WorldWideScience

Sample records for kw pem water

  1. Coupling of a 2.5 kW steam reformer with a 1 kW el PEM fuel cell

    Science.gov (United States)

    Mathiak, J.; Heinzel, A.; Roes, J.; Kalk, Th.; Kraus, H.; Brandt, H.

    The University of Duisburg-Essen has developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. This steam reformer was combined with a polymer electrolyte membrane fuel cell (PEM FC) and a system test of the process chain was performed. The fuel processor comprises a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PROX) as CO purification. The fuel processor is designed to deliver a thermal hydrogen power output from 500 W to 2.5 kW. The PEM fuel cell stack provides about 1 kW electrical power. In the following paper experimental results of measurements of the single components PEM fuel cell and fuel processor as well as results of the coupling of both to form a process chain are presented.

  2. Simulation of a 250 kW diesel fuel processor/PEM fuel cell system

    Science.gov (United States)

    Amphlett, J. C.; Mann, R. F.; Peppley, B. A.; Roberge, P. R.; Rodrigues, A.; Salvador, J. P.

    Polymer-electrolyte membrane (PEM) fuel cell systems offer a potential power source for utility and mobile applications. Practical fuel cell systems use fuel processors for the production of hydrogen-rich gas. Liquid fuels, such as diesel or other related fuels, are attractive options as feeds to a fuel processor. The generation of hydrogen gas for fuel cells, in most cases, becomes the crucial design issue with respect to weight and volume in these applications. Furthermore, these systems will require a gas clean-up system to insure that the fuel quality meets the demands of the cell anode. The endothermic nature of the reformer will have a significant affect on the overall system efficiency. The gas clean-up system may also significantly effect the overall heat balance. To optimize the performance of this integrated system, therefore, waste heat must be used effectively. Previously, we have concentrated on catalytic methanol-steam reforming. A model of a methanol steam reformer has been previously developed and has been used as the basis for a new, higher temperature model for liquid hydrocarbon fuels. Similarly, our fuel cell evaluation program previously led to the development of a steady-state electrochemical fuel cell model (SSEM). The hydrocarbon fuel processor model and the SSEM have now been incorporated in the development of a process simulation of a 250 kW diesel-fueled reformer/fuel cell system using a process simulator. The performance of this system has been investigated for a variety of operating conditions and a preliminary assessment of thermal integration issues has been carried out. This study demonstrates the application of a process simulation model as a design analysis tool for the development of a 250 kW fuel cell system.

  3. Development of advanced PEM water electrolysers

    International Nuclear Information System (INIS)

    A Deschamps; C Etievant; C Puyenchet; V Fateev; S Grigoriev; A Kalinnikov; V Porembsky; P Millet

    2006-01-01

    Concerning the production of electrolytic hydrogen, the goal of present R and D is to develop advanced hydrogen generator based on proton exchange membrane (PEM) water electrolysers. PEM-based water electrolysis offers a number of advantages, such as ecological safety, high gas purity (more than 99.99% for hydrogen), the possibility of producing compressed gases (up to 200 bar) for direct pressurized storage without additional power inputs, etc. PEM electrolysers are considered as rather attractive devices to accelerate the transition to the hydrogen economy and develop a hydrogen infrastructure network (for example for the development of re-filling stations for cars, using electric power stations at night hours and renewable energy sources). The work presented here result from a cooperation between Hydrogen Energy and Plasma Technology Institute (HEPTI) of Russian Research Center (RRC) 'Kurchatov Institute', Universite Paris - Sud XI and Compagnie d'Etudes des Technologies de l'Hydrogene. This project is supported by the Commission of the European Communities within the frame of the 6. Framework Programme (GenHyPEM, STREP no 019802). (authors)

  4. PORTABLE PEM FUEL CELL SYSTEM: WATER AND HEAT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    SITI NAJIBAH ABD RAHMAN

    2016-07-01

    Full Text Available Portable polymer electrolyte membrane (PEM fuel cell power generator is a PEM fuel cell application that is used as an external charger to supply the demand for high energy. Different environments at various ambient temperatures and humidity levels affect the performance of PEM fuel cell power generators. Thermal and water management in portable PEM fuel cells are a critical technical barrier for the commercialization of this technology. The size and weight of the portable PEM fuel cells used for thermal and water management systems that determine the performance of portable PEM fuel cells also need to be considered. The main objective of this paper review was to determine the importance of water and thermal management systems in portable PEM fuel cells. Additionally, this review investigated heat transfer and water transport in PEM fuel cells. Given that portable PEM fuel cells with different powers require different thermal and water management systems, this review also discussed and compared management systems for low-, medium-, and high-power portable PEM fuel cells.

  5. PEM fuel cells thermal and water management fundamentals

    CERN Document Server

    Wang, Yun; Cho, Sung Chan

    2014-01-01

    Polymer Electrolyte Membrane (PEM) fuel cells convert chemical energy in hydrogen into electrical energy with water as the only by-product. Thus, PEM fuel cells hold great promise to reduce both pollutant emissions and dependency on fossil fuels, especially for transportation-passenger cars, utility vehicles, and buses-and small-scale stationary and portable power generators. But one of the greatest challenges to realizing the high efficiency and zero emissions potential of PEM fuel cells technology is heat and water management. This book provides an introduction to the essential concepts for effective thermal and water management in PEM fuel cells and an assessment on the current status of fundamental research in this field. The book offers you: An overview of current energy and environmental challenges and their imperatives for the development of renewable energy resources, including discussion of the role of PEM fuel cells in addressing these issues; Reviews of basic principles pertaining to PEM fuel cel...

  6. Development of a 10 kW PEM fuel cell for stationary applications

    Energy Technology Data Exchange (ETDEWEB)

    Barthels, H.; Mergel, J.; Oetjen, H.F. [Institute fuer Energieverfahrenstechnik (IEV), Juelich (Germany)] [and others

    1996-12-31

    A 10 kW Proton Exchange Membrane Fuel Cell (PEMFC) is being developed as part of a long-term energy storage path for electricity in the photovoltaic demonstration plant called PHOEBUS at the Forschungszentrum Julich.

  7. Validation of a Waste Heat Recovery Model for a 1kW PEM Fuel Cell using Thermoelectric Generator

    Science.gov (United States)

    Saufi Sulaiman, M.; Mohamed, W. A. N. W.; Singh, B.; Fitrie Ghazali, M.

    2017-08-01

    Fuel cell is a device that generates electricity through electrochemical reaction between hydrogen and oxygen. A major by-product of the exothermic reaction is waste heat. The recovery of this waste heat has been subject to research on order to improve the overall energy utilization. However, nearly all of the studies concentrate on high temperature fuel cells using advanced thermodynamic cycles due to the high quality of waste heat. The method, characteristics and challenges in harvesting waste heat from a low temperature fuel cell using a direct energy conversion device is explored in this publication. A heat recovery system for an open cathode 1kW Proton Exchange Membrane fuel cell (PEM FC) was developed using a single unit of thermoelectric generator (TEG) attached to a heat pipe. Power output of the fuel cell was varied to obtain the performance of TEG at different stack temperatures. Natural and forced convections modes of cooling were applied to the TEG cold side. This is to simulate the conditions of a mini fuel cell vehicle at rest and in motion. The experimental results were analysed and a mathematical model based on the thermal circuit analogy was developed and compared. Forced convection mode resulted in higher temperature difference, output voltage and maximum power which are 3.3°C, 33.5 mV, and 113.96mW respectively. The heat recovery system for 1 kW Proton Exchange Membrane fuel cell (PEM FC) using single TEG was successfully established and improved the electrical production of fuel cell. Moreover, the experimental results obtained was in a good agreement with theoretical results.

  8. GenHyPEM: A research program on PEM water electrolysis supported by the European Commission

    Energy Technology Data Exchange (ETDEWEB)

    Millet, Pierre; Dragoe, Diana [Institut de Chimie Moleculaire et des Materiaux d' Orsay, UMR CNRS no 8182, Universite Paris-Sud 11, 15 rue Georges Clemenceau, 91405 Orsay Cedex (France); Grigoriev, Serguey; Fateev, Vladimir [Hydrogen Energy and Plasma Technology, Institute of Russian Research Center, Kurchatov Institute, 1, Kurchatov sq., 123182 Moscow (Russian Federation); Etievant, Claude [Compagnie Europeenne des Technologies de l' Hydrogene (CETH), Innov' Valley Entreprise, Batiment D0, Route de Nozay, 91461 Marcoussis Cedex (France)

    2009-06-15

    GenHyPEM (Generateur d'Hydrogene par electrolyse de l'eau PEM <>) is an STREP programme (no 019802) supported by the European Commission in the course of the 6th framework research programme. This R and D project which started in October 2005, is a 2.6 MEUR research effort over three years. It gathers partners from Belgium, Germany, Romania, Federation of Russia, Armenia and France. The main goal of the project is to develop low-cost and high pressure (50 bar) PEM water electrolysers for the production of up to several Nm{sup 3} H{sub 2}/h. The purpose of this communication is to present the current status of GenHyPEM. Major results and technological achievements obtained so far in the fields of academic (electrocatalysis, polymer electrolyte) and applied (stack development and performances) research are presented. Non-noble electrocatalysts have been identified to replace platinum for the HER and stable performances have been obtained during operation at high (1 A cm{sup -2}) current density, paving the way to substantial cost reductions. Prototype electrolysers producing from 0.1 to 5 Nm{sup 3} H{sub 2}/h have been successfully developed. (author)

  9. GenHyPEM: an EC-supported STREP program on high pressure PEM water electrolysis

    International Nuclear Information System (INIS)

    Millet, P.

    2006-01-01

    GenHyPEM (generateur d'hydrogene PEM) is an international research project related to the electrolytic production of hydrogen from water, using proton exchange membrane (PEM) - based electrochemical generators. The specificity of this project is that all basic research efforts are devoted to the optimization of already existing electrolysers of industrial size, in order to facilitate the introduction of this technology in the industry and to propose technological solutions for the industrial and domestic production of electrolytic hydrogen. GenHyPEM is a three years long research program financially supported by the European Commission, gathering partners from academic institutions and from the industry, in order to reach three main technological objectives aimed at improving the performances of current 1000 Nliter/hour H 2 industrial PEM water electrolysers: (i) Development of alternative low-cost membrane electrode assemblies and stack components with electrochemical performances similar to those of state-of-the-art systems. The objectives are the development of nano-scaled electrocatalytic structures for reducing the amount of noble metals; the synthesis and characterization of non-noble metal catalytic compounds provided by molecular chemistry and bio-mimetic approaches; the preparation of new composite membrane materials for high current density, high pressure and high temperature operation; the development and optimization of low-cost porous titanium sheets acting as current collectors in the electrolysis stack; (ii) Development of an optimized stack structure for high current density (1 A.cm-2) and high pressure (50 bars) operation for direct pressurized storage; (iii) Development of an automated and integrated electrolysis unit allowing gas production from intermittent renewable sources of energy such as photovoltaic-solar and wind. Current status of the project as well as perspectives are described in this paper. This project, coordinated by University of

  10. Production of hydrogen using composite membrane in PEM water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Santhi priya, E.L.; Mahender, C.; Mahesh, Naga; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad-500 085, A.P (India); Anjaneyulu, Y. [Director, TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2012-07-01

    Electrolysis of water is the best known technology till today to produce hydrogen. The only practical way to produce hydrogen using renewable energy sources is by proton exchange membrane (PEM) water electrolysis. The most commonly used PEM membrane is Nafion. Composite membrane of TiO2 is synthesized by casting method using Nafion 5wt% solution. RuO2 is used as anode and 10 wt% Pd on activated carbon is used as cathode in the water electrolyser system. The performance of this Composite membrane is studied by varying voltage range 1.8 to 2.6V with respect to hydrogen yield and at current density 0.1, 0.2, 0.3, 0.4, and 0.5(A cm-2). This Composite membrane has been tested using in-house fabricated single cell PEM water electrolysis cell with 10cm2 active area at temperatures ranging from 30,45,65 850c and at 1 atmosphere pressure.

  11. Modeling efficiency and water balance in PEM fuel cell systems with liquid fuel processing and hydrogen membranes

    Science.gov (United States)

    Pearlman, Joshua B.; Bhargav, Atul; Shields, Eric B.; Jackson, Gregory S.; Hearn, Patrick L.

    Integrating PEM fuel cells effectively with liquid hydrocarbon reforming requires careful system analysis to assess trade-offs associated with H 2 production, purification, and overall water balance. To this end, a model of a PEM fuel cell system integrated with an autothermal reformer for liquid hydrocarbon fuels (modeled as C 12H 23) and with H 2 purification in a water-gas-shift/membrane reactor is developed to do iterative calculations for mass, species, and energy balances at a component and system level. The model evaluates system efficiency with parasitic loads (from compressors, pumps, and cooling fans), system water balance, and component operating temperatures/pressures. Model results for a 5-kW fuel cell generator show that with state-of-the-art PEM fuel cell polarization curves, thermal efficiencies >30% can be achieved when power densities are low enough for operating voltages >0.72 V per cell. Efficiency can be increased by operating the reformer at steam-to-carbon ratios as high as constraints related to stable reactor temperatures allow. Decreasing ambient temperature improves system water balance and increases efficiency through parasitic load reduction. The baseline configuration studied herein sustained water balance for ambient temperatures ≤35 °C at full power and ≤44 °C at half power with efficiencies approaching ∼27 and ∼30%, respectively.

  12. PEM Water Electrolysis at Elevated Temperatures

    DEFF Research Database (Denmark)

    Hansen, Martin Kalmar

    . This is followed in chapter 4 by a description of the electrolysis setups and electrolysis cells used during the work. Two different setups were used, one operating at atmospheric pressure and another that could operate at elevated pressure so that liquid water electrolysis could be performed at temperature above...... such as porosity and resistance which were supported by images acquired using scanning electron microscopy (SEM). In chapters 6 and 7 the results of the steam electrolysis and pressurised water electrolysis, respectively, are presented and discussed. The steam electrolysis was tested at 130 °C and atmospheric...... needed and hence it has become acute to be able to store the energy. Hydrogen has been identified as a suitable energy carrier and water electrolysis is one way to produce it in a sustainable and environmentally friendly way. In this thesis an introduction to the subject (chapter 1) is given followed...

  13. Development and test of 2 kW natural gas reformers for high and low temperature PEM fuel cells. Project report 2; Udvikling/afproevning af 2 kW naturgasreformere for hoej- og lavtemperatur PEM-braendselsceller. Projektrapport 2

    Energy Technology Data Exchange (ETDEWEB)

    Wit, J. de [Dansk Gasteknisk Center (Denmark); Bech-Madsen, J. [IRD (Denmark); Bandur, V. [DTU (Denmark); Bartholin, N. [DPS (Denmark)

    2005-11-15

    The use of fuel cells for combined heat and power generation has advantages as regards technology and usability compared to existing CHP technology. Special characteristics for a fuel cell plant are: 1) It can be constructed in modules over a wide power range, 2) The efficiency is significantly independent of size, 3) It is noiseless, 4) A flexible coupling between power and heat production, 5) As there is no movable parts, long service check intervals can be expected, 6) Low emissions. The fuel for fuel cells is hydrogen and optimal utilization and CO{sub 2} reduction will require a 'hydrogen society'. While waiting for a 'hydrogen society' to arise, it is possible to use central or on-site reformers that convert natural gas to hydrogen. There will be some CO{sub 2} emission connected to energy use. The objective of the present project has been development and test of on-site reformers (fuel processors) for hydrogen supply to respectively high and low temperature PEM fuel cells aiming at use in single family houses. Sulphur cleaning, reformers, and lab-scale coupling with fuel cell KV units have been developed and tested during the project, as well as development and test of periphery equipment. (BA)

  14. Transients of Water Distribution and Transport in PEM Fuel Cells

    KAUST Repository

    Hussaini, Irfan S.; Wang, Chao-Yang

    2009-01-01

    The response of polymer electrolyte membrane (PEM) fuel cells to a step change in load is investigated experimentally in this work. Voltage undershoot, a characteristic feature of transient response following a step increase in current, is due to transients of water distribution in the membrane and ionomers occurring at subsecond time scales. The use of humidified reactants as a means to control the magnitude of voltage undershoot is demonstrated. Further, the response under a step decrease in current density is explored to determine the existence of hysteresis. Under sufficiently humidified conditions, the responses under forward and reverse step changes are symmetric, but under low relative humidity conditions, voltage undershoot is twice as large as the overshoot. © 2009 The Electrochemical Society.

  15. System model development for a methanol reformed 5 kW high temperature PEM fuel cell system

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    This work investigates the system performance when reforming methanol in an oil heated reformer system for a 5 kW fuel cell system. A dynamic model of the system is created and evaluated. The system is divided into 4 separate components. These components are the fuel cell, reformer, burner...... and evaporator, which are connected by two separate oil circuits, one with a burner and reformer and one with a fuel cell and evaporator. Experiments were made on the reformer and measured oil and bed temperatures are presented in multiple working points. The system is examined at loads from 0 to 5000 W electric...

  16. PEM Water Electrolysis: Preliminary Investigations Using Neutron Radiography

    Science.gov (United States)

    de Beer, Frikkie; van der Merwe, Jan-Hendrik; Bessarabov, Dmitri

    The quasi-dynamic water distribution and performance of a proton exchange membrane (PEM) electrolyzer at both a small fuel cell's anode and cathode was observed and quantitatively measured in the in-plane imaging geometry direction(neutron beam parallel to membrane and with channels parallel to the beam) by applying the neutron radiography principle at the neutron imaging facility (NIF) of NIST, Gaithersburg, USA. The test section had 6 parallel channels with an active area of 5 cm2 and in-situ neutron radiography observation entails the liquid water content along the total length of each of the channels. The acquisition was made with a neutron cMOS-camera system with performance of 10 sec per frame to achieve a relatively good pixel dynamic range and at a pixel resolution of 10 x 10 μm2. A relatively high S/N ratio was achieved in the radiographs to observe in quasi real time the water management as well as quantification of water / gas within the channels. The water management has been observed at increased steps (0.2A/cm2) of current densities until 2V potential has been achieved. These observations were made at 2 different water flow rates, at 3 temperatures for each flow rate and repeated for both the vertical and horizontal electrolyzer orientation geometries. It is observed that there is water crossover from the anode through the membrane to the cathode. A first order quantification (neutron scattering correction not included) shows that the physical vertical and horizontal orientation of the fuel cell as well as the temperature of the system up to 80 °C has no significant influence on the percentage water (∼18%) that crossed over into the cathode. Additionally, a higher water content was observed in the Gas Diffusion Layer at the position of the channels with respect to the lands.

  17. Influence from sea water constituents on the efficiency of water electrolysis by PEM-cells

    DEFF Research Database (Denmark)

    Agersted, Karsten; Bentzen, Janet Jonna; Yde-Andersen, S.

    Among the sea-water specific impurities tested, magnesium has the most profound effect on PEM-cell degradation. Significant amounts of the cation was retrieved in the NAFION®-membrane structure after testing. Degradation was seen from a magnesium concentration as low as 3 10-7 mol/l, and increasing...... with concentration it led to a 86% increase of the area specific resistance at a concentration of 3 10-5 mol/l; equivalent to a conductivity of ~5 μS/cm. Other species (Cl-, Na+, SO4 2- ) seems to affect, though slowly, the performance negatively. If PEM will be used for electrolysis it seems therefore necessary...... to purify the feed water to ~1 μS/cm or even further while particularly focusing on the concentrations of polyvalent cations. e.g. magnesium....

  18. Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels

    International Nuclear Information System (INIS)

    Carton, J.G.; Lawlor, V.; Olabi, A.G.; Hochenauer, C.; Zauner, G.

    2012-01-01

    Effective water management is one of the key strategies for improving low temperature PEM (Proton Exchange Membrane) fuel cell performance and durability. Phenomena such as membrane dehydration, catalyst layer flooding, mass transport and fluid flow regimes can be affected by the interaction, distribution and movement of water in flow plate channels. In this paper a literature review is completed in relation to PEM fuel cell water flooding. It is clear that droplet formation, movement and interaction with the GDL (Gas Diffusion Layer) have been studied extensively. However slug formation and droplet accumulation in the flow channels has not been analysed in detail. In this study, a CFD (Computational Fluid Dynamic) model and VOF (Volume of Fluid) method is used to simulate water droplet movement and slug formation in PEM fuel cell mini-channels. In addition, water slug visualisation is recorded in ex situ PEM fuel cell mini-channels. Observation and simulation results are discussed with relation to slug formation and the implications to PEM fuel cell performance. -- Highlights: ► Excess water in mini-channels from the collision and coalescence of droplets can directly form slugs in PEM fuel cells. ► Slugs can form at low flow rates so increasing the flow rate can reduce the size and frequency of slugs. ► One channel of a double serpentine mini-channel may become blocked due to the redistribution of airflow and pressure caused by slug formation. ► Correct GDL and mini-channel surface coatings are essential to reduce slug formation and stagnation. ► Having geometry changes (bends and steps) in the flow fields can disrupt slug movement and avoid channel blockages.

  19. Performance of a PEM water electrolyser using a TaC-supported iridium oxide electrocatalyst

    DEFF Research Database (Denmark)

    Polonský, J.; Mazúr, P.; Paidar, M.

    2014-01-01

    by dispersing the precious metal compound onto a catalyst support. Electrocatalysts with 50, 70 and 90 wt.% of IrO2 on a TaC support were tested in a laboratory PEM water electrolyser and compared with pure IrO2. The temperature was set at 90, 110, 120 and 130 °C respectively and the cell voltage was varied......Polymer electrolyte membrane (PEM) water electrolysis is an attractive way of producing carbon-free hydrogen. One of the drawbacks of this method is the need for precious metal-based electrocatalysts. This calls for a highly efficient utilization of the precious metal, which can be obtained...

  20. Modelling membrane hydration and water balance of a pem fuel cell

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh

    2015-01-01

    Polymer electrolyte membrane (PEM) fuel cells requires an appropriate hydration in order to ensure high efficiency and long durability. As water is essential for promoting proton conductivity in the membrane, it is important to control membrane water hydration to avoid flooding. In this study we...

  1. Trade Study for 9 kW Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant C.; Ungar, Gene; Stephan, Ryan

    2010-01-01

    Sublimators have been proposed and used in spacecraft for heat rejection. Sublimators are desirable heat rejection devices for short duration use because they can transfer large amounts of heat using little mass and are self-regulating devices. Sublimators reject heat into space by freezing water inside a porous substrate, allowing it to sublimate into vapor, and finally venting it into space. The state of the art thermal control system in orbiting spacecraft is a two loop, two fluid system. The external coolant loop typically uses a toxic single phase fluid that acquires heat from the spacecraft and rejects most of it via a radiator. The sublimator functions as a transient topper for orbiting spacecraft during day pass periods when radiator efficiency decreases. The sublimator interfaces with the internal loop through a built in heat exchanger. The internal loop fluid is non-toxic and is typically a propylene glycol and water solution with inhibitors to prevent corrosion with aluminum fins of the heat exchangers. Feedwater is supplied from a separate line to the sublimator to maintain temperature control of the cabin and vehicle hardware. Water membrane evaporators have been developed for spacecraft and spacesuits. They function similar to a sublimator but require a backpressure valve which could be actuated for this application with a simple fully open or fully closed modes. This technology would be applied to orbital thermal control (lunar or planetary). This paper details a trade study showing that evaporators would greatly reduce the consumable that is used, effectively wasted, by sublimators during start up and shut down during the topping phases of each orbit. State of the art for 9 kW sublimators reject about 870 W per kilogram of mass and 1150 W per liter of volume. If water with corrosion inhibitors is used the evaporators would be about 80% of the mass and volume of the equivalent system. The size and mass increases to about 110% if the internal fluid is

  2. WC as a non-platinum hydrogen evolution electrocatalyst for high temperature PEM water electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    2012-01-01

    Tungsten carbide (WC) nanopowder was tested as a non-platinum cathode electrocatalyst for polymer electrolyte membrane (PEM) water electrolysers, operating at elevated temperatures. It was prepared in thermal plasma reactor with confined plasma jet from WO3 precursor in combination with CH4...

  3. Model-supported characterization of a PEM water electrolysis cell for the effect of compression

    DEFF Research Database (Denmark)

    Frensch, Steffen Henrik; Olesen, Anders Christian; Simon Araya, Samuel

    2018-01-01

    This paper investigates the influence of the cell compression of a PEM water electrolysis cell. A small single cell is therefore electrochemically analyzed by means of polarization behavior and impedance spectroscopy throughout a range of currents (0.01 A cm−2 to 2.0 A cm−2) at two temperatures (60...

  4. Modeling and experimental validation of water mass balance in a PEM fuel cell stack

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Araya, Samuel Simon; Olesen, Anders Christian

    2016-01-01

    Polymer electrolyte membrane (PEM) fuel cells require good hydration in order to deliver high performance and ensure long life operation. Water is essential for proton conductivity in the membrane which increases by nearly six orders of magnitude from dry to fully hydrated. Adequate water...... management in PEM fuel cell is crucial in order to avoid an imbalance between water production and water removal from the fuel cell. In the present study, a novel mathematical zero-dimensional model has been formulated for the water mass balance and hydration of a polymer electrolyte membrane. This model...... is validated against experimental data. In the results it is shown that the fuel cell water balance calculated by this model shows better fit with experimental data-points compared with model where only steady state operation were considered. We conclude that this discrepancy is due a different rate of water...

  5. Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi-junction solar cells

    International Nuclear Information System (INIS)

    Ferrero, Domenico; Santarelli, Massimo

    2017-01-01

    Highlights: • A 2D model of a PEM water electrolyzer is developed and validated. • A novel system integrating PEM and multi-junction solar cells is proposed. • The model is applied to the simulation of the novel system. • The integration of PEM and MJ cells enhances the hydrogen production efficiency. - Abstract: A 2D finite element model of a high-pressure PEM water electrolyzer is developed and validated over experimental data obtained from a demonstration prototype. The model includes the electrochemical, fluidic and thermal description of the repeating unit of a PEM electrolyzer stack. The model is applied to the simulation of a novel system composed by a high-temperature, high-pressure PEM electrochemical cell coupled with a photovoltaic multi-junction solar cell installed in a solar concentrator. The thermo-electrochemical characterization of the solar-driven PEM electrolysis system is presented and the advantages of the high-temperature operation and of the direct coupling of electrolyzer and solar cell are assessed. The results show that the integration of the multi-junction cell enhances the performance of the electrolyzer and allows to achieve higher system efficiency compared to separated photovoltaic generation and hydrogen production by electrolysis.

  6. VOF modelling of gas–liquid flow in PEM water electrolysis cell micro-channels

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    2017-01-01

    In this study, the gaseliquid flow through an interdigitated anode flow field of a PEM water electrolysis cell (PEMEC) is analysed using a three-dimensional, transient, computational fluid dynamics (CFD) model. To account for two-phase flow, the volume of fluid (VOF) method in ANSYS Fluent 17...... of the channel. The model is capable of revealing effect of different bubble shapes/lengths in the outgoing channel. Shape and the sequence of the bubbles affect the water flow distribution in the ATL. The model presented in this work is the first step in the development of a comprehensive CFD model...

  7. Development and Study of Tantalum and Niobium Carbides as Electrocatalyst Supports for the Oxygen Electrode for PEM Water Electrolysis at Elevated Temperatures

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Prag, Carsten Brorson

    2013-01-01

    Polymer electrolyte membrane (PEM) water electrolysis is a prospective method of producing hydrogen. We focused on one of its issues – the lack of a suitable support material for the anode electrocatalyst. TaC and NbC were studied as possible electrocatalyst supports for the PEM water electrolysis...

  8. Analysis of coupled proton and water transport in a PEM fuel cell using the binary friction membrane model

    International Nuclear Information System (INIS)

    Carnes, B.; Djilali, N.

    2006-01-01

    Transport of liquid water within a polymer electrolyte membrane (PEM) is critical to the operation of a PEM fuel cell, due to the strong dependence of the membrane transport coefficients on water content. In addition, enhanced predictive abilities are particularly significant in the context of passive air breathing fuel cell designs where lower water contents will prevail in the membrane. We investigate and analyze the numerical predictions of a recently proposed rational model for transport of protons and water in a PEM, when compared to a widely used empirical model. While the performance is similar for a saturated membrane, for PEMs with low water content, the difference in computed current density and membrane water crossover can be substantial. The effects of coupling partially saturated gas diffusion electrodes (GDLs) with the membrane are studied in both a 1D and 2D context. In addition, a simplified 1D analytical membrane water transport model is validated against the complete 1D model predictions. Our numerical results predict a higher current density and more uniform membrane hydration using a dry cathode instead of a dry anode, and illustrate that the strongest 2D effects are for water vapor transport

  9. PEM - fuel cell system for residential applications

    Energy Technology Data Exchange (ETDEWEB)

    Britz, P. [Viessmann Werke GmbH and Co KG, 35107 Allendorf (Germany); Zartenar, N.

    2004-12-01

    Viessmann is developing a PEM fuel cell system for residential applications. The uncharged PEM fuel cell system has a 2 kW electrical and 3 kW thermal power output. The Viessmann Fuel Processor is characterized by a steam-reformer/burner combination in which the burner supplies the required heat to the steam reformer unit and the burner exhaust gas is used to heat water. Natural gas is used as fuel, which is fed into the reforming reactor after passing an integrated desulphurisation unit. The low temperature (600 C) fuel processor is designed on the basis of steam reforming technology. For carbon monoxide removal, a single shift reactor and selective methanisation is used with noble metal catalysts on monoliths. In the shift reactor, carbon monoxide is converted into hydrogen by the water gas shift reaction. The low level of carbon monoxide at the outlet of the shift reactor is further reduced, to approximately 20 ppm, downstream in the methanisation reactor, to meet PEM fuel cell requirements. Since both catalysts work at the same temperature (240 C), there is no requirement for an additional heat exchanger in the fuel processor. Start up time is less than 30 min. In addition, Viessmann has developed a 2 kW class PEFC stack, without humidification. Reformate and dry air are fed straight to the stack. Due to the dry operation, water produced by the cell reaction rapidly diffuses through the electrolyte membrane. This was achieved by optimising the MEA, the gas flow pattern and the operating conditions. The cathode is operated by an air blower. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  10. System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)

    International Nuclear Information System (INIS)

    DERUSSEAU, R.R.

    2000-01-01

    This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP)

  11. Phase 1 feasibility study of an integrated hydrogen PEM fuel cell system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Luczak, F.

    1998-03-01

    Evaluated in the report is the use of hydrogen fueled proton exchange membrane (PEM) fuel cells for devices requiring less than 15 kW. Metal hydrides were specifically analyzed as a method of storing hydrogen. There is a business and technical part to the study that were developed with feedback from each other. The business potential of a small PEM product is reviewed by examining the markets, projected sales, and required investment. The major technical and cost hurdles to a product are also reviewed including: the membrane and electrode assembly (M and EA), water transport plate (WTP), and the metal hydrides. It was concluded that the best potential stationary market for hydrogen PEM fuel cell less than 15 kW is for backup power use in telecommunications applications.

  12. Impact of the water symmetry factor on humidification and cooling strategies for PEM fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Picot, D; Metkemeijer, R; Bezian, J J; Rouveyre, L [Centre d` Energetique, Ecole des Mines de Paris, 06 - Sophia Antipolis (France)

    1998-10-01

    In this paper, experimental water and thermal balances with three proton exchange membrane fuel cells (PEMFC) are proposed. On the test facility of Ecole des Mines de Paris, three De Nora SPA fuel cell stacks have been successfully studied: An 1 kW{sub e} prototype using Nafion {sup trademark} 117, a 5 and 10 kW{sub e} module using Nafion {sup trademark} 115. The averaged water symmetry factor determines strategies to avoid drying membrane. So, we propose analytical solutions to find compromises between humidification and cooling conditions, which determines outlet temperatures of gases. For transport applications, the space occupied by the power module must be reduced. One of the main efforts consists in decreasing the operative pressure. Thus, if adequate cooling power is applied, we show experimentally and theoretically the possibility to use De Nora PEM fuel cells with low pressure, without specific external humidification. (orig.)

  13. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    Energy Technology Data Exchange (ETDEWEB)

    J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated

  14. Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis

    International Nuclear Information System (INIS)

    Yilmaz, Ceyhun; Kanoglu, Mehmet

    2014-01-01

    Thermodynamic energy and exergy analysis of a PEM water electrolyzer driven by geothermal power for hydrogen production is performed. For this purpose, work is produced from a geothermal resource by means of the organic Rankine cycle; the resulting work is used as a work input for an electrolysis process; and electrolysis water is preheated by the waste geothermal water. The first and second-law based performance parameters are identified for the considered system and the system performance is evaluated. The effects of geothermal water and electrolysis temperatures on the amount of hydrogen production are studied and these parameters are found to be proportional to each other. We consider a geothermal resource at 160 °C available at a rate of 100 kg/s. Under realistic operating conditions, 3810 kW power can be produced in a binary geothermal power plant. The produced power is used for the electrolysis process. The electrolysis water can be preheated to 80 °C by the geothermal water leaving the power plant and hydrogen can be produced at a rate of 0.0340 kg/s. The energy and exergy efficiencies of the binary geothermal power plant are 11.4% and 45.1%, respectively. The corresponding efficiencies for the electrolysis system are 64.0% and 61.6%, respectively, and those for the overall system are 6.7% and 23.8%, respectively. - Highlights: • Thermodynamic analysis of hydrogen production by PEM electrolysis powered by geothermal energy. • Power is used for electrolyser; used geothermal water is for preheating electrolysis water. • Effect of geothermal water and electrolysis temperatures on the amount of hydrogen production. • Hydrogen can be produced at a rate of 0.0340 kg/s for a resource at 160 °C available at 100 kg/s. • Energy and exergy efficiencies of the overall system are 6.7% and 23.8%, respectively

  15. Numerical investigation of the coupled water and thermal management in PEM fuel cell

    International Nuclear Information System (INIS)

    Cao, Tao-Feng; Lin, Hong; Chen, Li; He, Ya-Ling; Tao, Wen-Quan

    2013-01-01

    Highlights: ► A fully coupled, non-equilibrium, anisotropic PEM fuel cell computational model is developed. ► The coupled water and heat transport processes are numerically investigated. ► Anisotropic property of gas diffusion layer has an effect on local cell performance. ► The boundary temperature greatly affects the cell local temperature and indirectly influences the saturation profile. ► The cathode gas inlet humidity slightly affects the local temperature distribution. - Abstract: Water and thermal managements are the most important issue in the operation and optimization of proton exchange membrane fuel cell (PEMFC). A three-dimensional, two-phase, non-isothermal model of PEMFC is presented in this paper. The model is used to investigate the interaction between water and thermal transport processes, the effects of anisotropic characters of gas diffusion layer, different boundary temperature of flow plate and the effect of gas inlet humidity. By comparing the numerical results of different cases, it is found that maximum cell temperature is higher in the isotropic gas diffusion layer; in contrast, the liquid saturation is lower than other case. Moreover, the boundary temperature greatly affects the temperature distribution in PEMFC, and indirectly influences the water saturation distribution. This indicates that the coupled relationship between water and thermal managements cannot be ignored, and these two processes must be considered simultaneously in the optimization of PEMFC

  16. Preparation of the vulcan XC-72R-supported Pt nanoparticles for the hydrogen evolution reaction in PEM water electrolysers

    International Nuclear Information System (INIS)

    Nguyen, Huy Du; Nguyen, T Thuy Luyen; Nguyen, Khac Manh; Ha, Thuc Huy; Nguyen, Quoc Hien

    2015-01-01

    Pt nanoparticles on vulcan XC-72R support (Pt/vulcan XC-72R) were prepared by the impregnation–reduction method. The Pt content, the morphological properties and the electrochemical catalysis of the Pt/vulcan XC 72R materials have been investigated by ICP-OES analysis, FESEM, TEM, and cyclic voltammetry. These materials were then used as catalyst for hydrogen evolution reaction at the cathode of proton exchange membrane (PEM) water electrolysers. The best catalyst was Pt/vulcan XC-72R prepared by the impregnation–reduction method which is conducted in two reducing steps with the reductants of sodium borohydride and ethylene glycol, respectively. The current density of PEM water electrolysers reached 1.0 A cm"−"2 when applying a voltage of 2.0 V at 25 °C. (paper)

  17. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell.

    Science.gov (United States)

    Li, Winton; Bonakdarpour, Arman; Gyenge, Előd; Wilkinson, David P

    2013-11-01

    The industrial anthraquinone auto-oxidation process produces most of the world's supply of hydrogen peroxide. For applications that require small amounts of H2 O2 or have economically difficult transportation means, an alternate, on-site H2 O2 production method is needed. Advanced drinking water purification technologies use neutral-pH H2 O2 in combination with UV treatment to reach the desired water purity targets. To produce neutral H2 O2 on-site and on-demand for drinking water purification, the electroreduction of oxygen at the cathode of a proton exchange membrane (PEM) fuel cell operated in either electrolysis (power consuming) or fuel cell (power generating) mode could be a possible solution. The work presented here focuses on the H2 /O2 fuel cell mode to produce H2 O2 . The fuel cell reactor is operated with a continuous flow of carrier water through the cathode to remove the product H2 O2 . The impact of the cobalt-carbon composite cathode catalyst loading, Teflon content in the cathode gas diffusion layer, and cathode carrier water flowrate on the production of H2 O2 are examined. H2 O2 production rates of up to 200 μmol h(-1)  cmgeometric (-2) are achieved using a continuous flow of carrier water operating at 30 % current efficiency. Operation times of more than 24 h have shown consistent H2 O2 and power production, with no degradation of the cobalt catalyst. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Radioactive Air Emissions Notice of Construction for the 105-KW Basin integrated water treatment system filter vessel sparging vent

    Energy Technology Data Exchange (ETDEWEB)

    Kamberg, L.D.

    1998-02-23

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, for the Integrated Water Treatment System (IWTS) Filter Vessel Sparging Vent at 105-KW Basin. Additionally, the following description, and references are provided as the notices of startup, pursuant to 40 CFR 61.09(a)(1) and (2) in accordance with Title 40 Code of Federal Regulations, Part 61, National Emission Standards for Hazardous Air Pollutants. The 105-K West Reactor and its associated spent nuclear fuel (SNF) storage basin were constructed in the early 1950s and are located on the Hanford Site in the 100-K Area about 1,400 feet from the Columbia River. The 105-KW Basin contains 964 Metric Tons of SNF stored under water in approximately 3,800 closed canisters. This SNF has been stored for varying periods of time ranging from 8 to 17 years. The 105-KW Basin is constructed of concrete with an epoxy coating and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. The IWTS, which has been described in the Radioactive Air Emissions NOC for Fuel Removal for 105-KW Basin (DOE/RL-97-28 and page changes per US Department of Energy, Richland Operations Office letter 97-EAP-814) will be used to remove radionuclides from the basin water during fuel removal operations. The purpose of the modification described herein is to provide operational flexibility for the IWTS at the 105-KW basin. The proposed modification is scheduled to begin in calendar year 1998.

  19. Effects of clamping force on the water transport and performance of a PEM (proton electrolyte membrane) fuel cell with relative humidity and current density

    International Nuclear Information System (INIS)

    Cha, Dowon; Ahn, Jae Hwan; Kim, Hyung Soon; Kim, Yongchan

    2015-01-01

    The clamping force should be applied to a proton electrolyte membrane (PEM) fuel cell due to its structural characteristics. The clamping force affects the ohmic and mass transport resistances in the PEM fuel cell. In this study, the effects of the clamping force on the water transport and performance characteristics of a PEM fuel cell are experimentally investigated with variations in the relative humidity and current density. The water transport characteristics were analyzed by calculating the net drag coefficient. The ohmic resistance decreased with the increase in the clamping force due to the reduced contact resistance and more even membrane hydration. However, the mass transport resistance increased with the increase in the clamping force due to the gas diffusion layer compression. The net drag coefficient decreased with the increase in the clamping force due to high water back-diffusion. Additionally, the relationship between the total resistance and the net drag coefficient was investigated. - Highlights: • Effects of clamping force on the performance of a PEM fuel cell are investigated. • Water transport characteristics are analyzed using net drag coefficient. • Ohmic resistance decreased with clamping force, but mass transport resistance increased. • Net drag coefficient decreased with the increase in clamping force. • Total resistance was significantly degraded for a net drag coefficient below 0.2.

  20. A CFD model for analysis of performance, water and thermal distribution, and mechanical related failure in PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2016-07-01

    Full Text Available This paper presents a comprehensive three–dimensional, multi–phase, non-isothermal model of a Proton Exchange Membrane (PEM fuel cell that incorporates significant physical processes and key parameters affecting the fuel cell performance. The model construction involves equations derivation, boundary conditions setting, and solution algorithm flow chart. Equations in gas flow channels, gas diffusion layers (GDLs, catalyst layers (CLs, and membrane as well as equations governing cell potential and hygro-thermal stresses are described. The algorithm flow chart starts from input of the desired cell current density, initialization, iteration of the equations solution, and finalizations by calculating the cell potential. In order to analyze performance, water and thermal distribution, and mechanical related failure in the cell, the equations are solved using a computational fluid dynamic (CFD code. Performance analysis includes a performance curve which plots the cell potential (Volt against nominal current density (A/cm2 as well as losses. Velocity vectors of gas and liquid water, liquid water saturation, and water content profile are calculated. Thermal distribution is then calculated together with hygro-thermal stresses and deformation. The CFD model was executed under boundary conditions of 20°C room temperature, 35% relative humidity, and 1 MPA pressure on the lower surface. Parameters values of membrane electrode assembly (MEA and other base conditions are selected. A cell with dimension of 1 mm x 1 mm x 50 mm is used as the object of analysis. The nominal current density of 1.4 A/cm2 is given as the input of the CFD calculation. The results show that the model represents well the performance curve obtained through experiment. Moreover, it can be concluded that the model can help in understanding complex process in the cell which is hard to be studied experimentally, and also provides computer aided tool for design and optimization of PEM

  1. Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions

    International Nuclear Information System (INIS)

    Salva, J. Antonio; Iranzo, Alfredo; Rosa, Felipe; Tapia, Elvira

    2016-01-01

    This work presents a one dimensional analytical model developed for a 50 cm"2 PEM (polymer electrolyte membrane) fuel cell with five-channel serpentine flow field. The different coupled physical phenomena such as electrochemistry, mass transfer of hydrogen, oxygen and water (two phases) together with heat transfer have been solved simultaneously. The innovation of this work is that the model has been validated with two different variables simultaneously and quantitatively in order to ensure the accuracy of the results. The selected variables are the cell voltage and the water content within the membrane MEA (Membrane Electrode Assembly) and GDL (gas diffusion layers) experimentally measured by means of neutron radiography. The results show a good agreement for a comprehensive set of different operating conditions of cell temperature, pressure, reactants relative humidity and cathode stoichiometry. The analytical model has a relative error less than 3.5% for the value of the cell voltage and the water content within the GDL + MEA for all experiments performed. This result presents a new standard of validation in the state of art of PEM fuel cell modeling where two variables are simultaneously and quantitatively validated with experimental results. The developed analytical model has been used in order to analyze the behavior of the PEM fuel cell under different values of relative humidity. - Highlights: • One dimensional analytical model has been developed for a PEM fuel cell. • The model is validated with two different variables simultaneously. • New standard of validation is proposed.

  2. Development of an Innovative 2.5 kW Water-Silica Gel Adsorption Chiller

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, E.J.; De Boer, R.; Smeding, S.F.; Sijpheer, N.C.; Van der Pal, M.

    2013-10-15

    Besides (better) utilization of available solar heat or waste heat, and thereby reduction of fossil fuel consumption, sorption cooling offers several other advantages compared to conventional compression cooling. Such as reduction of summer peaks in the electricity grid, use of natural refrigerants, and low noise and maintenance. Sorption cooling in itself is not a new development. However, the development of small scale sorption chillers (2-20 kW) is new. This development allows sorption cooling to enter the markets for individual homes, small collective systems and small commercial applications. A second trend is gradual reduction of the driving temperatures of the sorption cycles allowing more solar and waste heat to be used. This article describes the design and performance of a new, innovative 2.5 kW adsorption chiller, developed by ECN. This system was built and tests have been performed in a laboratory and in one of ECN's full-scale research houses.

  3. Electro-activity of cobalt and nickel complexes for the reduction of protons into di-hydrogen. Application to PEM water electrolysis

    International Nuclear Information System (INIS)

    Pantani, O.; Anxolabehere, E.; Aukauloo, A.; Millet, P.

    2006-01-01

    Proton exchange membrane (PEM) water electrolysis is a safe and efficient way to perform water splitting into di-hydrogen and di-oxygen. In a PEM water electrolyser, platinum is commonly used as electro-catalyst on the cathodic side of the cells, mostly because of its efficiency for hydrogen evolution. But for cost considerations, there is a need to find alternative low-cost electrocatalysts. Molecular chemistry offers the possibility of synthesizing new compounds for this purpose, such as transition metal complexes. Results obtained with nickel- and cobalt-oximes compounds are presented in this paper. They have been chemically (1H NMR, EPR) and electrochemically (voltametry, spectro-electrochemistry) characterized. Their ability to electrochemically reduce protons into di-hydrogen when they are either dissolved in solution or immobilized at the surface of a solid electrode is discussed. (authors)

  4. Simulation study of a PEM fuel cell system fed by hydrogen produced by partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ozdogan, S [Marmara University, Faculty of Engineering, Istanbul (Turkey); Ersoz, A; Olgun, H [TUBITAK Marmara Research Center, Energy Systems and Environmental Research Institute, Kocaeli (Turkey)

    2003-09-01

    Within the frame of sustainable development, efficient and clean, if possible zero emission energy production technologies are of utmost importance in various sectors such as utilities, industry, households and transportation. Low-temperature fuel cell systems are suitable for powering transportation systems such as automobiles and trucks in an efficient and low-emitting manner. Proton exchange membrane (PEM) fuel cell systems constitute the most promising low temperature fuel cell option being developed globally. PEM fuel cells generate electric power from air and hydrogen or from a hydrogen rich gas via electrochemical reactions. Water and waste heat are the only by-products of PEM fuel cells. There is great interest in converting current hydrocarbon based common transportation fuels such as gasoline and diesel into hydrogen rich gases acceptable by PEM fuel cells. Hydrogen rich gases can be produced from conventional transportation fuels via various reforming technologies. Steam reforming, partial oxidation and auto-thermal reforming are the three major reforming technologies. In this paper, we discuss the results of a simulation study for a PEM fuel cell with partial oxidation. The Aspen HYSYS 3.1 code has been used for simulation purposes. Two liquid hydrocarbon fuels have been selected to investigate the effect of average molecular weights of hydrocarbons, on the fuel processing efficiency. The overall system efficiency depends on the fuel preparation and fuel cell efficiencies as well as on the heat integration within the system. It is desired to investigate the overall system efficiencies for net electrical power production at 100 kW considering bigger scale transport applications. Results indicate that fuel properties, fuel preparation system operating parameters and PEM fuel cell polarization curve characteristics all affect the overall system efficiency. (authors)

  5. A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Rømer, Carsten; Kær, Søren Knudsen

    2016-01-01

    In this work, the use of a circular-planar, interdigitated flow field for the anode of a high pressure proton exchange membrane (PEM) water electrolysis cell is investigated in a numerical study. While PEM fuel cells have separated flow fields for reactant transport and coolant, it is possible...... causes maldistribution, if land areas of equal width are applied. Moreover, below a water stoichiometry of 350, and at a current density of 1 A/cm2, flow and temperature maldistribution is adversely affected by the presence of the gas phase; particularly gas hold-up near outlet channels can cause......-phase flow model for establishing the effect of geometry and a two-phase flow model for studying the effect of dispersed gas bubbles. Both models account for turbulence and heat transport. By means of the developed models, it is elucidated that the circular-planar shape of the interdigitated flow field...

  6. APLIKASI MODEL QUAL2Kw UNTUK MENENTUKAN STRATEGI PENANGGULANGAN PENCEMARAN AIR SUNGAI GAJAHWONG YANG DISEBABKAN OLEH BAHAN ORGANIK (Aplication of Qual2Kw Model to Determine the Strategy in Solving Gajahwong River Water Pollution Caused by Organic Matter

    Directory of Open Access Journals (Sweden)

    Agnes Dyah Novitasari Lestari

    2013-11-01

    Full Text Available ABSTRAK Telah dilakukan pemodelan kualitas air terhadap Sungai Gajahwong menggunakan model QUAL2Kw untuk parameter DO-BOD. Diselidiki dinamika DO-BOD sungai tersebut pada kondisi eksisting tahun 2011. Oleh karena beban pencemar pada kondisi hujan dan tanpa hujan berbeda, maka prediksi dilakukan pada kedua kondisi tersebut. Hasil pemodelan QUAL2Kw untuk kondisi eksisting Sungai Gajahwong tahun 2011 menunjukkan bahwa pada kondisi hujan dan tanpa hujan, konsentrasi BOD sungai telah melebihi bakumutu air kelas II. Hasil simulasi menunjukkan bahwa (1 Pembangunan perumahan yang membuang limbah cairnya ke Sungai Gajahwong pada debit total 0,1 m3/s dengan konsentrasi BOD 10 mg/L dapat meningkatkan BOD serta menurunkan DO Sungai Gajahwong, dan (2 Pengelolaan kualitas air dan penanggulangan pencemaran air oleh bahan organik pada Sungai Gajahwong dapat dilakukan dengan strategi pembuatan IPAL komunal di setiap kabupaten dengan penurunan konsentrasi BOD hulu hingga 2 mg/L.   ABSTRACT Water quality modelling of Gajahwong River has been done using QUAL2Kw model for DO-BOD parameters. The dynamics of DO-BOD of the river on the existing conditions in 2011 has been investigated. Because of  the load of pollutants in the rainy condition and no rain condition was different, then the predictions made on both conditions. QUAL2Kw modelling results for Gajahwong River in year 2011 showed that the BOD concentration of the river on both conditions has exceeded water quality standards class II. The simulation results showed that: (1 Housing construction that discharge its liquid waste into Gajahwong River on total discharge 0,1 m3/s with concentration of BOD 10 mg/L, increased the BOD and decreased the DO of Gajahwong River, and (2 Water quality management and organic pollution control of Gajahwong River can be done by a strategy of making communal WWTP in each district with reduction of the upstream BOD concentration to 2 mg /L.

  7. Transport parameters for the modelling of water transport in ionomer membranes for PEM-fuel cells

    International Nuclear Information System (INIS)

    Meier, Frank; Eigenberger, Gerhart

    2004-01-01

    The water transport number (drag coefficient) and the hydraulic permeability were measured for Nafion. The results show a significant increase of both parameters with increasing water content indicating that they are strongly influenced by the membrane microstructure. Based on these experimental studies a new model approach to describe water transport in the H 2 -PEFC membrane is presented. This approach considers water transport by electro-osmosis caused by the proton flux through the membrane and by osmosis caused by a gradient in the chemical potential of water. It is parametrized by the measured data for the water transport number and the hydraulic permeability of Nafion. First simulation results applying this approach to a one-dimensional model of the H 2 -PEFC show good agreement with experimental data. Therefore, the developed model can be used for a new insight into the dominating mechanisms of water transport in the membrane

  8. Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer

    International Nuclear Information System (INIS)

    Siracusano, Stefania; Baglio, Vincenzo; Van Dijk, Nicholas; Merlo, Luca; Aricò, Antonino Salvatore

    2017-01-01

    Graphical abstract: Tripling current density (>3 A·cm"−"2) with respect to the state of the art of commercial PEM electrolyser can be achieved also in the presence of a significant reduction, about 4-fold, of the total noble metal loading (0.5 mg·cm"−"2) while achieving high efficiency (>80%) and proper durability. - Highlights: • Current density >3 A·cm"−"2 is achieved in electrolysis cells with efficiency >80%. • A 4-fold reduction of noble metal loading is demonstrated in electrolysis cells. • Degradation rate <5 μV/h is achieved in a 1000 h durability test at 1 A·cm"−"2. • Degradation associated to a change in Lewis acidity characteristics is observed. - Abstract: Water electrolysis supplied by renewable energy is the foremost technology for producing “green” hydrogen for fuel cell vehicles. In addition, the ability to rapidly follow an intermittent load makes electrolysis an ideal solution for grid-balancing caused by differences in supply and demand for energy generation and consumption. Membrane-electrode assemblies (MEAs) designed for polymer electrolyte membrane (PEM) water electrolysis, based on a novel short-side chain (SSC) perfluorosulfonic acid (PFSA) membrane, Aquivion®, with various cathode and anode noble metal loadings, were investigated in terms of both performance and durability. Utilizing a nanosized Ir_0_._7Ru_0_._3O_x solid solution anode catalyst and a supported Pt/C cathode catalyst, in combination with the Aquivion® membrane, gave excellent electrolysis performances exceeding 3.2 A·cm"−"2 at 1.8 V terminal cell voltage (∼80% efficiency) at 90 °C in the presence of a total catalyst loading of 1.6 mg⋅cm"−"2. A very small loss of efficiency, corresponding to 30 mV voltage increase, was recorded at 3 A⋅cm"−"2 using a total noble metal catalyst loading of less than 0.5 mg·cm"−"2 (compared to the industry standard of 2 mg·cm"−"2). Steady-state durability tests, carried out for 1000 h at 1 A

  9. Investigation on the liquid water droplet instability in a simulated flow channel of PEM fuel cell

    International Nuclear Information System (INIS)

    Ha, Tae Hun; Kim, Bok Yung; Kim, Han Sang; Min, Kyoung Doug

    2008-01-01

    To investigate the characteristics of water droplets on the gas diffusion layer from both top-view and side-view of the flow channel, a rig test apparatus was designed and fabricated with prism attached plate. This experimental device was used to simulate the growth of a single liquid water droplet and its transport process with various air flow velocity and channel height. Not only dry condition but also fully humidified condition was also simulated by using a water absorbing sponge. The detachment height of the water droplet with dry and wet conditions was measured and analyzed. It was found that the droplet tends towards becoming unstable by decreased channel height, increased flow velocity or making a gas diffusion layer (GDL) dryer. Also, peculiar behavior of the water droplet in the channel was presented like attachment to hydrophilic wall or sudden breaking of droplet in case of fully hydrated condition. The simplified force balance model matches with experimental data as well

  10. Water Balance Simulations of a PEM Fuel Cell Using a Two-Fluid Model

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen

    2010-01-01

    A previously published computational multi-phase model of a polymer-electrolyte membrane fuel cell has been extended in order to account for the anode side and the electrolyte membrane. The model has been applied to study the water balance of a fuel cell during operation under various humidificat...... net water transport coefficient. Thus we can reduce flooding at the cathode and may obtain improved cell performance due to a better humidified membrane. The results also suggest that membrane dehydration may occur at either anode or cathode depending on the net water transport....

  11. Computational simulation of water transport in PEM fuel cells using an improved membrane model

    International Nuclear Information System (INIS)

    Cao, J.; Djilali, N.

    2000-01-01

    Computational models and simulation tools can provide valuable insight and guidance for design, performance optimization, and cost reduction of fuel cells. In proton-exchange membrane fuel cells it is particularly important to maintain appropriate water content and temperature in the electrolyte membrane. In this paper we describe a mathematical model for the membrane that takes into account the diffusion of water, the pressure variation, and the electro-osmotic drag in the membrane. Applying conservation laws for water and current and using an empirical relationship between electro-osmotic drag and water content, we obtain a transport equation for water molar concentration and derive a new equation for the electric potential that accounts for variable water content and is more accurate than the conventionally employed Laplace's equation does. The model is coupled with a computational fluid dynamics model for diffusive transport in the electrodes and convective transport in the reactant flow channels. Simulations for a two-dimensional cell are performed over nominal current densities ranging form i=0.1 A/cm≅ to 1.2 A/cm≅. The impact and importance of temperature and pressure non-uniformity, and of two-dimensionality are assessed and discussed. (author)

  12. California dreaming?[PEM stacks

    Energy Technology Data Exchange (ETDEWEB)

    Crosse, J.

    2002-06-01

    Hyundai's Santa Fe FCEV will be on sale by the end of 2002. Hyundai uses PEM stacks that are manufactured by International Fuel Cells (IFC), a division of United Technologies. Santa Fe is equipped with a 65 kW electric powertrain of Enova systems and Shell's new gasoline reformer called Hydrogen Source. Eugene Jang, Senior Engineer - Fuel Cell and Materials at Hyundai stated that the compressor related losses on IFC system are below 3%. The maximum speed offered by the vehicle is estimated as 123km/hr while the petrol equivalent fuel consumption is quoted between 5.6L/100 km and 4.8L/100 km. Santa Fe is a compact vehicle offering better steering response and a pleasant drive. (author)

  13. The effect of inhomogeneous compression on water transport in the cathode of a PEM fuel cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen

    2011-01-01

    layer, micro-porous layer and catalyst layer, excluding the membrane and anode. In the porous media liquid water transport is described by the capillary pressure gradient, momentum loss via the Darcy-Forchheimer equation and mass transfer between phases by a non-equilibrium phase change model...

  14. Water transport in gas diffusion media for PEM fuel cells. Experimental and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Joerg

    2010-08-20

    The water flux in partially saturated hydrophobic carbon fibre paper for polymer electrolyte membrane fuel cell applications is investigated and compared with the frequently used constitutive two-phase flow model based on Darcy's law. Further, the first steps towards a math-based material design for gas diffusion media are explored in this thesis. Two self-developed ex-situ experiments to investigate the liquid water transport are introduced. The first is a newly developed buoyancy-based measurement of the pressuresaturation relationship on thin porous material with an accuracy of 0.5 kPa for the pressure and {+-} 5% for the saturation. The second experiment measures the pressure drop in dependence of flow rates down to magnitudes of {mu}L/s across the partially saturated thin porous material. This flow rate is relevant for the fuel cell application. The liquid water transport through Toray 060 carbon fibre paper, impregnated with 7% and 10% PTFE is investigated at wet and dry boundary conditions. The experiments are also accompanied by analytical and numerical free surface modelling with the consideration of the material morphology and liquid-solid interaction. The imbibing and draining cases of an arrangement of six fibres at varying solid-liquid interaction and boundary conditions are studied with 'Surface Evolver'. In order to evaluate the findings of ex-situ and modelling work for applicability to water transport in fuel cell operation, the technique of nuclear magnetic resonance (NMR) imaging is assessed. The focus is on the visualisation of 2D and 3D water distribution in the operating fuel cell. The compatibility of the NMR experiment with fuel cell operation in relation to material selection, operating temperature, and current density is addressed. NMR imaging is employed for different current densities, stoichiometries, and fuel cell arrangements. The fuel cell arrangements differ by the cathode diffusion medium. Plain, hydrophobic, and

  15. Experimental characterization of the water transport properties of PEM fuel cells diffusion media

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Sole, Joshua D.; Hernandez-Guerrero, Abel; Ellis, Michael W.

    2012-11-01

    A full experimental characterization of the liquid water transport properties of Toray TGP-090 paper is carried out in this work. Porosity, capillary pressure curves (capillary pressure-saturation relationships), absolute permeability, and relative permeability are obtained via experimental procedures. Porosity was determined using two methods, both aimed to obtain the solid volume of the network of fibers comprising the carbon paper. Capillary pressure curves were obtained using a gas displacement porosimeter where liquid water is injected using a syringe pump and the capillary pressure is recorded using a differential pressure transducer. Absolute and relative permeability were also measured with an apparatus designed at Virginia Tech. Absolute permeability was calculated at different flow rates using nitrogen. On the other hand, relative permeability was a more complicated task to carry out giving the complexity (two-phase flow condition) of this property. All of the water transport properties of Toray TGP-090 were studied under the effects of wet-proofing (PTFE treatment) and compression. Some observations were that wet-proofing reduces the porosity of the raw material, increases the hydrophobicity (Pc-S curves), and reduces the permeability of the material. Similar effects were observed for compression, where compressed material exhibited trends similar to those of wet-proofing effects. The results presented here will allow a more accurate modeling of PEMFCs, providing an experimentally verified alternative to the assumptions frequently employed.

  16. Bipolar Plates for PEM Systems

    OpenAIRE

    Lædre, Sigrid

    2016-01-01

    Summary of thesis: The Bipolar Plate (BPP) is an important component in both Proton Exchange Membrane Fuel Cells (PEMFCs) and Proton Exchange Membrane Water Electrolyzers (PEMWEs). Bipolar plate material and processing constitutes for a large fraction of the cost and weight of a PEM cell stack. The main tasks for the bipolar plates in both systems are to separate single cell in a stack, conduct current between single cells and remove heat from active areas. In addition, the BPPs distribu...

  17. Water quality modeling for urban reach of Yamuna river, India (1999-2009), using QUAL2Kw

    Science.gov (United States)

    Sharma, Deepshikha; Kansal, Arun; Pelletier, Greg

    2017-06-01

    The study was to characterize and understand the water quality of the river Yamuna in Delhi (India) prior to an efficient restoration plan. A combination of collection of monitored data, mathematical modeling, sensitivity, and uncertainty analysis has been done using the QUAL2Kw, a river quality model. The model was applied to simulate DO, BOD, total coliform, and total nitrogen at four monitoring stations, namely Palla, Old Delhi Railway Bridge, Nizamuddin, and Okhla for 10 years (October 1999-June 2009) excluding the monsoon seasons (July-September). The study period was divided into two parts: monthly average data from October 1999-June 2004 (45 months) were used to calibrate the model and monthly average data from October 2005-June 2009 (45 months) were used to validate the model. The R2 for CBODf and TN lies within the range of 0.53-0.75 and 0.68-0.83, respectively. This shows that the model has given satisfactory results in terms of R2 for CBODf, TN, and TC. Sensitivity analysis showed that DO, CBODf, TN, and TC predictions are highly sensitive toward headwater flow and point source flow and quality. Uncertainty analysis using Monte Carlo showed that the input data have been simulated in accordance with the prevalent river conditions.

  18. Design of a New Water Load for S-band 750 kW Continuous Wave High Power Klystron Used in EAST Tokamak

    Science.gov (United States)

    Liu, Liang; Liu, Fukun; Shan, Jiafang; Kuang, Guangli

    2007-04-01

    In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic window is used as the absorbent. At a frequency range of 70 MHz, the VSWR (Voltage Standing Wave Ratio) is below 1.2, and the rise in temperature of water is about 30 oC at the highest power level.

  19. High temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven [Institute for Fuel Cell Innovation, National Research Council Canada, Vancouver, BC (Canada V6T 1W5)

    2006-10-06

    There are several compelling technological and commercial reasons for operating H{sub 2}/air PEM fuel cells at temperatures above 100{sup o}C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for {approx}90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation. (author)

  20. Development of a brazing process for the production of water- cooled bipolar plates made of chromium-coated metal foils for PEM fuel cells

    International Nuclear Information System (INIS)

    Mueller, M; Hoehlich, D; Scharf, I; Lampke, T; Hollaender, U; Maier, H J

    2016-01-01

    Beside lithium batteries, PEM fuel cells are the most promising strategy as a power source to achieve the targets for introducing and increasing the usage of electric vehicles. Due to limited space and weight problems, water cooled, metallic bipolar plates in a fuel cell metal stack are preferred in motor vehicles. These plates are stamped metal sheets with a complex structure, interconnected media-tight. To meet the multiple tasks and requirements in use, complex and expensive combinations of materials are currently in use (carbon fiber composites, graphite, gold-plated nickel, stainless and acid resistant steel). The production of such plates is expensive as it is connected with considerable effort or the usage of precious metals. As an alternative, metalloid nitrides (CrN, VN, W 2 N, etc.) show a high chemical resistance, hardness and a good conductivity. So this material category meets the basic requirements of a top layer. However, the standard methods for their production (PVD, CVD) are expensive and have a slow deposition rate and a lower layer thicknesses. Because of these limitations, a full functionality over the life cycle of a bipolar plate is not guaranteed. The contribution shows the development and quantification of an alternative production process for bipolar plates. The expectation is to get significant advantages from the combination of chromium electrodeposition and thermochemical treatment to form chromium nitrides. Both processes are well researched and suitable for series production. The thermochemical treatment of the chromium layer also enables a process-integrated brazing. (paper)

  1. Commercialization of proton exchange membrane (PEM) fuel cell technology

    International Nuclear Information System (INIS)

    Goel, N.; Pant, A.; Sera, G.

    1995-01-01

    The MCTTC performed a market assessment for PEM Fuel Cells for terrestrial applications for the Center for Space Power (CSP). The purpose of the market assessment was to gauge the market and commercial potential for PEM fuel cell technology. Further, the market assessment was divided into subsections of technical and market overview, competitive environment, political environment, barriers to market entry, and keys to market entry. The market assessment conducted by the MCTTC involved both secondary and primary research. The primary target markets for PEM fuel cells were transportation and utilities in the power range of 10 kW to 100 kW. The fuel cell vehicle market size was estimated under a pessimistic scenario and an optimistic scenario. The estimated size of the fuel cell vehicle market in dollar terms for the year 2005 is $17.3 billion for the pessimistic scenario and $34.7 billion for the optimistic scenario. The fundamental and applied research funded and conducted by the National Aeronautics and Space Administration (NASA) and DOE in the area of fuel cells presents an excellent opportunity to commercialize dual-use technology and enhance U.S. business competitiveness. copyright 1995 American Institute of Physics

  2. Multivariable control system for dynamic PEM fuel cell model

    International Nuclear Information System (INIS)

    Tanislav, Vasile; Carcadea, Elena; Capris, Catalin; Culcer, Mihai; Raceanu, Mircea

    2010-01-01

    Full text: The main objective of this work was to develop a multivariable control system of robust type for a PEM fuel cells assembly. The system will be used in static and mobile applications for different values of power, generated by a fuel cell assembly of up to 10 kW. Intermediate steps were accomplished: a study of a multivariable control strategy for a PEM fuel cell assembly; a mathematic modeling of mass and heat transfer inside of fuel cell assembly, defining the response function to hydrogen and oxygen/air mass flow and inlet pressure changes; a testing stand for fuel cell assembly; experimental determinations of transient response for PEM fuel cell assembly, and more others. To define the multivariable control system for a PEM fuel cell assembly the parameters describing the system were established. Also, there were defined the generic mass and energy balance equations as functions of derivative of m i , in and m i , out , representing the mass going into and out from the fuel cell, while Q in is the enthalpy and Q out is the enthalpy of the unused reactant gases and heat produced by the product, Q dis is the heat dissipated to the surroundings, Q c is the heat taken away from the stack by active cooling and W el is the electricity generated. (authors)

  3. Numerical analysis on the effect of voltage change on removing condensed water inside the GDL of a PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nam Woo [Fuel Cell Technology Development Team, Eco-Technology Center, Hyundai-Kia Motors, Yongin (Korea, Republic of); Kim, Young Sang; Kim, Min Soo [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, Min Sung [School of Energy Systems Engineering, Chung-Ang University, Seoul (Korea, Republic of)

    2016-09-15

    Decreasing the voltage of a fuel cell through hydrogen mixing or using low-air stoichiometry ratio is beneficial to remove condensed water inside GDL under flooding condition. In this study, the effect of voltage level of a fuel cell on water distribution in GDL under flooding condition was numerically analyzed. Water content in GDL was dependent on the voltage level of a fuel cell, that is, the water content was low when the cell voltage was maintained low. The effect of voltage change under flooding condition was also simulated. The flow rate of condensed water inside GDL considerably increased immediately after decreasing the cell voltage. The oxygen concentration in the catalyst layer was increased by decreasing the voltage of the fuel cell. Consequently, the cell voltage was recovered. Therefore, decreasing cell voltage under flooding condition can facilitate removal of condensed water in GDL.

  4. Investigating the effects of methanol-water vapor mixture on a PBI-based high temperature PEM fuel cell

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Nielsen, Heidi Venstrup

    2012-01-01

    This paper investigates the effects of methanol and water vapor on the performance of a high temperature proton exchange membrane fuel cell (HT-PEMFC). A H3PO4-doped polybenzimidazole (PBI) membrane electrode assembly (MEA), Celtec P2100 of 45 cm2 of active surface area from BASF was employed....... A long-term durability test of around 1250 h was performed, in which the concentrations of methanol-water vapor mixture in the anode feed gas were varied. The fuel cell showed a continuous performance decay in the presence of vapor mixtures of methanol and water of 5% and 8% by volume in anode feed...

  5. Development and optimization of radiographic and tomographic methods for characterization of water transport processes in PEM fuel cell materials

    International Nuclear Information System (INIS)

    Markoetter, Henning

    2013-01-01

    Water transport in polymer electrolyte membrane fuel cells (PEMFC) was non-destructively studied during operation with synchrotron X-ray radiography and tomography. The focus was set on the influence of the three-dimensional morphology of the cell materials on the water distribution and transport. Water management is still one of the mayor issues in PEMFC research. If the fuel cell is too dry, the proton conductivity (of the membrane) decreases leading to a performance loss and, in the worst case, to an irreversible damage of the membrane. On the other hand, the presence of water hinders the gas supply and causes a decrease in the cell performance. For this reason, effective water transport is a prerequisite for successful fuel cell operation. In this work the three-dimensional water transport through the gas diffusion layer (GDL) and its correlated with the 3D morphology of the cell materials has been revealed for the first time. It was shown that water is transported preferably through only a few larger pores which form transport paths of low resistance. This effect is pronounced because of the hydrophobic properties of the employed materials. In addition, water transport was found to be bidirectional, i. e. at appropriate locations a back and forth transport between GDL and flow field channels was observed. Furthermore, liquid water in the GDL was found to agglomerate preferably at the ribs of the flow field. This can be explained by condensation due to a temperature gradient in the cell and by the position, which is sheltered from the gas flow. Larger water accumulations in the gas supply channels were mainly attached to the channel wall opposing the GDL. The gas flow can bypass these agglomerations allowing a continuous gas supply. Moreover, it was shown that randomly distributed cracks in the micro porous layers (MPL) play an important role for the agglomeration of liquid water as they form preferred low resistance transport paths. In this work also

  6. Predictive emission monitoring system (PEMS) for emission control in biomass fired plants; Predikterande emissionsmaetsystem (PEMS) foer emissionskontroll i biobraensleeldade foerbraenningsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Harnevie, H; Sarkoezi, L; Trenkle, S

    1996-08-01

    An alternative method for estimation of NO{sub x}-emissions from biomass fired plants has been investigated. The method, `Predictive emission monitoring` (PEMS), implicates the creation of a mathematical formula. The formula expresses the relations between NO{sub x}-emissions and various operating and external parameters, such as flue gas temperature, excess combustion air and heat load. In this study the applicability of PEMS has been tested for two plants both of type travelling stokers. The most important results of the study are: PEMS is suitable for emission monitoring for some types of biomass fired plants (for example travelling stokers) even if the plant is fired with fuel with varying water content. In most cases it should be sufficient if the relation is based on oxygen level in the flue gas and plant load, with the possible addition of flue gas temperature and/or furnace temperature rate. These parameters are usually measured in any case, which means that no additional investment in instrumentation is necessary. In this study many measured parameters (for example the throttle levels) did not affect the NO{sub x}-emissions. A PEMS relation is only applicable for a specific plant and for a fixed validity range. Thus the function should be performed in such a way that it covers the limits of the operating parameters of the plant. Usage of different fuels or drift optimization can only be done within the validity range. Good combustion conditions could be necessary to receive a usable PEMS-function. Before creating the PEMS-function the combustion and the emission levels must be optimized. In plants with very fluctuating combustion, for example fixed stokers, it is possible that PEMS leads to not satisfying results. The total cost for a PEM-function can be calculated to be about 50-70% compared to a CEM during a period of a decade. 8 refs, 13 figs, 15 tabs, 8 appendices

  7. Effect of humidity content and direction of the flow of reactant gases on water management in the 4-serpentine and 1-serpentine flow channel in a PEM (proton exchange membrane) fuel cell

    International Nuclear Information System (INIS)

    Khazaee, I.; Sabadbafan, H.

    2016-01-01

    The performance of a PEM (proton exchange membrane) fuel cell depends on design and operating parameters such as relative humidity, operation pressure, and number of channels and direction of the flow of reactant gases. In this study, a three-dimensional, two-phase model has been established to investigate the water management and performance of PEM fuel cell with rectangular geometry and 1-serpentine and 4-serpentine with parallel flow, counter flow and cross flow for hydrogen and oxygen. The numerical simulation was realized with a PEM fuel cell model based on the FLUENT. The active area of each cell is 24.8 cm 2 that its weight is 1300 gr. The material of the gas diffusion layer is carbon clothes, the membrane is nafion117 and the catalyst layer is a plane with 0.004 g cm −2 platinum. Pure hydrogen is used on the anode side and oxygen on the cathode side. Simulation results are obtained for voltage as a function of current density at different humidity. The simulation results are compared with the experimental data, and the agreement is found to be good. The results show that the cell performance at lower voltages increases with increasing humidity in cell with 4-Serpentine flow channel and also in cell with 1-Serpentine flow channel, cell performance at all voltages increases with increasing humidity. In cell with 4-Serpentine and parallel flow channel cell performance is better than counter and cross flow in low voltage and in cell with 1-Serpentine and parallel flow, performance is better than counter and cross flow in high voltage. - Highlights: • Investigation new geometries of a fuel cell. • The effect of geometry on current density, oxygen and water distribution. • The effect of humidity on current density, oxygen and water distribution. • Seeing the interacting and complex electrochemical phenomena.

  8. Investigation on the combined operation of water gas shift and preferential oxidation reactor system on the kW scale

    NARCIS (Netherlands)

    O'Connell, M.; Kolb, G.A.; Schelhaas, K.P.; Schuerer, J.; Tiemann, D.; Keller, S.; Reinhard, D.; Hessel, V.

    2010-01-01

    A 5 kWel water gas shift reactor was integrated with a 5 kWel preferential oxidation reactor for the purposes of reducing the carbon monoxide levels in a reformate exit stream to levels below 100 ppm. The integrated system worked best at partial load with CO concentrations being reduced to 40 ppm at

  9. OSR encapsulation basis -- 100-KW

    International Nuclear Information System (INIS)

    Meichle, R.H.

    1995-01-01

    The purpose of this report is to provide the basis for a change in the Operations Safety Requirement (OSR) encapsulated fuel storage requirements in the 105 KW fuel storage basin which will permit the handling and storing of encapsulated fuel in canisters which no longer have a water-free space in the top of the canister. The scope of this report is limited to providing the change from the perspective of the safety envelope (bases) of the Safety Analysis Report (SAR) and Operations Safety Requirements (OSR). It does not change the encapsulation process itself

  10. Hydrogen production by a PEM electrolyser

    International Nuclear Information System (INIS)

    Aragón-González, G; León-Galicia, A; Camacho, J M Rivera; Uribe-Salazar, M; González-Huerta, R

    2015-01-01

    A PEM electrolyser for hydrogen production was evaluated. It was fed with water and a 400 mA, 3.5 V cc electrical power source. The electrolyser was built with two acrylic plates to form the anode and the cathode, two meshes to distribute the current, two seals, two gas diffusers and an assembly membrane-electrode. A small commercial neoprene sheet 1.7 mm thin was used to provide for the water deposit in order to avoid the machining of the structure. For the assembly of the proton interchange membrane a thin square 50 mm layer of Nafion 115 was used

  11. Real life testing of a Hybrid PEM Fuel Cell Bus

    Science.gov (United States)

    Folkesson, Anders; Andersson, Christian; Alvfors, Per; Alaküla, Mats; Overgaard, Lars

    Fuel cells produce low quantities of local emissions, if any, and are therefore one of the most promising alternatives to internal combustion engines as the main power source in future vehicles. It is likely that urban buses will be among the first commercial applications for fuel cells in vehicles. This is due to the fact that urban buses are highly visible for the public, they contribute significantly to air pollution in urban areas, they have small limitations in weight and volume and fuelling is handled via a centralised infrastructure. Results and experiences from real life measurements of energy flows in a Scania Hybrid PEM Fuel Cell Concept Bus are presented in this paper. The tests consist of measurements during several standard duty cycles. The efficiency of the fuel cell system and of the complete vehicle are presented and discussed. The net efficiency of the fuel cell system was approximately 40% and the fuel consumption of the concept bus is between 42 and 48% lower compared to a standard Scania bus. Energy recovery by regenerative braking saves up 28% energy. Bus subsystems such as the pneumatic system for door opening, suspension and brakes, the hydraulic power steering, the 24 V grid, the water pump and the cooling fans consume approximately 7% of the energy in the fuel input or 17% of the net power output from the fuel cell system. The bus was built by a number of companies in a project partly financed by the European Commission's Joule programme. The comprehensive testing is partly financed by the Swedish programme "Den Gröna Bilen" (The Green Car). A 50 kW el fuel cell system is the power source and a high voltage battery pack works as an energy buffer and power booster. The fuel, compressed hydrogen, is stored in two high-pressure stainless steel vessels mounted on the roof of the bus. The bus has a series hybrid electric driveline with wheel hub motors with a maximum power of 100 kW. Hybrid Fuel Cell Buses have a big potential, but there are

  12. Danish research and development in PEM fuel cell technology. Status for strategy follow up; Dansk forskning og udvikling inden for PEM-braendselscelleteknologi. Status for strategiopfoelgning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    PEM fuel cell technology shows promise as to efficient and environmental friendly production of power and heat. Furthermore, the technology can be used for production of hydrogen through electrolysis of water. In Denmark research and development focus on PEM fuel cells for low temperatures (up to c 80 deg. C) as well as for high temperatures (up to 200 deg. C). This note summarizes the present plane for research and development in PEM in Denmark, including status for development within specific areas i.e. basic research and development, process development, cell and stack development and tests, and system development. (BA)

  13. Development and optimization of radiographic and tomographic methods for characterization of water transport processes in PEM fuel cell materials; Entwicklung und Optimierung von radiographischen und tomographischen Verfahren zur Charakterisierung von Wassertransportprozessen in PEM-Brennstoffzellenmaterialien

    Energy Technology Data Exchange (ETDEWEB)

    Markoetter, Henning

    2013-02-18

    Water transport in polymer electrolyte membrane fuel cells (PEMFC) was non-destructively studied during operation with synchrotron X-ray radiography and tomography. The focus was set on the influence of the three-dimensional morphology of the cell materials on the water distribution and transport. Water management is still one of the mayor issues in PEMFC research. If the fuel cell is too dry, the proton conductivity (of the membrane) decreases leading to a performance loss and, in the worst case, to an irreversible damage of the membrane. On the other hand, the presence of water hinders the gas supply and causes a decrease in the cell performance. For this reason, effective water transport is a prerequisite for successful fuel cell operation. In this work the three-dimensional water transport through the gas diffusion layer (GDL) and its correlated with the 3D morphology of the cell materials has been revealed for the first time. It was shown that water is transported preferably through only a few larger pores which form transport paths of low resistance. This effect is pronounced because of the hydrophobic properties of the employed materials. In addition, water transport was found to be bidirectional, i. e. at appropriate locations a back and forth transport between GDL and flow field channels was observed. Furthermore, liquid water in the GDL was found to agglomerate preferably at the ribs of the flow field. This can be explained by condensation due to a temperature gradient in the cell and by the position, which is sheltered from the gas flow. Larger water accumulations in the gas supply channels were mainly attached to the channel wall opposing the GDL. The gas flow can bypass these agglomerations allowing a continuous gas supply. Moreover, it was shown that randomly distributed cracks in the micro porous layers (MPL) play an important role for the agglomeration of liquid water as they form preferred low resistance transport paths. In this work also

  14. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ersoz, Atilla; Olgun, Hayati [TUBITAK Marmara Research Center, Institute of Energy, Gebze, 41470 Kocaeli (Turkey); Ozdogan, Sibel [Marmara University Faculty of Engineering, Goztepe, 81040 Istanbul (Turkey)

    2006-03-09

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies. (author)

  15. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Science.gov (United States)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.

  16. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels (Poster)

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    One means of increasing the hydrogen yield to cost ratio of a PEM water electrolyser, is to increase the operating current density. However, at high current densities (higher than 1 A/cm2), management of heat and mass transfer in the anode current collector and channel becomes crucial and can lead...... to hot spots. Management of heat and fluid flow through the micro-channels play a great role in the capability of PEM water electrolysis when working at high current densities. Despite, many studies have been done on gas-liquid flows; still there is a lack of research on gas-liquid flows in micro......-sized channels (hydraulic diameter of 1 mm) of PEM water electrolysis. Precisely controlling all the parameters that affect the gas-liquid flow in a PEM water electrolysis cell is quite challenging, hence a simplified setup is constructed consisting of only a transparent channel with a sheet of titanium felt...

  17. Astrakhan-Mangyshlak water main (pipeline): corrosion state of the inner surface, and methods for its corrosion protection. Part III. The effects of KW2353 inhibitor. Part IV. Microbiological corrosion

    International Nuclear Information System (INIS)

    Reformatskaya, I.I.; Ashcheulova, I.I.; Barinova, M.A.; Kostin, D.V.; Prutchenko, S.G.; Ivleva, G.A.; Taubaldiev, T.S.; Murinov, K.S.; Tastanov, K.Kh.

    2003-01-01

    The effect of the KW2353 corrosion inhibitor, applied on the Astrakhan-Mangyshlak water main (pipeline) since 1997, on the corrosion processes, occurring on the 17G1S steel surface, is considered. The properties of the surface sediments are also considered. The role of the microbiological processes in the corrosion behavior of the water main (pipeline) inner surface is studied. It is shown, that application of the polyphosphate-type inhibitors, including the KW2353 one, for the anticorrosive protection of the inner surface of the extended water main (pipelines) is inadmissible: at the temperature of ∼20 deg C this corrosion inhibitor facilitates the development of the local corrosion processes on the water main (pipeline) inner surface. At the temperature of ∼8 deg C the above inhibitor discontinues to effect the corrosive stability of the 17G1S steel. The optimal way of the anticorrosive protection of the steel equipment, contacting with the water media, is the increase in the oxygen content therein [ru

  18. Methanol fuel processor and PEM fuel cell modeling for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Chrenko, Daniela [ISAT, University of Burgundy, Rue Mlle Bourgoise, 58000 Nevers (France); Gao, Fei; Blunier, Benjamin; Bouquain, David; Miraoui, Abdellatif [Transport and Systems Laboratory (SeT) - EA 3317/UTBM, Fuel cell Laboratory (FCLAB), University of Technology of Belfort-Montbeliard, Rue Thierry Mieg 90010, Belfort Cedex (France)

    2010-07-15

    The use of hydrocarbon fed fuel cell systems including a fuel processor can be an entry market for this emerging technology avoiding the problem of hydrogen infrastructure. This article presents a 1 kW low temperature PEM fuel cell system with fuel processor, the system is fueled by a mixture of methanol and water that is converted into hydrogen rich gas using a steam reformer. A complete system model including a fluidic fuel processor model containing evaporation, steam reformer, hydrogen filter, combustion, as well as a multi-domain fuel cell model is introduced. Experiments are performed with an IDATECH FCS1200 trademark fuel cell system. The results of modeling and experimentation show good results, namely with regard to fuel cell current and voltage as well as hydrogen production and pressure. The system is auto sufficient and shows an efficiency of 25.12%. The presented work is a step towards a complete system model, needed to develop a well adapted system control assuring optimized system efficiency. (author)

  19. Development of PEM fuel cell stack for small combined heat and power units; Udvikling af PEM braendselscellestak for smaa decentrale kraftvarmeanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The aim of the project was to further develop cells and stack elements in order to reach a higher yield, longer service life, lower production costs and reduced demands for the plants' help, security and SRO (control - regulation - monitoring) systems, i.e. take the PEM fuel cell core technology's yield and cost to a level that will make power generating plants based on PEM fuel cells commercial interesting for CHP production within a capacity area of a few kW. The project focused on development of materials and processes for the individual cell and stack elements, including optimization of materials and production processes for MEAs (membrane electrode assemblies) with integrated diffusion layer, development of materials and production processes for bipolar graphite plates and development of manifold end plates for casting in polymer sandwich construction. (BA)

  20. PEM fuel cell monitoring system

    Science.gov (United States)

    Meltser, Mark Alexander; Grot, Stephen Andreas

    1998-01-01

    Method and apparatus for monitoring the performance of H.sub.2 --O.sub.2 PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H.sub.2 sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken.

  1. Fuel starvation. Irreversible degradation mechanisms in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Carmen M.; Silva, R.A.; Travassos, M.A.; Paiva, T.I.; Fernandes, V.R. [LNEG, National Laboratory for Energy and Geology, Lisboa (Portugal). UPCH Fuel Cells and Hydrogen Unit

    2010-07-01

    PEM fuel cell operates under very aggressive conditions in both anode and cathode. Failure modes and mechanism in PEM fuel cells include those related to thermal, chemical or mechanical issues that may constrain stability, power and lifetime. In this work, the case of fuel starvation is examined. The anode potential may rise to levels compatible with the oxidization of water. If water is not available, oxidation of the carbon support will accelerate catalyst sintering. Diagnostics methods used for in-situ and ex-situ analysis of PEM fuel cells are selected in order to better categorize irreversible changes of the cell. Electrochemical Impedance Spectroscopy (EIS) is found instrumental in the identification of fuel cell flooding conditions and membrane dehydration associated to mass transport limitations / reactant starvation and protonic conductivity decrease, respectively. Furthermore, it indicates that water electrolysis might happen at the anode. Cross sections of the membrane catalyst and gas diffusion layers examined by scanning electron microscopy indicate electrode thickness reduction as a result of reactions taking place during hydrogen starvation. Catalyst particles are found to migrate outwards and located on carbon backings. Membrane degradation in fuel cell environment is analyzed in terms of the mechanism for fluoride release which is considered an early predictor of membrane degradation. (orig.)

  2. Design of current source DC/DC converter and inverter for 2kW fuel cell application

    DEFF Research Database (Denmark)

    Andreiciks, A.; Steiks, I.; Krievs, O.

    2013-01-01

    In order to use hydrogen fuel cell in domestic applications either as main power supply or backup power source, the low DC output voltage of the fuel cell has to be matched to the voltage level and frequency of the utility grid AC voltage. The interfacing power converter systems usually consist...... system is designed for interfacing a 2kW proton exchange membrane (PEM) fuel cell....

  3. HOGEN{trademark} proton exchange membrane hydrogen generators: Commercialization of PEM electrolyzers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.F.; Molter, T.M. [Proton Energy Systems, Inc., Rocky Hill, CT (United States)

    1997-12-31

    PROTON Energy Systems` new HOGEN series hydrogen generators are Proton Exchange Membrane (PEM) based water electrolyzers designed to generate 300 to 1000 Standard Cubic Feet Per Hour (SCFH) of high purity hydrogen at pressures up to 400 psi without the use of mechanical compressors. This paper will describe technology evolution leading to the HOGEN, identify system design performance parameters and describe the physical packaging and interfaces of HOGEN systems. PEM electrolyzers have served US and UK Navy and NASA needs for many years in a variety of diverse programs including oxygen generators for life support applications. In the late 1970`s these systems were advocated for bulk hydrogen generation through a series of DOE sponsored program activities. During the military buildup of the 1980`s commercial deployment of PEM hydrogen generators was de-emphasized as priority was given to new Navy and NASA PEM electrolysis systems. PROTON Energy Systems was founded in 1996 with the primary corporate mission of commercializing PEM hydrogen generators. These systems are specifically designed and priced to meet the needs of commercial markets and produced through manufacturing processes tailored to these applications. The HOGEN series generators are the first step along the path to full commercial deployment of PEM electrolyzer products for both industrial and consumer uses. The 300/1000 series are sized to meet the needs of the industrial gases market today and provide a design base that can transition to serve the needs of a decentralized hydrogen infrastructure tomorrow.

  4. 100KE/KW fuel storage basin surface volumetric factors

    International Nuclear Information System (INIS)

    Conn, K.R.

    1996-01-01

    This Supporting Document presents calculations of surface Volumetric factors for the 100KE and 100KW Fuel Storage Basins. These factors relate water level changes to basin loss or additions of water, or the equivalent water displacement volumes of objects added to or removed from the basin

  5. Optimized High Temperature PEM Fuel Cell & High Pressure PEM Electrolyser for Regenerative Fuel Cell Systems in GEO Telecommunication Satellites

    Directory of Open Access Journals (Sweden)

    Farnes Jarle

    2017-01-01

    Full Text Available Next generation telecommunication satellites will demand increasingly more power. Power levels up to 50 kW are foreseen for the next decades. Battery technology that can sustain up to 50 kW for eclipse lengths of up to 72 minutes will represent a major impact on the total mass of the satellite, even with new Li-ion battery technologies. Regenerative fuel cell systems (RFCS were identified years ago as a possible alternative to rechargeable batteries. CMR Prototech has investigated this technology in a series of projects initiated by ESA focusing on both the essential fuel cell technology, demonstration of cycle performance of a RFCS, corresponding to 15 years in orbit, as well as the very important reactants storage systems. In the last two years the development has been focused towards optimising the key elements of the RFCS; the HTPEM fuel cell and the High Pressure PEM electrolyser. In these ESA activities the main target has been to optimise the design by reducing the mass and at the same time improve the performance, thus increasing the specific energy. This paper will present the latest development, including the main results, showing that significant steps have been taken to increase TRL on these key components.

  6. Synchrotron radiography and tomography of a PEM fuel cell; Synchrotron-Radiographie und -Tomographie einer PEM-Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Markoetter, Henning; Manke, Ingo [Helmholtzzentrum Berlin fuer Materialien und Energie, Berlin (Germany). Fachgruppe Bildgebende Verfahren; Arlt, Tobias [TU Berlin, Berlin (Germany); Banhart, John [TU Berlin, Institut fuer angewandte Materialforschung, Berlin (Germany); TU Berlin, Institut fuer Werkstoffwissenschaften und -technologien, Berlin (Germany); Riesemeier, Heinrich [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Arbeitsgruppe Synchrotronstrahlanalytik (Germany); Krueger, Philipp [CONSULECTRA Unternehmensberatung GmbH, Hamburg (Germany); Haussmann, Jan; Klages, Merle [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung, Stuttgart (Germany); Scholta, Joachim [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung, Stuttgart (Germany). Fachgruppe Brennstoffzellen-Stacks

    2013-06-01

    The three dimensional water distribution and transport pathways in gas diffusion layers (GDL) of a polymer electrolyte membrane fuell cell (PEM FC) are analysed at various operating conditions. The method of quasi in-situ X-ray tomography is used for a three dimensional visualization of the water distribution and the GDL structure. Based on the results of dynamic radiographic measurements water transport pathways are located and subsequently investigated in detail by means of tomography. The combination of 2D and 3D techniques allows for an identification of 3D transport pathways through the GDl.

  7. Modelling and Optimization of Reforming Systems for use in PEM Fuel Cell

    DEFF Research Database (Denmark)

    Berry, Melissa; Korsgaard, Anders Risum; Nielsen, Mads Pagh

    2004-01-01

    Three different reforming methods for the conversion of natural gas to hydrogen are studied and compared: Steam Reforming (SR), Auto-thermal Reforming (ATR), and Catalytic Partial Oxidation (CPOX). Thermodynamic and kinetic models are developed for the reforming reactors as well as the subsequent...... reactors needed for CO removal to make the synthesis gas suitable for use in a PEM fuel cell. The systems are optimized to minimize the total volume, and must supply adequate hydrogen to a fuel cell with a 100kW load. The resultant system efficiencies are calculated. The CPOX system is the smallest...

  8. Degradation mechanisms and accelerated testing in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To

  9. Experimental characterization of the Clear-PEM scanner spectrometric performance

    Energy Technology Data Exchange (ETDEWEB)

    Bugalho, R; Carrico, B; Ferreira, C S; Frade, M; Ferreira, M; Moura, R; Ortigao, C; Pinheiro, J F; Rodrigues, P; Rolo, I; Silva, J C; Trindade, A; Varela, J [Laboratorio de Instrumentacao e Fisica Experimental de Particulas (LIP), Av. Elias Garcia 14-1, 1000-149 Lisboa (Portugal)], E-mail: frade@lip.pt

    2009-10-15

    In the framework of the Clear-PEM project for the construction of a high-resolution and high-specificity scanner for breast cancer imaging, a Positron Emission Mammography tomograph has been developed and installed at the Instituto Portugues de Oncologia do Porto hospital. The Clear-PEM scanner is mainly composed by two planar detector heads attached to a robotic arm, trigger/data acquisition electronics system and computing servers. The detector heads hold crystal matrices built from 2 x 2 x 20 mm{sup 3} LYSO:Ce crystals readout by Hamamatsu S8550 APD arrays. The APDs are optically coupled to both ends of the 6144 crystals in order to extract the DOI information for each detected event. Each one of 12288 APD's pixels is read and controlled by Application Specific Integrated Circuits water-cooled by an external cooling unit. The Clear-PEM frontend boards innovative design results in a unprecedented integration of the crystal matrices, APDs and ASICs, making Clear-PEM the PET scanner with the highest number of APD pixels ever integrated so far. In this paper, the scanner's main technical characteristics, calibration strategies and the first spectrometric performance evaluation in a clinical environment are presented. The first commissioning results show 99.7% active channels, which, after calibration, have inter-pixel and absolute gain distributions with dispersions of, respectively, 12.2% and 15.3%, demonstrating that despite the large number of channels, the system is uniform. The mean energy resolution at 511 keV is of 15.9%, with a 8.8% dispersion, and the mean C{sub DOI}{sup -1} is 5.9%/mm, with a 7.8% dispersion. The coincidence time resolution, at 511 keV, for a energy window between 400 and 600 keV, is 5.2 ns FWHM.

  10. UARS PEM Level 2 MEPS V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Particle Environment Monitor (PEM) level 2 Medium-Energy Particle Spectrometer (MEPS) daily product contains the electron and proton high-resolution spectral...

  11. A multi-phase, multi-component PEM fuel cell model. Paper no. IGEC-1-051

    International Nuclear Information System (INIS)

    Baschuk, J.J.; Li, X.

    2005-01-01

    'Full text:' Mathematical modeling is an important tool for PEM fuel cell commercialization. Mathematical models can illustrate the effect of the different processes on the overall performance of a PEM fuel cell; thus, mathematical models can be used to as a design tool to find optimal designs and operating conditions. A general formulation for a comprehensive fuel cell model, based on the conservation principle and volume-averaging, is presented. The model formulation includes the electro-chemical reactions, proton migration, and the mass transport of the gaseous reactants and liquid water. Additionally, the model formulation can be applied to all regions of the PEM fuel cell: the bipolar plates, gas flow channels, electrode backing, catalyst, and polymer electrolyte layers. Numerical results, showing the effect of water flooding on PEM fuel cell performance, are presented. (author)

  12. Structural and Morphological Features of Acid-Bearing Polymers for PEM Fuel Cells

    DEFF Research Database (Denmark)

    Yang, Yunsong; Siu, Ana; Peckham, Timothy J.

    2008-01-01

    Chemical structure, polymer microstructure, sequence distribution, and morphology of acid-bearing polymers are important factors in the design of polymer electrolyte membranes (PEMs) for fuel cells. The roles of ion aggregation and phase separation in vinylic- and aromatic-based polymers in proton...... conductivity and water transport are described. The formation, dimensions, and connectivity of ionic pathways are consistently found to play an important role in determining the physicochemical properties of PEMs. For polymers that possess low water content, phase separation and ionic channel formation...

  13. A comprehensive, consistent and systematic mathematical model of PEM fuel cells

    International Nuclear Information System (INIS)

    Baschuk, J.J.; Li Xianguo

    2009-01-01

    This paper presents a comprehensive, consistent and systematic mathematical model for PEM fuel cells that can be used as the general formulation for the simulation and analysis of PEM fuel cells. As an illustration, the model is applied to an isothermal, steady state, two-dimensional PEM fuel cell. Water is assumed to be in either the gas phase or as a liquid phase in the pores of the polymer electrolyte. The model includes the transport of gas in the gas flow channels, electrode backing and catalyst layers; the transport of water and hydronium in the polymer electrolyte of the catalyst and polymer electrolyte layers; and the transport of electrical current in the solid phase. Water and ion transport in the polymer electrolyte was modeled using the generalized Stefan-Maxwell equations, based on non-equilibrium thermodynamics. Model simulations show that the bulk, convective gas velocity facilitates hydrogen transport from the gas flow channels to the anode catalyst layers, but inhibits oxygen transport. While some of the water required by the anode is supplied by the water produced in the cathode, the majority of water must be supplied by the anode gas phase, making operation with fully humidified reactants necessary. The length of the gas flow channel has a significant effect on the current production of the PEM fuel cell, with a longer channel length having a lower performance relative to a shorter channel length. This lower performance is caused by a greater variation in water content within the longer channel length

  14. Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rich Chartrand

    2011-08-31

    A program to complete the design, construction and demonstration of a PEMFC system fuelled by Ethanol, LPG or NG for telecom applications was initiated in October 2007. Early in the program the economics for Ethanol were shown to be unfeasible and permission was given by DOE to focus on LPG only. The design and construction of a prototype unit was completed in Jun 2009 using commercially available PEM FC stack from Ballard Power Systems. During the course of testing, the high pressure drop of the stack was shown to be problematic in terms of control and stability of the reformer. Also, due to the power requirements for air compression the overall efficiency of the system was shown to be lower than a similar system using internally developed low pressure drop FC stack. In Q3 2009, the decision was made to change to the Plug power stack and a second prototype was built and tested. Overall net efficiency was shown to be 31.5% at 3 kW output. Total output of the system is 6 kW. Using the new stack hardware, material cost reduction of 63% was achieved over the previous Alpha design. During a November 2009 review meeting Plug Power proposed and was granted permission, to demonstrate the new, commercial version of Plug Power's telecom system at CERL. As this product was also being tested as part of a DOE Topic 7A program, this part of the program was transferred to the Topic 7A program. In Q32008, the scope of work of this program was expanded to include a National Grid demonstration project of a micro-CHP system using hightemperature PEM technology. The Gensys Blue system was cleared for unattended operation, grid connection, and power generation in Aug 2009 at Union College in NY state. The system continues to operate providing power and heat to Beuth House. The system is being continually evaluated and improvements to hardware and controls will be implemented as more is learned about the system's operation. The program is instrumental in improving the

  15. Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    K. J. Berry; Susanta Das

    2009-12-30

    To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell

  16. Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions

    DEFF Research Database (Denmark)

    Thomas, Sobi; Vang, Jakob Rabjerg; Araya, Samuel Simon

    2017-01-01

    The objective of this paper is to separate out the effects of methanol and water vapour on a high temperature polymer electrolyte membrane fuel cell under different temperatures (160°C and 180°C) and current densities (0.2Acm-2, 0.4Acm-2 and 0.6Acm-2). The degradation rates at the different curre...

  17. Durability of PEM Fuel Cell Membranes

    Science.gov (United States)

    Huang, Xinyu; Reifsnider, Ken

    Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.

  18. Simulation study of a proton exchange membrane (PEM) fuel cell system with autothermal reforming

    Energy Technology Data Exchange (ETDEWEB)

    Ersoz, Atilla [TUBITAK Marmara Research Centre, Energy Systems and Environmental Research Institute, 41470 Gebze, Kocaeli (Turkey); Olgun, Hayati [TUBITAK Marmara Research Centre, Energy Systems and Environmental Research Institute, 41470 Gebze, Kocaeli (Turkey); Ozdogan, Sibel [Marmara University, Faculty of Engineering, Department of Mechanical Engineering, 81040 Goztepe, Istanbul (Turkey)

    2006-08-15

    This paper presents the results of a study for a 100 kW net electrical power PEM fuel cell system. The major system components are an autothermal reformer, high and low temperature shift reactors, a preferential oxidation reactor, a PEM fuel cell, a combustor and an expander. Intensive heat integration within the PEM fuel cell system has been necessary to achieve acceptable net electrical efficiency levels. The calculations comprise the auxiliary equipment such as pumps, compressors, heaters, coolers, heat exchangers and pipes. The process simulation package 'ASPEN-HYSYS 3.1' has been used along with conventional calculations. The operation conditions of the autothermal reformer have been studied in detail to determine the values, which lead to the production of a hydrogen rich gas mixture with CO concentration at ppm level. The operation parameters of the other reactors have been determined considering the limitations implied by the catalysts involved. A gasoline type hydrocarbon fuel has been studied as the source for hydrogen production. The chemical composition of the hydrocarbon fuel affects the favorable operation conditions of autothermal reforming and the following fuel purification steps. Thermal efficiencies have been calculated for all of the major system components for selected operation conditions. The fuel cell stack efficiency has been calculated as a function of the number of cells (500-1250 cells). Efficiencies of all of the major system components along with auxiliary unit efficiencies determine the net electrical efficiency of the PEM fuel cell system. The obtained net electrical efficiency levels are between 30 (500 cells) and 37% (1250 cells). Hence, they are comparable with or higher than those of the conventional gasoline based internal combustion engine systems, in terms of the mechanical power efficiency.

  19. Simulation study of a proton exchange membrane (PEM) fuel cell system with autothermal reforming

    International Nuclear Information System (INIS)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    2006-01-01

    This paper presents the results of a study for a 100 kW net electrical power PEM fuel cell system. The major system components are an autothermal reformer, high and low temperature shift reactors, a preferential oxidation reactor, a PEM fuel cell, a combustor and an expander. Intensive heat integration within the PEM fuel cell system has been necessary to achieve acceptable net electrical efficiency levels. The calculations comprise the auxiliary equipment such as pumps, compressors, heaters, coolers, heat exchangers and pipes. The process simulation package 'ASPEN-HYSYS 3.1' has been used along with conventional calculations. The operation conditions of the autothermal reformer have been studied in detail to determine the values, which lead to the production of a hydrogen rich gas mixture with CO concentration at ppm level. The operation parameters of the other reactors have been determined considering the limitations implied by the catalysts involved. A gasoline type hydrocarbon fuel has been studied as the source for hydrogen production. The chemical composition of the hydrocarbon fuel affects the favorable operation conditions of autothermal reforming and the following fuel purification steps. Thermal efficiencies have been calculated for all of the major system components for selected operation conditions. The fuel cell stack efficiency has been calculated as a function of the number of cells (500-1250 cells). Efficiencies of all of the major system components along with auxiliary unit efficiencies determine the net electrical efficiency of the PEM fuel cell system. The obtained net electrical efficiency levels are between 30 (500 cells) and 37% (1250 cells). Hence, they are comparable with or higher than those of the conventional gasoline based internal combustion engine systems, in terms of the mechanical power efficiency

  20. Modeling two-phase flow in PEM fuel cell channels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun; Basu, Suman; Wang, Chao-Yang [Electrochemical Engine Center (ECEC), and Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2008-05-01

    This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M{sup 2} formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels. (author)

  1. Water quality prediction using the QUAL2Kw model in a small karstic watershed in Brazil Predição da qualidade da água através do modelo QUAL2Kw numa pequena bacia hidrográfica cárstica brasileira

    Directory of Open Access Journals (Sweden)

    Rodrigo de Arruda Camargo

    2010-12-01

    Full Text Available AIM: The Tancredo Neves International Airport (TNIA complex is situated in Brazil's Fidalgo watershed. Since its construction, the TNIA complex has attracted urban development, leading to expansion of the complex and occupation of the surrounding area. However, this area lacks basic infrastructure such as wastewater treatment facilities. This paper had the objectives of calibrating and validating a water quality prediction model and of assessing the capacity of small karstic watersheds to assimilate non-point source pollutant loads; METHODS: We used the QUAL2Kw model for modeling the water quality. We performed model calibration for the rainy period then validated the results for the dry period; RESULTS: The model adequately represented the physical, chemical, and hydraulic aspects of the Fidalgo watershed. The pH, EC, TDS, TP, alkalinity and E. coli presented the closest simulation values for the rainy period. For the dry period, the best simulations were obtained for pH, EC, TDS, TP, and alkalinity. We concluded that the calibration and validation periods had similar RMSE values for flow rate, TDS and DOC. The differences were greater for pH, EC, NO3, TP, and E. coli. The lowest dissolved oxygen contents obtained during the calibration and validation periods were 5.4 and 4.7 mg.L-1, respectively, both of which are higher than the minimum of 4.0 mg.L-1 established by the USEPA for the conservation of aquatic communities, but lower than the minimum of 5.0 mg.L-1established by the Brazilian CONAMA 357. The upper limits for biochemical oxygen demand and total N and P can be met as long as the respective loads increase by no more than 0.361 kg.d-1 O2, 0.022 kg.d-1 N, and 0.010 kg.d-1 P, according to USEPA and 0.361 kg.d-1 O2 and 0.012 kg.d-1 P according to CONAMA 357; CONCLUSIONS: The conservation of the water resources in this region should therefore consider the adoption of preventive measures such as protecting exposed soils and decreasing the

  2. PEMS. Advanced predictive emission monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sandvig Nielsen, J.

    2010-07-15

    In the project PEMS have been developed for boilers, internal combustion engines and gas turbines. The PEMS models have been developed using two principles: The one called ''first principles'' is based on thermo-kinetic modeling of the NO{sub x}-formation by modeling conditions (like temperature, pressure and residence time) in the reaction zones. The other one is data driven using artificial neural network (ANN) and includes no physical properties and no thermo-kinetic formulation. Models of first principles have been developed for gas turbines and gas engines. Data driven models have been developed for gas turbines, gas engines and boilers. The models have been tested on data from sites located in Denmark and the Middle East. Weel and Sandvig has conducted the on-site emission measurements used for development and testing the PEMS models. For gas turbines, both the ''first principles'' and the data driven models have performed excellent considering the ability to reproduce the emission levels of NO{sub x} according to the input variables used for calibration. Data driven models for boilers and gas engines have performed excellent as well. The rather comprehensive first principle model, developed for gas engines, did not perform as well in the prediction of NO{sub x}. Possible a more complex model formulation is required for internal combustion engines. In general, both model types have been validated on data extracted from the data set used for calibration. The data for validation have been selected randomly as individual samplings, and is scattered over the entire measuring campaign. For one natural gas engine a secondary measuring campaign was conducted half a year later than the campaign used for training the data driven model. In the meantime, this engine had been through a refurbishment that included new pistons, piston rings and cylinder linings and cleaning of the cylinder heads. Despite the refurbishment, the

  3. A retrospective on the LBNL PEM project

    International Nuclear Information System (INIS)

    Huber, J.S.; Moses, W.W.; Wang, G.C.; Derenzo, S.E.; Huesman, R.H.; Qi, J.; Virador, P.; Choong, W.S.; Mandelli, E.; Beuville, E.; Pedrali-Noy, M.; Krieger, B.; Meddeler, G.

    2004-01-01

    We present a retrospective on the LBNL Positron Emission Mammography (PEM) project, looking back on our design and experiences. The LBNL PEM camera utilizes detector modules that are capable of measuring depth of interaction (DOI) and places them into 4 detector banks in a rectangular geometry. In order to build this camera, we had to develop the DOI detector module, LSO etching, Lumirror-epoxy reflector for the LSO array (to achieve optimal DOI), photodiode array, custom IC, rigid-flex readout board, packaging, DOI calibration and reconstruction algorithms for the rectangular camera geometry. We will discuss the highlights (good and bad) of these developments

  4. Advanced Approaches to Greatly Reduce Hydrogen Gas Crossover Losses in PEM Electrolyzers Operating at High Pressures and Low Current Densities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ElectroChem proposes technology advances in its unique PEM IFF water electrolyzer design to meet the NASA requirement for an electrolyzer that will operate very...

  5. Reliability analysis and utilization of PEMs in space application

    Science.gov (United States)

    Jiang, Xiujie; Wang, Zhihua; Sun, Huixian; Chen, Xiaomin; Zhao, Tianlin; Yu, Guanghua; Zhou, Changyi

    2009-11-01

    More and more plastic encapsulated microcircuits (PEMs) are used in space missions to achieve high performance. Since PEMs are designed for use in terrestrial operating conditions, the successful usage of PEMs in space harsh environment is closely related to reliability issues, which should be considered firstly. However, there is no ready-made methodology for PEMs in space applications. This paper discusses the reliability for the usage of PEMs in space. This reliability analysis can be divided into five categories: radiation test, radiation hardness, screening test, reliability calculation and reliability assessment. One case study is also presented to illuminate the details of the process, in which a PEM part is used in a joint space program Double-Star Project between the European Space Agency (ESA) and China. The influence of environmental constrains including radiation, humidity, temperature and mechanics on the PEM part has been considered. Both Double-Star Project satellites are still running well in space now.

  6. Plastic Encapsulated Microcircuits (PEMs) Reliability Guide

    Science.gov (United States)

    Sandor, M.

    2000-01-01

    It is reported by some users and has been demonstrated by others via testing and qualification that the quality and reliability of plastic-encapsulated microcircuits (PEMs) manufactured today are excellent in commercial applications and closely equivalent, and in some cases superior to their hemetic counterparts.

  7. HyLIFT-0. 'Development and benchmarking of a 1st gen. HT-PEM/Li-lon hybrid motive power system for forklifts'. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Karsten (H2 Logic A/S, Herning (Denmark)); Elkjaer Toennesen, A. (Teknologisk Institut, AArhus (Denmark)); Torrendrup, C. (Lithium Balance A/S, Ishoej (Denmark)); Sangers, A. (Grundfos DK A/S, Bjerringbro (Denmark)); Junge, S. (Atlet Danmark A/S, Engesvang (Denmark))

    2010-04-15

    In the HyLIFT-0 project a HT-PEM/Li-Ion hybrid system for a forklift was developed and built. The system has been benchmark'et and tested both at H2 Logic, in a test bench at the Teknologisk Institut and by an end user, Grene A/S, who already has a hydrogen hybrid vehicle in service with LT-PEM system. The HT-PEM/Li-Ion system is based on a 1 kW SerEnergy fuel cell, with a 2.5 kWh Li-Ion battery pack and the newly developed BMS. Both Fuel cell systems were measured in the test bench at Teknologisk Institut. The conclusions are not fully accurate because there are many factors influencing such as the HT-PEM system not being fully optimized. The benchmark at Grene, showed that the heat up time is critical for the vehicle, but once it is in operation, there are no difference to the LT-PEM system, either in experienced performance or in user experience. The purpose of HyLIFT-0 project is met since the measurements and the benchmark has revealed the technology's advantages and disadvantages. Above all the conclusion is that HT-PEM/Li-Ion hybrid fuel cell system at the present stage of development is not a disruptive technology compared to known LT-PEM systems. There are numerous advantages of the system, but there are also some disadvantages, doing that, overall, it is not a usable technology in forklifts - it is especially the long start-up time of up to 45 minutes that is unacceptable for the fork lifter user; the user wants to have immediate maximum output and the battery cannot handle this during the time it lasts until the HT-PEM fuel cell is warm and producing power. The HT-PEM/Li-Ion system is relatively simple to build and it saves a number of components compared to the LT-PEM system, but the economic advantage of this is counterbalanced by the fuel cell being rather expensive and furthermore it has a relatively low efficiency. This will probably change over time when the technology completed development and volume increase. (LN)

  8. Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation

    International Nuclear Information System (INIS)

    Ercolino, Giuliana; Ashraf, Muhammad A.; Specchia, Vito; Specchia, Stefania

    2015-01-01

    Highlights: • Modeling of different fuel processors integrated with PEM fuel cell stack. • Steam or autothermal reforming + CO selective methanation or preferential oxidation. • Reforming of different hydrocarbons: gasoline, light diesel oil, natural gas. • 5 kW e net systems comparison via energy efficiency and primary fuel rate consumed. • Highest net efficiency: steam reformer + CO selective methanation based system. - Abstract: The performances of four different auxiliary power unit (APU) schemes, based on a 5 kW e net proton exchange membrane fuel cell (PEM-FC) stack, are evaluated and compared. The fuel processor section of each APU is characterized by a reformer (autothermal ATR or steam SR), a non-isothermal water gas shift (NI-WGS) reactor and a final syngas catalytic clean-up step: the CO preferential oxidation (PROX) reactor or the CO selective methanation (SMET) one. Furthermore, three hydrocarbon fuels, the most commonly found in service stations (gasoline, light diesel oil and natural gas) are considered as primary fuels. The comparison is carried out examining the results obtained by a series of steady-state system simulations in Aspen Plus® of the four different APU schemes by varying the fed fuel. From the calculated data, the performance of CO-PROX is not very different compared to that of the CO-SMET, but the performance of the SR based APUs is higher than the scheme of the ATR based APUs. The most promising APU scheme with respect to an overall performance target is the scheme fed with natural gas and characterized by a fuel processor chain consisting of SR, NI-WGS and CO-SMET reactors. This processing reactors scheme together with the fuel cell section, notwithstanding having practically the same energy efficiency of the scheme with SR, NI-WGS and CO-PROX reactors, ensures a less complex scheme, higher hydrogen concentration in the syngas, lower air mass rate consumption, the absence of nitrogen in the syngas and higher potential

  9. Use of hydrogen-deuterium exchange for contrast in {sup 1}H NMR microscopy investigations of an operating PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Feindel, Kirk W.; Bergens, Steven H.; Wasylishen, Roderick E. [Department of Chemistry, Gunning/Lemieux Chemistry Centre, University of Alberta, Edmonton, Alta. T6G 2G2 (Canada)

    2007-11-08

    The use of hydrogen-deuterium (H-D) exchange as a method to introduce contrast in {sup 1}H NMR microscopy images and to investigate the dynamic distribution of water throughout an operating H{sub 2}/O{sub 2} polymer electrolyte membrane fuel cell, PEMFC, is demonstrated. Cycling D{sub 2}O(l) through the flow channels of a PEMFC causes H-D exchange with water in the PEM to result in a D{sub 2}O-saturated PEM and thus concomitant removal of the {sup 1}H NMR signal. Subsequent operation of the PEMFC with H{sub 2}(g) enables visualization of the redistribution of water from wet or flooded conditions as H-D exchange occurs with D{sub 2}O in the PEM and results in recovery of the {sup 1}H NMR signal. Alternating between H{sub 2}(g) and D{sub 2}(g) as fuel allows observation of water distributions in the PEM while the cell is operating at a steady-state under low relative humidity. At similar currents, the rate of observable H-D exchange in the PEM during fuel cell operation was faster when the PEM was saturated with water than when under low relative humidity. These results are consistent with the known proportions of the conductive hydrophilic and nonconductive hydrophobic domains of Nafion when exposed to different relative humidities. (author)

  10. Design and Control of High Temperature PEM Fuel Cell System

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    E-cient fuel cell systems have started to appear in many dierent commercial applications and large scale production facilities are already operating to supply fuel cells to support an ever growing market. Fuel cells are typically considered to replace leadacid batteries in applications where...... to conventional PEM fuel cells, that use liquid water as a proton conductor and thus operate at temperatures below 100oC. The HTPEM fuel cell membrane in focus in this work is the BASF Celtec-P polybenzimidazole (PBI) membrane that uses phosphoric acid as a proton conductor. The absence of water in the fuel cells...... enables the use of designing cathode air cooled stacks greatly simplifying the fuel cell system and lowering the parasitic losses. Furthermore, the fuel impurity tolerance is signicantly improved because of the higher temperatures, and much higher concentrations of CO can be endured without performance...

  11. Development of coincidence processing module for PEM

    International Nuclear Information System (INIS)

    Feng Baotong; Shuai Lei; Li Ke

    2011-01-01

    For the breast cancer diagnosis and therapy, a prototype of positron emission mammography (PEM) was developed in Institute of High Energy Physics, Chinese Academy of Sciences. In this paper, the design of coincidence processing module (CPM) for this PEM was presented. Both the hardware architecture and the software logic were introduced. In this design, the CPM used the Rocket IO fast interface in FPGA and fiber technology to acquire the preprocessed data from the continuous sampling module (CSM) and then selected the valid event with the coincidence timing window method, which was performed in the FPGA on the daughter board. The CPM transmits the processed data to host computer via gigabit Ethernet. The whole system was controlled by CAN bus. The primary tests indicate that the performance of this design is good. (authors)

  12. Investigation of low glass transition temperature on COTS PEMs reliability

    Science.gov (United States)

    Sandor, M.; Agarwal, S.

    2002-01-01

    Many factors influence PEM component reliability.One of the factors that can affect PEM performance and reliability is the glass transition temperature (Tg) and the coefficient of thermal expansion (CTE) of the encapsulant or underfill. JPL/NASA is investigating how the Tg and CTE for PEMs affect device reliability under different temperature and aging conditions. Other issues with Tg are also being investigated. Some preliminary data will be presented on glass transition temperature test results conducted at JPL.

  13. Performance optimization of a PEM hydrogen-oxygen fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    The objective was to develop a semi-empirical model that would simulate the performance of proton exchange membrane (PEM) fuel cells without extensive calculations. A fuel cell mathematical module has been designed and constructed to determine the performance of a PEM fuel cell. The influence of some operating parameters on the performance of PEM fuel cell has been investigated using pure hydrogen on the anode side and oxygen on the cathode side. The present model can be used to investigate t...

  14. Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems

    International Nuclear Information System (INIS)

    Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

    2004-01-01

    This investigation examines the economics of producing electricity from proton-exchange membrane (PEM) fuel cell systems under various conditions, including the possibility of using fuel cell vehicles (FCVs) to produce power when they are parked at office buildings and residences. The analysis shows that the economics of both stationary fuel cell and FCV-based power vary significantly with variations in key input variables such as the price of natural gas, electricity prices, fuel cell and reformer system costs, and fuel cell system durability levels. The 'central case' results show that stationary PEM fuel cell systems can supply electricity for offices and homes in California at a net savings when fuel cell system costs reach about $6000 for a 5 kW home system ($1200/kW) and $175,000 for a 250 kW commercial system ($700/kW) and assuming somewhat favorable natural gas costs of $6/GJ at residences and $4/GJ at commercial buildings. Grid-connected FCVs in commercial settings can also potentially supply electricity at competitive rates, in some cases producing significant annual benefits. Particularly attractive is the combination of net metering along with time-of-use electricity rates that allow power to be supplied to the utility grid at the avoided cost of central power plant generation. FCV-based power at individual residences does not appear to be as attractive, at least where FCV power can only be used directly or banked with the utility for net metering and not sold in greater quantity, due to the low load levels at these locations that provide a poor match to automotive fuel cell operation, higher natural gas prices than are available at commercial settings, and other factors

  15. Development of an empirical dynamic model for a Nexa PEM fuel cell power module

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Mehdi; Mohammad Taghi Bathaee, S. [Power Systems Laboratory, Department of Electrical Engineering, K.N. Toosi University of Technology, 16317-14191 Tehran (Iran)

    2010-12-15

    The goal of this study is to develop a fuel cell model which is capable of characterizing fuel cell steady-state performance as well as dynamic behavior. In this paper a new dynamic model of a 1.2 kW Polymer Electrolyte Membrane Fuel Cell (PEMFC) is developed and validated through a series of experiments. The experimental results have been obtained from a Nexa trademark PEM fuel cell power module under different load conditions. Based on this model, a simulator software package has been developed using the MATLAB {sup registered} and Simulink {sup registered} software and simulation results have been carried out. The proposed model exhibits good agreement with experiment results in steady-state and dynamic performance. (author)

  16. Distributed generation system with PEM fuel cell for electrical power quality improvement

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, D.; Beites, L.F.; Blazquez, F. [Department of Electrical Engineering, ETSII, Escuela de Ingenieros Industriales, Universidad Politecnica de Madrid, C/ Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Ballesteros, J.C. [Endesa Generacion, S.A. c/ Ribera de Loira 60, 28042 Madrid (Spain)

    2008-08-15

    In this paper, a physical model for a distributed generation (DG) system with power quality improvement capability is presented. The generating system consists of a 5 kW PEM fuel cell, a natural gas reformer, hydrogen storage bottles and a bank of ultra-capacitors. Additional power quality functions are implemented with a vector-controlled electronic converter for regulating the injected power. The capabilities of the system were experimentally tested on a scaled electrical network. It is composed of different lines, built with linear inductances and resistances, and taking into account both linear and non-linear loads. The ability to improve power quality was tested by means of different voltage and frequency perturbations produced on the physical model electrical network. (author)

  17. Modelling and optimization of reforming systems for use in PEM fuel cell systems

    International Nuclear Information System (INIS)

    Berry, M.; Korsgaard, A.R.; Nielsen, M.P.

    2004-01-01

    Three different reforming methods for the conversion of natural gas to hydrogen are studied and compared: Steam Reforming (SR), Auto-thermal Reforming (ATR), and Catalytic Partial Oxidation (CPOX). Thermodynamic and kinetic models are developed for the reforming reactors as well as the subsequent reactors needed for CO removal to make the synthesis gas suitable for use in a PEM fuel cell. The systems are optimized to minimize the total volume, and must supply adequate hydrogen to a fuel cell with a 100kW load. The resultant system efficiencies are calculated. The CPOX system is the smallest and exhibits a comparable efficiency to the SR system. The SR system had the best relation between efficiency and volume increase. Optimal temperature profiles within each reactor were found. It was shown that temperature control can significantly reduce reactor volume and increase conversion capabilities. (author)

  18. Parameterization of electrical equivalent circuits for pem fuel cells; Parametrierung elektrischer Aequivalentschaltbilder von PEM Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Haubrock, J.

    2007-12-13

    Fuel cells are a very promising technology for energy conversion. For optimization purpose, useful simulation tools are needs. Simulation tools should simulate the static and dynamic electrical behaviour and the models should parameterized by measurment results which should be done easily. In this dissertation, a useful model for simulating a pem fuel cell is developed. the model should parametrizes by V-I curve measurment and by current step respond. The model based on electrical equivalent circuits and it is shown, that it is possible to simulate the dynamic behaviour of a pem fuel cell stack. The simulation results are compared by measurment results. (orig.)

  19. Regeneration of CO poisoned PEM fuel cells by periodic pulsed oxidation

    International Nuclear Information System (INIS)

    Adams, W.A.; Blair, J.; Bullock, K.R.; Gardner, C.L.

    2004-01-01

    CO poisoning is a major issue when reformate is used as a fuel in PEM fuel cells. Normally it is necessary to reduce the CO to very low levels (∼5 ppm) and CO tolerant catalysts, such as Pt-Ru, are often employed. As an alternative approach, we have studied the use of pulsed oxidation for the regeneration of CO poisoned cells. Results are presented for the regeneration of Pt and Pt-Ru anodes in a PEM fuel cell fed with CO concentrations as high as 10,000 ppm. The results show periodic removal of CO from the catalyst surface by pulsed oxidation can increase the average cell potential and increase overall efficiency. A method for enhancing the performance of a fuel cell stack using a microprocessor-based Fuel Cell Health Manager (FCHM) has been developed. The results of a cost/benefit analysis for the use of a FCHM on a 4 kW residential fuel cell system are presented. (author)

  20. PEM-Scoot - Control system and analysis of operation; PEM-Scoot. Steuerung und Betriebsanalyse. Diplomarbeit 2006/07

    Energy Technology Data Exchange (ETDEWEB)

    Naegeli, M.; Kaiser, R.

    2007-07-01

    This diploma thesis presented at the Bernese University of Applied Sciences, Switzerland, describes a project concerning a new drive technology. The PEM-Scoot is a scooter with an electric drive which is powered by a fuel cell, using hydrogen and oxygen stored in two pressure cylinders. That only water is exhausted during operation is considered to be an important advantage. The work done in the project consisted on the one hand of the writing of software for the control and putting it into service and, on the other hand, of various driving tests carried out in order to optimise the control software for stand-alone handling. The planning of the project is described, as are the various components used. The software for the operation of the vehicle is described in detail. The results of driving tests are presented. The report is complemented with a comprehensive appendix.

  1. Detailed experimental characterization of a reformate fuelled PEM stack

    DEFF Research Database (Denmark)

    Korsgaard, Anders; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2006-01-01

    Increasing attention is given to fuel cells for micro combined heat and power systems for local households. Currently, mainly three different types of fuel cells are commercially competitive: SOFC, low- and high-temperature PEM fuel cells. In the present paper the Low Temperature PEM technology i...

  2. The JPL Direct Methanol Liquid-feed PEM Fuel Cell

    Science.gov (United States)

    Halpert, G.; Surampudi, S.

    1994-01-01

    Recently, there has been a breakthrough in fuel cell technology in the Energy Storage Systems Group at the Jet Propulsion Laboratory with the develpment of a direct methanol, liquid-feed, solid polymer electrolyte membrane (PEM) fuel cell... The methanol liquid-feed, solid polymer electrolyte (PEM) design has numerous system level advantages over the gas-feed design. These include:...

  3. An efficient mathematical model for air-breathing PEM fuel cells

    International Nuclear Information System (INIS)

    Ismail, M.S.; Ingham, D.B.; Hughes, K.J.; Ma, L.; Pourkashanian, M.

    2014-01-01

    Graphical abstract: The effects of the ambient humidity on the performance of air-breathing PEM fuel cells become more pronounced as the ambient temperature increases. The polarisation curves have been generated using the in-house developed MATLAB® application, Polarisation Curve Generator, which is available in the supplementary data. - Highlights: • An efficient mathematical model has been developed for an air-breathing PEM fuel cell. • The fuel cell performance is significantly over-predicted if the Joule and entropic heats are neglected. • The fuel cell performance is highly sensitive to the state of water at the thermodynamic equilibrium. • The cell potential dictates the favourable ambient conditions for the fuel cell. - Abstract: A simple and efficient mathematical model for air-breathing proton exchange membrane (PEM) fuel cells has been built. One of the major objectives of this study is to investigate the effects of the Joule and entropic heat sources, which are often neglected, on the performance of air-breathing PEM fuel cells. It is found that the fuel cell performance is significantly over-predicted if one or both of these heat sources is not incorporated into the model. Also, it is found that the performance of the fuel cell is highly sensitive to the state of the water at the thermodynamic equilibrium magnitude as both the entropic heat and the Nernst potential considerably increase if water is assumed to be produced in liquid form rather than in vapour form. Further, the heat of condensation is shown to be small and therefore, under single-phase modelling, has a negligible effect on the performance of the fuel cell. Finally, the favourable ambient conditions depend on the operating cell potential. At intermediate cell potentials, a mild ambient temperature and low humidity are favoured to maintain high membrane conductivity and mitigate water flooding. At low cell potentials, low ambient temperature and high humidity are favoured to

  4. Study of a SOFC-PEM hybrid system

    International Nuclear Information System (INIS)

    Fillman, B.; Bjornbom, P.; Sylwan, C.

    2004-01-01

    'Full text:' In the present project a system study of a SOFC-PEM hybrid system is in progress. Positive synergy effects are expected when combining a SOFC system with a PEM system. By combining the advantages of each fuel cell type it is promising that the hybrid system has higher overall efficiency than a SOFC-only system or a reformer-PEM system. A SOFC stack produces electricity and a reformate gas that can be further processed to hydrogen by the shift reaction. The produced hydrogen can be used by PEM stack in order to produce further electricity. In the PEM system case the complex fuel reformer processing could be eliminated. The simulations were performed with the flowsheeting simulation software Aspen Plus. (author)

  5. Controllable clock circuit design in PEM system

    International Nuclear Information System (INIS)

    Sun Yunhua; Wang Peihua; Hu Tingting; Feng Baotong; Shuai Lei; Huang Huan; Wei Shujun; Li Ke; Zhao Jingwei; Wei Long

    2011-01-01

    A high-precision synchronized clock circuit design will be presented, which can supply steady, reliable and anti-jamming clock signal for the data acquirement (DAQ) system of Positron Emission Mammography (PEM). This circuit design is based on the Single-Chip Microcomputer and high-precision clock chip, and can achieve multiple controllable clock signals. The jamming between the clock signals can be reduced greatly with the differential transmission. Meanwhile, the adoption of CAN bus control in the clock circuit can prompt the clock signals to be transmitted or masked simultaneously when needed. (authors)

  6. Controllable clock circuit design in PEM system

    International Nuclear Information System (INIS)

    Sun Yunhua; Wang Peilin; Hu Tingting; Feng Baotong; Shuai Lei; Huang Huan; Wei Shujun; Li Ke; Zhao Jingwei; Wei Long

    2010-01-01

    A high-precision synchronized clock circuit design will be presented, which can supply steady, reliable and anti-jamming clock signal for the data acquirement (DAQ) system of Positron Emission Mammography (PEM). This circuit design is based on the Single-Chip Microcomputer and high-precision clock chip, and can achieve multiple controllable clock signals. The jamming between the clock signals can be reduced greatly with the differential transmission. Meanwhile, the adoption of CAN bus control in the clock circuit can prompt the clock signals to be transmitted or masked simultaneously when needed. (authors)

  7. Engineering design of 500KW CW collector

    International Nuclear Information System (INIS)

    Kumar, Ramesh; Mishra, Deepak; Prasad, M.; Hannuarakar, P.R.

    2006-01-01

    An electron beam collector for 500kW beam power has been designed to test the electron gun. The gun is designed for 250kW, 350MHz CW Klystron with 50% efficiency. This will also help in preliminary studies related to final collector design for Klystron. This paper presents the design parameters, thermal analysis and mechanical features of the design. Electron trajectory on inside wall of the collector is determined with EGUN and computational flow dynamics simulation was done on ANSYS for cooling requirements. (author)

  8. A computational model of a PEM fuel cell with finite vapor absorption rate

    Energy Technology Data Exchange (ETDEWEB)

    Vorobev, A.; Zikanov, O.; Shamim, T. [Department of Mechanical Engineering, University of Michigan-Dearborn, 48128-1491 Dearborn, MI (United States)

    2007-03-30

    The paper presents a new computational model of non-steady operation of a PEM fuel cell. The model is based on the macroscopic hydrodynamic approach and assumptions of low humidity operation and one-dimensionality of transport processes. Its novelty and advantage in comparison with similar existing models is that it takes into account the finite-time equilibration between vapor and membrane-phase liquid water within the catalyst layers. The phenomenon is described using an additional parameter with the physical meaning of the typical reciprocal time of the equilibration. A computational parametric study is conducted to identify the effect of the finite-time equilibration on steady-state and transient operation of a PEM fuel cell. (author)

  9. Final Scientific Report, New Proton Conductive Composite Materials for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei

    2010-11-08

    This project covered one of the main challenges in present-day PEM fuel cell technology: to design a membrane capable of maintaining high conductivity and mechanical integrity when temperature is elevated and water vapor pressure is severely reduced. The DOE conductivity milestone of 0.1 S cm-1 at 120 degrees C and 50 % relative humidity (RH) for designed membranes addressed the target for the project. Our approach presumed to develop a composite membrane with hydrophilic proton-conductive inorganic material and the proton conductive polymeric matrix that is able to “bridge” the conduction paths in the membrane. The unique aspect of our approach was the use of highly functionalized inorganic additives to benefit from their water retention properties and high conductivity as well. A promising result turns out that highly hydrophilic phosphorsilicate gels added in Nafion matrix improved PEM fuel cell performance by over 50% compared with bare Nafion membrane at 120 degrees C and 50 % RH. This achievement realizes that the fuel cell operating pressure can be kept low, which would make the PEM fuel cell much more cost efficient and adaptable to practical operating conditions and facilitate its faster commercialization particularly in automotive and stationary applications.

  10. Design and construction of an electrolyte PEM test; Diseno y construccion de un electrolizador PEM de prueba

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Huerta, R. G.; Santillan-Aragon, G. [Instituto Politecnico Nacional, Mexico, D.F. (Mexico)]. E-mail: rosgonzalez_h@yahoo.com.mx; Solorza-Feria, O. [CINVESTAV-IPN, Mexico D.F. (Mexico)

    2009-09-15

    The use of hydrogen as a fuel is directly linked to its efficient and clean production. One of the most promising methods is water electrolysis, which coupled with a renewable energy source prevents the emission of pollutants into the atmosphere. If a proton exchange membrane (PEM) electrolysis is used, a highly pure hydrogen is produced, ready to be used in a fuel battery. Many studies and investigations in this area concentrate on finding different stable and selective electrocatalysts for the cathode reaction (production of hydrogen) and anode reaction (production of oxygen). To conduct these studies, equipment is needed to perform electrochemical studies and determine the stability and performance of different electrocatalysts. This work presents the design and construction of an a PEM electrolysis test to determine the performance of different anode electrocatalysts. Its active area is 4 cm{sup 2}, its structure is graphite and the current distribution mesh is made of stainless steel. Its performance was determined using as electrocatalysts 10% Pt/C E-tek® anodes and a 50%-50%, 25%-75% and 75%-25% combination of RuO{sub 2}-IrO{sub 2}. The authors wish to thank the ICYTDF (PICS08-37) for financial support and IPN (SIP-20090433) and architect Nestor Romero for the electrolysis machining. [Spanish] La utilizacion del hidrogeno como combustible esta ligado directamente a su produccion eficiente y limpia, uno de los metodos mas prometedores es la electrolisis del agua, ya que acoplado con una fuente de energia renovable se evita la emision de contaminantes a la atmosfera. Si se utiliza un electrolizador de membrana de intercambio protonico (Tipo PEM), el hidrogeno que se produce es de alta pureza, listo para ser utilizado en una pila de combustible. Muchos estudios e investigaciones en esta area se concentran en encontrar distintos electrocatalizadores estables y selectivos para la reaccion catodica (produccion de hidrogeno) y anodica (produccion de oxigeno). Para

  11. Clear-PEM, a dedicated PET camera for mammography

    CERN Document Server

    Lecoq, P

    2002-01-01

    Preliminary results suggest that Positron Emission Mammography (PEM) can offer a noninvasive method for the diagnosis of breast cancer. Metabolic images from PEM contain unique information not available from conventional morphologic imaging techniques and aid in expeditiously establishing the diagnosis of cancer. A dedicated machine seems to offer better perspectives in terms of position resolution and sensitivity. This paper describes the concept of Clear-PEM, the system presently developed by the Crystal Clear Collaboration at CERN for an evaluation of this approach. This device is based on new crystals introduced by the Crystal Clear as well as on modern data acquisition techniques developed for the large experiments in high energy physics experiments.

  12. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  13. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS) technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  14. Design and experimental characterization of a 350 W High Temperature PEM fuel cell stack

    Directory of Open Access Journals (Sweden)

    Nicola Zuliani

    2011-01-01

    Full Text Available High Temperature Proton Exchange Membrane (HT PEM fuel cell based on polybenzimidazole (PBI polymer and phosphoric acid, can be operated at temperature between 120 °C and 180 °C. Reactants humidification is not required and CO content up to 2% in the fuel can be tolerated, affecting only marginally performance. This is what makes HT PEM very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. Till nowadays, from experimental point of view, only few studies relate to the development and characterization of high temperature stacks. The aim of this work is to present the main design features and the performance curves of a 25 cells HT PEM stack based on PBI and phosphoric acid membranes. Performance curves refer to the stack operating with two type of fuels: pure hydrogen and a gas mixture simulating a typical steam reformer output. The stack voltage distribution analysis and the stack temperature distribution analysis suggest that cathode air could be used as coolant leading to a better thermal management. This could simplify stack design and system BOP, thus increasing system performance.

  15. Novel High Temperature Membrane for PEM Fuel Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed in this STTR program is a high temperature membrane to increase the efficiency and power density of PEM fuel cells. The NASA application is...

  16. Reconstruction of Clear-PEM data with STIR

    CERN Document Server

    Martins, M V; Rodrigues, P; Trindade, A; Oliveira, N; Correia, M; Cordeiro, H; Ferreira, N C; Varela, J; Almeida, P

    2006-01-01

    The Clear-PEM scanner is a device based on planar detectors that is currently under development within the Crystal Clear Collaboration, at CERN. The basis for 3D image reconstruction in Clear-PEM is the software for tomographic image reconstruction (STIR). STIR is an open source object-oriented library that efficiently deals with the 3D positron emission tomography data sets. This library was originally designed for the traditional cylindrical scanners. In order to make its use compatible with planar scanner data, new functionalities were introduced into the library's framework. In this work, Monte Carlo simulations of the Clear-PEM scanner acquisitions were used as input for image reconstruction with the 3D OSEM algorithm available in STIR. The results presented indicate that dual plate PEM data can be accurately reconstructed using the enhanced STIR framework.

  17. UARS Particle Environment Monitor (PEM) Level 3TP V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Particle Environment Monitor (PEM) Level 3TP data product consists of daily, 65.536 second and 2.048 interval time-ordered, vertical profiles of electron and...

  18. UARS PEM Level 2 AXIS 1 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The UARS Particle Environment Monitor (PEM) level 2 Atmosphere X-Ray Imaging Spectrometer (AXIS) unit 1 daily product contains the X-ray high-resolution spectral...

  19. UARS PEM Level 2 AXIS 2 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The UARS Particle Environment Monitor (PEM) level 2 Atmosphere X-Ray Imaging Spectrometer (AXIS) unit 2 daily product contains the X-ray high-resolution spectral...

  20. Electrochemical extraction of oxygen using PEM electrolysis technology

    Directory of Open Access Journals (Sweden)

    BOULBABA ELADEB

    2012-11-01

    Full Text Available Electrochemical extraction of oxygen from air can be carried out by chemical reduction of oxygen at the cathode and simultaneous oxygen evolution by water anode oxidation. The present investigation deals with the use of an electrolysis cell of PEM technology for this purpose. A dedicated 25 cm2 cell provided with a commercial water electrolysis MEA and titanium grooved plates has been designed for continuous operation at pressures close to the ambient level. The MEA consisted of a Nafion 117 membrane sandwiched between a Pt/C cathode and a non-supported Pt-Ir anode. Oxygen partial consumption in long-term runs was evaluated by analysis of the outlet air by gas chromatography, depending on the cell voltage - or the current density - and the excess in air oxygen fed to the cathode. Runs over more 50 hours indicated the relative stability of the components used for current densities ranging from 0.1 to 0.2 A cm-2 with high efficiency of oxygen reduction. Higher current density could be envisaged with more efficient MEA’s, exhibiting lower overpotentials for oxygen evolution to avoid too significant degradation of the anode material and the membrane. Interpretation of the data has been carried out by calculation of the cathode current efficiency.

  1. A New Control and Design of PEM Fuel Cell System Powered Diffused Air Aeration System

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available The goal of aquaculture ponds is to maximize production and profits while holding labor and management efforts to the minimum. Poor water quality in most ponds causes risk of fish kills, disease outbreaks which lead to minimization of pond production. Dissolved Oxygen (DO is considered to be among the most important water quality parameters in fish culture. Fish ponds in aquaculture farms are usually located in remote areas where grid lines are at far distance. Aeration of ponds is required to prevent mortality and to intensify production, especially when feeding is practical, and in warm regions. To increase pond production it is necessary to control dissolved oxygen. Aeration offers the most immediate and practical solution to water quality problems encountered at higher stocking and feeding rates. Many units of aeration system are electrical units so using a continuous, high reliability, affordable, and environmentally friendly power sources is necessary. Fuel cells have become one of the major areas of research in the academia and the industry. Aeration of water by using PEM fuel cell power is not only a new application of the renewable energy, but also, it provides an affordable method to promote biodiversity in stagnant ponds and lakes. This paper presents a new design and control of PEM fuel cell powered a diffused air aeration system for a shrimp farm in Mersa Matruh in Egypt. Also Artificial intelligence (AI control techniques are used to control the fuel cell output power by controlling its input gases flow rate. Moreover the mathematical modeling and simulation of PEM fuel cell is introduced. A comparative study is applied between the performance of fuzzy logic controller (FLC and neural network controller (NNC. The results show the effectiveness of NNC over FLC.

  2. Coolant controls of a PEM fuel cell system

    Science.gov (United States)

    Ahn, Jong-Woo; Choe, Song-Yul

    When operating the polymer electrolyte membrane (PEM) fuel cell stack, temperatures in the stack continuously change as the load current varies. The temperature directly affects the rate of chemical reactions and transport of water and reactants. Elevated temperature increases the mobility of water vapor, which reduces the ohmic over-potential in the membrane and eases removal of water produced. Adversely, the high temperature might impose thermal stress on the membrane and cathode catalyst and cause degradation. Conversely, excessive supply of coolants lowers the temperature in the stack and reduces the rate of the chemical reactions and water activity. Corresponding parasitic power dissipated at the electrical coolant pump increases and overall efficiency of the power system drops. Therefore, proper design of a control for the coolant flow plays an important role in ensuring highly reliable and efficient operations of the fuel cell system. Herein, we propose a new temperature control strategy based on a thermal circuit. The proposed thermal circuit consists of a bypass valve, a radiator with a fan, a reservoir and a coolant pump, while a blower and inlet and outlet manifolds are components of the air supply system. Classic proportional and integral (PI) controllers and a state feedback control for the thermal circuit were used in the design. In addition, the heat source term, which is dependent upon the load current, was feed-forwarded to the closed loop and the temperature effects on the air flow rate were minimized. The dynamics and performance of the designed controllers were evaluated and analyzed by computer simulations using developed dynamic fuel cell system models, where a multi-step current and an experimental current profile measured at the federal urban driving schedule (FUDS) were applied. The results show that the proposed control strategy cannot only suppress a temperature rise in the catalyst layer and prevent oxygen starvation, but also reduce the

  3. Spent fuel consolidation in the 105KW Building fuel storage basin

    International Nuclear Information System (INIS)

    Johnson, B.H.

    1994-01-01

    This study is one element of a larger engineering study effort by WHC to examine the feasibility of irradiated fuel and sludge consolidation in the KW Basin in response to TPA Milestone (target date) M-34-00-T03. The study concludes that up to 11,500 fuel storage canisters could be accommodated in the KW Basin with modifications. These modifications would include provisions for multi-tiered canister storage involving the fabrication and installation of new storage racks and installation of additional decay heat removal systems for control of basin water temperature. The ability of existing systems to control radionuclide concentrations in the basin water is examined. The study discusses requirements for spent nuclear fuel inventory given the proposed multi-tiered storage arrangement, the impact of the consolidated mass on the KW Basin structure, and criticality issues associated with multi-tiered storage

  4. Europe's largest solar thermal power plant. [200 kw thermal output supplemented by two 10-kw windmills

    Energy Technology Data Exchange (ETDEWEB)

    Bossel, U

    1976-03-01

    An overview is given over the solar heating plant which has recently been commissioned in the Camargue (France). This is the largest plant in Europe, with a mean heat output of about 200 kW, for the production of thermal energy from solar energy. The plant consists of 108 parabolic collectors (200 sq. metres) and 48 flat collectors (110 sq. metres). Two windmills with outputs of 10 kW each complete the system. The heat energy produced by the solar collectors is given up to 3 different stores, which in turn are connected to various consumers.

  5. Investigation of low glass transition temperature on COTS PEM's reliability for space applications

    Science.gov (United States)

    Sandor, M.; Agarwal, S.; Peters, D.; Cooper, M. S.

    2003-01-01

    Plastic Encapsulated Microelectronics (PEM) reliability is affected by many factors. Glass transition temperature (Tg) is one such factor. In this presentation issues relating to PEM reliability and the effect of low glass transition temperature epoxy mold compounds are presented.

  6. Method of monitoring CO concentrations in hydrogen feed to a PEM fuel cell

    Science.gov (United States)

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    2000-01-01

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. The PEM-probe is intermittently purged of any CO build-up on the anode catalyst (e.g., by (1) flushing the anode with air, (2) short circuiting the PEM-probe, or (3) reverse biasing the PEM-probe) to keep the PEM-probe at peak performance levels.

  7. Bipolar plates for PEM fuel cells

    Science.gov (United States)

    Middelman, E.; Kout, W.; Vogelaar, B.; Lenssen, J.; de Waal, E.

    The bipolar plates are in weight and volume the major part of the PEM fuel cell stack, and are also a significant contributor to the stack costs. The bipolar plate is therefore a key component if power density has to increase and costs must come down. Three cell plate technologies are expected to reach targeted cost price levels, all having specific advantages and drawbacks. NedStack has developed a conductive composite materials and a production process for fuel cell plates (bipolar and mono-polar). The material has a high electric and thermal conductivity, and can be processed into bipolar plates by a proprietary molding process. Process cycle time has been reduced to less than 10 s, making the material and process suitable for economical mass production. Other development work to increase material efficiency resulted in thin bipolar plates with integrated cooling channels, and integrated seals, and in two-component bipolar plates. Total thickness of the bipolar plates is now less than 3 mm, and will be reduced to 2 mm in the near future. With these thin integrated plates it is possible to increase power density up to 2 kW/l and 2 kW/kg, while at the same time reducing cost by integrating other functions and less material use.

  8. XAS Investigations of PEM Fuel Cells

    Science.gov (United States)

    Roth, Christina; Ramaker, David E.

    Polymer-electrolyte membrane (PEM) fuel cells are still far from an area-wide market launch due in part to long-term stability, reliability and cost issues. A more detailed knowledge of the underlying reaction mechanisms is expected to further their application, as it would allow for the design of tailor-made catalysts. However, this will only be possible by complementing traditional in situ studies on single-crystals in electrochemical cells with more sophisticated metal/electrolyte interfacial studies by novel spectroscopic methodologies, which can provide complementary insights into the behaviour of commercial catalysts under real fuel cell operating conditions. This review will focus on the advances of Xray absorption spectroscopy (XAS) in applied fuel cell research utilizing several examples. XAS enables both the nanoparticle morphology and the adsorbate coverage and binding site to be investigated with just one technique. The latter is possible when complementing the conventional extended X-ray absorption fine structure (EXAFS) analysis with the more novel Δμ XANES approach.

  9. Design principles of an integrated natural gas steam reformer for stationary PEMFC systems; Auslegungsprinzipien eines integrierten Erdgas-Dampfreformers fuer stationaere PEM-Brennstoffzellen-Systeme

    Energy Technology Data Exchange (ETDEWEB)

    Grosser, K.

    2006-09-05

    The function, efficiency and economic efficiency of fuel cell systems are defined by various influencing factors, especially in the case of hydrogen production by steam reforming of natural gas. The dissertation describes the design of integrated natural gas steam reformers for PEM fuel cell systems in the electric power range of 1- 10 kW; the influencing factors of the process are investigated and weighted. Design principles are derived from which optimum operating parameters can be defined and which can be used for designing a multitude of components. [German] Die Funktionsfaehigkeit, der Wirkungsgrad und die Wirtschaftlichkeit von Brennstoffzellen-Systemen werden insbesondere bei der Wasserstofferzeugung durch Erdgas-Dampfreformierung durch verschiedene Einflussfaktoren bestimmt. In dieser Dissertation werden die Methodik der Auslegung integrierter Erdgas-Dampfreformer fuer PEM-Brennstoffzellen-Systeme im elektrischen Leistungsbereich von 1-10 kW beschrieben und die prozessbestimmenden Einflussfaktoren untersucht und gewichtet. Daraus werden Auslegungsprinzipien abgeleitet, mit denen sich die optimalen Betriebsparameter ermitteln lassen und die zur konstruktiven Gestaltung einer Vielzahl von Anlagenteilen genutzt werden koennen.

  10. Hydrogen utilization efficiency in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Metkemeyer, R; Achard, P; Rouveyre, L; Picot, D [Ecole des Mines de Paris, Centre D' energrtique, Sophia Antipolis (France)

    1998-07-01

    In this paper, we present the work carried out within the framework of the FEVER project (Fuel cell Electric Vehicle for Efficiency and Range), an European project coordinated by Renault, joining Ecole des Mines de Paris, Ansaldo, De Nora, Air Liquide and Volvo. For the FEVER project, where an electrical air compressor is used for oxidant supply, there is no need for hydrogen spill over, meaning that the hydrogen stoichiometry has to be as close to one as possible. To determine the optimum hydrogen utilization efficiency for a 10 kW Proton Exchange Membrane Fuel Cell (PEMFC) fed with pure hydrogen, a 4 kW prototype fuel cell was tested with and without a hydrogen recirculator at the test facility of Ecole des Mines de Paris. Nitrogen cross over from the cathodic compartment to the anodic compartment limits the hydrogen utilization of the fuel cell without recirculator to 97.4 % whereas 100% is feasible when a recirculator is used. 5 refs.

  11. Performance optimization of a PEM hydrogen-oxygen fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    The objective was to develop a semi-empirical model that would simulate the performance of proton exchange membrane (PEM) fuel cells without extensive calculations. A fuel cell mathematical module has been designed and constructed to determine the performance of a PEM fuel cell. The influence of some operating parameters on the performance of PEM fuel cell has been investigated using pure hydrogen on the anode side and oxygen on the cathode side. The present model can be used to investigate the influence of process variables for design optimization of fuel cells, stacks, and complete fuel cell power system. The possible mechanisms of the parameter effects and their interrelationships are discussed. In order to assess the validity of the developed model a real PEM fuel cell system has been used to generate experimental data. The comparison shows good agreements between the modelling results and the experimental data. The model is shown a very useful for estimating the performance of PEM fuel cell stacks and optimization of fuel cell system integration and operation.

  12. Prescription-event monitoring in Japan (J-PEM).

    Science.gov (United States)

    Kubota, Kiyoshi

    2002-01-01

    In prescription-event monitoring in Japan (J-PEM), patients are identified by prescriptions in individual pharmacies where drugs are dispensed. The methodology is somewhat different to that used by the Drug Safety Research Unit in the UK, in that two questionnaires, one to the pharmacist and the other to the doctor are sent for each patient and the method of concurrent control is employed in J-PEM. In the data analysis, the list of events reported as a suspected reaction or a reason for stopping the drug is made to generate a signal. In addition, a signal may be generated for some events with the statistically significant difference of crude rates followed by the regression analysis or a follow-up study. In J-PEM, Medical Dictionary for Regulatory Activities (MedDRA) terminology is used for data entry and data analysis. Lowest level terms (LLTs) in MedDRA are used in data entry while a signal is generated using preferred terms (PTs). However, to generate a signal effectively, some PTs may be grouped as one term. In addition, if two terms are so similar, it may be instructed that one of those two terms is normally selected in data entry to avoid confusion. Many more PEM studies could be undertaken to determine if MedDRA can be used for effective signal generation, but the usefulness of MedDRA in J-PEM is still to be determined.

  13. Development program for a 200 kW, CW, 28 GHz gyroklystron. Final report, April 1976-September 1980

    International Nuclear Information System (INIS)

    Shively, J.; Conner, C.; Evans, S.

    1980-01-01

    The objective of this program was to develop a microwave amplifier or oscillator capable of producing 200 kW, CW power output at 28 GHz. The use of the gyrotron or cyclotron resonance interaction was pursued. A room temperature hollow core solenoid magnet with an iron case was designed to produce the magnetic field required for electron cyclotron resonance. Three pulsed gyroklystron amplifiers were built providing increasing stable output powers of 6, 65 and 76 kW. A back-up pulsed gyrotron oscillator produced 248 kW. A ceramic cone broadband water load was developed. Tests are described for the various tubes that were developed

  14. Distribution of the Current Density in Electrolyte of the Pem Fuel Cell

    Directory of Open Access Journals (Sweden)

    Eugeniusz Kurgan

    2004-01-01

    Full Text Available In this paper water management in proton exchange membrane (PEM fuel cell is considered. Firt mass convervation law for water is applied. Next proton transport is described by the Nernst-Planck equation and liqid water convection velocity is eliminated by the Schlogl equation. Electro-osmotic drag coefficient is related to hydrogen index and experimentally determined swelling coefficient. Three partial differential equations for molar water concentration Cw, electric potential ϕ and water pressure Pw are formulated. Current density vector i is derived from proton flux expression. These equations together with adequate boundary conditions were solved using finite element method. The distribution of electric potential and current density in function of geometrical parametres is investigated. At the end some illustrative example is given.

  15. Device and materials modeling in PEM fuel cells

    CERN Document Server

    Promislow, Keith

    2009-01-01

    Device and Materials Modeling in PEM Fuel Cells is a specialized text that compiles the mathematical details and results of both device and materials modeling in a single volume. Proton exchange membrane (PEM) fuel cells will likely have an impact on our way of life similar to the integrated circuit. The potential applications range from the micron scale to large scale industrial production. Successful integration of PEM fuel cells into the mass market will require new materials and a deeper understanding of the balance required to maintain various operational states. This book contains articles from scientists who contribute to fuel cell models from both the materials and device perspectives. Topics such as catalyst layer performance and operation, reactor dynamics, macroscopic transport, and analytical models are covered under device modeling. Materials modeling include subjects relating to the membrane and the catalyst such as proton conduction, atomistic structural modeling, quantum molecular dynamics, an...

  16. Data acquisition electronics for positron emission mammography (PEM) detectors

    International Nuclear Information System (INIS)

    Martinez, J.D.; Sebastia, A.; Cerda, J.; Esteve, R.; Mora, F.J.; Toledo, J.F.; Benlloch, J.M.; Gimenez, N.; Gimenez, M.; Lerche, Ch. W.; Pavon, N.; Sanchez, F.

    2005-01-01

    Positron emission mammography (PEM) is an innovative technique to increase sensitivity and overcome the main drawbacks of conventional X-ray screening. However, dedicated PET imaging systems demand specific hardware solutions for data acquisition and processing that can take advantage of the reduction in the number of channels. Data acquisition issues can affect PEM scanners performance and they should be exhaustively addressed in order to exploit the increment in the event count rate. This is crucial in order to reduce both the scanning time and the total injected dose. This paper presents the electronics for our PEM camera prototype that enables us to achieve very high-count rates and perform comprehensive online processing. Results about acquisition in our detector for a typical clinical setup are studied using Monte Carlo simulation of hot lesion phantoms

  17. PEM Low Cost Endplates. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Martin; Clyens, S.; Steenstrup, F.R.; Christiansen, Jens [Danish Technological Institute. Plastics Technology, Taastrup (Denmark); Yde-Andersen, S. [IRD Fuel Cell A/S, Svendborg (Denmark)

    2013-03-15

    In the project, an endplate for the PEM-type fuel cells has been developed. The initial idea was to use an injection mouldable fibre reinforced polymer to produce the endplate and thereby exploit the opportunities of greater geometrical freedom to reduce weight and material consumption. Different PPS/glass-fibre compounds were produced and tested in order to use the results to optimize the results on the computer through FEM simulations. As it turned out, it was impossible to achieve adequate stiffness for the endplates within the given geometrical limitations. At the relatively high temperatures at which the endplates operate the material simply goes to soft. Material focus shifted to fibre reinforced high strength concrete composite. Test specimens were produced and tested so the results again could be used for FEM-simulations which also accounted for the technical limitations the concrete composite has regarding casting ability. In the process, the way the endplate is mounted was also alternated to better accommodate the properties of the concrete composite. A number of endplates were cast in specially produced moulds in order to map the optimum process parameters, and a final endplate was tested at IRD Fuel Cells A/S. The field test was in many aspects successful. However, the gas sealing and the surface finish can be further improved. The weight may still be an issue for some applications, even though it is lower than the endplate currently used. This issue can be addressed in a future project. The work has resulted in a new endplate design, which makes the stack assembly simpler and with fewer components. The endplates fabrication involves low cost methods, which can be scaled up as demand of fuel cells begin to take off. (Author)

  18. Advanced Materials for PEM-Based Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    James E. McGrath

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 °C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and

  19. Advanced Materials for PEM-Based Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    James E. McGrath; Donald G. Baird; Michael von Spakovsky

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 degrees C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic

  20. Materials Challenges for Automotive PEM Fuel Cells

    Science.gov (United States)

    Gasteiger, Hubert

    2004-03-01

    Over the past few years, significant R efforts aimed at meeting the challenging cost and performance targets required for the use of Polymer Electrolyte Membrane (PEM) fuel cells in automotive applications. Besides engineering advances in bipolar plate materials and design, the optimization of membrane-electrode assemblies (MEAs) was an important enabler in reducing the cost and performance gaps towards commercial viability for the automotive market. On the one hand, platinum loadings were reduced from several mgPt/cm2MEA [1] to values of 0.5-0.6 mgPt/cm2MEA in current applications and loadings as low as 0.25 mgPt/cm2MEA have been demonstrated on the research level [2]. On the other hand, implementation of thin membranes (20-30 micrometer) [3, 4] as well as improvements in diffusion medium materials, essentially doubled the achievable power density of MEAs to ca. 0.9 W/cm2MEA (at 0.65 V) [5], thereby not only reducing the size of a PEMFC fuel cell system, but also reducing its overall materials cost (controlled to a large extent by membrane and Pt-catalyst cost). While this demonstrated a clear path towards automotive applications, a renewed focus of R efforts is now required to develop materials and fundamental materials understanding to assure long-term durability of PEM fuel cells. This presentation therefore will discuss the state-of-the-art knowledge of catalyst, catalyst-support, and membrane degradation mechanisms. In the area of Pt-catalysts, experience with phosphoric acid fuel cells (PAFCs) has shown that platinum sintering leads to long-term performance losses [6]. While this is less critical at the lower PEMFC operating temperatures (200C), very little is known about the dependence of Pt-sintering on temperature, cell voltage, and catalyst type (i.e., Pt versus Pt-alloys) and will be discussed here. Similarly, carbon-support corrosion can contribute significantly to voltage degradation in PAFCs [7], and even in the PEMFC environment more corrosion

  1. Performance evaluation of 1 kw PEFC

    Energy Technology Data Exchange (ETDEWEB)

    Komaki, Hideaki [Ishikawajima-Harima Heavy Industries Co., Ltd. Tokyo (Japan); Tsuchiyama, Syozo [Shipbuilding Research Association, Minato-ky, Tokyo (Japan)

    1996-12-31

    This report covers part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quote}Study on a PEFC Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The aspect treated here concerns the effects brought on PEFC operating performance by conditions particular to shipboard operation. The performance characteristics were examined through tests performed on a 1 kw stack and on a single cell (Manufactured by Fuji Electric Co., Ltd.). The tests covered the items (1) to (4) cited in the headings of the sections that follow. Specifications of the stack and single cell are as given.

  2. A novel analytical analysis of PEM fuel cell

    International Nuclear Information System (INIS)

    Yazdi, Mohamad Zardoshtizade; Kalbasi, Mansour

    2010-01-01

    In this study, a quasi three-dimensional model was developed for a single proton exchange membrane (PEM) fuel cell. The model was used for a half-cell which includes the cathode gas channel, gas diffusion layer (GDL), cathode catalyst layer and membrane is modeled. This model includes mass transfer in the gas channel and GDL, electrochemistry reaction in cathode catalyst layer, and charge transfer in the membrane phase. These expressions were solved by analytical methods. An agglomerate approach was used to describe cathode catalyst layer. By using analytical solution, the expressions can predict the PEM fuel cell behavior in different conditions which is the advantage of this method.

  3. PEM fuel cell modeling and simulation using Matlab

    CERN Document Server

    Spiegel, Colleen

    2011-01-01

    Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money.Easy to read and understand, this book provides design and modelling tips for

  4. Investigation of heating and cooling in a stand-alone high temperature PEM fuel cell system

    International Nuclear Information System (INIS)

    Zhang, Caizhi; Yu, Tao; Yi, Jun; Liu, Zhitao; Raj, Kamal Abdul Rasheedj; Xia, Lingchao; Tu, Zhengkai; Chan, Siew Hwa

    2016-01-01

    Highlights: • Heating-up and cooling-down processes of HT-PEMFC are the mainly interested topics. • Dynamic behaviours, power and energy demand of the heating and cooling was studied. • Hybrid system based on LiFeYPO_4 battery for heating and cooling is built and tested. • The concept of combining different heating sources together is recommended. - Abstract: One key issue pertaining to the cold-start of High temperature PEM fuel cell (HT-PEMFC) is the requirement of high amount of thermal energy for heating up the stack to a temperature of 120 °C or above before it can generate electricity. Furthermore, cooling down the stack to a certain temperature (e.g. 50 °C) is necessary before stopping. In this study, the dynamic behaviours, power and energy demand of a 6 kW liquid cooled HT-PEMFC stack during heating-up, operation and cooling-down were investigated experimentally. The dynamic behaviours of fuel cell under heating-up and cooling-down processes are the mainly interested topics. Then a hybridisation of HT-PEMFC with Li-ion battery to demonstrate the synergistic effect on dynamic behaviour was conducted and validated for its feasibility. At last, the concept of combining different heating sources together is analysed to reduce the heating time of the HT-PEMFC as well.

  5. Short term scheduling of multiple grid-parallel PEM fuel cells for microgrid applications

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharkh, M.Y.; Rahman, A.; Alam, M.S. [Dept. of Electrical and Computer Engineering, University of South Alabama, Mobile, AL 36688 (United States)

    2010-10-15

    This paper presents a short term scheduling scheme for multiple grid-parallel PEM fuel cell power plants (FCPPs) connected to supply electrical and thermal energy to a microgrid community. As in the case of regular power plants, short term scheduling of FCPP is also a cost-based optimization problem that includes the cost of operation, thermal power recovery, and the power trade with the local utility grid. Due to the ability of the microgrid community to trade power with the local grid, the power balance constraint is not applicable, other constraints like the real power operating limits of the FCPP, and minimum up and down time are therefore used. To solve the short term scheduling problem of the FCPPs, a hybrid technique based on evolutionary programming (EP) and hill climbing technique (HC) is used. The EP is used to estimate the optimal schedule and the output power from each FCPP. The HC technique is used to monitor the feasibility of the solution during the search process. The short term scheduling problem is used to estimate the schedule and the electrical and thermal power output of five FCPPs supplying a maximum power of 300 kW. (author)

  6. Commercial Optimization of a 100 kg/day PEM based Hydrogen Generator For Energy and Industrial Applications

    International Nuclear Information System (INIS)

    Moulthrop, L.; Anderson, E.; Chow, O.; Friedland, R.; Maloney, T.; Schiller, M.

    2006-01-01

    Commercial hydrogen generators using PEM water electrolysis are well proven, serving industrial applications worldwide in over 50 countries. Now, market and environmental requirements are converging to demand larger on-site hydrogen generators. North American liquid H 2 shortages, increasing trucking costs, developing economies with no liquid infrastructure, utilities, and forklift fuel cell fueling applications are all working to increase market demand for commercial on-site H 2 generation. These commercial applications may be satisfied by a 100 kg H 2 /day module; this platform can be the pathway towards a 500 kg H 2 /day generator desired for small fore-court hydrogen vehicle fueling stations. This paper discusses the steps necessary and activities already underway to develop a 100 to 500 kg H 2 /day PEM hydrogen generator platform to meet commercial market cost targets and approach US DoE transportation fueling cost targets. (authors)

  7. Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: Case study of United Arab Emirates

    International Nuclear Information System (INIS)

    Al-Zeyoudi, Hend; Sasmito, Agus P.; Shamim, Tariq

    2015-01-01

    Highlights: • Performance evaluation of open-cathode PEM fuel cell stacks with forced air-convection. • Stack performance can vary up to 40% from winter to summer. • Hot and arid condition leads to membrane drying and performance deterioration. • Anode humidification improves the stack performance up to 40% during summer. - Abstract: The open-cathode polymer electrolyte membrane (PEM) fuel cell stack has been a promising candidate as a sustainable energy conversion system for replacing fossil fuel-based energy conversion devices in portable and automotive applications. As the ambient air is directly used to provide both oxidant and cooling, the complex cooling loop can be avoided which reduces the complexity and cost. However, the stack performance is highly affected by ambient conditions, i.e., ambient temperature and humidity. In this study, the effect of monthly ambient air conditions (temperature and humidity) is evaluated with respect to the stack’s power production performance as well as thermal, water and gas management by employing a validated three-dimensional open-cathode PEM fuel cell stack model. The annual climate data from the hot and arid environment of Abu Dhabi, United Arab Emirates (UAE) are used as a case study. The objective is to develop a better fundamental understanding of the interactions of physical phenomena in a fuel cell stack, which can assist in improving the performance and operation of an open-cathode PEM fuel cell-powered vehicle. The results indicate that the stack performance can vary significantly (up to 40%) from winter to summer, especially at high operating currents, with significant changes in the stack temperature and the water content at the membrane. Moreover, the anode humidification results in a significant improvement in the stack performance (up to 40%) in hot and dry conditions. However, a careful balance has to be struck between the humidifier parasitic load and the stack power.

  8. Design, performance, and economics of 50-kW and 500-kW vertical axis wind turbines

    Science.gov (United States)

    Schienbein, L. A.; Malcolm, D. J.

    1983-11-01

    A review of the development and performance of the DAF Indal 50-kW vertical axis Darrieus wind turbine shows that a high level of technical development and reliability has been achieved. Features of the drive train, braking and control systems are discussed and performance details are presented. Details are also presented of a 500-kW VAWT that is currently in production. A discussion of the economics of both the 50-kW and 500-kW VAWTs is included, showing the effects of charge rate, installed cost, operating cost, performance, and efficiency.

  9. Design of metallic bipolar plates for PEM fuel cells.

    Science.gov (United States)

    2012-01-01

    This project focused on the design and production of metallic bipolar plates for use in PEM fuel cells. Different metals were explored : and stainless steel was found out to be best suited to our purpose. Following the selection of metal, it was calc...

  10. Review: Durability and degradation issues of PEM fuel cell components

    NARCIS (Netherlands)

    Bruijn, de F.A.; Dam, V.A.T.; Janssen, G.J.M.

    2008-01-01

    Besides cost reduction, durability is the most important issue to be solved before commercialisation of PEM Fuel Cells can be successful. For a fuel cell operating under constant load conditions, at a relative humidity close to 100% and at a temperature of maximum 75 °C, using optimal stack and flow

  11. ClearPEM: prototype PET device dedicated to breast imaging

    CERN Multimedia

    Joao Varela

    2009-01-01

    Clinical trials have begun in Portugal on a new breast imaging system (ClearPEM) using positron emission tomography (PET). The system, developed by a Portuguese consortium in collaboration with CERN and laboratories participating in the Crystal Clear collaboration, will detect even the smallest tumours and thus help avoid unnecessary biopsies.

  12. 400 W High Temperature PEM Fuel Cell Stack Test

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2006-01-01

    This work demonstrates the operation of a 30 cell high temperature PEM (HTPEM) fuel cell stack. This prototype stack has been developed at the Institute of Energy Technology, Aalborg University, as a proof-of-concept for a low pressure cathode air cooled HTPEM stack. The membranes used are Celtec...

  13. High Temperature PEM Fuel Cell Systems, Control and Diagnostics

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Justesen, Kristian Kjær

    2015-01-01

    fuels utilizes one of the main advantages of the high temperature PEM fuel cell: robustness to fuel quality and impurities. In order for such systems to provide efficient, robust, and reliable energy, proper control strategies are needed. The complexity and nonlinearity of many of the components...

  14. 105KE and 105KW Basins fuel and sludge consolidation study, summary report

    International Nuclear Information System (INIS)

    Gant, R.G.

    1994-01-01

    This study is a summary report that examines and evaluates the feasibility of consolidating irradiated fuel and sludge currently in KE Basin with that in the KW Basin. This study was conducted in support of TPA Milestone (target date) M-34-00-T03. The report summarizes three supporting engineering studies involving: (1) spent fuel consolidation into the single basin, (2) transport of the encapsulated fuel between KE and KW Basins, and (3) dispositioning contaminated water remaining in KE Basin. From the three reports, and preferred storage method, transfer method and water disposition method were defined. These consolidation methods were then evaluated against the no action alternative of continued storage using both KE and KW Basins. The report concluded that the fuel and sludge currently stored in KE Basin not be consolidated in the KW Basin, primarily due to increased cost and radiation exposure required to consolidate the fuel and sludge. Consolidation is more attractive for storage periods beyond the year 2002, which is the study period of the report

  15. A reversible electrolyzer-fuel cell system based on PEM technology

    International Nuclear Information System (INIS)

    Grigoriev, S.A.; Millet, P.; Fateev, V.N.

    2009-01-01

    'Full text': A reversible electrolyzer-fuel cell is an electrochemical system which can be alternatively operated in water electrolysis or H 2 /O 2 (air) fuel cell modes. Whereas proton-exchange membrane (PEM) water electrolysis and PEM fuel cell technologies are individually well-established, it is still a very challenging task to develop efficient reversible systems which can maintain interesting electrochemical performances during a significant number of cycles. Results reported in this communication are related to R and D on bi-functional catalysts, electrocatalytic layers, gas diffusion layers/current collectors and reversible PEM stack design. Electrodes which do not change their redox status when the operation mode of the cell is switched from electrolysis to fuel cell are more specifically considered. In particular, it is shown that, when the anode is composed of Pt-Ir layers (ca. 0.5/0.5 wt. ratio), best electrochemical performances are obtained (for both for water and hydrogen oxidation reactions) when an Ir layer is placed face-to-face with the membrane. Cathodic electrocatalytic layers made of Pt/C were prepared and optimized by adding PTFE to obtain the required hydrophobic-hydrophilic properties for effective oxygen and protons electro-reduction. Gas diffusion electrodes made of porous carbon materials and bi-porous titanium sheets with appropriate water management properties have also been developed. A two-cell stack with 250 cm 2 active area electrodes has been assembled using the optimized components and successfully tested. Results are rather close to those obtained for individual water electrolysis and H 2 /O 2 fuel cells with the same noble metal loadings and similar operating conditions. For instance, at a current density of 0.2 A/cm 2 , typical cell voltages of ca. 1.55 and 0.70 V were respectively obtained during water electrolysis and H 2 /O 2 fuel cell operation, using Nafion-1135 as solid polymer electrolyte and noble metal loadings 2

  16. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a tubular-shaped proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a tubular-shaped PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  17. Development of integrated DMFC and PEM fuel cell units. Final report; Udvikling af integrerede DMFC og PEM braendselscelle enheder. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Odgaard, M. (IRD Fuel Cell Technology, Svendborg (DK))

    2007-06-15

    The 36-month long project 'Development of integrated DMFC and PEM fuel cell units' has been completed. The project goal was to develop a completely new MEA concept for integrated PEM and DMFC unit cells with enhanced power density and in this way obtain a price reduction. The integrated unit cell consists of a MEA, a gas diffusion layer with flow fields completed with bipolar plates and seals. The main focus of the present project was to: 1) Develop new catalyst materials fabricated by the use of FSD (flame spray deposition method). 2) Optimisation of the state-of-the-art MEA materials and electrode structure. 3) Implementation of a model to account for the CO poisoning of PEM fuel cells. Results and progress obtained in the project established that the individual unit cell components were able to meet and follow the road map of LT-PEM FC regarding electrode catalyst loading and fulfilled the targets for Year 2006. The project has resulted in some important successes. The highlights are as follows: The project has resulted in some important successes. The highlights are as follows: 1) MEA structure knowledge acquired in the project provide a sound basis for further progress. 2) A novel method for the synthesis of electrode by using flame spray synthesis was explored. 3) Electrochemical and catalytic behaviours of catalysts activity for CH{sub 3}OH explored. 4) Implementation of a sub model to account for the CO poisoning of PEM FC has been developed. 5) Numerical study of the flow distribution in FC manifolds was developed and completed with experimental data. 6) The electrode catalyst loading targets for year 2006 achieved. 7) The DMFC MEA performance has been improved by 35%. 8) Optimisation of the MEAs fabrication process has been successfully developed. 9) A new simple flow field design has been designed. 10) A procedure for integrated seals has been developed (au)

  18. Use of biogas in PEM fuel cells; Einsatz von Biogas in PEM-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Volkhard; Schmersahl, Ralf; Ellner, Janine (comps.)

    2009-06-15

    This research project was dedicated to two problems: 1. What demands must biogas meet in order to conform to the specifications of PEM fuel cell systems and permit safe operation? 2. How must a fuel cell system be designed and operated in order to be well-adapted to the special features of biogas as opposed to natural gas? For this purpose biogas samples were taken from laboratory-scale and commercial plants and analysed by gas chromatography using various substrates and methods. By combining this with the use of a mass spectroscopy detector (GC-MS system) it was possible to perform a qualitative and quantitative analysis of sulphurious trace gases in the biogas which might cause damage to the fuel cell system. Investigations were performed on an experimental reformer using either modelled or native biogas of different compositions, the intent being to obtain information for the design of the individual process stages. The two operating parameters steam-methane ratio (or S/C ratio) and reforming temperature were varied to optimise parameter settings in terms of energy efficiency. By linking the reformer to a 500 W fuel cell it was possible confirm the suitability of the reformed biogas for use in fuel cells. [German] In diesm Forschungsvorhaben werden zwei Fragestellungen bearbeitet: 1. Welche Anforderungen ergeben sich an das Biogas, um den Spezifikationen von PEM-Brennstoffzellensystemen zu genuegen und eine sicheren Betrieb zu ermoeglichen? 2. Wie muss das Brennstoffzellensystem ausgelegt und gefuehrt werden, um den Besonderheiten von Biogas im Vergleich zu Erdgas Rechnung zu tragen? Dazu wurden Biogasproben aus Labor- und Praxisanlagen unter Beruecksichtigung unterschiedlicher Substrate und Verfahren gaschromatisch analysiert. Die Kopplung mit einem massenspektroskopischen Detektor (GC-MS System) ermoeglicht dabei die Qualifizierung und Quantifizierung der vorhandenen schwefelhaltigen Spurengase, die eine Schaedigung von Brennstoffzellenanlagen verursachen. Die

  19. Quantify and improve PEM fuel cell durability. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Grahl-Madsen, L.; Odgaard, M.; Munksgaard Nielsen, R. (IRD Fuel Cell A/S, Svendborg (Denmark)); Li, Q.; Jensen, Jens Oluf (Technical Univ. of Denmark, Dept. of Chemistry, Kgs. Lyngby (Denmark)); Andersen, Shuang Ma; Speder, J.; Skou, E. (Syddansk Univ. (SDU), Odense (Denmark))

    2010-07-01

    The aim of the present project is to systematically quantify and improve the durability of the PEM FC including the following three PEM FC variants: LT PEM FC, DMFC, and HT PEM FC. Different factors influencing dissolution properties of noble metal catalyst platinum and platinum-ruthenium alloy has been studied. The dissolution was found to increase by increasing the CV cycle upper potential limit, number of potential cycles, solution acidity, oxygen partial pressure, involvement of chloride, and temperature. Ruthenium was found to deteriorate ten (10) times faster than platinum catalyst; and carbon supported catalyst (Pt: 20%, Ru: up to 100%) deteriorate ten (10) times faster than non-supported catalyst (Pt: 2%, Ru: 30%) at the same condition. Loss of sulphonic acid groups and fluoride from perfluorinated sulfonic acid membrane was confirmed by different techniques, which locally leads to loss of acidity, and consequently enhances dissolution of noble metal catalyst. Degradation of Nafion ionomer in the electrode was enhanced by noble metal catalyst and the thermal decomposition properties has synergetic effect with carbon degradation. Hydrophobicity of GDL and electrode on GDL were found to degrade e.g. radical attack, oxidation, and physical wear out. The very top micro surface structure turned out to be responsible for wetting property after chemical ageing. Optimal catalyst and ionomer ratio is also reflected in contact angle value, which can be understood in terms of catalyst/carbon - ionomer affinity and layered structure. Long-term tested and 'virgin' LT PEM MEAs have been characterised with respect to SEM, TEM, EDS, and XRD. Both failed and well-functioning MEAs have been characterised. The Post Mortem analysis has shown and quantified degradation mechanisms like catalyst growth and carbon corrosion. Furthermore, the effect of fuel starvation was shown by pronounced Ru-catalyst band within the membrane. The catalyst coarsening observed after

  20. 3 kW Stirling engine for power and heat production

    DEFF Research Database (Denmark)

    Thorsen, Jan Eric; Bovin, Jonas Kabell; Carlsen, Henrik

    1996-01-01

    A new 3 kW Beta-type Stirling engine has been developed. The engine uses natural gas as fuel and is designed for use as a small combined heat and power plant for single family houses. The electrical power is supplied to the grid. The engine is made as a hermetic device, where the crank mechanism...... and the alternator are built into a pressurized crank casing. The engine produces 3 kW of shaft power corresponding to 2.4 kW of electric power. The heat input is 10 kW representing a shaft efficiency of 30% and an electric efficiency of 24%. Helium at 8 MPa mean pressure is used as the working gas. The crank...... for X-heads. A grease-lubricated needle and ball bearings are used in the kinematic crank mechanism. The burner includes an air preheater and a water jacket which makes it possible to utilize nearly all of the heat from the combustion gases. The performance of the engine has been tested as a function...

  1. Demonstration of the 500 kW stoker burning system; 500 kW stokeripolttojaerjestelmaen demonstrointi

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H [VTT Energy, Jyvaeskylae (Finland); Kantalainen, K [Hoegfors Laempoe Oy, Saarijaervi (Finland)

    1996-12-31

    The objective of the project is to demonstrate the operation of a 500 kW stoker-burning system in practice. The project is continuation of the previous projects of the Bioenergy research programme, 303 - Development of automatic heating system for wood chips and sod peat, carried out by VTT Energy, and Y301 - Development of heating boiler for wood chips and sod peat, carried out by Hoegfors Laempoe Oy. A 500 kW (nominal power) stoker-burner was constructed on the basis of the results of these projects. The burner was mounted on ETNA 500 bioenergy boiler. Screw-feeders, constructed by Maamiehen Saehkoe Oy, were used as fuel feeding system. Maamiehen Saehkoe Oy delivered also the automation system for the combustion equipment. Combustion air pre-heater was mounted on the boiler for promotion of the combustion of moist fuel. Testing of the equipment was carried out at the laboratory of VTT Energy in Jyvaeskylae in October-November 1994. In December 1994 the equipment was transported to Jalasjaervi, to heating station of the farmer Juha Jyrae. The actual heat generation started in the beginning of February 1995, when the greenhouses started to require heating. Sod peat has been used as the fuel. VTT Energy has carried out the efficiency and emission measurements in the heating station with sod peat in March 1995, and with reed canary grass in autumn 1995. The energy generation and fuel consumption have been followed all the time

  2. Demonstration of the 500 kW stoker burning system; 500 kW stokeripolttojaerjestelmaen demonstrointi

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H. [VTT Energy, Jyvaeskylae (Finland); Kantalainen, K. [Hoegfors Laempoe Oy, Saarijaervi (Finland)

    1995-12-31

    The objective of the project is to demonstrate the operation of a 500 kW stoker-burning system in practice. The project is continuation of the previous projects of the Bioenergy research programme, 303 - Development of automatic heating system for wood chips and sod peat, carried out by VTT Energy, and Y301 - Development of heating boiler for wood chips and sod peat, carried out by Hoegfors Laempoe Oy. A 500 kW (nominal power) stoker-burner was constructed on the basis of the results of these projects. The burner was mounted on ETNA 500 bioenergy boiler. Screw-feeders, constructed by Maamiehen Saehkoe Oy, were used as fuel feeding system. Maamiehen Saehkoe Oy delivered also the automation system for the combustion equipment. Combustion air pre-heater was mounted on the boiler for promotion of the combustion of moist fuel. Testing of the equipment was carried out at the laboratory of VTT Energy in Jyvaeskylae in October-November 1994. In December 1994 the equipment was transported to Jalasjaervi, to heating station of the farmer Juha Jyrae. The actual heat generation started in the beginning of February 1995, when the greenhouses started to require heating. Sod peat has been used as the fuel. VTT Energy has carried out the efficiency and emission measurements in the heating station with sod peat in March 1995, and with reed canary grass in autumn 1995. The energy generation and fuel consumption have been followed all the time

  3. Engineering study: 105KE to 105KW Basin fuel and sludge transfer. Final report

    International Nuclear Information System (INIS)

    Gant, R.G.

    1994-01-01

    In the last five years, there have been three periods at the 105KE fuel storage basin (KE Basin) where the reported drawdown test rates were in excess of 25 gph. Drawdown rates in excess of this amount have been used during past operations as the primary indicators of leaks in the basin. The latest leak occurred in March, 1993. The reported water loss from the KE Basin was estimated at 25 gph. This engineering study was performed to identify and recommend the most feasible and practical method of transferring canisters of irradiated fuel and basin sludge from the KE Basin to the 105KW fuel storage basin (KW Basin). Six alternatives were identified during the performance of this study as possible methods for transferring the fuel and sludge from the KE Basin to the KW Basin. These methods were then assessed with regard to operations, safety, radiation exposure, packaging, environmental concerns, waste management, cost, and schedule; and the most feasible and practical methods of transfer were identified. The methods examined in detail in this study were based on shipment without cooling water except where noted: Transfer by rail using the previously used transfer system and water cooling; Transfer by rail using the previously used transfer system (without water cooling); Transfer by truck using the K Area fuel transfer cask (K Area cask); Transfer by truck using a DOE shipping cask; Transfer by truck using a commercial shipping cask; and Transfer by truck using a new fuel shipping cask

  4. Experimental Characterization and Modeling of PEM Fuel Cells

    DEFF Research Database (Denmark)

    Jespersen, Jesper Lebæk

    fundamental knowledge of the transport and electrochemical processes of PEM fuel cells and to provide methods for obtaining high quality data for PEM fuel cell simulation model validation. In this thesis three different areas of experimental characterization techniques was investigated, they include: Stack...... for obtaining very detailed data of the manifold flow. Moreover, the tools complement each other well, as high quality validation data can be obtained from PIV measurements to verify CFD models. AC Impedance Spectroscopy was used to thoroughly characterize a HTPEM single cell. The measurement method...... was furthermore transferred onto a Labview platform, which signiffcantly improves the exibility and lowers the cost of using this method. This technique is expected to bea very important future tool, used both for material characterization, celldiagnostic, system optimization and as a control input parameter...

  5. Building a Predictive Capability for Decision-Making that Supports MultiPEM

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Joshua Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-20

    Multi-phenomenological explosion monitoring (multiPEM) is a developing science that uses multiple geophysical signatures of explosions to better identify and characterize their sources. MultiPEM researchers seek to integrate explosion signatures together to provide stronger detection, parameter estimation, or screening capabilities between different sources or processes. This talk will address forming a predictive capability for screening waveform explosion signatures to support multiPEM.

  6. Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2005-01-01

    An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.

  7. Clear-PEM: A dedicated PET camera for improved breast cancer detection

    International Nuclear Information System (INIS)

    Abreu, M. C.; Almeida, P.; Balau, F.; Ferreira, N. C.; Fetal, S.; Fraga, F.; Martins, M.; Matela, N.; Moura, R.; Ortigao, C.; Peralta, L.; Rato, P.; Ribeiro, R.; Rodrigues, P.; Santos, A. I.; Trindade, A.; Varela, J.

    2005-01-01

    Positron emission mammography (PEM) can offer a non-invasive method for the diagnosis of breast cancer. Metabolic images from PEM using 18 F-fluoro-deoxy-glucose, contain unique information not available from conventional morphologic imaging techniques like X-ray radiography. In this work, the concept of Clear-PEM, the system presently developed in the frame of the Crystal Clear Collaboration at CERN, is described. Clear-PEM will be a dedicated scanner, offering better perspectives in terms of position resolution and detection sensitivity. (authors)

  8. Performance and quality control of Clear-PEM detector modules

    International Nuclear Information System (INIS)

    Amaral, Pedro; Carrico, Bruno; Ferreira, Miguel; Moura, Rui; Ortigao, Catarina; Rodrigues, Pedro; Da Silva, Jose C.; Trindade, Andreia; Varela, Joao

    2007-01-01

    Clear-PEM is a dedicated PET scanner for breast and axilla cancer diagnosis, under development within the framework of the Crystal Clear Collaboration at CERN, aiming at the detection of tumors down to 2 mm in diameter. The camera consists of two planar detector heads with active dimensions 16.0x14.5 cm 2 . Each head has 96 Clear-PEM detector modules consisting of 32 LYSO:Ce pixels with dimensions 2x2x20 mm 3 packed in a 4x8 BaSO 4 reflector matrix compressed between two Hamamatsu S8550 APD arrays in a double-readout configuration for Depth-of-Interaction (DoI) determination. The modules are individually measured and characterized before being grouped into Supermodules (comprised of 24 modules). Measured properties include photo-peak position, relative gain dispersion, energy resolution, cross-talk and DoI resolution. Optical inspection of matrices was also performed with the aid of a microscope, to search for pixel misalignments and matrix defects. Modules' performance was thoroughly evaluated with a 511 keV collimated beam to exactly determine DoI resolution. In addition, a fast quality control (QC) procedure using flood irradiations from a 137 Cs source was applied systematically. The overall performance of the 24 detector modules complies with the design goals of the Clear-PEM detector, showing energy resolution around 15%, DoI resolution of about 2 mm and gain dispersion among pixels of 15%

  9. Non-platinum electrocatalysts for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.; Zhang, L.; Shi, Z.; Hui, R.; Zhang, J. [National Research Council of Canada, Vancouver, BC (Canada). Inst. For Fuel Cell Innovation

    2008-07-01

    High cost, low reliability and durability are the main barriers preventing widespread commercialization of fuel cells. In particular, the platinum (Pt)-based electrocatalysts used in proton exchange membrane (PEM) fuel cells, including direct methanol fuel cells (DMFCs) are major contributors to the high cost of PEM fuel cells. The Institute for Fuel Cell Innovation at the National Research Council of Canada has developed several new non-Pt electrocatalysts for PEM fuel cell applications. This paper presented the research results on these catalysts, including transition metal macrocycles, chalcogenides, and Ir- or Pd-based alloys. It also described catalyst structure modes via theoretical density functional theory (DFT) calculations. Research activities on these electrocatalysts was summarized in terms of catalytic activity and the oxygen reduction reaction (ORR). Typical catalysts such as cobalt(Co)-polypyrrole (PPy) and the chalcogenides show promising results in terms of catalytic activity and a 4-electron reaction mechanism. Efforts are underway to modify both catalyst structure and synthesis methods in order to further improve catalyst performance. 4 refs., 2 figs.

  10. SWGELLA DYSENTERIAE TYPE 1 IN KwAZuLU-NATAL

    African Journals Online (AJOL)

    -control. 1995: 15. ure co. LABORATORY SURV~ILLAN.CEOF. SWGELLA DYSENTERIAE TYPE 1 IN. KwAZuLU- ... freeze-dried quality-eontrol specimens were prepared containing ... (National Committee for Clinical Laboratory Standards,.

  11. Structured modelling and nonlinear analysis of PEM fuel cells; Strukturierte Modellierung und nichtlineare Analyse von PEM-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Hanke-Rauschenbach, R.

    2007-10-26

    In the first part of this work a model structuring concept for electrochemical systems is presented. The application of such a concept for the structuring of a process model allows it to combine different fuel cell models to form a whole model family, regardless of their level of detail. Beyond this the concept offers the opportunity to flexibly exchange model entities on different model levels. The second part of the work deals with the nonlinear behaviour of PEM fuel cells. With the help of a simple, spatially lumped and isothermal model, bistable current-voltage characteristics of PEM fuel cells operated with low humidified feed gases are predicted and discussed in detail. The cell is found to exhibit current-voltage curves with pronounced local extrema in a parameter range that is of practical interest when operated at constant feed gas flow rates. (orig.)

  12. Carbon nanotubes as electrode substrate material for PEM fuel cells; Kohlenstoff-Nanoroehrchen als Elektrodenmaterial fuer PEM-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Soehn, Matthias

    2010-06-21

    This thesis reports an enhanced method to deposit nanoscaled noble metal catalysts (Pt/Ru) uniformly on carbon nanotubes based on wet chemical reduction of anorganic precursors via ethylene glycol. This well-known method is widely used to deposit noble metal catalyst particles on carbon black. Unfortunately, carbon nanotubes tend to agglomerate and therefore form bundles which cannot be penetrated by the precursor. Thus, effectiveness of the substrate is reduced. The new method prevents this by suspending the CNTs in butyl acetate by means of ultrasonic dispersion leading to a homogenous distribution. Because the butyl acetate is almost unpolar, it is nearly immiscible with the water-based ethylene glycol mixture. This problem has been solved by adding liquid Nafion {sup registered} which acts as an emulsifying agent. Thus an emulsion is created by ultrasonic treatment. This results in 30 {mu}m-sized droplets of butyl acetate with a layer of CNTs and Nafion {sup registered}. The large interface to the ethylene glycol phase yields a large surface for homogenous catalyst deposition. The prepared samples showed a narrow size distribution ({+-}0.5 nm) of small noble metal particles with loading up to 50% by weight and an average particle size of 3 nm. They are investigated using XRD, SEM, TEM, TGA-MS and CV. The added Nafion {sup registered} improves catalyst utilisation by establishing a proton conductive path to the catalyst particles. Furthermore, different manufacturing techniques for the CNT electrodes are evaluated. Thin layer Membrane-Electrode-Assemblies (MEAs) are prepared by the airbrush technique. Electrode thickness, composition and structure as well as membrane thickness is varied and the MEAs are tested in a single-cell hydrogen-oxygen-fed PEM fuel cell. The cells are characterised by cyclic IV curves which are recorded over an extended period of time, showing power densities up to 770mWcm-2 at a platinum loading of 0.3mgcm-2. Additionally, the MEAs are

  13. Advanced alkaline water electrolysis

    International Nuclear Information System (INIS)

    Marini, Stefania; Salvi, Paolo; Nelli, Paolo; Pesenti, Rachele; Villa, Marco; Berrettoni, Mario; Zangari, Giovanni; Kiros, Yohannes

    2012-01-01

    A short review on the fundamental and technological issues relevant to water electrolysis in alkaline and proton exchange membrane (PEM) devices is given. Due to price and limited availability of the platinum group metal (PGM) catalysts they currently employ, PEM electrolyzers have scant possibilities of being employed in large-scale hydrogen production. The importance and recent advancements in the development of catalysts without PGMs are poised to benefit more the field of alkaline electrolysis rather than that of PEM devices. This paper presents our original data which demonstrate that an advanced alkaline electrolyzer with performances rivaling those of PEM electrolyzers can be made without PGM and with catalysts of high stability and durability. Studies on the advantages/limitations of electrolyzers with different architectures do show how a judicious application of pressure differentials in a recirculating electrolyte scheme helps reduce mass transport limitations, increasing efficiency and power density.

  14. Effect of compressive force on PEM fuel cell performance

    Science.gov (United States)

    MacDonald, Colin Stephen

    Polymer electrolyte membrane (PEM) fuel cells possess the potential, as a zero-emission power source, to replace the internal combustion engine as the primary option for transportation applications. Though there are a number of obstacles to vast PEM fuel cell commercialization, such as high cost and limited durability, there has been significant progress in the field to achieve this goal. Experimental testing and analysis of fuel cell performance has been an important tool in this advancement. Experimental studies of the PEM fuel cell not only identify unfiltered performance response to manipulation of variables, but also aid in the advancement of fuel cell modelling, by allowing for validation of computational schemes. Compressive force used to contain a fuel cell assembly can play a significant role in how effectively the cell functions, the most obvious example being to ensure proper sealing within the cell. Compression can have a considerable impact on cell performance beyond the sealing aspects. The force can manipulate the ability to deliver reactants and the electrochemical functions of the cell, by altering the layers in the cell susceptible to this force. For these reasons an experimental study was undertaken, presented in this thesis, with specific focus placed on cell compression; in order to study its effect on reactant flow fields and performance response. The goal of the thesis was to develop a consistent and accurate general test procedure for the experimental analysis of a PEM fuel cell in order to analyse the effects of compression on performance. The factors potentially affecting cell performance, which were a function of compression, were identified as: (1) Sealing and surface contact; (2) Pressure drop across the flow channel; (3) Porosity of the GDL. Each factor was analysed independently in order to determine the individual contribution to changes in performance. An optimal degree of compression was identified for the cell configuration in

  15. Performance Degradation Tests of Phosphoric Acid Doped PBI Membrane Based High Temperature PEM Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2014-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation. Continuous tests with H2 and simulated reformate which was composed...... of H2, water steam and methanol as the fuel were performed on both single cells. 12-h-startup/12-h-shutdown dynamic tests were performed on the first single cell with pure dry H2 as the fuel and on the second single cell with simulated reformate as the fuel. Along with the tests electrochemical...... techniques such as polarization curves and electrochemical impedance spectroscopy (EIS) were employed to study the degradation mechanisms of the fuel cells. Both single cells showed an increase in the performance in the H2 continuous tests, because of a decrease in the ORR kinetic resistance probably due...

  16. A portable system powered with hydrogen and one single air-breathing PEM fuel cell

    International Nuclear Information System (INIS)

    Fernández-Moreno, J.; Guelbenzu, G.; Martín, A.J.; Folgado, M.A.; Ferreira-Aparicio, P.; Chaparro, A.M.

    2013-01-01

    Highlights: • A portable system based on hydrogen and single air breathing PEM fuel cell. • Control electronics designed for low single cell voltage (0.5–0.8 V). • Forced air convection and anode purging required to help water management. • Application consisting of a propeller able to display a luminous message. • Up to 20 h autonomy with continuous 1.1 W consumption, using 1 g H 2 . - Abstract: A portable system for power generation based on hydrogen and a single proton exchange membrane fuel cell (PEMFC) has been built and operated. The fuel cell is fed in the anode with hydrogen stored in a metal hydrides cartridge, and in the cathode with oxygen from quiescent ambient air (‘air breathing’). The control electronics of the system performs DC–DC conversion from the low voltage (0.5–0.8 V) and high current output (200–300 mA cm −2 ) of the single fuel cell, up to 3.3 V to power an electronic application. System components assist fuel cell operation, including an electronic valve for anode purging, a fan in front of the open cathode, two supercapacitors for auxiliary power requirements, four LED lights, and a display screen. The influence of the system components on fuel cell behaviour is analyzed. The cathode fan and anodic purging help excess water removal from the electrodes leading to steadier cell response at the expense of extra power consumption. The power system is able to provide above 1 W DC electricity to an external application during 20 h using 1 g of H 2 . An application consisting of a propeller able to display a luminous message is chosen to test system. It is shown that one single air breathing PEM fuel cell powered with hydrogen may provide high energy density and autonomy for portable applications

  17. DOD Residential Proton Exchange Membrane (PEM) Fuel Cell Demonstration Program. Volume 2. Summary of Fiscal Year 2001-2003 Projects

    Science.gov (United States)

    2005-09-01

    produced many of the Beatles 1970s recordings. This facility was selected to host the UK PEM demonstration project from a selection of four potential sites...funded the Department of Defense (DOD) Residential PEM Demonstration Project to demonstrate domestically-produced, residential Proton Exchange Membrane...PEM) fuel cells at DOD Facilities. The objectives were to: (1) assess PEM fuel cells’ role in supporting sustainability at military installations

  18. Fuel cell processor with low-temperature PEM fuel cell - testing. Final report; Naturgasreformersystem med lavtgemperatur-PEM braendselsceller - TEST. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Bech-Madsen, J.

    2006-11-03

    The purpose of the project is to further develop a Danish natural gas reformer system including optimisation of subsystems and the overall system consisting of a natural gas reformer and fuel cell CHP generator. This will contribute to the evaluation of to what extend Denmark shall develop small reformer units for PEM fuel Cells. In the project a reformer system with a high degree of automatic control has been build that fulfils the CHP requirements to operation time, dynamics etc. This work, with a FP05 reformer unit, has given valuable results concerning the possibilities and limitations of the reformer technology for CHP usage. It is important that the reformer and fuel cell units are designed with matching yields to optimise efficiency, turn-down start-up time etc. The burner that delivers heat for the steam reaction shall be able to use natural gas as fuel. This gives the possibility of using existing burner technology. In addition this will improve the efficiency since it will not be necessary to reform natural gas to feed the burner. The large number of BoP components in the FP05 unit is primarily used for achieving good regulation dynamics and accuracy. To reduce the number of components, a CHP unit with few or only one operational point should be considered. A single point of operation will reduce the number of valves as well as the requirements to the control and regulation of the system. A large part of the reformer size is needed to meet the high demands for CO purification of the reformat. This purification results in a very narrow window of operation for the reformer system. By using more CO tolerant fuel cells this part of the system can be reduced or even eliminated. To test the developed automatic control it was planned to integrate the FP05 reformer with a 10kW CHP unit that was being build by IRD in a separate project. This unit was perfect in size for testing with the reformer. However due to a number of reasons it was not possible during the

  19. Study on modulation amplitude stabilization method for PEM based on FPGA in atomic magnetometer

    Science.gov (United States)

    Wang, Qinghua; Quan, Wei; Duan, Lihong

    2017-10-01

    Atomic magnetometer which uses atoms as sensitive elements have ultra-high precision and has wide applications in scientific researches. The photoelastic modulation method based on photoelastic modulator (PEM) is used in the atomic magnetometer to detect the small optical rotation angle of a linearly polarized light. However, the modulation amplitude of the PEM will drift due to the environmental factors, which reduces the precision and long-term stability of the atomic magnetometer. Consequently, stabilizing the PEM's modulation amplitude is essential to precision measurement. In this paper, a modulation amplitude stabilization method for PEM based on Field Programmable Gate Array (FPGA) is proposed. The designed control system contains an optical setup and an electrical part. The optical setup is used to measure the PEM's modulation amplitude. The FPGA chip, with the PID control algorithm implemented in it, is used as the electrical part's micro controller. The closed loop control method based on the photoelastic modulation detection system can directly measure the PEM's modulation amplitude in real time, without increasing the additional optical devices. In addition, the operating speed of the modulation amplitude stabilization control system can be greatly improved because of the FPGA's parallel computing feature, and the PID control algorithm ensures flexibility to meet different needs of the PEM's modulation amplitude set values. The Modelsim simulation results show the correctness of the PID control algorithm, and the long-term stability of the PEM's modulation amplitude reaches 0.35% in a 3-hour continuous measurement.

  20. The Effect of PFSA Membrane Compression on the Predicted Performance of a High Pressure PEM Electrolysis Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Kær, Søren Knudsen

    2015-01-01

    In this work, a non-equilibrium formulation of a compression dependent water uptake model has been implemented in a two-dimensional, two-phase, multi-component and non-isothermal high pressure PEM electrolysis model. The non-equilibrium formulation of the water uptake model was chosen in order...... to account for interfacial transport kinetics between each fluid phase and the perfluorinated sulfonic acid membrane. Besides modeling water uptake, the devised membrane model accounts for water transport through diffusion and electro-osmotic drag in the electrolyte phase, and hydraulic permeation...... in the liquid phase. Charge transport and electrochemistry are likewise included. The obtained model is validated against experimental measurements. In order to investigate the effect of membrane compression, a parametric study is carried. Results underline that the predicted water uptake and cell voltage...

  1. Development of ClearPEM-Sonic, a multimodal mammography system for PET and Ultrasound

    Science.gov (United States)

    Cucciati, G.; Auffray, E.; Bugalho, R.; Cao, L.; Di Vara, N.; Farina, F.; Felix, N.; Frisch, B.; Ghezzi, A.; Juhan, V.; Jun, D.; Lasaygues, P.; Lecoq, P.; Mensah, S.; Mundler, O.; Neves, J.; Paganoni, M.; Peter, J.; Pizzichemi, M.; Siles, P.; Silva, J. C.; Silva, R.; Tavernier, S.; Tessonnier, L.; Varela, J.

    2014-03-01

    ClearPEM-Sonic is an innovative imaging device specifically developed for breast cancer. The possibility to work in PEM-Ultrasound multimodality allows to obtain metabolic and morphological information increasing the specificity of the exam. The ClearPEM detector is developed to maximize the sensitivity and the spatial resolution as compared to Whole-Body PET scanners. It is coupled with a 3D ultrasound system, the SuperSonic Imagine Aixplorer that improves the specificity of the exam by providing a tissue elasticity map. This work describes the ClearPEM-Sonic project focusing on the technological developments it has required, the technical merits (and limits) and the first multimodal images acquired on a dedicated phantom. It finally presents selected clinical case studies that confirm the value of PEM information.

  2. Development of ClearPEM-Sonic, a multimodal mammography system for PET and Ultrasound

    International Nuclear Information System (INIS)

    Cucciati, G; Vara, N Di; Ghezzi, A; Paganoni, M; Pizzichemi, M; Auffray, E; Frisch, B; Lecoq, P; Bugalho, R; Neves, J; Cao, L; Peter, J; Farina, F; Felix, N; Juhan, V; Mundler, O; Siles, P; Jun, D; Lasaygues, P; Mensah, S

    2014-01-01

    ClearPEM-Sonic is an innovative imaging device specifically developed for breast cancer. The possibility to work in PEM-Ultrasound multimodality allows to obtain metabolic and morphological information increasing the specificity of the exam. The ClearPEM detector is developed to maximize the sensitivity and the spatial resolution as compared to Whole-Body PET scanners. It is coupled with a 3D ultrasound system, the SuperSonic Imagine Aixplorer that improves the specificity of the exam by providing a tissue elasticity map. This work describes the ClearPEM-Sonic project focusing on the technological developments it has required, the technical merits (and limits) and the first multimodal images acquired on a dedicated phantom. It finally presents selected clinical case studies that confirm the value of PEM information

  3. Design and implementation of a 38 kW dish-Stirling concentrated solar power system

    Science.gov (United States)

    Yan, J.; Peng, Y. D.; Cheng, Z. R.; Liu, F. M.; Tang, X. H.

    2017-11-01

    Dish-Stirling concentrated solar power system (DS-CSP) is an important pathway for converting solar energy into electricity at high efficiency. In this study, a rated power 38 kW DS-CSP system was developed (installed in Xiangtan Electric Manufacturing Group). The heat engine adopted the alpha-type four cylinders double-acting Stirling engine (Stirling Biopower Flexgen S260). The absorber flux distribution simulation was conducted using ray tracing method and then the 204 m2 parabolic dish concentrator system (diameter is 17.70 m and focal length is 9.49 m) with single concentrator plus single pillar supporting has been designed and built. A water-cooled disc target and an absorber imitation device were adopted to test the tracking performance of the dish concentrator system, homogeneity of the focal spot and flux distribution of the absorber. Finally, the S260 Stirling engine was installed on the focal position of the dish concentrator and then the net output power date of the 38 kW DS-CSP system was tested. The absorber overheating problem on the DS-CSP system performance was discussed when the DS-CSP system was installed in different locations. The testing result shows that this system achieved the net output power of 38 kW and solar-to-electricity efficiency (SEE) of 25.3% with the direct normal irradiation (DNI) at 750 W/m2. The net output power can further increase to 40.5 kW with the SEE of 26.6% when the DNI reaches up to the maximum of 761 W/m2. The net output power of the 38 kW DS-CSP system has a linear function relationship with the DNI. The fitting function is Net power output=0.1003×DNI-36.129, where DNI is at the range of 460∼761 W/m2. This function could be used to predict the amount of the 38 kW DS-CSP system annual generation power.

  4. Characterization of PM-PEMS for in-use measurements conducted during validation testing for the PM-PEMS measurement allowance program

    Science.gov (United States)

    Khan, M. Yusuf; Johnson, Kent C.; Durbin, Thomas D.; Jung, Heejung; Cocker, David R.; Bishnu, Dipak; Giannelli, Robert

    2012-08-01

    This study provides an evaluation of the latest Particulate Matter-Portable Emissions Measurement Systems (PM-PEMS) under different environmental and in-use conditions. It characterizes four PM measurement systems based on different measurement principles. At least three different units were tested for each PM-PEMS to account for variability. These PM-PEMS were compared with a UC Riverside's mobile reference laboratory (MEL). PM measurements were made from a class 8 truck with a 2008 Cummins diesel engine with a diesel particulate filter (DPF). A bypass around the DPF was installed in the exhaust to achieve a brake specific PM (bsPM) emissions level of 25 mg hp-1h-1. PM was dominated by elemental carbon (EC) during non-regeneration conditions and by hydrated sulfate (H2SO4.6H2O) during regeneration. The photo-acoustic PM-PEMS performed best, with a linear regression slope of 0.90 and R2 of 0.88 during non-regenerative conditions. With the addition of a filter, the photo-acoustic PM-PEMS slightly over reported than the total PM mass (slope = 1.10, R2 = 0.87). Under these same non-regeneration conditions, a PM-PEMS equipped with a quartz crystal microbalance (QCM) technology performed the poorest, and had a slope of 0.22 and R2 of 0.13. Re-tests performed on upgraded QCM PM-PEMS showed a better slope (0.66), and a higher R2 of 0.25. In the case of DPF regeneration, all PM-PEMS performed poorly, with the best having a slope of 0.20 and R2 of 0.78. Particle size distributions (PSD) showed nucleation during regeneration, with a shift of particle size to smaller diameters (˜64 nm to ˜13 nm) with elevated number concentrations when compared to non-regeneration conditions.

  5. Laser Ablation Increases PEM/Catalyst Interfacial Area

    Science.gov (United States)

    Whitacre, Jay; Yalisove, Steve

    2009-01-01

    An investigational method of improving the performance of a fuel cell that contains a polymer-electrolyte membrane (PEM) is based on the concept of roughening the surface of the PEM, prior to deposition of a thin layer of catalyst, in order to increase the PEM/catalyst interfacial area and thereby increase the degree of utilization of the catalyst. The roughening is done by means of laser ablation under carefully controlled conditions. Next, the roughened membrane surface is coated with the thin layer of catalyst (which is typically platinum), then sandwiched between two electrode/catalyst structures to form a membrane/ele c t - rode assembly. The feasibility of the roughening technique was demonstrated in experiments in which proton-conducting membranes made of a perfluorosulfonic acid-based hydrophilic, protonconducting polymer were ablated by use of femtosecond laser pulses. It was found that when proper combinations of the pulse intensity, pulse-repetition rate, and number of repetitions was chosen, the initially flat, smooth membrane surfaces became roughened to such an extent as to be converted to networks of nodules interconnected by filaments (see Figure 1). In further experiments, electrochemical impedance spectroscopy (EIS) was performed on a pristine (smooth) membrane and on two laser-roughened membranes after the membranes were coated with platinum on both sides. Some preliminary EIS data were interpreted as showing that notwithstanding the potential for laser-induced damage, the bulk conductivities of the membranes were not diminished in the roughening process. Other preliminary EIS data (see Figure 2) were interpreted as signifying that the surface areas of the laser-roughened membranes were significantly greater than those of the smooth membrane. Moreover, elemental analyses showed that the sulfur-containing molecular groups necessary for proton conduction remained intact, even near the laser-roughened surfaces. These preliminary results can be taken

  6. PEM fuel cell bipolar plate material requirements for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States)] [and others

    1996-04-01

    Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.

  7. DanDan. Final report. [PEM fuel cells for back-up power and UPS]; DanDan. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    The project has provided valuable results for the partners involved, and has resulted in the construction and demonstration of a modular UPS system that can be used with fuel cells. Dantherm Power has provided a 5 kW fuel cell module, based on LT-pem technology, for use in the demonstration and testing facility. The function of the unit is verified by both internal testing and demonstrations from at third parties were it currently is set up to perform tests regarding lifetime. The development of a DC / DC converter, was made. The module has been tested under various conditions, and the development process has resulted in detailed specs of both technique and test process. The module has been tested both in laboratory environment and demonstrated at third parties. The module is part of the systems described in connection with initial test runs - performed at strategic partners - and in connection with the demonstration of the systems both in Japan and in South Africa. The modules are presently in a stage of demonstration, while subjected to substantial service life tests. The purchased reformers are part of the systems used for demonstration in the project and as such they will supply valuable data trough the comprehensive test and verification program initiated. (LN)

  8. Performance Evaluation of Electrochem's PEM Fuel Cell Power Plant for NASA's 2nd Generation Reusable Launch Vehicle

    Science.gov (United States)

    Kimble, Michael C.; Hoberecht, Mark

    2003-01-01

    NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.

  9. Development of 1 kW Stirling cryocooler using a linear compressor

    International Nuclear Information System (INIS)

    Ko, J; Kim, H; Hong, Y J; Yeom, H; In, S; Park, S J

    2015-01-01

    Cryogenic cooling systems for HTS electric power devices require a reliable and efficient high-capacity cryocooler. A Striling cryocooler with a linear compressor can be a good candidate. It has advantages of low vibration and long maintenance cycle compared with a kinematic-driven Stirling cryocooler. In this study, we developed a dual-opposed linear compressor of 12 kW electric input power with two 6 kW linear motors. Electrical performance of the fabricated linear compressor is verified by experimental measurement of thrust constant. The developed Stirling cryocooler has a gamma-type configuration. The piston and displacer are supported with a flexure spring. A slit-type heat exchanger is adopted for the cold and warm-end, and the generated heat is rejected by cooling water. In the cooling performance test, waveforms of voltage, current, displacement and pressure are obtained and their amplitude and phase difference are analysed. The developed cryocooler reaches 47.8 K within 23.4 min. with no-load. Heat load tests shows a cooling capacity of 440 W at 78.1 K with 6.45 kW of electric input power and 19.4 of % Carnot COP. (paper)

  10. Basic research using the 250 kW research reactor of the Jozef Stefan Institute

    International Nuclear Information System (INIS)

    Dimic, V.

    1984-01-01

    The 250 kW TRIGA Mark II reactor is a light water reactor with solid fuel elements in which the zirconium hydride moderator is homogeneously distributed between enriched uranium. The reactor therefore has a large prompt negative temperature coefficient of reactivity; the fuel also has a very high retention of radioactive fission products. The experimental facilities include a rotary specimen rack, a central in-core radiation thimble, a pneumatic transfer system and pulsing capability. Other experimental facilities include two radial and two tangential beam tubes, a graphite thermal column and a graphite thermalizing column. At the steady state power of 250 kW the peak flux is 1x10 13 n/cm 2 in the central test position. In addition, pulsing to about 2000 MW is usually provided giving peak fluxes of about 2x10 16 n/cm 2 sec. All TRIGA reactors produce a core-average thermal neutron flux of about 10 7 n.v. per watt. Only with very large accelerators can such high fluxes be achieved. The types of research could be summarized as follows: thermal neutron scattering, neutron radiography, neutron and nuclear physics, activation analysis, radiochemistry, biology and medicine, and teaching and training. Typical applied research with a 250 kW reactor has been conducted in medicine, in biology, archaeology, metallurgy and materials science, engineering and criminology. It is well known that research reactors have been used routinely to produce isotopes for industry and medicine. We can conclude that the 250 kW TRIGA reactor is a useful and wide ranging source of radiation for basic and applied research. The operation cost for this instrument is relatively low. (author)

  11. Characteristics and uses of a 250 kW TRIGA reactor

    International Nuclear Information System (INIS)

    Dimic, V.

    1985-01-01

    The 250 kW TRIGA Mark II reactor is a light water reactor with solid fuel elements in which the zirconium hydride moderator is homogeneously distributed between enriched uranium. Therefore the reactor has the large prompt negative temperature coefficient of reactivity, the fuel also has very high retention of radioactive fission products. The reactor core is a cylindrical configuration with an annular graphite reflector. The experimental facilities include a rotary specimen rack, a central incore radiation thimble, a pneumatic transfer system, and pulsing capability. Other experimental facilities include two radial and two tangential beam tubes, a graphite thermal column, and a graphite thermalizing column. At the steady state power of 250 kW the peak flux is 1x10 13 n/cm 2 s in the central test position. In addition, pulsing to about 2000 MW is usually provided giving peak fluxes of about 2x10 16 n/cm 2 sec. All TRIGA reactors produce a core-average thermal neutron flux of about 10 7 n.v per watt. Only with very large accelerators could such a high neutron flux be achieved. In order to give an appreciation for the research conducted at research reactors, the types of research could be summarized as follows: thermal neutron scattering, neutron radiography, neutron and nuclear physics, activation analysis, radiochemistry, biology and medicine, and teaching and training. Typical applied research with a 250 kW reactor has been conducted in medicine in biology, archeology, metallurgy and materials science, engineering and criminology. It is well known that research reactors have been used routinely to produce isotopes for industry and medicine. In some instances, reactors are the preferred method of isotope production. We can conclude that the 250 kW TRIGA research reactor is a useful and wide ranging source of radiation for basic and applied research. The operation cost for this instrument is relatively low. (author)

  12. Experimental analysis of a PEM fuel cell 15 W; Analise experimental de uma celula a combustivel PEM 15W

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Raphael Guardini; Bazzo, Edson [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], e-mail: miyake@labcet.ufsc.br, e-mail: ebazzo@emc.ufsc.br

    2006-07-01

    Fuel cells have been considered a promising alternative for electric energy generation. In order to contribute with the development of this technology, a PEM fuel cell was installed and new experiments were carried out at LabCET (Laboratory of Combustion and Thermal System Engineering). Previous results have shown polarization curves identifying the need of rigorous controlling of humidification temperature of the fuel cell. In this paper, new results were carried out considering the use of a fan connected to the fuel cell and possible degradation in the electrolyte, after a relative long time operation. New polarization curves were plotted for comparison with previous results. (author)

  13. Design and operational experience and testing of 50 kW/120 kHz oscillator for 3 MeV, 30 kW DC accelerator

    International Nuclear Information System (INIS)

    Srivastava, S.K.; Bakhtsingh, R.I.; Saroj, P.C.

    2011-01-01

    A 3 MeV, 30 kW dc industrial electron beam Accelerator is being developed at EBC, Kharghar, Navi Mumbai. The 3 MV dc is generated by parallel coupled voltage multiplier operating at 120 kHz. This requires an input voltage of 150 kV-0-150 kV at 120 kHz. This is achieved by 50 kW/120 kHz power oscillator in conjunction with a tuned air-core step-up transformer. Input primary voltage of 6 kV-0-6 kV at 120 kHz is generated by an oscillator using BW1121J2 water cooled triodes in push-pull Colpitts configuration. The tank circuit for the oscillator is formed by the secondary winding inductance of the step-up transformer and capacitance formed by RF feeder electrodes of the voltage multiplier column. Grid feedback for the oscillator is derived by arranging a set of electrodes in the feeder assembly in a capacitive divider configuration. The oscillator is operated in class-C mode with grid leak bias for better efficiency which also has the advantages of self-adjustment with varying load conditions. High power test has been conducted in a simulated test set-up on dummy load up to 30kW. Subsequently, the power oscillator has been tested with HV multiplier at 1MeV level satisfactorily. This paper describes the design, test results and operational experiences of the oscillator. (author)

  14. INVESTIGATION OF PEM FUEL CELL FOR AUTOMOTIVE USE

    Directory of Open Access Journals (Sweden)

    A. K. M. Mohiuddin

    2015-11-01

    Full Text Available This paper provides a brief investigation on suitability of Proton-exchange  membrane fuel cells (PEMFCs as the source of power for transportation purposes. Hydrogen is an attractive alternative transportation fuel. It is the least polluting fuel that can be used in an internal combustion engine (ICE and it is widely available. If hydrogen is used in a fuel cell which converts the chemical energy of hydrogen into electricity, (NOx emissions are eliminated. The investigation was carried out on a  fuel cell car model by implementing polymer electrolyte membrane (PEM types of fuel cell as the source of power to propel the prototype car. This PEMFC has capability to propel the electric motor by converting chemical energy stored in hydrogen gas into useful electrical energy. PEM fuel cell alone is used as the power source for the electric motor without the aid of any other power source such as battery associated with it. Experimental investigations were carried out to investigate the characteristics of fuel cell used and the performance of the fuel cell car. Investigated papameters are the power it develops, voltage, current and speed it produces under different load conditions. KEYWORDS: fuel cell; automotive; proton exchange membrane; polymer electrolyte membrane; internal combustion engine

  15. An Open-Source Toolbox for PEM Fuel Cell Simulation

    Directory of Open Access Journals (Sweden)

    Jean-Paul Kone

    2018-05-01

    Full Text Available In this paper, an open-source toolbox that can be used to accurately predict the distribution of the major physical quantities that are transported within a proton exchange membrane (PEM fuel cell is presented. The toolbox has been developed using the Open Source Field Operation and Manipulation (OpenFOAM platform, which is an open-source computational fluid dynamics (CFD code. The base case results for the distribution of velocity, pressure, chemical species, Nernst potential, current density, and temperature are as expected. The plotted polarization curve was compared to the results from a numerical model and experimental data taken from the literature. The conducted simulations have generated a significant amount of data and information about the transport processes that are involved in the operation of a PEM fuel cell. The key role played by the concentration constant in shaping the cell polarization curve has been explored. The development of the present toolbox is in line with the objectives outlined in the International Energy Agency (IEA, Paris, France Advanced Fuel Cell Annex 37 that is devoted to developing open-source computational tools to facilitate fuel cell technologies. The work therefore serves as a basis for devising additional features that are not always feasible with a commercial code.

  16. Development of 10kW SOFC module

    Energy Technology Data Exchange (ETDEWEB)

    Hisatome, N.; Nagata, K. [Mitsubishi Heavy Industries, Ltd., Nagasaki (Japan); Kakigami, S. [Electric Power Development Co., Inc., Tokyo (Japan)] [and others

    1996-12-31

    Mitsubishi Heavy industries, Ltd. (MHI) has been developing tubular type Solid Oxide Fuel Cells (SOFC) since 1984. A 1 kW module of SOFC has been continuously operated for 3,000 hours with 2 scheduled thermal cycles at Electric Power Development Co., Inc. (EPDC) Wakamatsu Power Station in 1993. We have obtained of 34% (HHV as H{sub 2}) module efficiency and deterioration rate of 2% Per 1,000 hours in this field test. As for next step, we have developed 10 kW module in 1995. The 10 kW module has been operated for 5,000 hours continuously. This module does not need heating support to maintain the operation temperature, and the module efficiency was 34% (HHV as H{sub 2}). On the other hand, we have started developing the technology of pressurized SOFC. In 1996, pressurized MW module has been tested at MHI Nagasaki Shipyard & Machinery, Works. We are now planning the development of pressurized 10 kW module.

  17. Thermal stability control system of photo-elastic interferometer in the PEM-FTs

    Science.gov (United States)

    Zhang, M. J.; Jing, N.; Li, K. W.; Wang, Z. B.

    2018-01-01

    A drifting model for the resonant frequency and retardation amplitude of a photo-elastic modulator (PEM) in the photo-elastic modulated Fourier transform spectrometer (PEM-FTs) is presented. A multi-parameter broadband-matching driving control method is proposed to improve the thermal stability of the PEM interferometer. The automatically frequency-modulated technology of the driving signal based on digital phase-locked technology is used to track the PEM's changing resonant frequency. Simultaneously the maximum optical-path-difference of a laser's interferogram is measured to adjust the amplitude of the PEM's driving signal so that the spectral resolution is stable. In the experiment, the multi-parameter broadband-matching control method is applied to the driving control system of the PEM-FTs. Control of resonant frequency and retardation amplitude stabilizes the maximum optical-path-difference to approximately 236 μm and results in a spectral resolution of 42 cm-1. This corresponds to a relative error smaller than 2.16% (4.28 standard deviation). The experiment shows that the method can effectively stabilize the spectral resolution of the PEM-FTs.

  18. 6kW class laser cutting equipment; 6kW daishutsuryoku laser setsudanki ni yoru atsuita setsudan

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Y.; Nagahori, M. [Tanaka Engineering Works Ltd., Saitama (Japan)

    1994-11-01

    Application of the laser cutting machine to the area of cutting steel plates of 5 mm thick or more was first enabled in 1990 by the 2 kW oscillator that was introduced in that year. The thick plate cutting industry has a short history. This paper describes the features and performance of the 6 kW laser cutting machine that was announced in April, 1994. The machine uses a newly developed high-speed axial flow type carbon dioxide laser oscillater with the rated output of 6 kW. As the discharge excitation method, the machine adopted the RF (radio frequency) method that causes low contamination in the discharge tube. The 6 kW laser cutting machine has a number of features such as a large cutting area provided by the oscillator contained in the cutting machine, cutting quality stabilized by the optical path length fixing unit, and automatic functions such as automatic setting of the cutting conditions and scheduled operation. The machine can cut mild steel plates of up to 40 mm thick (or up to 16 mm for stainless steel plates) at the cutting speed of 1600 mm/min for a 16 mm thick plate and 2200 mm/min for a 12 mm thick plate, with the good cut sectional surface. 5 figs., 1 tab.

  19. Cooling system upgrading from 250 kW to 1 MW

    International Nuclear Information System (INIS)

    Anderson, T.V.; Johnson, A.G.; Ringle, J.C.

    1972-01-01

    The Oregon State TRIGA reactor (OSTR) power capability was upgraded from 250 KW to 1 MW in 1969; however, funds were not available for simultaneous upgrading of the cooling system. Since then, the OSTR has been selectively operating at full power with the original 250 KW cooling system. After funds were made available in 1971 the construction on the new heat exchanger building began. The new cooling system was installed, equipment was checked out, corrections were made, and acceptance tests were run. In addition, several days were required to clean up the primary system water, since increased water flow (350 gpm) swirled 4 year's collection of sediment off the reactor tank bottom and into the primary system. Three interesting items have been noticed, which are apparently a result of the cooling system upgrading: (1) the radiation levels above the reactor tank have been reduced by a factor of 2 to 3, (2) a low resonance vibration in the reactor core occurs at 1 MW. The vibration is attributed to a combination of increased water turbulence and subcooled (surface) nucleate boiling, and (3) direct radiation levels from the demineralizer tank have increased approximately 8-fold. This resulted in a relocation of the tank and the use of supplemental shielding. Increased operating time at higher average power levels, plus disturbance of; sediment on the bottom of the reactor tank are believed to be the main sources of the higher radiation levels

  20. Near-term markets for PEM fuel cell power modules: industrial vehicles and hydrogen recovery

    International Nuclear Information System (INIS)

    Chintawar, P.S.; Block, G.

    2004-01-01

    'Full text:' Nuvera Fuel Cells, Inc. is a global leader in the development and advancement of multifuel processing and fuel cell technology. With offices located in Italy and the USA, Nuvera is committed to advancing the commercialization of hydrogen fuel cell power modules for industrial vehicles and equipment and stationary applications by 2006, natural gas fuel cell power systems for cogeneration applications by 2007, and on-board gasoline fuel processors and fuel cell stacks for automotive applications by 2010. Nuvera Fuel Cells Europe is ISO 9001:2000 certified for 'Research, Development, Design, Production and Servicing of Fuel Cell Stacks and Fuel Cell Systems.' In the chemical industry, one of the largest operating expenses today is the cost of electricity. For example, caustic soda and chlorine are produced today using industrial membrane electrolysis which is an energy intensive process. Production of 1 metric ton of caustic soda consumes 2.5 MWh of energy. However, about 20% of the electricity consumed can be recovered by converting the hydrogen byproduct of the caustic soda production process into electricity via PEM fuel cells. The accessible market is a function of the economic value of the hydrogen whether flared, used as fuel, or as chemical. Responding to this market need, we are currently developing large hydrogen fuel cell power modules 'Forza' that use excess hydrogen to produce electricity, representing a practical economic alternative to reducing the net electricity cost. Due for commercial launch in 2006, Forza is a low-pressure, steady state, base-load power generation solution that will operate at high efficiency and 100% capacity over a 24-hour period. We believe this premise is also true for chemical and electrochemical plants and companies that convert hydrogen to electricity using renewable sources like windmills or hydropower. The second near-term market that Nuvera is developing utilizes a 5.5 kW hydrogen fueled power module 'H 2 e

  1. Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes

    International Nuclear Information System (INIS)

    Tang Yong; Yuan Wei; Pan Minqiang; Li Zongtao; Chen Guoqing; Li Yong

    2010-01-01

    The dynamic performance is a very important evaluation index of proton exchange membrane (PEM) fuel cells used for real application, which is mostly related with water, heat and gas management. A commercial PEM fuel cell system of Nexa module is employed to experimentally investigate the dynamic behavior and transient response of a PEM fuel cell stack and reveal involved influential factors. Five groups of dynamic tests are conducted and divided into different stage such as start-up, shut-down, step-up load, regular load variation and irregular load variation. It is observed that the external load changes the current output proportionally and reverses stack voltage accordingly. The purge operation benefits performance recovery and enhancement during a constant load and its time strongly depends on the operational current level. Overshoot and undershoot behaviors are observed during transience. But the current undershoot does not appear due to charge double-layer effect. Additionally, magnitudes of the peaks of the voltage overshoot and undershoot vary at different current levels. The operating temperature responds fast to current load but changes slowly showing an arc-like profile without any overshoot and undershoot events. The air flow rate changes directly following the dynamic load demand. But the increased amount of air flow rate during different step-change is not identical, which depends on the requirement of internal reaction and flooding intensity. The results can be utilized for validation of dynamic fuel cell models, and regarded as reference for effective control and management strategies.

  2. Analytical and numerical study on cooling flow field designs performance of PEM fuel cell with variable heat flux

    Science.gov (United States)

    Afshari, Ebrahim; Ziaei-Rad, Masoud; Jahantigh, Nabi

    2016-06-01

    In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.

  3. Investigation of GDL compression effects on the performance of a PEM fuel cell cathode by lattice Boltzmann method

    Science.gov (United States)

    Molaeimanesh, G. R.; Nazemian, M.

    2017-08-01

    Proton exchange membrane (PEM) fuel cells with a great potential for application in vehicle propulsion systems will have a promising future. However, to overcome the exiting challenges against their wider commercialization further fundamental research is inevitable. The effects of gas diffusion layer (GDL) compression on the performance of a PEM fuel cell is not well-recognized; especially, via pore-scale simulation technique capturing the fibrous microstructure of the GDL. In the current investigation, a stochastic microstructure reconstruction method is proposed which can capture GDL microstructure changes by compression. Afterwards, lattice Boltzmann pore-scale simulation technique is adopted to simulate the reactive gas flow through 10 different cathode electrodes with dissimilar carbon paper GDLs produced from five different compression levels and two different carbon fiber diameters. The distributions of oxygen mole fraction, water vapor mole fraction and current density for the simulated cases are presented and analyzed. The results of simulations demonstrate that when the fiber diameter is 9 μm adding compression leads to lower average current density while when the fiber diameter is 7 μm the compression effect is not monotonic.

  4. Investigation of the purging effect on a dead-end anode PEM fuel cell-powered vehicle during segments of a European driving cycle

    International Nuclear Information System (INIS)

    Gomez, Alberto; Sasmito, Agus P.; Shamim, Tariq

    2015-01-01

    Highlights: • Experimental study of a dead-end anode PEM fuel cell stack during a driving cycle. • Low purging duration is preferred at high current. • High purging frequency can sustain a better performance over time. • Lower cathode stoichiometry is preferred to minimize the parasitic loads. - Abstract: The dynamic performance of the PEM fuel cell is one of the key factors for successful operation of a fuel cell-powered vehicle. Maintaining fast time response while keeping stable and high stack performance is of importance, especially during acceleration and deceleration. In this paper, we evaluate the transient response of a PEM fuel cell stack with a dead-end anode during segments of a legislated European driving cycle together with the effect of purging factors. The PEM fuel cell stack comprises of 24 cells with a 300 cm"2 active catalyst area and operates at a low hydrogen and air pressure. Humidified air is supplied to the cathode side and the dry hydrogen is fed to the anode. The liquid coolant is circulated to the stack and the radiator to maintain the thermal envelope throughout the stack. The stack performance deterioration over time is prevented by utilizing the purging, which removes the accumulated water and impurities. The effect of purging period, purging duration, coolant flow rate and cathode stoichiometry are examined with regard to the fuel cell’s transient performance during the driving cycle. The results show that a low purging duration may avoid the undesired deceleration at a high current, and a high purging period may sustain a better performance over time. Moreover, the coolant flow rate is found to be an important parameter, which affects the stack temperature–time response of the cooling control and the stack performance, especially at high operating currents.

  5. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running......The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  6. High Temperature PEM Fuel Cells and Organic Fuels

    DEFF Research Database (Denmark)

    Vassiliev, Anton

    of the products. The observation of internal reforming was indirectly confirmed by electrochemical impedance spectroscopy, where the best fits were obtained when a Gerischer element describing preceding chemical reaction and diffusion was included in the equivalent circuit of a methanol/air operated cell...... evaporated liquid stream supply to either of the electrodes. A large number of MEAs with different component compositions have been prepared and tested in different conditions using the constructed setups to obtain a basic understanding of the nature of direct DME HT-PEM FC, to map the processes occurring...... inside the cells and to determine the lifetime. Additionally, comparison was made with methanol as fuel, which is the main competitor to DME in direct oxidation of organic fuels in fuel cells. For the reference, measurements have also been done with conventional hydrogen/air operation. All...

  7. Optimization Design of Bipolar Plate Flow Field in PEM Stack

    Science.gov (United States)

    Wen, Ming; He, Kanghao; Li, Peilong; Yang, Lei; Deng, Li; Jiang, Fei; Yao, Yong

    2017-12-01

    A new design of bipolar plate flow field in proton exchange membrane (PEM) stack was presented to develop a high-performance transfer efficiency of the two-phase flow. Two different flow fields were studied by using numerical simulations and the performance of the flow fields was presented. the hydrodynamic properties include pressure gap between inlet and outlet, the Reynold’s number of the two types were compared based on the Navier-Stokes equations. Computer aided optimization software was implemented in the design of experiments of the preferable flow field. The design of experiments (DOE) for the favorable concept was carried out to study the hydrodynamic properties when changing the design parameters of the bipolar plate.

  8. Model-based fault diagnosis in PEM fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Escobet, T; de Lira, S; Puig, V; Quevedo, J [Automatic Control Department (ESAII), Universitat Politecnica de Catalunya (UPC), Rambla Sant Nebridi 10, 08222 Terrassa (Spain); Feroldi, D; Riera, J; Serra, M [Institut de Robotica i Informatica Industrial (IRI), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de Catalunya (UPC) Parc Tecnologic de Barcelona, Edifici U, Carrer Llorens i Artigas, 4-6, Planta 2, 08028 Barcelona (Spain)

    2009-07-01

    In this work, a model-based fault diagnosis methodology for PEM fuel cell systems is presented. The methodology is based on computing residuals, indicators that are obtained comparing measured inputs and outputs with analytical relationships, which are obtained by system modelling. The innovation of this methodology is based on the characterization of the relative residual fault sensitivity. To illustrate the results, a non-linear fuel cell simulator proposed in the literature is used, with modifications, to include a set of fault scenarios proposed in this work. Finally, it is presented the diagnosis results corresponding to these fault scenarios. It is remarkable that with this methodology it is possible to diagnose and isolate all the faults in the proposed set in contrast with other well known methodologies which use the binary signature matrix of analytical residuals and faults. (author)

  9. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... found to dissolve in 1 M sulfuric acid solution and the dissolution increased exponentially with the upper potential limit (UPL) between 0.6 and 1.6 vs. RHE. 2-20% of the Pt (depending on the catalyst type) was found to be dissolved during the experiments. Under the same conditions, 30-100% of the Ru...... (depending on the catalyst type) was found to be dissolved. The faster dissolution of ruthenium compared to platinum in the alloy type catalysts was also confirmed by X-ray diffraction measurements. The dissolution of the carbon supported catalyst was found one order of magnitude higher than the unsupported...

  10. A portable power system using PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  11. 1000kW phosphoric acid fuel cell power plant. Outline of the plant

    Energy Technology Data Exchange (ETDEWEB)

    Shinobe, Kenji; Suzuki, Kazuo; Kaneko, Hideo

    1988-02-10

    The outline of the 1000KW phosphoric acid fuel cell power plant, developed as part of the Moonlight plan, was described. The plant was composed of 4 stacks of 260KW DC output. They were devided into two train with 680V and 765A. The generation efficiency of the plant was 40% and more. Steam reforming of natural gas was used. As the fuel, fuel cell exhaust gas was used in composition with the natural gas. The DC-AC inverter had an efficiency of 96%. The capacity of hot water generator and demineralized water plant for cell cooling were 2t/h and 1.6t/h, respectively, and air-system was incorporated. In September of 1987, the plant has succeeded in 1000KW power generation, and put in operation now. Under the 100% loaded condition, each cell had a voltage of 0.7V with little variation, and the current was 200mA/cm/sup 2/. No problems were found in cooling conditions and in the control of interpole differential pressure. The reformer has been operated for 1200h scince its commisioning, and had experiences of 100 times on start up-shut down operations, the reformer also indicated good performances in the gas compositions. The starting time of 8h and the load follow-up rate 10%/min remain as the subjects for shortening. DC-AC conversion was good. The concentration of NOx and the noise level satisfied the target values. (12 figs, 1 tab)

  12. Modeling of Pem Fuel Cell Systems Including Controls and Reforming Effects for Hybrid Automotive Applications

    National Research Council Canada - National Science Library

    Boettner, Daisie

    2001-01-01

    .... This study develops models for a stand-alone Proton Exchange Membrane (PEM) fuel cell stack, a direct-hydrogen fuel cell system including auxiliaries, and a methanol reforming fuel cell system for integration into a vehicle performance simulator...

  13. UARS PEM Level 2 AXIS 2 V001 (UARPE2AXIS2) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The UARS Particle Environment Monitor (PEM) level 2 Atmosphere X-Ray Imaging Spectrometer (AXIS) unit 2 daily product contains the X-ray high-resolution spectral...

  14. UARS PEM Level 2 AXIS 1 V001 (UARPE2AXIS1) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The UARS Particle Environment Monitor (PEM) level 2 Atmosphere X-Ray Imaging Spectrometer (AXIS) unit 1 daily product contains the X-ray high-resolution spectral...

  15. 40 kW Stirling Engine for Solid Fuel

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Trærup, Jens

    1996-01-01

    The external combustion in a Stirling engine makes it very attractive for utilisation of solid fuels in decentralised combined heat and power (CHP) plants. Only a few projects have concentrated on the development of Stirling engines specifically for biomass. In this project, a Stirling engine has...... been designed primarily for utilisation of wood chips. Maximum shaft power is 40 kW corresponding to an electric output of 36 kW. Biomass needs more space in the combustion chamber compared to gas and liquid fuels, and a large heat transfer area is necessary. The design of the new Stirling engine has...... been adapted to the special demands of combustion of wood chips, resulting in a large engine compared to engines for gas or liquid fuels. The engine has four-cylinders arranged in a square. The design is made as a hermetic unit, where the alternator is built into the pressurised crankcase so...

  16. Fuel processing for PEM fuel cells: transport and kinetic issues of system design

    Science.gov (United States)

    Zalc, J. M.; Löffler, D. G.

    In light of the distribution and storage issues associated with hydrogen, efficient on-board fuel processing will be a significant factor in the implementation of PEM fuel cells for automotive applications. Here, we apply basic chemical engineering principles to gain insight into the factors that limit performance in each component of a fuel processor. A system consisting of a plate reactor steam reformer, water-gas shift unit, and preferential oxidation reactor is used as a case study. It is found that for a steam reformer based on catalyst-coated foils, mass transfer from the bulk gas to the catalyst surface is the limiting process. The water-gas shift reactor is expected to be the largest component of the fuel processor and is limited by intrinsic catalyst activity, while a successful preferential oxidation unit depends on strict temperature control in order to minimize parasitic hydrogen oxidation. This stepwise approach of sequentially eliminating rate-limiting processes can be used to identify possible means of performance enhancement in a broad range of applications.

  17. Ice formation in PEM fuel cells operated isothermally at sub-freezing temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Rangachary [Los Alamos National Laboratory; Luhan, Roger W [Los Alamos National Laboratory; Davey, John R [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Hussey, Daniel S [NIST; Jacobson, David L [NIST; Arif, Muhammad [NIST

    2009-01-01

    The effect of MEA and GDL structure and composition on the performance of single-PEM fuel cells operated isothermally at subfreezing temperatures is presented. The cell performance and durability are not only dependent on the MEA/GDL materials used but also on their interfaces. When a cell is operated isothermally at sub-freezing temperatures in constant current mode, the water formation due to the current density initially hydrates the membrane/ionomer and then forms ice in the catalyst layer/GDL. An increase in high frequency resistance was also observed in certain MEAs where there is a possibility of ice formation between the catalyst layer and GDL leading to a loss in contact area. The total water/ice holding capacity for any MEA was lower at lower temperatures and higher current densities. The durability of MEAs subjected to multiple isothermal starts was better for LANL prepared MEAs as compared to commercial MEAs, and cloth GDLs when compared to paper GDLs. The ice formation was monitored using high-resolution neutron radiography and was found to be concentrated near the cathode catalyst layer. However, there was significant ice formation in the GDLs especially at the higher temperature ({approx} -10 C) and lower current density (0.02 A/cm{sup 2}) operations. These results are consistent with the longer-term durability observations that show more severe degradation at the lower temperatures.

  18. Hydrogen-Oxygen PEM Regenerative Fuel Cell at NASA Glenn Research Center

    Science.gov (United States)

    Bents, David J.

    2004-01-01

    The NASA Glenn Research Center has constructed a closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) to explore its potential use as an energy storage device for a high altitude solar electric aircraft. Built up over the last 2 years from specialized hardware and off the shelf components the Glenn RFC is a complete "brassboard" energy storage system which includes all the equipment required to (1) absorb electrical power from an outside source and store it as pressurized hydrogen and oxygen and (2) make electrical power from the stored gases, saving the product water for re-use during the next cycle. It consists of a dedicated hydrogen-oxygen fuel cell stack and an electrolyzer stack, the interconnecting plumbing and valves, cooling pumps, water transfer pumps, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, nitrogen purge provisions, instrumentation, and other components. It specific developmental functions include: (1) Test fuel cells and fuel cell components under repeated closed-cycle operation (nothing escapes; everything is used over and over again). (2) Simulate diurnal charge-discharge cycles (3) Observe long-term system performance and identify degradation and loss mechanisms. (4) Develop safe and convenient operation and control strategies leading to the successful development of mission-capable, flight-weight RFC's.

  19. Construction of a 35 GHz 100 kW gyrotron

    International Nuclear Information System (INIS)

    Aso, Y.; Barroso, J.J.; Castro, P.J.; Correa, R.A.; Ludwing, G.O.; Montes, A.; Morgado, U.T.F.; Nono, M.C.A.; Rossi, J.O.; Silva, P.R.

    1989-09-01

    In this work a description of a 35 GHz 100 kW gyrocon is described which is under construction at the National Space Research Institute Plasma Laboratory. Project conceptual aspects are emphasized, specifically high current density thermionic cathodes, high time and spatial resolution intense magnetic fields generation, high-vacuum systems, techniques of ceramic-metal sealing, and high-voltage electrical modulator circuits. (author). 8 refs., 9 figs., 1 tab

  20. A parametric study of assembly pressure, thermal expansion, and membrane swelling in PEM fuel cells

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2016-01-01

    Proton Exchange membrane (PEM) fuel cells are still undergoing intense development, and the combination of new and optimized materials, improved product development, novel architectures, more efficient transport processes, and design optimization and integration are expected to lead to major gains in performance, efficiency, durability, reliability, manufacturability and cost-effectiveness. PEM fuel cell assembly pressure is known to cause large strains in the cell components. All components ...

  1. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    OpenAIRE

    Yousri M.A. Welaya; Mohamed M. El Gohary; Nader R. Ammar

    2012-01-01

    Proton exchange membrane fuel cell (PEM) generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas productio...

  2. Energy flows modelling of a PEM electrolyzer-Photovoltaic generator-PEM fuel cell coupling dedicated to stationary applications

    International Nuclear Information System (INIS)

    Agbli, Krehi Serge

    2012-01-01

    A standalone multi-source system based on the coupling of photovoltaic energy and both a PEM electrolyzer and a PEMFC for stationary application is studied. The system gathers photovoltaic array as main energy source, ultra-capacitors and batteries packs in order to smooth respectively fast and medium dynamic by supplying the load or by absorbing photovoltaic source overproduction. Because of the necessity of fuel availability, especially for islanding application like this one, a PEM electrolyzer is integrated to the system for in situ hydrogen production. The relevance of PEMFC system powered by solar hydrogen is pointed out before examining hydrogen storage issue. Energetic and economic analyses have been performed leading to the choice of the pressurised hydrogen storage (in the bottle) rather than hydrogen storage both as liquid and within metal hydride. The main purpose being the proper management of the power flows in order to meet the energy requirement (the load) without power cut, a graphical modelling tool namely Energetic Macroscopic Representation (EMR) is used because of its analysis and control strengths. The EMR ability to describe multi-physics energetic tools is used to develop a PEM electrolyzer model. The multi-domain interaction between the electrical, the electrochemical, the thermodynamic and the fluidic domain is emphasised. Moreover, the temperature variation influence on the electrochemical parameters of the electrolyzer is taken into account by the developed EMR model. Afterwards, thanks to the modular feature of the EMR, the different models of each energetic entity of the system are performed before their assembling leading to the overall system EMR model. By using scale effect allowing extending the energetic tool power range from the experimental validation one to another one, the energetic system sizing is performed according to a household power profile. Then, by the help of the multi-level representation, the maximal control

  3. Using the multiple regression analysis with respect to ANOVA and 3D mapping to model the actual performance of PEM (proton exchange membrane) fuel cell at various operating conditions

    International Nuclear Information System (INIS)

    Al-Hadeethi, Farqad; Al-Nimr, Moh'd; Al-Safadi, Mohammad

    2015-01-01

    The performance of PEM (proton exchange membrane) fuel cell was experimentally investigated at three temperatures (30, 50 and 70 °C), four flow rates (5, 10, 15 and 20 ml/min) and two flow patterns (co-current and counter current) in order to generate two correlations using multiple regression analysis with respect to ANOVA. Results revealed that increasing the temperature for co-current and counter current flow patterns will increase both hydrogen and oxygen diffusivities, water management and membrane conductivity. The derived mathematical correlations and three dimensional mapping (i.e. surface response) for the co-current and countercurrent flow patterns showed that there is a clear interaction among the various variables (temperatures and flow rates). - Highlights: • Generating mathematical correlations using multiple regression analysis with respect to ANOVA for the performance of the PEM fuel cell. • Using the 3D mapping to diagnose the optimum performance of the PEM fuel cell at the given operating conditions. • Results revealed that increasing the flow rate had direct influence on the consumption of oxygen. • Results assured that increasing the temperature in co-current and counter current flow patterns increases the performance of PEM fuel cell.

  4. A Frequency-Domain Adaptive Filter (FDAF) Prediction Error Method (PEM) Framework for Double-Talk-Robust Acoustic Echo Cancellation

    DEFF Research Database (Denmark)

    Gil-Cacho, Jose M.; van Waterschoot, Toon; Moonen, Marc

    2014-01-01

    to the FDAF-PEM-AFROW algorithm. We show that FDAF-PEM-AFROW is by construction related to the best linear unbiased estimate (BLUE) of the echo path. We depart from this framework to show an improvement in performance with respect to other adaptive filters minimizing the BLUE criterion, namely the PEM......In this paper, we propose a new framework to tackle the double-talk (DT) problem in acoustic echo cancellation (AEC). It is based on a frequency-domain adaptive filter (FDAF) implementation of the so-called prediction error method adaptive filtering using row operations (PEM-AFROW) leading...... regularization (VR) algorithms. The FDAF-PEM-AFROW versions significantly outperform the original versions in every simulation. In terms of computational complexity, the FDAF-PEM-AFROW versions are themselves about two orders of magnitude cheaper than the original versions....

  5. PEM-fuel cells for mobile application. Sub task: development of electrocatalysts. Final report; PEM-Brennstoffzelle fuer mobile Anwendung. Teilprojekt: Katalysatorenentwicklung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Starz, K A

    1999-01-01

    PEM fuel cells are gaining increasing importance for use in automotive application. The goal of the research program reported here was to develop the basic technology and components for PEMFC stacks for use in transport applications. The sub-task of Degussa was to develop improved electrocatalysts for PEMFC single cells and stacks. The technical objectives of the research project were met. Electrocatalysts, characterized by a high Pt-dispersion, high surface area and excellent activity, were developed. With this material, considerable progress was made to reduce the total platinum loading of PEMFC cells and stacks to about 0,5 mgPt/cm{sup 2}. With this value, the goal of the program (<0,8 mg/cm{sup 2}) was significantly surpassed. Additionally, higher power densities of >0.4 W/cm{sup 2} were achieved at Degussa for hydrogen/air and reformate/air operation of the PEMFC. A CO-tolerant anode electrocatalyst, exhibiting a CO-tolerance of up to 100 ppm CO, enables the operation of PEMFC stacks with on-board generated methanol reformate. The performance of the new electrocatalyst materials was verified by DaimlerChrysler in a PEMFC demonstration stack at the end of the program. (orig.) [Deutsch] PEM-Brennstoffzellen gewinnen fuer die mobile Anwendung immer mehr an Bedeutung. Im Rahmen des hier beschriebenen Leitprojektes sollten die Basistechnologien fuer den Einsatz der PEM-Brennstoffzelle im mobilen Bereich (Elektrotraktion) entwickelt werden. Das Teilprojekt der Degussa befasst sich mit der Entwicklung von verbesserten Elektrokatalysatoren fuer PEM-Brennstoffzellenstacks. Die technischen Arbeitsziele des Vorhabens wurden erreicht. So konnten Elektrokatalysatoren bereitgestellt werden, die sich durch eine hohe Pt-Dispersion, eine grosse Pt-Oberflaeche sowie eine sehr gute Aktivitaet auszeichnen. Mit diesen Elektrokatalysatoren gelang es, die Platinbeladung der PEM-Elektroden (Anode und Kathode) erheblich abzusenken. Mit einer Gesamtplatinbeladung von 0,5 mg/cm{sup 2

  6. Design study of wind turbines, 50 kW to 3000 kW for electric utility applications: Executive summary

    Science.gov (United States)

    1977-01-01

    Preliminary designs of low power (50 to 500 kW) and high power (500 to 3000 kW) wind generator systems (WGS) for electric utility applications were developed. These designs provide the bases for detail design, fabrication, and experimental demonstration testing of these units at selected utility sites. Several feasible WGS configurations were evaluated, and the concept offering the lowest energy cost potential and minimum technical risk for utility applications was selected. The selected concept was optimized utilizing a parametric computer program prepared for this purpose. The utility requirements evaluation task examined the economic, operational and institutional factors affecting the WGS in a utility environment, and provided additional guidance for the preliminary design effort. Results of the conceptual design task indicated that a rotor operating at constant speed, driving an AC generator through a gear transmission is the most cost effective WGS configuration.

  7. Kurokawa 150-kW wind turbine generator demonstration; 150 kW Kurokawa furyoku hatsudensho ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, M; Shinohara, M; Sugiyama, T [Kansai Electric Power Co. Inc., Osaka (Japan)

    1996-10-27

    This paper presents the 150kW wind turbine generator erected at a site near Kurokawa dam lake of Kansai Electric Power Co. in Hyogo prefecture. This generator is composed of a horizontal-axis propeller with 3 blades of 27m in diameter and 36/27rpm, and a tower of 30m high. Harmony with the environment was also considered because of the site in a natural park area. Its demonstration test started in Oct. 1996 at annual mean wind velocity of 2m/s. Soft start was realized by controlling inrush current and preventing voltage drop in system interconnection by use of a thyristor circuit. The dual operation system was adopted of a 30kW small generator at lower wind velocity and a 150kW large one at higher velocity. Two kinds of brakes are used, and rotor revolution was reduced by air brake (blade tip spoiler). Mechanical disk brake works for the stopped rotor or emergency stopping. Even if the wind turbine was stopped by exterior factor, if no anomaly of the turbine is found, it automatically re-starts after removal of the factor. The generator is controlled from a remote control station 150km apart through NTT communication line. 6 figs., 2 tabs.

  8. A 25kW fiber-coupled diode laser for pumping applications

    Science.gov (United States)

    Malchus, Joerg; Krause, Volker; Koesters, Arnd; Matthews, David G.

    2014-03-01

    In this paper we report the development of a new fiber-coupled diode laser for pumping applications capable of generating 25 kW with four wavelengths. The delivery fiber has 2.0 mm core diameter and 0.22 NA resulting in a Beam Parameter Product (BPP) of 220 mm mrad. To achieve the specifications mentioned above a novel beam transformation technique has been developed combining two high power laser stacks in one common module. After fast axis collimation and beam reformatting a beam with a BPP of 200 mm mrad x 40 mm mrad in the slow and fast-axis is generated. Based on this architecture a customer-specific pump laser with 25 kW optical output power has been developed, in which two modules are polarization multiplexed for each wavelength (980nm, 1020nm, 1040m and 1060nm). After slow-axis collimation these wavelengths are combined using dense wavelength coupling before focusing onto the fiber endface. This new laser is based on a turn-key platform, allowing straight-forward integration into any pump application. The complete system has a footprint of less than 1.4m² and a height of less than 1.8m. The laser diodes are water cooled, achieve a wall-plug efficiency of up to 60%, and have a proven lifetime of <30,000 hours. The new beam transformation techniques open up prospects for the development of pump sources with more than 100kW of optical output power.

  9. The effect of water uptake gradient in membrane electrode assembly on fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H., E-mail: hajime.phy@gmail.co [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan); Shiraki, F.; Oshima, Y.; Tatsumi, T.; Yoshikawa, T.; Sasaki, T. [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan); Oshima, A. [Institute for Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Washio, M. [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan)

    2011-02-15

    Novel proton exchange membranes (PEMs) with functionally gradient ionic sites were fabricated utilizing low energy electron beam (EB) irradiations. The low energy electron beam irradiation to polymer membranes possessed the property of gradient energy deposition in the membrane thickness direction. In the process of EB grafting of styrene onto base films, selective ranges of the gradient energy deposition were used. Micro FT-IR spectra showed that the simulated energy deposition of EB irradiation to base polymer membranes in the thickness direction corresponded to the amount of styrene grafted onto EB-irradiated films. After sulfonation, a functionally gradient ionic site PEM (gradient-PEM) was prepared, corresponding to EB depth-dose profile. The functionally gradients of ionic sites in the gradient-PEM and flat-PEM were evaluated with XPS and SEM-EDX. The results of XPS and SEM-EDX suggest that the prepared gradient-PEM had a gradient sulfonated acid groups. In addition, the polarization performance of MEA based on gradient-PEM was improved in high current density. It was thought that water uptake gradient could have a function to prevent flooding in the MEA during FC operation. Thus, the functionally gradient-PEMs could be a promising solution to manage the water behavior in MEA.

  10. An alternative approach to continuous compliance monitoring and turbine plant optimization using a PEMS (predictive emission monitoring system)

    International Nuclear Information System (INIS)

    Swanson, B.G.; Lawrence, P.

    2009-01-01

    This paper reviewed the use of a predictive emissions monitoring system (PEMS) at 3 different gas turbine facilities in the United States and highlighted the costs and benefits of using a PEMS for documenting emissions of priority pollutants and greenhouse gases (GHG). The PEMS interfaces directly to the turbine control system and represents a lower cost alternative to the traditional continuous emission monitoring system (CEMS). The PEMS can track combustion efficiency through modeling of the turbine's operation and emissions. Excess emissions can be tracked and the causes of pollution can be determined and mitigated. The PEMS installed at the 3 turbine plants must meet rigorous performance specification criteria and the sites perform ongoing quality assurance tasks such as periodic audits with portable analyzers. The PEMS is much less expensive to install, operate, and maintain compared to the standard CEMS gas analyzer. Empirical PEMS achieves very high accuracy levels and has demonstrated superior reliability over CEMS for various types of continuous process applications under existing air compliance regulations in the United States. Annual accuracy testing at the gas turbine sites have shown that the PEMS predictions are usually within 5 per cent of the reference method. PEMS can be certified as an alternative to gas analyzer based CEMS for nitrogen oxides and carbon dioxide compliance and for GHG trading purposes. 5 refs., 8 figs.

  11. Primary and secondary electrical space power based on advanced PEM systems

    Science.gov (United States)

    Vanderborgh, N. E.; Hedstrom, J. C.; Stroh, K. R.; Huff, J. R.

    1993-01-01

    For new space ventures, power continues to be a pacing function for mission planning and experiment endurance. Although electrochemical power is a well demonstrated space power technology, current hardware limitations impact future mission viability. In order to document and augment electrochemical technology, a series of experiments for the National Aeronautics and Space Administration Lewis Research Center (NASA LeRC) are underway at the Los Alamos National Laboratory that define operational parameters on contemporary proton exchange membrane (PEM) hardware operating with hydrogen and oxygen reactants. Because of the high efficiency possible for water electrolysis, this hardware is also thought part of a secondary battery design built around stored reactants - the so-called regenerative fuel cell. An overview of stack testing at Los Alamos and of analyses related to regenerative fuel cell systems are provided in this paper. Finally, this paper describes work looking at innovative concepts that remove complexity from stack hardware with the specific intent of higher system reliability. This new concept offers the potential for unprecedented electrochemical power system energy densities.

  12. Design considerations for a 10-kW integrated hydrogen-oxygen regenerative fuel cell system

    Science.gov (United States)

    Hoberecht, M. A.; Miller, T. B.; Rieker, L. L.; Gonzalez-Sanabria, O. D.

    1984-01-01

    Integration of an alkaline fuel cell subsystem with an alkaline electrolysis subsystem to form a regenerative fuel cell (RFC) system for low earth orbit (LEO) applications characterized by relatively high overall round trip electrical efficiency, long life, and high reliability is possible with present state of the art technology. A hypothetical 10 kW system computer modeled and studied based on data from ongoing contractual efforts in both the alkaline fuel cell and alkaline water electrolysis areas. The alkaline fuel cell technology is under development utilizing advanced cell components and standard Shuttle Orbiter system hardware. The alkaline electrolysis technology uses a static water vapor feed technique and scaled up cell hardware is developed. The computer aided study of the performance, operating, and design parameters of the hypothetical system is addressed.

  13. Dynamical Investigation of Asteroid 66391 (1999 KW4)

    Science.gov (United States)

    Scheeres, Daniel J.; Fahnestock, E. G.; Ostro, S. J.; Margot, J. L.; Benner, L. A.; Broschart, S. B.; Bellerose, J.; Giorgini, J. D.; Nolan, M. C.; Magri, C.; Pravec, P.; Scheirich, P.; Rose, R.; Jurgens, R. F.; Suzuki, S.; DeJong, E. M.

    2006-09-01

    Radar imaging and simulation of the binary near-Earth asteroid 66391 (1999 KW4) reveals a system with highly unusual physical and dynamical properties (Ostro et al., DPS 2006). Classical treatments and previous analyses of binary-system dynamics have made assumptions about the component shapes that are not valid for the KW4 system. We have explored the full dynamics of the KW4 system via numerical simulations that solve the equations of motion for the coupled evolution of orbit and rotation, using radar-derived physical models, and using dynamical constraints from the observations to guide our initial conditions. Our simulations model the translational (or orbital) dynamics as the relative motion between the body centers of mass and model the rotational dynamics using the Euler equations and attitude kinematic equations for each body. All the equations are driven by the mutual gravitational potential, which is an explicit function of the relative position and attitude of the two bodies. Propagation of the system's dynamical evolution over time spans of months has been made tractable by using a novel variational integrator that requires only one evaluation per time step but conserves the symplectic properties of the dynamical system, and by implementing the evaluations on a parallel computer, using up to 256 processors. Our simulations use the component shapes, masses, and average orbit as initial conditions for integrations of the components' spins and mutual orbit, taking into consideration the actual gravitational potentials produced by the model shapes and the coupling between the components' motions. Our results reveal this NEA to have extraordinary physical and dynamical properties, which suggest intriguing possibilities for formation and evolution mechanisms.

  14. High brightness KW-class direct diode laser

    Science.gov (United States)

    Xu, Dan; Guo, Zhijie; Ma, Di; Zhang, Tujia; Guo, Weirong; Wang, Baohua; Xu, Ray; Chen, Xiaohua

    2018-02-01

    With certain emitter beam quality and BPP allowed by fiber, we have derived a spatial beam combination structure that approaches the BPP limit of the fiber. Using the spatial beam combination structure and polarization beam combination, BWT has achieved 1.1KW output from a fiber (one end coated) with NA 0.22 and core diameter of 200μm. The electro- optical efficiency is nearly 47%. Multiple emitters with wavelength of 976nm are packaged in a module with size of 600 ×350×80mm3.

  15. 1000 kW ICRH amplifiers for MFTF-B

    International Nuclear Information System (INIS)

    Boksberger, U.

    1986-01-01

    For the startup of the MFTF-B ICRH heating will be applied. Two commercial amplifiers derived from standard broadcast transmitters provide 1000 kW RF power each into a matching system for any VSWR as high as 1.5. Emphasis is put on the specific environment of magnetic fields and seismic loads as well as to the particular RF power control requirements and remote operation. Also addressed is the amplifier's performance into a typical load. The load variations due to the MFTF-B plasma coupling were calculated by TRW

  16. A 25-kW Series-Resonant Power Converter

    Science.gov (United States)

    Frye, R. J.; Robson, R. R.

    1986-01-01

    Prototype exhibited efficiency of 93.9 percent. 25-kW resonant dc/dc power converter designed, developed, fabricated, and tested, using Westinghouse D7ST transistors as high-power switches. D7ST transistor characterized for use as switch in series-resonant converters, and refined base-drive circuit developed. Technical base includes advanced switching magnetic, and filter components, mathematical circuit models, control philosophies, and switch-drive strategies. Power-system benefits such as lower losses when used for high-voltage distribution, and reduced magnetics and filter mass realized.

  17. The morphology of durability issues in PEM fuel cells

    International Nuclear Information System (INIS)

    Kundu, S.; Fowler, M.; Simon, L.; Grot, S.

    2004-01-01

    'Full text:' The work presented here examines durability issues in PEM fuel cell materials by examining material morphology and linking morphological features to performance. Scanning electron microscope (SEM) techniques have been able to identify a variety of features on the catalyst layer, each with their own implication to the overall performance and durability of the membrane electrode assembly (MEA). These features include cracking, delamination of the catalyst layer, catalyst clustering, electrolyte clustering, and thickness variations. Links between several of these features and catalyst dispersion conditions was also examined, showing that how the material was manufactured influences the type of morphological features present. The SEM has also been used with accelerated aging techniques to closely examine aging of the gas diffusion layer (GDL). It can be shown that over time the GDL will loose its hydrophobic character and hence become more susceptible to flooding in a fuel cell. The impact of morphological changes were determined using fuel cell models and experimental work. The ultimate aim of this work is to provide material developers with the tools and knowledge necessary to design better materials and therefore bring fuel cells closer to commercialization. (author)

  18. Experimental investigation and mathematical modeling of triode PEM fuel cells

    International Nuclear Information System (INIS)

    Martino, E.; Koilias, G.; Athanasiou, M.; Katsaounis, A.; Dimakopoulos, Y.; Tsamopoulos, J.; Vayenas, C.G.

    2017-01-01

    Highlights: •The triode fuel cell operation was tested using novel comb-type electrode designs. •Triode operation enhances the PEMFC power output by up to 500%. •Power output enhancement exceeds auxiliary power by up to 20%. •Good agreement with mathematical model based on the laws of Kirchhoff. •Proton fluxes in the membrane found via solution of the Nernst Planck equation -- Abstract: The triode operation of humidified PEM fuel cells has been investigated both with pure H 2 and with CO poisoned H 2 feed over commercial Vulcan supported Pt(30%)-Ru(15%) anodes. It was found that triode operation, which involves the use of a third, auxiliary, electrode, leads to up to 400% power output increase with the same CO poisoned H 2 gas feed. At low current densities, the power increase is accompanied by an increase in overall thermodynamic efficiency. A mathematical model, based on Kirchhoff’s laws, has been developed which is in reasonably good agreement with the experimental results. In order to gain some additional insight into the mechanism of triode operation, the model has been also extended to describe the potential distribution inside the Nafion membrane via the numerical solution of the Nernst-Planck equation. Both model and experiment have shown the critical role of minimizing the auxiliary-anode or auxiliary-cathode resistance, and this has led to improved comb-shaped anode or cathode electrode geometries.

  19. Sliding-Mode Control of PEM Fuel Cells

    CERN Document Server

    Kunusch, Cristian; Mayosky, Miguel

    2012-01-01

    Recent advances in catalysis technologies and new materials make fuel cells an economically appealing and clean energy source with massive market potential in portable devices, home power generation and the automotive industry. Among the more promising fuel-cell technologies are proton exchange membrane fuel cells (PEMFCs). Sliding-Mode Control of PEM Fuel Cells demonstrates the application of higher-order sliding-mode control to PEMFC dynamics. Fuel-cell dynamics are often highly nonlinear and the text shows the advantages of sliding modes in terms of robustness to external disturbance, modelling error and system-parametric disturbance using higher-order control to reduce chattering. Divided into two parts, the book first introduces the theory of fuel cells and sliding-mode control. It begins by contextualising PEMFCs both in terms of their development and within the hydrogen economy and today’s energy production situation as a whole. The reader is then guided through a discussion of fuel-cell operation pr...

  20. A PEM fuel cell for in situ XAS studies

    International Nuclear Information System (INIS)

    Wiltshire, Richard J.K.; King, Colin R.; Rose, Abigail; Wells, Peter P.; Hogarth, Martin P.; Thompsett, David; Russell, Andrea E.

    2005-01-01

    A miniature proton exchange membrane (PEM) fuel cell has been designed to enable in situ XAS investigations of the anode catalyst using fluorescence detection. The development of the cell is described, in particular the modifications required for elevated temperature operation and humidification of the feed gasses. The impact of the operating conditions is observed as an increase in the catalyst utilisation, which is evident in the EXAFS collected at the Pt L III and Ru K edges for a PtRu/C catalyst. The Pt component of the catalyst was found to be readily reduced by hydrogen in the fuel, while the Ru was only fully reduced under conditions of good gas flow and electrochemical contact. Under such conditions no evidence of O neighbours were found at the Ru edge. The results are interpreted in relation to the lack of surface sensitivity of the EXAFS method and indicate that the equilibrium coverage of O species on the Ru surface sites is too low to be observed using EXAFS

  1. Compendium of NASA data base for the global tropospheric experiment's Pacific Exploratory Mission West-B (PEM West-B)

    Science.gov (United States)

    Gregory, Gerald L.; Scott, A. Donald, Jr.

    1995-01-01

    This compendium describes aircraft data that are available from NASA's Pacific Exploratory Mission West-B (PEM West-B). PEM West is a component of the International Global Atmospheric Chemistry's (IGAC) East Asia/North Pacific Regional Study (APARE) project. Objectives of PEM West are to investigate the atmospheric chemistry of ozone over the northwest Pacific -- natural budgets and the impact of anthropogenic/continental sources; and to investigate sulfur chemistry -- continental and marine sulfur sources. The PEM West program encompassed two expeditions. PEM West-A was conducted in September 1991 during which the predominance of tropospheric air was from mid-Pacific (marine) regions, but (at times) was modified by Asian outflow. PEM West-B was conducted during February 1994, a period characterized by maximum Asian outflow. Results from PEM West-A and B are public domain. PEM West-A data are summarized in NASA TM 109177 (published February 1995). Flight experiments were based at Guam, Hong Kong, and Japan. This document provides a representation of NASA DC-8 aircraft data that are available from NASA Langley's Distributed Active Archive Center (DAAC). The DAAC includes numerous other data such as meteorological and modeling products, results from surface studies, satellite observations, and sonde releases.

  2. Compendium of NASA data base for the Global Tropospheric Experiment's Pacific Exploratory Mission West-A (PEM West-A)

    Science.gov (United States)

    Gregory, G. L.; Scott, A. D., Jr.

    1995-01-01

    This compendium describes aircraft data that are available from NASA's Pacific Exploratory Mission West-A (PEM West-A). PEM West is a component of the International Global Atmospheric Chemistry's (IGAC) East Asia/North Pacific Regional Study (APARE) project. The PEM- West program encompassed two expeditions to study contrasting meteorological regimes in the Pacific. Objectives of PEM West are to investigate the atmospheric chemistry of ozone over the northwest Pacific -- natural budgets and the impact of anthropogenic sources; and to investigate sulfur chemistry -- continental versus marine sulfur sources. PEM West-A was conducted in September 1991 during which the predominance of tropospheric air is from the mid-Pacific (marine) regions, but (at times) is modified/mixed with Asian continental outflow. PEM West-B was conducted during February 1994, a period characterized by maximum continental outflow. PEM-B data (not included) will become public domain during the Summer of 1995. PEM West-A flight experiments were based at Japan, Hong Kong, and Guam. This document provides a representation of NASA DC-8 aircraft data that are available from NASA Langley's Distributed Active Archive Center (DAAC), which include numerous data such as meteorological observations, modeling products, results from surface studies, satellite observations, and sonde releases.

  3. Development of a Solid State RF Amplifier in the kW Regime for Application with Low Beta Superconducting RF Cavities

    CERN Document Server

    Piel, Christian; Borisov, A; Kolesov, Sergej; Piel, Helmut

    2005-01-01

    Projects based on the use of low beta superconducting cavities for ions are under operation or development at several labs worldwide. Often these cavities are individually driven by RF power sources in the kW regime. For an ongoing project a modular 2 kW, 176 MHz unconditionally stable RF amplifier for CW and pulsed operation was designed, built, and tested. Extended thermal analysis was used to develop a water cooling system in order to optimize the performance of the power transistors and other thermally loaded components. The paper will outline the design concept of the amplifier and present first results on the test of the amplifier with a superconducting cavity.

  4. Composite polymer electrolyte containing ionic liquid and functionalized polyhedral oligomeric silsesquioxanes for anhydrous PEM applications.

    Science.gov (United States)

    Subianto, Surya; Mistry, Mayur K; Choudhury, Namita Roy; Dutta, Naba K; Knott, Robert

    2009-06-01

    A new type of supported liquid membrane was made by combining an ionic liquid (IL) with a Nafion membrane reinforced with multifunctional polyhedral oligomeric silsesquioxanes (POSSs) using a layer-by-layer strategy for anhydrous proton-exchange membrane (PEM) application. The POSS was functionalized by direct sulfonation, and the sulfonated POSS (S-POSS) was incorporated into Nafion 117 membranes by the infiltration method. The resultant hybrid membrane shows strong ionic interaction between the Nafion matrix and the multifunctional POSS, resulting in increased glass transition temperature and thermal stability at very low loadings of S-POSS (1%). The presence of S-POSS has also improved the proton conductivity especially at low humidities, where it shows a marked increase due to its confinement in the ionic domains and promotes water uptake by capillary condensation. In order to achieve anhydrous conductivity, the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMI-BTSI) was incorporated into these membranes to provide proton conduction in the absence of water. Although the incorporation of an IL shows a plasticizing effect on the Nafion membrane, the S-POSS composite membrane with an IL shows a higher modulus at high temperatures compared to Nafion 117 and a Nafion-IL membrane, with significantly higher proton conductivity (5 mS/cm at 150 degrees C with 20% IL). This shows the ability of the multifunctional POSS and IL to work symbiotically to achieve the desirable proton conductivity and mechanical properties of such membranes by enhancing the ionic interaction within the material.

  5. NEW MATERIAL NEEDS FOR HYDROCARBON FUEL PROCESSING: Generating Hydrogen for the PEM Fuel Cell

    Science.gov (United States)

    Farrauto, R.; Hwang, S.; Shore, L.; Ruettinger, W.; Lampert, J.; Giroux, T.; Liu, Y.; Ilinich, O.

    2003-08-01

    The hydrogen economy is fast approaching as petroleum reserves are rapidly consumed. The fuel cell promises to deliver clean and efficient power by combining hydrogen and oxygen in a simple electrochemical device that directly converts chemical energy to electrical energy. Hydrogen, the most plentiful element available, can be extracted from water by electrolysis. One can imagine capturing energy from the sun and wind and/or from the depths of the earth to provide the necessary power for electrolysis. Alternative energy sources such as these are the promise for the future, but for now they are not feasible for power needs across the globe. A transitional solution is required to convert certain hydrocarbon fuels to hydrogen. These fuels must be available through existing infrastructures such as the natural gas pipeline. The present review discusses the catalyst and adsorbent technologies under development for the extraction of hydrogen from natural gas to meet the requirements for the proton exchange membrane (PEM) fuel cell. The primary market is for residential applications, where pipeline natural gas will be the source of H2 used to power the home. Other applications including the reforming of methanol for portable power applications such as laptop computers, cellular phones, and personnel digital equipment are also discussed. Processing natural gas containing sulfur requires many materials, for example, adsorbents for desulfurization, and heterogeneous catalysts for reforming (either autothermal or steam reforming) water gas shift, preferential oxidation of CO, and anode tail gas combustion. All these technologies are discussed for natural gas and to a limited extent for reforming methanol.

  6. Thermal power calibration of the TRIGA Mark I IPR-R1 reactor during the upgrading tests to 250 kW

    International Nuclear Information System (INIS)

    Mesquita, Amir Zacarias; Maretti, Fausto Junior; Rezende, Hugo Cesar

    2002-01-01

    This paper presents the results and the methodology used to calibrate the thermal power of the TRIGA MARK I IPR-R1 Reactor in CDTN, Belo Horizonte, Brazil. This calibration was realized during the operation tests carried out to allow the reactor power upgrade from the current 100 kW to 250 kW. The methodology consisted in the measurement of the inlet and outlet temperature and the water flow in the primary cooling loop. The thermal balance together with the thermal losses gave the thermal power. There were made three sequences of tests. The first rising of the thermal power was made with the usual configuration of the core (59 fuel elements). After the changing of the ion chambers position and the control rod and the increase of the number of fuels (63 fuel elements), a new evaluation of the thermal power was accomplished, having been obtained a thermal power of 234 kW, for an indication of 250 kW in the lineal channel. After the return of the core to the initial configuration (59 fuel elements), it took place a new test, getting back the reactor to the power level of 100 kW. (author)

  7. Thermal modeling and temperature control of a PEM fuel cell system for forklift applications

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2014-01-01

    Temperature changes in PEM fuel cell stacks are considerably higher during load variations and have a negative impact as they generate thermal stresses and stack degradation. Cell hydration is also of vital importance in fuel cells and it is strongly dependent on operating temperature....... A combination of high temperature and reduced humidity increases the degradation rate. Stack thermal management and control are, thus, crucial issues in PEM fuel cell systems especially in automotive applications such as forklifts. In this paper we present a control–oriented dynamic model of a liquid–cooled PEM...... fuel cell system for studying temperature variations over fast load changes. A temperature dependent cell polarization and hydration model integrated with the compressor, humidifier and cooling system are simulated in dynamic condition. A feedback PID control was implemented for stack cooling...

  8. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    Energy Technology Data Exchange (ETDEWEB)

    Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov

    2001-06-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom.

  9. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    International Nuclear Information System (INIS)

    Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov

    2001-01-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom

  10. Thermal simulation for 35 kW powered prototype radio frequency quadrapole

    International Nuclear Information System (INIS)

    Kothari, Ashok; Ahuja, Rajeev; Safvan, C.P.; Kumar, Sugam

    2011-01-01

    As part of the accelerator augmentation program at IUAC, a high current injector (HCI) is being developed to inject highly charged ions into the superconducting LINAC. The HCI consists of a superconducting (High T c ) ECR source operated on a high voltage deck, producing the high currents of highly charged ions. The ion beams produced by the ECR (PKDELIS) source will be injected into a Radio Frequency Quadrupole accelerator (RFQ) and be accelerated to 180 keV/u. RF power of about 100 kW at 48.5 MHz will be fed to the RFQ during it's actual working. Most of the power fed is dissipated in the system as heat. So a continuous removal of this heat is necessary to maintain tuning parameters and normal running of the RFQ. The IUAC RFQ is a four rod cavity structure consisting of individual, demountable vanes on vane posts. All the components are made of copper except the high vacuum chamber. High vacuum chamber is made of stainless steel and electroplated with 100 microns copper on the inner surface. To take out the heat from the system cooling holes for water circulation are provided in the design of the vanes and vane posts, which together form cooling circuits. There are fourteen vanes in three different lengths and these are mounted on five vane posts. Water enters and exits from the vane posts base. From each post it enters into two or three circuits in parallel and exits into the next vane post and the flow combines again. In effect five cooling circuits are further divided into fourteen circuits. Thermal design of the system is analyzed and optimized using a computational fluid dynamics (CFD) software. The CFD software simultaneously solves the equations of mass, momentum and energy with the given structure, material, fluid and applied boundary conditions. An actual 3-dimensional model of the assembly was made using Solidworks modelling software. To save on simulation time, small holes and minor components were suppressed during analysis. The software used for

  11. Vibration monitoring and fault diagnostics of a 45 kW motor

    International Nuclear Information System (INIS)

    Hafeez, T.; Ahmed, A.; Chohan, G.Y.

    2003-01-01

    Overheating, high noise and vibrations were observed in a 45 kW induction motor of a chilled water pump in an air conditioning plant. The vibration amplitudes along with phase angles were obtained with the help of a data collector. The vibration spectra obtained was further analyzed to diagnose the problem. The user had reported high vibrations in motor since the day of its installation. The frequency peaks and phase data has revealed the possibility of structural resonance, and misalignment in rotor bearing assembly. The problem of eccentric housing bore on non-drive end NDE that resulted in the misalignment of motor shaft in housing assembly. The spectra and phase data is presented and discussed to diagnose the motor problems. The re-monitoring of motor after rectification of manufacturing fault has confirmed the right diagnoses. (author)

  12. Three-dimensional multi-phase flow computational fluid dynamics model for analysis of transport phenomena and thermal stresses in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Maher, A.R.; Al-Baghdadi, S. [International Technological Univ., London (United Kingdom). Dept. of Mechanical Engineering; Haroun, A.K.; Al-Janabi, S. [Babylon Univ., Babylon (Iraq). Dept. of Mechanical Engineering

    2007-07-01

    Fuel cell technology is expected to play an important role in meeting the growing demand for distributed generation because it can convert the chemical energy of a clean fuel directly into electrical energy. An operating fuel cell has varying local conditions of temperature, humidity, and power generation across the active area of the fuel cell in 3D. This paper presented a model that was developed to improve the basic understanding of the transport phenomena and thermal stresses in PEM fuel cells, and to investigate the behaviour of polymer membrane under hygro and thermal stresses during the cell operation. This comprehensive 3D, multiphase, non-isothermal model accounts for the major transport phenomena in a PEM fuel cell, notably convective and diffusive heat and mass transfer; electrode kinetics; transport and phase change mechanism of water; and potential fields. The model accounts for the liquid water flux inside the gas diffusion layers by viscous and capillary forces and can therefore predict the amount of liquid water inside the gas diffusion layers. This study also investigated the key parameters affecting fuel cell performance including geometry, materials and operating conditions. The model considers the many interacting, complex electrochemical, transport phenomena, thermal stresses and deformation that cannot be studied experimentally. It was concluded that the model can provide a computer-aided tool for the design and optimization of future fuel cells with much higher power density and lower cost. 21 refs., 2 tabs., 14 figs.

  13. Results of 200 KW fuel cell evaluation programs

    Energy Technology Data Exchange (ETDEWEB)

    Torrey, J.M.; Merten, G.P. [SAIC, San Diego, CA (United States); Binder, M.J. [Army Construction Engineering Research Labs., Champaign, IL (United States)] [and others

    1996-12-31

    Science Applications International Corporation (SAIC) has installed six monitoring systems on ONSI Corporation 200 kW phosphoric acid fuel cells. Three of the systems were installed for the U.S. Army Construction Engineering Research Laboratories (USACERL) which is coordinating the Department of Defense (DoD) fuel cell Demonstration Program and three were installed under a contract with the New York State Energy Research and Development Authority (NYSERDA). Monitoring of the three NYSERDA sites has been completed. Monitoring systems for the DoD fuel cells were installed in August, 1996 and thus no operating data was available at the time of this writing, but will be presented at the Fuel Cell Seminar. This paper will present the monitoring configuration and research approach for each program. Additionally, summary performance data is presented for the completed NYSERDA program.

  14. Cladding using a 15 kW CO2 laser

    International Nuclear Information System (INIS)

    Vesely, E.J.; Verma, S.K.

    1989-01-01

    Laser alloying or cladding differs little in principle from the traditional forms of weld overlays, but lasers as a heat source offer some distinct advantages. With the selective heating attainable using high power lasers, good metallurgical bond of the clad layer, minimal dilution and typically, a very fine homogeneous microstructure can be obtained in the clad layer. This is a review of work in laser cladding using the 15 kW CO 2 laser. The authors discuss the ability of the laser clad surface to increase the high temperature oxidation resistance of a low-alloy carbon steel (4140). Examples of clads subjected to high- temperature thermal cycling of nickel-20% aluminum and TaC + 4140 clad low-alloy steel and straight high-temperature oxidation of Stellite 6-304L cladding on a 4140 substrate are given

  15. 105-KW Sandfilter Backwash Pit sludge volume calculation

    International Nuclear Information System (INIS)

    Dodd, E.N. Jr.

    1995-01-01

    The volume of sludge contained in the 100-KW Sandfilter Backwash Pit (SFBWP) was calculated from depth measurements of the sludge, pit dimension measurements and analysis of video tape recordings taken by an underwater camera. The term sludge as used in this report is any combination of sand, sediment, or corrosion products visible in the SFBWP area. This work was performed to determine baseline volume for use in determination of quantities of uranium and plutonium deposited in the pit from sandfilter backwashes. The SFBWP has three areas where sludge is deposited: (1) the main pit floor, (2) the transfer channel floor, and (3) the surfaces and structures in the SFBWP. The depths of sludge and the uniformity of deposition varies significantly between these three areas. As a result, each of the areas was evaluated separately. The total volume of sludge determined was 3.75 M 3 (132.2 ft 3 )

  16. Processing with kW fibre lasers: advantages and limits

    Science.gov (United States)

    Kratky, A.; Schuöcker, D.; Liedl, G.

    2008-10-01

    Up-to-date fibre lasers produce multi-kw radiation with an excellent beam quality. Compared to CO2-lasers, fibre lasers have relatively low operational costs and offer a very high flexibility in production due to the beam delivery with process fibres. As a consequence, fibre lasers have attracted more and more attention. On the other hand, their use in industrial applications especially in the automotive industry is still limited to a certain extent and fibre lasers haven't replaced all other laser sources till now as it could be expected. In laser cutting, the small kerf width produced by fibre lasers should be advantageous since the heated volume is smaller compared to CO2-lasers. In fact, cutting velocities are usually much higher which is also caused by the higher absorption coefficient of most metals at the wavelength emitted by fibre lasers. Nevertheless, cutting with fibre lasers of some metals - e.g. stainless steels - is restricted to a small thicknesses of approx. 5mm. The reason for this is that the surface roughness of the edges increases dramatically with the thickness of the work piece. Applications of fibre lasers include e.g. remote welding or even remote cutting of a large variety of materials with usually excellent results. Due to the excellent beam quality the aspect ratio of the weld seam in relation to the penetration depth is quite good. In the case of thin sheet metal welding such a small beam waist is beneficial - but with thicker sheet metals it is very often disadvantageous since the preparation of samples is more complicated, costs increase and requirements on clamping devices rise. In this paper, advantages and disadvantages of fibre lasers are discussed briefly. Applications of a 1.5 kW fibre laser are presented and compared to classical laser systems.

  17. Silicon carbide-silicon as a support material for oxygen evolution reaction in PEM steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    cells. In the present work a commercial SiC-Si, produced by the Acheson process, with a fraction of free silicon around 20% wt. was investigated as a catalyst support for anode electrocatalyst in PEM steam electrolysers. This electrocatalyst system was characterized using several techniques such as XRD......, cyclic voltammetry, SEM, EDX and steady state electrochemical polarisation in a working PEM steam electrolyser. Several SiC-Si-IrO2 electrodes have been prepared and tested. The iridium oxide content at the electrode active layer varied from x=0.2 to x=1, corresponding to the general formula (1-x...... for phosphoric acid doped membrane steam electrolysers....

  18. Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Walczyk, Daniel F. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2015-08-26

    The purpose of this 5-year DOE-sponsored project was to address major process bottlenecks associated with fuel cell manufacturing. New technologies were developed to significantly reduce pressing cycle time for high temperature PEM membrane electrode assembly (MEA) through the use of novel, robust ultrasonic (U/S) bonding processes along with low temperature (<100°C) PEM MEAs. In addition, greater manufacturing uniformity and performance was achieved through (a) an investigation into the causes of excessive variation in ultrasonically and thermally bonded MEAs using more diagnostics applied during the entire fabrication and cell build process, and (b) development of rapid, yet simple quality control measurement techniques for use by industry.

  19. Modeling a Distributed Power Flow Controller with a PEM Fuel Cell for Power Quality Improvement

    Directory of Open Access Journals (Sweden)

    J. Chakravorty

    2018-02-01

    Full Text Available Electrical power demand is increasing at a relatively fast rate over the last years. Because of this increasing demand the power system is becoming very complex. Both electric utilities and end users of electric power are becoming increasingly concerned about power quality. This paper presents a new concept of distributed power flow controller (DPFC, which has been implemented with a proton exchange membrane (PEM fuel cell. In this paper, a PEM fuel cell has been simulated in Simulink/MATLAB and then has been used in the proposed DPFC model. The new proposed DPFC model has been tested on a IEEE 30 bus system.

  20. Room/corner tests of wall linings with 100/300 kW burner

    Science.gov (United States)

    M. A. Dietenberger; O. Grexa; R. H. White; M. S. Sweet; M. Janssens

    1995-01-01

    Six room/comer tests of common wall linings were conducted with gypsum-lined ceiling exposed to propane burning at 100 kW for 10 min followed by 300 kW for 10 min. This test protocol is an option provided by ISO 9705. The flashover event occurred at 1,000 kW rate of heat release within several seconds of observing flames out the doorway. The time to flashover of the...

  1. Dynamic water management of polymer electrolyte membrane fuel cells using intermittent RH control

    KAUST Repository

    Hussaini, I.S.; Wang, C.Y.

    2010-01-01

    A novel method of water management of polymer electrolyte membrane (PEM) fuel cells using intermittent humidification is presented in this study. The goal is to maintain the membrane close to full humidification, while eliminating channel flooding

  2. Advanced Product Water Removal and Management (APWR) Fuel Cell System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a passive, self-regulating, gravity-independent Advanced Product Water Removal (APWR) system for Polymer Electrolyte Membrane (PEM)...

  3. 10 kW Contactless Power Transfer System for Rapid Charger of Electric Vehicle

    OpenAIRE

    Yamanaka, Tomohiro; Kaneko, Yasuyoshi; Abe, Shigeru; Yasuda, Tomio

    2012-01-01

    A contactless power transfer system for charging electric vehicles requires a high efficiency, a large air gap, and a good tolerance to lateral misalignment and needs to be compact and lightweight. A double-sided winding 10 kW transformer based on a 1.5 kW H-shaped core transformer was developed for a rapid charger. Even though the transformer capacity was increased, the dimensions of the 10 kW transformer were almost the same as those of the 1.5 kW transformer. In this paper, the design conc...

  4. Economic analysis of a 20 kW gasifier; Analise economica de um gaseificador de 20 kW

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcos Vinicius Miranda da; Rocha, Brigida Ramati Pereira da [Universidade Federal do Para (NEDS/UFPA), Belem, PA (Brazil). Nucleo de Energia para o Desenvolvimento Sustentavel], e-mail: neds@ufpa.br

    2006-07-01

    The gasification of biomass residues has been pointed as an alternative in electricity supplying for small communities of the Amazon region, because it promotes a significant substitution of the diesel oil in the electric power generation. This paper presents an economic analysis of an electricity generation system (gasifier and generator set) of 20 kw that is installed in the community of Jenipauba, in the State of Para. That analysis confirms the economic attractiveness of that energy alternative on the generator sets that operate exclusively with diesel oil. It also shows the impact of the labor law on electricity generation cost, as well as the need of subsidizing the electric power generation, because the community of Jenipauba is very poor. (author)

  5. Failure analysis at a 2 kW helium liquefaction facility; Fehleranalyse bei einer 2kW- Heliumverfluessigungsanlage

    Energy Technology Data Exchange (ETDEWEB)

    Klenk, Rafael; Bobien, Steffen; Neumann, Holger [KIT Campus Nord, Eggenstein-Leopoldshafen (Germany). Bereich Kryotechnik

    2016-07-01

    At the Institute for Technical Physics of the KIT Campus Nord helium is cooled respectively liquefied by means of the Claude process. This process is beside the Brayton and Joule-Thomson process meanwhile a standard process for the liquefaction of helium. As example here a 2 kW low-temperature helium facility shall be evaluated by means of different, superordinated failure sources. This consists of condensers, heat exchangers, expansion turbines and a Joule-Thomson valve. The facility respectively component failures are divided in failures of the condenser, turbine units and failures by external factors. For this entries of the last twelve years are token. This listing shall give information about repeating events, so that here directed facility improvements can be token up.

  6. Dynamic Response of a 50 kW Organic Rankine Cycle System in Association with Evaporators

    Directory of Open Access Journals (Sweden)

    Yuh-Ren Lee

    2014-04-01

    Full Text Available The influences of various evaporators on the system responses of a 50 kW ORC system using R-245fa are investigated in this study. First the effect of the supplied hot water flowrate into the evaporator is examined and the exit superheat on the system performance between plate and shell-and-tube evaporator is also reported. Test results show that the effect of hot water flowrate on the evaporator imposes a negligible effect on the transient response of the ORC system. These results prevail even for a 3.5-fold increase of the hot water flowrate and the system shows barely any change subject to this drastic hot water flowrate change. The effect of exit superheat on the ORC system depends on the type of the evaporator. For the plate evaporator, an exit superheat less than 10 °C may cause ORC system instability due to considerable liquid entrainment. To maintain a stable operation, the corresponding Jakob number of the plate heat evaporator must be above 0.07. On the other hand, by employing a shell and tube heat evaporator connected to the ORC system, no unstable oscillation of the ORC system is observed for exit superheats ranging from 0 to 17 °C.

  7. PEM fuel cells with injection moulded bipolar plates of highly filled graphite compounds; PEM-Brennstoffzellen mit spritzgegossenen Bipolarplatten aus hochgefuelltem Graphit-Compound

    Energy Technology Data Exchange (ETDEWEB)

    Kreuz, Can

    2008-04-11

    This work concerns with the injection moulding of highly filled graphite compounds to bipolar plates for PEM fuel cells in a power output range between 100 - 500 Watts. A particular focus is laid on the combination of the three multidisciplinary scopes like material development, production technology and component development / design. The results of the work are specified by the process-oriented characterisation of the developed and manufactured bipolar plates as well as their application in a functioning fuel cell. (orig.)

  8. Effect of sulphuric acid concentration on electroosmotic flow through polymer electrolyte membranes in PEM fuel cells. Paper no. IGEC-1-061

    International Nuclear Information System (INIS)

    Karimi, G.; Li, X.

    2005-01-01

    Polymer electrolyte membrane (PEM) fuel cells are highly efficient and environmentally clean, and hence one of the most promising power sources for both stationary and mobile applications. The operations of PEM fuel cells are complicated by the electroosmotic flow of water from anode to cathode through the polymer electrolyte membrane leading to the membrane dehydration and fuel cell performance degradations. In this study, electro osmotic flow in polymer electrolyte membranes is modeled by incorporating the electro kinetic effects in the presence of euphoric acid. The governing Poisson-Boatman and the Nervier-Stokes equations were solved numerically for a single membrane pore to determine the electro osmotic flow distributions through the membrane over a wide range of acid concentrations. The presence of euphoric acid modifies the protons distribution in the membrane and hence alters the driving force for electroosmotic drag. Numerical results indicate that the electro osmotic flow increases steadily with acid concentration. The water transport due to electro osmosis is almost doubled at 2 M acid concentration compared with that of non-doped membrane. The value of electroosmotic drag coefficient however falls steadily with acid concentration due to the presence of a larger number of protons in the electrolyte. (author)

  9. Design, performance and economics of the DAF Indal 50 kW and 375 kW vertical axis wind turbine

    Science.gov (United States)

    Schienbein, L. A.; Malcolm, D. J.

    1982-03-01

    A review of the development and performance of the DAF Indal 50 kW vertical axis Darrieus wind turbines shows that a high level of technical development and reliability has been achieved. Features of the drive train, braking and control systems are discussed and performance details are presented. A description is given of a wind-diesel hybrid presently being tested. Details are also presented of a 375 kW VAWT planned for production in late 1982. A discussion of the economics of both the 50 kW and 375 kW VAWTs is included, showing the effects of charge rate, installed cost, operating cost, performance and efficiency. The energy outputs are translated into diesel fuel cost savings for remote communities.

  10. Design study of wind turbines 50 kW to 3000 kW for electric utility applications. Volume 2: Analysis and design

    Science.gov (United States)

    1976-01-01

    All possible overall system configurations, operating modes, and subsystem concepts for a wind turbine configuration for cost effective generation of electrical power were evaluated for both technical feasibility and compatibility with utility networks, as well as for economic attractiveness. A design optimization computer code was developed to determine the cost sensitivity of the various design features, and thus establish the configuration and design conditions that would minimize the generated energy costs. The preliminary designs of both a 500 kW unit and a 1500 kW unit operating in a 12 mph and 18 mph median wind speed respectively, were developed. The various design features and components evaluated are described, and the rationale employed to select the final design configuration is given. All pertinent technical performance data and component cost data is included. The costs of all major subassemblies are estimated and the resultant energy costs for both the 500 kW and 1500 kW units are calculated.

  11. Installation and operation of the 400 kW 140 GHz gyrotron on the MTX experiment

    International Nuclear Information System (INIS)

    Ferguson, S.W.; Felker, B.; Jackson, M.C.; Petersen, D.E.; Sewall, N.R.; Stever, R.D.

    1991-09-01

    This paper describes the installation and operation of the 400 kW 140 GHz gyrotron used for plasma heating on the Microwave Tokamak Experiment (MTX) at Lawrence Livermore National Laboratory (LLNL). The Varian VGT-8140 gyrotron has operated at a power level of 400 kW for 100 ms in conjunction with MTX plasma shots. The gyrotron system is comprised of a high voltage (-80 kV) modulated power supply, a multistation CAMAC computer control, a 5-tesla superconducting magnet, a series of conventional copper magnets, a circulating fluorinert (FC75) window cooling system, a circulating oil cooling system, a water cooling system, and microwave frequency and power diagnostics. Additionally, a Vlasov launcher is used to convert the gyrotron TE 15,2 mode to a Gaussian beam. Two versions of the Vlasov launcher have been used on the gyrotron, one version designed by LLNL and one version designed by the Japan Atomic Energy Research Institute (JAERI). The Gaussian beam from the Vlasov launcher is transported to the MTX tokamak by a series of 5 mirrors in a 35-meter-long, high-efficiency, quasioptical beam transport system. A twist polarizer is built into one of the mirrors to adjust for horizontal polarization in the tokamak. No windows are used between the Vlasov reflector and the MTX tokamak. A laser alignment system is used to perform the initial system alignment. A summary of the design and operating characteristics of each of these systems is included. Also included is a summary of the system operation and performance

  12. Patriot Script 1.0.13 User Guide for PEM 1.3.2

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, Timothy James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kubicek, Deborah Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stroud, Phillip David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cuellar-Hengartner, Leticia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mathis, Mark [Descartes Labs, Inc., Los Alamos, NM (United States)

    2015-11-02

    This document provides an updated user guide for Patriot Script Version 1.0.13, for release with PEM 1.3.1 (LAUR-1422817) that adds description and instructions for the new excursion capability (see section 4.5.1).

  13. Framework for the assessment of PEMS (Portable Emissions Measurement Systems) uncertainty.

    Science.gov (United States)

    Giechaskiel, Barouch; Clairotte, Michael; Valverde-Morales, Victor; Bonnel, Pierre; Kregar, Zlatko; Franco, Vicente; Dilara, Panagiota

    2018-06-13

    European regulation 2016/427 (the first package of the so-called Real-Driving Emissions (RDE) regulation) introduced on-road testing with Portable Emissions Measurement Systems (PEMS) to complement the chassis dynamometer laboratory (Type I) test for the type approval of light-duty vehicles in the European Union since September 2017. The Not-To-Exceed (NTE) limit for a pollutant is the Type I test limit multiplied by a conformity factor that includes a margin for the additional measurement uncertainty of PEMS relative to standard laboratory equipment. The variability of measured results related to RDE trip design, vehicle operating conditions, and data evaluation remain outside of the uncertainty margin. The margins have to be reviewed annually (recital 10 of regulation 2016/646). This paper lays out the framework used for the first review of the NO x margin, which is also applicable to future margin reviews. Based on experimental data received from the stakeholders of the RDE technical working group in 2017, two NO x margin scenarios of 0.24-0.43 were calculated, accounting for different assumptions of possible zero drift behaviour of the PEMS during the tests. The reduced uncertainty margin compared to the one foreseen for 2020 (0.5) reflects the technical improvement of PEMS over the past few years. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Characterisation and Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Schaltz, Erik

    2009-01-01

    temperature PEM (HTPEM) fuel cell stack. A Labview virtual instrument has been developed to perform the signal generation and data acquisition which is needed to perform EIS. The typical output of an EIS measurement on a fuel cell, is a Nyquist plot, which shows the imaginary and real part of the impedance...

  15. PEM fuel cell cost minimization using ``Design For Manufacture and Assembly`` techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lomax, F.D. Jr.; James, B.D. [Directed Technologies, Inc., Arlington, VA (United States); Mooradian, R.P. [Ford Motor Co., Dearborn, MI (United States)

    1997-12-31

    Polymer Electrolyte Membrane (PEM) fuel cells fueled with direct hydrogen have demonstrated substantial technical potential to replace Internal Combustion Engines (ICE`s) in light duty vehicles. Such a transition to a hydrogen economy offers the potential of substantial benefits from reduced criteria and greenhouse emissions as well as reduced foreign fuel dependence. Research conducted for the Ford Motor Co. under a US Department of Energy contract suggests that hydrogen fuel, when used in a fuel cell vehicle (FCV), can achieve a cost per vehicle mile less than or equal to the gasoline cost per mile when used in an ICE vehicle. However, fuel cost parity is not sufficient to ensure overall economic success: the PEM fuel cell power system itself must be of comparable cost to the ICE. To ascertain if low cost production of PEM fuel cells is feasible, a powerful set of mechanical engineering tools collectively referred to as Design for Manufacture and Assembly (DFMA) has been applied to several representative PEM fuel cell designs. The preliminary results of this work are encouraging, as presented.

  16. Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Kær, Søren Knudsen

    2008-01-01

    This work presents the development of an equivalent circuit model of a 65 cell high temperature PEM (HTPEM) fuel cell stack using Electrochemical Impedance Spectroscopy (EIS). The HTPEM fuel cell membranes used are PBI-based and uses phosphoric acid as proton conductor. The operating temperature...

  17. CFD modelling of cooling channel geometry of PEM fuel cell for ...

    African Journals Online (AJOL)

    In this study, a numerical investigation was carried out to deter mine the impact of cooling channel geometry in combination with temperature dependent operating parameters on thermal management and overall performance of a PEM fuel cell system. The evaluation is performed using a computational fluid dynamics ...

  18. Characterization of Settler Tank and KW Container Sludge Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Carolyn A.; Luna, Maria; Schmidt, Andrew J.

    2009-05-12

    The Sludge Treatment Project (STP), managed by CH2M Hill Plateau Remediation Company (CHPRC) has specified base formulations for non-radioactive sludge simulants for use in the development and testing of equipment for sludge sampling, retrieval, transport, and processing. In general, the simulant formulations are based on the average or design-basis physical and chemical properties obtained by characterizing sludge samples. The simulants include surrogates for uranium metal, uranium oxides (agglomerates and fine particulate), and the predominant chemical phases (iron and aluminum hydroxides, sand). Specific surrogate components were selected to match the nominal particle-size distribution and particle-density data obtained from sludge sample analysis. Under contract to CHPRC, Pacific Northwest National Laboratory (PNNL) has performed physical and rheological characterization of simulants, and the results are reported here. Two base simulant types (dry) were prepared by STP staff at the Maintenance and Storage Facility and received by PNNL on February 12, 2009: Settler Tank Simulant and KW Container Sludge Simulant. The objectives of this simulant characterization effort were to provide baseline characterization data on simulants being used by STP for process development and equipment testing and provide a high-level comparison of the simulant characteristics to the targets used to formulate the simulants.

  19. ETL 1 kW redox flow cell

    International Nuclear Information System (INIS)

    Nozaki, K.; Ozawa, T.

    1984-01-01

    A 1 kW scale redox flow cell system was set up in the laboratory (ETL), while three different types of batteries were also assembled by private companies in early 1983. In this article, this cell system is described. The concept of a modern type redox flow cell is based on a couple of fully soluble redox ions and a highly selective ion-exchange membrane. In the cell, the redox ion stored in a tank is flowed to and reduced on the electrode, while the other ion is also flowed to and oxidized on the other electrode. This electrochemical reaction produces electronic current in the external circuit and ionic current through the membrane sandwiched as a separator between the two electrodes. The reverse reaction proceeds in the charging process. In ETL, the concept was preliminarily tested, and conceptual design and cost estimation of the redox flow cells were carried out to confirm the feasibility; the R and D started on these bases in 1975

  20. Development of a 200kW multi-fuel type PAFC power plant

    Energy Technology Data Exchange (ETDEWEB)

    Take, Tetsuo; Kuwata, Yutaka; Adachi, Masahito; Ogata, Tsutomu [NTT Integrated Information & Energy System Labs., Tokyo (Japan)

    1996-12-31

    Nippon Telegraph and Telephone Corporation (NFT) has been developing a 200 kW multi-fuel type PAFC power plant which can generate AC 200 kW of constant power by switching fuel from pipeline town gas to liquefied propane gas (LPG) and vice versa. This paper describes the outline of the demonstration test plant and test results of its fundamental characteristics.

  1. Technical and environmental performance of 10 kW understocker boiler during combustion of biomass and conventional fuels

    OpenAIRE

    Junga Robert; Wzorek Małgorzata; Kaszubska Mirosława

    2017-01-01

    This paper treats about the impact fuels from biomass wastes and coal combustion on a small boiler operation and the emission of pollutants in this process. Tests were performed in laboratory conditions on a water boiler with retort furnace and the capacity of 10 kW. Fuels from sewage sludge and agriculture wastes (PBZ fuel) and a blend of coal with laying hens mature (CLHM) were taken into account. The results in emission changes of NOx, CO2, CO and SO2 and operating parameters of the tested...

  2. Final Report - MEA and Stack Durability for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yandrasits, Michael A.

    2008-02-15

    Proton exchange membrane fuel cells are expected to change the landscape of power generation over the next ten years. For this to be realized one of the most significant challenges to be met for stationary systems is lifetime, where 40,000 hours of operation with less than 10% decay is desired. This project conducted fundamental studies on the durability of membrane electrode assemblies (MEAs) and fuel cell stack systems with the expectation that knowledge gained from this project will be applied toward the design and manufacture of MEAs and stack systems to meet DOE’s 2010 stationary fuel cell stack systems targets. The focus of this project was PEM fuel cell durability – understanding the issues that limit MEA and fuel cell system lifetime, developing mitigation strategies to address the lifetime issues and demonstration of the effectiveness of the mitigation strategies by system testing. To that end, several discoveries were made that contributed to the fundamental understanding of MEA degradation mechanisms. (1) The classically held belief that membrane degradation is solely due to end-group “unzipping” is incorrect; there are other functional groups present in the ionomer that are susceptible to chemical attack. (2) The rate of membrane degradation can be greatly slowed or possibly eliminated through the use of additives that scavenge peroxide or peroxyl radicals. (3) Characterization of GDL using dry gases is incorrect due to the fact that fuel cells operate utilizing humidified gases. The proper characterization method involves using wet gas streams and measuring capillary pressure as demonstrated in this project. (4) Not all Platinum on carbon catalysts are created equally – the major factor impacting catalyst durability is the type of carbon used as the support. (5) System operating conditions have a significant impact of lifetime – the lifetime was increased by an order of magnitude by changing the load profile while all other variables remain

  3. Proton exchange membrane water electrolysers

    International Nuclear Information System (INIS)

    Millet, P.

    2007-01-01

    This work deals with the PEM water electrolysis process. Are successively described: the thermodynamical, kinetic and energetic aspects, the different possible used electrolysis cells, the preparation of the membrane-electrode assembling, the used electrolysers, the annex production equipment, the uses fields and the limits of the process. (O.M.)

  4. Salt Effects on Surface Structures of Polyelectrolyte Multilayers (PEMs) Investigated by Vibrational Sum Frequency Generation (SFG) Spectroscopy.

    Science.gov (United States)

    Ge, Aimin; Matsusaki, Michiya; Qiao, Lin; Akashi, Mitsuru; Ye, Shen

    2016-04-26

    Sum frequency generation (SFG) vibrational spectroscopy was employed to investigate the surface structures of polyelectrolyte multilayers (PEMs) constructed by sequentially alternating adsorption of poly(diallyldimethylammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS). It was found that the surface structures and surface charge density of the as-deposited PEMs of PDDA/PSS significantly depend on the concentration of sodium chloride (NaCl) present in the polyelectrolyte solutions. Furthermore, it was found that the surface structure of the as-deposited PEMs is in a metastable state and will reach the equilibrium state by diffusion of the polyelectrolyte chain after an aging process, resulting in a polyelectrolyte mixture on the PEM surfaces.

  5. Real-Time Microscopic Monitoring of Flow, Voltage and Current in the Proton Exchange Membrane Water Electrolyzer.

    Science.gov (United States)

    Lee, Chi-Yuan; Li, Shih-Chun; Chen, Chia-Hung; Huang, Yen-Ting; Wang, Yu-Syuan

    2018-03-15

    Looking for alternative energy sources has been an inevitable trend since the oil crisis, and close attentioned has been paid to hydrogen energy. The proton exchange membrane (PEM) water electrolyzer is characterized by high energy efficiency, high yield, simple system and low operating temperature. The electrolyzer generates hydrogen from water free of any carbon sources (provided the electrons come from renewable sources such as solar and wind), so it is very clean and completely satisfies the environmental requirement. However, in long-term operation of the PEM water electrolyzer, the membrane material durability, catalyst corrosion and nonuniformity of local flow, voltage and current in the electrolyzer can influence the overall performance. It is difficult to measure the internal physical parameters of the PEM water electrolyzer, and the physical parameters are interrelated. Therefore, this study uses micro-electro-mechanical systems (MEMS) technology to develop a flexible integrated microsensor; internal multiple physical information is extracted to determine the optimal working parameters for the PEM water electrolyzer. The real operational data of local flow, voltage and current in the PEM water electrolyzer are measured simultaneously by the flexible integrated microsensor, so as to enhance the performance of the PEM water electrolyzer and to prolong the service life.

  6. Design considerations for a 10-KW integrated hydrogen-oxygen regenerative fuel cell system

    International Nuclear Information System (INIS)

    Hoberecht, M.A.; Gonzalez-Sanabria, O.D.; Miller, T.B.; Rieker, L.L.

    1984-01-01

    Integration of an alkaline fuel cell subsystem with an alkaline electrolysis subsystem to form a regenerative fuel cell (RFC) system for low-earth-orbit (LEO) applications characterized by relatively high overall round-trip electrical efficiency, long life, and high reliability is possible with present state-of-the-art technology. A hypothetical 10-kW system is being computer modeled and studied based on data from ongoing contractual efforts in both the alkaline fuel cell and alkaline water electrolysis areas. The alkaline fuel cell technology is being developed under an NASA-LeRC program with United Technologies Corporation (UTC), utilizing advanced cell components and standard Shuttle-Orbiter system hardware. The alkaline electrolysis technology is that of Life Systems, Inc. (LSI), which uses a static water vapor feed technique and scaled-up cell hardware being developed under an NASA-LeRC program. This paper addresses the computeraided study of the performance, operating, and design parameters of the hypothetical system

  7. Experimental validation of modelling tools for a PEM fuel cell; Validation experimentale d'outils de modelisation d'une pile a combustible de type PEM

    Energy Technology Data Exchange (ETDEWEB)

    Boillot, M.

    2005-10-15

    In this work, a global view of the phenomena occurring in a PEM fuel cell is given. An original methodology was developed in order to determine the main parameters: thermodynamics, kinetics and transport phenomena. The gas flow in bipolar plates was characterised using experimental determination of residence time distributions and numerical simulations. Kinetics of both electrochemical reactions were analysed feeding the cell by diluted gases. In this part, the diffusion of reactants in the membrane electrodes assembly was taken into account. Finally, the relationship between humidity and electrical performance was investigated and the ohmic resistance of the cell was estimated. (author)

  8. Development of 20 kW input power coupler for 1.3 GHz ERL main linac. Component test at 30 kW IOT test stand

    International Nuclear Information System (INIS)

    Sakai, Hiroshi; Umemori, Kensei; Sakanaka, Shogo; Takahashi, Takeshi; Furuya, Takaaki; Shinoe, Kenji; Ishii, Atsushi; Nakamura, Norio; Sawamura, Masaru

    2009-01-01

    We started to develop an input coupler for a 1.3 GHz ERL superconducting cavity. Required input power is about 20 kW for the cavity acceleration field of 20 MV/m and the beam current of 100 mA in energy recovery operation. The input coupler is designed based on the STF-BL input coupler and some modifications are applied to the design for the CW 20 kW power operation. We fabricated input coupler components such as ceramic windows and bellows and carried out the high-power test of the components by using a 30 kW IOT power source and a test stand constructed for the highpower test. In this report, we mainly describe the results of the high-power test of ceramic window and bellows. (author)

  9. Engineering and erection of a 300kW high-flux solar simulator

    Science.gov (United States)

    Wieghardt, Kai; Laaber, Dmitrij; Hilger, Patrick; Dohmen, Volkmar; Funken, Karl-Heinz; Hoffschmidt, Bernhard

    2017-06-01

    German Aerospace Center (DLR) is currently constructing a new high-flux solar simulator synlight which shall be commissioned in late 2016. The new facility will provide three separately operated experimental spaces with expected radiant powers of about 300kW / 240kW / 240kW respectively. synlight was presented to the public for the first time at SolarPACES 2015 [1]. Its engineering and erection is running according to plan. The current presentation reports about the engineering and the ongoing erection of the novel facility, and gives an outlook on its new level of possibilities for solar testing and qualification.

  10. Non-isolated 30 kW class arcjet PCU

    Science.gov (United States)

    Wong, See-Pok; Britt, Edward J.

    1994-03-01

    A 30 kW class arcjet Power Conditioning Unit, PCU, was built and tested during this Phase 2 SBIR contract. The PCU is an improved version of two previously developed PCU's. All of these units are 3-phase, 20 kHz buck regulators with current mode feed back to modulate the duty cycle to control the arcjet current at any selected operating point. The steady state control can assure arcjet stability despite the negative dynamic resistance of the arc discharge. The system also has a circuit to produce a high voltage start pulse to breakdown the gas and initiate the arc. The start pulse is formed by temporarily switching a short current path across the output terminals with a special solid state switching array. The switches then open rapidly, and the energy stored in the output inductors of the buck regulator produces a pulse of approximately 2500 V for approximately 500 nsec. The system was tested and modified until the transition to steady operation occurred after start up with a very small surge current overshoot. The system also can withstand a direct short circuit across the output without damage. The automatic feed back control simply reduces the duty cycle to hold the current at the set point. When the short is removed the full power output is immediately restored. This latest version arcjet PCU is conduction cooled to remove waste heat by conduction to the base plate. This unit is closer to flight a type of design than the previous functional bread boards. Waste heat is small because the PCU has a very high efficiency, 296 percent. The PCU was extensively tested with resistor loads to simulate operation with an arcjet. The unit was tested with ammonia arcjets at the Jet Propulsion Laboratory. Approximately 400 hours of testing were completed, with several starts. Many hours were also demonstrated with resistive loads.

  11. Output characteristics of 40 kW photovoltaic power generation system in ICT; Ibaraki kosen ni okeru 40 kW taiyoko hatsuden shisutemu no shutsuryoku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, N. [Ibaraki National College of Tech., Ibaraki (Japan); Tani, T. [Science University of Tokyo, Tokyo (Japan)

    1999-11-25

    The photovoltaic power generation system consists of photovoltaic array and power conditioner of the utility connected system. The photovoltaic array parallelly constitutes 18 serial 30 of the modules of 540 sheets, and there is the generating capacity of largest 40 kW. The power conditioner uses 10 kW four units, and it is tracking with function of the maximum output point. This report examined the unconformable rate of photovoltaic array maximum output operating voltage, current and power in simulation and power conditioner input. (author)

  12. Analysis of the Coupling Behavior of PEM Fuel Cells and DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Achim Kienle

    2009-03-01

    Full Text Available The connection between PEM fuel cells and common DC-DC converters is examined. The analysis is model-based and done for boost, buck and buck-boost converters. In a first step, the effect of the converter ripples upon the PEM fuel cell is shown. They introduce oscillations in the fuel cell. Their appearance is explained, discussed and possibilities for their suppression are given. After that, the overall behaviors of the coupled fuel cell-converter systems are analyzed. It is shown, that neither stationary multiplicities nor oscillations can be introduced by the couplings and therefore separate control approaches for both the PEMFC and the DC-DC converters are applicable.

  13. Optimization of a thermoelectric generator subsystem for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Gao, Xin; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    In previous work, a thermoelectric (TE) exhaust heat recovery subsystem for a high temperature polymer electrolyte membrane (HT-PEM) fuel cell stack was developed and modeled. Numerical simulations were conducted and have identified an optimized subsystem configuration and 4 types of compact heat...... modules are now connected into branches. The procedures of designing and optimizing this TE exhaust heat recovery subsystem are drawn out. The contribution of TE exhaust heat recovery to the HT-PEM fuel cell power system is preliminarily concluded. Its feasibility is also discussed....... exchangers with superior performance for further analysis. In this work, the on-design performances of the 4 heat exchangers are more thoroughly assessed on their corresponding optimized subsystem configurations. Afterward, their off-design performances are compared on the whole working range of the fuel...

  14. Development of a 400 W High Temperature PEM Fuel Cell Power Pack

    DEFF Research Database (Denmark)

    Schaltz, Erik; Jespersen, Jesper Lebæk; Rasmussen, Peter Omand

    2006-01-01

    reformer design because CO removal is not needed. A fuel like methanol would be a preferable choice for reforming when using HTPEM fuel cells because of its high energy density and low reforming temperatures. The thermal integration and use of HTPEM fuel cells with methanol reformers show promising results......When using pressurized hydrogen to fuel a fuel cell, much space is needed for fuel storage. This is undesirable especially with mobile or portable fuel cell systems, where refuelling also often is inconvenient. Using a reformed liquid carbonhydrate can reduce this fuel volume considerably. Nafion...... based low temperature PEM (LTPEM) fuel cells are very intolerant to reformate gas because of the presence of CO. PBI based high temperature PEM (HTPEM) fuel cells can operate stable at much higher CO concentrations. This makes the HTPEM very suitable for applications using a reformer, and could simplify...

  15. Simulation results of a veto counter for the ClearPEM

    CERN Document Server

    Trummer, J; Lecoq, P

    2009-01-01

    The Crystal Clear Collaboration (CCC) has built a prototype of a novel positron emission tomograph dedicated to functional breast imaging, the ClearPEM. The ClearPEM uses the common radio pharmaceutical FDG for imaging cancer. As FDG is a rather non-specific radio tracer, it accumulates not only in cancer cells but in all cells with a high energy consumption, such as the heart and liver. This fact poses a problem especially in breast imaging, where the vicinity of the heart and other organs to the breast leads to a high background noise level in the scanner. In this work, a veto counter to reduce the background is described. Different configurations and their effectiveness were studied using the GATE simulation package.

  16. Numerical Simulations and Diagnostic Studies of Meteorological Conditions During PEM-Tropics B

    Science.gov (United States)

    Fuelberg, Henry E.

    2001-01-01

    Provides a final report on the work accomplished by several meteorological scientists under a NASA grant in conjunction with the DC-8 component of Pacific Exploratory Mission (PEM)-Tropics B. The responsibilities of the principal investigator included collaboration with the Science Team on flight planning, presentation of forecasts, and the preparation of map discussions for each flight. In a published manuscript, the principal investigator summarized the meteorological conditions during PEM-TB which included mean flow patterns, subtropical anticyclones, the South Pacific Convergence Zone (SPCZ), and the Intertropical Convergence Zone (ITCZ). Methodologies used included streamlines, ten day backward trajectories, thermodynamic soundings, and satellite imagery. Other interests included air sampling for the purpose of determining pollution levels.

  17. Bi-polarized translation of ascidian maternal mRNA determinant pem-1 associated with regulators of the translation machinery on cortical Endoplasmic Reticulum (cER).

    Science.gov (United States)

    Paix, Alexandre; Le Nguyen, Phuong Ngan; Sardet, Christian

    2011-09-01

    Polarized cortical mRNA determinants such as maternal macho-1 and pem-1 in ascidians, like budding yeast mating factor ASH1 reside on the cER-mRNA domain a subdomain of cortical Endoplasmic Reticulum(ER) and are translated in its vicinity. Using high resolution imaging and isolated cortical fragments prepared from eggs and embryos we now find that macho-1 and pem-1 RNAs co-localize with phospho-protein regulators of translation initiation (MnK/4EBP/S6K). Translation of cortical pem-1 RNA follows its bi-polarized relocalization. About 10 min after fertilization or artificial activation with a calcium ionophore, PEM1 protein is detected in the vegetal cortex in the vicinity of pem-1 RNA. About 40 min after fertilization-when pem-1 RNA and P-MnK move to the posterior pole-PEM1 protein remains in place forming a network of cortical patches anchored at the level of the zygote plasma membrane before disappearing. Cortical PEM1 protein is detected again at the 4 cell stage in the posterior centrosome attracting body (CAB) region where the cER-mRNA domain harboring pem-1/P-MnK/P-4EBP/P-S6K is concentrated. Bi-polarized PEM1 protein signals are not detected when pem-1 morpholinos are injected into eggs or zygotes or when MnK is inhibited. We propose that localized translation of the pem-1 RNA determinant is triggered by the fertilization/calcium wave and that the process is controlled by phospho-protein regulators of translation initiation co-localized with the RNA determinant on a sub-domain of the cortical Endoplasmic Reticulum. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Feasibility study of the underwater neutron radiography facility using the University of Utah 100 kW TRIGA (UUTR) reactor

    International Nuclear Information System (INIS)

    Choe, D.; Xiao, S.; Jevremovic, T.; Yang, X.

    2010-01-01

    The University of Utah 100 kW TRIGA (UUTR) reactor provides usable neutron yields for neutron radiography. Currently, UUTR reactor has three irradiators (Central, Pneumatic, and Thermal irradiators) and one Fast neutron Irradiation Facility (FNIF). These irradiators are very small so they are not suitable for neutron radiography. UUTR has three beam ports but they are not available due to the structure of the core. All sides of the core are occupied by FNIF, Thermal Irradiator, and three ion chambers. The only available position for underwater vertical beam port is on the top of the FNIF. There are two factors necessary to fulfill to be able to realize vertical underwater beam port: noninterruption to other facilities and radiation shielding. Designing the vertical beam port as movable ensures good access to the core and pool, while still providing a good neutron radiography environment. Keeping the top of the beam port below the surface of the pool the water represents biological shield. Neutron radiographs, with a simple setup of efficient neutron converters and digital camera systems, can produce acceptable resolution with an exposure time as short as a few minutes. It is important to validate the design with calculations before constructing the beam port. The design of the beam port is modeled using the MCNP5 transport code. A minimum of 10 5 neutrons/cm 2 -sec thermal neutron flux is required for high resolution neutron radiography. Currently, the UUTRIGA is in the process of upgrading its power from 100 kW to 250 kW. Upon the completion of the upgrading, the maximum neutron flux in the core will be ∼7x10 12 neutrons/cm 2 -sec. This paper discusses a modeling and evaluation of capability for a neutron radiography facility. (author)

  19. Growth of Three Lettuce Cultivars in NASA's HDU PEM During the 2010 DRATS Test

    Science.gov (United States)

    Stutte, Gary W.; Newsham, Gerard; Wheeler, Raymond

    2011-01-01

    NASA's 2010 Desert Research and Technology Studies (DRATS) of the VEGGIE Food Production System in the Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) was the first operational evaluation of salad crop production technology in a NASA analog test. Rooting media and slow release fertilizers were evaluated for three lettuce cultivars that had shown promise as candidates for a surface based food production system. These tests involved comparing growth, color and quality of the lettuce cultivars grown under VEGGIE LED array (Orbitec, Madison, WI) or Biomass Production System for Education ((BSEe), Orbitec, Madison, WI) compact fluorescent lamps using a gravity feed water delivery system. Mission relevant conditions of CO2, temperature and RH were maintained using controlled environment chambers (EGC, Chagrin Falls, OH). Growth data was obtained for the two red leaf lettuce cultivars, Outredgeous and Firecracker, and the green Bibb lettuce cultivar, Flandria. Growth and quality was evaluated using different concentrations (7.5 g/L and 15 g/L) of commercial slow release fertilizer (Osmocote Plus 15-9-12, Scotts, Maryville, OH) and Nutricote 18-6-8 (Florikan, Sarasota, FL) in either a peat/vermiculite media (sunshine LP5 MiX, Sungro, Bellview, WA) or calcined montmorillonite clay [(arcillite,)Turface Proleague, Profile LLC, Buffalo Grove, IL]. The commercial peat/vermiculite mix generally resulted in larger plants than those grown in arcillite. Increasing the concentration of Osmocote from 7.5 to 15 g/L increased the height, dry mass, and leaf area of lettuce cultivars. In contrast, there was a decrease in growth parameters when concentration of Nutricote was increased from 7.5 to 15 g/L. The best growth was obtained with the 7.5 g/L Nutricote using a commercial peat/vermiculite mixture. This media was used for field testing VEGGIE plant system in the 2010 DRAT test. The VEGGIE nutrient delivery system worked well, was able to be maintained by multiple

  20. Development of Low Temperature Catalysts for an Integrated Ammonia PEM Fuel Cell

    OpenAIRE

    Hill, Alfred

    2014-01-01

    It is proposed that an integrated ammonia-PEM fuel cell could unlock the potential of ammonia to act as a high capacity chemical hydrogen storage vector and enable renewable energy to be delivered eectively to road transport applications. Catalysts are developed for low temperature ammonia decomposition with activity from 450 K (ruthenium and cesium on graphitised carbon nanotubes). Results strongly suggest that the cesium is present on the surface and close proximity to ruthenium nanoparticl...

  1. Long-term stability of the Clear-PEM detector modules

    International Nuclear Information System (INIS)

    Amaral, Pedro; Bruyndonckx, Peter; Carrico, Bruno; Ferreira, Miguel; Luyten, Joan; Moura, Rui; Ortigao, Catarina; Rodrigues, Pedro; Silva, Jose C. da; Trindade, Andreia; Varela, Joao

    2007-01-01

    Experimental evaluation of the imaging system Clear-PEM for positron emission mammography, under development within the framework of the crystal clear collaboration at CERN, is presented in terms of its long-term stability. The detector modules and experimental setup are described. Time evolution results of signal yield, energy resolution, depth-of-interaction and inter-channel crosstalk for a reference detector module are reported

  2. Fuzzy Logic Based Control of Power of PEM Fuel Cell System for Residential Application

    Directory of Open Access Journals (Sweden)

    Khaled MAMMAR

    2009-07-01

    Full Text Available This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposed include a fuel cell stack model, reformer model and DC/AC inverter model. Furthermore a fuzzy logic (FLC controller is used to control active power of PEM fuel cell system. The controller modifies the hydrogen flow feedback from the terminal load. Simulation results confirmed the high performance capability of the fuzzy logic controller to control power generation.

  3. Optimal Control of a PEM Fuel Cell for the Inputs Minimization

    Directory of Open Access Journals (Sweden)

    José de Jesús Rubio

    2014-01-01

    Full Text Available The trajectory tracking problem of a proton exchange membrane (PEM fuel cell is considered. To solve this problem, an optimal controller is proposed. The optimal technique has the objective that the system states should reach the desired trajectories while the inputs are minimized. The proposed controller uses the Hamilton-Jacobi-Bellman method where its Riccati equation is considered as an adaptive function. The effectiveness of the proposed technique is verified by two simulations.

  4. Development of an angled Si-PM-based detector unit for positron emission mammography (PEM) system

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Kouhei, E-mail: nakanishi.kouhei@c.mbox.nagoya-u.ac.jp; Yamamoto, Seiichi

    2016-11-21

    Positron emission mammography (PEM) systems have higher sensitivity than clinical whole body PET systems because they have a smaller ring diameter. However, the spatial resolution of PEM systems is not high enough to detect early stage breast cancer. To solve this problem, we developed a silicon photomultiplier (Si-PM) based detector unit for the development of a PEM system. Since a Si-PM's channel is small, Si-PM can resolve small scintillator pixels to improve the spatial resolution. Also Si-PM based detectors have inherently high timing resolution and are able to reduce the random coincidence events by reducing the time window. We used 1.5×1.9×15 mm LGSO scintillation pixels and arranged them in an 8×24 matrix to form scintillator blocks. Four scintillator blocks were optically coupled to Si-PM arrays with an angled light guide to form a detector unit. Since the light guide has angles of 5.625°, we can arrange 64 scintillator blocks in a nearly circular shape (a regular 64-sided polygon) using 16 detector units. We clearly resolved the pixels of the scintillator blocks in a 2-dimensional position histogram where the averages of the peak-to-valley ratios (P/Vs) were 3.7±0.3 and 5.7±0.8 in the transverse and axial directions, respectively. The average energy resolution was 14.2±2.1% full-width at half-maximum (FWHM). By including the temperature dependent gain control electronics, the photo-peak channel shifts were controlled within ±1.5% with the temperature from 23 °C to 28 °C. With these results, in addition to the potential high timing performance of Si-PM based detectors, our developed detector unit is promising for the development of a high-resolution PEM system.

  5. Development of integrated system to operational control and monitoring for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Mauricio Stelita; Ferreira, Valdemar Stelita [NovoCell Sistemas de Energia S.A., Santa Barbara D' Oeste, SP (Brazil)], Email: mauricio.ferreira@novocell.ind.br

    2010-07-01

    The demonstration of fuel cells prototype in some applications such as in stationary systems and vehicles has been increased, but higher costs and lack of criteria for system longevity still prevent their mass production. Acting directly on this aspect, Novocell has proposed to develop innovative processes and materials to manufacture at scale and with competitive cost for these systems. Thus, this paper presents solutions that enable its production line of PEM fuel cells. (author)

  6. Process for recycling components of a PEM fuel cell membrane electrode assembly

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  7. The effect of material properties on the performance of a new geometry PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Khazaee, Iman [Islamic Azad University, Department of Mechanical Engineering, Torbat-e-jam Branch, Torbat-e-jam (Iran, Islamic Republic of); Ghazikhani, Mohsen [Ferdowsi University of Mashhad, Department of Mechanical Engineering, Faculty of Engineering, Mashhad (Iran, Islamic Republic of)

    2012-05-15

    In this paper a computational dynamics model for duct-shaped geometry proton exchange membrane (PEM) fuel cell was used to investigate the effect of changing gas diffusion layer and membrane properties on the performances, current density and gas concentration. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. This computational fluid dynamics code is used as the direct problem solver, which is used to simulate the 2-dimensional mass, momentum and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC that cannot be investigated experimentally. The results show that by increasing the thickness and decreasing the porosity of GDL the performance of the cell enhances that it is different with planner PEM fuel cell. Also the results show that by increasing the thermal conductivity of the GDL and membrane, the overall cell performance increases. (orig.)

  8. Characterization and quality control of avalanche photodiode arrays for the Clear-PEM detector modules

    International Nuclear Information System (INIS)

    Abreu, Conceicao; Amaral, Pedro; Carrico, Bruno; Ferreira, Miguel; Luyten, Joan; Moura, Rui; Ortigao, Catarina; Rato, Pedro; Varela, Joao

    2007-01-01

    Clear-PEM is a Positron Emission Mammography (PEM) prototype being developed in the framework of the Crystal Clear Collaboration at CERN. This device is a dedicated PET camera for mammography, based on LYSO:Ce scintillator crystals, Avalanche PhotoDiodes (APD) and a fast, low-noise electronics readout system, designed to examine both the breast and the axillary lymph node areas, and aiming at the detection of tumors down to 2 mm in diameter. The prototype has two planar detector heads, each composed of 96 detector modules. The Clear-PEM detector module is composed of a matrix of 32 identical 2x2x20 mm 3 LYSO:Ce crystals read at both ends by Hamamatsu S8550 APD arrays (4x8) for Depth-of-Interaction (DoI) capability. The APD arrays were characterized by the measurement of gain and dark current as a function of bias voltage, under controlled temperature conditions. Two independent setups were used. The full set of 398 APD arrays followed a well-defined quality control (QC) protocol, aiming at the rejection of arrays not complying within defined specifications. From a total of 398 arrays, only 2 (0.5%) were rejected, reassuring the trust in these detectors for prototype assembly and future developments

  9. Using the PAW/PEM monitoring systems to support operations at Point Lepreau

    International Nuclear Information System (INIS)

    MacDonald, S.; McIntyre, M.; Dai, H.

    1997-01-01

    The plant data logger was brought on-line at the Point Lepreau Generating Station (PLGS) in 1992 in order to record information from instruments throughout the plant. Using the System Engineers Data Extraction (SEDE) utility, current plant data is at the fingertips of anyone with a network connection. System engineers can monitor the performance of their systems at any time and take pro-active measures to avoid problems with performance, as well as monitor behaviour during tests and plant upsets. Nuclear Safety personnel gather data for use in simulation and analysis validation, as well as to ensure that plant parameters are kept within the safe operating envelope. The PLGS operational safety group embarked on a project to develop a data management system. The project and the monitoring process has come to be known as the Plant Analysis Workbench (PAW). When the need for complex monitoring of safety system signals was identified, this led to a similar project called the Plant Expert Monitor (PEM). In this paper we present an overview of the functionality of both PAW and PEM, outlining in particular the expert system architecture in PEM and giving an example of its day-to-day use

  10. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2012-06-01

    Full Text Available Proton exchange membrane fuel cell (PEM generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas production due to its favorable composition of lower molecular weight compounds. This paper presents a study for a 250 kW net electrical power PEM fuel cell system utilizing a partial oxidation in one case study and steam reformers in the second. This study has shown that steam-reforming process is the most competitive fuel processing option in terms of fuel processing efficiency. Partial oxidation process has proved to posses the lowest fuel processing efficiency. Among the options studied, the highest fuel processing efficiency is achieved with natural gas steam reforming system.

  11. Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) Systems Integration Strategy

    Science.gov (United States)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott

    2011-01-01

    The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a rapid prototyping approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process was based on a rapid prototyping approach. Tailored design review and test and integration processes facilitated that approach. The use of collaboration tools including electronic tools as well as documentation enabled a geographically distributed team take a paper concept to an operational prototype in approximately one year. One of the major tools used in the integration strategy was a coordinated effort to accurately model all the subsystems using computer aided design (CAD), so conflicts were identified before physical components came together. A deliberate effort was made following the deployment of the HDU PEM for field operations to collect lessons learned to facilitate process improvement and inform the design of future flight or analog versions of habitat systems. Significant items within those lessons learned were limitations with the CAD integration approach and the impact of shell design on flexibility of placing systems within the HDU shell.

  12. CarbonNanoTubes (CNT) in bipolar plates for PEM fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Grundler, M.; Derieth, T.; Beckhaus, P.; Heinzel, A. [centre for fuel cell technology ZBT GmbH (Germany)

    2010-07-01

    Using standard mass production techniques for the fabrication of fuel cell components, such as bipolar plates, is a main issue for the commercialisation of PEM fuel cell systems. Bipolar plates contribute significantly to the cost structure of PEM stacks. In an upcoming fuel cell market a large number of bipolar plates with specific high-quality standards will be needed. At the Centre for Fuel Cell Technology (ZBT) together with the University of Duisburg-Essen fuel cell stacks based on injection moulded bipolar plates have been developed and demonstrated successfully [1]. This paper focuses on the interactions between carbon filling materials (graphite, carbon black and carbon nanotubes (CNT)) in compound based bipolar plates and especially the potential of CNTs, which were used in bipolar plates for the first time. The entire value added chain based on the feedstock, the compounding and injection moulding process, the component bipolar plate, up to the operation of a PEM single fuel cell stack with CNT-based bipolar plates is disclosed. (orig.)

  13. 2-kW single-mode fiber laser employing bidirectional-pump scheme

    Science.gov (United States)

    Zhang, Fan; Zheng, Wenyou; Shi, Pengyang; Zhang, Xinhai

    2018-01-01

    2kW single-mode fiber laser with two cascade home-made cladding light strippers (CLSs) by employing bidirectionalpump scheme has been demonstrated. 2.009 kW signal power is obtained when pump power is 2.63 kW and the slope efficiency is 76.6%. Raman Stokes light is less than -47 dB at 2.009 kW even with a 10-m delivery fiber with core/inner cladding diameter of 20/400um. The beam quality M2<=1.2 and the spectral FWHM bandwidth is 4.34nm. There is no transverse mode instability and the output power stability of +/-0.14% is achieved by special thermal management for a more uniform temperature distribution on the Yb-doped gain fiber.

  14. Design of Radial Inflow Turbine for 30 kW Microturbine

    Directory of Open Access Journals (Sweden)

    Sangsawangmatum Thanate

    2017-01-01

    Full Text Available Microturbines are small gas turbines that have the capacity range of 25-300 kW. The main components of microturbine are compressor, turbine, combustor and recuperator. This research paper focuses on the design of radial inflow turbine that operates in 30 kW microturbine. In order to operate the 30 kW microturbine with the back work ratio of 0.5, the radial inflow turbine should be designed to produce power at 60 kW. With the help of theory of turbo-machinery and the analytical methods, the design parameters are derived. The design results are constructed in 3D geometry. The 3D fluid-geometry is validated by computational fluid dynamics (CFD simulation. The simulation results show the airflow path, the temperature distribution, the pressure distribution and Mach number. According to the simulation results, there is no flow blockage between vanes and no shock flow occurs in the designed turbine.

  15. Gas liquid sampling for closed canisters in KW Basin - test plan

    International Nuclear Information System (INIS)

    Pitkoff, C.C.

    1995-01-01

    Test procedures for the gas/liquid sampler. Characterization of the Spent Nuclear Fuel, SNF, sealed in canisters at KW-Basin is needed to determine the state of storing SNF wet. Samples of the liquid and the gas in the closed canisters will be taken to gain characterization information. Sampling equipment has been designed to retrieve gas and liquid from the closed canisters in KW basin. This plan is written to outline the test requirements for this developmental sampling equipment

  16. Review of 2 kW grid connected LOPF tests in Nissum Bredning

    DEFF Research Database (Denmark)

    Margheritini, Lucia

    This report has been prepared by Per Resen and Aalborg University for the ForskVE project 10878: 2 kW grid connected LOPF test buoy. AAU has the role of reviewing and advise on the data analysis, besides compiling this report. The purpose of this project was to document the mechanical power...... production against a target power curve of a 2kW grid connected wave energy buoy in Nissum Bredning at Helligsø....

  17. The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis

    Science.gov (United States)

    Siracusano, S.; Baglio, V.; Grigoriev, S. A.; Merlo, L.; Fateev, V. N.; Aricò, A. S.

    2017-10-01

    Nanosized Ir-black (3 nm) and Ir-oxide (5 nm) oxygen evolution electrocatalysts showing high performance in polymer electrolyte membrane (PEM) water electrolysis based on Aquivion® short-side chain ionomer membrane are investigated to understand the role of the Ir oxidation state on the electrocatalytic activity and stability. Despite the smaller mean crystallite size, the Ir-black electrocatalyst shows significantly lower initial performance than the Ir-oxide. During operation at high current density, the Ir-black shows a decrease of cell potential with time whereas the Ir-oxide catalyst shows increasing cell potential resulting in a degradation rate of about 10 μV/h, approaching 1000 h. The unusual behaviour of the Ir-black results from the oxidation of metallic Ir to IrOx. The Ir-oxide catalyst shows instead a hydrated structure on the surface and a negative shift of about 0.5 eV for the Ir 4f binding energy after 1000 h electrolysis operation. This corresponds to the formation of a sub-stoichiometric Ir-oxide on the surface. These results indicate that a hydrated IrO2 with high oxidation state on the surface is favourable in decreasing the oxygen evolution overpotential. Modifications of the Ir chemical oxidation state during operation can affect significantly the catalytic activity and durability of the electrolysis system.

  18. Research on industrial 10kW CO2 laser achieves major breakthrough

    Science.gov (United States)

    1991-01-01

    The industrial 10kW CO2 laser is one of the items which the industrially developed nations are competing to develop. This laser is capable of continuous output power of over 10kW and can operate continuously for more than 6 hours. The 10kW CO2 laser developed as a key task of China's 7th Five-Year Plan and all its technological targets such as output power, electrooptical conversion efficiency and primary charging continuous operating time, have reached the level of world advancement, allowing China to enter the ranks of international advancement in the area of laser technology. The industrial 10kW CO2 laser can have wide application in such areas of industry as heat treating, machining, welding and surface treatment in industries such as steel, automobiles, ship building and aircraft manufacturing. For instance, using the high-efficiency laser beams of this 10kW laser to treat rollers, fan blades and automotive cylinder blocks can increase the life of these parts and produce large economic benefits. At present, industrial tests of gear welding is already being done on this 10kW laser.

  19. Advanced Oxygen Evolution Catalysts for PEM Electrolyzers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA missions require high efficiency, lightweight, long life, and maintenance-free water electrolyzer technologies to generate oxygen and/or hydrogen for...

  20. Development of an approach to correcting MicroPEM baseline drift.

    Science.gov (United States)

    Zhang, Ting; Chillrud, Steven N; Pitiranggon, Masha; Ross, James; Ji, Junfeng; Yan, Beizhan

    2018-07-01

    Fine particulate matter (PM 2.5 ) is associated with various adverse health outcomes. The MicroPEM (RTI, NC), a miniaturized real-time portable particulate sensor with an integrated filter for collecting particles, has been widely used for personal PM 2.5 exposure assessment. Five-day deployments were targeted on a total of 142 deployments (personal or residential) to obtain real-time PM 2.5 levels from children living in New York City and Baltimore. Among these 142 deployments, 79 applied high-efficiency particulate air (HEPA) filters in the field at the beginning and end of each deployment to adjust the zero level of the nephelometer. However, unacceptable baseline drift was observed in a large fraction (> 40%) of acquisitions in this study even after HEPA correction. This drift issue has been observed in several other studies as well. The purpose of the present study is to develop an algorithm to correct the baseline drift in MicroPEM based on central site ambient data during inactive time periods. A running baseline & gravimetric correction (RBGC) method was developed based on the comparison of MicroPEM readings during inactive periods to ambient PM 2.5 levels provided by fixed monitoring sites and the gravimetric weight of PM 2.5 collected on the MicroPEM filters. The results after RBGC correction were compared with those using HEPA approach and gravimetric correction alone. Seven pairs of duplicate acquisitions were used to validate the RBGC method. The percentages of acquisitions with baseline drift problems were 42%, 53% and 10% for raw, HEPA corrected, and RBGC corrected data, respectively. Pearson correlation analysis of duplicates showed an increase in the coefficient of determination from 0.75 for raw data to 0.97 after RBGC correction. In addition, the slope of the regression line increased from 0.60 for raw data to 1.00 after RBGC correction. The RBGC approach corrected the baseline drift issue associated with MicroPEM data. The algorithm developed

  1. Analysis of the market for diesel PEM fuel cell auxiliary power units onboard long-haul trucks and of its implications for the large-scale adoption of PEM FCs

    International Nuclear Information System (INIS)

    Contestabile, Marcello

    2010-01-01

    Proton exchange membrane fuel cells (PEM FCs) offer a promising alternative to internal combustion engines in road transport. During the last decade PEM FC research, development and demonstration (RD and D) activities have been steadily increasing worldwide, and targets have been set to begin their commercialisation in road transport by 2015-2020. However, there still is considerable uncertainty on whether these targets will actually be met. The picture is complex and market and technology issues are closely interlinked; investment in RD and D projects is essential but not sufficient; the development of suitable early markets is also necessary and policy is set to play an important role. Auxiliary power units (APUs) are generally regarded as one important early market for FCs in transport. This paper analyses the possible future market for diesel PEM FC APUs onboard long-haul trucks and its implications for the development of PEM FCs in general. The analysis, part of the project HyTRAN (EC Contract no. 502577), is aided by the use of a dynamic simulation model of technology and markets developed by the author. Results suggest that an interesting window of opportunity for diesel PEM FC APUs exists but this is subject to additional research particularly targeted at the rapid development of fuel processors.

  2. Transport Studies and Modeling in PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Mittelsteadt, Cortney K. [Giner, Inc., Auburndale, MA (United States); Xu, Hui [Giner, Inc., Auburndale, MA (United States); Brawn, Shelly [Giner, Inc., Auburndale, MA (United States)

    2014-07-30

    This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalent weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these properties

  3. Experimental and numerical study of flows in PEM fuel cell stacks for traction applications; Etude numerique et experimentale des ecoulements dans une pile a combustible de type PEM adaptable aux applications embarquees

    Energy Technology Data Exchange (ETDEWEB)

    Picot, D

    1998-07-01

    The problems with the optimization and design of proton exchange membrane fuel cells (PEMFC) are mainly based on the mastery of water and heat transfers inside the active cells. A theoretical and experimental discussion about this topic is proposed. The average sharing coefficients of the generated water are measured for 3 Nora fuel cells (1, 5 and 10 kW). The values obtained with nafion 117 are in agreement with the data of the literature, while the 40% generated water recovered inside the anode compartment with nafion 115 are unexpected. The difficulty to obtain a physical formulation of electro-osmosis does not allow to quantify this coefficient and leads to justify the limitations of use of the numerical codes on this topic. However, by separating the intrinsic parameters of the electrodes/membrane system and the global operation parameters of a cell, it is possible to extrapolate realistic humidification strategies. In the framework of the European project 'Fever', a systemic model of a 30 kW module for electric-powered vehicle has been developed. For an optimum energy integration of Nora fuel cells in volume-limited applications, it is necessary to separate the humidification sections of these modules. In the case where air is used as oxidant, the presence of nitrogen inside the anode compartment has been evidenced both in close and recirculation modes. In agreement with the literature data about nafion permeability, the nitrogen migration through the electrolyte is explained by the diffusion theory. A discussion about the interest of using both operational modes to maximize the energy efficiency is proposed. Finally, a simple-phase and double-phase numerical study with interface reconstruction is carried out using the resolution of Navier-Stokes equations in Eulerian formalism in order to consider the problems linked with the internal flows inside the collectors of Nora cells. (J.S.)

  4. Flow field design for high-pressure PEM electrolysis cells

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Kær, Søren Knudsen

    -water distributes. Water not only serves a reactant, it also aids in cooling due to its high specific heat capacity. The movement of liquid water at the anode is difficult to model, since it is highly coupled to the formation of gas bubbles. To capture the complex two-phase flow behaviour that takes place within...... micro-channels and porous media, our research group has developed an Euler-Euler model in the computational fluid dynamics modelling framework of ANSYS CFX. In addition to two-phase flow, the model accounts for turbulence, species transport in the gas phase, heat transport in all three phases (i.......e. solid, gas and liquid), as well as charge transport of electrons and ions. Our recent improvements have focused on the models ability to account for phase change and electrochemistry as well as the modelling of two-phase flow regimes. For comparison, an interdigitated and parallel channel flow field...

  5. Psychometric Evaluation of the Young Children's Participation and Environment Measure (YC-PEM) for use in Singapore.

    Science.gov (United States)

    Lim, Chun Yi; Law, Mary; Khetani, Mary; Rosenbaum, Peter; Pollock, Nancy

    2018-08-01

    To estimate the psychometric properties of a culturally adapted version of the Young Children's Participation and Environment Measure (YC-PEM) for use among Singaporean families. This is a prospective cohort study. Caregivers of 151 Singaporean children with (n = 83) and without (n = 68) developmental disabilities, between 0 and 7 years, completed the YC-PEM (Singapore) questionnaire with 3 participation scales (frequency, involvement, and change desired) and 1 environment scale for three settings: home, childcare/preschool, and community. Setting-specific estimates of internal consistency, test-retest reliability, and construct validity were obtained. Internal consistency estimates varied from .59 to .92 for the participation scales and .73 to .79 for the environment scale. Test-retest reliability estimates from the YC-PEM conducted on two occasions, 2-3 weeks apart, varied from .39 to .89 for the participation scales and from .65 to .80 for the environment scale. Moderate to large differences were found in participation and perceived environmental support between children with and without a disability. YC-PEM (Singapore) scales have adequate psychometric properties except for low internal consistency for the childcare/preschool participation frequency scale and low test-retest reliability for home participation frequency scale. The YC-PEM (Singapore) may be used for population-level studies involving young children with and without developmental disabilities.

  6. PEM Fuel Cells with Bio-Ethanol Processor Systems A Multidisciplinary Study of Modelling, Simulation, Fault Diagnosis and Advanced Control

    CERN Document Server

    Feroldi, Diego; Outbib, Rachid

    2012-01-01

    An apparently appropriate control scheme for PEM fuel cells may actually lead to an inoperable plant when it is connected to other unit operations in a process with recycle streams and energy integration. PEM Fuel Cells with Bio-Ethanol Processor Systems presents a control system design that provides basic regulation of the hydrogen production process with PEM fuel cells. It then goes on to construct a fault diagnosis system to improve plant safety above this control structure. PEM Fuel Cells with Bio-Ethanol Processor Systems is divided into two parts: the first covers fuel cells and the second discusses plants for hydrogen production from bio-ethanol to feed PEM fuel cells. Both parts give detailed analyses of modeling, simulation, advanced control, and fault diagnosis. They give an extensive, in-depth discussion of the problems that can occur in fuel cell systems and propose a way to control these systems through advanced control algorithms. A significant part of the book is also given over to computer-aid...

  7. Risk Assessment for Distribution Systems Using an Improved PEM-Based Method Considering Wind and Photovoltaic Power Distribution

    Directory of Open Access Journals (Sweden)

    Qingwu Gong

    2017-03-01

    Full Text Available The intermittency and variability of permeated distributed generators (DGs could cause many critical security and economy risks to distribution systems. This paper applied a certain mathematical distribution to imitate the output variability and uncertainty of DGs. Then, four risk indices—EENS (expected energy not supplied, PLC (probability of load curtailment, EFLC (expected frequency of load curtailment, and SI (severity index—were established to reflect the system risk level of the distribution system. For the certain mathematical distribution of the DGs’ output power, an improved PEM (point estimate method-based method was proposed to calculate these four system risk indices. In this improved PEM-based method, an enumeration method was used to list the states of distribution systems, and an improved PEM was developed to deal with the uncertainties of DGs, and the value of load curtailment in distribution systems was calculated by an optimal power flow algorithm. Finally, the effectiveness and advantages of this proposed PEM-based method for distribution system assessment were verified by testing a modified IEEE 30-bus system. Simulation results have shown that this proposed PEM-based method has a high computational accuracy and highly reduced computational costs compared with other risk assessment methods and is very effective for risk assessments.

  8. Cool computers in a bunker. 10 000 kW of cold demand for 160 000 internet computers; Coole Rechner im Bunker. 10 000 kW Kaeltebedarf fuer 160 000 Internetrechner

    Energy Technology Data Exchange (ETDEWEB)

    Klein, S. [Combitherm GmbH, Stuttgart-Fellbach (Germany)

    2007-06-15

    In 2005, Combitherm GmbH of Stuttgart-Fellbach, a producer of refrigerators and heat pumps specializing in customized solutions, was given an unusual order as 1 and 1 Internet AG, one of the world's biggest internet providers, was looking for a cooling concept for their new central computer system near Baden-Baden, which was to become a central node in international data transmission. Combitherm already had experience with cold water units and free cooling elements in the 5000 kW range for a big computer center. The tasks were defined in close cooperation with the customer and with a Karlsruhe bureau of engineering consultants, and a refrigerating concept was developed. (orig.)

  9. Teledyne Energy Systems, Inc., Proton Exchange Member (PEM) Fuel Cell Engineering Model Powerplant. Test Report: Initial Benchmark Tests in the Original Orientation

    Science.gov (United States)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton Exchange Membrane (PEM) fuel cell technology is the leading candidate to replace the alkaline fuel cell technology, currently used on the Shuttle, for future space missions. During a 5-yr development program, a PEM fuel cell powerplant was developed. This report details the initial performance evaluation test results of the powerplant.

  10. Internal humidifying of PEM [Proton Exchange Membrane] fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Staschewski, D [Karlsruhe Research Center (FZK), Karlsruhe (Germany). Inst. for Neutron Physics and Reactor Technics

    1996-12-01

    Hydrogen fuel cells (FC) for vehicular traction should stand out for a car-specific lightweight design. As regards PEMFC systems containing proton exchange membranes, this quality can be considerably improved by introducing porous bipolar plates which are conditioned by a water loop and deliver hot humidifying water to the adjacent membrane-electrode assembly (MEA). According to the principle of internal humidification here indicated special fuel cells based on sintered fiber and powder graphite were manufactured at FZK on a semi-technical scale. Self-made Pt/C electrodes hotpressed onto Nafion resulted in currents up to 200 A with pure oxygen as oxidant, providing the precondition for detailed studies of turnover and drainage rates within a monocell test arrangement. (author)

  11. Water diffusion in fluoropolymer-based fuel-cell electrolyte membranes investigated by radioactivated-tracer permeation technique

    International Nuclear Information System (INIS)

    Sawada, S.; Yamaki, T.; Asano, M.; Maekawa, Y.; Suzuki, A.; Terai, T.

    2011-01-01

    The self-diffusion coefficient of water, D, in proton exchange membranes (PEMs) based on crosslinkedpolytetrafluoroethylene (cPTFE) films was measured by a radioactivated-tracer permeation technique using tritium labeled water (HTO). The D value was found to increase with the water volume fraction of the PEM, φ, probably because the water-filled regions were more effectively interconnected with each other at high φ, allowing water permeation to be faster through a PEM. Interestingly, the grafted PEMs showed the lower D compared to that of Nafion in spite of their high φ. This would be caused by tortuous structures of transport pathways and a strong coulombic interaction between water and the negatively-charged sulfonate (SO 3 - ) groups. Heavyoxygen water (H 2 18 O) was also used in the similar permeation experiment to obtain the D. Since the HTO diffusion actually occurred not only by translational motion of water but also by intermolecular hydrogen-atom hopping, comparing the D of HTO with that of H 2 18 O was likely to give the information about the state of water in the PEMs. (orig.)

  12. Experimental and numerical studies of micro PEM fuel cell

    Science.gov (United States)

    Peng, Rong-Gui; Chung, Chen-Chung; Chen, Chiun-Hsun

    2011-10-01

    A single micro proton exchange membrane fuel cell (PEMFC) has been produced using Micro-electromechanical systems (MEMS) technology with the active area of 2.5 cm2 and channel depth of about 500 µm. A theoretical analysis is performed in this study for a novel MEMS-based design of amicro PEMFC. Themodel consists of the conservation equations of mass, momentum, species and electric current in a fully integrated finite-volume solver using the CFD-ACE+ commercial code. The polarization curves of simulation are well correlated with experimental data. Three-dimensional simulations are carried out to treat prediction and analysis of micro PEMFC temperature, current density and water distributions in two different fuel flow rates (15 cm3/min and 40 cm3/min). Simulation results show that temperature distribution within the micro PEMFC is affected by water distribution in the membrane and indicate that low and uniform temperature distribution in the membrane at low fuel flow rates leads to increased membrane water distribution and obtains superior micro PEMFC current density distribution under 0.4V operating voltage. Model predictions are well within those known for experimental mechanism phenomena.

  13. Experimental comparison of standard fuel cells PEM in radial configuration, coil and spiral; Comparacion experimental de celdas de combustible tipo PEM en configuracion radial, serpentin y espiral

    Energy Technology Data Exchange (ETDEWEB)

    Cano Andrade, Sergio

    2008-12-15

    After analyzing each one of the possible energy sources to replace oil the following question arises: which of all the possible sources is the suitable one? With no doubt another important factor in the election of this source is due to take into account, which has to do with the great problem that the humanity deals on a daily basis: the greenhouse effect. Taking into account the greenhouse effect, the fuel cells on the basis of hydrogen are the more viable energy source to substitute oil, since in their operation they are friendly with the environment since they do not produce polluting agents, reducing enormously the problem of global heating in which the planet is bottled. It is very certain that many disadvantages in these fuel cells on the basis of hydrogen still exist, but the arduous investigations realized until the present time foresee an excellent future where the planet will be able to satisfy its daily energy demand on the basis of the hydrogen technology. In future works one must have special care of the humidity control of gases before entering the fuel cell, since it is an important parameter in the correct operation of the standard fuel cells PEM. In the present investigation the advance in the state-of-the-art of the hydrogen technology is illustrated, specifically with the generation of electricity on the basis of the novel configurations of standard fuel cells PEM. Until the moment similar work it has not been found in the bibliography similar work where it is experienced with this type of radial configuration for the hydrogen technologies. The geometry and the results presented/displayed in this analysis correspond to a work of the highest category in the state-of-the-art of the fuel cells; in addition, an ample expectation due to the highly satisfactory results found, either numerically as well as experimentally, in comparison with other geometries is obtained. [Spanish] Despues de analizar cada una de las posibles fuentes de energia para

  14. Electric propulsion options for 10 kW class earth space missions

    Science.gov (United States)

    Patterson, M. J.; Curran, Francis M.

    1989-01-01

    Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment have been evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA II 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10(7) to 2.1x10(7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA II 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10(6) to 3.6x10(6) N-s, and approximately 662 to 1072 m/s, respectively.

  15. Electric Propulsion Options for 10 kW Class Earth-Space Missions

    Science.gov (United States)

    Patterson, M. J.; Curran, Francis M.

    1989-01-01

    Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment were evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA 2 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10 (exp 7) to 2.1x10 (exp 7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA 2 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10 (exp 6) to 3.6x10 (exp 6) N-s, and approximately 662 to 1072 m/s, respectively.

  16. New 5 kW free-piston Stirling space convertor developments

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Chapman, Peter A., Jr.

    2008-07-01

    The NASA Vision for Exploration of the moon may someday require a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kW. In the 1990s, Mechanical Technology Inc.'s Stirling Engine Systems Division (some of whose Stirling personnel are now at Foster-Miller, Inc.) developed a 25 kW free-piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kW engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 and 80 W Stirling convertor systems for potential use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 h. Recently, NASA began a new project with Auburn University to develop a 5 kW, single convertor for potential use in a lunar surface reactor power system. Goals of this development program include a specific power in excess of 140 W/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kW Stirling convertor assembly. The characteristics of the design along with progress in developing the system will be described.

  17. Performance analysis of a membrane humidifier containing porous metal foam as flow distributor in a PEM fuel cell system

    International Nuclear Information System (INIS)

    Afshari, Ebrahim; Baharlou Houreh, Nasser

    2014-01-01

    Highlights: • Three metal foam configurations for the membrane humidifier are introduced. • The performances of the humidifiers containing metal foam are investigated. • A 3D CFD model is developed to compare the introduced humidifiers with one another. • Using metal foam at dry side has no positive effect on the humidifier performance. - Abstract: Using metal foam as flow distributor in membrane humidifier for proton exchange membrane (PEM) fuel cell system has some unique characteristics like more water transfer, low manufacturing complexity and low cost compared to the conventional flow channel plate. Metal foam can be applied at wet side or dry side or both sides of a humidifier. The three-dimensional CFD models are developed to investigate the performance of the above mentioned meanwhile compare them with the conventional humidifier. This model consists of a set of coupled equations including conservations of mass, momentum, species and energy for all regions of the humidifier. The results indicate that with the metal foam installed at wet side and both sides, water recovery ratio and dew point at dry side outlet are more than that of the conventional humidifier, indicating a better humidifier performance; while using metal foam at dry side has no positive effect on humidifier performance. At dry side mass flow rates higher than 10 mgr/s pressure drop in humidifier containing metal foam at wet side is lower than that of the conventional humidifier. As the mass flow rate increases from 9 to 15 mgr/s humidifier containing metal foam at wet side has better performance, while at mass flow rates lower than 9 mgr/s, the humidifier containing metal foam at both sides has better performance. At dry side inlet temperatures lower than 303 K, humidifier containing metal foam at wet side has better performance and at temperatures higher than 303 K, humidifier containing metal foam at both sides has better performance

  18. Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells?

    Science.gov (United States)

    Melchior, Jan-Patrick; Majer, Günter; Kreuer, Klaus-Dieter

    2016-12-21

    Transport properties and hydration behavior of phosphoric acid/(benz)imidazole mixtures are investigated by diverse NMR techniques, thermogravimetric analysis (TGA) and conductivity measurements. The monomeric systems can serve as models for phosphoric acid/poly-benzimidazole membranes which are known for their exceptional performance in high temperature PEM fuel cells. 1 H- and 31 P-NMR data show benzimidazole acting as a strong Brønsted base with respect to neat phosphoric acid. Since benzimidazole's nitrogens are fully protonated with a low rate for proton exchange with phosphate species, proton diffusion and conduction processes must take place within the hydrogen bond network of phosphoric acid only. The proton exchange dynamics between phosphate and benzimidazole species pass through the intermediate exchange regime (with respect to NMR line separations) with exchange times being close to typical diffusion times chosen in PFG-NMR diffusion measurements (ms regime). The resulting effects, as described by the Kärger equation, are included into the evaluation of PFG-NMR data for obtaining precise proton diffusion coefficients. The highly reduced proton diffusion coefficient within the phosphoric acid part of the model systems compared to neat phosphoric acid is suggested to be the immediate consequence of proton subtraction from phosphoric acid. This reduces hydrogen bond network frustration (imbalance of the number of proton donors and acceptors) and therefore also the rate of structural proton diffusion, phosphoric acid's acidity and hygroscopicity. Reduced water uptake, shown by TGA, goes along with reduced electroosmotic water drag which is suggested to be the reason for PBI-phosphoric acid membranes performing better in fuel cells than other phosphoric-acid-containing electrolytes with higher protonic conductivity.

  19. Polymers and composites synthesis and characterization for application on PEM type fuel cells; Sintese e caracterizacao de polimeros e compositos para aplicacao em celulas a combustivel do tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, Raigenis da Paz; Souza, Daniele Ribeiro; Barreto, Ednardo Gomes; Boaventura Filho, Jaime Soares; Jose, Nadia Mamede [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)]. E-mail: raigenis@gmail.com

    2006-07-01

    The PEM (proton exchanging membrane) type fuel cell presents good potential for the energy production without the residue generation. However, its manufacture presents high costs for commercial application, mainly due to the electrolyte. Sulfonated Peek (polish-ether-ether-ketone) supported or auto immobilized the in a silicone matrix is an interesting alternative as electrolyte for PEM fuel cells. The commercial PEEK in powder form was functionalized with sulfuric acid, giving the SPEEK (Sulfonated PEEK). The membranes were produced by hot pressing the SPEEK immobilized in a silicone matrix produced by the sol-gel process. The membranes obtained were characterized by DRX, FTIR, TGA, MEV, DSC and protonic conductivity measurements. (author)

  20. Design study of wind turbines 50 kW to 3000 kW for electric utility applications: Analysis and design

    Science.gov (United States)

    1976-01-01

    In the conceptual design task, several feasible wind generator systems (WGS) configurations were evaluated, and the concept offering the lowest energy cost potential and minimum technical risk for utility applications was selected. In the optimization task, the selected concept was optimized utilizing a parametric computer program prepared for this purpose. In the preliminary design task, the optimized selected concept was designed and analyzed in detail. The utility requirements evaluation task examined the economic, operational, and institutional factors affecting the WGS in a utility environment, and provided additional guidance for the preliminary design effort. Results of the conceptual design task indicated that a rotor operating at constant speed, driving an AC generator through a gear transmission is the most cost effective WGS configuration. The optimization task results led to the selection of a 500 kW rating for the low power WGS and a 1500 kW rating for the high power WGS.

  1. Design study of wind turbines 50 kW to 3000 kW for electric utility applications. Volume 1: Summary report

    Science.gov (United States)

    1976-01-01

    Wind turbine configurations that would lead to generation of electrical power in a cost effective manner were considered. All possible overall system configurationss, operating modes, and sybsystem concepts were evaluated for both technical feasibility and compatibility with utility networks, as well as for economic attractiveness. A design optimization computer code was developed to determine the cost sensitivity of the various design features, and thus establish the configuration and design conditions that would minimize the generated energy costs. The preliminary designs of both a 500 kW unit and a 1500 kW unit operating in a 12 mph and 18 mph median wind speed respectively, were developed. The rationale employed and the key findings are summarized.

  2. A Direct DME High Temperature PEM Fuel Cell

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    2012-01-01

    Dimethyl ether (DME) has been identified as an alternative to methanol for use in direct fuel cells. It combines the advantages of hydrogen in terms of pumpless fuel delivery and high energy density like methanol, but without the toxicity of the latter. The performance of a direct dimethyl ether...... fuel cell suffers greatly from the very low DME-water miscibility. To cope with the problem polybenzimidazole (PBI) based membrane electrode assemblies (MEAs) have been made and tested in a vapor fed system. PtRu on carbon has been used as anode catalyst and air at ambient pressure was used as oxidant...

  3. Construction of a 35 GHz 100 kW gyrotron; Construcao de um girotron de 35 GHz e de 100 kW

    Energy Technology Data Exchange (ETDEWEB)

    Aso, Y; Barroso, J J; Castro, P J; Correa, R A; Ludwing, G O; Montes, A; Morgado, U T.F.; Nono, M C.A.; Rossi, J O; Silva, P R

    1989-09-01

    In this work a description of a 35 GHz 100 kW gyrocon is described which is under construction at the National Space Research Institute Plasma Laboratory. Project conceptual aspects are emphasized, specifically high current density thermionic cathodes, high time and spatial resolution intense magnetic fields generation, high-vacuum systems, techniques of ceramic-metal sealing, and high-voltage electrical modulator circuits. (author). 8 refs., 9 figs., 1 tab.

  4. Full-scale demonstration of EBS construction technology II. Design, manufacturing and transportation of pre-fabricated EBS module (PEM)

    International Nuclear Information System (INIS)

    Asano, Hidekazu; Toguri, Satohito; Iwata, Yumiko; Kawakami, Susumu; Nagasawa, Yuji; Yoshida, Takeshi

    2008-01-01

    PEM was investigated as a full-scale demonstration for the design, manufacturing and construction by using simulated buffer material and overpack in consideration of horizontal emplacement. Also near full-scale tests were conducted to examine the applicability of air-bearing system which can be used to transport a heavy load at the drift tunnel as for PEM. With regard to PEM casing, design requirements were selected from the viewpoints of EBS performance and operation safety issues. The construction procedure was examined in consideration of the shapes of buffer material, which are previously positioned inside the casing. And design procedure of the casing was also examined and presented. A full-scale PEM casing as a longitudinally two-part divided cylinder type with connection flanges was manufactured by using carbon steel plate. The wall thickness of this non-leak tight type PEM casing was evaluated its mechanical integrity by 2-dimensional stress analysis in consideration of the emplacement condition on the drift tunnel basement. Mechanical integrity of a percolated type casing was also examined its mechanical integrity. Air-bearing unit, which originally apply to a flat/smooth surface, was modified to fit a curved surface of the drift tunnel. Two units were aligned with two parallel lines, which estimate to be able to lift 12 tons, about two-fifth of the total weight of full scale PEM. On the conducted transportation tests of the air-bearing units, considering the surface roughness of the drift tunnel, especially for its unevenness, capability and availability of the run-over such gaps were investigated. And effect of covering sheets which can improve the gapped surface into relatively smooth was also examined by using several candidate materials. Through these tests, combination of the covering sheets and the maximum available height difference were evaluated and identified. Also the maximum traction force to toe the loading was measured to design the air

  5. A numerical study on the effects of temperature and mass transfer in high temperature PEM fuel cells with ab-PBI membrane

    International Nuclear Information System (INIS)

    Sun, Hong; Xie, Chen; Chen, Hao; Almheiri, Saif

    2015-01-01

    Highlights: • A two-dimensional model is developed to study the HT-PEMFC with ab-PBI membrane. • The temperature distribution in the ab-PBI membrane is uneven. • With the increase of temperature, the resistance in ab-PBI membrane decreases. • Porosity has the most significant effect on the performance of HT-PEMFC. - Abstract: A two-dimensional, single-phase model is developed to study high temperature proton exchange membrane (HT-PEM) fuel cell with poly(2,5-benzimidazole) (ab-PBI) membrane. In this model, simulation region not only includes the cathode and anode, but also includes ab-PBI membrane; the continuity boundary condition at the interface between the catalyst layer (CL) and the gas diffusion layer (GDL) at each side of the cell is omitted by including the catalyst layers in the respective unified domains for the cathode and the anode. The flows, species, energy, current density are all coupled in the model. Experiments have been conducted to validate the proposed numerical simulations, and it is found that there is a good agreement between the modeling results and those obtained experimentally. By this simulation, not only the oxygen and water fraction distribution in the cathode, but also the temperature distribution and resistance distribution in the ab-PBI membrane are obtained, and the effects of the cell temperature, the porosity in the diffusion layer and its thickness on the current density are analyzed. The innovative researching results are that the temperature distribution is uneven in the ab-PBI membrane and its resistance is greatly affected by the operating temperature. Other results show that the increase of the cell temperature and the porosity in the diffusion layer, and the decrease of the diffusion layer thickness all improve the performance of HT-PEM fuel cells by promoting its internal mass transfer.

  6. Exploring the effects of symmetrical and asymmetrical relative humidity on the performance of H{sub 2}/air PEM fuel cell at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Mahmoud M.; Okajima, Takeoshi; Kitamura, Fusao; Ohsaka, Takeo [Department of Electronic Chemistry, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Hayase, Masahiko [Development Department, NF Co., 6-3-20 Tsunashima-higashi, Kohoku-ku, Yokohama 223-8508 (Japan)

    2007-02-10

    This article is dedicated to study the interlinked effects of symmetric relative humidity (RH), and asymmetric RH on the performance of H{sub 2}/air PEM fuel cell at different temperatures. The symmetric and asymmetric RH were achieved by setting the cathode relative humidity (RHC) and anode relative humidity (RHA) as equal and unequal values, respectively. The cell performance was evaluated by collecting polarization curves of the cell at different RH, RHC and RHA and at different cell temperatures (T{sub cell}). The polarization curves along with the measured internal cell resistance (membrane resistance) were discussed in the light of the present fuel cell theory. The results showed that symmetric relative humidity has different impacts depending on the cell temperature. While at RH of 35% the cell can show considerable performance at T{sub cell} = 70 C, it is not so at T{sub cell} = 90 C. At T{sub cell} = 70 C, the cell potential increases with RH at lower and medium current densities but decreases with RH at higher currents. This was attributed to the different controlling processes at higher and lower current densities. This trend at 70 C is completely destroyed at 90 C. Operating our PEM fuel cell at dry H{sub 2} gas conditions (RHA = 0%) is not detrimental as operating the cell at dry Air (O{sub 2}) conditions (RHC = 0%). At RHA = 0% and humidified air, water transport by back diffusion from the cathode to the anode at the employed experimental conditions can support reasonable rehydration of the membrane and catalysts. At RHA = 0, a possible minimum RHC for considerable cell operation is temperature dependent. At RHC = 0 conditions, the cell can operate only at RHA = 100% with a loss that depends on T{sub cell}. It was found that the internal cell resistance depends on RH, RHA, RHC and T{sub cell} and it is consistent with the observed cell performance. (author)

  7. Clear-PEM: A PET imaging system dedicated to breast cancer diagnostics

    CERN Document Server

    Abreu, M C; Albuquerque, E; Almeida, F G; Almeida, P; Amaral, P; Auffray, Etiennette; Bento, P; Bruyndonckx, P; Bugalho, R; Carriço, B; Cordeiro, H; Ferreira, M; Ferreira, N C; Gonçalves, F; Lecoq, Paul; Leong, C; Lopes, F; Lousã, P; Luyten, J; Martins, M V; Matela, N; Rato-Mendes, P; Moura, R; Nobre, J; Oliveira, N; Ortigão, C; Peralta, L; Rego, J; Ribeiro, R; Rodrigues, P; Santos, A I; Silva, J C; Silva, M M; Tavernier, Stefaan; Teixeira, I C; Texeira, J P; Trindade, A; Trummer, Julia; Varela, J

    2007-01-01

    The Clear-PEM scanner for positron emission mammography under development is described. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes and readout by a fast low-noise electronic system. A dedicated digital trigger (TGR) and data acquisition (DAQ) system is used for on-line selection of coincidence events with high efficiency, large bandwidth and small dead-time. A specialized gantry allows to perform exams of the breast and of the axilla. In this paper we present results of the measurement of detector modules that integrate the system under construction as well as the imaging performance estimated from Monte Carlo simulated data.

  8. Polarization Curve of a Non-Uniformly Aged PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Andrei Kulikovsky

    2014-01-01

    Full Text Available We develop a semi-analytical model for polarization curve of a polymer electrolyte membrane (PEM fuel cell with distributed (aged along the oxygen channel MEA transport and kinetic parameters of the membrane–electrode assembly (MEA. We show that the curve corresponding to varying along the channel parameter, in general, does not reduce to the curve for a certain constant value of this parameter. A possibility to determine the shape of the deteriorated MEA parameter along the oxygen channel by fitting the model equation to the cell polarization data is demonstrated.

  9. Corrosion of metal bipolar plates for PEM fuel cells: A review

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Renato A. [Engenharia de Materiais, Universidade Federal do ABC (UFABC), 09210-170 Santo Andre, SP (Brazil); Oliveira, Mara Cristina L.; Ett, Gerhard; Ett, Volkmar [Electrocell Ind. Com. Equip. Elet. LTDA, Centro de Inovacao, Empreendedorismo e Tecnologia (CIETEC), 05508-000 Sao Paulo, SP (Brazil)

    2010-04-15

    PEM fuel cells are of prime interest in transportation applications due to their relatively high efficiency and low pollutant emissions. Bipolar plates are the key components of these devices as they account for significant fractions of their weight and cost. Metallic materials have advantages over graphite-based ones because of their higher mechanical strength and better electrical conductivity. However, corrosion resistance is a major concern that remains to be solved as metals may develop oxide layers that increase electrical resistivity, thus lowering the fuel cell efficiency. This paper aims to present the main results found in recent literature about the corrosion performance of metallic bipolar plates. (author)

  10. 1000kW on-site PAFC power plant development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Satomi, Tomohide; Koike, Shunichi [Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA), Osaka (Japan); Ishikawa, Ryou [New Energy and Industrial Technology Development Organization (NEDO), Tokyo (Japan)

    1996-12-31

    Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA) and New Energy and Industrial Technology Development Organization (NEDO) have been conducting a joint project on development of a 5000kW urban energy center type PAFC power plant (pressurized) and a 1000kW on-site PAFC power plant (non-pressurized). The objective of the technical development of 1000kW on-site PAFC power plant is to realize a medium size power plant with an overall efficiency of over 70% and an electrical efficiency of over 36%, that could be installed in a large building as a cogeneration system. The components and system integration development work and the plant design were performed in 1991 and 1992. Manufacturing of the plant and installation at the test site were completed in 1994. PAC test was carried out in 1994, and generation test was started in January 1995. Demonstration test is scheduled for 1995 and 1996.

  11. Performance and life time test on a 5 kW SOFC system for distributed cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Rosa; De Biase, Sabrina; Ginocchio, Stefano [Edison S.p.A, Via Giorgio La Pira, 2, 10028 Trofarello (Italy); Bedogni, Stefano; Montelatici, Lorenzo [Edison S.p.A, Foro Bonaparte 31, 20121 Milano (Italy)

    2008-06-15

    Edison R and D Centre is committed to test a wide range of commercial and prototypal fuel cell systems. The activities aim to evaluate the available state of the art of these technologies and their maturity for the relevant market. The laboratory is equipped with ad hoc test benches designed to study single cells, stacks and systems. The characterization of commercial and new generation PEMFC, also for high temperatures (160 C), together with the analysis of the behaviour of SOFC represent the core activities of the laboratory. On January 2007 a new 5 kW SOFC system supplied by Acumentrics was installed. The claimed electrical power output is 5 kW and thermal power is 3 kW. The aim of the test is the achievement of technical and economical assessment for future applications of small SOFC plants for distributed cogeneration. Performance and life time test of the system are shown. (author)

  12. 1000 Hours of Testing Completed on 10-kW Hall Thruster

    Science.gov (United States)

    Mason, Lee S.

    2001-01-01

    Between the months of April and August 2000, a 10-kW Hall effect thruster, designated T- 220, was subjected to a 1000-hr life test evaluation. Hall effect thrusters are propulsion devices that electrostatically accelerate xenon ions to produce thrust. Hall effect propulsion has been in development for many years, and low-power devices (1.35 kW) have been used in space for satellite orbit maintenance. The T-220, shown in the photo, produces sufficient thrust to enable efficient orbital transfers, saving hundreds of kilograms in propellant over conventional chemical propulsion systems. This test is the longest operation ever achieved on a high-power Hall thruster (greater than 4.5 kW) and is a key milestone leading to the use of this technology for future NASA, commercial, and military missions.

  13. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    Science.gov (United States)

    Raylman, R. R.; Majewski, S.; Wojcik, R.; Weisenberger, A. G.; Kross, B.; Popov, V.

    2001-06-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of /sup 18/F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom. Finally, the effect of object size on image counts and a correction for this effect were explored. The imager used in this study consisted of two PEM detector heads mounted 20 cm apart on a Lorad biopsy apparatus. The results demonstrated that a majority of the accidental coincidence events (/spl sim/80%) detected by this system were produced by radiotracer uptake in the adipose and muscle tissue of the torso. The presence of accidental coincidence events was shown to reduce lesion detectability. Much of this effect was eliminated by correction of the images utilizing estimates of accidental-coincidence contamination acquired with delayed coincidence circuitry built into the PEM system. The Compton scatter fraction for this system was /spl sim/14%. Utilization of a new scatter correction algorithm reduced the scatter fraction to /spl sim/1.5%. Finally, reduction of count recovery due to object size was measured and a correction to the data applied. Application of correction techniques

  14. The effect of test configuration on the true operating conditions of PEM fuel cells. Paper no. IGEC-1-124

    International Nuclear Information System (INIS)

    Simpson, T.; Li, X.

    2005-01-01

    The operating conditions of a single PEM fuel cell can be significantly affected by the configuration in which the fuel cell test is setup. This study investigates the effect on the gas dewpoint temperature of not insulating the inlet fittings to a PEM fuel cell and the effect of non-optimal stack control thermocouple placement on fuel cell stack operating temperature. Both of these setup configurations can significantly affect fuel cell membrane humidification conditions, especially in a single fuel cell as demonstrated through the sample test conditions presented in this paper. (author)

  15. The 1-kW solar Stirling experiment

    Science.gov (United States)

    Giandomenico, A.

    1981-01-01

    The objective of this experiment was to demonstrate electrical power generation using a small free-piston Stirling engine and linear alternator in conjunction with a parabolic solar collector. A test bed collector, formerly used at the JPL Table Mountain Observatory, was renovated and used to obtain practical experience and to determine test receiver performance. The collector was mounted on a two-axis tracker, with a cold water calorimeter mounted on the collector to measure its efficiency, while a separate, independently tracking radiometer was used to measure solar insolation. The solar receiver was designed to absorb energy from the collector, then transfer the resulting thermal energy to the Stirling engine. Successful testing of receiver/collector assembly yielded valuable inputs for design of the Stirling engine heater head.

  16. High Temperature PEM Fuel Cells - Degradation and Durability

    DEFF Research Database (Denmark)

    Araya, Samuel Simon

    for storage and distribution of hydrogen, it is more practical to use liquid alcohols as energy carriers for fuel cells. Among these, methanol is very attractive, as it can be obtained from a variety of renewable sources and has a relatively low reforming temperature for the production of hydrogen rich...... be stored in liquid alcohols such as methanol, which can be sources of hydrogen for fuel cell applications. In addition, fuel cells unlike other technologies can use a variety of other fuels that can provide a source of hydrogen, such as biogas, methane, butane, etc. More fuel flexibility combined....... On the other hand, CO and methanol-water vapor mixture degrade the fuel cell proportionally to the amounts in which they are tested. In this dissertation some of the mechanisms with which the impurities affect the fuel cell are discussed and interdependence among the effects is also studied. This showed...

  17. Design of 28 GHz, 200 kW Gyrotron for ECRH Applications

    Science.gov (United States)

    Yadav, Vivek; Singh, Udaybir; Kumar, Nitin; Kumar, Anil; Deorani, S. C.; Sinha, A. K.

    2013-01-01

    This paper presents the design of 28 GHz, 200 kW gyrotron for Indian TOKAMAK system. The paper reports the designs of interaction cavity, magnetron injection gun and RF window. EGUN code is used for the optimization of electron gun parameters. TE03 mode is selected as the operating mode by using the in-house developed code GCOMS. The simulation and optimization of the cavity parameters are carried out by using the Particle-in-cell, three dimensional (3-D)-electromagnetic simulation code MAGIC. The output power more than 250 kW is achieved.

  18. THE EFFICACY OF THE CABLES OF 6–110 KW WITH XLPE INSULATION. Part 2

    Directory of Open Access Journals (Sweden)

    M. A. Korotkevich

    2017-01-01

    Full Text Available The assessment of the suitability of cables of 6–110 kW with XLPE insulation in comparison with cables of the same voltage but possessing paper-oil insulation has been fulfilled on the basis of the method of multi-objective optimization that makes it possible to account not only the quantitative characteristics (of reduced costs, but also qualitative ones. As an indicator of the reliability of the cable line the maximum mean time to failure (the value inversely proportional to the parameter of succession of failures, which is an order more for cable lines with XLPE insulation than for cable lines with paper insulation, is adopted. A comprehensive assessment of the convenience of installation of cable lines revealed that the installation of cable with XLPE insulation features a 1.2–1.6 times easier installation as compared to three-wire (voltage 10 kW and 1.4 times easier installation as compared to single-core oil-filled cables (voltage of 110 kW. The efficacy of the cables 6–110 kW with XLPE insulation is proved on the basis on the method of multi-objective optimization, that took into account as the costs for the construction and operation of cable lines and the reliability of its operation, ease of its installation and other quality indicators. If the goals taken into account are considered as equally important, the polyethylene-insulated cables for a voltage of 10–110 kW is more efficient as compared to three-wire (voltage 10 kW and solid (110 kW cables with paper insulation. Herewith, the cost of the cable with XLPE insulation may exceed the cost of cable with paper insulation up to two times. If the most important aim is to provide the minimum reduced costs for the construction and operation of the cable line, the use of cables with XLPE insulation for voltage of 10 kW is most advisable in individual cases.

  19. High temperature PEM fuel cells - Degradation and durability

    Energy Technology Data Exchange (ETDEWEB)

    Araya, S.S.

    2012-12-15

    This work analyses the degradation issues of a High Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC). It is based on the assumption that given the current challenges for storage and distribution of hydrogen, it is more practical to use liquid alcohols as energy carriers for fuel cells. Among these, methanol is very attractive, as it can be obtained from a variety of renewable sources and has a relatively low reforming temperature for the production of hydrogen rich gaseous mixture. The effects on HT-PEMFC of the different constituents of this gaseous mixture, known as a reformate gas, are investigated in the current work. For this, an experimental set up, in which all these constituents can be fed to the anode side of a fuel cell for testing, is put in place. It includes mass flow controllers for the gaseous species, and a vapor delivery system for the vapor mixture of the unconverted reforming reactants. Electrochemical Impedance Spectroscopy (EIS) is used to characterize the effects of these impurities. The effects of CO were tested up to 2% by volume along with other impurities. All the reformate impurities, including ethanol-water vapor mixture, cause loss in the performance of the fuel cell. In general, CO{sub 2} dilutes the reactants, if tested alone at high operating temperatures (180 C), but tends to exacerbate the effects of CO if they are tested together. On the other hand, CO and methanol-water vapor mixture degrade the fuel cell proportionally to the amounts in which they are tested. In this dissertation some of the mechanisms with which the impurities affect the fuel cell are discussed and interdependence among the effects is also studied. This showed that the combined effect of reformate impurities is more than the arithmetic sum of the individual effects of reformate constituents. The results of the thesis help to understand better the issues of degradation and durability in fuel cells, which can help to make them more durable and

  20. Hydrogen as fuel carrier in PEM fuelcell for automobile applications

    Science.gov (United States)

    Sk, Mudassir Ali; Venkateswara Rao, K.; Ramana Rao, Jagirdar V.

    2015-02-01

    The present work focuses the application of nanostructured materials for storing of hydrogen in different carbon materials by physisorption method. To market a hydrogen-fuel cell vehicle as competitively as the present internal combustion engine vehicles, there is a need for materials that can store a minimum of 6.5wt% of hydrogen. Carbon materials are being heavily investigated because of their promise to offer an economical solution to the challenge of safe storage of large hydrogen quantities. Hydrogen is important as a new source of energy for automotive applications. It is clear that the key challenge in developing this technology is hydrogen storage. Combustion of fossil fuels and their overuse is at present a serious concern as it is creates severe air pollution and global environmental problems; like global warming, acid rains, ozone depletion in stratosphere etc. This necessitated the search for possible alternative sources of energy. Though there are a number of primary energy sources available, such as thermonuclear energy, solar energy, wind energy, hydropower, geothermal energy etc, in contrast to the fossil fuels in most cases, these new primary energy sources cannot be used directly and thus they must be converted into fuels, that is to say, a new energy carrier is needed. Hydrogen fuel cells are two to three times more efficient than combustion engines. As they become more widely available, they will reduce dependence on fossil fuels. In a fuel cell, hydrogen and oxygen are combined in an electrochemical reaction that produces electricity and, as a byproduct, water.

  1. Tap Water Hydraulic Systems for Medium Power Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar.......Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar....

  2. Current density distribution mapping in PEM fuel cells as an instrument for operational measurements

    Energy Technology Data Exchange (ETDEWEB)

    Geske, M.; Heuer, M.; Heideck, G.; Styczynski, Z. A. [Otto-von-Guericke University Magdeburg, Chair Electric Power Networks and Renewable Energy Sources, Magdeburg (Germany)

    2010-07-01

    A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC). Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes. (author)

  3. Proton tunneling-induced bistability, oscillations and enhanced performance of PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Katsaounis, A.; Balomenou, S.; Tsiplakides, D.; Brosda, S.; Vayenas, C.G. [Department of Chemical Engineering, University of Patras, Patras GR 26504 (Greece); Neophytides, S. [Institute of Chemical Engineering and High Temperature Chemical Processes, FORTH, 26500 Patras (Greece)

    2005-03-25

    Proton migration through hydrated Nafion membranes in polymer electrolyte membrane (PEM) fuel cells occurs both in the aqueous phase of the membrane and on the sulfonate groups on the surface of the membrane pores. Here we show using D{sub 2} and H{sub 2} fuel and basic quantum mechanical equations that this surface proton migration is largely due to proton tunneling between adjacent sulfonate groups, leading to an exponential variation of Nafion conductivity with cell potential. This amphibious mode of proton migration, particle-like in the aqueous phase and wave-like in the narrow pores, is shown to be the major cause of cell overpotential, bistability and oscillations of state-of-the-art PEM fuel cells operating on H{sub 2}, reformate or methanol fuel. We also show that this phenomenon can be exploited via introduction of a third auxiliary electrode to independently control the anode-cathode potential difference and dramatically enhance fuel cell power output even in absence of noble metals at the anode.

  4. Current Density Distribution Mapping in PEM Fuel Cells as An Instrument for Operational Measurements

    Directory of Open Access Journals (Sweden)

    Martin Geske

    2010-04-01

    Full Text Available A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC. Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes.

  5. Carbon monoxide tolerant anodes for proton exchange membrane (PEM) fuel cells. 1. Catalyst development approach

    Energy Technology Data Exchange (ETDEWEB)

    Holleck, G L; Pasquariello, D M; Clauson, S L

    1998-07-01

    PEM fuel cells are highly attractive for distributed power and cogeneration systems. They are efficient and function virtually without noise or pollution. To be competitive PEM fuel cells must operate on fuel mixtures obtained by reforming of widely available natural gas or liquid hydrocarbons. Reformed fuel gas mixtures invariably contain CO, a strong poison for Pt. Therefore CO tolerant anode catalysts are essential for wide spread PEMFC introduction. It is the objective to develop effective CO tolerant fuel cell catalysts based on multi-component platinum-transition metal alloys. Towards this goal the authors have developed a novel approach for the synthesis and performance evaluation of multifunctional ternary alloy fuel cell catalysts. The alloys are prepared as well-defined thin films on standard TFE-bonded carbon substrates via a dc magnetron sputtering technique. The anodes are laminated to Nafion membranes and the electrochemical performance is measured in a representative fuel cell configuration with H{sub 2} and H{sub 2}/CO gas mixtures. The multi-target sputtering technique permits one to reproducibly synthesize true alloy films of controlled composition. The deposit morphology and electrode structure are determined by the standardized TFE bonded carbon substrate. The thin catalyst layer is concentrated at the electrode ionomer interface where it can be fully utilized in a representative fuel cell configuration. Thus, a true comparative fuel cell catalyst evaluation is possible. The effectiveness of this approach will be demonstrated with Pt, Pt-Ru and Pt-Ru-X catalyzed anodes.

  6. Different Approaches for Ensuring Performance/Reliability of Plastic Encapsulated Microcircuits (PEMs) in Space Applications

    Science.gov (United States)

    Gerke, R. David; Sandor, Mike; Agarwal, Shri; Moor, Andrew F.; Cooper, Kim A.

    2000-01-01

    Engineers within the commercial and aerospace industries are using trade-off and risk analysis to aid in reducing spacecraft system cost while increasing performance and maintaining high reliability. In many cases, Commercial Off-The-Shelf (COTS) components, which include Plastic Encapsulated Microcircuits (PEMs), are candidate packaging technologies for spacecrafts due to their lower cost, lower weight and enhanced functionality. Establishing and implementing a parts program that effectively and reliably makes use of these potentially less reliable, but state-of-the-art devices, has become a significant portion of the job for the parts engineer. Assembling a reliable high performance electronic system, which includes COTS components, requires that the end user assume a risk. To minimize the risk involved, companies have developed methodologies by which they use accelerated stress testing to assess the product and reduce the risk involved to the total system. Currently, there are no industry standard procedures for accomplishing this risk mitigation. This paper will present the approaches for reducing the risk of using PEMs devices in space flight systems as developed by two independent Laboratories. The JPL procedure involves primarily a tailored screening with accelerated stress philosophy while the APL procedure is primarily, a lot qualification procedure. Both Laboratories successfully have reduced the risk of using the particular devices for their respective systems and mission requirements.

  7. Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells

    Science.gov (United States)

    Narayanan, S. R.

    1995-01-01

    A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.

  8. A full Monte Carlo simulation of the YAP-PEM prototype for breast tumor detection

    Science.gov (United States)

    Motta, A.; Righi, S.; Del Guerra, A.; Belcari, N.; Vaiano, A.; De Domenico, G.; Zavattini, G.; Campanini, R.; Lanconelli, N.; Riccardi, A.

    2004-07-01

    A prototype for Positron Emission Mammography, the YAP-PEM, is under development within a collaboration of the Italian Universities of Pisa, Ferrara, and Bologna. The aim is to detect breast lesions, with dimensions of 5 mm in diameter, and with a specific activity ratio of 10:1 between the cancer and breast tissue. The YAP-PEM is composed of two stationary detection heads of 6×6 cm 2, composed of a matrix of 30×30 YAP:Ce finger crystals of 2×2×30 mm 3 each. The EGSnrc Monte Carlo code has been used to simulate several characteristics of the prototype. A fast EM algorithm has been adapted to reconstruct all of the collected lines of flight, also at large incidence angles, by achieving 3D positioning capability of the lesion in the FOV. The role of the breast compression has been studied. The performed study shows that a 5 mm diameter tumor of 37 kBq/cm 3 (1 μCi/cm 3), embedded in active breast tissue with 10:1 tumor/background specific activity ratio, is detected in 10 min with a Signal-to-Noise Ratio of 8.7±1.0. Two hot lesions in the active breast phantom are clearly visible in the reconstructed image.

  9. Flow channel shape optimum design for hydroformed metal bipolar plate in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Linfa; Lai, Xinmin; Liu, Dong' an; Hu, Peng [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); Ni, Jun [Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109 (United States)

    2008-03-15

    Bipolar plate is one of the most important and costliest components of polymer electrolyte membrane (PEM) fuel cells. Micro-hydroforming is a promising process to reduce the manufacturing cost of PEM fuel cell bipolar plates made of metal sheets. As for hydroformed bipolar plates, the main defect is the rupture because of the thinning of metal sheet during the forming process. The flow channel section decides whether high quality hydroformed bipolar plates can be successively achieved or not. Meanwhile, it is also the key factor that is related with the reaction efficiency of the fuel cell stacks. In order to obtain the optimum flow channel section design prior the experimental campaign, some key geometric dimensions (channel depth, channel width, rib width and transition radius) of flow channel section, which are related with both reaction efficiency and formability, are extracted and parameterized as the design variables. By design of experiments (DOE) methods and an adoptive simulated annealing (ASA) optimization method, an optimization model of flow channel section design for hydroformed metal bipolar plate is proposed. Optimization results show that the optimum dimension values for channel depth, channel width, rib width and transition radius are 0.5, 1.0, 1. 6 and 0.5 mm, respectively with the highest reaction efficiency (79%) and the acceptable formability (1.0). Consequently, their use would lead to improved fuel cell efficiency for low cost hydroformed metal bipolar plates. (author)

  10. Study of the flooding and dehydration processes of a PEM fuel cell using the EIS technique; Estudio de los procesos de inundacion y deshidratacion en una celda de combustible tipo PEM mediante la tecnica EIS

    Energy Technology Data Exchange (ETDEWEB)

    Loyola-Morales, F.; Cano-Castillo, U. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: feloyola@yahoo.com.mx

    2009-09-15

    In this work, a study was conducted of the flooding and dehydration processes of a PEM fuel cell using the EIS technique. The experiments were conducted in a 50 cm{sup 2} cell. The gradual flooding of the system was induced by operating the cell at a potential of 0.3 V and maintaining the gas outlet closed (that is, stoichiometry of 1 for the anode (H{sub 2}) and the cathode (O{sub 2})) to enable the water produced by the reaction to accumulate inside. The gradual dehydration was induced by operating the cell at a potential of 0.3V and establishing a oxidized gas flow at a stoichiometry of 4. EIS tests were applied throughout both processes. The results showed that the EIS technique is highly sensitive for the analysis of the different degrees of the flooding processes by monitoring variations in the imaginary components of total impedance (Z{sup )} or the phase angle ({theta}). For low degrees of flooding, the technique had good sensitivity, between 1 and 6 Hz, while at high degrees of flooding the technique's greatest sensitivity was limited to a range between 1 and 2 Hz. In the case of the dehydration process of the system, the results showed that this type of process can be analyzed for variations in the value of the real component (Z{sup '}) as well as for the imaginary component of total impedance and variations in the phase angle. The analysis of dehydration with Z{sup '} was possible at a rather wide range, from 100 to 1000 Hz; with Z{sup }or {theta} it was only possible at a range of 20 to 200 Hz. [Spanish] En el presente trabajo, se llevo a cabo el estudio de los procesos de inundacion y deshidratacion de una celda de combustible tipo PEM mediante la tecnica EIS. Los experimentos fueron realizados en una celda de 50 cm{sup 2}. La inundacion gradual del sistema se indujo operando la celda a un potencial de 0.3 V de celda y manteniendo la salida de gases cerrada (i. e. estequiometria de 1 tanto en anodo (H{sub 2}) como en catodo (O{sub 2

  11. 50 kW laser weapon demonstrator of Rheinmetall Waffe munition

    Science.gov (United States)

    Ludewigt, K.; Riesbeck, Th.; Graf, A.; Jung, M.

    2013-10-01

    We will present the setup of a 50 kW Laser Weapon Demonstrator (LWD) and results achieved with this system. The LWD is a ground based Air Defence system consisting of a Skyguard sensor unit for target acquisition and two laser equipped weapon turrets. The weapon turrets used are standard air defence turrets of Rheinmetall Air Defence which were equipped with several 10 kW Laser Weapon Modules (LWM). Each LWM consists of one 10 kW fiber laser and a beam forming unit (BFU). Commercial of the shelf fiber laser were modified for our defence applications. The BFU providing diffraction limited beam focusing, target imaging and fine tracking of the target was developed. The LWD was tested in a firing campaign at Rheinmetall test ground in Switzerland. All laser beams of both weapon turrets were superimposed on stationary and dynamic targets. Test results of the LWD for the scenarios Air Defence and C-RAMM (counter rockets, artillery, mortar and missiles) will be presented. An outlook for the next development stage towards a 100 kW class laser weapon on RWM will be given.

  12. Test result of 5 GHz, 500 kW CW prototype klystron for KSTAR LHCD system

    Energy Technology Data Exchange (ETDEWEB)

    Do, H., E-mail: heejindo@nfri.re.kr [Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Park, S. [Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Jeong, J.H.; Bae, Y.S.; Yang, H.L. [National Fusion Research Institute, Daejeon 350-333 (Korea, Republic of); Delpech, L.; Magne, R.; Hoang, G.T. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Park, H.; Cho, M.H.; Namkung, W. [Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2011-10-15

    A 5 GHz LHCD system is being designed for current drive and profile modification necessary for AT mode and steady-state operation of the KSTAR tokamak. A prototype 500 kW CW klystron operating at 5 GHz was developed for the steady-state RF source. In this klystron, a multi-cell cavity is introduced to reduce cavity voltage and ohmic power loss. The klystron is designed with a triode system for optimization of gain, efficiency and beam control. The high voltage for the cathode is turned by using a thyristor switching system at the low voltage transformer unit. For anode voltage control, a mod-anode voltage divider system is used which utilize the parallel-circuit of the FET switch and Zener diodes. The RF output power of the klystron was 300 kW for 800 s and 450 kW for 20 s. The maximal temperature at collector top surface was 83 deg. C and power loss at the tube body did not exceed 10 kW, the interlock level for the protection of the klystron. Detailed results of the klystron system test and commissioning are presented.

  13. A 50-kW Module Power Station of Directly Solar-Pumped Iodine Laser

    Science.gov (United States)

    Choi, S. H.; Lee, J. H.; Meador, W. E.; Conway, E. J.

    1997-01-01

    The conceptual design of a 50 kW Directly Solar-Pumped Iodine Laser (DSPIL) module was developed for a space-based power station which transmits its coherent-beam power to users such as the moon, Martian rovers, or other satellites with large (greater than 25 kW) electric power requirements. Integration of multiple modules would provide an amount of power that exceeds the power of a single module by combining and directing the coherent beams to the user's receiver. The model developed for the DSPIL system conservatively predicts the laser output power (50 kW) that appears much less than the laser output (93 kW) obtained from the gain volume ratio extrapolation of experimental data. The difference in laser outputs may be attributed to reflector configurations adopted in both design and experiment. Even though the photon absorption by multiple reflections in experimental cavity setup was more efficient, the maximum secondary absorption amounts to be only 24.7 percent of the primary. However, the gain volume ratio shows 86 percent more power output than theoretical estimation that is roughly 60 percent more than the contribution by the secondary absorption. Such a difference indicates that the theoretical model adopted in the study underestimates the overall performance of the DSPIL. This fact may tolerate more flexible and radical selection of design parameters than used in this design study. The design achieves an overall specific power of approximately 5 W/kg and total mass of 10 metric tons.

  14. Consideration concerning the costs of the 300 kW wind units developed in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Gyulai, F; Bej, A [Technical Univ. of Timisoara (Romania). Wind Energy Research Center

    1996-12-31

    A demonstrative wind farm with four research units, 300 kW each, is in developing stage in Romania. The article shows economic analysis of these experimental wind units and their cost structure focusing in component costs, performance, manufacturing technology and installing work. (author)

  15. Stand-alone version of the 11kW Gaia wind turbine

    DEFF Research Database (Denmark)

    Bindner, H.; Rosas, P.A.C.; Teodorescu, R.

    2004-01-01

    This report describes the development of a stand-alone version of the 11kW Gaia wind turbine. Various possible configurations are investigated and a configuration using a back-to-back converter is chosen. A model is developed for controller design of thefast controllers of the unit. Controllers...... assessment and controller design a dynamic performance assessment model has been developed....

  16. Structural analysis of a 1kW Darrieus turbine spoke

    DEFF Research Database (Denmark)

    Belloni, Federico; Bedon, Gabriele; Castelli, Marco Raciti

    A structural study of a 1 kW Darrieus turbine spoke was performed in order to study stress distribution on the piece and make it more light. The VAWT turbine, originally intended for urban operation, is provided with 3 blades and 6 spokes. Since turbine initial tests showed relevant balancing...

  17. Consideration concerning the costs of the 300 kW wind units developed in Romania

    International Nuclear Information System (INIS)

    Gyulai, F.; Bej, A.

    1995-01-01

    A demonstrative wind farm with four research units, 300 kW each, is in developing stage in Romania. The article shows economic analysis of these experimental wind units and their cost structure focusing in component costs, performance, manufacturing technology and installing work. (author)

  18. Efficient pump module coupling >1kW from a compact detachable fiber

    Science.gov (United States)

    Dogan, M.; Chin, R. H.; Fulghum, S.; Jacob, J. H.; Chin, A. K.

    2018-02-01

    In the most developed fiber amplifiers, optical pump power is introduced into the 400μm-diameter, 0.46NA first cladding of the double-clad, Yb-doped, gain fiber, using a (6+1):1 multi-mode fiber combiner. For this configuration, the core diameter and numerical aperture of the pump delivery fibers have maximum values of 225μm and 0.22, respectively. This paper presents the first fiber-coupled laser-diode pump module emitting more than 1kW of claddingmode- stripped power from a detachable 225μm, 0.22NA delivery fiber at 976nm. The electrical-to-optical power conversion efficiency at 1kW is 50%. The FWHM spectral width at 1kW output is 4nm and has an excellent overlap with the narrow absorption spectrum of ytterbium in glass. Six of these pump modules attached to a (6+1):1 multimode combiner enable a 5-6kW, single-mode, Yb-doped fiber amplifier.

  19. Consideration concerning the costs of the 300 kW wind units developed in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Gyulai, F.; Bej, A. [Technical Univ. of Timisoara (Romania). Wind Energy Research Center

    1995-12-31

    A demonstrative wind farm with four research units, 300 kW each, is in developing stage in Romania. The article shows economic analysis of these experimental wind units and their cost structure focusing in component costs, performance, manufacturing technology and installing work. (author)

  20. A maximum power point tracking scheme for a 1kw stand-alone ...

    African Journals Online (AJOL)

    A maximum power point tracking scheme for a 1kw stand-alone solar energy based power supply. ... Nigerian Journal of Technology ... A method for efficiently maximizing the output power of a solar panel supplying a load or battery bus under ...

  1. Design of 500kW grate fired test facility using CFD

    DEFF Research Database (Denmark)

    Rosendahl, Lasse Aistrup; Kær, Søren Knudsen; Jørgensen, K.

    2005-01-01

    A 500kW vibrating grate fired test facility for solid biomass fuels has been designed using numerical models including CFD. The CFD modelling has focussed on the nozzle layout and flowpatterns in the lower part of the furnace, and the results have established confidence in the chosen design...

  2. Beam Transport Devices for the 10 kW IR Free Electron Laser

    International Nuclear Information System (INIS)

    Lawrence Dillon-Townes; Michael Bevins; David Kashy; Stephanie Slachtouski; Ronald Lassiter; George Neil; Michelle Shinn; Joseph Gubeli; Christopher Behre; David Douglas; David W. Waldman; George Biallas; Lawrence Munk; Christopher Gould

    2005-01-01

    Beam transport components for the 10kW IR Free Electron Laser (FEL) at Thomas Jefferson National Accelerator Facility (Jefferson Lab) were designed to manage (1) electron beam transport and (2) photon beam transport. An overview of the components will be presented in this paper. The electron beam transport components were designed to address RF heating, maintain an accelerator transport vacuum of 1 x 10 -8 torr, deliver photons to the optical cavity, and provide 50 kW of beam absorption during the energy recovery process. The components presented include a novel shielded bellows, a novel zero length beam clipper, a one decade differential pumping station with a 7.62 cm (3.0 inch) aperture, and a 50 kW beam dump. The photon beam transport components were designed to address the management of photons delivered by the accelerator transport. The optical cavity manages the photons and optical transport delivers the 10 kW of laser power to experimental labs. The optical cavity component presented is a unique high reflector vessel and the optical transport component presented is a turning mirror cassette

  3. ETV/COMBINED HEAT AND POWER AT A COMMERCIAL SUPERMARKET CAPSTONE 60 KW MICROTURBINE SYSTEM

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Capstone 60 Microturbine CHP System manufactured by Capstone Microturbine Corporation. This system is a 60 kW electrical generator that puts out 480 v AC at 60 Hz and that is driven b...

  4. Laser cutting of thick steel plates with 30 kW fiber laser for nuclear decommissioning

    International Nuclear Information System (INIS)

    Tamura, Koji

    2015-01-01

    Laser cutting technologies of the thick steel plates for the nuclear decommissioning were developed with a 30 kW fiber laser. Plates of stainless steel and carbon steel more than 100 mm thick were successfully cut, indicating that this technology is promising for the application to the nuclear decommissioning. (author)

  5. 12 MeV, 4.3 kW electron linear accelerator irradiation application

    International Nuclear Information System (INIS)

    Hang Desheng; Lai Qiji

    2000-01-01

    Characteristics of an electron linear accelerator, which has 6-12 MeV energy, 4.2 kW average beam power is introduced. Results show that it has advantages on improving the characteristics of semiconductor devices such as diodes, triodes, SCR, preventing garlic from sprout, preservation of food, and so on

  6. A 10kW series resonant converter design, transistor characterization, and base-drive optimization

    Science.gov (United States)

    Robson, R.; Hancock, D.

    1981-01-01

    Transistors are characterized for use as switches in resonant circuit applications. A base drive circuit to provide the optimal base drive to these transistors under resonant circuit conditions is developed and then used in the design, fabrication and testing of a breadboard, spaceborne type 10 kW series resonant converter.

  7. Physics design of a 10 MeV, 6 kW travelling wave electron linac

    Indian Academy of Sciences (India)

    We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear accelerator (linac), which has been recently built and successfully operated at Raja Ramanna Centre for Advanced Technology, Indore. The accelerating structure is a 2 π / 3 mode constant impedance travelling wave structure, which ...

  8. Assessing techniques and performance of thin OGFC/PEM overlay on micro-milled surface : final report.

    Science.gov (United States)

    2014-08-01

    The practice of placing an open-graded friction course (OGFC) or a porous European mix (PEM) : directly on top of a conventional milled surface has rarely been done in Georgia due to concerns that this : rehabilitation method could potentially cause ...

  9. PEM fuel cells operated at 0% relative humidity in the temperature range of 23-120 oC

    International Nuclear Information System (INIS)

    Zhang, Jianlu; Tang, Yanghua; Song, Chaojie; Cheng, Xuan; Zhang, Jiujun; Wang, Haijiang

    2007-01-01

    Operation of a proton exchange membrane (PEM) fuel cell without external humidification (or 0% relative humidity, abbreviated as 0% RH) of the reactant gases is highly desirable, because it can eliminate the gas humidification system and thus decrease the complexity of the PEM fuel cell system and increase the system volume power density (W/l) and weight power density (W/kg). In this investigation, a PEM fuel cell was operated in the temperature range of 23-120 o C, in particular in a high temperature PEM fuel cell operation range of 80-120 o C, with dry reactant gases, and the cell performance was examined according to varying operation parameters. An ac impedance method was used to compare the performance at 0% RH with that at 100% RH; the results suggested that the limited proton transfer process to the Pt catalysts, mainly in the inonomer within the membrane electrode assembly (MEA) could be responsible for the performance drop. It was demonstrated that operating a fuel cell using a commercially available membrane (Nafion (registered) 112) is feasible under certain conditions without external humidification. However, the cell performance at 0% RH decreased with increasing operation temperature and reactant gas flow rate and decreasing operation pressure

  10. Efficient IEC permanent-magnet motor (3 kW) - Final report; Effizienter IEC Permanent-Magnet-Motor (3 kW) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lindegger, M. [Circle Motor AG, Guemligen (Switzerland); Biner, H. P.; Evequoz, B. [Haute Ecole valaisanne, Sion (Switzerland); Salathe, D. [Hochschule Luzern, Technik und Architektur, Horw (Switzerland)

    2008-04-15

    Efficient permanent-magnet motors achieve in the area up to 100 kW a higher efficiency than induction machines (standard motors). A simple and fast energy saving option is the exchange of inefficient standard motors. The objective of this work is to install a 3 kW permanent-magnet motor in a standard IEC housing and the optimization of the design for high efficiency. Another objective is the development and the realization of an efficient variable speed control. The efficiency of the motor and the inverter with the control system must be demonstrated by tests. These tasks have been split between Circle Motor AG and the universities of applied sciences of Valais and Lucerne. Considering high-efficiency and low manufacturing cost, a brushless DC solution was adopted. This resulted in an optimum design of the motor and the control system realized with a three-phase rectifier, a buck converter with variable DC voltage, and a three-phase inverter feeding full positive and negative current to two of the legs simultaneously. The maximum measured efficiency is about 96.5% for the inverter and 92% for the motor. With the advantage of the variable speed operation, the efficiency of the realized 3 kW permanent magnet motor together with the control system is always higher than the efficiency of a measured class EFF1 induction motor, even with a direct connection to the grid. The permanent-magnet motor is also about 10 kg lighter. The cost calculation shows that the permanent-magnet motor can be competitive with the induction motor when speed control is desired. This is also the domain with the largest potential for energy savings from variable speed pumps, compressors, fans. (author)

  11. Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells

    Science.gov (United States)

    Wang, Chunmei

    Proton exchange membrane (PEM) fuel cells are regarded as highly promising energy conversion systems for future transportation and stationary power generation and have been under intensive investigations for the last decade. Unfortunately, cutting edge PEM fuel cell design and components still do not allow economically commercial implementation of this technology. The main obstacles are high cost of proton conductive membranes, low-proton conductivity at low relative humidity (RH), and dehydration and degradation of polymer membranes at high temperatures. The objective of this study was to develop a systematic approach to design a high proton conductive composite membrane that can provide a conductivity of approximately 100 mS cm-1 under hot and dry conditions (120°C and 50% RH). The approach was based on fundamental and experimental studies of the proton conductivity of inorganic additives and composite membranes. We synthesized and investigated a variety of organic-inorganic Nafion-based composite membranes. In particular, we analyzed their fundamental properties, which included thermal stability, morphology, the interaction between inorganic network and Nafion clusters, and the effect of inorganic phase on the membrane conductivity. A wide range of inorganic materials was studied in advance in order to select the proton conductive inorganic additives for composite membranes. We developed a conductivity measurement method, with which the proton conductivity characteristics of solid acid materials, zirconium phosphates, sulfated zirconia (S-ZrO2), phosphosilicate gels, and Santa Barbara Amorphous silica (SBA-15) were discussed in detail. Composite membranes containing Nafion and different amounts of functionalized inorganic additives (sulfated inorganics such as S-ZrO2, SBA-15, Mobil Composition of Matter MCM-41, and S-SiO2, and phosphonated inorganic P-SiO2) were synthesized with different methods. We incorporated inorganic particles within Nafion clusters

  12. Fault location repair, rewinding and commissioning of 3.3 kV, 850 kW synchronous motor (Paper No. 5.9)

    International Nuclear Information System (INIS)

    Subramanian, A.R.; Palani, R.A.A.

    1992-01-01

    The 20K41 compressor in Heavy Water Plant, Tuticorin is compressing medium pressure synthesis gas to high pressure. The compressor is driven by synchronous motor of capacity 850 kW at 3.3 kV. The synchronous motor had been selected for operating a reciprocating compressor because of the compressor's low speed, higher capacity, vibration level etc. Partially it helps for power factor improvement and constant compression of the gas. This paper describes the details of the motor, stator and rotor, method of repair and rewinding of synchronous motor. (author)

  13. X-ray absorption spectroscopy for characterisation of catalysts for PEM fuel cells; Roentgenabsorptionsspektroskopie zur Charakterisierung von Katalysatoren fuer die PEM-Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Koehl, G.

    2001-10-01

    The investigation of bimetallic nanoparticles is of great interest for the development of powerful anode catalysts in PEM fuel cells. The determination of their electronic and geometric structure is crucial for the optimization of the activity and selectivity in the fuel cell. Especially carbon supported PtRu particles have shown superior activity as anode catalysts due to their high CO tolerance. To state the reason on an atomic level, X-ray absorption spectroscopy (XAS) with synchrotron radiation has been used to examine several Pt and PtRu nanoparticle systems. They were either prepared on the basis of preformed PtRu alloy colloids stabilized by different surfactants or by chemical reduction of precursors, Na{sub 6}Pt(SO{sub 3}){sub 4} and Na{sub 6}Ru(SO{sub 3}){sub 4}. Although a PtRu interaction was observed in all systems, a nonstatistical distribution of Pt and Ru atoms in the nanoparticles could be verified. In additional investigations the reaction mechanism during the synthesis of an organometallic stabilized Pt colloid was examined. In-situ measurements revealed the formation of an hitherto unknown Pt complex as intermediate state prior to the nucleation of the particles. (orig)

  14. Experimental determination of optimal clamping torque for AB-PEM Fuel cell

    Directory of Open Access Journals (Sweden)

    Noor Ul Hassan

    2016-04-01

    Full Text Available Polymer electrolyte Membrane (PEM fuel cell is an electrochemical device producing electricity by the reaction of hydrogen and oxygen without combustion. PEM fuel cell stack is provided with an appropriate clamping torque to prevent leakage of reactant gases and to minimize the contact resistance between gas diffusion media (GDL and bipolar plates. GDL porous structure and gas permeability is directly affected by the compaction pressure which, consequently, drastically change the fuel cell performance. Various efforts were made to determine the optimal compaction pressure and pressure distributions through simulations and experimentation. Lower compaction pressure results in increase of contact resistance and also chances of leakage. On the other hand, higher compaction pressure decreases the contact resistance but also narrows down the diffusion path for mass transfer from gas channels to the catalyst layers, consequently, lowering cell performance. The optimal cell performance is related to the gasket thickness and compression pressure on GDL. Every stack has a unique assembly pressure due to differences in fuel cell components material and stack design. Therefore, there is still need to determine the optimal torque value for getting the optimal cell performance. This study has been carried out in continuation of deve­lopment of Air breathing PEM fuel cell for small Unmanned Aerial Vehicle (UAV application. Compaction pressure at minimum contact resistance was determined and clamping torque value was calcu­la­ted accordingly. Single cell performance tests were performed at five different clamping torque values i.e 0.5, 1.0, 1.5, 2.0 and 2.5 N m, for achieving optimal cell per­formance. Clamping pressure distribution tests were also performed at these torque values to verify uniform pressure distribution at optimal torque value. Experimental and theoretical results were compared for making inferences about optimal cell perfor­man­ce. A

  15. Effect of glycidyl methacrylate (GMA) incorporation on water uptake and conductivity of proton exchange membranes

    Science.gov (United States)

    Sproll, Véronique; Schmidt, Thomas J.; Gubler, Lorenz

    2018-03-01

    The aim of this work was to investigate how hygroscopic moieties like hydrolyzed glycidyl methacrylate (GMA) influence the properties of sulfonated polysytrene based proton exchange membranes (PEM). Therefore, several membranes were synthesized by electron beam treatment of the ETFE (ethylene-alt-tetrafluoroethylene) base film with a subsequent co-grafting of styrene and GMA at different ratios. The obtained membranes were sulfonated to introduce proton conducting groups and the epoxide moiety of the GMA unit was hydrolyzed for a better water absorption. The PEM was investigated regarding its structural composition, water uptake and through-plane conductivity. It could be shown that the density of sulfonic acid groups has a higher influence on the proton conductivity of the PEM than an increased water uptake.

  16. 1.8kW laser diode pumped YAG laser; Shutsuryoku 1.8kW no handotai laser reiki YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Toshiba Corporation, as a participant in Ministry of International Trade and Industry`s `photon measurement and processing technology project` since August, 1997, is engaged in the development of an energy-efficient LD (laser diode) pumped semiconductor YAG (yttrium-aluminum-garnet) laser device to be used for welding and cutting. It is a 5-year project and the goal is a mean output of 10kW and efficiency of 20%. In this article, a simulation program is developed which carries out calculation about element technology items such as the tracking of the beam from the pumping LD and the excitation distribution, temperature distribution, thermal stress distribution, etc., in the YAG rod. An oscillator is constructed, based on the results of the simulation, and it exhibits a world-high class continuous laser performance of a 1.8kW output and 13% efficiency. The record of 13% efficiency is five times higher than that achieved by the conventional lamp-driven YAG laser device. (translated by NEDO)

  17. 1998 Annual Study Report. Research and development of solid polymer type fuel cells (Development of techniques for power generation systems and several tens kW class, distributed power source systems); 1998 nendo seika hokokusho. Kotai kobunshigata nenryo denchi no kenkyu kaihatsu (hatsuden system gijutsu no kaihatsu / koden'atsugata su 10kW kyu bunsan dengen system no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The cells are tested using a CO-containing synthetic reforming gas in 1998, to verify the long-term characteristics of the solid polymer type fuel cells. The cells, equipped with the anode catalyst developed therefor, are tested for extended periods, to confirm the performance and stability in the synthetic gas flow. For development of the catalyst, the optimum content of Ru in the Pt and Ru alloy composition is determined. For the cell tests, the single- and 3-cell units are tested for extended periods. For verification of commercial viability of the stacked cell systems, the cell-humidifying techniques are developed, which can uniformly humidify each cell in the stacked unit with a number of cells, after investigating the effects of temporal changes in water permeability, pretreatment conditions and film thickness. These techniques are used to develop and operate a 10kW, stacked cell unit, which successfully generates power of 10.6 kW at the rated current density, exceeding the target of 10 kW. For development of design bases for compact fuel treatment system, the techniques which allow reduction of CO concentration to 10 ppm or less at high repeatability are developed. (NEDO)

  18. 1998 Annual Study Report. Research and development of solid polymer type fuel cells (Development of techniques for power generation systems and several tens kW class, distributed power source systems); 1998 nendo seika hokokusho. Kotai kobunshigata nenryo denchi no kenkyu kaihatsu (hatsuden system gijutsu no kaihatsu / koden'atsugata su 10kW kyu bunsan dengen system no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The cells are tested using a CO-containing synthetic reforming gas in 1998, to verify the long-term characteristics of the solid polymer type fuel cells. The cells, equipped with the anode catalyst developed therefor, are tested for extended periods, to confirm the performance and stability in the synthetic gas flow. For development of the catalyst, the optimum content of Ru in the Pt and Ru alloy composition is determined. For the cell tests, the single- and 3-cell units are tested for extended periods. For verification of commercial viability of the stacked cell systems, the cell-humidifying techniques are developed, which can uniformly humidify each cell in the stacked unit with a number of cells, after investigating the effects of temporal changes in water permeability, pretreatment conditions and film thickness. These techniques are used to develop and operate a 10kW, stacked cell unit, which successfully generates power of 10.6 kW at the rated current density, exceeding the target of 10 kW. For development of design bases for compact fuel treatment system, the techniques which allow reduction of CO concentration to 10 ppm or less at high repeatability are developed. (NEDO)

  19. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  20. Test system design for Hardware-in-Loop evaluation of PEM fuel cells and auxiliaries

    Energy Technology Data Exchange (ETDEWEB)

    Randolf, Guenter; Moore, Robert M. [Hawaii Natural Energy Institute, University of Hawaii, Honolulu, HI (United States)

    2006-07-14

    In order to evaluate the dynamic behavior of proton exchange membrane (PEM) fuel cells and their auxiliaries, the dynamic capability of the test system must exceed the dynamics of the fastest component within the fuel cell or auxiliary component under test. This criterion is even more critical when a simulated component of the fuel cell system (e.g., the fuel cell stack) is replaced by hardware and Hardware-in-Loop (HiL) methodology is employed. This paper describes the design of a very fast dynamic test system for fuel cell transient research and HiL evaluation. The integration of the real time target (which runs the simulation), the test stand PC (that controls the operation of the test stand), and the programmable logic controller (PLC), for safety and low-level control tasks, into one single integrated unit is successfully completed. (author)

  1. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    Energy Technology Data Exchange (ETDEWEB)

    Edward F. Kiczek

    2007-08-31

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  2. Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank

    DEFF Research Database (Denmark)

    Pfeifer, P.; Wall, C.; Jensen, Jens Oluf

    2009-01-01

    the possibilities of a thermal coupling of a high temperature PEM fuel cell operating at 160-200 degrees C. The starting temperatures and temperature hold-times before starting fuel cell operation, the heat transfer characteristics of the hydride storage tanks, system temperature, fuel cell electrical power......Sodium alanate doped with cerium catalyst has been proven to have fast kinetics for hydrogen ab- and de-sorption as well as a high gravimetric storage density around 5 wt%. The kinetics of hydrogen sorption can be improved by preparing the alanate as nanocrystalline material. However, the second...... decomposition step, i.e. the decomposition of the hexahydride to sodium hydride and aluminium which refers to 1.8 wt% hydrogen is supposed to happen above 110 degrees C. The discharge of the material is thus limited by the level of heat supplied to the hydride storage tank. Therefore, we evaluated...

  3. A three-dimensional model of PEM fuel cells with serpentine flow channels

    International Nuclear Information System (INIS)

    Nguyen, P.T.; Berning, T.; Bang, M.; Djilali, N.

    2003-01-01

    A three-dimensional computational model of PEM fuel cell with serpentine flow field channels is presented in this paper. This model presents a comprehensive account for all important transport phenomena in fuel cell such as heat transfer, mass transfer, electrode kinetics, and potential fields in the membrane and gas diffusion layers. A new approach of solving for the potential losses across the cell was also developed in this model. The dependency of local current density on oxygen concentration and activation overpotential is fully addressed in this model. The computational domain consists of serpentine gas flow channels, porous gas diffusion layers, catalyst layers, and a membrane. Results obtained from this model are in good agreement with experimental results. (author)

  4. Integrated high-efficiency Pt/carbon nanotube arrays for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weimin; Minett, Andrew I.; Zhao, Jie; Razal, Joselito M.; Wallace, Gordon G.; Romeo, Tony; Chen, Jun [Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, NSW 2522 (Australia); Gao, Mei [Division of Materials Science and Engineering, CSIRO, Bayview Ave, Clayton, VIC 3168 (Australia)

    2011-07-15

    A facile strategy to deposit Pt nanoparticles with various metal-loading densities on vertically aligned carbon nanotube (ACNT) arrays as electrocatalysts for proton exchange membrane (PEM) fuel cells is described. The deposition is achieved by electrostatic adsorption of the Pt precursor on the positively charged polyelectrolyte functionalized ACNT arrays and subsequent reduction by L-ascorbic acid. The application of the aligned electrocatalysts in fuel cells is realized by transferring from a quartz substrate to nafion membrane using a hot-press procedure to fabricate the membrane electrode assembly (MEA). It is shown that the MEA with vertically aligned structured electrocatalysts provides better Pt utilization than that with Pt on conventional carbon nanotubes or carbon black, resulting in higher fuel cell performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. A Central Composite Face-Centered Design for Parameters Estimation of PEM Fuel Cell Electrochemical Model

    Directory of Open Access Journals (Sweden)

    Khaled MAMMAR

    2013-11-01

    Full Text Available In this paper, a new approach based on Experimental of design methodology (DoE is used to estimate the optimal of unknown model parameters proton exchange membrane fuel cell (PEMFC. This proposed approach combines the central composite face-centered (CCF and numerical PEMFC electrochemical. Simulation results obtained using electrochemical model help to predict the cell voltage in terms of inlet partial pressures of hydrogen and oxygen, stack temperature, and operating current. The value of the previous model and (CCF design methodology is used for parametric analysis of electrochemical model. Thus it is possible to evaluate the relative importance of each parameter to the simulation accuracy. However this methodology is able to define the exact values of the parameters from the manufacture data. It was tested for the BCS 500-W stack PEM Generator, a stack rated at 500 W, manufactured by American Company BCS Technologies FC.

  6. Coupling a PEM fuel cell and the hydrogen generation from aluminum waste cans

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Albanil Sanchez, Loyda; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. CP 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Cuerpo Academico de Energia y Sustentabilidad, UPCH, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    High purity hydrogen was generated from the chemical reaction of aluminum and sodium hydroxide. The aluminum used in this study was obtained from empty soft drink cans and treated with concentrated sulfuric acid to remove the paint and plastic film. One gram of aluminum was reacted with a solution of 2moldm{sup -3} of sodium hydroxide to produce hydrogen. The hydrogen produced from aluminum cans and oxygen obtained from a proton exchange membrane electrolyzer or air, was fed to a proton exchange membrane (PEM) fuel cell to produce electricity. Yields of 44 mmol of hydrogen contained in a volume of 1.760dm{sup 3} were produced from one gram of aluminum in a time period of 20 min. (author)

  7. HT-PEM Fuel Cell System with Integrated Thermoelectric Exhaust Heat Recovery

    DEFF Research Database (Denmark)

    Gao, Xin

    This thesis presents two case studies on improving the efficiency and the loadfollowing capability of a high temperature polymer electrolyte membrane (HTPEM) fuel cell system by the application of thermoelectric (TE) devices. TE generators (TEGs) are harnessed to recover the system exhaust gas...... developed three-dimensional numerical model in ANSYS Fluent®. This thesis introduces the progress of this project in a cognitive order. The first chapter initially prepares the theory and characteristics of the fuel cell system and TE devices. Project motivations are conceived. Then similar studies existing...... power output on the subsystem design and performance were also systematically analyzed. The TEG subsystem configuration is optimized. The usefulness and convenience of the model are proved. TE coolers (TECs) are integrated into the methanol evaporator of the HT-PEM system for improving the whole system...

  8. Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility.

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joseph William [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Harris, Aaron P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-01-01

    A barge-mounted hydrogen-fueled proton exchange membrane (PEM) fuel cell system has the potential to reduce emissions and fossil fuel use of maritime vessels in and around ports. This study determines the technical feasibility of this concept and examines specific options on the U.S. West Coast for deployment practicality and potential for commercialization.The conceptual design of the system is found to be straightforward and technically feasible in several configurations corresponding to various power levels and run times.The most technically viable and commercially attractive deployment options were found to be powering container ships at berth at the Port of Tacoma and/or Seattle, powering tugs at anchorage near the Port of Oakland, and powering refrigerated containers on-board Hawaiian inter-island transport barges. Other attractive demonstration options were found at the Port of Seattle, the Suisun Bay Reserve Fleet, the California Maritime Academy, and an excursion vessel on the Ohio River.

  9. FITTING A THREE DIMENSIONAL PEM FUEL CELL MODEL TO MEASUREMENTS BY TUNING THE POROSITY AND

    DEFF Research Database (Denmark)

    Bang, Mads; Odgaard, Madeleine; Condra, Thomas Joseph

    2004-01-01

    the distribution of current density and further how thisaffects the polarization curve.The porosity and conductivity of the catalyst layer are some ofthe most difficult parameters to measure, estimate and especiallycontrol. Yet the proposed model shows how these two parameterscan have significant influence...... on the performance of the fuel cell.The two parameters are shown to be key elements in adjusting thethree-dimensional model to fit measured polarization curves.Results from the proposed model are compared to single cellmeasurements on a test MEA from IRD Fuel Cells.......A three-dimensional, computational fluid dynamics (CFD) model of a PEM fuel cell is presented. The model consists ofstraight channels, porous gas diffusion layers, porous catalystlayers and a membrane. In this computational domain, most ofthe transport phenomena which govern the performance of the...

  10. Final Report - Advanced Cathode Catalysts and Supports for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Debe, Mark

    2012-09-28

    The principal objectives of the program were development of a durable, low cost, high performance cathode electrode (catalyst and support), that is fully integrated into a fuel cell membrane electrode assembly with gas diffusion media, fabricated by high volume capable processes, and is able to meet or exceed the 2015 DOE targets. Work completed in this contract was an extension of the developments under three preceding cooperative agreements/grants Nos. DE-FC-02-97EE50473, DE-FC-99EE50582 and DE-FC36- 02AL67621 which investigated catalyzed membrane electrode assemblies for PEM fuel cells based on a fundamentally new, nanostructured thin film catalyst and support system, and demonstrated the feasibility for high volume manufacturability.

  11. The electronics system for the LBNL positron emission mammography (PEM) camera

    CERN Document Server

    Moses, W W; Baker, K; Jones, W; Lenox, M; Ho, M H; Weng, M

    2001-01-01

    Describes the electronics for a high-performance positron emission mammography (PEM) camera. It is based on the electronics for a human brain positron emission tomography (PET) camera (the Siemens/CTI HRRT), modified to use a detector module that incorporates a photodiode (PD) array. An application-specified integrated circuit (ASIC) services the photodetector (PD) array, amplifying its signal and identifying the crystal of interaction. Another ASIC services the photomultiplier tube (PMT), measuring its output and providing a timing signal. Field-programmable gate arrays (FPGAs) and lookup RAMs are used to apply crystal-by-crystal correction factors and measure the energy deposit and the interaction depth (based on the PD/PMT ratio). Additional FPGAs provide event multiplexing, derandomization, coincidence detection, and real-time rebinning. Embedded PC/104 microprocessors provide communication, real-time control, and configure the system. Extensive use of FPGAs make the overall design extremely flexible, all...

  12. Influence of the rated power in the performance of different proton exchange membrane (PEM) fuel cells

    International Nuclear Information System (INIS)

    San Martin, J.I.; Zamora, I.; San Martin, J.J.; Aperribay, V.; Torres, E.; Eguia, P.

    2010-01-01

    Fuel cells are clean generators that provide both electrical and thermal energy with a high global efficiency level. The characteristics of these devices depend on numerous parameters such as: temperature, fuel and oxidizer pressures, fuel and oxidizer flows, etc. Therefore, their influence should be evaluated to appropriately characterize behaviour of the fuel cell, in order to enable its integration in the electric system. This paper presents a theoretical and experimental analysis of the performance of two commercial Proton Exchange Membrane (PEM) fuel cells of 40 and 1200 W, and introduces the application of the principle of geometrical similarity. Using the principle of geometrical similarity it is possible to extrapolate the results obtained from the evaluation of one fuel cell to other fuel cells with different ratings. An illustrating example is included.

  13. Modeling of Diffusive Convective and Electromechanical Processes in PEM fuel cells

    DEFF Research Database (Denmark)

    Bang, Mads

    of their impact on the operational performance of the fuel cell. In the modelling work presented, the commercial CFD package CFX4.4 is used as the foundation to generate a model of a PEM fuel cell. The CFX4.4 platform provides the framework of solving the three-dimensional transport equations for mass, momentum...... as the transport of protons in the membrane phase is accounted for. This provides the possibility of predicting the threedimensional distribution of the activation overpotential in the catalyst layer. The current density's dependency on the gas concentration and activation overpotential can thereby be addressed....... The proposed model makes it possible to predict the effect of geometrical and material properties on fuel cells performance, which means that the model can predict how the gas diffusion layer (GDL) and catalyst layers physical properties affects the distribution of current density, and how this affects...

  14. Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at the NASA Glenn Research Center

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christoher P.; Jakupca, Ian J.

    2005-01-01

    The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at the NASA Glenn Research Center has successfully demonstrated closed cycle operation at rated power for multiple charge-discharge cycles. During charge cycle the RFC has absorbed input electrical power simulating a solar day cycle ranging from zero to 15 kWe peak, and delivered steady 5 kWe output power for periods exceeding 8 hr. Orderly transitions from charge to discharge mode, and return to charging after full discharge, have been accomplished without incident. Continuing test operations focus on: (1) Increasing the number of contiguous uninterrupted charge discharge cycles; (2) Increasing the performance envelope boundaries; (3) Operating the RFC as an energy storage device on a regular basis; (4) Gaining operational experience leading to development of fully automated operation; and (5) Developing instrumentation and in situ fluid sampling strategies to monitor health and anticipate breakdowns.

  15. Numerical investigation of flow field configuration and contact resistance for PEM fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Mohammad Hadi; Rismanchi, Behzad [Department of Mechanical Engineering, Shiraz University, Shiraz 71348-51154 (Iran)

    2008-08-15

    A steady-state three-dimensional non-isothermal computational fluid dynamics (CFD) model of a proton exchange membrane fuel cell is presented. Conservation of mass, momentum, species, energy, and charge, as well as electrochemical kinetics are considered. In this model, the effect of interfacial contact resistance is also included. The numerical solution is based on a finite-volume method. In this study the effects of flow channel dimensions on the cell performance are investigated. Simulation results indicate that increasing the channel width will improve the limiting current density. However, it is observed that an optimum shoulder size of the flow channels exists for which the cell performance is the highest. Polarization curves are obtained for different operating conditions which, in general, compare favorably with the corresponding experimental data. Such a CFD model can be used as a tool in the development and optimization of PEM fuel cells. (author)

  16. Validation of Perceptions of Empowerment in Midwifery Scale (PEMS in the Portuguese population

    Directory of Open Access Journals (Sweden)

    João José de Sousa Franco

    2012-10-01

    Full Text Available Introduction: Since when midwives are prominent in different socio-cultural contexts of individuals and populations associated with the control of women during pregnancy, childbirth and postpartum? In Portugal, the level of training of nurses in breastfeeding and obstetric has evolved, is considered the most advanced in the European context, and this would have posed new challenges for these professionals. Methodology: focusing on what the perception of empowerment that have specialized nurses in midwifery and maternal health in Portugal, it was decided to conduct this study, entitled "Validation of the Portuguese population scale - Perceptions of Empowerment in Midwifery Scale (PEMS" . We responded to the research question, what are the levels of empowerment of nurses in nursing and midwifery maternal health in Portugal? Objective: To determine the level of empowerment of nurses in nursing and midwifery maternal health in Portugal. In this study we used the quantitative method and descriptive. To accomplish this we proceeded to the implementation of a data collection instrument organized into two distinct parts. The first part allowed us to collect sociodemographic data and professional reviewers. In the second use "Perceptions of Empowerment in Midwifery Scale" (Matthews, Scott, and Gallagher, 2009, measuring tool we had to validate cross-culturally. The study presented here took samples of 309 Portuguese health nurses maternal obstetrical nurse specialists. Results: 'Perceptions of Empowerment in Midwifery Scale (PEMS' (Matthews, Scott, and Gallagher, 2009, presents a framework pentafatorial (effective management and interdisciplinary relationships, sustained and autonomous practice, professional communication and consent, recognition health team, training and education, which together account for 72.9% of the variance of the results. On average, nurses in maternal health nursing and midwifery have a low level of empowerment, the lowest level

  17. Influences of bipolar plate channel blockages on PEM fuel cell performances

    International Nuclear Information System (INIS)

    Heidary, Hadi; Kermani, Mohammad J.; Dabir, Bahram

    2016-01-01

    Highlights: • Effect of partial- or full-blockage of PEMFC flow channels is numerically studied. • The anode blockage does not show any positive effects on cell performance. • Full blockages, despite higher pressure drop, better enhance net electrical power. • Additions of blocks more than five do not improve the cell performance. • Full blockage of cathode channels with five blocks enhances the net power by 30%. - Abstract: In this paper, the effect of partial- or full-block placement along the flow channels of PEM fuel cells is numerically studied. Blockage in the channel of flow-field diverts the flow into the gas diffusion layer (GDL) and enhances the mass transport from the channel core part to the catalyst layer, which in turn improves the cell performance. By partial blockage, only a part of the channel flow is shut off. While in full blockage, in which the flow channel cross sections are fully blocked, the only avenue left for the continuation of the gas is to travel over the blocks via the porous zone (GDL). In this study, a 3D numerical model consisting of a 9-layer PEM fuel cell is performed. A wide spectrum of numerical studies is performed to study the influences of the number of blocks, blocks height, and anode/cathode-side flow channel blockage. The results show that the case of full blockage enhances the net electrical power more than that of the partial blockage, in spite of higher pressure drop. Performed studies show that full blockage of the cathode-side flow channels with five blocks along the 5 cm channel enhances the net power by 30%. The present work provides helpful guidelines to bipolar plate manufacturers.

  18. Exergoeconomic analysis of vehicular PEM (proton exchange membrane) fuel cell systems with and without expander

    International Nuclear Information System (INIS)

    Sayadi, Saeed; Tsatsaronis, George; Duelk, Christian

    2014-01-01

    In this paper we perform an exergoeconomic analysis to a PEM (proton exchange membrane) vehicular fuel cell system used in the latest generation of environmentally friendly cars. Two alternative configurations of a fuel cell system are considered (with and without an expander), and two alternative design concepts for each configuration: BoL (Begin of Life) and EoL (End of Life). The system including an expander generates additional power from the exhaust gases leaving the fuel cell stack, which might increase the system efficiency. However the total investment costs for this case are higher than for the other system configuration without an expander, due to the investment costs associated with the expander and its accessories. The fuel cell stack area in the EoL-sized systems is larger than in the BoL-sized systems. A larger stack area on one hand raises the investment costs, but on the other hand decreases the fuel consumption due to a higher cell efficiency. In this paper, exergoeconomic analyses have been implemented to consider a trade-off between positive and negative effects of using an expander in the system and to select the proper design concept. The results from the exergoeconomic analysis show that (a) an EoL-sized system with an expander is the most cost effective system, (b) the compression and humidification of air are very expensive processes, (c) the stack is by far the most important component from the economic viewpoint, and (d) the thermodynamic efficiency of almost all components must be improved to increase the cost effectiveness of the overall system. - Highlights: • Two vehicular PEM (proton exchange membrane) fuel cell system configurations are studied in this paper. • Exergoeconomics has been performed to compare these two system configurations. • The compression and humidification of air are very expensive processes. • The stack is by far the most important component from the economic viewpoint. • The thermodynamic efficiencies

  19. Corrosion behaviour of construction materials for high temperature water electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey

    2010-01-01

    proton exchange membrane (PEM) water electrolysers (HTPEMWE). All samples were exposed to anodic polarisation in 85% phosphoric acid electrolyte solution. Platinum and gold plates were tested for the valid comparison. Steady-state voltammetry was used in combination with scanning electron microscopy...

  20. Corn Stover and Wheat Straw Combustion in a 176-kW Boiler Adapted for Round Bales

    Directory of Open Access Journals (Sweden)

    Joey Villeneuve

    2013-11-01

    Full Text Available Combustion trials were conducted with corn stover (CS and wheat straw (WS round bales in a 176-kW boiler (model Farm 2000. Hot water (80 °C stored in a 30,000-L water tank was transferred to a turkey barn through a plate exchanger. Gross calorific value measured in the laboratory was 17.0 and 18.9 MJ/kg DM (dry matter for CS and WS, respectively. Twelve bales of CS (1974 kg DM total, moisture content of 13.6% were burned over a 52-h period and produced 9.2% ash. Average emissions of CO, NOx and SO2 were 2725, 9.8 and 2.1 mg/m3, respectively. Thermal efficiency was 40.8%. For WS, six bales (940 kg DM total, MC of 15% were burned over a 28-h period and produced 2.6% ash. Average emissions of CO, NOx and SO2 were 2210, 40.4 and 3.7 mg/m3, respectively. Thermal efficiency was 68.0%. A validation combustion trial performed a year later with 90 CS bales confirmed good heating performance and the potential to lower ash content (6.2% average.

  1. Infrared face recognition based on LBP histogram and KW feature selection

    Science.gov (United States)

    Xie, Zhihua

    2014-07-01

    The conventional LBP-based feature as represented by the local binary pattern (LBP) histogram still has room for performance improvements. This paper focuses on the dimension reduction of LBP micro-patterns and proposes an improved infrared face recognition method based on LBP histogram representation. To extract the local robust features in infrared face images, LBP is chosen to get the composition of micro-patterns of sub-blocks. Based on statistical test theory, Kruskal-Wallis (KW) feature selection method is proposed to get the LBP patterns which are suitable for infrared face recognition. The experimental results show combination of LBP and KW features selection improves the performance of infrared face recognition, the proposed method outperforms the traditional methods based on LBP histogram, discrete cosine transform(DCT) or principal component analysis(PCA).

  2. An assessment of KW Basin radionuclide activity when opening SNF canisters

    International Nuclear Information System (INIS)

    Bergmann, D.W.; Mollerus, F.J.; Wray, J.L.

    1995-01-01

    N Reactor spent fuel is being stored in sealed canisters in the KW Basin. Some of the canisters contain damaged fuel elements. There is the potential for release of Cs 137, Kr 85, H3, and other fission products and transuranics (TRUs) when canisters are opened. Canister opening is required to select and transfer fuel elements to the 300 Area for examination as part of the Spent Nuclear Fuel (SNF) Characterization program. This report estimates the amount of radionuclides that can be released from Mark II spent nuclear fuel (SNF) canisters in KW Basin when canisters are opened for SNF fuel sampling as part of the SNF Characterization Program. The report also assesses the dose consequences of the releases and steps that can be taken to reduce the impacts of these releases

  3. Design and Control of a 3 kW Wireless Power Transfer System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhenshi Wang

    2015-12-01

    Full Text Available This paper aims to study a 3 kW wireless power transfer system for electric vehicles. First, the LCL-LCL topology and LC-LC series topology are analyzed, and their transfer efficiencies under the same transfer power are compared. The LC-LC series topology is validated to be more efficient than the LCL-LCL topology and thus is more suitable for the system design. Then a novel q-Zsource-based online power regulation method which employs a unique impedance network (two pairs of inductors and capacitors to couple the cascaded H Bridge to the power source is proposed. By controlling the shoot-through state of the H Bridge, the charging current can be adjusted, and hence, transfer power. Finally, a prototype is implemented, which can transfer 3 kW wirelessly with ~95% efficiency over a 20 cm transfer distance.

  4. 200 kW, 800 MHz transmitter system for lower hybrid heating

    International Nuclear Information System (INIS)

    Deitz, A.

    1975-01-01

    This paper describes a new rf heating system which has just been completed and is now operational on the ATC machine. The system utilizes four UHF TV klystrons to generate at least 200 kW of power at a frequency of 800 MHz. Pulse widths can be varied from 20 μsec up to 20 msec. A radar type floating deck modulator along with photo-optical transmitting and receiving devices have been incorporated into the system to provide the pulse fidelity and versatility which characterizes this equipment. Modular construction was emphasized in the design, when possible, to reduce maintenance and down time in the advent of component falilure. Hybrid combining techniques are utilized in order to provide two 100 kW feeds into the machine

  5. First lasing of the Dutch Fusion-FEM: 730 kW, 200 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Urbanus, W.H. E-mail: urbanus@rijnh.nl; Bongers, W.A.; Geer, C.A.J. van der; Manintveld, P.; Plomp, J.; Pluygers, J.; Poelman, A.J.; Smeets, P.H.M.; Schueller, F.C.; Verhoeven, A.G.A.; Bratman, V.L.; Denisov, G.G.; Savilov, A.V.; Shmelyov, M.Yu.; Caplan, M.; Varfolomeev, A.A

    1999-06-01

    A high-power electrostatic free-electron maser is operated at various frequencies. An output power of 730 kW at 206 GHz is generated with a 7.2 A, 1.77 MeV electron beam, and 360 kW at 167 GHz is generated with a 7.0 A, 1.61 MeV electron beam. It is shown experimentally and by simulations that, depending on the electron beam energy, the FEM can operate in single-frequency regime. First experiments were done without electron beam energy recovery system, and the pulse length was limited to 12 {mu}s. Nevertheless, many aspects of generation of mm-wave power have been explored, such as the dependency on the electron beam energy and beam current and cavity settings such as the feedback coefficient. The achieved parameters and the FEM dynamics are in good accordance with simulations.

  6. A 1-kW power demonstration from the advanced free electron laser

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Conner, C.A.; Fortgang, C.M.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The main objective of this project was to engineer and procure an electron beamline compatible with the operation of a 1-kW free-electron laser (FEL). Another major task is the physics design of the electron beam line from the end of the wiggler to the electron beam dump. This task is especially difficult because electron beam is expected to have 20 kW of average power and to simultaneously have a 25% energy spread. The project goals were accomplished. The high-power electron design was completed. All of the hardware necessary for high-power operation was designed and procured

  7. Design of a high efficiency 30 kW boost composite converter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeokjin [Univ. of Colorado, Boulder, CO (United States); Chen, Hua [Univ. of Colorado, Boulder, CO (United States); Maksimovic, Dragan [Univ. of Colorado, Boulder, CO (United States); Erickson, Robert W. [Univ. of Colorado, Boulder, CO (United States)

    2015-09-20

    An experimental 30 kW boost composite converter is described in this paper. The composite converter architecture, which consists of a buck module, a boost module, and a dual active bridge module that operates as a DC transformer (DCX), leads to substantial reductions in losses at partial power points, and to significant improvements in weighted efficiency in applications that require wide variations in power and conversion ratio. A comprehensive loss model is developed, accounting for semiconductor conduction and switching losses, capacitor losses, as well as dc and ac losses in magnetic components. Based on the developed loss model, the module and system designs are optimized to maximize efficiency at a 50% power point. Experimental results for the 30 kW prototype demonstrate 98.5%peak efficiency, very high efficiency over wide ranges of power and voltage conversion ratios, as well as excellent agreements between model predictions and measured efficiency curves.

  8. New 200 kW, 800 MHz transmitter system for lower hybrid heating

    International Nuclear Information System (INIS)

    Deitz, A.

    1975-07-01

    A new rf heating system which has just been completed and is being installed on the ATC machine is described. The system utilizes four uhf TV klystrons to generate at least 200 kW of power at a frequency of 800 MHz. Pulse widths can be varied from 20 μsec. up to 20 msec. A radar type floating deck modulator along with photo-optical transmitting and receiving devices have been incorporated into the system to provide the pulse fidelity and versatility which characterizes this equipment. Modular construction was emphasized in the design, when possible, to reduce maintenance and down time in the advent of component failure. Hybrid combining techniques are utilized in order to provide two 100 kW feeds into the machine. (U.S.)

  9. A 2.5-kW industrial CO2 laser

    Science.gov (United States)

    Golov, V. K.; Ivanchenko, A. I.; Krasheninnikov, V. V.; Ponomarenko, A. G.; Shepelenko, A. A.

    1986-06-01

    A fast-flow laser is reported in which the active medium is excited by a self-sustained dc discharge produced by an electric-discharge device with nonsectioned electrodes. In the laser, two discharge gaps are formed by a flat anode and two cathodes, one on each side of the anode. A gas mixture is driven through the gasdynamic channel by a centrifugal fan rotating at 6000 rpm/min. With a mixture of CO2:N2:He = 2.5:7.5:5 mm Hg, the rated power is 2.5 kW; the maximum power is 4 kW with the mixture 2.5:7.5:10 mm Hg. The general design of the laser is described, and its principal performance characteristics are given.

  10. Performance improvement of 100 kW high frequency transmitter for CW operation

    International Nuclear Information System (INIS)

    Kwak, J. G.; Yoon, J. S.; Bae, Y. D.; Cho, C. G.; Wang, S. J.; Lee, K. D.

    2001-08-01

    For the plasma heating of KSTAR(Korea Superconducting Tokamak Advanced Research)by using ICH(Ion Cyclotron Heating), it is designed that the selective ion heating and current drive are performed by the transmitter with the rf power of 8 MW in the frequency range of 25-60 MHz. 100 kW HF transmitter was constructed for the high voltage/current test of ICH antenna and HF transmission components. The output power is about 100 kW around 30 MHz. Thomson 581 tetrode is used for the final amplifier whose cavity type is ground cathode. Overall gain is above 15 dB and the bandwidth is about 100 kHz

  11. A 200-kW wind turbine generator conceptual design study

    Science.gov (United States)

    1979-01-01

    A conceptual design study was conducted to define a 200 kW wind turbine power system configuration for remote applications. The goal was to attain an energy cost of 1 to 2 cents per kilowatt-hour at a 14-mph site (mean average wind velocity at an altitude of 30 ft.) The costs of the Clayton, New Mexico, Mod-OA (200-kW) were used to identify the components, subsystems, and other factors that were high in cost and thus candidates for cost reduction. Efforts devoted to developing component and subsystem concepts and ideas resulted in a machine concept that is considerably simpler, lighter in weight, and lower in cost than the present Mod-OA wind turbines. In this report are described the various innovations that contributed to the lower cost and lighter weight design as well as the method used to calculate the cost of energy.

  12. Engineering aspects of a thermal control subsystem for the 25 kW power module

    Science.gov (United States)

    Schroeder, P. E.

    1979-01-01

    The paper presents the key trade study results, analysis results, and the recommended thermal control approach for the 25 kW power module defined by NASA. Power conversion inefficiencies and component heat dissipation results in a minimum heat rejection requirement of 9 kW to maintain the power module equipment at desired temperature levels. Additionally, some cooling capacity should be provided for user payloads in the sortie and free-flying modes. The baseline thermal control subsystem includes a dual-loop-pumped Freon-21 coolant with the heat rejected from deployable existing orbiter radiators. Thermal analysis included an assessment of spacecraft orientations, radiator shapes and locations, and comparison of hybrid heat pipe and all liquid panels.

  13. Quantification in positron emission mammography (PEM) with planar detectors: contrast resolution measurements using a custom breast phantom and novel spherical hot-spots

    Science.gov (United States)

    Murthy, K.; Jolly, D.; Aznar, M.; Thompson, C. J.; Sciascia, P.; Loutfi, A.; Lisbona, R.; Gagnon, J. H.

    1999-12-01

    The authors have previously demonstrated that their Positron Emission Mammography-1 (PEM-1) system can successfully detect small (water. The heated solution is poured into spherical molds which are separated upon congealing to yield robust wall-less radioactive hot-spots. The hot-spots were uniform to within 1-5 parts in 100. Less than 0.1% of the total hot-spot activity leaked into the background in 30 minutes. Contrast resolution experiments have been performed with 12 mm and 16 mm diameter hot-spots in the breast phantom containing water with various amounts of background activity. In both cases, the observed contrast values agree well with the ideal values. In the case of the 12 mm hot-spot with a 350-650 keV energy window, image contrast differed from the ideal by an average of 11%. The image contrast for 12 mm hot-spot improved by 40% and the number of detected events decreased by 35% when the low energy threshold was increased from 300 keV to 450 keV.

  14. Draft, development and optimization of a fuel cell system for residential power generation with steam reformer; Entwurf, Aufbau und Optimierung eines PEM-Brennstoffzellensystems zur Hausenergieversorgung mit Dampfreformer

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, H

    2006-05-17

    The first development cycle of a residential power generation system is described. A steam reformer was chosen to produce hydrogen out of natural gas. After carbon monoxide purification with a preferential oxidation (PrOx) unit the hydrogen rich reformat gas is feed to the anode of the PEM-fuel cell, where due to the internal reaction with air oxygen form the cathode side water, heat and electricity is produced. Due to an incomplete conversion the anode off gas contains hydrogen and residual methane, which is feed to the burner of the steam reformer to reduce the needed amount of external fuel to heat the steam reformer. To develop the system the components are separately investigated and optimized in their construction or operation to meet the system requirements. After steady state and dynamic characterization of the components they were coupled one after another to build the system. To operate the system a system control was developed to operate and characterize this complex system. After characterization the system was analyzed for further optimization. During the development of the system inventions like a water cooled PrOx, an independent fuel cell controller or a burner for anodic off gas recirculation were made. The work gives a look into the interactions between the components and allows to understand the problems by coupling such components. (orig.)

  15. Operation result of 40kW class MCFC pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, H.; Hatori, S.; Hosaka, M.; Uematsu, H. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1996-12-31

    Ishikawajima-Harima Heavy Industries Co., Ltd. developed unique Molten Carbonate Fuel Cell (MCFC) system based on our original concept. To demonstrate the possibility of this system, based on MCFC technology of consigned research from New Energy and Industrial Technology Development Organization (NEDO) in Japan, we designed 40kW class MCFC pilot plant which had all equipments required as a power plant and constructed in our TO-2 Technical Center. This paper presents the test results of the plant.

  16. Wind turbine test Vestas V27-225 kW

    Energy Technology Data Exchange (ETDEWEB)

    Markkilde Petersen, S

    1990-10-15

    The report describes fundamental measurements performed on a Vestas-V27-225 kW pitch regulated wind turbine. The measurements carried out and reported here comprises the power output, system efficiency, energy production, transmission efficiency, rotor power, rotor efficiency, air-brakes efficiency, structural dynamics, loads at cut-in and braking, yaw error statistics, flapwise root bending moment and rotor thrust. (author).

  17. A CFD analysis on the effect of ambient conditions on the hygro-thermal stresses distribution in a planar ambient air-breathing PEM fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2011-01-01

    The need for improved lifetime of air-breathing proton exchange membrane (PEM) fuel cells for portable applications necessitates that the failure mechanisms be clearly understood and life prediction models be developed, so that new designs can be introduced to improve long-term performance. An operating air-breathing PEM fuel cell has varying local conditions of temperature and humidity. As a result of in the changes in temperature and moisture, the membrane, GDL and bipolar plates will all e...

  18. Producer gas fuelling of a 20kW output engine by gasification of solid biomass

    Energy Technology Data Exchange (ETDEWEB)

    Hollingdale, A C; Breag, G R; Pearce, D

    1988-11-01

    Motive power requirements in the range up to 100 kW shaft power are common in developing country processing operations. Producer gas-fuelled systems based upon a relatively cheap and simple manually operated gasifier or reactor using readily available biomass feedstock can offer in some cases an attractive alternative to fossil-fuelled power units. This bulletin outlines research and development work by the Industrial Development Department of the Overseas Development Natural Resources Institute for 20 kW shaft power output from producer gas derived from solid biomass. Biomass materials such as wood or shells can be carbonized to form charcoal or left in the natural uncarbonized state. In this work both carbonized and uncarbonized biomass fuel has been used to provide producer gas to fuel a Ford 2274E engine, an industrial version of a standard vehicle spark-ignition engine. Cross-draught and down-draught reactor designs were evaluated during trials with this engine. Also different gas cleaning and cooling arrangements were tested. Particular emphasis was placed on practical aspects of reactor/engine operation. This work follows earlier work with a 4 kW shaft power output system using charcoal-derived producer gas. (author).

  19. Performance of the 1 kW thermoelectric generator for diesel engines

    International Nuclear Information System (INIS)

    Bass, J.C.; Elsner, N.B.; Leavitt, F.A.

    1994-01-01

    Hi-Z Technology, Inc. (Hi-Z) has been developing a 1 kW thermoelectric generator for class eight Diesel truck engines under U.S. Department of Energy and California Energy Commission funding since 1992. The purpose of this generator is to replace the currently used shaft-driven alternator by converting part of the waste heat in the engine's exhaust directly to electricity. The preliminary design of this generator was reported at the 1992 meeting of the XI-ICT in Arlington, Texas. This paper will report on the final mechanical, thermal and thermoelectric design of this generator. The generator uses seventy-two of Hi-Z's 13 Watt bismuth-telluride thermoelectric modules for energy conversion. The number of modules and their arrangement has remained constant through the program. The 1 kW generator was tested on several engines during the development process. Many of the design features were changed during this development as more information was obtained. We have only recently reached our design goal of 1 kW output. The output parameters of the generator are reported. copyright 1995 American Institute of Physics

  20. Efficient 10 kW diode-pumped Nd:YAG rod laser

    Science.gov (United States)

    Akiyama, Yasuhiro; Takada, Hiroyuki; Sasaki, Mitsuo; Yuasa, Hiroshi; Nishida, Naoto

    2003-03-01

    As a tool for high speed and high precision material processing such as cutting and welding, we developed a rod-type all-solid-state laser with an average power of more than 10 kW, an electrical-optical efficiency of more than 20%, and a laser head volume of less than 0.05 m3. We developed a highly efficient diode pumped module, and successfully obtained electrical-optical efficiencies of 22% in CW operation and 26% in QCW operation at multi-kW output powers. We also succeeded to reduce the laser head volume, and obtained the output power of 12 kW with an efficiency of 23%, and laser head volume of 0.045 m3. We transferred the technology to SHIBAURA mechatronics corp., who started to provide the LD pumped Nd:YAG laser system with output power up to 4.5 kW. We are now continuing development for further high power laser equipment.

  1. Final report on 9 kW Stirling Engine for biogas and natural gas

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell

    2001-01-01

    The need for a simple and robust engine for natural gas and low quality gas has resulted in the design of a single cylinder, hermetic Stirling engine, which has an electric power output of 9 kW. Two engines have been built. One engine is intended for natural gas as fuel and the other is intended...... eliminates guiding forces on the pistons and the need for X-heads. Grease lubricated needle and ball bearings are used in the kinematic crank mechanism in order to avoid oil penetrating into the cylinder volumes. Working gas is Helium at 8 MPa mean pressure. The engine produce up to 11 kW of shaft power...... corresponding to approximately 10 kW of electric power. The design target was an efficiency of 26 % based on lower heat content of the gas to electricity, but only 24% were obtained. The decrease of efficiency is caused by inhomogeneous capacity flows in the air preheater and insufficient insulation...

  2. PLC based development of control, monitoring and interlock for 100 kW, 45.6 MHz ICRH system

    International Nuclear Information System (INIS)

    Jadav, Hiralal; Joshi, Rameshkumar; Mali, Aniruddh K.; Kadia; Bhavesh; Parmar; Maganbhai, Kiritkumar; Kulkarni, S.V.

    2015-01-01

    This paper presents details of PLC based system development for 100KW at the rate 45.6 MHz. Presently in ICRH RF DAC (Data acquisition and control) system existing based on real time VME and linux operating system. The ICRH system consists of 1.5 MW RF generator operating at 22- 40MHz which is used for second harmonic heating and pre-ionization experiments on SST-1 Tokamak at 1.5T and 3T magnetic field operation respectively. The task of PLC system in RF ICRH is to control, monitoring and interlocks HVDC power supply signal. Voltage and current signal of 2 kW, 20 kW, tetrode for 100 kW RF tube electrode like Filament, Control grid, Plate, Screen grid, signal monitor and voltage set raised by PLC analog IO module. Acknowledgement of the HVDC supply Filament, Control grid, Plate, Screen grid power supply is monitor and interlocks by PLC Digital IO module to interlocks stop the RF pulse and off HV power supply. The RF pulse(shot) to trigger signal generator (5mw) RF power output feed to LPA then chain of 2 KW, 20 KW, 100 KW at the rate 45.6 MHz. The programming logic controller (PLC) software is written in ladder language for AH500 Delta make using ISP Soft 2.04 and GUI is in the table form to control and monitor the parameters. Communication of PLC to PC by ethernet LAN network. (author)

  3. PEM fuel cells for mobile applications. Project part: Membrane development. Final report; PEM-Brennstoffzellen fuer mobile Anwendungen. Teilprojekt: Membranentwicklung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Frank, G

    1999-01-20

    Polymer-Electrolyte-Membrane Fuel Cells (PEMFC) are attractive candidates for next century propulsion systems in passenger cars. The technical feasibility has been demonstrated by several car manufacturers. Today, PEMFC lack economical viability. One of the reasons is the cost of currently used materials, e.g. membranes. This project target towards the development of low cost, non-fluorinated membranes, which fulfil all technical requirements in PEMFC systems. In the frame of this project we were able to successfully develop new membranes based on polyaromatic polymers, which can be produced on a technical scale. These membranes enabled high power densities, exceeding 700 mW/cm{sup 2} at 80 C and their longevity has been demonstrated successfully up to 5,000 hours. Therefore, these membranes have sufficient electrochemical stability for the application in fuel cells. The prices in mass production for these new membranes can get significantly below prices of fluorinated membranes. (orig.) [Deutsch] Polymer-Elektrolyt-Membran-Brennstoffzellen (PEMFC) gelten als aussichtsreiche Kandidaten fuer alternative Fahrzeugantriebe fuer das naechste Jahrzehnt. Die technische Machbarkeit ist bereits mehrfach demonstriert worden. Allerdings sind die Kosten der PEMFC-Systeme noch zu hoch u.a. durch zu hohe Kosten der eingesetzten Materialien, so auch der Membranen. Ziel des Projektes war daher die Entwicklung kostenguenstiger, nichtfluorierter Membranen, die die technischen Anforderungen fuer die Anwendung in der PEM-Brennstoffzelle erfuellen. Im Projekt konnten erfolgreich Membranen auf Basis polyaromatischer Polymere entwickelt werden, die sich auch im technischen Massstab herstellen lassen. Die Membranen ermoeglichen hohe Leistungsdichten groesser 700 mW/cm{sup 2} bei Betriebstemperaturen von 80 C. Die Lebensdauer der Membranen wurde erfolgreich ueber 5.000 Stunden nachgewiesen. Die elektrochemische Stabilitaet der untersuchten Materialien ist damit gegeben. Die Preise dieser

  4. Parameter changes during gradual flooding of a PEM fuel cell through EIS studies; Cambio en parametros de una celda de combustible PEM durante inundacion gradual mediante estudios de EIS

    Energy Technology Data Exchange (ETDEWEB)

    Cano Castillo, Ulises; Cruz Manzo, Samuel; Arriaga Hurtado, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Ortiz, Alondra; Orozco, German [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C. (CIDETEQ) (Mexico)

    2008-07-01

    The gradual flooding of a single PEM fuel cell was produced and Electrochemical Impedance Spectroscopy (EIS) measurements were realized in order to follow changes of the fuel cell impedance parameters. These changes were followed by using two equivalent circuit models: one simple model of the Randles type accounting for cathode and anode interfaces and a more complex model based on distributed elements, more suitable for porous electrodes in order to include protonic resistance of the catalyst layers. [Spanish] La inundacion gradual de una monocelda de combustible tipo PEM fue estudiada empleando espectroscopia de impedancia electroquimica (EIS), con el proposito de seguir cambios en los parametros de impedancia de la celda. Estos cambios fueron estudiados utilizando dos circuitos equivalentes: un modelo simple de tipo Randles, el cual considerara las interfaces del catodo y del anodo, y un modelo mas complejo basado en elementos distribuidos, el cual fuera adecuado para electrodos porosos, a fin de incluir la resistencia protonica de las capas catalizadoras.

  5. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  6. Experimental Study and Comparison of Various Designs of Gas Flow Fields to PEM Fuel Cells and Cell Stack Performance

    International Nuclear Information System (INIS)

    Liu, Hong; Li, Peiwen; Juarez-Robles, Daniel; Wang, Kai; Hernandez-Guerrero, Abel

    2014-01-01

    In this study, a significant number of experimental tests to proton exchange membrane (PEM) fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells have an effective membrane area of 23.5 cm 2 . The results showed that the serpentine flow channel design is still favorable, giving the best single fuel cell performance amongst all the studied flow channel designs. A novel symmetric serpentine flow field was proposed for a relatively large sized fuel cell application. Four fuel cell stacks each including four cells were assembled using different designs of serpentine flow channels. The output power performances of fuel cell stacks were compared and the novel symmetric serpentine flow field design is recommended for its very good performance.

  7. Investigation on the corrosion resistance of PIM 316L stainless steel in PEM fuel cell simulated environment

    International Nuclear Information System (INIS)

    Oliveira, Mara Cristina Lopes de; Costa, Isolda; Antunes, Renato Altobelli

    2009-01-01

    Bipolar plates play main functions in PEM fuel cells, accounting for the most part of the weight and cost of these devices. Powder metallurgy may be an interesting manufacturing process of these components owing to the production of large scale, complex near-net shape parts. However, corrosion processes are a major concern due to the increase of the passive film thickness on the metal surface, lowering the power output of the fuel cell. In this work, the corrosion resistance of PIM AISI 316L stainless steel specimens was evaluated in 1M H 2 SO 4 + 2 ppm HF solution at room temperature during 30 days of immersion. The electrochemical measurements comprised potentiodynamic polarization and electrochemical impedance spectroscopy. The surface morphology of the specimens was observed before and after the corrosion tests through SEM images. The material presented low corrosion current density suggesting that it is suitable to operate in the PEM fuel cell environment. (author)

  8. Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    The present work describes the ongoing development of high temperature PEM fuel cell systems fuelled by steam reformed methanol. Various fuel cell system solutions exist, they mainly differ depending on the desired fuel used. High temperature PEM (HTPEM) fuel cells offer the possibility of using...... methanol is converted to a hydrogen rich gas with CO2 trace amounts of CO, the increased operating temperatures allow the fuel cell to tolerate much higher CO concentrations than Nafion-based membranes. The increased tolerance to CO also enables the use of reformer systems with less hydrogen cleaning steps...... liquid fuels such as methanol, due to the increased robustness of operating at higher temperatures (160-180oC). Using liquid fuels such as methanol removes the high volume demands of compressed hydrogen storages, simplifies refueling, and enables the use of existing fuel distribution systems. The liquid...

  9. The use of PEM united regenerative fuel cells in solar- hydrogen systems for remote area power supply

    International Nuclear Information System (INIS)

    Arun K Doddathimmaiah; John Andrews

    2006-01-01

    Remote area power supply (RAPS) is a potential early market for renewable energy - hydrogen systems because of the relatively high costs of conventional energy sources in remote regions. Solar hydrogen RAPS systems commonly employ photovoltaic panels, a Proton Exchange Membrane (PEM) electrolyser, a storage for hydrogen gas, and a PEM fuel cell. Currently such systems are more costly than conventional RAPS systems employing diesel generator back up or battery storage. Unitized regenerative fuel cells (URFCs) have the potential to lower the costs of solar hydrogen RAPS systems since a URFC employs the same hardware for both the electrolyser and fuel cell functions. The need to buy a separate electrolyser and a separate fuel cell, both expensive items, is thus avoided. URFCs are in principle particularly suited for use in RAPS applications since the electrolyser function and fuel cell function are never required simultaneously. The present paper reports experimental findings on the performance of a URFC compared to that of a dedicated PEM electrolyser and a dedicated fuel cell. A design for a single-cell PEM URFC for use in experiments is described. The experimental data give a good quantitative description of the performance characteristics of all the devices. It is found that the performance of the URFC in the electrolyser mode is closely similar to that of the stand-alone electrolyser. In the fuel cell mode the URFC performance is, however, lower than that of the stand-alone fuel cell. The wider implications of these findings for the economics of future solar-hydrogen RAPS systems are discussed, and a design target of URFCs for renewable-energy RAPS applications proposed. (authors)

  10. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal co...

  11. Modeling optimizes PEM fuel cell durability using three-dimensional multi-phase computational fluid dynamics model

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2010-01-01

    Damage mechanisms in a proton exchange membrane (PEM) fuel cell are accelerated by mechanical stresses arising during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running, because it consists of the materials with different thermal expansion and swelling coefficients. Therefore, in order to acquire a complete understanding of the damage mechanisms in the membrane and gas diffusion layers, mechanical response under steady-state hygro-thermal stresses should be ...

  12. A comparison between progressive extension method (PEM) and iterative method (IM) for magnetic field extrapolations in the solar atmosphere

    Science.gov (United States)

    Wu, S. T.; Sun, M. T.; Sakurai, Takashi

    1990-01-01

    This paper presents a comparison between two numerical methods for the extrapolation of nonlinear force-free magnetic fields, viz the Iterative Method (IM) and the Progressive Extension Method (PEM). The advantages and disadvantages of these two methods are summarized, and the accuracy and numerical instability are discussed. On the basis of this investigation, it is claimed that the two methods do resemble each other qualitatively.

  13. Water Uptake Profile In a Model Ion-Exchange Membrane: Conditions For Water-Rich Channels

    Science.gov (United States)

    2014-12-01

    these issues, more research is needed to improve their performance. Aqueous alkaline electrolytes such as potassium hydroxide (KOH) trace their begin...1.2 Water distribution Motivation Hydroxide ion transport through the membrane is fundamentally dependent on the amount and distribution of water...hydrophilic-to-hydrophobic ratio, for several reasons. First, this is the case for Nafion, the gold standard for PEM membranes; its unique pore structure

  14. Identification of novel mazEF/pemIK family toxin-antitoxin loci and their distribution in the Staphylococcus genus.

    Science.gov (United States)

    Bukowski, Michal; Hyz, Karolina; Janczak, Monika; Hydzik, Marcin; Dubin, Grzegorz; Wladyka, Benedykt

    2017-10-18

    The versatile roles of toxin-antitoxin (TA) systems in bacterial physiology and pathogenesis have been investigated for more than three decades. Diverse TA loci in Bacteria and Archaea have been identified in genome-wide studies. The advent of massive parallel sequencing has substantially expanded the number of known bacterial genomic sequences over the last 5 years. In staphylococci, this has translated into an impressive increase from a few tens to a several thousands of available genomes, which has allowed us for the re-evalution of prior conclusions. In this study, we analysed the distribution of mazEF/pemIK family TA system operons in available staphylococcal genomes and their prevalence in mobile genetic elements. 10 novel m azEF/pemIK homologues were identified, each with a corresponding toxin that plays a potentially different and undetermined physiological role. A detailed characterisation of these TA systems would be exceptionally useful. Of particular interest are those associated with an SCCmec mobile genetic element (responsible for multidrug resistance transmission) or representing the joint horizontal transfer of TA systems and determinants of vancomycin resistance from enterococci. The involvement of TA systems in maintaining mobile genetic elements and the associations between novel mazEF/pemIK loci and those which carry drug resistance genes highlight their potential medical importance.

  15. Fabrication and in vitro evaluation of the collagen/hyaluronic acid PEM coating crosslinked with functionalized RGD peptide on titanium.

    Science.gov (United States)

    Huang, Ying; Luo, Qiaojie; Li, Xiaodong; Zhang, Feng; Zhao, Shifang

    2012-02-01

    Surface modification of titanium (Ti) using biomolecules has attracted much attention recently. In this study, a new strategy has been employed to construct a stable and bioactive coating on Ti. To this end, a derivative of hyaluronic acid (HA), i.e. HA-GRGDSPC-(SH), was synthesized. The disulfide-crosslinked Arg-Gly-Asp (RGD)-containing collagen/hyaluronic acid polyelectrolyte membrane (PEM) coating was then fabricated on Ti through the alternate deposition of collagen and HA-GRGDSPC-(SH) with five assembly cycles and subsequent crosslinking via converting free sulphydryl groups into disulfide linkages (RGD-CHC-Ti group). The assembly processes for PEM coating and the physicochemical properties of the coating were carefully characterized. The stability of PEM coating in phosphate-buffered saline solution could be adjusted by the crosslinking degree, while its degradation behaviors in the presence of glutathione were glutathione concentration dependent. The adhesion and proliferation of MC3T3-E1 cells were significantly enhanced in the RGD-CHC-Ti group. Up-regulated bone specific genes, enhanced alkaline phosphatase activity and osteocalcin production, the increased areas of mineralization were also observed in the RGD-CHC-Ti group. These results indicate that the strategy employed herein may function as an effective way to construct stable, RGD-containing bioactive coatings on Ti. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. First Results of the IOT Based 300 kW 500 MHz Amplifier for the Diamond Light Source

    CERN Document Server

    Jensen, Morten; Maddock, Matt; Müller, Marc; Rains, Simon; Watkins, Alun V

    2005-01-01

    We present the first RF measurements of the IOT based 300 kW 500 MHz amplifier for the Diamond Light Source. Four 80 kW IOTs are combined using a waveguide combiner to achieve the RF requirement of up to 300 kW for each of three superconducting cavities for the main storage ring. The IOTs are protected by a full power circulator and a 300 kW ferrite RF load. This is the first time IOTs will be used for a synchrotron light source. This paper gives an overview of the design of the Thales amplifiers and IOTs with commissioning results including measurements of key components and overall RF performance following factory tests and the installation of the first unit

  17. MegaFlex Scale-Up Cost & Risk Reduction for >50kW Future Power Demands, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As the MegaFlex solar array is scaled for power demands greater than 50kW over the next 20 years and deployed load requirements remain high or increase, advanced...

  18. Compact Source of Electron Beam with Energy of 200 kEv and Average Power of 2 kW

    CERN Document Server

    Kazarezov, Ivan; Balakin, Vladimir E; Bryazgin, Alex; Bulatov, Alexandre; Glazkov, Ivan; Kokin, Evgeny; Krainov, Gennady; Kuznetsov, Gennady I; Molokoedov, Andrey; Tuvik, Alfred

    2005-01-01

    The paper describes a compact electron beam source with average electron energy of 200 keV. The source operates with pulse power up to 2 MW under average power not higher than 2 kW, pulsed beam current up to 10 A, pulse duration up to 2 mks, and repetition rate up to 5 kHz. The electron beam is extracted through aluminium-beryllium alloy foil. The pulse duration and repetition rate can be changed from control desk. High-voltage generator for the source with output voltage up to 220 kV is realized using the voltage-doubling circuit which consists of 30 sections. The insulation type - gas, SF6 under pressure of 8 atm. The cooling of the foil supporting tubes is provided by a water-alcohol mixture from an independent source. The beam output window dimensions are 180?75 mm, the energy spread in the beam +10/-30%, the source weight is 80 kg.

  19. Technical and environmental performance of 10 kW understocker boiler during combustion of biomass and conventional fuels

    Directory of Open Access Journals (Sweden)

    Junga Robert

    2017-01-01

    Full Text Available This paper treats about the impact fuels from biomass wastes and coal combustion on a small boiler operation and the emission of pollutants in this process. Tests were performed in laboratory conditions on a water boiler with retort furnace and the capacity of 10 kW. Fuels from sewage sludge and agriculture wastes (PBZ fuel and a blend of coal with laying hens mature (CLHM were taken into account. The results in emission changes of NOx, CO2, CO and SO2 and operating parameters of the tested boiler during combustion were investigated. The obtained results were compared with corresponding results of flame coal (GFC. Combustion of the PBZ fuel turned out to be a stable process in the tested boiler but the thermal output has decreased in about 30% compared to coal combustion, while CO and NOx emission has increased. Similar effect was observed when 15% of the poultry litter was added to the coal. In this case thermal output has also decreased (in about 20% and increase of CO and NOx emission was observed. As a conclusion, it can be stated that more effective control system with an adaptive air regulation and a modified heat exchanger could be useful in order to achieve the nominal power of the tested boiler.

  20. Technical and environmental performance of 10 kW understocker boiler during combustion of biomass and conventional fuels

    Science.gov (United States)

    Junga, Robert; Wzorek, Małgorzata; Kaszubska, Mirosława

    2017-10-01

    This paper treats about the impact fuels from biomass wastes and coal combustion on a small boiler operation and the emission of pollutants in this process. Tests were performed in laboratory conditions on a water boiler with retort furnace and the capacity of 10 kW. Fuels from sewage sludge and agriculture wastes (PBZ fuel) and a blend of coal with laying hens mature (CLHM) were taken into account. The results in emission changes of NOx, CO2, CO and SO2 and operating parameters of the tested boiler during combustion were investigated. The obtained results were compared with corresponding results of flame coal (GFC). Combustion of the PBZ fuel turned out to be a stable process in the tested boiler but the thermal output has decreased in about 30% compared to coal combustion, while CO and NOx emission has increased. Similar effect was observed when 15% of the poultry litter was added to the coal. In this case thermal output has also decreased (in about 20%) and increase of CO and NOx emission was observed. As a conclusion, it can be stated that more effective control system with an adaptive air regulation and a modified heat exchanger could be useful in order to achieve the nominal power of the tested boiler.

  1. Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application

    International Nuclear Information System (INIS)

    Tang, Yong; Yuan, Wei; Pan, Minqiang; Wan, Zhenping

    2011-01-01

    A hybrid system combining a 2 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack and a lead-acid battery pack is developed for a lightweight cruising vehicle. The dynamic performances of this PEMFC system with and without the assistance of the batteries are systematically investigated in a series of laboratory and road tests. The stack current and voltage have timely dynamic responses to the load variations. Particularly, the current overshoot and voltage undershoot both happen during the step-up load tests. These phenomena are closely related to the charge double-layer effect and the mass transfer mechanisms such as the water and gas transport and distribution in the fuel cell. When the external load is beyond the range of the fuel cell system, the battery immediately participates in power output with a higher transient discharging current especially in the accelerating and climbing processes. The DC-DC converter exhibits a satisfying performance in adaptive modulation. It helps rectify the voltage output in a rigid manner and prevent the fuel cell system from being overloaded. The dynamic responses of other operating parameters such as the anodic operating pressure and the inlet and outlet temperatures are also investigated. The results show that such a hybrid system is able to dynamically satisfy the vehicular power demand.

  2. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  3. Report on the results of the FY 1999 R and D of polymer electrolyte fuel cells. Development of the power system technology (Development of high voltage several 10 kW class dispersed generation system); 1999 nendo kotai kobunshigata nenryo denchi no kenkyu kaihatsu seika hokokusho. Hatsuden system gijutsu no kaihatsu (koden'atsugata suju kW kyu bunsan dengen system no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper described the results of the FY 1999 development of polymer electrolyte fuel cell and several 10 kW class dispersed generation system. The humidification of the cell body is the internal humidification method in which water is directly supplied to cell, which makes the cell life long. The cooling using latent heat of vaporization of the water supplied makes the temperature distribution inside the cell face homogeneous. In the test for long life, the system was stably operated at voltage lowering speed of 11mV/1000h. The optimization of water supply structure in the stack increases the latent heat cooling amount and makes the temperature distribution inside the cell face homogeneous. The reduction of CO concentration in reformed gas is extremely important for improvement of cell performance and long-term stabilization of cell voltage. By the two-stage structure selective oxidation device, the CO concentration at inlet, 5,000 ppm, can be reduced to below 10 ppm at outlet. In the demonstrative experiment on the several 10 kW class dispersed generation system, efforts for reduction in size of structural equipment and package were made, and a possible size of 200*150*180cm was obtained. Based on the chart of 30kW class system flow, the heat material balance was analyzed, and the power generation efficiency of 40% at a.c. sending end and overall efficiency of 80% were confirmed. (NEDO)

  4. Minimization of emissions. (CO and NO) on a 300 kW wood fuel boiler

    International Nuclear Information System (INIS)

    Johansson, Erik

    1997-01-01

    The purpose with this investigation was to study a 300 kW power plant in Ed, Dalsland that is using biomass as fuel and to reduce CO and NO-pollutants as much as possible. The experiments were performed according to statistical experimental design and the result was compared with similar studies. The most important results of the present work were: Today, the boiler is using biomass with too much moisture and that's the reason why the smoke contains a great quantity of CO. This could be reduced with a lower quantity of moisture in the biomass or rebuilding of the boiler. Doors and dampers should be fully closed so air can't pass through because that would reduce the energy losses in the smoke. The automatic control should be changed to reduce the time that biomass are not transported in to the boiler. Biomass with low content of moisture (about 15 %) are a good fuel in the boiler. The smoke needs to be measured continuously to reduce the pollutants because it is not possible to detect visually. If a low amount of oxygen in the smoke (7 %) and high amount of primary air (52 % of total air) and the plant is using low power (120 kW), pollutants is reduced. When using middle power (190 kW), a low amount of oxygen in the smoke is also needed (7%) but a smaller amount of air to the bed (40%) will reduce pollutants. The reason for this is probably that too much air in the bed will make it too cool. The result showed that by using statistical experimental design the amount of CO was reduced with 45 % to 263 ppm and the amount of NO reduced with 80 % to 30 ppm (51 mg/MJ NO 2 ) while using biomass with 34 % moisture Examination paper. 28 refs, 13 figs, 9 tabs, appendixes

  5. Prediction of deformation and hygro-thermal stresses distribution in PEM fuel cell vehicle using three-dimensional CFD model

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy & Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2012-07-01

    Durability is one of the most critical remaining issues impeding successful commercialization of broad PEM fuel cell transportation energy applications. Automotive fuel cells are likely to operate with neat hydrogen under load-following or load-levelled modes and be expected to withstand variations in environmental conditions, particularly in the context of temperature and atmospheric composition. In addition, they are also required to survive over the course of their expected operational lifetimes i.e., around 5,500 hrs, while undergoing as many as 30,000 startup/shutdown cycles. The damage mechanisms in a PEM fuel cell are accelerated by mechanical stresses arising during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running, because it consists of the materials with different thermal expansion and swelling coefficients. Therefore, in order to acquire a complete understanding of the damage mechanisms in the membrane, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operating conditions and in real cell geometry (three-dimensional). In this work, full three-dimensional, non-isothermal computational fluid dynamics model of a PEM fuel cell has been developed to simulate the stresses inside the PEM fuel cell, which are occurring during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running due to the changes of temperature and relative humidity. A unique feature of the present model is to incorporate the effect of hygro and thermal stresses into actual three-dimensional fuel cell model. In addition, the temperature and humidity dependent material properties are utilize in the simulation for the membrane. The model is shown to be able to understand the many interacting, complex electrochemical, transport phenomena, and stresses distribution that have limited experimental data. This model is used to study and analyse the effect of operating parameters on the

  6. Development of a 3 kW double-acting thermoacoustic Stirling electric generator

    International Nuclear Information System (INIS)

    Wu, Zhanghua; Yu, Guoyao; Zhang, Limin; Dai, Wei; Luo, Ercang

    2014-01-01

    Highlights: • A 3 kW double-acting thermoacoustic Stirling electric generator is introduced. • 1.57 kW electric power with 16.8% thermal-to-electric efficiency was achieved. • High mechanical damping coefficient greatly decreases the system performance. • Performance difference is significant, which also decreased system performance. - Abstract: In this paper, a double-acting thermoacoustic Stirling electric generator is proposed as a new device capable of converting external heat into electric power. In the system, at least three thermoacoustic Stirling heat engines and three linear alternators are used to build a multiple-cylinder electricity generator. In comparison with the conventional thermoacoustic electricity generation system, the double-acting thermoacoustic Stirling electric generator has advantages on efficiency, power density and power capacity. In order to verify the idea, a prototype of 3 kW three-cylinder double-acting thermoacoustic Stirling electric generator is designed, built and tested. Based on the classic thermoacoustic theory, numerical simulation is performed to obtain the thermodynamic parameters of the engine. And distributions of key parameters are presented for a better understanding of the energy conversion process in the engine. In the experiments, a maximum electric power of about 1.57 kW and a maximum thermal-to-electric conversion efficiency of 16.8% were achieved with 5 MPa pressurized helium and 86 Hz working frequency. However, we find that the mechanical damping coefficient of the piston is dramatically increased due to the deformation of the cylinder wall caused by high thermal stress during the experiments. Thereby, the system performance was greatly reduced. Additionally, the performance differences between three engines and three alternators are significant, such as the heating temperature difference between three heater blocks of the engines, the piston displacement and the output electric power differences between

  7. A novel DWDM method to design a 100-kW Laser

    Science.gov (United States)

    Basu, Santanu

    2010-02-01

    In this paper, I will present the design analysis of a novel concept that may be used to generate a diffraction-limited beam from an aperture so that as much as 450 kW of laser power can be efficiently deposited on a diffraction-limited spot at a range. The laser beam will be comprised of many closely spaced wavelength channels as in a DWDM. The technique relies on the ability of an angular dispersion amplifier to multiplex a large number of high power narrow frequency lasers, wavelengths of which may be as close as 0.4 nm.

  8. Analysis of RF section of 250 kW CW C-Band high power klystron

    International Nuclear Information System (INIS)

    Badola, Richa; Kaushik, Meenu; Baloda, Suman; Kirti; Vrati; Lamba, O.S.; Joshi, L.M.

    2012-01-01

    Klystron is a microwave tube which is used as a power amplifier in various applications like radar, particle accelerators and thermonuclear reactors. The paper deals with the analysis of RF section of 250 kW CW C band high power klystron for 50 to 60 kV beam voltage The simulation is done using Poisson's superfish and AJ disk software's Design of cavity is done using superfish. The result of superfish is used to decide the dimensions of the geometry of the cavity and AJ disk is used to determined the centre to centre distances between the cavities in order to obtain the desired powers. (author)

  9. 500 keV, 10 kW DC electron accelerator at BRIT, Vashi

    International Nuclear Information System (INIS)

    Sharma, D.K.; Rajan, R.N.; Bakhtsingh, R.I.; Acharya, S.; Rajawat, R.K.

    2017-01-01

    The 500 keV DC accelerator was indigenously designed and developed by Accelerator and Pulse Power Division, BARC during 1994-97 and commissioned at REPF Hall, BRIT, Vashi on 10"t"h August, 1998. The accelerator operation at 3kW beam power for 8 hour shifts was established in February 2001, confirming to industrial standards for EB treatment of plastic sheets as well as various surface-treatment processes for value addition of the products and materials. Since then, this EB facility is functional and being regularly utilized for various applications

  10. Assessment of 25 kW free-piston Stirling technology alternatives for solar applications

    Science.gov (United States)

    Erbeznik, Raymond M.; White, Maurice A.; Penswick, L. B.; Neely, Ronald E.; Ritter, Darren C.; Wallace, David A.

    1992-01-01

    The final design, construction, and testing of a 25-kW free-piston advanced Stirling conversion system (ASCS) are examined. The final design of the free-piston hydraulic ASCS consists of five subsystems: heat transport subsystem (solar receiver and pool boiler), free-piston hydraulic Stirling engine, hydraulic subsystem, cooling subsystem, and electrical and control subsystem. Advantages and disadvantages are identified for each technology alternative. Technology alternatives considered are gas bearings vs flexure bearings, stationary magnet linear alternator vs moving magnetic linear alternator, and seven different control options. Component designs are generated using available in-house procedures to meet the requirements of the free-piston Stirling convertor configurations.

  11. Numerical Simulation of MIG for 42 GHz, 200 kW Gyrotron

    Science.gov (United States)

    Singh, Udaybir; Bera, Anirban; Kumar, Narendra; Purohit, L. P.; Sinha, Ashok K.

    2010-06-01

    A triode type magnetron injection gun (MIG) of a 42 GHz, 200 kW gyrotron for an Indian TOKAMAK system is designed by using the commercially available code EGUN. The operating voltages of the modulating anode and the accelerating anode are 29 kV and 65 kV respectively. The operating mode of the gyrotron is TE03 and it is operated in fundamental harmonic. The simulated results of MIG obtained with the EGUN code are validated with another trajectory code TRAK.

  12. Design of diode electron gun for 250 kW CW klystron

    International Nuclear Information System (INIS)

    Prasad, M.; Pande, S.A.; Hannurkar, P.R.

    2005-01-01

    A 250 kW CW klystron at frequencies 350 MHz and 700 MHz is being developed at Centre for Advanced Technology. These klystrons are required for forthcoming project like 100 MeV proton Linac for Spallation Neutron Source (SNS) as a main rf sources. In order to develop klystrons, we have designed the diode electron gun, which delivers more than 10 A beam current at 50 kV. This paper describes the simulation results of electron gun with computer code EGUN. (author)

  13. Power train analysis for the DOE/NASA 100-kW wind turbine generator

    Science.gov (United States)

    Seidel, R. C.; Gold, H.; Wenzel, L. M.

    1978-01-01

    Progress in explaining variations of power experienced in the on-line operation of a 100 kW experimental wind turbine-generator is reported. Data are presented that show the oscillations tend to be characteristic of a wind-driven synchronous generator because of low torsional damping in the power train, resonances of its large structure, and excitation by unsteady and nonuniform wind flow. The report includes dynamic analysis of the drive-train torsion, the generator, passive driveline damping, and active pitch control as well as correlation with experimental recordings. The analysis assumes one machine on an infinite bus with constant generator-field excitation.

  14. Instalación solar fotovoltaica -20 Kw para conexión a red

    OpenAIRE

    Sacristán Benito, Silvia

    2014-01-01

    Este TFG trata sobre el diseño de una instalación de generación eléctrica de una potencia nominal de 20 kW mediante paneles fotovoltaicos. Estos paneles se situarán sobre la cubierta de una nave industrial en la localidad de Soria. Toda la energía producida será vertida a la red eléctrica de baja tensión, abasteciendo al entorno cercano. Se describe, el funcionamiento de una instalación de este tipo, en la cual el componente más destacado es el panel fotovoltaico, que genera...

  15. Survey of the small (300 W to 300 kW) wind turbine market in Canada

    International Nuclear Information System (INIS)

    2005-01-01

    The significant growth in the Canadian wind power industry over the past decade has resulted in an increased number of large utility-scale wind farms appearing across Canada. Although large wind turbines are often acknowledged as a mature technology that can provide clean, reliable and economically competitive power, smaller wind turbines have had relatively little documentation in comparison. The aim of this report was to provide a profile of the Canadian market for small wind turbines (SWTs), divided into 3 categories: mini wind turbines with a rated power output from 300 watts to 1000 watts; small wind turbines up to 30 kW; and medium-sized wind turbines up to 300 kW. Study findings were based on interviews with industry experts and a comprehensive survey of 135 companies involved in the Canadian SWT industry. Details of annual sales and total installed capacity were provided, as well as a summary of key SWT markets. An overview of Canadian market demand and international SWT manufacturing capacity was presented. Opportunities and barriers were examined. It was observed that experiences in the United States have indicated that SWTs are more successful when combined with enabling policies, market incentives, and education and awareness raising. The U.S. small wind industry has estimated that in the near future, the SWT industry could supply 50,000 MW, employ 10,000 people and generate $1 billion per year. A number of opportunities for the promotion of the small wind industry in Canada were reviewed, including the niche manufacturing sector in the 20 kW to 50 kW range. Issues concerning the economic benefits of a SWT manufacturing industry were examined. It was suggested that as the SWT markets grow and mature, turbine prices are expected to fall and turbine effectiveness and reliability will increase. An SWT promotional strategy was outlined with incentives in 4 areas: (1) market development; (2) policy development; (3) technology development; and (4) education

  16. 5 MeV 300 kW electron accelerator project

    International Nuclear Information System (INIS)

    Auslender, V.L.; Cheskidov, V.G.; Gornakov, I.V.

    2004-01-01

    The paper presents a project of a high power linear accelerator for industrial applications. The accelerator has a modular structure and consists of the chain of accelerating cavities connected by the axis-located coupling cavities with coupling slots in the common walls. Main parameters of the accelerator are: operating frequency of 176 MHz, electron energy of up to 5 MeV, average beam power of 300 kW. The required RF pulse power can be supplied by the TH628 diacrode

  17. Development of 750 keV/20kW DC accelerator

    International Nuclear Information System (INIS)

    Bapna, S.C.; Banwari, R.; Venkateswaran, S.V.; Tripathi, Alok; Kasliwal, Apollo; Pramod, R.; Kumar, Pankaj

    2001-01-01

    This paper discusses development of a DC accelerator at CAT for industrial applications. This accelerator is housed in two floors; first floor having the accelerator and the ground floor is an irradiation cell. It will operate in the voltage range of 300kV to 750kV and will give maximum beam power of 20kW. The electron gun, acceleration column, focusing coil, high voltage multiplier stack, filament power supply and the control unit are housed in a 1.5 m diameter 3.2 m high pressure vessel which will be pressurized to 5.5 bar of SF 6 gas

  18. First 200 kW CW operation of a 60 GHz gyrotron

    International Nuclear Information System (INIS)

    Jory, H.; Bier, R.; Evans, S.; Felch, K.; Fox, L.; Huey, H.; Shively, J.; Spang, S.

    1983-01-01

    The gyrotron is a microwave tube which employs the electron cyclotron maser interaction to produce high power output at millimeter wavelengths. It has important and growing applications for heating of plasmas in controlled thermonuclear fusion experiments. The Varian 60 GHz gyrotron has recently generated microwave power in excess of 200 kW during CW operation, wth excellent dynamic range and operating stability. This is the highest average power ever produced by a microwave tube in the millimeter wave region. A description of the gyrotron design and test results are presented

  19. Electron beam welding of heavy thicknesses with a 200 KW gun

    International Nuclear Information System (INIS)

    Binard, J.; Ducrot, A.

    1986-09-01

    In this report, we describe our 200 kW gun, 100 m 3 vacuum chamber E B welding equipment, implemented since 1985 to increase the process development in the heavy mechanics; to score the goal, we study the influence of parameters as: welding positions, chemical analysis of the material and workpiece thickness. Simultaneously, we carry out welding tests of branch pipes or nozzles on tubes and shells. Some results are shown and good mechanical properties are obtained on thicknesses up to 300 mm

  20. Magnetic Measurement of the 10 kW, IR FEL Dipole Magnets

    International Nuclear Information System (INIS)

    Tommy Hiatt; Kenneth Baggett; J. Beck; George Biallas; David Douglas; Kevin Sullivan; C. Tennant

    2003-01-01

    Magnetic measurements have been performed on several families of dipoles for the 10 kW IR-FEL presently under construction at the Thomas Jefferson National Accelerator Facility. The requirements for these magnets include varying field strengths, large horizontal apertures and parts in 10,000 field homogeneity as well as setability of core and integrated field. Measurements were made to quantify the magnets according to these requirements and to determine the hysteresis protocol, ramp rate dependence, and field clamp settings that are used. This paper will describe the results of these measurements and the procedures used to accomplish them