    Wang, Haidong; Li, Deyuan; Hu, Zhongze; Zhao, Siming; Zheng, Zhejun; Li, Wei

    2016-06-30

    To investigate the potential therapeutic effects of polyphenols in treating Pb induced renal dysfunction and intoxication and to explore the detailed underlying mechanisms. Wistar rats were divided into four groups: control groups (CT), Pb exposure groups (Pb), Pb plus Polyphenols groups (Pb+PP) and Polyphenols groups (PP). Animals were kept for 60 days and sacrificed for tests of urea, serum blood urea nitrogen (BUN) and creatinine. Histological evaluations were then performed. In vitro studies were performed using primary kidney mesangial cells to reveal detailed mechanisms. Cell counting kit-8 (CCK-8) was used to evaluate cell viability. Pb induced cell apoptosis was measured by flow cytometry. Reactive oxygen species (ROS) generation and scavenging were tested by DCFH-DA. Expression level of tumor necrosis factor-α (TNF-α), interleukin-1-β (IL-1-β) and IL-6 were assayed by ELISA. Western blot and qPCR were used to measure the expression of ERK1/2, JNK1/2 and p38. Polyphenols have obvious protective effects on Pb induced renal dysfunction and intoxication both in vivo and in vitro. Polyphenols reduced Pb concentration and accumulation in kidney. Polyphenols also protected kidney mesangial cells from Pb induced apoptosis. Polyphenols scavenged Pb induced ROS generation and suppressed ROS-mediated ERK/JNK/p38 pathway. Downstream pro-inflammatory cytokines were inhibited in consistency. Polyphenol is protective in Pb induced renal intoxication and inflammatory responses. The underlying mechanisms lie on the antioxidant activity and ROS scavenging activity of polyphenols.

  11. Spray drying of lipid-based systems loaded with Camellia sinensis polyphenols.

    Science.gov (United States)

    Secolin, Vanessa A; Souza, Claudia R F; Oliveira, Wanderley P

    2017-03-01

    In this work, spray-dried lipid systems based on soy phosphatidylcholine, cholesterol and lauroyl polyoxylglycerides for entrapping Green tea polyphenols were produced. The aim was to study the effects of the encapsulating composition and spray drying conditions on the system performance and physicochemical product properties. The spray dryer powder production yield falls around 50.7 ± 2.8%, which is typical for lab scale spray dryers. Wrinkled and rounded particles, with low surface porosities were generated, independent of the drying carriers (trehalose or lactose) used. The product showed high encapsulation efficiency of Green tea polyphenols, which was promptly redispersible in water. It presented low density, and good compressive and flow properties. The results herein reported confirm the feasibility of the entrapment of Green tea polyphenols in lipid-based compositions by spray drying in presence of the drying carriers evaluated. The spray-dried microparticles show high potential to be used as additive in food, nutraceutical and pharmaceutical products.

  12. Natural polyphenols enhance stability of crosslinked UHMWPE for joint implants.

    Science.gov (United States)

    Shen, Jie; Gao, Guorong; Liu, Xincai; Fu, Jun

    2015-03-01

    Radiation-crosslinked UHMWPE has been used for joint implants since the 1990s. Postirradiation remelting enhances oxidative stability, but with some loss in strength and toughness. Vitamin E-stabilized crosslinked UHMWPE has shown improved strength and stability as compared with irradiated and remelted UHMWPE. With more active phenolic hydroxyl groups, natural polyphenols are widely used in the food and pharmaceutical industries as potent stabilizers and could be useful for oxidative stability in crosslinked UHMWPE. We asked whether UHMWPE blended with polyphenols would (1) show higher oxidation resistance after radiation crosslinking; (2) preserve the mechanical properties of UHMWPE after accelerated aging; and (3) alter the wear resistance of radiation-crosslinked UHMWPE. The polyphenols, gallic acid and dodecyl gallate, were blended with medical-grade UHMWPE followed by consolidation and electron beam irradiation at 100 kGy. Radiation-crosslinked virgin and vitamin E-blended UHMWPEs were used as reference materials. The UHMWPEs were aged at 120 °C in air with oxidation levels analyzed by infrared spectroscopy. Tensile (n = 5 per group) and impact (n = 3 per group) properties before and after aging as per ASTM F2003 were evaluated. The wear rates were examined by pin-on-disc testing (n = 3 per group). The data were reported as mean ± SDs. Statistical analysis was performed by using Student's t-test for a two-tailed distribution with unequal variance for tensile and impact data obtained with n ≥ 3. A significant difference is defined with p Accelerated aging of these polyphenol-blended UHMWPEs resulted in ultimate tensile strength of 50.4 ± 1.4 MPa and impact strength of 53 ± 5 kJ/m(2) for 100 kGy-irradiated UHMWPE with 0.05 wt% dodecyl gallate, for example, in comparison to 51.2 ± 0.7 MPa (p = 0.75) and 58 ± 5 kJ/m(2) (p = 0.29) before aging. The pin-on-disc wear rates of 100 kGy-irradiated UHMWPE with 0.05 wt% dodecyl gallate and 0.05 wt% gallic acid

  13. Association between Polyphenol Intake and Hypertension in Adults and Older Adults: A Population-Based Study in Brazil.

    Directory of Open Access Journals (Sweden)

    Andreia Machado Miranda

    Full Text Available Hypertension is an important risk factor for cardiovascular disease, and diet has been identified as a modifiable factor for preventing and controlling hypertension. Besides, epidemiological studies have suggested an inverse association between polyphenol intake and cardiovascular diseases. The aim of this study was to evaluate the association between the intake of polyphenols and hypertension in a general population of Sao Paulo.Data came from the 'Health Survey of Sao Paulo (ISA-Capital' among 550 adults and older adults in Sao Paulo, Brazil. Diet was assessed by two 24-hour dietary recalls (24HR. Usual intakes were calculated using the Multiple Source Method. Polyphenol intake was calculated by matching food consumption data from the 24HR with the Phenol-Explorer database. The associations between the hypertension and tertiles of the total and classes of polyphenols intake were tested by multivariate logistic regression analysis.After multivariate adjustment for potential confounding factors the findings showed an inverse and linearly association between the hypertension and highest tertiles of tyrosols (OR = 0.33; 95%CI 0.18, 0.64, alkylphenols (OR = 0.45; 95%CI 0.23, 0.87, lignans (OR = 0.49; 95%CI 0.25, 0.98, as well as stilbenes (OR = 0.60; 95%CI 0.36, 0.98, and other polyphenols (OR = 0.33; 95%CI 0.14, 0.74. However, total polyphenol intake, and phenolic acids were significantly associated only in the middle tertile with hypertension and flavonoids were not significant associated.There is an inverse and linearly association between the highest tertile of some classes of polyphenols, such as, tyrosols, alkylphenols, lignans, stilbenes, other polyphenols and hypertension.

  14. Extraction Optimization and Antioxidant Properties of African Eggplant (Solanum macrocarpon Leaf Polyphenols

    Directory of Open Access Journals (Sweden)

    A. A. Famuwagun

    2017-01-01

    Full Text Available Optimization of the yield, total phenolic content (TPC, and total antioxidant activities (TAA of polyphenol concentrates extracted from Solanum macrocarpon leaves was studied using response surface methodology. The process variables investigated included extraction temperature (30, 50, and 70°C, extraction time (2, 4, and 6 h, and dried leaf powder : water ratio (1 : 10, 1 : 20, and 1 : 30 w/v. Box–Behnken design resulted in 15 experimental runs. The results showed the following optimum extraction conditions: temperature, 49.05°C; extraction time, 243 min; leaf powder : water ratio, 1 : 22 w/v. The optimized extraction conditions gave polyphenol concentrate yield, TPC, and TAA values of 24.94%, 421.09 mg GAE/g, and 23.81 mg AAE/g, respectively. Results of the in vitro antioxidant activities of the polyphenol concentrate showed 2, 2-diphenyl-2-picrylhydrazyl hydrate, metal chelating ability, and ferric reducing ability values of 76.78%, 80.22%, and 56.46 mg AAE/g, respectively. The study concludes that the experimental values compared closely with the predicted values, which indicates suitability of the model employed for polyphenol extraction optimization from dried S. macrocarpon leaves.

  15. Quantification of tannins and related polyphenols in commercial products of tormentil (Potentilla tormentilla).

    Science.gov (United States)

    Fecka, Izabela; Kucharska, Alicja Zofia; Kowalczyk, Adam

    2015-01-01

    Potentilla tormentilla has many biological and pharmacological properties and can be used as an ingredient of some herbal medicines or beverages. The aim of this study was to evaluate the content of individual polyphenols, especially condensed and hydrolysable tannins in commercially available tormentil rhizomes and tinctures using chromatographic methods. A quantitative analysis (HPLC-PDA) was preceded by qualitative studies (UPLC-qTOF-MS/MS) and the isolation (CC) of the major tannin compounds. The tested plant material is characterised by a high content of tannins and related polyphenols, i.e. in rhizomes even at the level above 20% and in tinctures above 2%. The main components of tormentil rhizomes are procyanidin B3 (mean ~ 3.6%), procyanidin C2 (mean ~ 2.8%), agrimoniin (mean ~ 2.5%), 3-O-galloylquinic acid (mean ~ 1.7%), catechin (mean ~ 1.6%), other flavan-3-ol oligomers (mean ~ 0.5-1.1) and laevigatins (mean ~ 0.2-0.6%). Free ellagic acid and glycosides of ellagic and methylellagic acids are secondary components. Underground parts of tormentil are a source of oligomeric proanthocyanidins and ellagitannins, but in smaller quantity of gallotannins. Monogalloylquinic acids are new identified compounds, which had not been described in Potentilla tormentilla before we started our research. In the analysed tormentil tinctures agrimoniin concentration is lower in relation to other tannins. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Plant location and extraction procedure strongly alter the antimicrobial activity of murta extracts

    DEFF Research Database (Denmark)

    Shene, Carolina; Reyes, Agnes K.; Villarroel, Mario

    2009-01-01

    plants grown nearer to the mountain (58 mg GAE/g murta), subjected to extreme summer/winter-day/night temperature changes and rainy regime. Extracts from leaves collected in the valley and coast contained 46 and 40 mg GAE/g murta, respectively. A mixture of 50% ethanol/water was the most efficient......Leaves and fruits of Murta (Ugni Molinae Turcz.) growing in three locations of Chile with diverse climatic conditions were extracted by using ethanol/water mixtures at different ratios and the antimicrobial activity was assessed. Extracts containing the highest polyphenolic content were from murta...... in extracting polyphenols, showing pure solvents-both water and ethanol-a lower extraction capacity. No correlation between antioxidant capacity and polyphenolic content was found. Extracts from Murta leaves provoked a decrease in the growing of Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus...

  17. Physicochemical and Antioxidant Properties of Buckwheat Protein Isolates with Different Polyphenolic Content Modified by Limited Hydrolysis with Trypsin

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Wang

    2012-01-01

    Full Text Available Effects of limited hydrolysis with trypsin on the physicochemical and antioxidant properties of buckwheat protein isolates (BPIs obtained with untreated and 2-propanol-extracted meal have been investigated and compared. The dephenolization treatment significantly improved the hydrolysis of BPI, which resulted in the gradual decrease in total and protein-bound polyphenolic content, but an increase in the free polyphenolic content. The hydrolysis of globulins was much easier than that of the albumins. The removal of polyphenols improved the hydrolysis of the albumin fraction. The modified BPIs with high polyphenolic content exhibited much higher DPPH radical scavenging activity and reducing power, but poorer ferrous ion chelating ability than those with low polyphenolic content. These results suggest that the limited hydrolysis is suitable for modification of the properties of buckwheat proteins.

  18. Development of Dietary Polyphenol Preparations for Treating Veterans with Gulf War Illness

    Science.gov (United States)

    2015-10-01

    of older adults with mild cognitive impairment (14) Page-25 Fatigue & Inflammation  Chocolate , which contains a high quantity of many flavonoids...dietary polyphenol intake outside of the therapy Page-35 Impact  Gather key information for a larger efficacy study of CGJ  Safety/tolerability...Mellor DD, Atkin SL. High cocoa polyphenol rich chocolate may reduce the burden of the symptoms in chronic fatigue syndrome. Nutr.J 2010;9:55. 16. Kumar GP

  19. Green Tea Polyphenols for the Protection against Renal Damage Caused by Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Takako Yokozawa

    2012-01-01

    Full Text Available Green tea, prepared from the leaves of Camellia sinensis L., is a beverage that is popular worldwide. Polyphenols in green tea have been receiving much attention as potential compounds for the maintenance of human health due to their varied biological activity and low toxicity. In particular, the contribution of antioxidant activity to the prevention of diseases caused by oxidative stress has been focused upon. Therefore, in this study, we investigated the effects of (−-epigallocatechin 3-O-gallate and (−-epigallocatechin 3-O-gallate, which account for a large fraction of the components of green tea polyphenol, on oxidative stress-related renal disease. Our observations suggest that green tea polyphenols have a beneficial effect on pathological states related to oxidative stress of the kidney.

  20. Enhanced NMR-based profiling of polyphenols in commercially available grape juices using solid-phase extraction

    NARCIS (Netherlands)

    Savage, A.K.; Duynhoven, van J.P.M.; Tucker, G.; Daykin, C.

    2011-01-01

    Grapes and related products, such as juices, and in particular, their polyphenols, have previously been associated with many health benefits, such as protection against cardiovascular disease. Within grapes, a large range of structurally diverse polyphenols can be present, and their characterisation

  1. Effect of mash maceration on the polyphenolic content and visual quality attributes of cloudy apple juice.

    Science.gov (United States)

    Mihalev, Kiril; Schieber, Andreas; Mollov, Plamen; Carle, Reinhold

    2004-12-01

    The effects of enzymatic mash treatments on yield, turbidity, color, and polyphenolic content of cloudy apple juice were studied. Using HPLC-ESI-MS, cryptochlorogenic acid was identified in cv. Brettacher cloudy apple juice for the first time. Commercial pectolytic enzyme preparations with different levels of secondary protease activity were tested under both oxidative and nonoxidative conditions. Without the addition of ascorbic acid, oxidation substantially decreased chlorogenic acid, epicatechin, and procyanidin B2 contents due to enzymatic browning. The content of chlorogenic acid as the major polyphenolic compound was also influenced by the composition of pectolytic enzyme preparations because the presence of secondary protease activity resulted in a rise of chlorogenic acid. The latter effect was probably due to the inhibited protein-polyphenol interactions, which prevented binding of polyphenolic compounds to the matrix, thus increasing their antioxidative potential. The results obtained clearly demonstrate the advantage of the nonoxidative mash maceration for the production of cloud-stable apple juice with a high polyphenolic content, particularly in a premature processing campaign.

  2. Dietary Polyphenols and Their Biological Significance

    Directory of Open Access Journals (Sweden)

    Hongxiang Lou

    2007-09-01

    Full Text Available Dietary polyphenols represent a wide variety of compounds that occur in fruits,vegetables, wine, tea, extra virgin olive oil, chocolate and other cocoa products. They aremostly derivatives and/or isomers of flavones, isoflavones, flavonols, catechins andphenolic acids, and possess diverse biological properties such as antioxidant, antiapoptosis,anti-aging, anticarcinogen, anti-inflammation, anti-atherosclerosis, cardiovascularprotection, improvement of the endothelial function, as well as inhibition of angiogenesisand cell proliferation activity. Most of these biological actions have been attributed to theirintrinsic reducing capabilities. They may also offer indirect protection by activatingendogenous defense systems and by modulating cellular signaling processes such asnuclear factor-kappa B (NF-кB activation, activator protein-1(AP-1 DNA binding,glutathione biosynthesis, phosphoinositide 3 (PI3-kinase/protein kinase B (Akt pathway,mitogen-activated protein kinase (MAPK proteins [extracellular signal-regulated proteinkinase (ERK, c-jun N-terminal kinase (JNK and P38 ] activation, and the translocationinto the nucleus of nuclear factor erythroid 2 related factor 2 (Nrf2. This paper covers themost recent literature on the subject, and describes the biological mechanisms of action andprotective effects of dietary polyphenols.

  3. Positive effects of temperature and growth conditions on enzymatic and antioxidant status in lettuce plants.

    Science.gov (United States)

    Boo, Hee-Ock; Heo, Buk-Gu; Gorinstein, Shela; Chon, Sang-Uk

    2011-10-01

    The contents of two bioactive compounds (polyphenols and flavonoids) and their antioxidant and enzyme activities were determined in the leaves of six lettuce (Latuca sativa L.) cultivars subjected to 4 different day/night temperatures for 6 weeks. The total polyphenol and anthocyanin contents and the corresponding antioxidant activities were the highest at 13/10°C and 20/13°C, followed by 25/20°C and 30/25°C. The enzymatic activities of polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL) were also the highest at low day/night temperatures, but the peroxidase (POD) activity was decreased at low day/night temperatures and increased at high day/night temperatures. The most significant positive correlation existed between anthocyanin content and PPO activity, total polyphenols and their antioxidant activities. The results showed that at relatively low temperatures, lettuce plants have a high antioxidant and enzymatic status. These results provide additional information for the lettuce growers. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources

    OpenAIRE

    Xu, Dong-Ping; Li, Ya; Meng, Xiao; Zhou, Tong; Zhou, Yue; Zheng, Jie; Zhang, Jiao-Jiao; Li, Hua-Bin

    2017-01-01

    Natural antioxidants are widely distributed in food and medicinal plants. These natural antioxidants, especially polyphenols and carotenoids, exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis and anticancer. The effective extraction and proper assessment of antioxidants from food and medicinal plants are crucial to explore the potential antioxidant sources and promote the application in functional foods, pharmaceuticals and food additive...

  5. Further Highlighting on the Prevention of Oxidative Damage by Polyphenol-Rich Wine Extracts.

    Science.gov (United States)

    Salucci, Sara; Burattini, Sabrina; Giordano, Francesco Maria; Lucarini, Simone; Diamantini, Giuseppe; Falcieri, Elisabetta

    2017-04-01

    Wine contains various polyphenols such as flavonoids, anthocyanins, and tannins. These molecules are responsible for the quality of wines, influencing their astringency, bitterness, and color and they are considered to have antioxidant activity. Polyphenols, extracted from grapes during the processes of vinification, could protect the body cells against reactive oxygen species level increase and could be useful to rescue several pathologies where oxidative stress represents the main cause. For that, in this study, red and white wine, provided by an Italian vinery (Marche region), have been analyzed. Chromatographic and morphofunctional analyses have been carried out for polyphenol extraction and to evaluate their protective effect on human myeloid U937 cells exposed to hydrogen peroxide. Both types of wines contained a mix of phenolic compounds with antioxidant properties and their content decreased, as expected, in white wine. Ultrastructural observations evidenced that wines, in particular red wine, strongly prevent mitochondrial damage and apoptotic cell death. In conclusion, the considered extracts show a relevant polyphenol content with strong antioxidant properties and abilities to prevent apoptosis. These findings suggest, for these compounds, a potential role in all pathological conditions where the body antioxidant system is overwhelmed.

  6. Synthesis of Poly(3,4,5-trihydroxybenzoate) dendrimers from Polyphenols and Their Chemiluminescence

    International Nuclear Information System (INIS)

    Jung, Dai Il; Song, Ju Hyun; Shin, Eun Hye; Kim, Yun Young; Lee, Do Hun; Choi, Soon Kyu; Hahn, Jung Tai

    2010-01-01

    Polyphenol dendrimers were synthesized to obtain a strong CL compound, and their CL intensities were found to be considerably stronger than the CL intensity of GA. The esterification of the hydroxyl groups of GA in the dendrimer was very effective in developing a strong CL. Further, the relationship between the CL intensity and structure of polyphenol dendrimers must be clarified to understand the reason behind the strong light emission of high-per-branch compounds such as poly(3,4,5-trihydroxybenzoate ester) dendrimers. Polyphenol CL dendrimers can be used for a wide variety of CL assays by utilizing the hydroxyl groups of the polyphenol for forming a hydrogen bond with oxygen in the analyte structure. Dendrimer chemistry is rapidly expanding both for fundamental reasons as well as due to requirements in technological applications. A recent interesting development in dendrimer chemistry concerns the coordination of metal ions by interior branches or exterior units. Dendrimers containing photoactive units are particularly interesting for two reasons: (1) cooperation among the photoactive components can allow the dendrimer to perform specific functions, and (2) changes in the properties of photoactive components can be exploited to monitor the participation of dendrimers in chemical processes

  7. Degradation of bromothymol blue by 'greener' nano-scale zero-valent iron synthesized using tea polyphenols

    Science.gov (United States)

    A green single-step synthesis of iron nanoparticles using tea (Camellia sinensis) polyphenols is described that uses no added surfactants/polymers as a capping or reducing agents. The expeditious reaction between polyphenols and ferric nitrate occurs within few minutes at room te...

  8. The In Vitro Antioxidant Activity and Inhibition of Intracellular Reactive Oxygen Species of Sweet Potato Leaf Polyphenols

    Directory of Open Access Journals (Sweden)

    Hongnan Sun

    2018-01-01

    Full Text Available The in vitro antioxidant activity and inhibition of intracellular reactive oxygen species (ROS of the total and individual phenolic compounds from Yuzi No. 7 sweet potato leaves were investigated in this study. Sweet potato leaf polyphenols possessed significantly higher antioxidant activity than ascorbic acid, tea polyphenols, and grape seed polyphenols. Among the individual phenolic compounds, caffeic acid showed the highest antioxidant activity, followed by monocaffeoylquinic acids and dicaffeoylquinic acids, while 3,4,5-tri-O-caffeoylquinic acid showed the lowest value. Sweet potato leaf polyphenols could significantly decrease the level of intracellular ROS in a dose-dependent manner. The order of the inhibiting effect of individual phenolic compounds on the intracellular ROS level was not in accordance with that of antioxidant activity, suggesting that there was no direct relationship between antioxidant activity and intracellular ROS-inhibiting effect. Sweet potato leaves could be a good source of biologically active polyphenols with multiple applications in the development of foods, health products, pharmaceuticals, and cosmetics.

  9. The In Vitro Antioxidant Activity and Inhibition of Intracellular Reactive Oxygen Species of Sweet Potato Leaf Polyphenols

    Science.gov (United States)

    Sun, Hongnan; Mu, Bona; Song, Zhen; Ma, Zhimin

    2018-01-01

    The in vitro antioxidant activity and inhibition of intracellular reactive oxygen species (ROS) of the total and individual phenolic compounds from Yuzi No. 7 sweet potato leaves were investigated in this study. Sweet potato leaf polyphenols possessed significantly higher antioxidant activity than ascorbic acid, tea polyphenols, and grape seed polyphenols. Among the individual phenolic compounds, caffeic acid showed the highest antioxidant activity, followed by monocaffeoylquinic acids and dicaffeoylquinic acids, while 3,4,5-tri-O-caffeoylquinic acid showed the lowest value. Sweet potato leaf polyphenols could significantly decrease the level of intracellular ROS in a dose-dependent manner. The order of the inhibiting effect of individual phenolic compounds on the intracellular ROS level was not in accordance with that of antioxidant activity, suggesting that there was no direct relationship between antioxidant activity and intracellular ROS-inhibiting effect. Sweet potato leaves could be a good source of biologically active polyphenols with multiple applications in the development of foods, health products, pharmaceuticals, and cosmetics. PMID:29643978

  10. Microwave-Assisted Extraction of Polyphenols from Camellia oleifera Fruit Hull

    Directory of Open Access Journals (Sweden)

    Jiahong Chen

    2011-05-01

    Full Text Available The abundant fruit hulls of tea-oil tree (Camellia oleifera are still underutilized and wastefully discaded to pollute the environment. In order to solve this problem and better utilize the fruit hulls of C. oleifera, a microwave-assisted extraction system was used to extract their polyphenols using water as the extraction solvent. A central composite design (CCD was used to monitor the effects of three extraction processing parameters – liquid:solid ratio (mL/g, extraction time (min and extraction temperature (°C – on the polyphenol yield (%. The results showed that the optimal conditions were liquid:solid ratio of 15.33:1 (mL/g, extraction time of 35 min and extraction temperature of 76 °C. Validation tests indicated that under the optimized conditions the actual yield of polyphenols was 15.05 ± 0.04% with RSD = 0.21% (n = 5, which was in good agreement with the predicted yield. Phenolic compounds in the extracts were analysed by HPLC, and gallic acid was found to be the predominant constituent. The total flavonoid content in the extracts was determined and high total flavonoid content was revealed (140.06 mg/g dry material.

  11. Polyphenols in Cocoa and Cocoa Products: Is There a Link between Antioxidant Properties and Health?

    Directory of Open Access Journals (Sweden)

    Amin Ismail

    2008-09-01

    Full Text Available Cocoa and cocoa products have received much attention due to their significant polyphenol contents. Cocoa and cocoa products, namely cocoa liquor, cocoa powder and chocolates (milk and dark chocolates may present varied polyphenol contents and possess different levels of antioxidant potentials. For the past ten years, at least 28 human studies have been conducted utilizing one of these cocoa products. However, questions arise on which of these products would deliver the best polyphenol contents and antioxidant effects. Moreover, the presence of methylxanthines, peptides, and minerals could synergistically enhance or reduce antioxidant properties of cocoa and cocoa products. To a greater extent, cocoa beans from different countries of origins and the methods of preparation (primary and secondary could also partially influence the antioxidant polyphenols of cocoa products. Hence, comprehensive studies on the aforementioned factors could provide the understanding of health-promoting activities of cocoa or cocoa products components.

  12. Qualitative Analysis of Polyphenols in Macroporous Resin Pretreated Pomegranate Husk Extract by HPLC-QTOF-MS.

    Science.gov (United States)

    Abdulla, Rahima; Mansur, Sanawar; Lai, Haizhong; Ubul, Ablikim; Sun, Guangying; Huang, Guozheng; Aisa, Haji Akber

    2017-09-01

    Pomegranate (Punica granatum L.) husk is a traditional herbal medicine abundant in phenolic compounds and plays some roles in the treatment of oxidative stress, bacterial and viral infection, diabetes mellitus, and acute and chronic inflammation. Identification and determination of polyphenols in macroporous resin pretreated pomegranate husk extract by high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS). The total polyphenols of pomegranate husk were prepared by ethanol extraction followed by pretreatment with HPD-300 macroporous resin. The polyphenolic compounds were qualitatively analysed by HPLC-QTOF-MS in negative electrospray ionisation (ESI) mode at different collision energy (CE) values. A total of 50 polyphenols were detected in the extract of pomegranate husk, including 35 hydrolysable tannins and 15 flavonoids with distinct retention time, fragmentation behaviours and characteristics, and the accurate mass-to-charge ratios at low, moderate and high CE values. Of these, we identified nine compounds for the first time in the pomegranate husk, including hexahydroxydiphenoyl-valoneoyl-glucoside (HHDP-valoneyl-glucoside), galloyl-O-punicalin, rutin, hyperoside, quercimeritrin, kaempferol-7-O-rhahmano-glucoside, luteolin-3'-O-arabinoside, luteolin-3'-O-glucoside, and luteolin-4'-O-glucoside. To validate the specificity and accuracy of mass spectrometry in the detection of polyphenols, as compared to the fragmentation pathways of granatin B in detail, including the HHDP-valoneyl- glucoside was first identified from pomegranate husk. The study provides evidence for the quality control and development of novel drugs based on polyphenols from the pomegranate husk. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Green power: naturemade - History of a label

    International Nuclear Information System (INIS)

    Lainsecq, M. de

    2003-01-01

    This article presents the history of the set of 'naturemade' labels that are used to designate power generated in facilities that use renewable energy. Electricity from hydropower, wind-power, biogas and solar energy plants that fulfil particular ecological conditions receives a special label, 'Naturemade Star'. 'Normal' hydropower can be awarded the 'Naturemade Basic' label. The development of the labels is discussed in the light of increasing liberalisation of European electricity markets and increasing sales of 'green power' by electricity utilities. The need for certification of production facilities and the founding of the label's certification authority, the 'Verein fuer umweltgerechte Elektrizitaet' (VUE), a society for the promotion of environment-friendly electricity, are discussed. Criticisms made by certain environmental protection organisations on the awarding of the 'Naturemade Basic' label to projects that in their opinion do not help protect the environment are quoted. The article is completed with an interview on the subject with Ursula Stocker from the VUE

  14. The propagation of a soil H218O labeling through the atmosphere-plant-soil system under drought using H218O and C18OO as two independent proxies

    Science.gov (United States)

    Barthel, Matthias; Sturm, Patrick; Hammerle, Albin; Siegwolf, Rolf; Gentsch, Lydia; Buchmann, Nina; Knohl, Alexander

    2013-04-01

    Above- and belowground processes in plants are tightly coupled via carbon and water flows through the atmosphere-plant-soil system. While recent studies elucidated the influence of drought on the carbon flow through plant and soil using 13C, much less is known about the propagation of 18O. Therefore, this study aimed to examine the timing and intensity of 18O enrichment in soil and shoot CO2 and H2O vapor fluxes of European beech saplings (Fagus sylvatica L.) after applying 18O-labeled water to the soil. A custom-made chamber system, separating shoot from soil compartments, allowed independent measurements of shoot and soil related processes in a controlled climate chamber environment. Gas-exchange of oxygen stable isotopes in CO2 and H2O-vapor served as the main tool for investigation and was monitored in real-time using laser spectroscopy. This is the first study measuring concurrently and continuously the enrichment of 18O in CO2 and H2O in shoot- and soil gas-exchange after applying 18O-labeled water to the soil. Photosynthesis (A) and stomatal conductance (gs) of drought-stressed plants showed an immediate coinciding small increase to the H218O irrigation event after only ~30 min. This rapid information transfer, however, was not accompanied by the arrival of 18O labeled water molecules within the shoot. The actual label induced 18O enrichment in transpired water and CO2 occurred not until ~4h after labeling. Further, the timing of the enrichment of 18O in the transpirational flux was similar in both treatments, thus pointing to similar transport rates. However, drought reduced the 18O exchange rate between H2O and CO2at the shoot level, likely caused by a smaller leaf CO2retroflux. Moreover, 18O exchange between H2O and CO2 occurred also in the soil. However, the there was no difference observed between the treatments.

  15. Tritium-labelled abscisic acid

    International Nuclear Information System (INIS)

    Pluciennik, H.; Michalski, L.

    1991-01-01

    A simple method for the preparation of biologically active abscisic acid (growth inhibiting plant hormone) labelled with tritium is described. The product obtained has a specific radioactivity of 1.12 GBq mmol -1 : the yield is about 60% as compared to the initial amount of the substance used. (author) 7 refs.; 2 figs

  16. Evaluation of Antioxidant, Immunomodulatory, and Cytotoxic Action of Fractions from Eugenia uniflora L. and Eugenia malaccensis L.: Correlation with Polyphenol and Flavanoid Content

    OpenAIRE

    Figueir?a, Evellyne de Oliveira; Nascimento da Silva, Lu?s Cl?udio; de Melo, Cristiane Moutinho Lagos; Neves, Juliana Kelle de Andrade Lemoine; da Silva, Nic?cio Henrique; Pereira, Val?ria R?go Alves; Correia, Maria Tereza dos Santos

    2013-01-01

    An increasing number of biological activities presented by medicinal plants has been investigated over the years, and they are used in the search for new substances with lower side effects. Eugenia uniflora L. and Eugenia malaccensis L. (Myrtaceae) have many folk uses in various countries. This current study was designed to quantify the polyphenols and flavonoids contents and evaluate the immunomodulatory, antioxidant, and cytotoxic potentials of fractions from E. uniflora L. and E. malaccens...

  17. Retention of Polyphenolic Species in Spray-Dried Blackberry Extract Using Mannitol as a Thermoprotectant

    Science.gov (United States)

    Eldridge, Joshua A.; Repko, Debra

    2014-01-01

    Abstract The purpose of these studies was to determine if a Büchi Mini Spray Dryer B-290 (Büchi Corporation, New Castle, DE, USA) could be used to prepare blackberry extract powders containing mannitol as a thermoprotectant without extensively degrading anthocyanins and polyphenols in the resulting powders. Three blackberry puree extract samples were each prepared by sonication of puree in 30/70% ethanol/water containing 0.003% HCl. Blackberry puree extract sample 1 (S1) contained no mannitol, while blackberry puree extract sample 2 (S2) contained 3.0:1 (w/w) mannitol:berry extract, and blackberry puree extract sample 3 (S3) contained 6.3:1 (w/w) mannitol:berry extract. The levels of anthocyanins and polyphenols in reconstituted spray-dried powders produced from S1–S3 were compared to solutions of S1–S3 that were held at 4°C as controls. All extract samples could be spray-dried using the Büchi Mini Spray Dryer B-290. S1, with no mannitol, showed a 30.8% decrease in anthocyanins and a 24.1% decrease in polyphenols following spray-drying. However, S2 had a reduction in anthocyanins of only 13.8%, while polyphenols were reduced by only 6.1%. S3, with a ratio of mannitol to berry extract of 6.3:1, exhibited a 12.5% decrease in anthocyanins while the decrease in polyphenols after spray-drying was not statistically significant (P=.16). Collectively, these data indicate that a Büchi Mini Spray Dryer B-290 is a suitable platform for producing stable berry extract powders, and that mannitol is a suitable thermoprotectant that facilitates retention of thermosensitive polyphenolic species in berry extracts during spray-drying. PMID:24892214

  18. THE CONTENT OF POLYPHENOLS IN FRUIT OF HIGHBUSH BLUEBERRY (VACCINIUM CORYMBOSUM L. RELATING TO DIFFERENT FERTILIZER APPLICATION

    Directory of Open Access Journals (Sweden)

    Michal Medvecký

    2015-02-01

    Full Text Available Six varieties of high blueberries (Vaccinium corymbosum L. grown on a plantation of research station in Krivá, that is located in the northern part of Slovakia, was examined to determine the content of polyphenols in the fruit depending on the three variants of fertilization. The first variant was realized with the application of organic fertilization, second one with mineral fertilizers and third variant was left without fertilization. The content of total polyphenols (TP was determined spectrophotometrically using Folin-Ciocalteau reagent. The total polyphenol content ranged from 2522.90 mg.kg-1 to 4960.20 mg.kg-1 in the variant with organic fertilization. In the variant with mineral fertilization the total polyphenol content ranged from 2278.25 mg.kg-1 to 3350.23 mg.kg-1. In the variant without fertilization was concentration of total polyphenols from 2503.63 mg.kg-1 to 3790.48 mg.kg-1. Statistical evaluation of the results confirmed a very weak correlation between polyphenols and one variety of different fertilization on the level of significance (p <0.05. Statistically significant effect on the level of significance (p <0.05 in Tukey's test was confirmed at the Patriot variety of organic and mineral fertilization and the mineral fertilization and control variant.

  19. Correlation of antioxidant activity of dried berry infusions with the polyphenols and selected microelements contents

    Directory of Open Access Journals (Sweden)

    M. M. Bratu

    2018-04-01

    Full Text Available Antioxidant activity was measured by ferric reducing ability of plasma (FRAP assay in seven types of infusions prepared from commercial dried berry fruit products: Rosa canina, Vaccinium vitis-idaea, Hiphophae rhamnoides, Hibiscus sabdariffa and three fruit mixtures. Total polyphenols (TP, total anthocyanins and the polyphenolic compounds were determined by HPLC equipped with diode array detector. To estimate the amount of elements released from fruits into the water extracts, levels of Fe, Mn, Zn and Cu in dried samples and in infusions were determined by flame atomic absorption spectrometry. The correlation between polyphenols content and the antioxidant activities and the microelements in the infusions and the antioxidant activities were estimated using the Pearson’s correlation test. The results showed a high, positive and significant correlation (r = 0.9465 between the FRAP values and TP content, meaning that the concentration of phenolic compounds may be a good indicator of the reducing capacity in the infusions. Correlations varied (positive, negative and weak between antioxidant and mineral extractability of berry infusions. Among the polyphenolic compounds, gallic acid contributed particularly to the antioxidant capacity of the studied samples (r = 0.563. The correlation of antioxidants, total polyphenols with mineral extractability showed the influence of antioxidant compound on mineral bioavailability.

  20. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers.

    Science.gov (United States)

    Queipo-Ortuño, María Isabel; Boto-Ordóñez, María; Murri, Mora; Gomez-Zumaquero, Juan Miguel; Clemente-Postigo, Mercedes; Estruch, Ramon; Cardona Diaz, Fernando; Andrés-Lacueva, Cristina; Tinahones, Francisco J

    2012-06-01

    Few studies have investigated the effect of dietary polyphenols on the complex human gut microbiota, and they focused mainly on single polyphenol molecules and select bacterial populations. The objective was to evaluate the effect of a moderate intake of red wine polyphenols on select gut microbial groups implicated in host health benefits. Ten healthy male volunteers underwent a randomized, crossover, controlled intervention study. After a washout period, all of the subjects received red wine, the equivalent amount of de-alcoholized red wine, or gin for 20 d each. Total fecal DNA was submitted to polymerase chain reaction(PCR)-denaturing gradient gel electrophoresis and real-time quantitative PCR to monitor and quantify changes in fecal microbiota. Several biochemical markers were measured. The dominant bacterial composition did not remain constant over the different intake periods. Compared with baseline, the daily consumption of red wine polyphenol for 4 wk significantly increased the number of Enterococcus, Prevotella, Bacteroides, Bifidobacterium, Bacteroides uniformis, Eggerthella lenta, and Blautia coccoides-Eubacterium rectale groups (P red wine consumption can significantly modulate the growth of select gut microbiota in humans, which suggests possible prebiotic benefits associated with the inclusion of red wine polyphenols in the diet. This trial was registered at controlled-trials.com as ISRCTN88720134.

  1. Stability of Chokeberry Bioactive Polyphenols during Juice Processing and Stabilization of a Polyphenol-Rich Material from the By-Product

    Directory of Open Access Journals (Sweden)

    Diana Behsnilian

    2012-09-01

    Full Text Available Chokeberries (Aronia melanocarpa are nowadays believed to exhibit potential cardioprotective and antidiabetic effects principally due to their high content in bioactive phenolic compounds. The stability of the phenolic compounds was studied during different stages of a juice production line and a method for the valorization of pomace was evaluated. Samples were taken from a commercial juice production plant, extracted and analyzed for phenolic constituents and antioxidant potential. Prototypes of functional food ingredients were produced from the pomace by wet milling and micro-milling. Alongside juice processing, the contents of phenolic berry constituents did not vary to a great extent and the overall antioxidant activity increased by about 34%. A high quality juice and a by-product still rich in polyphenols resulted from the process. The phenolic compounds content and the overall antioxidant activity remained stable when milling and micro-milling the pomace. During coarse milling, extractability of total phenolic compounds increased significantly (40% to 50%. Nanosized materials with averaged particle sizes (x50,0 of about 90 nm were obtained by micro-milling. These materials showed significantly enhanced extractability of total phenolic compounds (25% and total phenolic acid (30%, as well as antioxidant activity (35%, with unchanged contents of total procyanidins and anthocyanins contents.

  2. Phytochemical screening of Diplazium esculentum as medicinal plant from Central Kalimantan, Indonesia

    Science.gov (United States)

    Zannah, Fathul; Amin, Mohammad; Suwono, Hadi; Lukiati, Betty

    2017-05-01

    Diplazium esculentum is one of the ferns used by the Dayak's people in Central Kalimantan as a traditional medicine to treat tumors, asthma, and acne. This study aims to determine the content of bioactive compounds in Diplazium esculentum in Central Kalimantan. This research is a descriptive study with a qualitative approach. Qualitative phytochemical screening detected the presence of flavonoids, polyphenols, alkaloids, terpenoids and saponins in aqueous extracts with the boiled and brewed method, while in ethanol extract this detected polyphenols, alkaloids, terpenoids, and saponins. The results show that the use of water as a solvent can be an alternative in plant extracts.

  3. Polyphenol profile and content in wild and cultivated Cynara cardunculus L.

    Directory of Open Access Journals (Sweden)

    Gaetano Pandino

    2012-07-01

    Full Text Available The species Cynara cardunculus L. is native to the Mediterranean Basin, where its commercial production makes a significant contribution to the agricultural economy. It contains phenolic acids and flavones, which play an important role in diet, because of their beneficial effects on human health, and in industrial processing, due to the browning phenomenon. The quantitative and qualitative profile of these compounds is affected by different factors, such as genotype, environmental conditions, crop management and processing procedures. As a consequence, these are relevant for defining the quality of the product. Therefore, our aim was to review the main factors that influence polyphenol biosynthesis and degradation in C. cardunculus. From available data in literature, the genetic background appears to be the main factor, followed by environmental effects. However, crop management also could be a valuable tool to enhance the polyphenol content. C. cardunculus also provides substantial quantities of polyphenol-rich by-products, which could be considered as a natural source of health-promoting compounds and an added value for the farming business.

  4. Curcumin and Other Polyphenolic Compounds in Head and Neck Cancer Chemoprevention

    Directory of Open Access Journals (Sweden)

    Philipp Baumeister

    2012-01-01

    Full Text Available Despite clear results of observational studies linking a diet rich in fruits and vegetables to a decreased cancer risk, large interventional trials evaluating the impact of dietary micronutrient supplementation, mostly vitamins, could not show any beneficial effects. Today it has become clear that a single micronutrient, given in supernutritional doses, cannot match cancer preventive effects of whole fruits and vegetables. In this regard polyphenols came into focus, not only because of their antioxidant potential but also because of their ability to interact with molecular targets within the cells. Because polyphenols occur in many foods and beverages in high concentration and evidence for their anticancer activity is best for tissues they can come into direct contact with, field cancerization predestines upper aerodigestive tract epithelium for cancer chemoprevention by polyphenols. In this paper, we summarize cancer chemopreventive attempts with emphasis on head and neck carcinogenesis and discuss some methodological issues. We present data regarding antimutagenic effects of curcumin and epigallocatechin-3-gallate in human oropharyngeal mucosa cultures exposed to cigarette smoke condensate.

  5. Effect of complex polyphenols on colon carcinogenesis.

    Science.gov (United States)

    Caderni, G; Remy, S; Cheynier, V; Morozzi, G; Dolara, P

    1999-06-01

    Complex polyphenols and tannins from wine (WCPT) are being considered increasingly as potential cancer chemopreventive agents, since epidemiological studies suggest that populations consuming a high amount of polyphenols in the diet may have a lower incidence of some types of cancer. We studied the effect of WCPT on a series of parameters related to colon carcinogenesis in rats. WCPT were administered to F344 rats at a dose of 14 or 57 mg/kg/d, mixed with the diet. The higher dose is about ten times the exposure to polyphenols of a moderate drinker of red wine. In rats treated with WCPT, we measured fecal bile acids and long chain fatty acids, colon mucosa cell proliferation, apoptosis and, after administration of colon carcinogens, the number and size of aberrant crypt foci (ACF) and nuclear aberrations. Colon mucosa proliferation was not varied by chronic administration (90 d) of WCPT (14 or 57 mg/kg/d). The highest dose of WCPT decreased the number of cells in the colon crypts, but did not increase apoptosis. WCPT (57 mg/kg) administered before or after the administration of azoxymethane (AOM) did not vary the number or multiplicity of ACF in the colon. The number of nuclear aberrations (NA) in colon mucosa was studied after administration of 1,2-dimethylhydrazine (DMH) and 2-amino-3-methylimidazo (4,5-f)quinoline (IQ), colon-specific carcinogens which require metabolic activation. The effect of DMH and IQ was not varied by pre-feeding WCPT (57 mg/kg) for 10 d. Similarly, the levels of total, secondary bile acids and long chain fatty acids did not varied significantly in animals fed WCPT for 90 d. WCPT administration does not influence parameters related to colon carcinogenesis in the rat.

  6. Increased antioxidant activity and polyphenol metabolites in methyl jasmonate treated mung bean (Vigna radiata sprouts

    Directory of Open Access Journals (Sweden)

    Li LI

    Full Text Available Abstract Mung bean sprouts are a popular health food both in China and worldwide. We determined the optimal concentration of exogenous methyl jasmonate (MeJA for the promotion of the sprouting in mung beans (Vigna radiata. The 1,1-diphenyl-2- picrylhydrazyl radical (DPPH scavenging test showed that MeJA application resulted in significantly improved antioxidant capacity in the sprouts 72 h later. Measurement of total polyphenols in MeJA-treated beans from 0 to 168 h, using Folin–Ciocalteu colorimetry, showed that the polyphenols changing was significantly correlated with antioxidant activity. The main polyphenols isovitexin, kaempferol-3-O-rutinoside, daidzein, genistein, isoquercitrin, p-coumaric acid, and caffeic acid were quantified using high-performance liquid chromatography (HPLC/QqQ MS and partial least squares discriminant analysis (PLS-DA. MeJA promoted the production of polyphenols, metabolites, and antioxidants in the sprouts; therefore, its use may allow sprouts to be prepared more quickly or increase their nutritional value.

  7. Effect of complex polyphenols and tannins from red wine on DNA oxidative damage of rat colon mucosa in vivo.

    Science.gov (United States)

    Giovannelli, L; Testa, G; De Filippo, C; Cheynier, V; Clifford, M N; Dolara, P

    2000-10-01

    Dietary polyphenols have been reported to have a variety of biological actions, including anti-carcinogenic, antioxidant and anti-inflammatory activities. In the present study we have evaluated the effect of an oral treatment with complex polyphenols and tannins from red wine and tea on DNA oxidative damage in the rat colon mucosa. Isolated colonocytes were prepared from the colon mucosa of rats treated for ten days with either wine complex polyphenols (57.2 mg/kg/d) or thearubigin (40 mg/kg/d) by oral gavage. Colonocyte oxidative DNA damage was analysed at the single cell level using a modification of the comet assay technique. The results show that wine complex polyphenols and tannins induce a significant decrease (-62% for pyrimidine and -57% for purine oxidation) in basal DNA oxidative damage in colon mucosal cells without affecting the basal level of single-strand breaks. On the other hand, tea polyphenols, namely a crude extract of thearubigin, did not affect either strand breaks or pyrimidine oxidation in colon mucosal cells. Our experiments are the first demonstration that dietary polyphenols can modulate in vivo oxidative damage in the gastrointestinal tract of rodents. These data support the hypothesis that dietary polyphenols might have both a protective and a therapeutic potential in oxidative damage-related pathologies.

  8. Activity of Polyphenolic Compounds against Candida glabrata

    Directory of Open Access Journals (Sweden)

    Ricardo Salazar-Aranda

    2015-09-01

    Full Text Available Opportunistic mycoses increase the morbidity and mortality of immuno-compromised patients. Five Candida species have been shown to be responsible for 97% of worldwide cases of invasive candidiasis. Resistance of C. glabrata and C. krusei to azoles has been reported, and new, improved antifungal agents are needed. The current study was designed to evaluatethe activity of various polyphenolic compounds against Candida species. Antifungal activity was evaluated following the M27-A3 protocol of the Clinical and Laboratory Standards Institute, and antioxidant activity was determined using the DPPH assay. Myricetin and baicalein inhibited the growth of all species tested. This effect was strongest against C. glabrata, for which the minimum inhibitory concentration (MIC value was lower than that of fluconazole. The MIC values against C. glabrata for myricitrin, luteolin, quercetin, 3-hydroxyflavone, and fisetin were similar to that of fluconazole. The antioxidant activity of all compounds was confirmed, and polyphenolic compounds with antioxidant activity had the greatest activity against C. glabrata. The structure and position of their hydroxyl groups appear to influence their activity against C. glabrata.

  9. An improved method for extraction of nutraceutically important polyphenolics from Berberis jaeschkeana C.K. Schneid. fruits.

    Science.gov (United States)

    Belwal, Tarun; Giri, Lalit; Bhatt, Indra D; Rawal, Ranbeer S; Pande, Veena

    2017-09-01

    Berberis jaeschkeana fruits, source of nutraceutically important polyphenolics were investigated. A total of 32 experimental run were conducted under Plackett-Burman and central composite design. Microwave power, methanol and HCl concentration significantly (pextraction of polyphenols under linear, quadratic and interactive effect. The model showed good fitness with significant (pextraction (MAE) condition the total phenolics, flavonoids, tannins and antioxidant activity were in closed context with predicted values. As compared to ultrasonic (UAE) and maceration extraction (ME), MAE showed significantly (pantioxidant activity. HPLC-DAD analysis detects a total of 10 polyphenolic compounds under MAE as compared to 9 under UAE and ME. Designing of MAE conditions showed promising results for polyphenolic antioxidants extraction as revealed by higher yield with lesser time and solvent consumption, which can contribute in green extraction technology and its application in nutraceutical industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Antibacterial Activity of Polyphenolic Fraction of Kombucha Against Enteric Bacterial Pathogens.

    Science.gov (United States)

    Bhattacharya, Debanjana; Bhattacharya, Semantee; Patra, Madhu Manti; Chakravorty, Somnath; Sarkar, Soumyadev; Chakraborty, Writachit; Koley, Hemanta; Gachhui, Ratan

    2016-12-01

    The emergence of multi-drug-resistant enteric pathogens has prompted the scientist community to explore the therapeutic potentials of traditional foods and beverages. The present study was undertaken to investigate the efficacy of Kombucha, a fermented beverage of sugared black tea, against enterotoxigenic Escherichia coli, Vibrio cholerae, Shigella flexneri and Salmonella Typhimurium followed by the identification of the antibacterial components present in Kombucha. The antibacterial activity was evaluated by determining the inhibition zone diameter, minimal inhibitory concentration and minimal bactericidal concentration. Kombucha fermented for 14 days showed maximum activity against the bacterial strains. Its ethyl acetate extract was found to be the most effective upon sequential solvent extraction of the 14-day Kombucha. This potent ethyl acetate extract was then subjected to thin layer chromatography for further purification of antibacterial ingredients which led to the isolation of an active polyphenolic fraction. Catechin and isorhamnetin were detected as the major antibacterial compounds present in this polyphenolic fraction of Kombucha by High Performance Liquid Chromatography. Catechin, one of the primary antibacterial polyphenols in tea was also found to be present in Kombucha. But isorhamnetin is not reported to be present in tea, which may thereby suggest the role of fermentation process of black tea for its production in Kombucha. To the best of our knowledge, this is the first report on the presence of isorhamnetin in Kombucha. The overall study suggests that Kombucha can be used as a potent antibacterial agent against entero-pathogenic bacterial infections, which mainly is attributed to its polyphenolic content.

  11. Characterisation of Pomegranate-Husk Polyphenols and Semi-Preparative Fractionation of Punicalagin.

    Science.gov (United States)

    Aguilar-Zárate, Pedro; Wong-Paz, Jorge E; Michel, Mariela; Buenrostro-Figueroa, Juan; Díaz, Hugo R; Ascacio, Juan A; Contreras-Esquivel, Juan C; Gutiérrez-Sánchez, Gerardo; Aguilar, Cristóbal N

    2017-09-01

    Pomegranate-husk is the main by-product generated from the pomegranate industry. It is a potential source of compounds highly appreciated by different costumers. Punicalagin is the main compound present in pomegranate-husk. To characterise the pomegranate-husk total polyphenols by HPLC-ESI-MS and to establish a method for the recovery of punicalagin using a medium pressure liquid chromatography (MPLC) system. The characterisation of total pomegranate-husk polyphenols was carried out using liquid chromatography coupled to mass spectrometry. Thus, 200 mg of pomegranate-husk polyphenols were fractionated by MPLC. The isolated punicalagin was characterised by HPLC-MS and was tested as standard reagent for the measurement of its scavenging capacity reducing DPPH and ABTS radicals. Twenty peaks were identified by analytical HPLC-MS analysis from the pomegranate-husk polyphenols. The main compounds were the punicalagin anomers, punicalin and ellagic acid. The MPLC method allowed three fractions to be obtained. In fraction three 39.40 ± 8.06 mg of punicalagin anomers (purity > 97.9%) were recovered. The scavenging capacity of punicalagin showed an IC 50 of 109.53 and 151.50 μg/mL for DPPH and ABTS radicals, respectively. The MPLC system was an excellent tool for the separation of the main ellagitannins from pomegranate husk and for the isolation of punicalagin anomers. Fraction three was rich in high purity punicalagin anomers. The IC 50 was obtained for DPPH and ABTS radicals. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Availability of phosphorus in cow slurry using isotopic labelling technique

    International Nuclear Information System (INIS)

    Pongsakul, P.; Bertelsen, F.; Gissel-Nielsen, G.

    1988-01-01

    A pot experiment was conducted to evaluate the influence of cow slurry on P uptake by corn and to estimate the readily available P in the slurry by using an isotopic labelling techique. Water-soluble P in soil was increased and isotopic equilibrium of available P was attained after labelled slurry was mixed thoroughly throughout the soil. Labelled slurry applied at planting increased the P uptake by corn, whereas the same amount applied one week before harvest did not affect the P uptake. It was estimated that 46-54% of the total P uptake in plants is derived from the slurry. The readily available P (the L-value) in the slurry was at least 26 mg/kg which equals 3.7% of the total P. (author)

  13. Assessing polyphenols content and antioxidant activity in coffee beans according to origin and the degree of roasting

    Science.gov (United States)

    Dybkowska, Ewa; Sadowska, Anna; Rakowska, Rita; Dębowska, Maria; Świderski, Franciszek; Świąder, Katarzyna

    The roasting stage constitutes a key component in the manufacturing process of natural coffee because temperature elicits changes in bioactive compounds such as polyphenols and that Maillard-reaction compounds appear, thus affecting the product’s sensory and antioxidant properties. Actual contents of these compounds may depend on which region the coffee is cultivated as well as the extent to which the beans are roasted To determine polyphenols content and antioxidant activity in the ‘Arabica’ coffee type coming from various world regions of its cultivation and which have undergone industrial roasting. Also to establish which coffee, taking into account the degree of roasting (ie. light, medium and strong), is nutritionally the most beneficial The study material was natural coffee beans (100% Arabica) roasted to various degrees, as aforementioned, that had been cultivated in Brazil, Ethiopia, Columbia and India. Polyphenols were measured in the coffee beans by spectrophotometric means based on the Folin-Ciocalteu reaction, whereas antioxidant activity was measured colourimetrically using ABTS+ cat-ionic radicals Polyphenol content and antioxidant activity were found to depend both on the coffee’s origin and degree of roasting. Longer roasting times resulted in greater polyphenol degradation. The highest polyphenol concentrations were found in lightly roasted coffee, ranging 39.27 to 43.0 mg/g, whereas levels in medium and strongly roasted coffee respectively ranged 34.06 to 38.43 mg/g and 29.21 to 36.89 mg/g. Antioxidant activity however significantly rose with the degree of roasting, where strongly roasted coffee had higher such activity than lightly roasted coffee. This can be explained by the formation of Maillard-reaction compounds during roasting, leading then to the formation of antioxidant melanoidin compounds which, to a large extent, compensate for the decrease in polyphenols during roasting Polyphenols levels and antioxidant activities in the

  14. Evaluation of antioxidant, immunomodulatory, and cytotoxic action of fractions from Eugenia uniflora L. and Eugenia malaccensis L.: correlation with polyphenol and flavanoid content.

    Science.gov (United States)

    Figueirôa, Evellyne de Oliveira; Nascimento da Silva, Luís Cláudio; de Melo, Cristiane Moutinho Lagos; Neves, Juliana Kelle de Andrade Lemoine; da Silva, Nicácio Henrique; Pereira, Valéria Rêgo Alves; Correia, Maria Tereza dos Santos

    2013-01-01

    An increasing number of biological activities presented by medicinal plants has been investigated over the years, and they are used in the search for new substances with lower side effects. Eugenia uniflora L. and Eugenia malaccensis L. (Myrtaceae) have many folk uses in various countries. This current study was designed to quantify the polyphenols and flavonoids contents and evaluate the immunomodulatory, antioxidant, and cytotoxic potentials of fractions from E. uniflora L. and E. malaccensis L. It was observed that the polyphenol content was higher in ethyl acetate fractions. These fractions have high antioxidant potential. E. malaccensis L. seeds showed the largest DPPH radical scavenger capacity (EC50 = 22.62). The fractions of E. malaccensis L. leaves showed lower antioxidant capacity. The samples did not alter the profile of proinflammatory cytokines and nitric oxide release. The results indicate that species of the family Myrtaceae are rich in compounds with antioxidant capacity, which can help reduce the inflammatory response.

  15. Polyphenolic acetates: A newer anti-Mycobacterial therapeutic option

    African Journals Online (AJOL)

    Anti acetyl lysine polyclonal antibody was purchased from Cell Signaling. ... acetyl group from various polyphenolic peracetate (PA) to certain receptor proteins such as cytochromes P-450, NADPH cytochrome reductase, nitric oxide synthase (NOS) has been established in various eukaryotic as well as prokaryotic sources.

  16. NMR-based metabonomics approaches for the assessment of the metabolic impact of dietary polyphenols on humans

    NARCIS (Netherlands)

    van Duynhoven, J.; van Velzen, E.; Gross, G.; van Dorsten, F.; Jacobs, D.; Bingham, M.; Draijer, R.; Mulder, T.; Koning, T.; Vaughan, E.; van der Wiele, T.; Westerhuis, J.; Smilde, A.

    2009-01-01

    Dietary polyphenols, as present in for example tea, fruit and vegetables, are associated with several beneficial health effects. Most evidence is still based on epidemiological studies. So far, most nutritional intervention studies on dietary polyphenols are directly focused on pre-identified

  17. Antibacterial action of an aqueous grape seed polyphenolic extract

    African Journals Online (AJOL)

    Jane

    2011-07-06

    Jul 6, 2011 ... The potential of a polyphenolic grape seed extract for use as a natural antibacterial agent was ... electrospray ionisation-mass spectrometry; PBS, phosphate .... The antibacterial tests were carried out by disc diffusion method.

  18. Polyphenols from red wine are potent modulators of innate and adaptive immune responsiveness.

    Science.gov (United States)

    Magrone, Thea; Jirillo, Emilio

    2010-08-01

    It is well known that the consumption of dietary polyphenols leads to beneficial effects for human health as in the case of prevention and/or attenuation of cardiovascular, inflammatory, neurodegenerative and neoplastic diseases. This review summarizes the role of polyphenols from red wine in the immune function. In particular, using healthy human peripheral blood mononuclear cells, we have demonstrated the in vitro ability of Negroamaro, an Italian red wine, to induce the release of nitric oxide and both pro-inflammatory and anti-inflammatory cytokines, thus leading to the maintenance of the immmune homeostasis in the host. All these effects were abrogated by deprivation of polyphenols from red wine samples. We have also provided evidence that Negromaro polyphenols are able to activate extracellular regulated kinase and p38 kinase and switch off the NF-kappaB pathway via an increased expression with time of the IkappaBalpha phosphorylated form. These mechanisms may represent key molecular events leading to inhibition of the pro-inflammatory cascade and atherogenesis. In conclusion, according to the current literature and our own data, moderate consumption of red wine seems to be protective for the host in the prevention of several diseases, even including aged-related diseases by virtue of its immunomodulating properties.

  19. High-cocoa polyphenol-rich chocolate improves HDL cholesterol in Type 2 diabetes patients.

    Science.gov (United States)

    Mellor, D D; Sathyapalan, T; Kilpatrick, E S; Beckett, S; Atkin, S L

    2010-11-01

    To examine the effects of chocolate on lipid profiles, weight and glycaemic control in individuals with Type 2 diabetes. Twelve individuals with Type 2 diabetes on stable medication were enrolled in a randomized, placebo-controlled double-blind crossover study. Subjects were randomized to 45 g chocolate with or without a high polyphenol content for 8 weeks and then crossed over after a 4-week washout period. Changes in weight, glycaemic control, lipid profile and high-sensitivity C-reactive protein were measured at the beginning and at the end of each intervention. HDL cholesterol increased significantly with high polyphenol chocolate (1.16 ± 0.08 vs. 1.26 ± 0.08 mmol/l, P = 0.05) with a decrease in the total cholesterol: HDL ratio (4.4 ± 0.4 vs. 4.1 ± 0.4 mmol/l, P = 0.04). No changes were seen with the low polyphenol chocolate in any parameters. Over the course of 16 weeks of daily chocolate consumption neither weight nor glycaemic control altered from baseline. High polyphenol chocolate is effective in improving the atherosclerotic cholesterol profile in patients with diabetes by increasing HDL cholesterol and improving the cholesterol:HDL ratio without affecting weight, inflammatory markers, insulin resistance or glycaemic control.

  20. 9 CFR 381.500 - Exemption from nutrition labeling.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Exemption from nutrition labeling. 381.500 Section 381.500 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... business is any single-plant facility or multi-plant company/firm that employs 500 or fewer people and...

  1. Development of uniformly stable isotope labeling system in higher plants for hetero-nuclear NMR experiments in vitro and in vivo

    International Nuclear Information System (INIS)

    Kikuchi, J.

    2005-01-01

    Full text: Novel methods for measurement of living systems are making new breakthroughs in life science. In the era of the metabolome (analysis of all measurable metabolites), a MS-based approach is considered to be the major technology, whereas a NMR-based method is recognized as minor technology due to its low sensitivity. Therefore, my laboratory is currently focusing to develop novel methodologies for an NMR-based metabolomics. This will be achieved by uniform stable isotope labeling of higher plants allowing application of multi-dimensional NMR experiments used in protein structure determination. Using these novel methods, I will analyze the dynamic molecular networks inside tissues. Especially, use of stable isotope labeling methods has enormous advantage for discrimination of incorporated or de novo synthesized compounds. Furthermore, potentiality of in vivo-NMR metabolomics will be discussed in the conference. (author)

  2. Polyphenolic Composition and Antioxidant Activity of Aqueous and Ethanolic Extracts from Uncaria tomentosa Bark and Leaves

    Directory of Open Access Journals (Sweden)

    Mirtha Navarro-Hoyos

    2018-05-01

    Full Text Available Uncaria tomentosa constitutes an important source of secondary metabolites with diverse biological activities mainly attributed until recently to alkaloids and triterpenes. We have previously reported for the first-time the polyphenolic profile of extracts from U. tomentosa, using a multi-step process involving organic solvents, as well as their antioxidant capacity, antimicrobial activity on aerial bacteria, and cytotoxicity on cancer cell lines. These promising results prompted the present study using food grade solvents suitable for the elaboration of commercial extracts. We report a detailed study on the polyphenolic composition of aqueous and ethanolic extracts of U. tomentosa bark and leaves (n = 16, using High Performance Liquid Chromatography coupled with Mass Spectrometry (HPLC-DAD/TQ-ESI-MS. A total of 32 compounds were identified, including hydroxybenzoic and hydroxycinnamic acids, flavan-3-ols monomers, procyanidin dimers and trimers, flavalignans–cinchonains and propelargonidin dimers. Our findings showed that the leaves were the richest source of total phenolics and proanthocyanidins, in particular propelargonidin dimers. Two-way Analysis of Variance (ANOVA indicated that the contents of procyanidin and propelargonidin dimers were significantly different (p < 0.05 in function of the plant part, and leaves extracts showed higher contents. Oxygen Radical Absorbance Capacity (ORAC and 2,2-diphenyl-1-picrylhidrazyl (DPPH values indicated higher antioxidant capacity for the leaves (p < 0.05. Further, correlation between both methods and procyanidin dimers was found, particularly between ORAC and propelargonidin dimers. Finally, Principal Component Analysis (PCA analysis results clearly indicated that the leaves are the richest plant part in proanthocyanidins and a very homogenous material, regardless of their origin. Therefore, our findings revealed that both ethanol and water extraction processes are adequate for the elaboration of

  3. Antioxidant, antimicrobial and synergistic activities of tea polyphenols

    African Journals Online (AJOL)

    Microbial resistance to antibiotics has become an increasing global problem and there is a need to find out novel potent antimicrobial agents with alternative modes of action as accessories to antibiotic therapy. This study investigated the antioxidant, antimicrobial and synergistic properties of tea polyphenols. The tea ...

  4. Polyphenols from Root, Tubercles and Grains Cropped in Brazil: Chemical and Nutritional Characterization and Their Effects on Human Health and Diseases

    Directory of Open Access Journals (Sweden)

    Diego dos Santos Baião

    2017-09-01

    Full Text Available Throughout evolution, plants have developed the ability to produce secondary phenolic metabolites, which are important for their interactions with the environment, reproductive strategies and defense mechanisms. These (polyphenolic compounds are a heterogeneous group of natural antioxidants found in vegetables, cereals and leguminous that exert beneficial and protective actions on human health, playing roles such as enzymatic reaction inhibitors and cofactors, toxic chemicals scavengers and biochemical reaction substrates, increasing the absorption of essential nutrients and selectively inhibiting deleterious intestinal bacteria. Polyphenols present in some commodity grains, such as soy and cocoa beans, as well as in other vegetables considered security foods for developing countries, including cassava, taro and beetroot, all of them cropped in Brazil, have been identified and quantified in order to point out their bioavailability and the adequate dietary intake to promote health. The effects of the flavonoid and non-flavonoid compounds present in these vegetables, their metabolism and their effects on preventing chronic and degenerative disorders like cancers, diabetes, osteoporosis, cardiovascular and neurological diseases are herein discussed based on recent epidemiological studies.

  5. Polyphenols from Root, Tubercles and Grains Cropped in Brazil: Chemical and Nutritional Characterization and Their Effects on Human Health and Diseases

    Science.gov (United States)

    dos Santos Baião, Diego; Silva de Freitas, Cyntia; da Silva, Davi; Ribeiro Pereira, Patricia

    2017-01-01

    Throughout evolution, plants have developed the ability to produce secondary phenolic metabolites, which are important for their interactions with the environment, reproductive strategies and defense mechanisms. These (poly)phenolic compounds are a heterogeneous group of natural antioxidants found in vegetables, cereals and leguminous that exert beneficial and protective actions on human health, playing roles such as enzymatic reaction inhibitors and cofactors, toxic chemicals scavengers and biochemical reaction substrates, increasing the absorption of essential nutrients and selectively inhibiting deleterious intestinal bacteria. Polyphenols present in some commodity grains, such as soy and cocoa beans, as well as in other vegetables considered security foods for developing countries, including cassava, taro and beetroot, all of them cropped in Brazil, have been identified and quantified in order to point out their bioavailability and the adequate dietary intake to promote health. The effects of the flavonoid and non-flavonoid compounds present in these vegetables, their metabolism and their effects on preventing chronic and degenerative disorders like cancers, diabetes, osteoporosis, cardiovascular and neurological diseases are herein discussed based on recent epidemiological studies. PMID:28930173

  6. Protective Effect of Selected Medicinal Plants against Hydrogen Peroxide Induced Oxidative Damage on Biological Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2014-01-01

    Full Text Available Oxidative stress is developed due to susceptibility of biological substrates to oxidation by generation of free radicals. In degenerative diseases, oxidative stress level can be reduced by antioxidants which neutralize free radicals. Primary objective of this work was to screen four medicinal plants, namely, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, for their antioxidant property using two biological substrates—RBC and microsomes. The antioxidative ability of three solvent extracts, methanol (100% and 80% and aqueous leaf extracts, was studied at different concentrations by thiobarbituric acid reactive substances method using Fenton’s reagent to induce oxidation in the substrates. The polyphenol and flavonoid content were analyzed to relate with the observed antioxidant effect of the extracts. The phytochemical screening indicated the presence of flavonoids, polyphenols, tannins, and β-carotene in the samples. In microsomes, 80% methanol extract of Canthium and Costus and, in RBC, 80% methanol extract of Costus showed highest inhibition of oxidation and correlated well with the polyphenol and flavonoid content. From the results it can be concluded that antioxidants from medicinal plants are capable of inhibiting oxidation in biological systems, suggesting scope for their use as nutraceuticals.

  7. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: diet or supplementation for metabolic syndrome prevention?

    Science.gov (United States)

    Peluso, Ilaria; Romanelli, Luca; Palmery, Maura

    2014-05-01

    The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment.

  8. Wine Polyphenols: Potential Agents in Neuroprotection

    OpenAIRE

    Basli, Abdelkader; Soulet, Stéphanie; Chaher, Nassima; Mérillon, Jean-Michel; Chibane, Mohamed; Monti, Jean-Pierre; Richard, Tristan

    2012-01-01

    There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, su...

  9. Red Wine Polyphenols for Cancer Prevention

    OpenAIRE

    He, Shan; Sun, Cuirong; Pan, Yuanjiang

    2008-01-01

    Conventional cancer therapies, the second leading cause of death worldwide, result in serious side effects and, at best, merely extend the patient's lifespan by a few years. Searching for effective prevention is of high priority in both basic and clinical sciences. In recent decades natural products have been considered to be an important source of cancer chemopreventive agents. Red wine polyphenols, which consisted of various powerful antioxidants such as flavonoids and stilbenes, have been ...

  10. Antimetabolic Effects of Polyphenols in Breast Cancer Cells: Focus on Glucose Uptake and Metabolism.

    Science.gov (United States)

    Keating, Elisa; Martel, Fátima

    2018-01-01

    In the last years, metabolic reprogramming became a new key hallmark of tumor cells. One of its components is a deviant energetic metabolism, known as Warburg effect-an aerobic lactatogenesis- characterized by elevated rates of glucose uptake and consumption with high-lactate production even in the presence of oxygen. Because many cancer cells display a greater sensitivity to glucose deprivation-induced cytotoxicity than normal cells, inhibitors of glucose cellular uptake (facilitative glucose transporter 1 inhibitors) and oxidative metabolism (glycolysis inhibitors) are potential therapeutic targets in cancer treatment. Polyphenols, abundantly contained in fruits and vegetables, are dietary components with an established protective role against cancer. Several molecular mechanisms are involved in the anticancer effect of polyphenols, including effects on apoptosis, cell cycle regulation, plasma membrane receptors, signaling pathways, and epigenetic mechanisms. Additionally, inhibition of glucose cellular uptake and metabolism in cancer cell lines has been described for several polyphenols, and this effect was shown to be associated with their anticarcinogenic effect. This work will review data showing an antimetabolic effect of polyphenols and its involvement in the chemopreventive/chemotherapeutic potential of these dietary compounds, in relation to breast cancer.

  11. Effects of White Wine Consumption on Weight in Rats: Do Polyphenols Matter?

    Directory of Open Access Journals (Sweden)

    Ana Marija Milat

    2017-01-01

    Full Text Available Introduction. Effects of white wine and the role of wine polyphenols on weight gain in rats of different age were examined in the 4-week-voluntary-consumption trial. Methods and Materials. Biochemically characterized standard (low polyphenols, W and macerated (high polyphenolic content, PW white wines were compared. One- and three-month-old Sprague-Dawley male rats (n=78 were used. Each age group was subdivided into water-only-drinking controls (C, W, and PW-drinking animals. Daily wine and total liquid consumption, food intake, and body weight were measured, and energy intake and feed efficiency index were calculated. Results. In both age categories, wine-drinking animals consumed less food and gained less weight in comparison to C (181 ± 2, 179 ± 6, and 201 ± 5 in younger animals and 32 ± 5, 28 ± 6, and 47 ± 4 grams in older animals, resp., regardless of wine type. Total energy intake was the lowest in PW-drinking animals. Conclusion. Wine-drinking animals gained less weight in comparison to C, regardless of the wines’ polyphenol content. Although our results are indicative of the major role of nonphenolic constituents of the wines (probably ethanol, the modifying role of wine phenolics on weight gain cannot be excluded as the group consuming PW had lower total energy intake than other groups.

  12. Plasma Pharmacokinetics of Polyphenols in a Traditional Japanese Medicine, Jumihaidokuto, Which Suppresses Propionibacterium acnes-Induced Dermatitis in Rats

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    2015-09-01

    Full Text Available Most orally administered polyphenols are metabolized, with very little absorbed as aglycones and/or unchanged forms. Metabolic and pharmacokinetic studies are therefore necessary to understand the pharmacological mechanisms of polyphenols. Jumihaidokuto (JHT, a traditional Japanese medicine, has been used for treatment of skin diseases including inflammatory acne. Because JHT contains various types of bioactive polyphenols, our aim was to clarify the metabolism and pharmacokinetics of the polyphenols in JHT and identify active metabolites contributing to its antidermatitis effects. Orally administered JHT inhibited the increase in ear thickness in rats induced by intradermal injection of Propionibacterium acnes. Quantification by LC-MS/MS indicated that JHT contains various types of flavonoids and is also rich in hydrolysable tannins, such as 1,2,3,4,6-penta-O-galloyl glucose. Pharmacokinetic and antioxidant analyses showed that some flavonoid conjugates, such as genistein 7-O-glucuronide and liquiritigenin 7-O-glucuronide, appeared in rat plasma and had an activity to inhibit hydrogen peroxide-dependent oxidation. Furthermore, 4-O-methylgallic acid, a metabolite of Gallic acid, appeared in rat plasma and inhibited the nitric oxide reaction. JHT has numerous polyphenols; it inhibited dermatitis probably via the antioxidant effect of its metabolites. Our study is beneficial for understanding in vivo actions of orally administered polyphenol drugs.

  13. Effect of electron irradiation and bayberry polyphenols on the quality change of yellowfin tuna fillets during refrigerated storage

    International Nuclear Information System (INIS)

    Bu, Tingting; Jin, Yang; Li, Xiaohui; Zhang, Jinjie; Xu, Dalun; Yang, Wenge; Lou, Qiaoming

    2017-01-01

    This study evaluated the synergistic effect of bayberry polyphenols and electron irradiation in controlling the chemical, microbiological and sensory changes of raw yellowfin tuna fillets at 4 °C for 7 days. The results indicated that the initial values of each index were dose-dependent. The dose of 5 kGy notably accelerated adenosine triphosphate degradation and lipid oxidation, while the doses of 1 and 3 kGy had acceptable sensory quality and yielded a shelf-life of 5 days. The addition of bayberry polyphenols had evident effect in inhibiting freshness breakdown, bacteria growth, histamine formation, and discoloration of tuna fillets. Bayberry polyphenols, as an antioxidant, could inhibit lipid oxidation and sensory side-effects made by irradiation up to 3 kGy. The dose of 1–3 kGy coupled with bayberry polyphenols was optimum to preserve tuna fillets which prolonged the shelf-life to 7 days. - Highlights: • Electron irradiation inhibited bacteria growth and histamine formation. • Electron irradiation increased the red color of tuna fillets. • 5 kGy irradiation decreased the sensory quality of raw tuna fillets. • Bayberry polyphenols combined with irradiation could retard the quality change. • Bayberry polyphenols could be used as natural antioxidant and color fixative.

  14. Absorption, Translocation and Metabolism of {sup 14}C-Labelled Dichlobenil

    Energy Technology Data Exchange (ETDEWEB)

    Pate, D. A.; Funderburk, Jr., H. H. [Auburn University Agricultural Experiment Station, Auburn, AL (United States)

    1966-05-15

    Autoradiographs of bean (Phaseolus vulgaris L.) and alligatorweed (Alternanthera philoxeroides (Mart.) Griseb.) indicated that {sup 14}C-nitrile-labelled dichlobenil (2,6-dichlorobenzonitrile) was slightly absorbed by the leaf and some translocation occurred following foliar application. Plants with roots submersed in radioactive aqueous solution absorbed and translocated the {sup 14}C throughout the plant. An investigation of some of the chemical and physical properties of {sup 14}C-nitrile-labelled dichlobenil was conducted. Loss because of volatilization from counting planchets was considerably reduced by application of acrylic plastic immediately after the solution dried. The plastic coating also eliminated contamination of counting chambers and windows. Two higher plants (bean and alligatorweed ) and four fungi (Fusarium sp., Geotrichum sp., Penicillium sp., Trichoderma sp.) were selected for metabolism studies. Dichlobenil- {sup 14}C was added to Hoagland and Arnon's nutrient solution containing beans or alligatorweed and to liquid cultures containing the other organisms for 12 to 120 h. Extracts from the plants or fungi were chromatographed on silica gel thin-layers. Autoradiographs of the thin-layer chromatographed aqueous extracts revealed a {sup C}-labelled compound of Rf 0.25 that differed from that of dichlobenil, which was 0.6. After esterification of the extracts, a {sup 14}C-labelled compound was observed at Rf 0.95 on thin-layer chromatograms. Chromatography of the unaltered extracts with 2,6- dichlorobenzoic acid revealed identical Rf-values. The esterified aqueous extracts chromatographed precisely with methyl-2,6-dichlorobenzoate. Gas chromatography of the {sup 14}C-labelled compound with an Rf of 0.95 exhibited a retention time identical to that of methyl-2,6-dichlorobenzoate. The quantity of {sup 14}C-labelled compound that chromatographed as 2,6-dichlorobenzoate increased with time of exposure of the various test organisms to dichlobenil {sup

  15. Profile of plasma and urine metabolites after the intake of almond [Prunus dulcis (Mill.) D.A. Webb] polyphenols in humans.

    Science.gov (United States)

    Urpi-Sarda, Mireia; Garrido, Ignacio; Monagas, María; Gómez-Cordovés, Carmen; Medina-Remón, Alexander; Andres-Lacueva, Cristina; Bartolomé, Begoña

    2009-11-11

    Nut skins are considered to be a rich source of polyphenols and may be partially responsible for the numerous health effects associated with nut consumption. However, more bioavailability studies of nut skin polyphenols are needed to understand the health effects derived from nut consumption. The aim of the present study was to determine the profiles of both phase II and microbial-derived phenolic metabolites in plasma and urine samples before and after the intake of almond skin polyphenols by healthy human subjects (n = 2). Glucuronide, O-methyl glucuronide, sulfate, and O-methyl sulfate derivatives of (epi)catechin, as well as the glucuronide conjugates of naringenin and glucuronide and sulfate conjugates of isorhamnetin, were detected in plasma and urine samples after consumption of almond skin polyphenols. The main microbial-derived metabolites of flavanols, such as 5-(dihydroxyphenyl)-gamma-valerolactone and 5-(hydroxymethoxyphenyl)-gamma-valerolactone, were also detected in their glucuronide and sulfate forms. In addition, numerous metabolites derived from further microbial degradation of hydroxyphenylvalerolactones, including hydroxyphenylpropionic, hydroxyphenylacetic, hydroxycinnamic, hydroxybenzoic, and hydroxyhippuric acids, registered major changes in urine after the consumption of almond skin polyphenols. The urinary excretion of these microbial metabolites was estimated to account for a larger proportion of the total polyphenol ingested than phase II metabolites of (epi)catechin, indicating the important role of intestinal bacteria in the metabolism of highly polymerized almond skin polyphenols. To the authors' knowledge this study constitutes the most complete report of the absorption of almond skin polyphenols in humans.

  16. Allograft pretreatment for the repair of sciatic nerve defects: green tea polyphenols versus radiation

    Directory of Open Access Journals (Sweden)

    Sheng-hu Zhou

    2015-01-01

    Full Text Available Pretreatment of nerve allografts by exposure to irradiation or green tea polyphenols can eliminate neuroimmunogenicity, inhibit early immunological rejection, encourage nerve regeneration and functional recovery, improve tissue preservation, and minimize postoperative infection. In the present study, we investigate which intervention achieves better results. We produced a 1.0 cm sciatic nerve defect in rats, and divided the rats into four treatment groups: autograft, fresh nerve allograft, green tea polyphenol-pretreated (1 mg/mL, 4°C nerve allograft, and irradiation-pretreated nerve allograft (26.39 Gy/min for 12 hours; total 19 kGy. The animals were observed, and sciatic nerve electrophysiology, histology, and transmission electron microscopy were carried out at 6 and 12 weeks after grafting. The circumference and structure of the transplanted nerve in rats that received autografts or green tea polyphenol-pretreated nerve allografts were similar to those of the host sciatic nerve. Compared with the groups that received fresh or irradiation-pretreated nerve allografts, motor nerve conduction velocity in the autograft and fresh nerve allograft groups was greater, more neurites grew into the allografts, Schwann cell proliferation was evident, and a large number of new blood vessels was observed; in addition, massive myelinated nerve fibers formed, and abundant microfilaments and microtubules were present in the axoplasm. Our findings indicate that nerve allografts pretreated by green tea polyphenols are equivalent to transplanting autologous nerves in the repair of sciatic nerve defects, and promote nerve regeneration. Pretreatment using green tea polyphenols is better than pretreatment with irradiation

  17. Photosynthetic carbon metabolism in seagrasses C-labeling evidence for the c(3) pathway.

    Science.gov (United States)

    Andrews, T J; Abel, K M

    1979-04-01

    The delta(13)C values of several seagrasses were considerably less negative than those of terrestrial C(3) plants and tended toward those of terrestrial C(4) plants. However, for Thalassia hemprichii (Ehrenb.) Aschers and Halophila spinulosa (R. Br.) Aschers, phosphoglycerate and other C(3) cycle intermediates predominated among the early labeled products of photosynthesis in (14)C-labeled seawater (more than 90% at the earliest times) and the labeling pattern at longer times was brought about by the operation of the C(3) pathway. Malate and aspartate together accounted for only a minor fraction of the total fixed label at all times and the kinetic data of this labeling were not at all consistent with these compounds being early intermediates in seagrass photosynthesis. Pulse-chase (14)C-labeling studies further substantiated these conclusions. Significant labeling of photorespiratory intermediates was observed in all experiments. The kinetics of total fixation of label during some steady-state and pulse-chase experiments suggested that there may be an intermediate pool of inorganic carbon of variable size closely associated with the leaves, either externally or internally. Such a pool may be one cause for the C(4)-like carbon isotope ratios of seagrasses.

  18. Release of Polyphenols Is the Major Factor Influencing the Bioconversion of Rice Straw to Lactic Acid.

    Science.gov (United States)

    Chen, Xingxuan; Xue, Yiyun; Hu, Jiajun; Tsang, Yiu Fai; Gao, Min-Tian

    2017-11-01

    In this study, we found that p-coumaric acid (p-CA), ferulic acid (FA), and condensed tannins were released from rice straw during saccharification. The presence of polyphenols prolonged the lag phase and lowered the productivity of lactic acid. p-CA was identified as a key inhibitor. Tannins had a lower inhibitory effect than p-CA; FA had little inhibitory effect. Acid, alkaline, and ball milling pretreatments elicited different levels of polyphenol release from rice straw. Due to the different levels of polyphenol release in the pretreatment step, the enzymatic hydrolysates contained different concentrations of polyphenols. Compared with fermentation with a synthetic medium, fermentation with the hydrolysates of ball-milled rice straw provided much lower productivity and yield of lactic acid due to the presence of polyphenols. Removal of these compounds played an important role in lactic acid fermentation. When rice straw was alkaline pretreated, the hydrolysates contained few phenolic compounds, resulting in high productivity and yield of lactic acid (1.8 g/L/h and 26.7 g/100 g straw), which were comparable to those in a synthetic medium. This indicates that there is a correlation between removal of phenolic compounds and efficiency in lactic acid fermentation.

  19. Stable isotope labeled n-alkanes to assess digesta passage kinetics through the digestive tract of ruminants

    NARCIS (Netherlands)

    Warner, D.; Ferreira, L.M.M.; Breuer, M.J.H.; Dijkstra, J.; Pellikaan, W.F.

    2013-01-01

    We describe the use of carbon stable isotope (13C) labeled n-alkanes as a potential internal tracer to assess passage kinetics of ingested nutrients in ruminants. Plant cuticular n-alkanes originating from intrinsically 13C labeled ryegrass plants were pulse dosed intraruminally in four

  20. Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content

    Science.gov (United States)

    Rothwell, Joseph A.; Perez-Jimenez, Jara; Neveu, Vanessa; Medina-Remón, Alexander; M'Hiri, Nouha; García-Lobato, Paula; Manach, Claudine; Knox, Craig; Eisner, Roman; Wishart, David S.; Scalbert, Augustin

    2013-01-01

    Polyphenols are a major class of bioactive phytochemicals whose consumption may play a role in the prevention of a number of chronic diseases such as cardiovascular diseases, type II diabetes and cancers. Phenol-Explorer, launched in 2009, is the only freely available web-based database on the content of polyphenols in food and their in vivo metabolism and pharmacokinetics. Here we report the third release of the database (Phenol-Explorer 3.0), which adds data on the effects of food processing on polyphenol contents in foods. Data on >100 foods, covering 161 polyphenols or groups of polyphenols before and after processing, were collected from 129 peer-reviewed publications and entered into new tables linked to the existing relational design. The effect of processing on polyphenol content is expressed in the form of retention factor coefficients, or the proportion of a given polyphenol retained after processing, adjusted for change in water content. The result is the first database on the effects of food processing on polyphenol content and, following the model initially defined for Phenol-Explorer, all data may be traced back to original sources. The new update will allow polyphenol scientists to more accurately estimate polyphenol exposure from dietary surveys. Database URL: http://www.phenol-explorer.eu PMID:24103452