WorldWideScience

Sample records for koon chodendo flywheel

  1. Research and development of a superconducting flywheel power storage system in fiscal 1998. Research and development of rotation control technology; 1998 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu. Kaiten seigyo no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    Element technology research was performed on 'rotation control' aimed at practical application of a 10-MW class high-temperature superconducting flywheel power storage system. As part of the research, researches were carried out on small-size and middle-size models, low-loss control type magnetic bearing, and large-size models. For the small-size model, as a result of performing performance tests on the protective bearing by using a testing machine, it was revealed that the model is free of problems in the test for up to 5000 rpm. For the middle-size model, fabrication and installation were completed on a middle-size rotation control testing equipment having CFRP-made flywheel with a diameter of 1 m. In the control type bearing, as a result of adopting a homo-polar type magnetic pole, the rotation loss was reduced to about 1/5 of that of a hetero-polar type. The amount is about 75 W (12000 rpm) when the bias current is 1.5 A. Concept design was implemented on a 2-MWh flywheel bearing system supported with a high-temperature superconducting magnetic bearing as a full-size flywheel. The CFRP-made flywheel has a diameter of 4 m, and a circumferential velocity of 1200 m. (NEDO)

  2. Report on the FY 1999 R and D on high temperature superconducting flywheel energy storage. System design/evaluation (Comparative study and information collection); 1999 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu. System sekkei hyoka (hikaku kento, joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Following the previous fiscal year, a flywheel technology survey committee by men of learning and experience was organized to make a comparative study on various flywheel energy storage systems. Concerning the list-making for checking each element of the high temperature superconducting flywheel system, characteristics and reasons for employment of the small model and medium model were outlined in terms of the system structure (structure in single unit, structure in more than one units), flywheel, bearing, electrically-driven generator, etc. Also about the system in which no superconducting magnetic bearing is used, the information is collected in Japan and abroad through internet, etc., to outline the system. Further, main results obtained in the project were made public in main international conferences or academic meetings such as EUCAS and ISOTC108. At the same time, visits were paid to research institutes such as Cambridge University in the U.K. for the purpose of supplementing the survey so far made, to investigate the recent trend of the research. (NEDO)

  3. Report on results 1998. Research and development on high-temperature superconducting flywheel power storage (investigation on system introduction); 1998 nendo seika hokokusho. Koon chodendo flywheel denryoku chozo kenkyu kaihatsu (system donyu chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    In introducing high-temperature superconducting flywheel power storage equipment to an electrical power system, adaptability is examined and evaluated concerning secondary effect that can be expected while a load leveling function is maintained. The 1998 plan is such that the functions and usages other than the load leveling are put in order for such equipment, and that the effect/adaptability in the case of the introduction into the power system is evaluated by means of simulation and literature studies. The high-temperature superconducting flywheel power storage equipment may be used for such purposes as energy adjustment for a short time, system voltage adjustment and emergency power source, other than the load leveling, on the basis of the characteristics that enable high speed control of active/reactive power and storage/release of energy. Enumerated, as the effects obtainable in introducing these uses into the power system, are enhancement in system stability, improvement in voltage stability, improvement in instantaneous voltage drop, maintenance of system frequency, compensation of fluctuating load, countermeasures against power outrage, and output leveling of intermittent power sources, and these effects were examined. (NEDO)

  4. Report of fiscal 1997 R and D result on high temperature superconducting flywheel power storage. System design and evaluation (comparative study and information gathering); 1997 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu seika hokokusho. System sekkei hyoka (hikaku kento, joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Information gathering and comparative study were conducted for the purpose of putting to practical use a 10 MWh class high temperature superconducting flywheel power storage system. This paper explains the fiscal 1977 results. On various methods conceivable as a flywheel system, characteristics were extracted in such points as structure, shape, axial support system, generator motor, and protective system, and compared with the method being developed in the present project. Test items methods, etc., were studied for a small model system (0.5 kWh, {phi} 400 mm, 30,000 rpm) for the purpose of clarifying problems and ways in approaching a large system (10 MWh class) through various tests of the small one. The main test items were a free-run test, steady state rotation test and a heat-run test, and the main points to evaluate were oscillation characteristics and the control performance of AMB, flux creep and loss, for example. Investigation was conducted of a dummy flywheel experimental equipment and a highly efficient power converter with the object of contributing to the development of a flywheel equipment for daily load leveling. The research members visited seven major research organizations in Europe and gathered information. (NEDO)

  5. Report on results 1998. Research and development on high-temperature superconducting flywheel power storage (system design/evaluation (comparative assessment/information collection)); 1998 nendo seika hokokusho. Koon chodendo flywheel denryoku chozo kenkyu kaihatsu (system sekkei, hyoka (hikaku kento, joho shushu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    For the purpose of evaluating the basic characteristics of high-temperature superconducting magnetic bearings (SBM), a system model is designed, experimentally manufactured and tested, which is embodied in the design/evaluation of a large-scale system, with an investigation carried out for the introduction of the system into an electrical power system. In this framework, an examination and research were conducted for the system design technology on which each component technology in the system structure can be applied consistently in the system. In the comparative assessment of various flywheel power storage systems, the specifications and achievements were compared in the component elements of the flywheel systems developed in Europe, America and Japan through the literature studies and the field survey, with examination performed towards the future development. As a result, it was found that, in America, bearings were all SMB's without control. Boeing's objective for the development is 10kWh or so in view of convenience for transportation and is prone to arrange it in numbers. Further, investigations were made in literature and documents on the domestic and international trend of development of high-temperature superconducting flywheel systems, elucidating the details of the development. (NEDO)

  6. Report on results 1998. Research and development on high-temperature superconducting flywheel power storage (system design/evaluation (comparative assessment/information collection)); 1998 nendo seika hokokusho. Koon chodendo flywheel denryoku chozo kenkyu kaihatsu (system sekkei, hyoka (hikaku kento, joho shushu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    For the purpose of evaluating the basic characteristics of high-temperature superconducting magnetic bearings (SBM), a system model is designed, experimentally manufactured and tested, which is embodied in the design/evaluation of a large-scale system, with an investigation carried out for the introduction of the system into an electrical power system. In this framework, an examination and research were conducted for the system design technology on which each component technology in the system structure can be applied consistently in the system. In the comparative assessment of various flywheel power storage systems, the specifications and achievements were compared in the component elements of the flywheel systems developed in Europe, America and Japan through the literature studies and the field survey, with examination performed towards the future development. As a result, it was found that, in America, bearings were all SMB's without control. Boeing's objective for the development is 10kWh or so in view of convenience for transportation and is prone to arrange it in numbers. Further, investigations were made in literature and documents on the domestic and international trend of development of high-temperature superconducting flywheel systems, elucidating the details of the development. (NEDO)

  7. 1998 Annual Study Report. Research and development of power storage by high-temperature superconducting flywheels. Research and development of high-temperature superconducting materials; 1998 nendo seika hokokusho. Koon chodendo flywheel denryoku chozo kenkyu kaihatsu (koon chodendozai no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This R and D program is aimed at optimization of superconductors for improved levitation force of the superconducting magnetic bearings which support a 10 MWh power storage system by high-temperature superconducting flywheel (FW), to clarify possibility of sizing up the FW body and R and D themes for the commercialization. The processes are screened to simultaneously solve the conflicting targets of sizing up the sample of the Y-based bulk superconducting material and improved crystal orientation of the whole bearing, leading to selection of multi-seeding. The sample made on a trial basis improves levitation force by approximately 30%. It is considered that the OCMG-processed rare-earth-based superconducting material can generate very strong electromagnetic force, when combined with a permanent magnet. The Ag-doped Sm-based bulk material shows a reduced creep-caused loss of loading force, and a lower loss of Jc resulting from increased temperature than the Y-based one, decreasing AC loss and controlling temperature rise. The running characteristics and mechanical strength of the FW, and causes for temporal changes are investigated, in order to evaluate the superconducting material characteristics. (NEDO)

  8. Report of fiscal 1997 R and D result on high temperature superconducting flywheel power storage. R and D of manufacture of superconducting magnetic bearing; 1997 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu seika hokokusho. Chodendo denjiki jikuuke no seisaku no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Element technologies were developed for the manufacture of superconducting magnetic bearing (SMB) with the purpose of putting to practical use a 10 MWh class high-temperature superconducting flywheel power storage system. This paper explains the fiscal 1997 results. A {phi} 180 radial type SMB was designed and fabricated that satisfied the rotational strength at 17,200 rpm for a medium-sized model for measuring characteristics. Compared with the bearing made in the preceding year, improvements in the bearing dynamics were contrived such as flux creep, load capacity and rotational loss, with the maximum flux density improved by 30%; however, only a few percent improvement was attained in field uniformity. An SMB characteristics measuring and testing machine was built, with the characteristics measured. It was confirmed that the rotational loss of a control type magnetic bearing and the intrinsic performance of the testing machine were unchanged regardless of the operation/non-operation of the radial type SMB. The characteristics of the {phi} 180 axial bearing were measured by a stationary type bearing constant testing machine made in 1995, which provided a load capacity characteristics curve with the initially set gap as a parameter as well as a minor loop curve and a load capacity. Also obtained were the maximum average bearing pressure and the maximum load capacity. (NEDO)

  9. Report of fiscal 1997 R and D result on high temperature superconducting flywheel power storage. R and D of characteristic analysis of superconducting magnetic bearing; 1997 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu seika hokokusho. chodendo jiki jikuuke no tokusei kaiseki no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    This paper explains fiscal 1997 results of the development of technologies for characteristic analysis of superconducting magnetic bearings (SMB), the development aimed at putting a 10 MWh high temperature superconducting flywheel power storage system to practical use. Following fiscal 1996, calculation programs were prepared for a load capacity and bearing constant (spring constant, damping constant) on an axial type SMB, with validity of the program examined through comparison with experimental values. A finite element method was applied to a complex magnetic field by a magnet arrangement devised for the purpose of improving load capacity, dividing a superconductor into divided sections so that the effect of a complex magnetic field distribution could be reflected, determining the magnetization generating in each divided section by using a two-dimensional Bean model, and developing a method for calculating load capacity of each divided section by a magnetic moment method. A program was completed for calculating the load capacity and bearing constant of the entire bearing in the axial type SMB. The calculated value of the load capacity and the bearing constant showed a superior agreement with the experimental value. (NEDO)

  10. Flywheels

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Donald Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    In use since ancient times, the flywheel has smoothed the flow of energy in rotating machinery from small, hand held devices to the largest engines. Today, standalone flywheel systems are being developed to store electrical energy. These systems are deployed in applications as diverse as uninterruptible power supplies, gantry cranes, and large research facilities. This chapter presents the technical foundation of flywheel design, a comparison with other energy storage technologies, and a survey of applications where flywheel energy storage systems are currently in service.

  11. Report on achievements in fiscal 1999. Research and development of electric power storage using high-temperature super-conductive flywheels (research and development on manufacture of super-conductive magnetic bearings); 1999 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu. Chodendo jiki jikuuke no seisaku no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Introduction of electric power storage equipment is sought, which will be discretely installed in power distribution substations. Therefore, elementary technologies were researched on 'manufacture of super-conductive magnetic bearings' intended for practical application of an electric power storage system of 10-MWh class using high-temperature super-conductive flywheels. Research and development has been performed on different kinds of super-conductive magnetic bearings which combine high-temperature super-conductive materials with permanent magnets. In order to measure the characteristics of the super-conductive magnetic bearings, measurements were executed on rotation loss, loading power and bearing constants. In the measurement of the rotation loss, a {phi} 180 axial type super-conductive magnetic bearing using an Sm-based superconductor ({phi} 180AxSMB2) was given various kinds of tests by using a rotation loss measuring and testing machine. The results were compared with those for the {phi} 180AxSMB1 using the YBCO-based superconductor and other SMBs. In the measurements for the other items, various items were measured on dynamic rotation properties of the {phi} 180AxSMB and {phi} 180RaSMB by using a static bearing constant testing machine. In discussing the loading power characteristics, the dynamic rotation properties of the {phi} 180RaSMB were measured, and the loading power characteristics were discussed on super-conductive magnetic bearings for medium size models and super-conductive magnetic bearings for large system FS. (NEDO)

  12. 1998 Annual Study Report. Research and development of power storage by high-temperature superconducting flywheels (research and development of permanent magnet); 1998 nendo seika hokokusho. Koon chodendo flywheel denryoku chozo kenkyu kaihatsu (eikyu jishaku no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The permanent magnets have been investigated and developed, for eventual commercialization of a 10 MWh power storage system by high-temperature superconducting flywheel. The permanent magnet rotors have been already developed in the previous years using a praseodymium-based magnet (Pr magnet) and neodymium-based sintered magnet (Nd sintered magnet), and the target rotational speed of 30,000 rpm has been attained. For development of the magnetic circuit to produce a stronger and smoother magnetic field, magnetic flux density of the Nd sintered magnet is measured. It shows a lower magnetic flux irregularity than the Pd magnet, but there is still room for further improvement. For development of large-size permanent magnet fabrication techniques, it is confirmed that the large-size Nd sintered magnet can be easily magnetized by partial magnetizing, as is the case with the Pr magnet. In this year, the irregular magnetic flux is three-dimensionally simulated, based on the results obtained in the previous years, to find that the simulated results are in good agreement with the observed ones. The measures to solve the problems are also investigated. It is also confirmed that the large-size ring magnet can be easily magnetized by partial magnetization. (NEDO)

  13. Flywheels: Mobile applications

    Science.gov (United States)

    Rabenhorst, D. W.

    1981-06-01

    The characteristics of modern flywheel energy storage systems uniquely qualify the flywheel for use in a variety of road vehicles, off road vehicles and rail vehicles. About sixty studies and vehicle demonstration programs in a dozen countries indicate that future such flywheel powered vehicles will have improved performance, reduced energy and fuel consumption and reduced life cycle cost. Flywheel capabilities and mobile applications were reviewed.

  14. Flywheel energy storage workshop

    Energy Technology Data Exchange (ETDEWEB)

    O`Kain, D.; Carmack, J. [comps.

    1995-12-31

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  15. Lightweight flywheel containment

    Science.gov (United States)

    Smith, James R.

    2004-06-29

    A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.

  16. Design of a Flywheel Storage System

    International Nuclear Information System (INIS)

    Cavia Santos, S.; Garcia-Tabares Rodriguez, L.

    1998-01-01

    Storing mechanical kinetic energy for short time with flywheels has been known for centuries. However the applications of flywheels for longer storage times like electrochemical batteries is recent. Advanced flywheels have been possible thanks to the development from materials science with high tensile strength composite materials, and bearing technology with magnetic bearing, which suspend rotating shaft or rotor by magnetic forces. This summary report provides a study of the mechanics of flywheel, design considerations, material for advance flywheels, and magnetic bearing. Finally a brief description of a conventional flywheel prototype is given. (Author)

  17. Flywheel Charge/Discharge Control Developed

    Science.gov (United States)

    Beach, Raymond.F.; Kenny, Barbara H.

    2001-01-01

    A control algorithm developed at the NASA Glenn Research Center will allow a flywheel energy storage system to interface with the electrical bus of a space power system. The controller allows the flywheel to operate in both charge and discharge modes. Charge mode is used to store additional energy generated by the solar arrays on the spacecraft during insolation. During charge mode, the flywheel spins up to store the additional electrical energy as rotational mechanical energy. Discharge mode is used during eclipse when the flywheel provides the power to the spacecraft. During discharge mode, the flywheel spins down to release the stored rotational energy.

  18. Flywheel Energy Storage for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Magnus Hedlund

    2015-09-01

    Full Text Available A review of flywheel energy storage technology was made, with a special focus on the progress in automotive applications. We found that there are at least 26 university research groups and 27 companies contributing to flywheel technology development. Flywheels are seen to excel in high-power applications, placing them closer in functionality to supercapacitors than to batteries. Examples of flywheels optimized for vehicular applications were found with a specific power of 5.5 kW/kg and a specific energy of 3.5 Wh/kg. Another flywheel system had 3.15 kW/kg and 6.4 Wh/kg, which can be compared to a state-of-the-art supercapacitor vehicular system with 1.7 kW/kg and 2.3 Wh/kg, respectively. Flywheel energy storage is reaching maturity, with 500 flywheel power buffer systems being deployed for London buses (resulting in fuel savings of over 20%, 400 flywheels in operation for grid frequency regulation and many hundreds more installed for uninterruptible power supply (UPS applications. The industry estimates the mass-production cost of a specific consumer-car flywheel system to be 2000 USD. For regular cars, this system has been shown to save 35% fuel in the U.S. Federal Test Procedure (FTP drive cycle.

  19. Safety flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, R.T.

    1977-01-17

    The patent application relates to an inertial energy storage device employing a safety flywheel which is made of flexible material such as a twisted rope ring. The rigidity required for such a device is achieved through centrifugal forces inherent in such a device when it is operating. A small number of the strands of the rope ring have a tensile strength that is lower than the vast majority of the strands of the rope ring whereby should any of these strands fail, they will begin to whiplash allowing such a failure to be detected and braked before a catastrophic failure occurs. This is accomplished by the inclusion of glass tubes located around the periphery of the flywheel. The tubes are in communication with a braking fluid reservoir. The flywheel and glass tubes are enclosed within a vacuum-tight housing.

  20. Flywheel and power unit

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, R.W.

    1992-10-28

    A power unit, e.g. for an electrically driven vehicle, incorporates a flywheel for storing kinetic energy and a battery for storing electrical energy. The battery is incorporated as a substantial part of the rotating mass of the flywheel. Preferably the unit further includes an electrical machine being a motor or generator or machine operable either as a motor or a generator for transferring energy between the battery and the flywheel and/or for the input or output of rotary energy therefrom or thereto. The motor may be used for powering the flywheel and may also operate in a regenerative mode for recharging the unit on de-acceleration of the vehicle. The unit of the invention may also be utilized as an electrical stored power source, e.g. wind or water driven. (author)

  1. Stationary flywheel energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gilhaus, A; Hau, E; Gassner, G; Huss, G; Schauberger, H

    1981-01-01

    The aim of this system study is to find out industrial applications of stationary flywheel energy accumulators. The economic value for the consumer and the effects on the power supply grid are investigated. Up to now, stationary flywheel energy accumulators have only been used in a small range. The main reason for thinking of the application in a wider range was the hope that those could be used economically for lowering the maximum output demand of the power supply grid. The possible savings in energy costs, however, proved to be too small for paying back the investment costs. Further benefits are necessary for advantageous application. As to overall economy, compensation of short time maximum power output seems to be more favorable at the power stations. An additional possibility for energy storage by flywheels is given where otherwise lost energy can be used effectively, according to the successful brake energy storage in vehicles. Under this aspect the future use of flywheels in wind-power-plants seems to be promising. Attractive savings of energy can be obtained by introducing modern flywheel technology for emergency power supply units which are employed for instance in telecommunication systems. Especially the application for emergency power supply, in power stations and in combustion with wind energy converters need further investigation.

  2. Improved flywheel materials :

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, Timothy J.; Bell, Nelson S; Ehlen, Mark Andrew; Anderson, Benjamin John; Miller, William Kenneth

    2013-09-01

    As alternative energy generating devices (i.e., solar, wind, etc) are added onto the electrical energy grid (AC grid), irregularities in the available electricity due to natural occurrences (i.e., clouds reducing solar input or wind burst increasing wind powered turbines) will be dramatically increased. Due to their almost instantaneous response, modern flywheel-based energy storage devices can act a mechanical mechanism to regulate the AC grid; however, improved spin speeds will be required to meet the necessary energy levels to balance these green energy variances. Focusing on composite flywheels, we have investigated methods for improving the spin speeds based on materials needs. The so-called composite flywheels are composed of carbon fiber (C-fiber), glass fiber, and a glue (resin) to hold them together. For this effort, we have focused on the addition of fillers to the resin in order to improve its properties. Based on the high loads required for standard meso-sized fillers, this project investigated the utility of ceramic nanofillers since they can be added at very low load levels due to their high surface area. The impact that TiO2 nanowires had on the final strength of the flywheel material was determined by a three-point-bend test. The results of the introduction of nanomaterials demonstrated an increase in strength of the flywheels C-fiber-resin moiety, with an upper limit of a 30% increase being reported. An analysis of the economic impact concerning the utilization of the nanowires was undertaken and after accounting for new-technology and additional production costs, return on improved-nanocomposite investment was approximated at 4-6% per year over the 20-year expected service life. Further, it was determined based on the 30% improvement in strength, this change may enable a 20-30% reduction in flywheel energy storage cost ($/kW-h).

  3. Flywheels Would Compensate for Rotor Imbalance

    Science.gov (United States)

    Hrastar, J. A. S.

    1982-01-01

    Spinning flywheels within rotor can null imbalance forces in rotor. Flywheels axes are perpendicular to each other and to rotor axis. Feedback signals from accelerometers or strain gages in platform control flywheel speeds and rotation directions. Concept should be useful for compensating rotating bodies on Earth. For example, may be applied to large industrial centrifuge, particularly if balance changes during operation.

  4. A composite-flywheel burst-containment study

    Science.gov (United States)

    Sapowith, A. D.; Handy, W. E.

    1982-01-01

    A key component impacting total flywheel energy storage system weight is the containment structure. This report addresses the factors that shape this structure and define its design criteria. In addition, containment weight estimates are made for the several composite flywheel designs of interest so that judgements can be made as to the relative weights of their containment structure. The requirements set down for this program were that all containment weight estimates be based on a 1 kWh burst. It should be noted that typical flywheel requirements for regenerative braking of small automobiles call for deliverable energies of 0.25 kWh. This leads to expected maximum burst energies of 0.5 kWh. The flywheels studied are those considered most likely to be carried further for operational design. These are: The pseudo isotropic disk flywheel, sometimes called the alpha ply; the SMC molded disk; either disk with a carbon ring; the subcircular rim with cruciform hub; and Avco's bi-directional circular weave disk.

  5. Flywheel in an all-electric propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, Johan

    2011-07-01

    Energy storage is a crucial condition for both transportation purposes and for the use of electricity. Flywheels can be used as actual energy storage but also as power handling device. Their high power capacity compared to other means of storing electric energy makes them very convenient for smoothing power transients. These occur frequently in vehicles but also in the electric grid. In both these areas there is a lot to gain by reducing the power transients and irregularities. The research conducted at Uppsala Univ. and described in this thesis is focused on an all-electric propulsion system based on an electric flywheel with double stator windings. The flywheel is inserted in between the main energy storage (assumed to be a battery) and the traction motor in an electric vehicle. This system has been evaluated by simulations in a Matlab model, comparing two otherwise identical drivelines, one with and one without a flywheel. The flywheel is shown to have several advantages for an all-electric propulsion system for a vehicle. The maximum power from the battery decreases more than ten times as the flywheel absorbs and supplies all the high power fluxes occurring at acceleration and braking. The battery delivers a low and almost constant power to the flywheel. The amount of batteries needed de- creases whereas the battery lifetime and efficiency increases. Another benefit the flywheel configuration brings is a higher energy efficiency and hence less need for cooling. The model has also been used to evaluate the flywheel functionality for an electric grid application. The power from renewable intermittent energy sources such as wave, wind and current power can be smoothened by the fly- wheel, making these energy sources more efficient and thereby competitive with a remaining high power quality in the electric grid

  6. Superconducting bearings for flywheel applications

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, Asger Bech

    2001-05-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found on the applications of superconducting bearings in flywheels. (au)

  7. Recommended Practices for the Safe Design and Operation of Flywheels

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Donald Arthur [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    Flywheel energy storage systems are in use globally in increasing numbers . No codes pertaining specifically to flywheel energy storage exist. A number of industrial incidents have occurred. This protocol recommends a technical basis for safe flywheel de sign and operation for consideration by flywheel developers, users of flywheel systems and standards setting organizations.

  8. Modeling, Testing, and Characteristic Analysis of a Planetary Flywheel Inerter

    Directory of Open Access Journals (Sweden)

    Zheng Ge

    2018-01-01

    Full Text Available We propose the planetary flywheel inerter, which is a new type of ball screw inerter. A planetary flywheel consists of several planetary gears mounted on a flywheel bracket. When the flywheel bracket is driven by a screw and rotating, each planetary gear meshing with an outer ring gear generates a compound motion composed of revolution and rotation. Theoretical analysis shows that the output force of the planetary flywheel inerter is proportional to the relative acceleration of one terminal of the inerter to the other. Optimizing the gear ratio of the planetary gears to the ring gear allows the planetary flywheel to be lighter than its traditional counterpart, without any loss on the inertance. According to the structure of the planetary flywheel inerter, nonlinear factors of the inerter are analyzed, and a nonlinear dynamical model of the inerter is established. Then the parameters in the model are identified and the accuracy of the model is validated by experiment. Theoretical analysis and experimental data show that the dynamical characteristics of a planetary flywheel inerter and those of a traditional flywheel inerter are basically the same. It is concluded that a planetary flywheel can completely replace a traditional flywheel, making the inerter lighter.

  9. Flywheel system using wire-wound rotor

    Science.gov (United States)

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.

    2016-06-07

    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.

  10. Superconducting bearings in flywheels

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T.A.; Campbell, A.M.; Ganney, I.; Lo, W. [Cambridge Univ. (United Kingdom). Interdisciplinary Research Centre in Superconductivity (IRC); Twardowski, T. [International Energy Systems, Chester High Road, Neston, South Wirral (United Kingdom); Dawson, B. [British Nuclear Fuels, Capenhurst, South Wirral (United Kingdom)

    1998-05-01

    Investigations are being carried out into the use of superconducting magnetic bearings to levitate energy storage flywheels. In a planned program of work, Cambridge University are aiming to produce a practical bearing system for Pirouette(TM). The Pirouette(TM) system is designed to provide 5 kWh of recoverable energy which is currently recoverable at a rate of 5 kW (future revisions will provide up to 50 kW). IES (a British Nuclear Fuels subsidiary) the owners of the Pirouette(TM) machine have supplied Cambridge with a flywheel. This flywheel weighs >40 kg and is being levitated using an Evershed-type arrangement in which the superconductor is being used to stabilize the interaction between two magnets. To date we have demonstrated stable levitation in static and low speed tests in a rig designed for low speeds of rotation in air. A second rig which is currently under construction at BNFL will run in vacuum at speeds of up to 50 (orig.) 5 refs.

  11. Composite flywheel development completion report, May 1--September 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Huddleston, R. L.; Kelly, J. J.; Knight, C. E.

    1977-05-01

    The program to design, fabricate, and performance test a prototype, vehicular-sized, composite flywheel is described. The overall program scope encompasses development of both the flywheel and its containment; however, the FY 1976-1976T objective was directed toward development of the flywheel and testing it in existing facilities. The development effort was successful, leading to successful testing of a flywheel design which demonstrated an energy density performance of 10.1 Wh/lb during spin testing. The initial application selected for development of the composite flywheel was the heat engine/flywheel hybrid propulsion system for a vehicle. This application was selected by the ERDA Advanced Physical Methods Branch staff because of its high potential for conservation of petroleum fuel in both the near and far-term time frames. Other applications, such as utility load leveling, represent potential areas for significant energy savings but require more extensive development programs and funding resources. Successful development of a high-performance, composite, vehicular flywheel represents one step along the development path leading toward larger, higher-energy storage flywheel applications.

  12. A Static Burst Test for Composite Flywheel Rotors

    Science.gov (United States)

    Hartl, Stefan; Schulz, Alexander; Sima, Harald; Koch, Thomas; Kaltenbacher, Manfred

    2016-06-01

    High efficient and safe flywheels are an interesting technology for decentralized energy storage. To ensure all safety aspects, a static test method for a controlled initiation of a burst event for composite flywheel rotors is presented with nearly the same stress distribution as in the dynamic case, rotating with maximum speed. In addition to failure prediction using different maximum stress criteria and a safety factor, a set of tensile and compressive tests is carried out to identify the parameters of the used carbon fiber reinforced plastics (CFRP) material. The static finite element (FE) simulation results of the flywheel static burst test (FSBT) compare well to the quasistatic FE-simulation results of the flywheel rotor using inertia loads. Furthermore, it is demonstrated that the presented method is a very good controllable and observable possibility to test a high speed flywheel energy storage system (FESS) rotor in a static way. Thereby, a much more expensive and dangerous dynamic spin up test with possible uncertainties can be substituted.

  13. Analisa Variable Moment of Inertia (VMI Flywheel pada Hydro-Shock Absorber Kendaraan

    Directory of Open Access Journals (Sweden)

    Hasbulah Zarkasy

    2017-01-01

    Full Text Available Flywheel selama ini dimanfaatkan untuk menyimpan energi mekanik pada mesin, membuat mesin berputar dengan lebih lembut. Prinsip kerja dari flywheel adalah dengan memanfaatkan momen inersia. Baru-baru ini dilakukan penelitian lebih lanjut mengenai pemanfaatan dari flywheel, yakni pada sistem suspense, akan tetapi selama ini penelitian yang dilakukan terbatas pada flywheel dengan momen inersia yang konstan (Constant Moment of Inertia. Kali ini akan dilakukan penelitian mengenai Variable Moment of Inertia Flywhel atau dengan kata lain flywheel yang momen inersianya berubah-ubah. Flywheel ini terdiri dari dua bagian utama, yakni flywheel berongga dan slider yang dapat bergerak bebas di sepanjang guide track. Percobaan bertujuan untuk mengetahui bagaimana karakteristik gaya redam dari VMI Flywheel. Juga akan dianalisa seperti apa respon dinamis dari slider selama flywheel berputar. Selain itu respon dinamis kendaraan saat VMI Flywheel ini dipasangkan juga dianalisa. Hasil yang didapat menunjukkan bahwa variasi massa slider berpengaruh terhadap gaya redam yang dihasilkan oleh VMI Flywheel. Semakin besar massa slider, gaya redam yang muncul juga semakin besar. Faktor frekuensi input juga berpengaruh, sebab semakin besar frekuensi input yang pada shock absorber, gaya redam yang timbul juga membesar. Perpindahan yang dialami oleh slider juga tergantung pada jenis massa slider tersebut. Semakin besar massa slider, perpindahan yang dialami juga akan semakin besar. Performa VMI Flywheel secara umum pada frekuensi rendah. Sedangkan pada frekuensi tinggi, performa VMI Flywheel cenderung tidak bagus dan menyebabkan kendaraan tidak nyaman.

  14. Study of flywheel energy storage for space stations

    Science.gov (United States)

    Gross, S.

    1984-01-01

    The potential of flywheel systems for space stations using the Space Operations Center (SOC) as a point of reference is discussed. Comparisons with batteries and regenerative fuel cells are made. In the flywheel energy storage concept, energy is stored in the form of rotational kinetic energy using a spinning wheel. Energy is extracted from the flywheel using an attached electrical generator; energy is provided to spin the flywheel by a motor, which operates during sunlight using solar array power. The motor and the generator may or may not be the same device. Flywheel energy storage systems have a very good potential for use in space stations. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special impotance relative to batteries, are high energy density (lighter weight), longer cycle and operating life, and high efficiency which minimizes the amount of orbital makeup fuel required. In addition, flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have the potential for very high discharge rate. Major disadvantages are noted.

  15. Durability of filament-wound composite flywheel rotors

    Science.gov (United States)

    Koyanagi, Jun

    2012-02-01

    This paper predicts the durability of two types of flywheels, one assumes to fail in the radial direction and the other assumes to fail in the circumferential direction. The flywheel failing in the radial direction is a conventional filament-wound composite flywheel and the one failing in the circumferential direction is a tailor-made type. The durability of the former is predicted by Micromechanics of Failure (MMF) (Ha et al. in J. Compos. Mater. 42:1873-1875, 2008), employing time-dependent matrix strength, and that of the latter is predicted by Simultaneous Fiber Failure (SFF) (Koyanagi et al. in J. Compos. Mater. 43:1901-1914, 2009), employing identical time-dependent matrix strength. The predicted durability of the latter is much greater than that of the former, depending on the interface strength. This study suggests that a relatively weak interface is necessary for high-durability composite flywheel fabrication.

  16. Superconductor bearings, flywheels and transportation

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Rothfeld, R; Riedel, T; Goebel, B; Wippich, D; Schirrmeister, P

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS–FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN 2 . More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  17. Analysis of the energy capacity of rim-spoke composite flywheels

    International Nuclear Information System (INIS)

    Moorlat, P.A.; Portnov, G.G.

    1986-01-01

    The rim-spoke flywheel consisting of a rim, connected to the hub by spokes encompassing the rim periphery, is one of the most promising types of energy accumulators. For the rational design of rim-spoke flywheels, the authors investigate the dependence of their mass energy capacity and their volume energy capacity; the limit speed on the geometric parameters of the flywheel and the properties of the composites used in making the rim and the spokes are also examined. It is shown through various programs, worked out for analyzing the energy capacity of rim-spoke flywheels, that they can substantially facilitate the designing of such flywheels according to specified requirements that their operational characteristics have to meet

  18. A Shaftless Magnetically Levitated Multifunctional Spacecraft Flywheel Storage System

    Science.gov (United States)

    Stevens, Ken; Thornton, Richard; Clark, Tracy; Beaman, Bob G.; Dennehy, Neil; Day, John H. (Technical Monitor)

    2002-01-01

    Presently many types of spacecraft use a Spacecraft Attitude Control System (ACS) with momentum wheels for steering and electrochemical batteries to provide electrical power for the eclipse period of the spacecraft orbit. Future spacecraft will use Flywheels for combined use in ACS and Energy Storage. This can be done by using multiple wheels and varying the differential speed for ACS and varying the average speed for energy storage and recovery. Technology in these areas has improved since the 1990s so it is now feasible for flywheel systems to emerge from the laboratory for spacecraft use. This paper describes a new flywheel system that can be used for both ACS and energy storage. Some of the possible advantages of a flywheel system are: lower total mass and volume, higher efficiency, less thermal impact, improved satellite integration schedule and complexity, simplified satellite orbital operations, longer life with lower risk, less pointing jitter, and greater capability for high-rate slews. In short, they have the potential to enable new types of missions and provide lower cost. Two basic types of flywheel configurations are the Flywheel Energy Storage System (FESS) and the Integrated Power and Attitude Control System (IPACS).

  19. Design optimisation of a flywheel hybrid vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kok, D.B.

    1999-11-04

    This thesis describes the design optimisation of a flywheel hybrid vehicle with respect to fuel consumption and exhaust gas emissions. The driveline of this passenger car uses two power sources: a small spark ignition internal combustion engine with three-way catalyst, and a highspeed flywheel system for kinetic energy storage. A custom-made continuously variable transmission (CVT) with so-called i{sup 2} control transports energy between these power sources and the vehicle wheels. The driveline includes auxiliary systems for hydraulic, vacuum and electric purposes. In this fully mechanical driveline, parasitic energy losses determine the vehicle's fuel saving potential to a large extent. Practicable energy loss models have been derived to quantify friction losses in bearings, gearwheels, the CVT, clutches and dynamic seals. In addition, the aerodynamic drag in the flywheel system and power consumption of auxiliaries are charted. With the energy loss models available, a calculation procedure is introduced to optimise the flywheel as a subsystem in which the rotor geometry, the safety containment, and the vacuum system are designed for minimum energy use within the context of automotive applications. A first prototype of the flywheel system was tested experimentally and subsequently redesigned to improve rotordynamics and safety aspects. Coast-down experiments with the improved version show that the energy losses have been lowered significantly. The use of a kinetic energy storage device enables the uncoupling of vehicle wheel power and engine power. Therefore, the engine can be smaller and it can be chosen to operate in its region of best efficiency in start-stop mode. On a test-rig, the measured engine fuel consumption was reduced with more than 30 percent when the engine is intermittently restarted with the aid of the flywheel system. Although the start-stop mode proves to be advantageous for fuel consumption, exhaust gas emissions increase temporarily

  20. Flywheels for Low-Speed Kinetic Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Portnov, G.; Cruz, I.; Arias, F.; Fiffe, R. P.

    2003-07-01

    A brief overview of different steel disc-type flywheels is presented. It contents the analysis of relationship between stress-state and kinetic energy of rotating body, comparison of the main characteristics of flywheels and description of their optimization procedures. It is shown that profiles of the discs calculated on a basis of plane stress-state assumption may be considered only as a starting point for its further improvement using 3-D approach. The aim of the review is to provide a designer for a insight into problem of shaping of steel flywheels. (Author) 19 refs.

  1. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  2. Flywheel energy storage; Schwungmassenspeicher

    Energy Technology Data Exchange (ETDEWEB)

    Bornemann, H.J. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany)

    1996-12-31

    Energy storages may be chemical systems such as batteries, thermal systems such as hot-water tanks, electromagnetic systems such as capacitors and coils, or mechanical systems such as pumped storage power systems or flywheel energy storages. In flywheel energy storages the energy is stored in the centrifugal mass in the form of kinetic energy. This energy can be converted to electricity via a motor/generator unit and made available to the consumer. The introduction of magnetic bearings has greatly enhanced the potential of flywheel energy storages. As there is no contact between the moving parts of magnetic bearings, this technology provides a means of circumventing the engineering and operational problems involved in the we of conventional bearings (ball, roller, plain, and gas bearings). The advantages of modern flywheel energy storages over conventional accumulators are an at least thousandfold longer service life, low losses during long-time storage, greater power output in the case of short-time storage, and commendable environmental benignity. (orig./HW) [Deutsch] Als Enegiespeicher kommen chemische Systeme, z.B. Batterien, thermische Systeme, z.B. Warmwassertanks, elektromagnetische Systeme, z.B. Kondensatoren und Spulen, sowie mechanische Systeme, z.B. Pumpspeicherwerke und Schwungmassenspeicher in Frage. In einem Schwungmassenspeicher wird Energie in Form von kinetischer Energie in der Schwungmasse gespeichert. Ueber eine Moter/Generator Einheit wird diese Energie in elektrischen Strom umgewandelt und dem Verbraucher zugefuehrt. Mit der Einfuehrung von magnetischen Lagern konnte die Leistungsfaehigkeit von Schwungmassenspeichern erheblich gesteigert werden. Da in einem Magnetlager keine Beruehrung zwischen sich bewegenden Teilen besteht, wird ein Grossteil der mit dem Einsatz konventioneller Lager (Kugel- und Rollenlager, Gleitlager und Gaslager) verbundenen ingenieurtechnischen und betriebstechnischen Probleme vermieden. Die Vorteile von modernen

  3. JET flywheel generators

    International Nuclear Information System (INIS)

    Huart, M.; Sonnerup, L.

    1986-01-01

    Two large vertical shaft flywheel generators each provides the JET device with peak power up to 400 MW and energy up to 2600 MJ per pulse to induce and confine the multi-mega-ampere plasma current. The integrated rotor flywheel consists of a 650 tonne/10 m diameter rim carrying the poles of the machine. The energy is stored kinetically during a 9 min interval of acceleration from half-speed to full-speed and then released during a 20 s long deceleration. A design life of 100 000 cycles at full energy rating was specified. The mechanical design and construction of the generators is reviewed. Particular attention is paid to the assessment of the stresses and fatigue life of the rotor system, its dynamic behaviour (rim movement, critical speed and balancing) and on the performance in operation of the large thrust bearing. (author)

  4. Safety in unlimited power supply. Method and means of parallel operation of flywheel aggregates. [parallel operation of flywheel machines

    Energy Technology Data Exchange (ETDEWEB)

    Krause, E [Struever (A.) K.G., Hamburg (Germany, F.R.)

    1975-11-01

    A special type of Diesel emergency generator sets, i.e., with flywheel machines is described. Construction and operation of a flywheel machine are described and reasons are given for a possible or necessary parallel operation. The basic requirements for parallel operation are explained and the intrinsic operation is described. Special designs are also presented.

  5. Start It up: Flywheel Energy Storage Efficiency

    Science.gov (United States)

    Dunn, Michelle

    2011-01-01

    The purpose of this project was to construct and test an off-grid photovoltaic (PV) system in which the power from a solar array could be stored in a rechargeable battery and a flywheel motor generator assembly. The mechanical flywheel energy storage system would in turn effectively power a 12-volt DC appliance. The voltage and current of…

  6. Design and Construction of 10 kWh Class Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Jung, S. Y.; Han, S. C.; Han, Y. H.; Park, B. J.; Bae, Y. C.; Lee, W. R.

    2011-01-01

    A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. A 10 kWh class flywheel energy storage system (FESS) has been developed to evaluate the feasibility of a 35 kWh class SFES with a flywheel Ip/If ratio larger than 1. The 10 kWh class FESS is composed of a main frame, a composite flywheel, active magnetic dampers (AMDs), a permanent magnet bearing, and a motor/generator. The flywheel of the FESS rotates at a very high speed to store energy, while being levitated by a permanent magnetic bearing and a pair of thrust AMDs. The 10 kWh class flywheel is mainly composed of a composite rotor assembly, where most of the energy is stored, two radial and two thrust AMD rotors, which dissipate vibration at critical speeds, a permanent magnet rotor, which supports most of the flywheel weight, a motor rotor, which spins the flywheel, and a central hollow shaft, where the parts are assembled and aligned to. The stators of each of the main components are assembled on to housings, which are assembled and aligned to the main frame. Many factors have been considered while designing each part of the flywheel, stator and frame. In this study, a 10 kWh class flywheel energy storage system has been designed and constructed for test operation.

  7. Comparison of joint kinetics during free weight and flywheel resistance exercise.

    Science.gov (United States)

    Chiu, Loren Z F; Salem, George J

    2006-08-01

    The most common modality for resistance exercise is free weight resistance. Alternative methods of providing external resistance have been investigated, in particular for use in microgravity environments such as space flight. One alternative modality is flywheel inertial resistance, which generates resistance as a function of the mass, distribution of mass, and angular acceleration of the flywheel. The purpose of this investigation was to characterize net joint kinetics of multijoint exercises performed with a flywheel inertial resistance device in comparison to free weights. Eleven trained men and women performed the front squat, lunge, and push press on separate days with free weight or flywheel resistance, while instrumented for biomechanical analysis. Front squats performed with flywheel resistance required greater contribution of the hip and ankle, and less contribution of the knee, compared to free weight. Push presses performed with flywheel resistance had similar impulse requirements at the knee compared to free weight, but greater impulse requirement at the hip and ankle. As used in this investigation, flywheel inertial resistance increases the demand on the hip extensors and ankle plantarflexors and decreases the mechanical demand on the knee extensors for lower extremity exercises such as the front squat and lunge. Exercises involving dynamic lower and upper extremity actions, such as the push press, may benefit from flywheel inertial resistance, due to the increased mechanical demand on the knee extensors.

  8. Flywheels for Low-Speed Kinetic Energy Storage Systems

    International Nuclear Information System (INIS)

    Portnov, G.; Cruz, I.; Arias, F.; Fiffe, R. P.

    2003-01-01

    A brief overview of different steel disc-type flywheels is presented. It contents the analysis of relationship between stress-state and kinetic energy of rotating body, comparison of the main characteristics of flywheels and description of their optimization procedures. It is shown that pro files of the discs calculated on a basis of plane stress-state assumption may be considered only as a starting point for its further improvement using 3-D approach. The aim of the review is to provide a designer for a insight into problem of shaping of steel flywheels. (Author) 19 refs

  9. Research and development in fiscal 2000 on element technologies for superconducting for electric power storage by using flywheels; 2000 nendo flywheel denryoku chozoyo chodendo jikuuke gijutsu kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    With an objective to put flywheel electric power storage system into practical use, developmental research has been made on superconducting bearings that can support a rotating body having large load and rotating at high speed. This paper summarizes the achievements in fiscal 2000. In the study of enhancing the loading force for developing the element technologies for the superconducting bearings, specifications were established and fabrication was performed on the Y-based superconducting bulk for bearings, whereas the healthiness thereof was verified by measuring the trapped magnetic field distribution. This bulk was applied with vacuum impregnation treatment of an epoxy-based resin, to have fabricated a superconducting bearing model with a diameter of 180 mm class. Regarding the RE-based superconducting bulk, studies were carried out on a synthesizing method including optimization of the fabricating conditions, a columnar Sm-based bulk body with a diameter of 60 mm was fabricated, and its healthiness was verified. In the research of a rotation loss reducing technology, discussions were given on optimizing the magnetic circuitry to reduce the magnetic variation, by using the three-dimensional magnetic field simulation. In the evaluation test utilizing the existing test machine, the loading force of a 180-mm class-bearing model has shown 2105N at maximum. (NEDO)

  10. Pump Coastdown with the Submerged Flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun-Gi; Seo, KyoungWoo; Kim, Seong Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Many research reactors are generally designed as open pool types in consideration of the heat removal of the nuclear fuels, reactor operation and accessibility. Reactor structure assembly is generally placed at the pool bottom as shown in Fig. 1. Primary cooling system pump circulates the coolant from the reactor structure to the heat exchanger in order to continuously remove the heat generated from the reactor core in the research reactor as shown in Fig. 1. The secondary cooling system releases the transferred heat to the atmosphere by the cooling tower. Coastdown flow rate of the primary cooling system pump with the submerged flywheel are calculated analytically in case of the accident situation. Coastdown flow rate is maintained until almost 80 sec when the pump stops normally. But, coastdown flow rate is rapidly decreased when the flywheel is submerged because of the friction load on the flywheel surface.

  11. Dynamical analysis of a flywheel-superconducting bearing with a moving magnet support

    International Nuclear Information System (INIS)

    Sivrioglu, Selim; Nonami, Kenzo

    2003-01-01

    A lateral stiffness improvement approach based on a moving magnet support is developed to reduce the vibration of a flywheel rotor-high temperature superconductor (HTS) bearing. A flywheel rotor levitated with an HTS bearing is modelled and then analysed with a moving stator magnet placed above the rotor. A dynamic support principle is introduced based on moving the stator magnet in anti-phase with the rotor displacement for small variations. A complete dynamical equation of the flywheel rotor is derived including gyroscopic and imbalance effects. The simulation results showed that the dynamic support of the flywheel rotor with additional stator magnet movements decreases the vibration of the flywheel rotor considerably

  12. Instantaneous flywheel torque of IC engine grey-box identification

    Science.gov (United States)

    Milašinović, A.; Knežević, D.; Milovanović, Z.; Škundrić, J.

    2018-01-01

    In this paper a mathematical model developed for the identification of excitation torque acting on the IC engine flywheel is presented. The excitation torque gained through internal combustion of the fuel in the IC engine is transmitted from the flywheel to the transmission. The torque is not constant but variable and is a function of the crank angle. The verification of the mathematical model was done on a 4-cylinder 4-stroke diesel engine for which the in-cylinder pressure was measured in one cylinder and the instantaneous angular speed of the crankshaft at its free end. The research was conducted on a hydraulic engine brake. Inertial forces of all rotational parts, from flywheel to the turbine wheel of the engine brake, are acting on the flywheel due to the nonuniform motion of the flywheel. It is known from the theory of turbomachinery that the torque on the hydraulic brake is a quadratic function of angular speed. Due to that and the variable angular speed of the turbine wheel of the engine brake, the torque during one engine cycle is also variable. The motivation for this research was the idea (intention) to determine the instantaneous torque acting on the flywheel as a function of the crank angle with a mathematical model without any measuring and based on this to determine the quality of work of specific cylinders of the multi-cylinder engine. The crankshaft was considered elastic and also its torsional vibrations were taken into account.

  13. Third Generation Flywheels for electric storage

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, Michael, R.; Fiske, O. James

    2008-02-29

    Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid

  14. On the Optimally Controlled Hydrostatic Mechanical Drive in Case of Flywheel Acceleration

    Directory of Open Access Journals (Sweden)

    V. A. Korsunskii

    2016-01-01

    Full Text Available An improving dynamic quality of vehicles and enhanced fuel efficiency are gained thanks to the combined power system (CPS, comprising a main energy source - internal combustion engine (ICE with an attained level of the power source - and an auxiliary energy source, i.e. an energy storage device (a flywheel.To solve this problem was developed a mathematical model of CPS comprising internal combustion engine and flywheel energy storage (FES with stepless drive.The stepless drive of the flywheel is made to be hydrostatic mechanical to raise the system efficiency. To reduce the drive weight and simplify the control system in the hydraulic part of the flywheel drive is used only one hydraulic unit being controlled.The paper presents a kinematic diagram of the track-type vehicle equipped with the CPS that has a hydrostatic mechanical drive of the flywheel and a mechanical transmission.A mathematical model of the system comprising an ICE, hydrostatic mechanical drive, and FES with stepless drive has been developed. This mathematical model was used to study the influence of ICE and flywheel drive parameters on the dynamic characteristics of the system.The paper estimates the impact of flywheel energy consumption, pressure in the hydraulic system, and control parameter of hydrostatic mechanical drive on the charging time of FES.The obtained piecewise linear law to control the regulation parameter of the hydraulic unit allows us to minimize the charging time of the flywheel at the short-term stops and in the parking area of a tracked vehicle equipped with a CPS.The causes affecting the performance of ‘ICE – drive – flywheel’ system in the course of the flywheel acceleration are a restricted maximum power of the engine, as well as a limited generating capacity, and a maximum flywheel drive hydro-system pressure.The obtained results allow us to determine rational parameters of the flywheel and the laws of drive control to provide their further

  15. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  16. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    International Nuclear Information System (INIS)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-01-01

    This project's mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS)

  17. THE REDUCTION OF VIBRATIONS IN A CAR – THE PRINCIPLE OF PNEUMATIC DUAL MASS FLYWHEEL

    Directory of Open Access Journals (Sweden)

    Robert GREGA

    2014-09-01

    Full Text Available The dual-mass flywheel replaces the classic flywheel in such way that it is divided into two masses (the primary mass and the secondary mass, which are jointed together by means of a flexible interconnection. This kind of the flywheel solution enables to change resonance areas of the engine with regard to the engine dynamic behaviour what leads to a reduction of vibrations consequently. However, there is also a disadvantage of the dualmass flywheels. The disadvantage is its short-time durability. There was projected a new type of the dual-mass flywheel in the framework of our workplace in order to eliminate disadvantages of the present dual-mass flywheels, i.e. we projected the pneumatic dual-mass flywheel, taking into consideration our experiences obtained during investigation of vibrations.

  18. Study of Servo Press with a Flywheel

    Science.gov (United States)

    Tso, Pei-Lum; Li, Cheng-Ho

    The servo press with a flywheel is able to provide flexible motions with energy-saving merit, but its true potential has not been thoroughly studied and verified. In this paper, such the “hybrid-driven” servo press is focused on, and the stamping capacity and the energy distribution between the flywheel and the servomotor are investigated. The capacity is derived based on the principle of energy conservation, and a method of using a capacity percentage plane for evaluation is proposed. A case study is included to illustrate and interpret that the stamping capacity is highly dependent on the programmed punch motions, thus the capacity prediction is always necessary while applying this kind of servo press. The energy distribution is validated by blanking experiments, and the results indicate that the servomotor needs only to provide 15% to the flywheel torque, 12% of the total stamping energy. This validates that the servomotor power is significantly saved in comparison with conventional servo presses.

  19. Concept of a modified flywheel for megajoule storage and pulse conditioning

    International Nuclear Information System (INIS)

    Leung, T.T.

    1991-01-01

    This paper introduces the concept of a flywheel with a variable moment of inertia for electromagnetic launch (EML). A flywheel is among the best energy density storage devices. The modified flywheel will further improve upon the energy density and efficiency. Coupled to a pulse-duty generator, it could produce a near-square pulse or other desirable pulse shapes. The mount of energy, its rate, and its switching all could be controlled prior to electric energy conversion. The modified flywheel is structured with masses movable along radial paths. Potential energy is stored with respect to mass position and kinetic energy with respect to spin. This mass positioning provides a means to control the rate of energy discharge. Control with spring-loaded weight--the design presented here--would have near constant spin output

  20. The influence of flywheel micro vibration on space camera and vibration suppression

    Science.gov (United States)

    Li, Lin; Tan, Luyang; Kong, Lin; Wang, Dong; Yang, Hongbo

    2018-02-01

    Studied the impact of flywheel micro vibration on a high resolution optical satellite that space-borne integrated. By testing the flywheel micro vibration with six-component test bench, the flywheel disturbance data is acquired. The finite element model of the satellite was established and the unit force/torque were applied at the flywheel mounting position to obtain the micro vibration data of the camera. Integrated analysis of the data of the two parts showed that the influence of flywheel micro vibration on the camera is mainly concentrated around 60-80 Hz and 170-230 Hz, the largest angular displacement of the secondary mirror along the optical axis direction is 0.04″ and the maximum angular displacement vertical to optical axis is 0.032″. After the design and installation of vibration isolator, the maximum angular displacement of the secondary mirror is 0.011″, the decay rate of root mean square value of the angular displacement is more than 50% and the maximum is 96.78%. The whole satellite was suspended to simulate the boundary condition on orbit; the imaging experiment results show that the image motion caused by the flywheel micro vibrationis less than 0.1 pixel after installing the vibration isolator.

  1. Built and operation of three powerful AC pulse flywheel generator sets

    International Nuclear Information System (INIS)

    Wang Shujin; Li Huajun; Li Zhijian; Huang Zhaorong; Wang Xiaoping; Xu Lirong; Liu Xuemei; Bu Mingnan; Hu Haotian; Mao Weicheng

    2006-10-01

    Based on modification of the old pulse generator sets the new flywheel generator system has been developed. Now it is successfully used in supplying power to the HL-2A tokamak and meets the needs of HL-2A physical experiments. By far it is the most powerful pulse flywheel generator system on in-stalled gross capacity, energy storage and release in China today. In addition, the characteristic of the flywheel generator system is that each generator stator has two Y windings with 30 degree phase shift to avoid damaging the rotor due to rectifying load. (authors)

  2. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  3. Research on Adaptive Dual-Mode Switch Control Strategy for Vehicle Maglev Flywheel Battery

    Directory of Open Access Journals (Sweden)

    Hui Gao

    2015-01-01

    Full Text Available Because of the jamming signal is real-time changeable and control algorithm cannot timely tracking control flywheel rotor, this paper takes vehicle maglev flywheel battery as the research object. One kind of dual-model control strategy is developed based on the analysis of the vibration response impact of the flywheel battery control system. In view of the complex foundation vibration problems of electric vehicles, the nonlinear dynamic simulation model of vehicle maglev flywheel battery is solved. Through analyzing the nonlinear vibration response characteristics, one kind of dual-mode adaptive hybrid control strategy based on H∞ control and unbalance displacement feed-forward compensation control is presented and a real-time switch controller is designed. The reliable hybrid control is implemented, and the stability in the process of real-time switch is solved. The results of this project can provide important basic theory support for the research of vehicle maglev flywheel battery control system.

  4. Structural integrity analysis of reactor coolant pump flywheel(I)

    International Nuclear Information System (INIS)

    Kim, Young Jin

    1986-01-01

    A reactor coolant pump flywheel is an important machine element to provide the necessary rotational inertia in the event of loss of power to the pumps. This paper attempts to assess the influence of keyways on flywheel stresses and fracture behaviour in detail. The finite element method was used to determine stresses near keyways, including residual stresses, and to establish stress intensity factors for keyway cracks for use in fracture mechanics assessments. (Author)

  5. Advantage of superconducting bearing in a commercial flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Viznichenko, R; Velichko, A V; Hong, Z; Coombs, T A [Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)], E-mail: tac1000@cam.ac.uk

    2008-02-01

    The use of a superconducting magnetic bearing in an Urenco Power Technologies (UPT) 100kW flywheel is being studied. The dynamics of a conventional flywheel energy storage system have been studied at low frequencies. We show that the main design consideration is overcoming drag friction losses and parasitic resonances. We propose an original superconducting magnetic bearing design and improved cryogenic motor cooling to increase stability and decrease energy losses in the system.

  6. Electricity generating system. [Wind/diesel/flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Moody, R.L.

    1992-02-05

    An electricity generating system is described which includes a water tank with electric heating elements connected to the water cooling system of a diesel engine which is heated by excess output of the system. Power in excess of that required by a load which is generated by a wind turbine driven generator runs up a flywheel and further excess is absorbed in the tank. A fan associated with a radiator connected to the tank may be operated to dissipate further excess power. When the load requirements exceed the output of the generators linked to the wind turbine and the flywheel the engine operates a synchronous alternator. (author).

  7. Dynamics of a Flywheel Energy Storage System Supporting a Wind Turbine Generator in a Microgrid

    Science.gov (United States)

    Nair S, Gayathri; Senroy, Nilanjan

    2016-02-01

    Integration of an induction machine based flywheel energy storage system with a wind energy conversion system is implemented in this paper. The nonlinear and linearized models of the flywheel are studied, compared and a reduced order model of the same simulated to analyze the influence of the flywheel inertia and control in system response during a wind power change. A quantification of the relation between the inertia of the flywheel and the controller gain is obtained which allows the system to be considered as a reduced order model that is more controllable in nature. A microgrid setup comprising of the flywheel energy storage system, a two mass model of a DFIG based wind turbine generator and a reduced order model of a diesel generator is utilized to analyse the microgrid dynamics accurately in the event of frequency variations arising due to wind power change. The response of the microgrid with and without the flywheel is studied.

  8. Battery Recharging Issue for a Two-Power-Level Flywheel System

    Directory of Open Access Journals (Sweden)

    Janaína Gonçalves de Oliveira

    2010-01-01

    Full Text Available A novel battery recharging system for an all-electric driveline comprising a flywheel with a permanent magnet double wound synchronous machine (motor/generator is presented. The double winding enables two voltage levels and two different power levels. This topology supersedes other all-electric drivelines. The battery operates in a low-power regime supplying the average power whereas the flywheel delivers and absorbs power peaks, which are up to a higher order of magnitude. The topology presents new challenges for the power conversion system, which is the focus of this investigation. The main challenge is the control of the power flow to the battery when the vehicle is parked despite the decay of the flywheel machine voltage; which is dependent on its charge state, that is, rotational speed. The design and simulation of an unidirectional DC/DC buck/boost converter for a variable rotational speed flywheel is presented. Conventional power electronic converters are used in a new application, which can maintain a constant current or voltage on the battery side. Successful PI current control has been implemented and simulated, together with the complete closed loop system.

  9. The calculation of energy storage flywheels of fiber composites with electric energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Canders, W R

    1982-01-01

    The computation and the design of energy storage flywheels with electromechanical energy converters are considered in the present study. The most important stress parameters for flywheels of unidirectional laminate are determined, and criteria for the dimensioning of the flywheel are presented, taking into account centrifugal and compressive stresses. The required high speed of the flywheel is the dominating factor, which has to be considered also in the design of the driving engine for the storage device. The computation of the design characteristics of an outside-rotor motor with permanent-magnet excitation as an integral component of the storage device is discussed. The significance of the obtained results is illustrated with the aid of design examples and an application example in the area of vehicular technology.

  10. A Review of Flywheel Energy Storage System Technologies and Their Applications

    Directory of Open Access Journals (Sweden)

    Mustafa E. Amiryar

    2017-03-01

    Full Text Available Energy storage systems (ESS provide a means for improving the efficiency of electrical systems when there are imbalances between supply and demand. Additionally, they are a key element for improving the stability and quality of electrical networks. They add flexibility into the electrical system by mitigating the supply intermittency, recently made worse by an increased penetration of renewable generation. One energy storage technology now arousing great interest is the flywheel energy storage systems (FESS, since this technology can offer many advantages as an energy storage solution over the alternatives. Flywheels have attributes of a high cycle life, long operational life, high round-trip efficiency, high power density, low environmental impact, and can store megajoule (MJ levels of energy with no upper limit when configured in banks. This paper presents a critical review of FESS in regards to its main components and applications, an approach not captured in earlier reviews. Additionally, earlier reviews do not include the most recent literature in this fast-moving field. A description of the flywheel structure and its main components is provided, and different types of electric machines, power electronics converter topologies, and bearing systems for use in flywheel storage systems are discussed. The main applications of FESS are explained and commercially available flywheel prototypes for each application are described. The paper concludes with recommendations for future research.

  11. Modelling and optimization of a permanent-magnet machine in a flywheel

    NARCIS (Netherlands)

    Holm, S.R.

    2003-01-01

    This thesis describes the derivation of an analytical model for the design and optimization of a permanent-magnet machine for use in an energy storage flywheel. A prototype of this flywheel is to be used as the peak-power unit in a hybrid electric city bus. The thesis starts by showing the

  12. Performance characteristics of solar-photovoltaic flywheel-storage systems

    Science.gov (United States)

    Jarvinen, P. O.; Brench, B. L.; Rasmussen, N. E.

    A solar photovoltaic energy flywheel storage and conversion system for residential applications was tested. Performance and efficiency measurements were conducted on the system, which utilizes low loss magnetic bearings, maximum power point tracking of the photovoltaic array, integrated permanent magnet motor generator, and output power conditioning sections of either the stand alone cycloconverter or utility interactive inverter type. The overall in/out electrical storage efficiency of the flywheel system was measured along with the power transfer efficiencies of the individual components and the system spin down tare losses. The system compares favorably with systems which use batteries and inverters.

  13. The New Structure Design and Analysis of Energy Storage of Flywheel of Split Rotor

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-02-01

    Full Text Available The braking of the rail transit train consumes a great quantity of energy, and the thermal energy produced in the process of braking can affect the normal operation of the transit train. Thus recycling the braking energy becomes a research hotspot of urban rail train. This paper made an overall analysis of regenerative braking process, the rationale, and the main features and then put forward the optimizing the structure of the composite flywheel concept and design calculation method. This paper also designs a new flywheel structure which can be applied on urban rail operating system. The new flywheel structure should be checked by finite element method and the radius of the rotor should be defined under the condition of meeting the requirements of carbon fiber material strength. Meanwhile, compared with the solid flywheel under the same condition, analysis shows that the maximum rotary inertia of the new flywheel and the quality energy density increased, and the discharge depth also perks up.

  14. Thirty year operational experience of the JET flywheel generators

    Energy Technology Data Exchange (ETDEWEB)

    Rendell, Daniel, E-mail: dan.rendell@ccfe.ac.uk; Shaw, Stephen R.; Pool, Peter J.; Oberlin-Harris, Colin

    2015-10-15

    Highlights: • The pony-motor rotor circuit's liquid resistor requires frequent maintenance. • A crowned profile on the thrust pads is desirable. • Both plug braking transformers have been replaced after flashovers occurred. • Two-plane balancing of one of the flywheel generators has improved vibration levels but also provided information to lead further investigations. • A half-life inspection on the flywheel generators has shown no major issues after 30 year of operating. - Abstract: The JET flywheel generator converters have operated since 1983 and for over 85,000 pulses. Problems with this plant are discussed, including corrosion, unbalanced flow and arcing within the liquid resistors; starting difficulties on both machines; and failure of the plug-braking transformers at energisiation. In 2012/13 two sets of thrust bearing pads have required refurbishment, a process which highlighted the importance of their profile. Extensive half-life inspections have shown that there are no serious problems with either generator.

  15. FLYWHEEL BASED KINETIC ENERGY RECOVERY SYSTEMS (KERS) INTEGRATED IN VEHICLES

    OpenAIRE

    THOMAS MATHEWS; NISHANTH D

    2013-01-01

    Today, many hybrid electric vehicles have been developed in order to reduce the consumption of fossil fuels; unfortunately these vehicles require electrochemical batteries to store energy, with high costs as well as poor conversion efficiencies. By integrating flywheel hybrid systems, these drawbacks can be overcome and can potentially replace battery powered hybrid vehicles cost effectively. The paper will explain the engineering, mechanics of the flywheel system and it’s working in detail. ...

  16. Application of flywheel energy storage for heavy haul locomotives

    International Nuclear Information System (INIS)

    Spiryagin, Maksym; Wolfs, Peter; Szanto, Frank; Sun, Yan Quan; Cole, Colin; Nielsen, Dwayne

    2015-01-01

    Highlights: • A novel design for heavy haul locomotive equipped with a flywheel energy storage system is proposed. • The integrated intelligent traction control system was developed. • A flywheel energy storage system has been tested through a simulation process. • The developed hybrid system was verified using an existing heavy haul railway route. • Fuel efficiency analysis confirms advantages of the hybrid design. - Abstract: At the present time, trains in heavy haul operations are typically hauled by several diesel-electric locomotives coupled in a multiple unit. This paper studies the case of a typical consist of three Co–Co diesel-electric locomotives, and considers replacing one unit with an alternative version, with the same design parameters, except that the diesel-electric plant is replaced with flywheel energy storage equipment. The intelligent traction and energy control system installed in this unit is integrated into the multiple-unit control to allow redistribution of the power between all units. In order to verify the proposed design, a three-stage investigation has been performed as described in this paper. The initial stage studies a possible configuration of the flywheel energy storage system by detailed modelling of the proposed intelligent traction and energy control system. The second stage includes the investigation and estimation of possible energy flows using a longitudinal train dynamics simulation. The final stage compares the conventional and the proposed locomotive configurations considering two parameters: fuel efficiency and emissions reduction.

  17. Flywheel-battery hydrid: a new concept for vehicle propulsion

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    A new concept was examined for powering the automobile: a flywheel-battery hybrid that can be developed for near-term use from currently available lead-acid batteries and state-of-the-art flywheel designs. To illustrate the concept, a calculation is given of the range and performance of the hybrid power system in a typical commute vehicle, and the results are compared to the measured range and performance of an all-battery vehicle. This comparison shows improved performance and a twofold urban-range increase for the hybrid over the all-battery power system

  18. A Motor/Generator for Flywheel Energy Storage System Levitated by Bulk Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Koh, C.S.; Yeon, J.U.; Jeoung, H.M.; Choi, J.H. [Chungbuk National University (Korea); Lee, H.J; Hong, G.W. [Korea Atomic Energy Research Institute (Korea)

    2000-06-01

    The energy storage systems are being widely researched for the high quality of the electric power. The FES(flywheel energy storage system)is especially, on the center of the research because it does not make any pollution and its life is long. The FES converts the electrical energy into the mechanical kinetic energy of the flywheel and reconverts the mechanical energy into the electrical energy, In order to store as much energy as possible, the flywheel is supposed to be rotated with very high speed. The motor/generator of the FES should be high efficient at high speed, and generate constant torque with respect to the rotation. In this paper, a motor/generator employing a Halbach array of permanent magnets is designed and constructed to meet the requirements, and its characteristics are examined. The magnetic field is analysed by using the magnetic surface charge method. The armature winding is designed for the harmonic components to be minimized by using the FFT. The sinusoidal currents for the motor driving are generated by the hysteresis current controller. A sample superconducting flywheel energy storage system is constructed with a duralumin flywheel which has a maximum rotating speed of 40,000[rpm] and a stored energy of 240[Wh] and its validity is examined through the experiment. (author). 15 refs., 17 figs., 2 tabs.

  19. Does Flywheel Paradigm Training Improve Muscle Volume and Force? A Meta-Analysis.

    Science.gov (United States)

    Nuñez Sanchez, Francisco J; Sáez de Villarreal, Eduardo

    2017-11-01

    Núñez Sanchez, FJ and Sáez de Villarreal, E. Does flywheel paradigm training improve muscle volume and force? A meta-analysis. J Strength Cond Res 31(11): 3177-3186, 2017-Several studies have confirmed the efficacy of flywheel paradigm training for improving or benefiting muscle volume and force. A meta-analysis of 13 studies with a total of 18 effect sizes was performed to analyse the role of various factors on the effectiveness of flywheel paradigm training. The following inclusion criteria were employed for the analysis: (a) randomized studies; (b) high validity and reliability instruments; (c) published in a high quality peer-reviewed journal; (d) healthy participants; (e) studies where the eccentric programme were described; and (f) studies where increases in muscle volume and force were measured before and after training. Increases in muscle volume and force were noted through the use of flywheel systems during short periods of training. The increase in muscle mass appears was not influenced by the existence of eccentric overload during the exercise. The increase in force was significantly higher with the existence of eccentric overload during the exercise. The responses identified in this analysis are essential and should be considered by strength and conditioning professionals regarding the most appropriate dose response trends for flywheel paradigm systems to optimize the increase in muscle volume and force.

  20. Development of flywheel systems on the basis of mechatronics. Ontwikkeling van vliegwielsysteem mechatronisch aangepakt

    Energy Technology Data Exchange (ETDEWEB)

    De Boer, A.

    1992-05-01

    Vehicles can save energy by storing the brake energy in a flywheel. So far flywheels in toys appear to be the only efficient applications. The Centre for Construction and Mechatronics (CCM) in Nuenen, Netherlands, however, is developing a flywheel system for city buses: EMAFER or Electro Mechanical Accumulator For Energy Reuse. Based on experiences with the first prototype, constructed in 1988, a second prototype will be constructed and mounted in a bus to be tested. 1 fig., 2 ills., 2 tabs.

  1. Rotational loss of a ring-shaped flywheel supported by high Tc superconducting levitation

    International Nuclear Information System (INIS)

    Teshima, Hidekazu; Tawara, Taichi; Shimada, Ryuichi.

    1997-01-01

    This paper describes the experimental results for the rotational loss of a ring-shaped flywheel supported by high T c superconducting levitation. Superconducting levitation is appropriate for rotating a ring-shaped flywheel which has neither shaft nor hub because it is a non-contact and automatically stable levitation without any control systems. The rotational loss has been investigated using a small-scaled experimental machine consisting of 16 bulk superconductors 46 mm in diameter and a ring-shaped flywheel about 300 mm in diameter. The rotational loss decreased as the levitation gap height increased. In low-speed rotational regions, the rotational loss was in proportion to the rotation speed and depended more on the levitation gap. In high-speed rotational regions, the rotational loss was in proportion to the third power of the rotation speed and depended less on the levitation gap. The cubic rotational loss in He was reduced to one-fifth of that in air. The magnetic field pinned in bulk superconductors induces a loss in the materials composing the ring-shaped flywheel. The rotational loss of a ring-shaped flywheel supported by superconducting levitation can be reduced by improving the uniformity of the magnetic fields along the ring, enlargement of the bulk superconductor(s), and densely arranging the bulk superconductors. (author)

  2. Quadriceps muscle use in the flywheel and barbell squat.

    Science.gov (United States)

    Norrbrand, Lena; Tous-Fajardo, Julio; Vargas, Roberto; Tesch, Per A

    2011-01-01

    Resistance exercise has been proposed as an aid to counteract quadriceps muscle atrophy in astronauts during extended missions in orbit. While space authorities have advocated the squat exercise should be prescribed, no exercise system suitable for in-flight use has been validated with regard to quadriceps muscle use. We compared muscle involvement in the terrestrial "gold standard" squat using free weights and a nongravity dependent flywheel resistance exercise device designed for use in space. The subjects were 10 strength-trained men who performed 5 sets of 10 repetitions using the barbell squat (BS; 10 repetition maximum) or flywheel squat (FS; each repetition maximal), respectively. Functional magnetic resonance imaging (MRI) and surface electromyography (EMG) techniques assessed quadriceps muscle use. Exercise-induced contrast shift of MR images was measured by means of transverse relaxation time (T2). EMG root mean square (RMS) was measured during concentric (CON) and eccentric (ECC) actions and normalized to EMG RMS determined during maximal voluntary contraction. The quadriceps muscle group showed greater exercise-induced T2 increase following FS compared with BS. Among individual muscles, the rectus femoris displayed greater T2 increase with FS (+24 +/- 14%) than BS (+8 +/- 4%). Normalized quadriceps EMG showed no difference across exercise modes. Collectively, the results of this study suggest that quadriceps muscle use in the squat is comparable, if not greater, with flywheel compared with free weight resistance exercise. Data appear to provide support for use of flywheel squat resistance exercise as a countermeasures adjunct during spaceflight.

  3. 5 MJ flywheel based on bulk HTS magnetic suspension

    Science.gov (United States)

    Poltavets, V.; Kovalev, K.; Ilyasov, R.; Glazunov, A.; Maevsky, V.; Verzbitsky, L.; Akhmadyshev, V.; Shikov, A.

    2014-05-01

    Nowadays the flywheel energy storage systems (FES) are developed intensively as uninterruptible power supply (UPS) devices for on-land and transport (especially airborne) applications worldwide. This work is devoted to the FES with magnetic suspension on the base of bulk HTS YBCO elements and permanent magnets. The developed FES is intended to be used as UPS in Russian atomic industry in case of an emergency. For the successful design of the FES the following questions should be solved: design of the motor/generator, design of the rotor (flywheel), design of the bearing system, design of the control system and system of power load matching, design of the cooling system. The developed small-scale FES with the stored energy 0.5 MJ was used to solve these basic questions. The elaborated FES consists of the synchronous electric machine with permanent magnets, the solid flywheel with axial magnetic suspension on the base of YBCO bulks and permanent magnets, the system of control and power load matching, and the system of liquid nitrogen cooling. The results of theoretical modeling of different schematics of magnetic suspension and experimental investigations of the constructed FES are presented. The design of the future full-scale FES with the stored energy ~5 MJ and output power up to 100 kW is described. The test results of the flywheel rotor and HTS magnetic suspension of 5 MJ FES are presented. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry"

  4. Fault detection of flywheel system based on clustering and principal component analysis

    Directory of Open Access Journals (Sweden)

    Wang Rixin

    2015-12-01

    Full Text Available Considering the nonlinear, multifunctional properties of double-flywheel with closed-loop control, a two-step method including clustering and principal component analysis is proposed to detect the two faults in the multifunctional flywheels. At the first step of the proposed algorithm, clustering is taken as feature recognition to check the instructions of “integrated power and attitude control” system, such as attitude control, energy storage or energy discharge. These commands will ask the flywheel system to work in different operation modes. Therefore, the relationship of parameters in different operations can define the cluster structure of training data. Ordering points to identify the clustering structure (OPTICS can automatically identify these clusters by the reachability-plot. K-means algorithm can divide the training data into the corresponding operations according to the reachability-plot. Finally, the last step of proposed model is used to define the relationship of parameters in each operation through the principal component analysis (PCA method. Compared with the PCA model, the proposed approach is capable of identifying the new clusters and learning the new behavior of incoming data. The simulation results show that it can effectively detect the faults in the multifunctional flywheels system.

  5. Effect of the Shrink Fit and Mechanical Tolerance on Reactor Coolant Pump Flywheel Integrity Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghak [Korea KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Reactor coolant pump (RCP) flywheel should satisfy the RCP flywheel integrity criteria of the US NRC standard review plan (SRP) 5.4.1.1 and regulatory guide (RG) 1.14. Shrink-fit and rotational stresses should be calculated to evaluate the integrity. In this paper the effects of the shrink fit and mechanical tolerance on the RCP flywheel integrity evaluation are studied. The shrink fit should be determined by the joint release speed and the stresses in the flywheel will be increased by the shrink fit. The stress at the interface between the hub and the outer wheel shows the highest value. The effect of the mechanical tolerance should be considered for the stress evaluation. And the effect of the mechanical tolerance should be not considered to determine the joint release speed.

  6. Effect of the Shrink Fit and Mechanical Tolerance on Reactor Coolant Pump Flywheel Integrity Evaluation

    International Nuclear Information System (INIS)

    Kim, Donghak

    2015-01-01

    Reactor coolant pump (RCP) flywheel should satisfy the RCP flywheel integrity criteria of the US NRC standard review plan (SRP) 5.4.1.1 and regulatory guide (RG) 1.14. Shrink-fit and rotational stresses should be calculated to evaluate the integrity. In this paper the effects of the shrink fit and mechanical tolerance on the RCP flywheel integrity evaluation are studied. The shrink fit should be determined by the joint release speed and the stresses in the flywheel will be increased by the shrink fit. The stress at the interface between the hub and the outer wheel shows the highest value. The effect of the mechanical tolerance should be considered for the stress evaluation. And the effect of the mechanical tolerance should be not considered to determine the joint release speed

  7. Power system for tokamak fusion experiments. Motor generator with flywheel effect

    International Nuclear Information System (INIS)

    Miyachi, Kengo

    1997-01-01

    JT-60 requires an enormous electric power pulse about 1,300 MVA periodically for its plasma initiation, containment and heating. JT-60 could not receive all electric power from a commercial line for plasma experiment except about 160 MVA because the 275 kV commercial line has some limitations. Therefore JT-60 needs huge electric power sources. The power supply system of JT-60 has 3 motor generators (MG). The total capacity of MG is 1,115 MVA that consists of a toroidal MG (TMG), poloidal MG (PMG) and Heating power supply MG (HMG), and each MG has a huge flywheel effect. For example, TMG has a 4.02 GJ energy yield that consists of 6 disk flywheel. The total weight of flywheel of TMG is 650 ton. This report describes the structure, operating system, and maintenance history of 3 types of MG. (author)

  8. High speed superconducting flywheel system for energy storage

    Science.gov (United States)

    Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.

    1994-12-01

    A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.

  9. Flywheel for a 167 MVA surge power motor-generator set

    International Nuclear Information System (INIS)

    Mertens, H.

    1975-01-01

    Flywheels to be subjected to major speed fluctuations are designed on the basis of both the usual strength analysis and fracture mechanics considerations, and the testing and operating instructions have to allow for this. Appropriate test units are used to determine the fracture toughness of the material. Residual stresses are measured and extensive ultrasonic and magnetic particle tests performed to enable the permissible number of stress cycles to be predicted. The article deals with these problems by reference to the flywheel of a 167 MVA surge power motor-generator set for the Max Planck Insitute for Plasma Physics in Garching. (orig.) [de

  10. Scanning Ultrasonic Spectroscopy System Developed for the Inspection of Composite Flywheels

    Science.gov (United States)

    Martin, Richard E.; Baaklini, George Y.

    2002-01-01

    Composite flywheels are being considered as replacements for chemical batteries aboard the International Space Station. A flywheel stores energy in a spinning mass that can turn a generator to meet power demands. Because of the high rotational speeds of the spinning mass, extensive testing of the flywheel system must be performed prior to flight certification. With this goal in mind, a new scanning system has been developed at the NASA Glenn Research Center for the nondestructive inspection of composite flywheels and flywheel subcomponents. The system uses ultrasonic waves to excite a material and examines the response to detect and locate flaws and material variations. The ultrasonic spectroscopy system uses a transducer to send swept-frequency ultrasonic waves into a test material and then receives the returning signal with a second transducer. The received signal is then analyzed in the frequency domain using a fast Fourier transform. A second fast Fourier transform is performed to examine the spacing of the peaks in the frequency domain. The spacing of the peaks is related to the standing wave resonances that are present in the material because of the constructive and destructive interferences of the waves in the full material thickness as well as in individual layers within the material. Material variations and flaws are then identified by changes in the amplitudes and positions of the peaks in both the frequency and resonance spacing domains. This work, conducted under a grant through the Cleveland State University, extends the capabilities of an existing point-by-point ultrasonic spectroscopy system, thus allowing full-field automated inspection. Results of an ultrasonic spectroscopy scan of a plastic cylinder with intentionally seeded flaws. The result of an ultrasonic spectroscopy scan of a plastic cylinder used as a proof-of-concept specimen is shown. The cylinder contains a number of flat bottomed holes of various sizes and shapes. The scanning system

  11. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  12. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    International Nuclear Information System (INIS)

    Miller, John; Sibley Lewis, B.; Wohlgemuth, John

    1999-01-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs

  13. Development of superconductor application technology - Flywheel energy storage system using superconducting magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hun; Oh, Hueng Kuk; Yun, Keyng Reyl; Lee, Jeung Kun [Ahju University, Suwon (Korea, Republic of)

    1996-06-01

    Electricity must be used simultaneously with its generation. Existing storage methods either are dependent on special geography, are too expensive,= or are too inefficient. Electricity demand changes by as much as 30% over a 12-hour period and result in significant costs for utilities as power output get adjusted to meet these changes. The purpose of HTS FES is to store unused nighttime electricity until it is needed during the daytime. If every element of a rotating flywheel is stressed to a prescribed allowable value, the flywheel material will clearly be used in most efficient manner. The uniformlt stressed flywheel is about 25% stronger than a flat disk. The gap between superconductor and permanent magnet was 1.85 mm, and using bearing connector with the values, joining superconductor to permanent magnet Using bolt connector, joining permanent magnet to flywheel. Joined system is excited by exciting function that magnitude is 1, range is 0 up to 4000 HZ. 3 rd and 4 th natural frequency, 1857 HZ and 2340 HZ, in X direction and 2 nd natural frequency, 28.57 HZ, are avoided to prevent resonance. 15 refs., 11 tabs., 53 figs. (author)

  14. Rotational loss of a ring-shaped flywheel supported by high T{sub c} superconducting levitation

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, Hidekazu [Nippon Steel Corp., Kawasaki, Kanagawa (Japan). Advanced Materials and Technology Research Labs.; Tawara, Taichi; Shimada, Ryuichi

    1997-08-01

    This paper describes the experimental results for the rotational loss of a ring-shaped flywheel supported by high T{sub c} superconducting levitation. Superconducting levitation is appropriate for rotating a ring-shaped flywheel which has neither shaft nor hub because it is a non-contact and automatically stable levitation without any control systems. The rotational loss has been investigated using a small-scaled experimental machine consisting of 16 bulk superconductors 46 mm in diameter and a ring-shaped flywheel about 300 mm in diameter. The rotational loss decreased as the levitation gap height increased. In low-speed rotational regions, the rotational loss was in proportion to the rotation speed and depended more on the levitation gap. In high-speed rotational regions, the rotational loss was in proportion to the third power of the rotation speed and depended less on the levitation gap. The cubic rotational loss in He was reduced to one-fifth of that in air. The magnetic field pinned in bulk superconductors induces a loss in the materials composing the ring-shaped flywheel. The rotational loss of a ring-shaped flywheel supported by superconducting levitation can be reduced by improving the uniformity of the magnetic fields along the ring, enlargement of the bulk superconductor(s), and densely arranging the bulk superconductors. (author)

  15. Experimental Evaluation of Superconductor Flywheel Energy Storage System with Hybrid Type Active Magnetic Bearing

    International Nuclear Information System (INIS)

    Lee, J. P.; Kim, H. G.; Han, S. C.

    2012-01-01

    In this paper, we designed Active Magnetic Bearing (AMB) for large scale Superconductor Flywheel Energy Storage System (SFESS) and PD controller for AMB. And we experimentally evaluated SFESS including hybrid type AMB. The radial AMB was designed to provide force slew rate that was sufficient for the unbalance disturbances at the maximum operating speed. The thrust AMB is a hybrid type where a permanent magnet carries the weight of the flywheel and an electromagnetic actuator generates the dynamic control force. We evaluated the design performance of the manufactured AMB through comparison of FEM analysis and the results of experimental force measurement. In order to obtain gains of PD controller and design a notch filter, the system identification was performed through measuring frequency response including dynamics for the AMBs, a power amp and a sensor using a sine swept test method after levitating the flywheel. Through measuring the current input of the AMBs and the orbit of a flywheel according to rotational speed, we verified excellent control performance of the AMBs with small amount current for the large scale SFESS.

  16. A Flywheel Energy Storage System Based on a Doubly Fed Induction Machine and Battery for Microgrid Control

    Directory of Open Access Journals (Sweden)

    Thai-Thanh Nguyen

    2015-06-01

    Full Text Available Microgrids are eco-friendly power systems because they use renewable sources such as solar and wind power as the main power source. However, the stochastic nature of wind and solar power is a considerable challenge for the efficient operation of microgrids. Microgrid operations have to satisfy quality requirements in terms of the frequency and voltage. To overcome these problems, energy storage systems for short- and long-term storage are used with microgrids. Recently, the use of short-term energy storage systems such as flywheels has attracted significant interest as a potential solution to this problem. Conventional flywheel energy storage systems exhibit only one control mode during operation: either smoothing wind power control or frequency control. In this paper, we propose a new flywheel energy storage system based on a doubly fed induction machine and a battery for use with microgrids. The new flywheel energy storage system can be used not only to mitigate wind power fluctuations, but also to control the frequency as well as the voltage of the microgrid during islanded operation. The performance of the proposed flywheel energy storage system is investigated through various simulations using MATLAB/Simulink software. In addition, a conventional flywheel energy storage system based on a doubly fed induction machine is simulated and its performance compared with that of the proposed one.

  17. Calculation of composite-fibre flywheels with electric power converters for energy storage purposes. Zur Berechnung von Schwungradenergiespeichern aus Faserverbundwerkstoff mit elektrischem Energiewandler

    Energy Technology Data Exchange (ETDEWEB)

    Canders, W R

    1982-07-13

    The dissertation discusses the calculation and design of flywheel energy storage systems with electromechanical power converters and composite-fibre flywheels. For this purpose, the main load criteria for centrifugal and pressure loads on flywheel rings of unidirectional laminates are determined, and criteria are given for the dimensioning of flywheel rings. The fast rotational speed of the flywheel dominates the design of the driving motor. As an example, the calculation of a permanent-magnet-excited external rotor motor is described. Special consideration is given to the close correlation between stator current density and ampere bars per cm, and rotor strength. The findings are illustrated by design examples, by an example from the field of vehicle construction, and by experimental studies on composite-fibre flywheels and a driving motor with a high rotational speed.

  18. Enhanced Control for a Direct-driven Permanent Synchronous Generator Wind-power Generation System with Flywheel Energy Storage Unit Under Unbalanced Grid Fault

    DEFF Research Database (Denmark)

    Yao, Jun; Zhou, Te; Hu, Weihao

    2015-01-01

    This article presents an enhanced control strategy for a direct-driven permanent synchronous generator based wind-power generation system with a flywheel energy storage unit. The behaviors of the direct-driven permanent magnet synchronous generator system with a flywheel energy storage unit under......, the DC-link voltage oscillations can be effectively suppressed during the unbalanced grid fault by controlling the flywheel energy storage unit. Furthermore, a proportional–integral-resonant controller is designed for the flywheel motor to eliminate the oscillations in the DC-link voltage. Finally......, the proposed coordinated control strategy for the direct-driven permanent magnet synchronous generator system with a flywheel energy storage unit has been validated by the simulation results of a 1-MW direct-driven permanent magnet synchronous generator wind power generation system with a flywheel energy...

  19. Kinematics analysis of vertical magnetic suspension energy storage flywheel rotor under transient rotational speed

    Science.gov (United States)

    Ren, Zhengyi; Huang, Tong; Feng, Jiajia; Zhou, Yuanwei

    2018-05-01

    In this paper, a 600Wh vertical maglev energy storage flywheel rotor system is taken as a model. The motion equation of a rigid rotor considering the gyroscopic effect and the center of mass offset is obtained by the centroid theorem, and the experimental verification is carried out. Using the state variable method, the Matlab software was used to program and simulate the radial displacement and radial electromagnetic force of the rotor system at each speed. The results show that the established system model is in accordance with the designed 600Wh vertical maglev energy storage flywheel model. The results of the simulation analysis are helpful to further understand the dynamic nature of the flywheel rotor at different transient speeds.

  20. Performance Analysis of a Flywheel Energy Storage System

    Directory of Open Access Journals (Sweden)

    K. Ghedamsi

    2008-06-01

    Full Text Available The flywheel energy storage systems (FESSs are suitable for improving the quality of the electric power delivered by the wind generators and to help these generators to contribute to the ancillary services. In this paper, a flywheel energy storage system associated to a grid connected variable speed wind generation (VSWG scheme using a doubly fed induction generator (DFIG is investigated. Therefore, the dynamic behavior of a wind generator, including models of the wind turbine (aerodynamic, DFIG, matrix converter, converter control (algorithm of VENTURINI and power control is studied. This paper investigates also, the control method of the FESS with a classical squirrel-cage induction machine associated to a VSWG using back-to-back AC/AC converter. Simulation results of the dynamic models of the wind generator are presented, for different operating points, to show the good performance of the proposed system.

  1. Experimental Performance Evaluation of a High Speed Permanent Magnet Synchronous Motor and Drive for a Flywheel Application at Different Frequencies

    Science.gov (United States)

    Nagorny, Aleksandr S.; Jansen, Ralph H.; Kankam, M. David

    2007-01-01

    This paper presents the results of an experimental performance characterization study of a high speed, permanent magnet motor/generator (M/G) and drive applied to a flywheel module. Unlike the conventional electric machine the flywheel M/G is not a separated unit; its stator and rotor are integrated into a flywheel assembly. The M/G rotor is mounted on a flywheel rotor, which is magnetically levitated and sealed within a vacuum chamber during the operation. Thus, it is not possible to test the M/G using direct load measurements with a dynamometer and torque transducer. Accordingly, a new in-situ testing method had to be developed. The paper describes a new flywheel M/G and drive performance evaluation technique, which allows the estimation of the losses, efficiency and power quality of the flywheel high speed permanent magnet M/G, while working in vacuum, over wide frequency and torque ranges. This method does not require any hardware modification nor any special addition to the test rig. This new measurement technique is useful for high-speed applications, when applying an external load is technically difficult.

  2. Experimental Evaluation of a High Speed Flywheel for an Energy Cache System

    Science.gov (United States)

    Haruna, J.; Murai, K.; Itoh, J.; Yamada, N.; Hirano, Y.; Fujimori, T.; Homma, T.

    2011-03-01

    A flywheel energy cache system (FECS) is a mechanical battery that can charge/discharge electricity by converting it into the kinetic energy of a rotating flywheel, and vice versa. Compared to a chemical battery, a FECS has great advantages in durability and lifetime, especially in hot or cold environments. Design simulations of the FECS were carried out to clarify the effects of the composition and dimensions of the flywheel rotor on the charge/discharge performance. The rotation speed of a flywheel is limited by the strength of the materials from which it is constructed. Three materials, carbon fiber-reinforced polymer (CFRP), Cr-Mo steel, and a Mg alloy were examined with respect to the required weight and rotation speed for a 3 MJ (0.8 kWh) charging/discharging energy, which is suitable for an FECS operating with a 3-5 kW photovoltaic device in an ordinary home connected to a smart grid. The results demonstrate that, for a stationary 3 MJ FECS, Cr-Mo steel was the most cost-effective, but also the heaviest, Mg-alloy had a good balance of rotation speed and weight, which should result in reduced mechanical loss and enhanced durability and lifetime of the system, and CFRP should be used for applications requiring compactness and a higher energy density. Finally, a high-speed prototype FW was analyzed to evaluate its fundamental characteristics both under acceleration and in the steady state.

  3. Experimental Evaluation of a High Speed Flywheel for an Energy Cache System

    International Nuclear Information System (INIS)

    Haruna, J; Itoh, J; Murai, K; Yamada, N; Hirano, Y; Homma, T; Fujimori, T

    2011-01-01

    A flywheel energy cache system (FECS) is a mechanical battery that can charge/discharge electricity by converting it into the kinetic energy of a rotating flywheel, and vice versa. Compared to a chemical battery, a FECS has great advantages in durability and lifetime, especially in hot or cold environments. Design simulations of the FECS were carried out to clarify the effects of the composition and dimensions of the flywheel rotor on the charge/discharge performance. The rotation speed of a flywheel is limited by the strength of the materials from which it is constructed. Three materials, carbon fiber-reinforced polymer (CFRP), Cr-Mo steel, and a Mg alloy were examined with respect to the required weight and rotation speed for a 3 MJ (0.8 kWh) charging/discharging energy, which is suitable for an FECS operating with a 3-5 kW photovoltaic device in an ordinary home connected to a smart grid. The results demonstrate that, for a stationary 3 MJ FECS, Cr-Mo steel was the most cost-effective, but also the heaviest, Mg-alloy had a good balance of rotation speed and weight, which should result in reduced mechanical loss and enhanced durability and lifetime of the system, and CFRP should be used for applications requiring compactness and a higher energy density. Finally, a high-speed prototype FW was analyzed to evaluate its fundamental characteristics both under acceleration and in the steady state.

  4. Benefits from flywheel energy storage for area regulation in California - demonstration results : a study for the DOE Energy Storage Systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA)

    2009-10-01

    This report documents a high-level analysis of the benefit and cost for flywheel energy storage used to provide area regulation for the electricity supply and transmission system in California. Area regulation is an 'ancillary service' needed for a reliable and stable regional electricity grid. The analysis was based on results from a demonstration, in California, of flywheel energy storage developed by Beacon Power Corporation (the system's manufacturer). Demonstrated was flywheel storage systems ability to provide 'rapid-response' regulation. Flywheel storage output can be varied much more rapidly than the output from conventional regulation sources, making flywheels more attractive than conventional regulation resources. The performance of the flywheel storage system demonstrated was generally consistent with requirements for a possible new class of regulation resources - 'rapid-response' energy-storage-based regulation - in California. In short, it was demonstrated that Beacon Power Corporation's flywheel system follows a rapidly changing control signal (the ACE, which changes every four seconds). Based on the results and on expected plant cost and performance, the Beacon Power flywheel storage system has a good chance of being a financially viable regulation resource. Results indicate a benefit/cost ratio of 1.5 to 1.8 using what may be somewhat conservative assumptions. A benefit/cost ratio of one indicates that, based on the financial assumptions used, the investment's financial returns just meet the investors target.

  5. COMPARATIVE ANALYSIS OF ENERGY ACCUMULATION SYSTEMS AND DETERMINATION OF OPTIMAL APPLICATION AREAS FOR MODERN SUPER FLYWHEELS

    Directory of Open Access Journals (Sweden)

    M. A. Sokolov

    2014-07-01

    Full Text Available The paper presents a review and comparative analysis of late years native and foreign literature on various energy storage devices: state of the art designs, application experience in various technical fields. Comparative characteristics of energy storage devices are formulated: efficiency, quality and stability. Typical characteristics are shown for such devices as electrochemical batteries, super capacitors, pumped hydroelectric storage, power systems based on compressed air and superconducting magnetic energy storage systems. The advantages and prospects of high-speed super flywheels as means of energy accumulation in the form of rotational kinetic energy are shown. High output power of a super flywheels energy storage system gives the possibility to use it as a buffer source of peak power. It is shown that super flywheels have great life cycle (over 20 years and are environmental. A distinctive feature of these energy storage devices is their good scalability. It is demonstrated that super flywheels are especially effective in hybrid power systems that operate in a charge/discharge mode, and are used particularly in electric vehicles. The most important factors for space applications of the super flywheels are their modularity, high efficiency, no mechanical friction and long operating time without maintenance. Quick response to network disturbances and high power output can be used to maintain the desired power quality and overall network stability along with fulfilling energy accumulation needs.

  6. Operating characteristics of a 0.87 kW-hr flywheel energy storage module

    Science.gov (United States)

    Loewenthal, S. H.; Scibbe, H. W.; Parker, R. D.; Zaretsky, E. V.

    1985-01-01

    Discussion is given of the design and loss characteristics of 0.87 kW-hr (peak) flywheel energy storage module suitable for aerospace and automotive applications. The maraging steel flywheel rotor, a 46-cm- (18-in-) diameter, 58-kg (128-lb) tapered disk, delivers 0.65 kW-hr of usable energy between operating speeds of 10,000 and 20,000 rpm. The rotor is supported by 20- and 25-mm bore diameter, deep-groove ball bearings, lubricated by a self-replenishing wick type lubrication system. To reduce aerodynamic losses, the rotor housing was evacuated to vacuum levels from 40 to 200 millitorr. Dynamic rotor instabilities uncovered during testing necessitated the use of an elastometric-bearing damper to limit shaft excursions. Spindown losses from bearing, seal, and aerodynamic drag at 50 millitorr typically ranged from 64 to 193 W at 10,000 and 20,000 rpm, respectively. Discharge efficiency of the flywheel system exceeded 96 percent at torque levels greater than 21 percent of rated torque.

  7. Static Properties of Superconductor Journal Bearing Substator for Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Jeong, N. H.; Sung, T. H.; Han, Y. H.

    2008-01-01

    A Superconductor Flywheel Energy Storage System(SFES) mainly consists of a pair of non-contacting High Temperature Superconductor(HTS) bearings that provide very low frictional losses, a composite flywheel with high energy storage density. The HTS bearings, which offer dynamic stability without active control, are the key technology that distinguishes the SFES from other flywheel energy storage devices, and great effort is being put into developing this technology. The Superconductor Journal Bearing(SJB) mainly consists of HTS bulks and a stator, which holds the HTS bulks and also acts as a cold head. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate SJB magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measure stiffness in static condition and the results are used to determine the optimal number of HTS bulks for a 100kWh SFES.

  8. Skating crossovers on a motorized flywheel: a preliminary experimental design to test effect on speed and on crossovers.

    Science.gov (United States)

    Smith, Aynsley M; Krause, David A; Stuart, Michael J; Montelpare, William J; Sorenson, Matthew C; Link, Andrew A; Gaz, Daniel V; Twardowski, Casey P; Larson, Dirk R; Stuart, Michael B

    2013-12-01

    Ice hockey requires frequent skater crossovers to execute turns. Our investigation aimed to determine the effectiveness of training crossovers on a motorized, polyethylene high-resistance flywheel. We hypothesized that high school hockey players training on the flywheel would perform as well as their peers training on ice. Participants were 23 male high-school hockey players (age 15-19 years). The study used an experimental prospective design to compare players who trained for 9 sessions on the 22-foot flywheel with players who trained for 9 sessions on a similarly sized on-ice circle. Both groups were compared with control subjects who were randomly selected from the same participant pool as those training on ice. All players were tested before and after their 3-week training regimens, and control subjects were asked to not practice crossovers between testing. Group 1 trained in a hockey training facility housing the flywheel, and group 2 trained in the ice hockey arena where testing occurred. Primary outcome measures tested in both directions were: (a) speed (time in seconds) required to skate crossovers for 3 laps of a marked face-off circle, (b) cadence of skating crossovers on the similarly sized circles, and (c) a repeat interval speed test, which measures anaerobic power. No significant changes were found between groups in on-ice testing before and after training. Among the group 1 players, 7 of 8 believed they benefited from flywheel training. Group 2 players, who trained on ice, did not improve performance significantly over group 1 players. Despite the fact that no significant on-ice changes in performance were observed in objective measures, players who trained on the flywheel subjectively reported that the flywheel is an effective cost-effective alternative to training on ice. This is a relevant finding when placed in context with limited availability of on-ice training.

  9. 1977 flywheel technology symposium proceedings. [Fifty-two papers

    Energy Technology Data Exchange (ETDEWEB)

    Chang, G.C.; Stone, R.G. (eds.)

    1978-03-01

    Fifty-two papers, four paper abstracts, and four brief summaries of panel discussions are presented on flywheel energy storage technology. A separate abstract was prepared for each of 41 papers for inclusion in DOE Energy Research Abstracts (ERA). Eleven papers were processed previously for inclusion in the data base. (PMA)

  10. Filtering and Control of High Speed Motor Current in a Flywheel Energy Storage System

    Science.gov (United States)

    Kenny, Barbara H.; Santiago, Walter

    2004-01-01

    The NASA Glenn Research Center has been developing technology to enable the use of high speed flywheel energy storage units in future spacecraft for the last several years. An integral part of the flywheel unit is the three phase motor/generator that is used to accelerate and decelerate the flywheel. The motor/generator voltage is supplied from a pulse width modulated (PWM) inverter operating from a fixed DC voltage supply. The motor current is regulated through a closed loop current control that commands the necessary voltage from the inverter to achieve the desired current. The current regulation loop is the innermost control loop of the overall flywheel system and, as a result, must be fast and accurate over the entire operating speed range (20,000 to 60,000 rpm) of the flywheel. The voltage applied to the motor is a high frequency PWM version of the DC bus voltage that results in the commanded fundamental value plus higher order harmonics. Most of the harmonic content is at the switching frequency and above. The higher order harmonics cause a rapid change in voltage to be applied to the motor that can result in large voltage stresses across the motor windings. In addition, the high frequency content in the motor causes sensor noise in the magnetic bearings that leads to disturbances for the bearing control. To alleviate these problems, a filter is used to present a more sinusoidal voltage to the motor/generator. However, the filter adds additional dynamics and phase lag to the motor system that can interfere with the performance of the current regulator. This paper will discuss the tuning methodology and results for the motor/generator current regulator and the impact of the filter on the control. Results at speeds up to 50,000 rpm are presented.

  11. Optimum design of flywheel energy storage system using superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hun; Lee, Jeung Gun; Kim, Jong Soo [Ajou University, Suwon (Korea, Republic of)

    1997-07-01

    Electricity demands changes by as much as 30% over a 12-hour period and results in significant costs for utilities as power output get adjusted to meet these changes. The purpose of High-Temperature Superconducting Flywheel Energy Storage System (HTS FES) is to store unused nighttime electricity until it is needed during the daytime. The HTS FES is designed by using flywheel shape function with uniform stress. Natural frequencies and natural modes are estimated by using Finite Element Analysis and correlated with the experimental results. By performing a vibration test, the stiffness and the damping ratio of the flux line, the flux pinning phenomenon are measured Using the modal parameters of each component and the measured stiffness, damping coefficient, the IDEAS System Dynamics Analysis is performed and frequency response function(FRF) of the joined system is obtained. The effect of tangential torque on flywheel has been studied using cantilever shaft with rotor at free end. To obtain the equation of motion, the Lagrange`s equation and the assumed-mode method are used. As a admissible function, a free vibration mode of clamped-free beam is used. The eigenvalues are computed and the stability boundaries are obtained. 19 refs., 33 figs. (author)

  12. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    International Nuclear Information System (INIS)

    Wu, J.F.; Li, Y.

    2014-01-01

    Highlights: • Coasting time was investigated from the point-view of HTS flywheel applications. • The coasting time of aligned growth section boundary pattern (AGSBP) is shorter than that of MGSBP. • The electric magnetic drag force with AGSBP is larger than that of MGSBP. • This result may also exist in the maglev guideline when the maglev train stops freely. - Abstract: High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely

  13. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.F., E-mail: wujf@ciomp.ac.cn; Li, Y.

    2014-10-15

    Highlights: • Coasting time was investigated from the point-view of HTS flywheel applications. • The coasting time of aligned growth section boundary pattern (AGSBP) is shorter than that of MGSBP. • The electric magnetic drag force with AGSBP is larger than that of MGSBP. • This result may also exist in the maglev guideline when the maglev train stops freely. - Abstract: High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.

  14. Levitation properties of a ring-shaped flywheel supported by high Tc superconducting levitation

    International Nuclear Information System (INIS)

    Teshima, Hidekazu; Tawara, Taichi; Shimada, Ryuichi.

    1997-01-01

    In this paper we propose a new combination of high T c superconducting levitation and ring-shaped flywheel energy storage systems. Superconducting levitation is appropriate for rotating a ring-shaped flywheel which has neither shaft nor hub, because it is a non-contact and automatically stable levitation without any control systems. The levitation properties such as static and dynamic lateral stiffnesses, lateral damping, and lateral vibration during rotation have been investigated using a small-scaled experimental machine consisting of 16 bulk superconductors 46 mm in diameter and a ring-shaped flywheel about 300 mm in diameter. The spring constant increased as the levitation gap height decreased, and the dynamic spring constant was slightly higher than the static constant. The damping coefficient increased as the gap height decreased and the vibration amplitude increased. The experimental critical speed was in good agreement with the calculated one using a one-degree of freedom model. Finally, the possibility of large-scaled practical systems is discussed from the viewpoint of superconducting levitation. (author)

  15. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    Science.gov (United States)

    Wu, J. F.; Li, Y.

    2014-10-01

    High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.

  16. Optimal energy management for a flywheel-based hybrid vehicle

    NARCIS (Netherlands)

    Berkel, van K.; Hofman, T.; Vroemen, B.G.; Steinbuch, M.

    2011-01-01

    This paper presents the modeling and design of an optimal Energy Management Strategy (EMS) for a flywheel-based hybrid vehicle, that does not use any electrical motor/generator, or a battery, for its hybrid functionalities. The hybrid drive train consists of only low-cost components, such as a

  17. Efficient energy transfer and increase of energy density of magnetically charged flywheels

    International Nuclear Information System (INIS)

    Hinterdorfer, T.

    2014-01-01

    Flywheel Energy Storage Systems represent an ecologically and economically sustainable technology for decentralized energy storage. Compared to other storage technologies such as e.g. chemical accumulators, they offer longer life cycles without performance degradation over time and usage and need almost no systematic maintenance. Further, they are made of environmentally friendly materials. By means of the driving torque of an electric motor, the flywheel is accelerated and thus electrical energy is transformed to kinetic energy. The stored energy can be transfered back by the load torque of a generator when needed. Modern flywheel energy storage applications use magnetic bearings to minimize selfdischarge. To avoid bearing forces due to rotor eccentricity an unbalance control strategy is used. However, this leads to an off-centered run of the electric machines rotor which in turn generates undesirable forces. A force-compensating operation of the electric machine will minimize the influence on the magnetic bearings in the planned control scheme, thus increasing their efficiency. Different concepts will be developed and compared to each other by means of simulations. Validation of the simulation models is carried out on a specially constructed test setup under defined conditions. In addition, the electrical machine will be integrated into the concept of redundancy of the flywheel. A bearingless operation increases the reliability and enables a safe shutdown of the application in case of malfunction of the magnetic bearings. High strength composite materials are used to achieve high speeds. Based on existing results from past research activities, a disc-shaped rotor is optimized first. To increase material utilization and to maximize energy density a topology optimization is performed. Evolutionary and gradient based optimization algorithms are used. Thereby the unused strength potential of the material is exploited in order to increase the economic efficiency of

  18. Inverter Output Filter Effect on PWM Motor Drives of a Flywheel Energy Storage System

    Science.gov (United States)

    Santiago, Walter

    2004-01-01

    NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheel systems for small satellite energy storage and attitude control applications. One research and development area has been the minimization of the switching noise produced by the pulsed width modulated (PWM) inverter that drives the flywheel permanent magnet motor/generator (PM M/G). This noise can interfere with the flywheel M/G hardware and the system avionics hampering the full speed performance of the flywheel system. One way to attenuate the inverter switching noise is by placing an AC filter at the three phase output terminals of the inverter with the filter neutral point connected to the DC link (DC bus) midpoint capacitors. The main benefit of using an AC filter in this fashion is the significant reduction of the inverter s high dv/dt switching and its harmonics components. Additionally, common mode (CM) and differential mode (DM) voltages caused by the inverter s high dv/dt switching are also reduced. Several topologies of AC filters have been implemented and compared. One AC filter topology consists of a two-stage R-L-C low pass filter. The other topology consists of the same two-stage R-L-C low pass filter with a series connected trap filter (an inductor and capacitor connected in parallel). This paper presents the analysis, design and experimental results of these AC filter topologies and the comparison between the no filter case and conventional AC filter.

  19. Clean energy storage technology in the making: An innovation systems perspective on flywheel energy storage.

    Science.gov (United States)

    Wicki, Samuel; Hansen, Erik G

    2017-09-20

    The emergence and diffusion of green and sustainable technologies is full of obstacles and has therefore become an important area of research. We are interested in further understanding the dynamics between entrepreneurial experimentation, market formation, and institutional contexts, together playing a decisive role for successful diffusion of such technologies. Accordingly, we study these processes by adopting a technological innovation system perspective focusing on actors, networks, and institutions as well as the functions provided by them. Using a qualitative case study research design, we focus on the high-speed flywheel energy storage technology. As flywheels are based on a rotating mass allowing short-term storage of energy in kinetic form, they represent an environmentally-friendly alternative to electrochemical batteries and therefore can play an important role in sustainable energy transitions. Our contribution is threefold: First , regarding the flywheel energy storage technology, our findings reveal two subsystems and related markets in which development took different courses. In the automotive sector, flywheels are developing well as a braking energy recovery technology under the influence of two motors of innovation. In the electricity sector, they are stagnating at the stage of demonstration projects because of two important system weaknesses that counteract demand for storage. Second , we contribute to the theory of technological innovation systems by better understanding the internal dynamics between different functions of an innovation system as well as between the innovation system and its (external) contextual structures. Our third contribution is methodological. According to our best knowledge, we are the first to use system dynamics to (qualitatively) analyze and visualize dynamics between the diverse functions of innovation systems with the aim of enabling a better understanding of complex and iterative system processes. The paper also

  20. Magnetic suspension of a rotating system. Application to inertial flywheels

    International Nuclear Information System (INIS)

    Lemarquand, Guy

    1984-01-01

    The various possible magnetic suspension configurations compatible with rotating mechanical systems are defined from studies of the characteristics of different types of magnetic bearings. The results obtained are used in the design and realization of a magnetic suspension for an inertial flywheel. (author) [fr

  1. Velocity feedback control with a flywheel proof mass actuator

    Science.gov (United States)

    Kras, Aleksander; Gardonio, Paolo

    2017-08-01

    This paper presents four new proof mass actuators to be used in velocity feedback control systems for the control of vibrations of machines and flexible structures. A classical proof mass actuator is formed by a coil-magnet linear motor, with either the magnet or the armature-coil proof mass suspended on soft springs. This arrangement produces a net force effect at frequencies above the fundamental resonance frequency of the springs-proof mass system. Thus, it can be used to implement point velocity feedback loops, although the dynamic response and static deflection of the springs-proof mass system poses some stability and control performance limitations. The four proof mass actuators presented in this study include a flywheel element, which is used to augment the inertia effect of the suspended proof mass. The paper shows that the flywheel element modifies both the dynamic response and static deflection of the springs-proof mass system in such a way as the stability and control performance of velocity feedback loops using these actuators are significantly improved.

  2. Energy optimization for a wind DFIG with flywheel energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Hamzaoui, Ihssen, E-mail: hamzaoui-ihssen2000@yahoo.fr [Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Sciences and Technology Houari Boumediene, BP 32 El-Alia 16111 Bab-Ezzouar (Algeria); Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Khemis Miliana, Ain Defla (Algeria); Bouchafaa, Farid, E-mail: fbouchafa@gmail.com [Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Sciences and Technology Houari Boumediene, BP 32 El-Alia 16111 Bab-Ezzouar (Algeria)

    2016-07-25

    The type of distributed generation unit that is the subject of this paper relates to renewable energy sources, especially wind power. The wind generator used is based on a double fed induction Generator (DFIG). The stator of the DFIG is connected directly to the network and the rotor is connected to the network through the power converter with three levels. The objective of this work is to study the association a Flywheel Energy Storage System (FESS) in wind generator. This system is used to improve the quality of electricity provided by wind generator. It is composed of a flywheel; an induction machine (IM) and a power electronic converter. A maximum power tracking technique « Maximum Power Point Tracking » (MPPT) and a strategy for controlling the pitch angle is presented. The model of the complete system is developed in Matlab/Simulink environment / to analyze the results from simulation the integration of wind chain to networks.

  3. Development of a High-Fidelity Model for an Electrically Driven Energy Storage Flywheel Suitable for Small Scale Residential Applications

    Directory of Open Access Journals (Sweden)

    Mustafa E. Amiryar

    2018-03-01

    Full Text Available Energy storage systems (ESS are key elements that can be used to improve electrical system efficiency by contributing to balance of supply and demand. They provide a means for enhancing the power quality and stability of electrical systems. They can enhance electrical system flexibility by mitigating supply intermittency, which has recently become problematic, due to the increased penetration of renewable generation. Flywheel energy storage systems (FESS are a technology in which there is gathering interest due to a number of advantages offered over other storage solutions. These technical qualities attributed to flywheels include high power density, low environmental impact, long operational life, high round-trip efficiency and high cycle life. Furthermore, when configured in banks, they can store MJ levels of energy without any upper limit. Flywheels configured for grid connected operation are systems comprising of a mechanical part, the flywheel rotor, bearings and casings, and the electric drive part, inclusive of motor-generator (MG and power electronics. This contribution focusses on the modelling and simulation of a high inertia FESS for energy storage applications which has the potential for use in the residential sector in more challenging situations, a subject area in which there are few publications. The type of electrical machine employed is a permanent magnet synchronous motor (PMSM and this, along with the power electronics drive, is simulated in the MATLAB/Simulink environment. A brief description of the flywheel structure and applications are given as a means of providing context for the electrical modelling and simulation reported. The simulated results show that the system run-down losses are 5% per hour, with overall roundtrip efficiency of 88%. The flywheel speed and energy storage pattern comply with the torque variations, whilst the DC-bus voltage remains constant and stable within ±3% of the rated voltage, regardless of

  4. On the experimental determination of the efficiency of piezoelectric impact-type energy harvesters using a rotational flywheel

    International Nuclear Information System (INIS)

    Janphuang, P; Lockhart, R; Briand, D; De Rooij, N F; Henein, S

    2013-01-01

    This paper demonstrates a novel methodology using a rotational flywheel to determine the energy conversion efficiency of the impact based piezoelectric energy harvesters. The influence of the impact speed and additional proof mass on the efficiency is presented here. In order to convert low frequency mechanical oscillations into usable electrical energy, a piezoelectric harvester is coupled to a rotating gear wheel driven by flywheel. The efficiency is determined from the ratio of the electrical energy generated by the harvester to the mechanical energy dissipated by the flywheel. The experimental results reveal that free vibrations of the harvester after plucking contribute significantly to the efficiency. The efficiency and output energy can be greatly improved by adding a proof mass to the harvester. Under certain conditions, the piezoelectric harvesters have an impact energy conversion efficiency of 1.2%

  5. GyroVR: Simulating Inertia in Virtual Reality using Head Worn Flywheels

    DEFF Research Database (Denmark)

    Gugenheimer, Jan; Wolf, Dennis; Eiríksson, Eyþór Rúnar

    2016-01-01

    We present GyroVR, head worn flywheels designed to render inertia in Virtual Reality (VR. Motions such as flying, diving or floating in outer space generate kinesthetic forces onto our body which impede movement and are currently not represented in VR. We simulate those kinesthetic forces...... by attaching flywheels to the users head, leveraging the gyroscopic effect of resistance when changing the spinning axis of rotation. GyroVR is an ungrounded, wireless and self contained device allowing the user to freely move inside the virtual environment. The generic shape allows to attach it to different...... positions on the users body. We evaluated the impact of GyroVR onto different mounting positions on the head (back and front) in terms of immersion, enjoyment and simulator sickness. Our results show, that attaching GyroVR onto the users head (front of the Head Mounted Display (HMD)) resulted in the highest...

  6. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jung, Seungmin [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of); Cho, Yoonsung [Department of Electric and Energy Engineering, Catholic University of Daegu, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702 (Korea, Republic of); Yoon, Donghee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  7. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    International Nuclear Information System (INIS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed

  8. FY 1999 Report on research and development of power storage by high-temperature superconducting flywheel. Research and development of permanent magnet; 1999 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu eikyu jishaku no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    The R and D program is implemented for permanent magnet, as part of the project aimed at commercialization of a 10 MWh-class high-temperature superconducting magnetic bearing type power storage system. A speed of rotation of 28,570 rpm is attained by using an iron intermediate ring for a Pr permanent magnet rotator and reinforcing the rotator with a plastic hoop reinforced with carbon fibers three-fold (CFPR hoop). The speed is increased to 31,300 rpm by interlacing carbon fibers also in the radial direction and replacing iron for the intermediate ring by titanium. The highest speed of rotation of 33,506 rpm is realized by the rotator of permanent magnet of sintered Nd. The magnetic circuit of stronger, more smooth magnetic field needs the permanent magnet of less uneven magnetic flux. The magnet is of a monoaxially anisotropic rare-earth metal, with four-fold magnetic ring bodies having fan-shaped small pieces arranged on each ring. Uneven magnetic flux occurs at the joint between these small pieces. The one-body-ring magnet of radially anisotropic, sintered Nd is developed, and incorporated in the repulsion type magnetic circuit, to reduce unevenness of the magnetic flux. (NEDO)

  9. Flywheel Challenge: HTS Magnetic Bearing

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2006-01-01

    A 200 mm cylindrical engineering prototype high temperature superconducting (HTS) was designed and fabricated. Measurements show that the 17 kg PM rotor can suspend safely 1000 kg in axial direction and 470 kg radially. The rationale for the bearing performance is to stabilize a 400 kg rotor of a new compact 5 kWh/280 kW flywheel energy storage system (COM - FESS). Measurements of the magnetic bearing force, stiffness and drag-torque are presented indicated the successful targeting a milestone in the HTS bearing technology. The influence of the PM configuration and the YBCO temperature on the bearing performance was experimentally studied, providing high-force or high-stiffness behaviour. The axial stiffness 5 kN/mm at 0.5 mm displacement is the highest value of a HTS bearing we know

  10. Design of magnetic flywheel control for performance improvement of fuel cells used in vehicles

    International Nuclear Information System (INIS)

    Huang, Chung-Neng; Chen, Yui-Sung

    2017-01-01

    Because hydrogen can be extracted naturally and stored for a long time, different types of fuel cells have been developed to generate clean power, particularly for use in vehicles. However, the power demand of a running vehicle leads to unstable and irregular loading of fuel cells. This not only reduces fuel cell lifespan and efficiency but also affects driving safety when the slow output response cannot satisfy an abrupt increase in power demand. Magnetic flywheels with characteristics such as high energy density, high-speed charging ability, and low loss have been extensively used in Formula One cars. This study developed a hybrid powertrain in which a magnetic flywheel system (MFS) is integrated with the fuel cells to solve the aforementioned problems. Moreover, an auto-tuning proportional–integral–derivative (PID) controller based on the controls of a multiple adaptive neuro-fuzzy interference system and particle swarm optimization was designed for MFS control. Furthermore, MATLAB/Simulink simulations considering an FTP-75 urban driving cycle were conducted, and a variability improvement of approximately 27.3% in fuel cell output was achieved. - Highlights: • A hybrid powertrain integrating the magnetic flywheel and fuel cells is proposed. • An auto-tuning PID controller is designed for MFS control. • The MIMO-ANFIS and PSO based optimal control is realized. • A 27.3% improvement in the output variability of fuel cell is achieved under control.

  11. A superconducting thrust-bearing system for an energy storage flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T.A.; Cansiz, A.; Campbell, A.M. [IRC in Superconductivity, Cambridge (United Kingdom)

    2002-05-01

    We have constructed a bearing system for an energy storage flywheel. This bearing system uses a combination of permanent magnets and superconductors in an arrangement commonly termed as an Evershed bearing. In an Evershed system there are in fact two bearings which act in concert. In our system we have one bearing constructed entirely out of permanent magnets acting in attraction. This system bears the weight of the flywheel (43.6 kg) but would not, on its own, be stable. Stability is provided by a superconducting bearing which is formed by the interaction between the magnetic field of a permanent magnet sited on the rotor and superconductors on the stator. This overall arrangement is stable over a range of levitation heights and has been tested at rotation speeds of up to around 12 Hz (the maximum speed is dictated by the drive system not the bearing system). There is a sharp resonance peaking at between 2 and 3 Hz and spin down tests indicate that the equivalent coefficient of friction is of the order of 10{sup -5}. The rate of change of velocity is, however, not constant so the drag is clearly not solely frictional. The position of the resonance is dictated by the stiffness of the bearing relative to the mass of the flywheel but the amplitude of the resonance is dictated by the variation in magnitude of the magnetic field of the permanent magnets. Large magnets are (at present) fabricated in sections and this leads to a highly inhomogeneous field. The field has been smoothed by using a combination of iron which acts passively and copper which provides magnetic shielding due to the generation of eddy currents and therefore acts as an 'active' component. Calculations based on the spin down tests indicate that the resultant variation in field is of the order of 3% and measurements are being carried out to confirm this. (author)

  12. An Evershed type superconducting flywheel bearing

    Energy Technology Data Exchange (ETDEWEB)

    Cansiz, A.; Campbell, A.M.; Coombs, T.A

    2003-07-15

    The objective of this work is to develop a bearing using high temperature superconductors (HTSs) for use in an energy storage flywheel. The experimental apparatus includes a cylindrical rotor levitated with the Evershed design in which the majority of the levitation force is provided by a permanent magnet arrangement and the stabilization of the system is achieved by HTS elements. The design characteristics and dynamics of the bearing associated with the rotor part are presented. The instrumentation measures the out of balance force and magnetomechanical stiffness associated with the rotor. A study of the rotational losses was performed using free spin down experiments associated with magnetic field variation measurements. The results are consistent with the loss being caused by hysteresis in the superconductor due to magnet inhomogeneity.

  13. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    International Nuclear Information System (INIS)

    Ogata, M; Matsue, H; Yamashita, T; Hasegawa, H; Nagashima, K; Maeda, T; Matsuoka, T; Mukoyama, S; Shimizu, H; Horiuchi, S

    2016-01-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper. (paper)

  14. The improved damping of superconductor bearings for 35 kWh superconductor flywheel energy storage system

    International Nuclear Information System (INIS)

    Han, Y.H.; Park, B.J.; Jung, S.Y.; Han, S.C.; Lee, W.R.; Bae, Y.C.

    2013-01-01

    Highlights: ► We made a 35 kWh superconductor flywheel energy storage system. ► The damping coefficient of the superconductor bearing was increased over 3000 N s/m. ► The source of damping was discussed. -- Abstract: A 35 kWh Superconductor Flywheel Energy Storage system (SFES) using hybrid bearing sets, which is composed of a high temperature superconductor (HTS) bearing and an active magnet damper (AMD), has been developed at KEPCO Research Institute (KEPRI). Damping is a source of energy loss but necessary for the stability of the flywheel system. We found that the damping of HTS bearings can be improved by thermal insulating bolts, which play a role of passive type external damper. To investigate the source of the increased damping, damping coefficients were measured with HTS bearings using insulating bolts made of three kinds of polymer materials. The damping coefficient was raised over 3000 N s/m in the case of PEEK bolts. The value was almost a quarter of the AMD. In this study, thermoelastic and Coulomb friction damping mechanisms are discussed. The main damping mechanism was the thermoelastic damping of the bolts themselves. And interfacial gap between the insulating bolt and metal chamber, which increased during the cooling process, was considered to be the cause of the anisotropic damping coefficients. Finally, the effects of the HTS bearings on the first critical speed are shown

  15. Flywheel Energy Storage Drive System for Wind Applications

    Directory of Open Access Journals (Sweden)

    Marius Constantin Georgescu

    2014-09-01

    Full Text Available This paper presents a wind small power plant with a Smart Storage Modular Structure (SSMS, as follows: a Short Time Storage Module (STSM based on a flywheel with Induction Motor (IM and a Medium/Long Time Storage Module (MLTSM based on a Vanadium Redox flow Battery (VRB. To control the speed and torque of the IM are used a nonlinear sensorless solution and a direct torque solution which have been compared. Now, the author proposes to replace the IM by a dc motor with permanent magnet energy injection. In this aim, are accomplished some laboratory tests.

  16. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Science.gov (United States)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  17. Magnetic bearing flywheels for electric storage

    Energy Technology Data Exchange (ETDEWEB)

    Poubeau, P C

    1981-01-01

    A magnetic bearing flywheel was designed. In order to have a simple, reliable system, magnetic suspension with a single servoloop for one degree of freedom of the rotor was used, four other degrees of freedom being controlled passively and the sixth one, corresponding to the rotation axis. The motor that transfers electric energy to the rotor is of the ironless brushless dc type with electronic commutation. It is operated alternatively for accelerating the wheel and then as a generator for delivering the stored energy. The use of high stress composite materials in the rotor greatly increases the operational limits of this equipment. Key characteristics of kinetic energy storage are mentioned along with a wide range of applications. Besides energy storage for satellites, these include power smoothing for solar and wind energy systems as well as backup power supplies, e.g., for electric vehicles.

  18. Distributed Cooperative Control of Multi Flywheel Energy Storage System for Electrical Vehicle Fast Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez

    2015-01-01

    Plug-in electrical vehicles will play a critical role in future smart grid and sudden connection of electrical vehicles chargers may cause huge power-peaks with high slew-rates on grid. In order to cope with this issue, this paper applies a distributed cooperative control for fast charging station...... with dedicated paralleled flywheel-based energy storage system. The distributed DC-bus signaling method is employed in the power coordination of grid and flywheel converters, and a distributed secondary controller generates DC voltage correction term to adjust the local voltage set-point through a dynamic...... consensus based voltage observer by communicating with its neighbors. The control system can realize the power balancing and DC voltage regulation with low reliance on communications. Finally, real-time hardware-in-the-loop results have been reported in order to verify the feasibility of proposed approach....

  19. Interlayer toughening of fiber composite flywheel rotors

    Science.gov (United States)

    Groves, Scott E.; Deteresa, Steven J.

    1998-01-01

    An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

  20. TRANSIENT ANALYSIS OF WIND DIESEL POWER SYSTEM WITH FLYWHEEL ENERGY STORAGE

    Directory of Open Access Journals (Sweden)

    S. SUJITH

    2017-10-01

    Full Text Available Wind-Diesel Hybrid power generation is a viable alternative for generating continuous power to isolated power system areas which have inconsistent but potential wind power. The unpredictable nature of variable power from Wind generator to the system is compensated by Diesel generator, which supplies the deficit in generated power from wind to meet the instantaneous system load. However, one of the major challenges for such a system is the higher probability of transients in the form of wind and load fluctuations. This paper analyses the application of Flywheel Energy storage system (FESS to meet the transients during wind-speed and load fluctuations around high wind operation. The power system architecture, the distributed control mechanism governing the flow of power transfer and the modelling of major system components has been discussed and the system performances have been validated using MATLAB /Simulink software. Two cases of transient stages around the high wind system operation are discussed. The simulation results highlight the effective usage of FESS in reducing the peak overshoot of active power transients, smoothes the active power curves and helps in reducing the diesel consumption during the flywheel discharge period, without affecting the continuous power supply for meeting the instantaneous load demand.

  1. Four giga joule flywheel motor-generator for JT-60 toroidal field coil power supply system

    International Nuclear Information System (INIS)

    Matsukawa, T.; Kanke, M.; Shimada, R.; Yoshida, Y.; Yamashita, K.; Nakayama, T.

    1986-01-01

    A fusion test reactor often needs motor-generators as a power source in order to reduce disturbances to utility lines. The toroidal field coil power supply system of JT-60 also adopted a motor-generator for this purpose. The motor-generator started operation in April, 1985 at Japan Atomic Energy Research Institute together with the whole system. The motor-generator has several special features both electrically and mechanically. One electrical feature is that it is used as a pulse source of large current and power for periodic short-time duty. A mechanical feature is that a large flywheel is directly coupled to the motor-generator shaft and operated intermittently and at high speed. Therefore detailed investigations were carried out concerning constitution, characteristics as well as the coordination with the system performance. This paper describes the outlines of the flywheel motor-generator and discusses several topics

  2. Electrochemical Batteries: Flywheels for temporary energy storage; Baterias electromecanicas: volantes de inercia para el almacenamiento temporal de energia

    Energy Technology Data Exchange (ETDEWEB)

    Pena Alzola, R.; Sebastian Fernandez, R.

    2008-07-01

    In the Electromechanical batteries (EMB) a flywheel stores mechanical energy that interchanges in form of electrical energy by means of an electrical machine with a bidirectional power converter. EMB are suitable whenever numerous charge and recharge cycles (hundred of thousands) are needed with medium to high power (kW to MW) during short periods (seconds). The materials of the flywheel, the type of the electrical machine, the type of the bearings and the atmosphere inside the housing determine the energy efficiency of the EMB. EMB are commercially available with more than a dozen of manufacturers. Amongst the applications of BEM are: uninterrupted power supplies, hybrid power systems, power grids feeding trains, hybrid vehicles and space satellites. (Author) 15 refs.

  3. Sub-Area. 2.5 Demonstration of Promising Energy Storage Technologies Project Type. Flywheel Energy Storage Demonstration Revision: V1.0

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-12-30

    In this program, Amber Kinetics designed, built, and tested a sub-­scale 5 kWh engineering prototype flywheel system. Applying lessons learned from the engineering prototype, Amber Kinetics then designed, built and tested full-­size, commercial-­scale 25 kWh flywheel systems. The systems underwent basic functional qualification testing before being installed, sequentially, at the company’s outdoor test site in Alameda, CA for full-­speed field-testing. The primary considerations in testing the prototype units were to demonstrate the functionality of the system, verify the frequencies of resonant modes, and quantify spinning losses and motor/generator efficiency.

  4. Two-Level Control for Fast Electrical Vehicle Charging Stations with Multi Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    This paper applies a hierarchical control for a fast charging station (FCS) composed of paralleled PWM rectifier and dedicated paralleled multiple flywheel energy storage systems (FESSs), in order to mitigate peak power shock on grid caused by sudden connection of electrical vehicle (EV) chargers...

  5. Research and development project for flywheel energy storage system using high-temperature superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Shinagawa, Jiro; Ishikawa, Fumihiko

    1996-01-01

    Recent progress in the research and development of an yttrium-based oxide high-temperature superconductor has enabled the production of a large-diameter bulk with a strong flux-pinning force. A combination of this superconductor and a permanent magnet makes it feasible to fabricate a non-contact, non-controlled superconducting magnetic bearing with a very small rotational loss. Use of the superconducting magnetic bearing for a flywheel energy storage system may pave the way to the development of a new energy storage system that has great energy storage efficiency. >From relevant data measured with a miniature model of the high-temperature superconducting magnetic bearing, a conceptual design of an 8 MWh flywheel energy storage system was developed, using the new bearing which proved to be potentially capable of achieving a high energy storage efficiency of 84%. A 100 Wh-class experimental system was install that attained a high revolution rate of 17.000 rpm. (author)

  6. A double-superconducting axial bearing system for an energy storage flywheel model

    Science.gov (United States)

    Deng, Z.; Lin, Q.; Ma, G.; Zheng, J.; Zhang, Y.; Wang, S.; Wang, J.

    2008-02-01

    The bulk high temperature superconductors (HTSCs) with unique flux-pinning property have been applied to fabricate two superconducting axial bearings for an energy storage flywheel model. The two superconducting axial bearings are respectively fixed at two ends of the vertical rotational shaft, whose stator is composed of seven melt-textured YBa2Cu3O7-x (YBCO) bulks with diameter of 30 mm, height of 18 mm and rotor is made of three cylindrical axial-magnetized NdFeB permanent magnets (PM) by superposition with diameter of 63 mm, height of 27 mm. The experimental results show the total levitation and lateral force produced by the two superconducting bearings are enough to levitate and stabilize the 2.4 kg rotational shaft. When the two YBCO stators were both field cooled to the liquid nitrogen temperature at respective axial distances above or below the PM rotor, the shaft could be automatically levitated between the two stators without any contact. In the case of a driving motor, it can be stably rotated along the central axis besides the resonance frequency. This double-superconducting axial bearing system can be used to demonstrate the flux-pinning property of bulk HTSC for stable levitation and suspension and the principle of superconducting flywheel energy storage system to visitors.

  7. A Control Algorithm for Electric Vehicle Fast Charging Stations Equipped with Flywheel Energy Storage Systems

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    This paper proposes a control strategy for plugin electric vehicle (PEV) fast charging station (FCS) equipped with a flywheel energy storage system (FESS). The main role of the FESS is not to compromise the predefined charging profile of PEV battery during the provision of a hysteresis-type active...

  8. Bearingless AC Homopolar Machine Design and Control for Distributed Flywheel Energy Storage

    Science.gov (United States)

    Severson, Eric Loren

    The increasing ownership of electric vehicles, in-home solar and wind generation, and wider penetration of renewable energies onto the power grid has created a need for grid-based energy storage to provide energy-neutral services. These services include frequency regulation, which requires short response-times, high power ramping capabilities, and several charge cycles over the course of one day; and diurnal load-/generation-following services to offset the inherent mismatch between renewable generation and the power grid's load profile, which requires low self-discharge so that a reasonable efficiency is obtained over a 24 hour storage interval. To realize the maximum benefits of energy storage, the technology should be modular and have minimum geographic constraints, so that it is easily scalable according to local demands. Furthermore, the technology must be economically viable to participate in the energy markets. There is currently no storage technology that is able to simultaneously meet all of these needs. This dissertation focuses on developing a new energy storage device based on flywheel technology to meet these needs. It is shown that the bearingless ac homopolar machine can be used to overcome key obstacles in flywheel technology, namely: unacceptable self-discharge and overall system cost and complexity. Bearingless machines combine the functionality of a magnetic bearing and a motor/generator into a single electromechanical device. Design of these machines is particularly challenging due to cross-coupling effects and trade-offs between motor and magnetic bearing capabilities. The bearingless ac homopolar machine adds to these design challenges due to its 3D flux paths requiring computationally expensive 3D finite element analysis. At the time this dissertation was started, bearingless ac homopolar machines were a highly immature technology. This dissertation advances the state-of-the-art of these machines through research contributions in the areas of

  9. Simulation of the fuel consumption benefits of various transmission arrangements and control strategies within a flywheel based mechanical hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Body, William; Brockbank, Chris [Torotrak (Development) Ltd. (United Kingdom)

    2009-07-01

    Flywheel based mechanical hybrid technology is being developed for both motorsport and mainstream automotive applications. One particular road car application project, part funded by the UK Government Technology Strategy Board, is being led by Jaguar Land Rover, managed by Prodrive and using advanced technology from Flybrid Systems, Ford, Ricardo. Torotrak and Xtrac. During the two year programme, the group will develop the new technology and build a demonstrator vehicle equipped with the system. The mechanical system recovers kinetic energy from the vehicle during braking to a high speed rotating flywheel via a variable drive system. When compared to an electric motor / battery arrangement, the mechanical hybrid system offers benefits in cost, weight, package, efficiency and ultimately vehicle fuel consumption. As part of the development and optimisation process in order to specify the road car system, all aspects of the mechanical hybrid system are under investigation by the group. Alongside the required quantity of energy storage and the rates of energy recovery and reapplication, a number of different physical architectures for the system are being analysed. The Torotrak full-toroidal traction drive has been assigned as the variable drive element of the mechanical hybrid system. Multiple configuration options are available including direct drive, epicyclic shunted, range extended CVT and epicyclic shunted IVT arrangements. In addition, the flywheel and variable drive system can be connected to the powertrain in a variety of different locations, from the engine through the powertrain to the wheels. This paper describes the simulation of the mechanical hybrid system with particular focus on the impact on the fuel consumption benefit, over multiple drive cycles, of the variable drive configuration, the location of the variable drive and flywheel system and the control strategy options. (orig.)

  10. Plate heat exchanger - inertia flywheel performance in loss of flow transient

    International Nuclear Information System (INIS)

    Abou-El-Maaty, Talal; Abd-El-Hady, Amr

    2009-01-01

    One of the most versatile types of heat exchangers used is the plate heat exchanger. It has principal advantages over other heat exchangers in that plates can be added and/or removed easily in order to change the area available for heat transfer and therefore its overall performance. The cooling systems of Egypt's second research reactor (ETRR 2) use this type of heat exchanger for cooling purposes in its primary core cooling and pool cooling systems. In addition to the change in the number of heat exchanger cooling channels, the effect of changing the amount of mass flow rate on the heat exchanger performance is an important issues in this study. The inertia flywheel mounted on the primary core cooling system pump with the plate heat exchanger plays an important role in the case of loss of flow transients. The PARET code is used to simulate the effect of loss of flow transients on the reactor core. Hence, the core outlet temperature with the pump-flywheel flow coast down is fed into the plate heat exchanger model developed to estimate the total energy transferred to the cooling tower, the primary side heat exchanger temperature variation, the transmitted heat exchanger power, and the heat exchanger effectiveness. In addition, the pressure drop in both, the primary side and secondary side of the plate heat exchanger is calculated in all simulated transients because their values have limits beyond which the heat exchanger is useless. (orig.)

  11. Sensorless Control of Permanent Magnet Machine for NASA Flywheel Technology Development

    Science.gov (United States)

    Kenny, Barbara H.; Kascak, Peter E.

    2002-01-01

    This paper describes the position sensorless algorithms presently used in the motor control for the NASA "in-house" development work of the flywheel energy storage system. At zero and low speeds a signal injection technique, the self-sensing method, is used to determine rotor position. At higher speeds, an open loop estimate of the back EMF of the machine is made to determine the rotor position. At start up, the rotor is set to a known position by commanding dc into one of the phase windings. Experimental results up to 52,000 rpm are presented.

  12. A comparison of high-speed flywheels, batteries, and ultracapacitors on the bases of cost and fuel economy as the energy storage system in a fuel cell based hybrid electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Doucette, Reed T.; McCulloch, Malcolm D. [Department of Engineering Science, University of Oxford, Thom Building, Parks Road, Oxford, OX1 3PJ (United Kingdom)

    2011-02-01

    Fuel cells aboard hybrid electric vehicles (HEVs) are often hybridized with an energy storage system (ESS). Batteries and ultracapacitors are the most common technologies used in ESSs aboard HEVs. High-speed flywheels are an emerging technology with traits that have the potential to make them competitive with more established battery and ultracapacitor technologies in certain vehicular applications. This study compares high-speed flywheels, ultracapacitors, and batteries functioning as the ESS in a fuel cell based HEV on the bases of cost and fuel economy. In this study, computer models were built to simulate the powertrain of a fuel cell based HEV where high-speed flywheels, batteries, and ultracapacitors of a range of sizes were used as the ESS. A simulated vehicle with a powertrain using each of these technologies was run over two different drive cycles in order to see how the different ESSs performed under different driving patterns. The results showed that when cost and fuel economy were both considered, high-speed flywheels were competitive with batteries and ultracapacitors. (author)

  13. Effects of Traditional Versus Horizontal Inertial Flywheel Power Training on Common Sport-Related Tasks

    Directory of Open Access Journals (Sweden)

    de Hoyo Moisés

    2015-09-01

    Full Text Available This study aimed to analyze the effects of power training using traditional vertical resistance exercises versus direction specific horizontal inertial flywheel training on performance in common sport-related tasks. Twenty-three healthy and physically active males (age: 22.29 ± 2.45 years volunteered to participate in this study. Participants were allocated into either the traditional training (TT group where the half squat exercise on a smith machine was applied or the horizontal flywheel training (HFT group performing the front step exercise with an inertial flywheel. Training volume and intensity were matched between groups by repetitions (5-8 sets with 8 repetitions and relative intensity (the load that maximized power (Pmax over the period of six weeks. Speed (10 m and 20 m, countermovement jump height (CMJH, 20 m change of direction ability (COD and strength during a maximal voluntary isometric contraction (MVIC were assessed before and after the training program. The differences between groups and by time were assessed using a two-way analysis of variance with repeated measures, followed by paired t-tests. A significant group by time interaction (p=0.004 was found in the TT group demonstrating a significantly higher CMJH. Within-group analysis revealed statistically significant improvements in a 10 m sprint (TT: −0.17 0.27 s vs. HFT: −0.11 0.10 s, CMJH (TT: 4.92 2.58 cm vs. HFT: 1.55 2.44 cm and MVIC (TT: 62.87 79.71 N vs. HFT: 106.56 121.63 N in both groups (p < 0.05. However, significant differences only occurred in the 20 m sprint time in the TT group (−0.04 0.12 s; p = 0.04. In conclusion, the results suggest that TT at the maximal peak power load is more effective than HFT for counter movement jump height while both TT and HFT elicited significant improvements in 10 m sprint performance while only TT significantly improved 20 m sprint performance.

  14. Stiffness Evaluation of High Temperature Superconductor Bearing Stiffness for 10 kWh Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Kim, C. H.; Han, S. C.; Du, S. G.; Han, Y. H.; Sung, T. H.

    2009-01-01

    A superconductor flywheel energy storage(SFES) system is mainly act an electro-mechanical battery which transfers mechanical energy into electrical form and vice versa. SFES system consists of a pair of non-contacting High Temperature Superconductor (HTS) bearings with a very low frictional loss. But it is essential to design an efficient HTS bearing considering with rotor dynamic properties through correct calculation of stiffness in order to support a huge composite flywheel rotor with high energy storage density. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate HTS bearing magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measured axial / radial stiffness and found bearing stiffness can be easily changed by activated vibration direction between PM and HTS bulk. These results are used to determine the optimal design for a 10 kWh SFES.

  15. Transient heat transfer analysis of superconducting magnetic levitating flywheel rotor operating in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Mochida, A.; Kudo, K.; Higasa, H.

    1999-07-01

    In the present study, transient temperature rise is analyzed in a flywheel type power storage system operated in vacuum environment. The flywheel rotor is levitated by high-temperature-superconducting magnetic bearing to reduce the bearing loss. Though the superconductor is cooled by liquid nitrogen, the temperature of the whole system rises due to Joule heating in the coils of the bearings and the motor during the operation. If the temperature should reach the critical temperature of the permanent magnet used for the magnetic bearings after long time operation, the magnetic bearings lose their effect. The heat generated in the levitated rotor diffuses within it by heat conduction and finally emitted to its surrounding solid materials by thermal radiation from the rotor surfaces across vacuum layer. Numerical simulation is carried out calculating the transient radiative-conductive heat transfer and time-dependent profiles of temperature within the rotor are obtained. The results are compared with the experimentally obtained temperatures by measured a test model of 1kWh power storage and the measured profiles of the temperature rise of the rotor fit very well with the calculated ones. Using this simulation tool, the effects of the surface emissivity of the materials of the rotor and the stator, the temperature of the surrounding casings and the thermal conductivity of the materials on the temperature profiles in the system are estimated.

  16. The New Structure Design and Analysis of Energy Storage of Flywheel of Split Rotor

    OpenAIRE

    Peng Xu; Wei Wang; Jin Yan; Shaoyang Han

    2015-01-01

    The braking of the rail transit train consumes a great quantity of energy, and the thermal energy produced in the process of braking can affect the normal operation of the transit train. Thus recycling the braking energy becomes a research hotspot of urban rail train. This paper made an overall analysis of regenerative braking process, the rationale, and the main features and then put forward the optimizing the structure of the composite flywheel concept and design calculation method. This pa...

  17. Dynamic characteristics of a flywheel energy storage system using superconducting magnetic bearings

    CERN Document Server

    Kim, J S

    2003-01-01

    The high-temperature superconducting magnetic bearing flywheel energy storage system (SMB-FESS) is proposed as an efficient energy storage system. It is important to identify the dynamic behaviour and the characteristics of the SMB-FESS. First, a new method for identifying SMB characteristics has been suggested. The suggested modelling method is verified by comparing the experimental and analytical frequency response functions. In this study, the analyses of critical speed and unbalance response are performed using the analytical model. The experimental test has been carried out to verify the result of simulation. A good agreement has been observed between the experiment and the simulation result.

  18. Flywheel Energy Storage System Suspended by Hybrid Magnetic Bearing

    Science.gov (United States)

    Owusu-Ansah, Prince; Hu, Yefa; Misbawu, Adam

    This work presents a prototype flywheel energy storage system (FESS) suspended by hybrid magnetic bearing (HMB) rotating at a speed of 20000rpm with a maximum storage power capacity of 30W with a maximum tip speed of 300m/s. The design presented is an improvement of most existing FESS, as the design incorporates a unique feature in that the upper and the lower rotor and stator core are tapered which enhances larger thrust and much lower radial force to be exerted on the system. Without any adverse effect being experienced by the model. The work also focuses on the description of developing a prototype FESS suspended by HMB using solid works as a basis of developing in the nearer future a more improved FESS suspended by HMB capable of injecting the ever increasing high energy demand situation in the 21st century and beyond.

  19. Operation of a wind turbine-flywheel energy storage system under conditions of stochastic change of wind energy.

    Science.gov (United States)

    Tomczewski, Andrzej

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level.

  20. High-performance sensorless nonlinear power control of a flywheel energy storage system

    International Nuclear Information System (INIS)

    Amodeo, S.J.; Chiacchiarini, H.G.; Solsona, J.A.; Busada, C.A.

    2009-01-01

    The flywheel energy storage systems (FESS) can be used to store and release energy in high power pulsed systems. Based on the use of a homopolar synchronous machine in a FESS, a high performance model-based power flow control law is developed using the feedback linearization methodology. This law is based on the voltage space vector reference frame machine model. To reduce the magnetic losses, a pulse amplitude modulation driver for the armature is more adequate. The restrictions in amplitude and phase imposed by the driver are also included. A full order Luenberger observer for the torque angle and rotor speed is developed to implement a sensorless control strategy. Simulation results are presented to illustrate the performance.

  1. Performance enhanced design of chaos controller for the mechanical centrifugal flywheel governor system via adaptive dynamic surface control

    Directory of Open Access Journals (Sweden)

    Shaohua Luo

    2016-09-01

    Full Text Available This paper addresses chaos suppression of the mechanical centrifugal flywheel governor system with output constraint and fully unknown parameters via adaptive dynamic surface control. To have a certain understanding of chaotic nature of the mechanical centrifugal flywheel governor system and subsequently design its controller, the useful tools like the phase diagrams and corresponding time histories are employed. By using tangent barrier Lyapunov function, a dynamic surface control scheme with neural network and tracking differentiator is developed to transform chaos oscillation into regular motion and the output constraint rule is not broken in whole process. Plugging second-order tracking differentiator into chaos controller tackles the “explosion of complexity” of backstepping and improves the accuracy in contrast with the first-order filter. Meanwhile, Chebyshev neural network with adaptive law whose input only depends on a subset of Chebyshev polynomials is derived to learn the behavior of unknown dynamics. The boundedness of all signals of the closed-loop system is verified in stability analysis. Finally, the results of numerical simulations illustrate effectiveness and exhibit the superior performance of the proposed scheme by comparing with the existing ADSC method.

  2. The flywheel as an energy storage device in railway and tram networks; Schwungrad als Energiespeicher in Bahnnetzen. Erfahrungen aus einem Versuchsprojekt in der Stadt Zuerich

    Energy Technology Data Exchange (ETDEWEB)

    Bischof, M. [EWZ, Zuerich (Switzerland)

    2010-07-01

    This article reviews experience made with a flywheel-based energy storage system that was tested on part of Zurich's tram network. The aim of the six weeks of tests was to determine how much energy that is generated by the recuperation of braking energy can be temporarily stored to provide power for accelerating trams on the network. The article discusses the valuable knowledge gained during the tests. The basic ideas behind the tests and the goals aimed for are discussed, both concerning energy balances as well as other factors such as noise and electromagnetic emissions. The part of the tram line used for the tests is described and the results are discussed. Other power storage systems using flywheels and capacitors are reviewed.

  3. Muscle, functional and cognitive adaptations after flywheel resistance training in stroke patients: a pilot randomized controlled trial.

    Science.gov (United States)

    Fernandez-Gonzalo, Rodrigo; Fernandez-Gonzalo, Sol; Turon, Marc; Prieto, Cristina; Tesch, Per A; García-Carreira, Maria del Carmen

    2016-04-06

    Resistance exercise (RE) improves neuromuscular function and physical performance after stroke. Yet, the effects of RE emphasizing eccentric (ECC; lengthening) actions on muscle hypertrophy and cognitive function in stroke patients are currently unknown. Thus, this study explored the effects of ECC-overload RE training on skeletal muscle size and function, and cognitive performance in individuals with stroke. Thirty-two individuals with chronic stroke (≥6 months post-stroke) were randomly assigned into a training group (TG; n = 16) performing ECC-overload flywheel RE of the more-affected lower limb (12 weeks, 2 times/week; 4 sets of 7 maximal closed-chain knee extensions; trained (48.2 %), and the less-affected, untrained limb (28.1 %) increased after training. TG showed enhanced balance (8.9 %), gait performance (10.6 %), dual-task performance, executive functions (working memory, verbal fluency tasks), attention, and speed of information processing. CG showed no changes. ECC-overload flywheel resistance exercise comprising 4 min of contractile activity per week offers a powerful aid to regain muscle mass and function, and functional performance in individuals with stroke. While the current intervention improved cognitive functions, the cause-effect relationship, if any, with the concomitant neuromuscular adaptations remains to be explored. Clinical Trials NCT02120846.

  4. Effects of Material Properties on the Total Stored Energy of a Hybrid Flywheel Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Ha, S.K.; Yoon, Y.B. [Hanyang University, Seoul (Korea); Han, S.C. [Korea Electric Power Research Institute, Taejon (Korea)

    2000-05-01

    A numerical method based on an assumption of a generalized plane strain (GPS) state is presented for calculating the stress and strength ratio distributions of the rotating composite flywheel rotor of varying material properties in the radial direction. The rotor is divided into many rings and each ring has constant material properties. All the rings are assumed to expand and have the same axial strain. A three-dimensional finite element method is then used to verify the accuracy of the present method for various height ratios and ply angles. This method gives a better solution for most of the rotors than other methods of a plane stress or plane strain state. After verification, the effects of material properties on the total stored energy (TSE) of the composite flywheel rotor are investigated. For this purpose, the material properties of the rotor, i.e., circumferential and radial Youngs moduli, ply angles and mass densities, are expressed by power functions of the radius and the rotor is analyzed. The analysis shows that TSE can be most effectively increased by changing the circumferential Youngs moduli along the radius, which amounts to over 300% of TSE of the constant material properties. The variation of ply angles along the radius can increase TSE by about 30% at most. The method of changing the mass densities along the radius could be also effective but its effects are not so noticeable in the rotor where the circumferential stiffness is properly arranged. (author). 24 refs., 7 figs.

  5. Roles of superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel

    International Nuclear Information System (INIS)

    Tang Jiqiang; Fang Jiancheng; Ge, Shuzhi Sam

    2012-01-01

    Compared with conventional energy storage flywheel, the rotor of attitude control and energy storage flywheel (ACESF) used in space not only has high speed, but also is required to have precise and stable direction. For the presented superconducting magnetic bearing (SMB) and active magnetic bearing (AMB) suspended ACESF, the rotor model including gyroscopic couples is established originally by taking the properties of SMB and AMB into account, the forces of SMB and AMB are simplified by linearization within their own neighbors of equilibrium points. For the high-speed rigid discal rotor with large inertia, the negative effect of gyroscopic effect of rotor is prominent, the radial translation and tilting movement of rotor suspended by only SMB, SMB with equivalent PMB, or SMB together with PD controlled AMB are researched individually. These analysis results proved originally that SMB together with AMB can make the rotor be stable and make the radial amplitude of the vibration of rotor be small while the translation of rotor suspended by only SMB or SMB and PM is not stable and the amplitude of this vibration is large. For the stability of the high-speed rotor in superconducting ACESF, the AMB can suppress the nutation and precession of rotor effectively by cross-feedback control based on the separated PD type control or by other modern control methods.

  6. Performance testing and economic analysis of a photovoltaic flywheel energy storage and conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Hay, R. D.; Millner, A. R.; Jarvinen, P. O.

    1980-01-01

    A subscale prototype of a flywheel energy storage and conversion system for use with photovoltaic power systems of residential and intermediate load-center size has been designed, built and tested by MIT Lincoln Laboratory. System design, including details of such key components as magnetic bearings, motor generator, and power conditioning electronics, is described. Performance results of prototype testing are given and indicate that this system is the equal of or superior to battery-inverter systems for the same application. Results of cost and user-worth analysis show that residential systems are economically feasible in stand-alone and in some utility-interactive applications.

  7. Inspection of the Sizewll 'B' reactor coolant pump flywheels

    International Nuclear Information System (INIS)

    McNulty, A.L.; Cheshire, A.

    1992-01-01

    The Sizewell ''B'' safety case has categorised some primary circuit items as components for which failure is considered to be incredible. These Incredibility of Failure (IOF) components are particularly critical in their safety function, and specially stringent and all embracing provisions are made in their design, manufacture, inspection and operation. These provisions are such as to limit the probability of failure to levels which are so low that it does not have to be taken into account and no steps are necessary to control the consequences. The reactor coolant pump flywheel is considered to be an IOF component. Consequently there is a need for rigorous inspection during both manufacture and in service (ISI). The ISI requirement results in the need for an automated inspection. There is therefore a prerequisite to perform a Pre-Service Inspection (PSI) for baseline fingerprinting purposes. Furthermore there is a requirement that the inspection procedure, the inspection equipment and the operators are validated at the Inspection Validation Centre (IVC) of the AEA Technology laboratories at Risley. Development work is described. (author)

  8. Advanced Motor Control Test Facility for NASA GRC Flywheel Energy Storage System Technology Development Unit

    Science.gov (United States)

    Kenny, Barbara H.; Kascak, Peter E.; Hofmann, Heath; Mackin, Michael; Santiago, Walter; Jansen, Ralph

    2001-01-01

    This paper describes the flywheel test facility developed at the NASA Glenn Research Center with particular emphasis on the motor drive components and control. A four-pole permanent magnet synchronous machine, suspended on magnetic bearings, is controlled with a field orientation algorithm. A discussion of the estimation of the rotor position and speed from a "once around signal" is given. The elimination of small dc currents by using a concurrent stationary frame current regulator is discussed and demonstrated. Initial experimental results are presented showing the successful operation and control of the unit at speeds up to 20,000 rpm.

  9. The Effect of Flywheel Unbalance on Gear Noise in the Hydraulic Power Plant Turbo-Generator

    Directory of Open Access Journals (Sweden)

    Tomeh Elias

    2017-01-01

    Full Text Available The Effect of Flywheel Unbalance on Gear Noise in the Hydraulic Power Plant Turbo-Generator. Hydraulic power plants are systems that produce electrical energy with high investment costs. In order to fulfil their goals, investments should create conditions for a safe production of energy in a long lasting and reliable way, and with the required power and quality. These goals are possible to reach by an optional control process linked to a systematic monitoring of the operating machinery state, using the method of vibration diagnostics. Lately, there has been an increase of noise level in the hydraulic power plants.

  10. Coordinated Control for Flywheel Energy Storage Matrix Systems for Wind Farm Based on Charging/Discharging Ratio Consensus Algorithms

    DEFF Research Database (Denmark)

    Cao, Qian; Song, Y. D.; Guerrero, Josep M.

    2016-01-01

    This paper proposes a distributed algorithm for coordination of flywheel energy storage matrix system (FESMS) cooperated with wind farm. A simple and distributed ratio consensus algorithm is proposed to solve FESMS dispatch problem. The algorithm is based on average consensus for both undirected...... and unbalanced directed graphs. Average consensus is guaranteed in unbalanced digraphs by updating the weight matrix with both its row sums and column sums being 1. Simulation examples illustrate the effectiveness of the proposed control method....

  11. Popolnenije art-kollektsii

    Index Scriptorium Estoniae

    2008-01-01

    Londoni kunstikoguja Anthony d'Offray kinkis oma kaasaegse kunsti kogu kunstigaleriile Tate Modern. Kogus on 232 tööd Andy Warholilt ja 69 fotot Diane Arbusilt. Esindatud on Jeff Koons, Gilbert ja George, Damien Hirst, Willem de Kooning, Robert Mapplethorpe

  12. Research and development of a high-temperature superconducting flywheel energy storage system. Research and development of the New Sunshine Program; Furaihoiru denryoku chozo shisutemu kenkyu kaihatsu. Nyu sanshain keikaku ni motozuku kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Y. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1999-11-25

    The project conducted by NEDO for developing a high-temperature superconducting flywheel energy storage system is introduced; the two test results of fundamental studies are described. One is the measurement of levitation force and rotation loss of superconducting magnetic bearings composed of oxide superconducting bulks and permanent magnet composite. Two types of superconducting magnetic bearings. axial and radial types, were fabricated and tested. The other test was the fabrication and testing of two functional models. A small-sized superconducting flywheel model of the 0.5 kWh class was fabricated and tested. A medium-sized rotating functional model of the 10 kWh class was fabricated as well. (author)

  13. Ultrasonic Resonance Spectroscopy of Composite Rims for Flywheel Rotors

    Science.gov (United States)

    Harmon, Laura M.; Baaklini, George Y.

    2002-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform (FFT) on the frequency response spectrum. In addition, the system is capable of equalizing the amount of energy at each frequency. Equalization of the frequency spectrum, along with interpretation of the second FFT, aids in the evaluation of the fundamental frequency. The frequency responses from multilayered material samples, with and without known defects, were analyzed to assess the capabilities and limitations of this nondestructive evaluation technique for material characterization and defect detection. Amplitude and frequency changes were studied from ultrasonic responses of thick composite rings and a multiring composite rim. A composite ring varying in thickness was evaluated to investigate the full thickness resonance. The frequency response characteristics from naturally occurring voids in a composite ring were investigated. Ultrasonic responses were compared from regions with and without machined voids in a composite ring and a multiring composite rim. Finally, ultrasonic responses from the multiring composite rim were compared before and after proof spin testing to 63,000 rpm.

  14. Low eddy loss axial hybrid magnetic bearing with gimballing control ability for momentum flywheel

    International Nuclear Information System (INIS)

    Tang, Jiqiang; Sun, Jinji; Fang, Jiancheng; Shuzhi Sam, Ge

    2013-01-01

    For a magnetically suspended momentum flywheel (MSMF), the spinning rotor can be tilted by a pair of the presented axial hybrid magnetic bearing (AHMB) with eight poles and rotates around the radial axes to generate a large torque to maneuver the spacecraft. To improve the control performance and gimballing control ability of the AHMB, characteristics such as magnetic suspension force, angular stiffness and tilting momentum are researched. These segmented stator poles cause the magnetic density in the thrust rotor plate to be uneven unavoidably and the rotational loss is large at high speed, but we optimized the stator poles configuration and caused the thrust rotor plate formed by bulk DT4C and laminated material to make the magnetic density in the thrust rotor plate change less and be smoother. Laminated material such as 1J50 film with a thickness of 0.1 mm can make the variation of the magnetic density in DT4C become very small and the eddy loss of it be negligible, but the stress produced in the “O” shape stacks by reeling has a bad effect on its power loss. Nanocrystalline can reduce eddy losses and is not affected by the reeling process. Based on the AHBM consisting of the stator with eight improved poles and the presented thrust rotor plate with DT4 and nanocrystalline, the rotational loss of 5-DOF magnetically suspended momentum flywheel with angular momentum of 15 N m s at 5000 rpm has reduced from 23.4 W to 3.2 W, which proved that this AHMB has low eddy loss for the gimballing control ability. - Highlights: ► Control methods of rotor driven by AHMBs and their characteristics are researched. ► Optimized stator and rotor of AHMB reduce its eddy losses greatly. ► Presented the factors affecting the eddy losses of AHMBs. ► The good performances of AHMB with low eddy loss are proved by experiments.

  15. A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications

    International Nuclear Information System (INIS)

    Boukettaya, Ghada; Krichen, Lotfi

    2014-01-01

    A global supervisory strategy for a micro-grid power generation system that comprises wind and photovoltaic generation subsystems, a flywheel storage system, and domestic loads connected both to the hybrid power generators and to the grid, is developed in this paper. The objectives of the supervisor control are, firstly, to satisfy in most cases the load power demand and, secondly, to check storage and grid constraints to prevent blackout, to reduce energy costs and greenhouse gas emissions, and to extend the life of the flywheel. For these purposes, the supervisor determines online the operation mode of the different generation subsystems, switching from maximum power conversion to power regulation. Decision criteria for the supervisor based on actual variables are presented. Finally, the performance of the supervisor is extensively assessed through computer simulation using a comprehensive nonlinear model of the studied system. - Highlights: • We supervise a micro-grid power generation system with an objective to produce clipping grid consumption. • The supervisor switch online from maximum power conversion to power regulation. • We provide services both for domestic users and for the distribution network manager. • The developed algorithm is tested and validated for different scenarios

  16. Reactive Power Support of Electrical Vehicle Charging Station Upgraded with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Savaghebi, Mehdi

    2015-01-01

    Electrical vehicles (EVs) are presenting increasingly potential to replace the conventional fossil fuel based vehicles due to environmental friendly characteristic. Accordingly, Charging Stations (CS), as an intermediate between grid and large numbers of EVs, are supposed to have more critical...... influence on future smart transportation network. This paper explores an off-board charging station upgraded with flywheel energy storage system that could provide a reactive power support to the grid utility. A supervisory control scheme based on distributed bus signaling is proposed to coordinate...... the operation of each component in the system. As a result, the charging station could supply the reactive power support to the utility grid without compromising the charging algorithm and preserve the battery’s lifetime. Finally, the real-time simulation results based on dSPACE1006 verifies the proposed...

  17. Resolution of Surveillance Report No. PAD-BDW-95-004 for suspect bolts installed in the 105 KW roof addition structure

    International Nuclear Information System (INIS)

    Frier, W.A.

    1995-01-01

    A DOE RL surveillance determined that a test report (WHC-SD-NR-TRP-020) was less than adequate. As a result, WHC removed nine of the previous in-situ tested A325 suspect bolts and contracted with Koon-Hall Testing Corporation to perform hardness and tensile testing and chemical composition analysis of the removed bolts. WHC also contracted with ADVENT Engineering, Inc., to perform an evaluation of the Koon-Hall test results and to respond to the concerns identified in the DOE RL surveillance. The Koon-Hall Laboratory test results and the assessments strongly support the conclusion that the suspect bolts are indeed the equivalent of A325 high-strength, Type-1 bolts and have been properly heat-treated

  18. DSTATCOM with Flywheel Energy Storage System for wind energy applications: Control design and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Suvire, G.O.; Mercado, P.E. [CONICET, Instituto de Energia Electrica, Universidad Nacional de San Juan, San Juan (Argentina)

    2010-03-15

    In this work, the use of a Distribution Static Synchronous Compensator (DSTATCOM) coupled with a Flywheel Energy Storage System (FESS) is proposed to mitigate problems introduced by wind generation in the electric system. A dynamic model of the DSTATCOM/FESS device is introduced and a multi-level control technique is proposed. This control technique presents one control mode for active power and two control modes for reactive power, power factor correction, and voltage control. Tests of dynamic response of the device are conducted, and performance characteristics are studied taking into consideration variations of power references. Moreover, the behaviour of the device is analyzed when combined with wind generation in the electric system. The results obtained demonstrate a good performance of the model developed and of the control technique proposed as well as a high effectiveness of the device to mitigate problems introduced by wind generation. (author)

  19. Flexible Local Load Controller for Fast ElectricVehicle Charging Station Supplemented with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; SUN, BO; Schaltz, Erik

    2014-01-01

    Electric vehicle charging infrastructure is hitting the stage where its impact on performance and operation of power systems becomes more and more pronounced. Aiming to utilize the existing power distribution infrastructure and delay its expansion, an approach that includes installation of dedica......Electric vehicle charging infrastructure is hitting the stage where its impact on performance and operation of power systems becomes more and more pronounced. Aiming to utilize the existing power distribution infrastructure and delay its expansion, an approach that includes installation...... of dedicated flywheel energy storage system (FESS) within the charging station and compensating some of the adverse effects of high power charging is explored in this paper. Although sharing some similarities with vehicle to grid (V2G) technology, the principal advantage of this strategy is the fact that many...

  20. Technical and economic practicability of novel flywheel mass storage systems in electricity supply networks; Technisch-wirtschaftliche Realisierbarkeit von neuartigen Schwungmassenspeicher-Systemen (SMSS) in elektrischen Netzen

    Energy Technology Data Exchange (ETDEWEB)

    Bornemann, H J; Baeumer, U; Kaiser, A; Gruener, A; Gutt, H J; Hampel, R; Heyder, B; Kleimaier, M; Radtke, U; Sachse, H; Schlechter, V; Schrepfer, W; Worlitz, F

    1998-12-31

    Efficient storage of electrical energy is an increasing need. New developments in high-power electronics, high-strength materials and magnetic bearings have made efficient reliable flywheel mass storage systems in the range of 1-5 MfW/50-150 kWh conceivable. According to a first assessment, these systems may provide energy to the supply grid in a range of seconds and thus ensure frequency maintenance and compensation of short interruptions. The authors present first results of a preliminary study preparatory to a feasibility study on the technical and economic practicability of flywheel mass storage systems. (orig.) [Deutsch] Das Thema effiziente Speicherung von elektrischer Energie gewinnt immer mehr an Bedeutung. Durch neuere Entwicklungen in der Leistungselektronik und bei der Herstellung hochfester Werkstoffe sowie durch Fortschritte bei der Entwicklung von beruehrungsfreien Lagern im Bereich der aktiven Magnetlager (AML) und insbesondere supraleitenden Magnetlager (SML) sind effiziente und sichere Schwungmassenspeicher-Systeme (SMSS) bis in die Bereiche 1-5 MW/50-150 kWh denkbar. Nach einer ersten Einschaetzung eignen sich solche Anlagen, um im Sekundenbereich Energie in das Netz abzugeben und somit zur Frequenzstuetzung und zur Kompensation von Kurzunterbrechungen beizutragen. Praesentiert werden erste Ergebnisse einer Untersuchung zur Vorbereitung einer Machbarkeitsstudie ueber die technisch-wirtschaftliche Realisierbarkeit von Schwungmassenspeicher-Systemen. (orig.)

  1. Contribution to design and to integrate a flywheel-based storage system in a test bench for electric vehicles with hybrid source; Contribution a la conception et a l'integration d'un accumulateur cinetique d'energie dans une plate-forme de test pour vehicules electriques a source hybride

    Energy Technology Data Exchange (ETDEWEB)

    Briat, O.

    2002-11-01

    This work deals with the design and the integration of a flywheel-based storage system in a test bench for EV with hybrid source. The flywheel used to supply/recover the peak power during acceleration/braking is associated to a battery which supplies the average power. The main goal is to prove the interest of such a sources hybridization for heavy duty EV. First, a simulation tool has been used for EV studies. Models have been validated thanks to on-board vehicle measurements. Then, a EV test bench has been designed on a reduced power scale. The representativeness of this experimental tool has allowed us to validate simulation models. A flywheel module has been integrated and associated to a battery in order to validate the hybridization principle. Experimental results have shown the performances of the battery power limitation and have proved the interest of a systematic regenerative braking on the battery. In these conditions, an increase of the vehicle payload can be expected. (author)

  2. Design, Fabrication, and Testing of the INSTAR [INertial STorage And Recovery] System: A Flywheel-based, High Power Energy Storage System for Improved Hybrid Vehicle Fuel Efficiency

    OpenAIRE

    Talancon, Daniel Raul

    2015-01-01

    This thesis describes the development of the INSTAR system: a high-power, cost-effective energy storage system designed to improve HEV regenerative braking capabilities by combining chemical batteries with an electromechanical flywheel. This combination allows the regenerative braking system in hybrid vehicles to recapture more available braking energy at a lower battery pack charging current, increasing vehicle energy efficiency while also potentially increasing battery life.A prototype flyw...

  3. Development of REBCO HTS Magnet of Magnetic Bearing for Large Capacity Flywheel Energy Storage System

    Science.gov (United States)

    Mukoyama, Shinichi; Matsuoka, Taro; Furukawa, Makoto; Nakao, Kengo; Nagashima, Ken; Ogata, Masafumi; Yamashita, Tomohisa; Hasegawa, Hitoshi; Yoshizawa, Kazuhiro; Arai, Yuuki; Miyazaki, Kazuki; Horiuchi, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    A flywheel energy storage system (FESS) is a promising electrical storage system that moderates fluctuation of electrical power from renewable energy sources. The FESS can charge and discharge the surplus electrical power repetitively with the rotating energy. Particularly, the FESS that utilizes a high temperature superconducting magnetic bearing (HTS bearing) is lower loss than conventional FESS that has mechanical bearing, and has property of longer life operation than secondary batteries. The HTS bearing consists of a HTS bulk and double-pancake coils used 2nd generation REBCO wires. In the development, the HTS double-pancake coils were fabricated and were provided for a levitation test to verify the possibility of the HTS bearing. We successfully confirmed the magnetic field was achieved to design value, and levitation force in the configuration of one YBCO bulk and five double pan-cake coils was obtained to a satisfactory force of 39.2 kN (4 tons).

  4. A fly-wheel drive with controlled-torque clutch for a reactors cooling circuit pumps; Entrainement des pompes du circuit de refrigeration d'un reacteur par volant a embrayage sous couple controle

    Energy Technology Data Exchange (ETDEWEB)

    Riettini, A [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-10-15

    After a theoretical study on the slowing down of a centrifugal pump, the motion equations have been checked by means of experimental tests. In order to have important slowing down times (which is the case of the cooling pumps of a research reactor) it is necessary to add a fly-wheel. To prevent troubles when starting, a block pump-fly-wheel with clutch under controlled torque was developed. It is so possible to start the fly-wheel progressively without increasing too much power of the driving motor. (author) [French] Apres une etude theorique sur le mouvement de ralentissement d'une pompe centrifuge, les equations du mouvement ont ete verifiees par des essais pratiques. Pour obtenir des temps de ralentissement importants (cas des pompes de refrigeration d'un reacteur de recherche) il est necessaire d'y adjoindre un volant d'inertie. Pour eviter les inconvenients au demarrage, on a etudie un ensemble pompe-volant avec embrayage sous couple controle. Cette solution permet de lancer progressivement le volant sans augmentation appreciable de la puissance du moteur d'entrainement. (auteur)

  5. Ultrasonic Resonance Spectroscopy of Composite Rings for Flywheel Rotors

    Science.gov (United States)

    Harmon, Laura M.; Baaklini, George Y.

    2001-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The system employs a swept frequency approach and performs a fast Fourier transform on the frequency spectrum of the response signal. In addition. the system allows for equalization of the frequency spectrum, providing all frequencies with equal amounts of energy to excite higher order resonant harmonics. Interpretation of the second fast Fourier transform, along with equalization of the frequency spectrum, offers greater assurance in acquiring and analyzing the fundamental frequency, or spectrum resonance spacing. The range of frequencies swept in a pitch-catch mode was varied up to 8 MHz, depending on the material and geometry of the component. Single and multilayered material samples, with and without known defects, were evaluated to determine how the constituents of a composite material system affect the resonant frequency. Amplitude and frequency changes in the spectrum and spectrum resonance spacing domains were examined from ultrasonic responses of a flat composite coupon, thin composite rings, and thick composite rings. Also, the ultrasonic spectroscopy responses from areas with an intentional delamination and a foreign material insert, similar to defects that may occur during manufacturing malfunctions, were compared with those from defect-free areas in thin composite rings. A thick composite ring with varying thickness was tested to investigate the full-thickness resonant frequency and any possible bulk interfacial bond issues. Finally, the effect on the frequency response of naturally occurring single and clustered voids in a composite ring was established.

  6. HTS flywheel energy storage system with rotor shaft stabilized by feed-back control of armature currents of motor-generator

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Utsunomiya, A.

    2007-01-01

    We propose an HTS bulk bearing flywheel energy system (FWES) with rotor shaft stabilization system using feed-back control of the armature currents of the motor-generator. In the proposed system the rotor shift has a pivot bearing at one end of the shaft and an HTS bulk bearing (SMB) at the other end. The fluctuation of the rotor shaft with SMB is damped by feed-back control of the armature currents of the motor-generator sensing the position of the rotor shaft. The method has merits that the fluctuations are damped without active control magnet bearings and extra devices which may deteriorate the energy storage efficiency and need additional costs. The principle of the method was demonstrated by an experiment using a model permanent magnet motor

  7. HTS flywheel energy storage system with rotor shaft stabilized by feed-back control of armature currents of motor-generator

    Science.gov (United States)

    Tsukamoto, O.; Utsunomiya, A.

    2007-10-01

    We propose an HTS bulk bearing flywheel energy system (FWES) with rotor shaft stabilization system using feed-back control of the armature currents of the motor-generator. In the proposed system the rotor shift has a pivot bearing at one end of the shaft and an HTS bulk bearing (SMB) at the other end. The fluctuation of the rotor shaft with SMB is damped by feed-back control of the armature currents of the motor-generator sensing the position of the rotor shaft. The method has merits that the fluctuations are damped without active control magnet bearings and extra devices which may deteriorate the energy storage efficiency and need additional costs. The principle of the method was demonstrated by an experiment using a model permanent magnet motor.

  8. Damping of Low Frequency Oscillation in Power System using Robust Control of Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Lee, Jung Pil; Kim, Han Gun

    2012-01-01

    In this paper, the robust superconductor flywheel energy storage system(SFESS) controller using H control theory was designed to damp low frequency oscillation of power system. The main advantage of the controller is that uncertainties of power system can be included at the stage of controller design. Both disturbance attenuation and robust stability for the power system were treated simultaneously by using mixed sensitivity problem. The robust stability and the performance for uncertainties of power system were represented by frequency weighted transfer function. To verify control performance of proposed SFESS controller using control, the closed loop eigenvalue and the damping ratio in dominant oscillation mode of power system were analyzed and nonlinear simulation for one-machine infinite bus system was performed under disturbance for various operating conditions. The results showed that the proposed SFESS controller was more robust than conventional power system stabilizer (PSS).

  9. A Control Strategy for Flywheel Energy Storage System for Frequency Stability Improvement in Islanded Microgrid

    Directory of Open Access Journals (Sweden)

    A. A. Khodadoost Arani

    2017-03-01

    Full Text Available The Micro-Grid (MG stability is a significant issue that must be maintained in all operational modes. Usually, two control strategies can be applied to MG; V/f control and PQ control strategies. MGs with V/f control strategy should have some Distributed Generators (DGs which have fast responses versus load changes. The Flywheel Energy Storage System (FESS has this characteristic. The FESS, which converts the mechanical energy to electrical form, can generate electrical power or absorb the additional power in power systems or MGs. In this paper, the FESS structure modeled in detail and two control strategies (V/f and PQ control are applied for this application. In addition, in order to improve the MG frequency and voltage stability, two complementary controllers are proposed for the V/f control strategy; conventional PI and Fuzzy Controllers. A typical low voltage network, including FESS is simulated for four distinct scenarios in the MATLAB/ Simulink environment. It is shown that fuzzy controller has better performance than conventional PI controller in islanded microgrid.

  10. FY 1999 report on the results of the superconductive energy application technology development/research on a total system, etc. Survey of potentiality of the commercialization of superconductive technology, effects of the introduction, etc. (Future course of the superconductive technology development in Japan); 1999 nendo chodendo denryoku oryokuyo gijutsu kaihatsu total system nado no kenkyu. Chodendo gijutsu no jitsuyoka kanosei oyobi donyu koka nado no chosa (Nippon ni okeru chodendo gijutsu kaihatsu no kongo no hokosei)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    By the use of superconductive technology, the following are aimed at: marked reduction in power loss of electrical equipment and power transmission path, and size/weight reduction in electrical devices by high current/magnetic flux density. The superconductive technology has advantages such as great energy saving effect, CO2 reduction and global environmental preservation. As an example, concerning the superconductive generator now being developed under the New Sunshine Project, power loss can be reduced by half, and by the use of high magnetic field, size/weight can be reduced such as reduction in rotor diameter and reduction in weight by half. Further, as an innovative system, cited are the superconducting magnetic energy storage system (SMES) and flywheel energy storage system. The superconducting magnetic levitation railway, medical use MRI, etc. have also innovativity which is difficult to get in the conventional technology. Effects are also expected of introducing the process development using superconducting magnet such as magnetic separation, electromagnetic metallurgy, electromagnetic agitation and monocrytal growth convection control. Also cited is Josephson electronic device. High performance SQUID in bio-magnetic/non-destructive inspection is also expected to be developed. (NEDO)

  11. Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems

    International Nuclear Information System (INIS)

    Aghababa Mohammad Pourmahmood

    2012-01-01

    The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhibits very rich and complex dynamics such as chaos. This paper investigates the problem of robust finite-time synchronization of non-autonomous chaotic CFGs. The effects of unknown parameters, model uncertainties and external disturbances are fully taken into account. First, it is assumed that the parameters of both master and slave CFGs have the same value and a suitable adaptive finite-time controller is designed. Second, two CFGs are synchronized with the parameters of different values via a robust adaptive finite-time control approach. Finally, some numerical simulations are used to demonstrate the effectiveness and robustness of the proposed finite-time controllers. (general)

  12. Functional and Muscle-Size Effects of Flywheel Resistance Training with Eccentric-Overload in Professional Handball Players.

    Science.gov (United States)

    Maroto-Izquierdo, Sergio; García-López, David; de Paz, José A

    2017-12-01

    The aim of the study was to analyse the effects of 6 week (15 sessions) flywheel resistance training with eccentric-overload (FRTEO) on different functional and anatomical variables in professional handball players. Twenty-nine athletes were recruited and randomly divided into two groups. The experimental group (EXP, n = 15) carried out 15 sessions of FRTEO in the leg-press exercise, with 4 sets of 7 repetitions at a maximum-concentric effort. The control group (CON, n = 14) performed the same number of training sessions including 4 sets of 7 maximum repetitions (7RM) using a weight-stack leg-press machine. The results which were measured included maximal dynamic strength (1RM), muscle power at different submaximal loads (PO), vertical jump height (CMJ and SJ), 20 m sprint time (20 m), T-test time (T-test), and Vastus-Lateralis muscle (VL) thickness. The results of the EXP group showed a substantially better improvement (p handball requires repeated short, explosive effort such as accelerations and decelerations during sprints with changes of direction, these results suggest that FRTEO affects functional and anatomical changes in a way which improves performance in well-trained professional handball players.

  13. Hopf bifurcations, Lyapunov exponents and control of chaos for a class of centrifugal flywheel governor system

    International Nuclear Information System (INIS)

    Zhang Jiangang; Li Xianfeng; Chu Yandong; Yu Jianning; Chang Yingxiang

    2009-01-01

    In this paper, complex dynamical behavior of a class of centrifugal flywheel governor system is studied. These systems have a rich variety of nonlinear behavior, which are investigated here by numerically integrating the Lagrangian equations of motion. A tiny change in parameters can lead to an enormous difference in the long-term behavior of the system. Bubbles of periodic orbits may also occur within the bifurcation sequence. Hyperchaotic behavior is also observed in cases where two of the Lyapunov exponents are positive, one is zero, and one is negative. The routes to chaos are analyzed using Poincare maps, which are found to be more complicated than those of nonlinear rotational machines. Periodic and chaotic motions can be clearly distinguished by all of the analytical tools applied here, namely Poincare sections, bifurcation diagrams, Lyapunov exponents, and Lyapunov dimensions. This paper proposes a parametric open-plus-closed-loop approach to controlling chaos, which is capable of switching from chaotic motion to any desired periodic orbit. The theoretical work and numerical simulations of this paper can be extended to other systems. Finally, the results of this paper are of practical utility to designers of rotational machines.

  14. Optimization of hybrid power system composed of SMES and flywheel MG for large pulsed load

    International Nuclear Information System (INIS)

    Niiyama, K.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2008-01-01

    A superconducting magnetic storage system (SMES) has some advantages such as rapid large power response and high storage efficiency which are superior to other energy storage systems. A flywheel motor generator (FWMG) has large scaled capacity and high reliability, and hence is broadly utilized for a large pulsed load, while it has comparatively low storage efficiency due to high mechanical loss compared with SMES. A fusion power plant such as International Thermo-Nuclear Experimental Reactor (ITER) requires a large and long pulsed load which causes a frequency deviation in a utility power system. In order to keep the frequency within an allowable deviation, we propose a hybrid power system for the pulsed load, which equips the SMES and the FWMG with the utility power system. We evaluate installation cost and frequency control performance of three power systems combined with energy storage devices; (i) SMES with the utility power, (ii) FWMG with the utility power, (iii) both SMES and FWMG with the utility power. The first power system has excellent frequency power control performance but its installation cost is high. The second system has inferior frequency control performance but its installation cost is the lowest. The third system has good frequency control performance and its installation cost is attained lower than the first power system by adjusting the ratio between SMES and FWMG

  15. Deformation and Life Analysis of Composite Flywheel Disk and Multi-disk Systems

    Science.gov (United States)

    Arnold, S. M.; Saleeb, A. F.; AlZoubi, N. R.

    2001-01-01

    In this study an attempt is made to put into perspective the problem of a rotating disk, be it a single disk or a number of concentric disks forming a unit. An analytical model capable of performing an elastic stress analysis for single/multiple, annular/solid, anisotropic/isotropic disk systems, subjected to both pressure surface tractions, body forces (in the form of temperature-changes and rotation fields) and interfacial misfits is derived and discussed. Results of an extensive parametric study are presented to clearly define the key design variables and their associated influence. In general the important parameters were identified as misfit, mean radius, thickness, material property and/or load gradation, and speed; all of which must be simultaneously optimized to achieve the "best" and most reliable design. Also, the important issue of defining proper performance/merit indices (based on the specific stored energy), in the presence of multiaxiality and material anisotropy is addressed. These merit indices are then utilized to discuss the difference between flywheels made from PMC and TMC materials with either an annular or solid geometry. Finally two major aspects of failure analysis, that is the static and cyclic limit (burst) speeds are addressed. In the case of static limit loads, upper, lower, and out-of-plane bounds for disks with constant thickness are presented for both the case of internal pressure loading (as one would see in a hydroburst test) and pure rotation (as in the case of a free spinning disk). The results (interaction diagrams) are displayed graphically in designer friendly format. For the case of fatigue, a representative fatigue/life master curve is illustrated in which the normalized limit speed versus number of applied cycles is given for a cladded TMC disk application.

  16. Energy conservation through utilization of mechanical energy storage

    Science.gov (United States)

    Eisenhaure, D. B.; Bliamptis, T. E.; Downer, J. R.; Heinemann, P. C.

    Potential benefits regarding fuel savings, necessary technology, and evaluation criteria for the development of flywheel-hybrid vehicles are examined. A case study is quoted in which adoption of flywheel-hybrid vehicles in a taxi fleet would result in an increase of 10 mpg average to 32 mpg. Two proposed systems are described, one involving direct engine power to the flywheel and the second regenerating the flywheel from braking energy through a continuously variable transmission. Fuel consumption characteristics are considered the ultimate determinant in the choice of configuration, while material properties and housing shape determine the flywheel speed range. Vehicle losses are characterized and it is expected that a flywheel at 12,000 rpm will experience less than one hp average parasitic power loss. Flywheel storage is suitable for smaller engines because larger engines dominate the power train mass. Areas considered important for further investigation include reliability of an engine run near maximum torque, noise and vibration associated with flywheel operation, start up delays, compatibility of driver controls, integration of normal with regenerative braking systems, and, most importantly, the continuously variable transmission.

  17. Correction: A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide.

    Science.gov (United States)

    Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan

    2016-12-22

    Correction for 'A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide' by Chee Koon Ng et al., Chem. Commun., 2016, 52, 11842-11845.

  18. Some considerations about the symmetry and evolution of chaotic Rayleigh-Bénard convection: The flywheel mechanism and the ``wind'' of turbulence

    Science.gov (United States)

    Lappa, Marcello

    2011-09-01

    Rayleigh-Bénard convection in finite-size enclosures exhibits really intricate features when turbulent states are reached and thermal plumes play a crucial role in a number of them. This complex mechanism may be regarded as a "machine" containing many different working parts: boundary layers, mixing zones, jets, and a relatively free and isothermal central region. These parts are generally regarded as the constitutive "ingredients" whose interplay leads to the emergence of a macroscopic pattern with well-defined properties. Like the Lorenz model (but with the due differences) such a complex structure has a prevailing two-dimensional nature and can be oriented clockwise or anticlockwise (both configurations are equally likely to occur and the flow can exhibit occasional and irregular "reversals" from one to the other without a change in magnitude). It is usually referred to in the literature as "wind of turbulence" or "flywheel". The present article provides insights into the possible origin of such dynamics and related patterning behavior (supported by "ad hoc" novel numerical simulations carried out for Pr=15 and O(10)⩽Ra⩽O(10)) together with a short exposition of existing theories, also illustrating open points and future directions of research.

  19. FY 1998 annual report on the leading fundamental research and development of AC superconducting power apparatuses (New Sunshine Project); 1998 nendo koryu chodendo denryoku kiki kiban sendo kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In order to propose fundamental research and development of AC superconducting power apparatuses, the FY 1998 efforts were directed to studies on the effects of introducing superconducting apparatuses, making proposals of development programs, literature (including patent publications) surveys on trends of research and development at home and abroad, and making proposals for technological breakthroughs. Results of the studies for evaluating economic efficiency of these apparatuses and the effects of their introduction indicate that the promising apparatuses for eventual commercialization include superconducting cables, current limiters, field power generators, transformers and flywheels. The superconducting cables are expected to greatly reduce losses and hence CO2 emissions. The superconducting current limiters are promising means to control short-circuit current increase in the trunk power systems in which they are used. The superconducting transformers are expected to reduce losses and hence CO2 emissions. The project of fundamental research and development of AC superconducting power apparatuses has proposed the fundamental technological research themes aimed at development of the elementary techniques prerequisite for realizing these 3 types of apparatuses and reflection of the required apparatus specifications in development of the cable materials. (NEDO)

  20. Study of superconducting magnetic bearing applicable to the flywheel energy storage system that consist of HTS-bulks and superconducting-coils

    International Nuclear Information System (INIS)

    Seino, Hiroshi; Nagashima, Ken; Tanaka, Yoshichika; Nakauchi, Masahiko

    2010-01-01

    The Railway Technical Research Institute conducted a study to develop a superconducting magnetic bearing applicable to the flywheel energy-storage system for railways. In the first step of the study, the thrust rolling bearing was selected for application, and adopted liquid-nitrogen-cooled HTS-bulk as a rotor, and adopted superconducting coil as a stator for the superconducting magnetic bearing. Load capacity of superconducting magnetic bearing was verified up to 10 kN in the static load test. After that, rotation test of that approximately 5 kN thrust load added was performed with maximum rotation of 3000rpm. In the results of bearing rotation test, it was confirmed that position in levitation is able to maintain with stability during the rotation. Heat transfer properties by radiation in vacuum and conductivity by tenuous gas were basically studied by experiment by the reason of confirmation of rotor cooling method. The experimental result demonstrates that the optimal gas pressure is able to obtain without generating windage drag. In the second stage of the development, thrust load capacity of the bearing will be improved aiming at the achievement of the energy capacity of a practical scale. In the static load test of the new superconducting magnetic bearing, stable 20kN-levitation force was obtained.

  1. Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode

    International Nuclear Information System (INIS)

    Zhang Wei-Ya; Li Yong-Li; Chang Xiao-Yong; Wang Nan

    2013-01-01

    In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments. (interdisciplinary physics and related areas of science and technology)

  2. Priming in implicit memory tasks: prior study causes enhanced discriminability, not only bias.

    Science.gov (United States)

    Zeelenberg, René; Wagenmakers, Eric-Jan M; Raaijmakers, Jeroen G W

    2002-03-01

    R. Ratcliff and G. McKoon (1995, 1996, 1997; R. Ratcliff, D. Allbritton, & G. McKoon, 1997) have argued that repetition priming effects are solely due to bias. They showed that prior study of the target resulted in a benefit in a later implicit memory task. However, prior study of a stimulus similar to the target resulted in a cost. The present study, using a 2-alternative forced-choice procedure, investigated the effect of prior study in an unbiased condition: Both alternatives were studied prior to their presentation in an implicit memory task. Contrary to a pure bias interpretation of priming, consistent evidence was obtained in 3 implicit memory tasks (word fragment completion, auditory word identification, and picture identification) that performance was better when both alternatives were studied than when neither alternative was studied. These results show that prior study results in enhanced discriminability, not only bias.

  3. A diffusion decision model analysis of evidence variability in the lexical decision task

    NARCIS (Netherlands)

    Tillman, Gabriel; Osth, Adam F.; van Ravenzwaaij, Don; Heathcote, Andrew

    2017-01-01

    The lexical-decision task is among the most commonly used paradigms in psycholinguistics. In both the signal-detection theory and Diffusion Decision Model (DDM; Ratcliff, Gomez, & McKoon, Psychological Review, 111, 159–182, 2004) frameworks, lexical-decisions are based on a continuous source of

  4. Methodological and empirical developments for the Ratcliff diffusion model of response times and accuracy

    NARCIS (Netherlands)

    Wagenmakers, E.-J.

    2009-01-01

    The Ratcliff diffusion model for simple two-choice decisions (e.g., Ratcliff, 1978; Ratcliff & McKoon, 2008) has two outstanding advantages. First, the model generally provides an excellent fit to the observed data (i.e., response accuracy and the shape of RT distributions, both for correct and

  5. Robust Fault-Tolerant Control for Satellite Attitude Stabilization Based on Active Disturbance Rejection Approach with Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Fei Song

    2014-01-01

    Full Text Available This paper proposed a robust fault-tolerant control algorithm for satellite stabilization based on active disturbance rejection approach with artificial bee colony algorithm. The actuating mechanism of attitude control system consists of three working reaction flywheels and one spare reaction flywheel. The speed measurement of reaction flywheel is adopted for fault detection. If any reaction flywheel fault is detected, the corresponding fault flywheel is isolated and the spare reaction flywheel is activated to counteract the fault effect and ensure that the satellite is working safely and reliably. The active disturbance rejection approach is employed to design the controller, which handles input information with tracking differentiator, estimates system uncertainties with extended state observer, and generates control variables by state feedback and compensation. The designed active disturbance rejection controller is robust to both internal dynamics and external disturbances. The bandwidth parameter of extended state observer is optimized by the artificial bee colony algorithm so as to improve the performance of attitude control system. A series of simulation experiment results demonstrate the performance superiorities of the proposed robust fault-tolerant control algorithm.

  6. Gas cooled fast reactor control rod drive mechanism deceleration unit. Test program

    International Nuclear Information System (INIS)

    Wagner, T.H.

    1981-10-01

    This report presents the results of the airtesting portion of the proof-of-principle testing of a Control Rod Scram Deceleration Device developed for use in the Gas Cooled Fast Reactor (GCFR). The device utilizes a grooved flywheel to decelerate the translating assembly (T/A). Two cam followers on the translating assembly travel in the flywheel grooves and transfer the energy of the T/A to the flywheel. The grooves in the flywheel are straight for most of the flywheel length. Near the bottom of the T/A stroke the grooves are spiraled in a decreasing slope helix so that the cam followers accelerate the flywheel as they transfer the energy of the falling T/A. To expedite proof-of-principle testing, some of the materials used in the fabrication of certain test article components were not prototypic. With these exceptions the concept appears to be acceptable. The initial test of 300 scrams was completed with only one failure and the failure was that of a non-prototypic cam follower outer sleeve material

  7. Development of NutriSportEx TM -interactive sport nutrition based ...

    African Journals Online (AJOL)

    Development of NutriSportExTM-interactive sport nutrition based mobile application software. B.S. Pushpa, N.S. Safii, S.H. Hamzah, N Fauzi, W.K. Yeo, P.B. Koon, C.Y. Tsin, M.I. Mohamad, A.H.A. Rahman, C.L. Ming, R.A. Talib, M.R. Shahril ...

  8. Rules of Engagement: Incomplete and Complete Pronoun Resolution

    Science.gov (United States)

    Love, Jessica; McKoon, Gail

    2011-01-01

    Research on shallow processing suggests that readers sometimes encode only a superficial representation of a text and fail to make use of all available information. Greene, McKoon, and Ratcliff (1992) extended this work to pronouns, finding evidence that readers sometimes fail to automatically identify referents even when these are unambiguous. In…

  9. Study of damping in 5 kWh superconductor flywheel energy storage system using a piezoelectric actuator

    Energy Technology Data Exchange (ETDEWEB)

    Jang, H.K.; Song, D.; Kim, S.B. [Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Han, S.C. [Korea Electric Power Research Institute, 103-16 Munji-Ro, Yuseong-Gu, Daejeon 305-380 (Korea, Republic of); Sung, T.H., E-mail: sungth@hanyang.ac.kr [Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of)

    2012-05-15

    A 5 kWh superconductor flywheel energy storage system (SFES) has advantages in terms of high electrical energy density, environmental affinity and long life. However, the SFES has disadvantage that electromagnetic damper is needed because superconducting bearings do not have enough damping coefficient. The purpose of this experiment is to develop a method of damping the vibration of the SFES. A piezoelectric actuator was attached to a superconducting bearing system for feasibility test in order to make it as a damper of the SFES. For this experiment, a cylindrical permanent magnet (PM) 40 mm in diameter and 10 mm height was used as a rotor, a high-temperature superconductor bulk (HTS bulk) with dimensions 40 mm Multiplication-Sign 40 mm Multiplication-Sign 15 mm was used as a stator, and two vibration exciters (an upper and a lower vibration exciter) and a piezoelectric actuator were used. The PM was fixed on the upper vibration exciter. The HTS bulk was fixed on either the lower vibration exciter to test for damping in the feasibility test, or on the piezoelectric actuator for the actual SFES. The conditions of this experiment included various voltage outputs of a power amplifier to the lower vibration exciter, moving distances of the piezoelectric actuator which are displacements of the HTS bulk, and phase differences between the upper and lower vibration exciter or the piezoelectric actuator. The damping feasibility test was conducted with a 300 {mu}m gap between the PM and HTS bulk with a PM vibration of 30 {mu}m. For the actual SFES test, the gap between the PM and HTS bulk was 1.6 mm and the PM vibration was 25 {mu}m. The following conditions were conducted to optimize: an appropriate voltage input to the lower vibration exciter or a displacement of piezoelectric actuator and an appropriate phase difference. When the piezoelectric actuator was used, the damping effect was greatly improved up to 92.32% which a displacement of damped PM was 1.92 {mu}m.

  10. Measurement method of moving vehicle in the magnetic levitation and propulsion system using high-Tc superconducting bulks; Koon chodendo barukutai wo riyoshita fujo suishin shisutemu no suishin tokusei keisoku shuho

    Energy Technology Data Exchange (ETDEWEB)

    Fuwa, Y.; Mizuma, T.

    1999-06-07

    The transportation system using simple magnetic levitation system got in the combination of high-temperature superconductivity bulk body and permanent magnet, which caught a quantum magnetic flux, is devised in great numbers, and the model equipment has also been manufactured. In the meantime, a grasp of levitation and guide characteristics is necessary for the case in which this levitation system is applied to the simple individual transportation system, and the measurement of the levitation characteristics is indispensable for the reason. In the conventional research, the measurement of the levitation characteristics has not been very much made. There was due to be no technique which measured kinetic characteristics of noncontacting surfacing and running travel body. In this study, measuring method for measuring these levitation characteristics was devised, and it was applied to actual measurement by the production of the model test equipment. Through this measurement, the purpose of this study is to show with that it is applicable for the real test equipment as this measuring method judges possibility of application to simple transportation system. (NEDO)

  11. Putting It All Together: A Unified Account of Word Recognition and Reaction-Time Distributions

    Science.gov (United States)

    Norris, Dennis

    2009-01-01

    R. Ratcliff, P. Gomez, and G. McKoon (2004) suggested much of what goes on in lexical decision is attributable to decision processes and may not be particularly informative about word recognition. They proposed that lexical decision should be characterized by a decision process, taking the form of a drift-diffusion model (R. Ratcliff, 1978), that…

  12. Evaluasi Unjuk Kerja Sistem Proteksi Water Hammer pada Sistem Perpipaan (Studi Kasus Di Rumah Pompa Produksi Unit Instalasi Pengolahan Air Minum (IPAM Karang Pilang 2 PT. PDAM Surya Sembada Surabaya

    Directory of Open Access Journals (Sweden)

    Handi Prasetya

    2017-01-01

    Full Text Available Sistem jaringan perpipaan merupakan komponen penting dalam menunjang produksi maupun distribusi pada sektor industri. Jaringan perpipaan mengalami beberapa fenomena seperti distribusi fluida dan water hammer. Water hammer sering terjadi di daerah discharge pompa pada saat pengoperasian pompa maupun pada saat kegagalan operasi pompa. Beberapa cara untuk mengurangi dampak water hammer adalah dengan menambahkan flywheel ataupun gas accumulator pada jaringan perpipaan. Lonjakan tekanan serta aliran balik yang terjadi akibat fenomena water hammer akan dilawan oleh putaran impeller  pompa yang dibebani oleh flywheel dan akan memperlambat lonjakan tekanan dalam pipa dan tekanan yang berlebih akan dibuang ke gas accumulator sehingga tekanan dalam pipa berangsur stabil. Pemodelan sistem perpipaan dilakukan dengan menggunakan software sistem perpipaan. Pemodelan yang disimulasikan merupakan sistem perpipaan dengan rangkaian pompa paralel yang dilengkapi flywheel pada instalasi pompa dan divariasikan dengan penambahan gas accumulator sebagai sistem proteksi water hammer. Analisa yang dilakukan adalah untuk mempelajari fenomena water hammer pada saat kondisi ekstrim yakni ketika dua pompa operasi mati dan juga ketika empat pompa operasi mati, untuk melihat pengaruh variasi ukuran flywheel terhadap fluktuasi tekanan yang terjadi. Ukuran flywheel divariasikan yakni ukuran diameter luar 1100mm, 1200mm dan 1300mm dengan tebal masing-masing 300mm, 400mm dan 500mm. Hasil simulasi menunjukkan bahwa pada sistem perpipaan tanpa menggunakan gas accumulator, tekanan maksimum yang terjadi pada discharge pompa mencapai 19,807 bar dari kondisi tekanan kerjanya 5,6 bar. Variasi ukuran flywheel memberi dampak pada perlambatan terjadinya lonjakan tekanan, semakin besar ukuran flywheel akan menunda terjadinya lonjakan tekanan akibat water hammer. Dan penambahan gas accumulator berperan dalam meredam serta mempersingkat waktu terjadinya lonjakan tekanan, sehingga fluktuasi

  13. Increased fuel economy in transportation systems by use of energy management. Third year's program. Final report, May 1, 1976--July 1, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Beachley, N.H.; Frank, A.A.

    1976-07-01

    A report is given of the results accomplished during the third year of a three-year research program, the overall goal of which has been to conceive and evaluate practical ways to increase automobile fuel economy by energy management within the engine-transmission-vehicle system. The third year was devoted primarily to the detailed design, construction, and preliminary evaluation of a Flywheel Energy Management Powerplant (FEMP) installed in a Pinto. The vehicle has been built to experimentally verify performance simulations and to allow the practical aspects of a real flywheel vehicle to be studied. The FEMP consists basically of an internal combustion engine, a high-speed energy-storage flywheel, and a hydrostatic power-split continuously-variable transmission (CVT) system. The flywheel drives the car, and the engine comes on to ''recharge'' it (with efficient wide-open throttle operation) only when the flywheel speed drops below a predetermined value. The concept also permits effective and efficient regenerative braking. Computer simulations have indicated an improvement in city fuel mileage of about 50%, with improvements of 100% appearing feasible with further research. Preliminary testing of the car shows favorable performance.

  14. Kinetic energy storage of off-peak electricity

    International Nuclear Information System (INIS)

    Simpson, L.A.; Oldaker, I.E.; Stermscheg, J.

    1975-09-01

    The concept of using large flywheels to store off-peak electricity has been considered. The development of high strength composite materials has made possible improvements in the energy storage capacity of such devices. The problems involved in designing large flywheels and their economic advantages over alternative means of energy storage are discussed. The economic arguments are based on the present or near future capabilities and costs of structural composite materials. The flywheel costs turn out to be considerably higher than for many alternative schemes including advanced batteries, gas turbine generators and pumped storage schemes. (author)

  15. Research Article Special Issue

    African Journals Online (AJOL)

    2016-05-15

    May 15, 2016 ... Flywheel acts between the engine and car gearbox where main tasks of the flywheel; are ... induced in it, and ipso facto, a pattern signal [2] is released and sent to ECU automatically. ..... Aerospace Science and Technology.

  16. A masonry heater, a large thermal flywheel and constant temperatures : the winter of 1996/1997 of the Alberta Sustainable Home/Office

    Energy Technology Data Exchange (ETDEWEB)

    Ostrowski, J.; Fofonoff, B.

    1997-07-01

    A masonry heater using scrapwood and firewood as the only source of back-up heat in this 1820 sq ft single-family live-in demonstration home/office, was described. The heater also contributed significantly to the thermal flywheel of the house. Together with other forms of thermal mass within the building (concrete slab, wood studs, drywall, tiles, furniture, plants, etc), the masonry heater was sufficient to see the occupants through the severe and long winter of 1996/97 with comfortable indoor temperatures. The masonry heater is located near the center of the house with a sunny view towards the south. On sunny winter days it operates as a passive solar heat sink, with the sun charging up the brick face by about five degrees C. In the evening, a 40 pound load of scrap and firewood will take about 1.25 hours to penetrate through the refractory interior core and brick exterior. This provides a cosy fireplace for the occupants, while storing heat in its mass for slow release during the next 1.5 to 3 days. It heats water for storage in the hot water tank. During the period of September 1996 to May 1997 one cord of wood was burned, which is about 12 per cent of the energy pumped into the average single family home in Calgary during the same period. Experience to-date suggests that the masonry heater performs very well as a back-up heater, maintaining an ambient temperature of about 20 degrees C throughout the winter. Some flat plate solar collectors might be necessary to provide for radiant floor heating of the mass since floor temperatures were lower than most occupants found comfortable.

  17. Energizing the future: New battery technology a reality today

    Science.gov (United States)

    Chase, Henry; Bitterly, Jack; Federici, Al

    1997-04-01

    The U.S. Flywheel Systems' flywheel energy storage system could be the answer to a critical question: How do we replace conventional chemical batteries with a more-efficient system that lasts longer and is non-polluting? The new product, which has a virtually unlimited life expectancy, has a storage capacity four times greater per pound than conventional chemical batteries. USFS designed and built each component of the system—from the specially wound carbon fiber wheel, the magnetic bearing, the motor/generator, and the electronic control. The flywheel is designed to spin at speeds up to 100,000 rpm and deliver about 50 horsepower using a proprietary high-speed, high-power-density motor/generator that is the size of a typical coffee mug. Some of the important markets and applications for the flywheel storage system include electric vehicles, back-up power supply, peak power smoothing, satellite energy storage systems, and locomotive power.

  18. Conductive-cooled superconducting magnets and their applications; Chodendo wo mijikanishita reitoki chokurei hoshiki no chodendo jishaku

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, T.; Sasaki, T.; Urata, M. [Toshiba Corp., Tokyo (Japan)

    1998-01-01

    This paper describes an outline of conductive-cooled superconducting magnets, magnetic regenerator materials, and their applications. This magnet is composed of a 4K cryocooler, superconducting current lead, heat shield plate, support, and vacuum vessel. Cooling of the conductive coil is initiated by the operation of 4K cryocooler. It takes two days to one week for the cooling-down time from room temperature to the given temperature. During that time, users need to do nothing for the superconducting magnet. When the superconducting coil is cooled to the given temperature, current is applied to the coil for excitation. Thus, magnetic field is formed. Paying attention to the magnetic anomaly specific heat accompanied with magnetic phase transition of magnetic substance at the extremely low temperature, Toshiba has developed a 4K cryocooler using magnetic regenerator material by utilizing magnetic specific heat. Oxide superconductor is adopted for the current lead which is used at the temperature level below 80K. Inflow of the heat can be suppressed in one-tenth of the conventional current lead. As a result, a small size device having easy operability without using liquid helium has been developed. 6 refs., 4 figs.

  19. Remote impact of rotating objects on semiconductor detector of gamma radiation

    International Nuclear Information System (INIS)

    Mel'nik, I.A.

    2005-01-01

    Remote impact of rotating objects (such as electric motors, flywheels) on meter and ionizing radiation detector readings were studied. A model, explaining diminution of readings of scintillation and gas-discharge intensimeters at switched on hygroscopic electric motor and at mechanically rotating flywheel, is proposed

  20. To the issue of power regeneration in motor vehicles

    Directory of Open Access Journals (Sweden)

    Mozharovskyi M.M.

    2016-08-01

    Full Text Available The work indicates the relevance of the issues related to accumulation and storing energy in ecological terms. The analysis of the different variants of energy storage, including mechanical is performed. Batteries of kinetic energy (flywheels with composite materials can be one of the promising options. The use of composite materials allows to significantly reduce the weight of the battery design kinetic energy and enhance the safety of its operation to turn the design of such flywheels will have its own peculiarities in the operation. During the accelerating tests of rotor models of flywheels the real value of the limiting energies that can accumulate in a variety of sizes, models the rotors are installed. On the basis of the performed tests also disadvantages of constructive solutions in models that were tested are defined. Discusses the use of new materials for creation of advanced designs rotors of flywheels with the aim of their practical use in creating designs of hybrid engines for AFR.

  1. U. S. Navy’s Superconductivity Programs; Scientific Curosity To Fleet Utility

    Science.gov (United States)

    2010-10-01

    calculating superconducting properties from first principles . In 1974 they published their first PRL, demonstrating a quantitative evaluation of the...scientists became managers of the new SDIO program of HTS applications (Gubser, Nisenoff), and primary consultants on the new DARPA HTS program...B.A. Bender, M.S. Osofsky, R.J. Soulen Jr., W.L. Lechter, N.C. Koon , S.A. Wolf; Journal of Superconductivity 2 (2), p. 253 (1989). 36. W. J

  2. Electrostatic Discharge Properties of Irradiated Nanocomposites

    Science.gov (United States)

    2009-03-01

    School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the...a small time scale. Genetic Algorithms were born from evolutionary biology research. The GA is based on the principles of reproduction, cross...B: Beam Interactions with Materials and Atoms, 208, 48-57. [11] J. F. Fennel and J. L. Koons , “Spacecraft Charging: Observations and Relationship

  3. Early Life Processes, Endocrine Mediators and Number of Susceptible Cells in Relation to Breast Cancer Risk

    Science.gov (United States)

    2008-04-01

    Sweden, for overseeing the DNA isolation from the blood sam- ples; Heng Khai Koon and Ong Eng Hu Jason for genotyping; Lim Siew Lan and Irene Chen for...of normal and malignant breast epithelium. In The Breast: Comprehensive Management of Benign and Malignant Diseases Edited by: Bland KI, Copeland EM...life etiological model, taking also into account that certain breast cancer epidemiologic characteris- tics reflecting general principles of

  4. Space Particle Hazard Measurement and Modeling

    Science.gov (United States)

    2007-11-30

    the spacecraft and perturbations of the environment generated by the spacecraft. Koons et al. (1999) compiled and studied all spacecraft anomalies...unrealistic for D12 than for Dα0p). However, unlike the stability problems associated with the original cross diffusion terms, they are quite manageable ...E), to mono-energetic beams of charged particles of known energies which enables one, in principle , to unfold the space environment spectrum, j(E

  5. Telematiikkajärjestelmän käyttöönotto ja sen vaikutus jakelukustannuksiin

    OpenAIRE

    Moilanen, Johan

    2014-01-01

    Opinnäytteessä suoritettiin Telematiikkajärjestelmän pilotointi sekä aineiston analysointi, jossa tutkittiin jakelukaluston koon vaikutusta jakelukustannukseen sekä jakelutyön kustannusten muodostumista. Teoriaosa perustuu muutoksenhallintaan, telematiikkajärjestelmien tarjoamaan lisäarvoon sekä olemassa olevan tietojärjestelmäympäristön arviointiin että taloudelliseen ajotapaan. Pilotointia valmisteltiin useamman kuukauden ajan ja Pilotoinnin aikana selvitettiin paljon lisää järjestelmän toi...

  6. Power supply for magnetic coils in thermonuclear devices

    International Nuclear Information System (INIS)

    Shimada, Ryuichi; Tamura, Sanae; Kishimoto, Hiroshi.

    1981-01-01

    Purpose: To decrease the load fluctuations in an external power supply, as well as to increase the operation efficiency capacity of thermonuclear devices. Constitution: Electrical power with the same frequency as that of a dynamo generator is supplied by a power supply-driving power source including a frequency converter and the like to DC converters for driving plasma-exciting and -controlling coils. At the same time, the electrical power from the frequency converter is supplied to the dynamo generator with flywheel to add accumulate energies to the EC converters. Accordingly, the energy for the great power pulses in a short time comprises the sum of the energy supplied from the dynamo generator with flywheel and the energy supplied continuously from the outside to eliminate the need of providing a stand-by period for the re-acceleration of the dynamo generator with flywheel even if the scale of the thermonuclear device is enlarged and energy consumed in one cycle is increased, whereby the decrease in the operation efficiency can be prevented and the capacity of the flywheel can be reduced. (Yoshino, Y.)

  7. Characteristics definition and optimisation of an integrated electromechanical battery under cyclic loading; Caracterisation et optimisation d'une batterie electromecanique sous chargement cyclique

    Energy Technology Data Exchange (ETDEWEB)

    Kerzreho, C.

    2002-01-15

    This work takes place into a multidisciplinary project, gathering mechanical and electromechanical specialists, with the aim to design a 3 kWh household electromechanical battery module. The energy is stored as kinetic one in a flywheel. The main characteristics of this battery are a high yield, a long life duration and a minimal discharge time over one hour. At a low cost, it could be used in conjunction with alternative electric sources and to secure and regulate home current supplies and consumption. Following a literature review of the available technologies, the flywheel similitude properties are demonstrated and capabilities design coefficients are defined taking into account the stress cycles. In order to define criterions to choose the flywheel material and geometry, the results are applied to the major literatures configurations including metals, composites or ceramics. They are brought together as graphical maps and, using optimal solution surfaces, they show the compromises between the design criterions such as specific energy, energy density, maximal rotational velocity and cost. A single suited structure is then defined which integrates into the flywheel some parts of the motor-generator and of the magnetic bearings. A global design process is conducted taking into account the specific properties and the interactions between the components. The geometry of the motor-generator rotor is optimised then, improving the battery performances. The feasibility of an auto-fitting process is proposed showing that endurance limit depends on flywheel slenderness. The build prototype is finally presented. (author)

  8. Poesia y Pintura: Frank O'Hara y el expresinionismo abstracto

    OpenAIRE

    Alberto Santamaría

    2015-01-01

    El objetivo de este artículo es analizar las relaciones entre poesía y pintura en el seno del expresionismo abstracto. Para ello tomamos tres nombres de referencia: Clement Greenberg (crítico de arte), Frank O'Hara (poeta) y Willem De Kooning (pintor). A través de estos nombres tratamos de señalar la estrecha relación que existía entre poetas y pintores en la llamada Escuela de Nueva York.

  9. Advanced electric propulsion system concept for electric vehicles

    Science.gov (United States)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  10. Emotional inferences by pragmatics

    OpenAIRE

    Iza-Miqueleiz, Mauricio

    2017-01-01

    It has for long been taken for granted that, along the course of reading a text, world knowledge is often required in order to establish coherent links between sentences (McKoon & Ratcliff 1992, Iza & Ezquerro 2000). The content grasped from a text turns out to be strongly dependent upon the reader’s additional knowledge that allows a coherent interpretation of the text as a whole. The world knowledge directing the inference may be of distinctive nature. Gygax et al. (2007) showed that m...

  11. Continuously rotating cat scanning apparatus and method

    International Nuclear Information System (INIS)

    Bax, R.F.

    1980-01-01

    A tomographic scanner with a continuously rotating source of radiation is energized by converting inertial mechanical energy to electrical energy. The mechanical-to-electrical conversion apparatus is mounted with the x-ray source to be energized on a rotating flywheel. The inertial mechanical energy stored in the rotating conversion apparatus, flywheel and x-ray source is utilized for generating electrical energy used, in turn, to energize the x-ray source

  12. Energy and momentum management of the Space Station using magnetically suspended composite rotors

    Science.gov (United States)

    Eisenhaure, D. B.; Oglevie, R. E.; Keckler, C. R.

    1985-01-01

    The research addresses the feasibility of using magnetically suspended composite rotors to jointly perform the energy and momentum management functions of an advanced manned Space Station. Recent advancements in composite materials, magnetic suspensions, and power conversion electronics have given flywheel concepts the potential to simultaneously perform these functions for large, long duration spacecraft, while offering significant weight, volume, and cost savings over conventional approaches. The Space Station flywheel concept arising out of this study consists of a composite-material rotor, a large-angle magnetic suspension (LAMS) system, an ironless armature motor/generator, and high-efficiency power conversion electronics. The LAMS design permits the application of appropriate spacecraft control torques without the use of conventional mechanical gimbals. In addition, flywheel systems have the growth potential and modularity needed to play a key role in many future system developments.

  13. OPERATION CASTLE. The Operation Plan Number 1-53. Task Group 7.1

    Science.gov (United States)

    1984-08-31

    83-C-0286 with the close cooperation of the Classification • Management Division of the Defense Nuclear Agency. 19 KEY WORDS (Conltnue on reverse side...Day on which k5th Shot) will be detonated. R-DAY (RC*(E.) - fay on which (6th Shot) will be detonated. -5- I o K-DAY ( KOON ) - Day on which (7th Shot...timing signals to meet the principle requirements of the experimental prograraz. (2) Supplies the firing pulse to the device(s) to be tested. (3

  14. Short-time action electric generators to power physical devices

    International Nuclear Information System (INIS)

    Glebov, I.A.; Kasharskij, Eh.G.; Rutberg, F.G.; Khutoretskij, G.M.

    1982-01-01

    Requirements to be met by power-supply sources of the native electrophysical facilities have been analyzed and trends in designing foreign electric machine units of short-time action have been considered. Specifications of a generator, manufactured in the form of synchronous bipolar turbogenerator with an all-forged rotor with indirect air cooling of the rotor and stator windings are presented. Front parts of the stator winding are additionally fixed using glass-textolite rings, brackets and gaskets. A flywheel, manufactured in the form of all-forged steel cylinder is joined directly with the generator rotor by means of a half-coupling. An acceleration asynchronous engine with a phase rotor of 4 MW nominal capacity is located on the opposite side of the flywheel. The generator peak power is 242 MVxA; power factor = 0.9; energy transferred to the load 5per 1 pulse =00 MJ; the flywheel weight 81 t

  15. Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application

    International Nuclear Information System (INIS)

    Zhao, Pan; Dai, Yiping; Wang, Jiangfeng

    2014-01-01

    Electricity generated from renewable wind sources is highly erratic due to the intermittent nature of wind. This uncertainty of wind power can lead to challenges regarding power system operation and dispatch. Energy storage system in conjunction with wind energy system can offset these effects, making the wind power controllable. Moreover, the power spectrum of wind power exhibits that the fluctuations of wind power include various components with different frequencies and amplitudes. Thus, the hybrid energy storage system is more suitable for smoothing out the wind power fluctuations effectively rather than the independent energy storage system. A hybrid energy storage system consisting of adiabatic compressed air energy storage (A-CAES) system and flywheel energy storage system (FESS) is proposed for wind energy application. The design of the proposed system is laid out firstly. The A-CAES system operates in variable cavern pressure, constant turbine inlet pressure mode, whereas the FESS is controlled by constant power strategy. Then, the off-design analysis of the proposed system is carried out. Meanwhile, a parametric analysis is also performed to investigate the effects of several parameters on the system performance, including the ambient conditions, inlet temperature of compressor, storage cavern temperature, maximum and minimum pressures of storage cavern. - Highlights: • A wind-hybrid energy storage system composed of A-CAES and FESS is proposed. • The design of the proposed hybrid energy storage system is laid out. • The off-design analysis of the proposed system is carried out. • A parametric analysis is conducted to examine the system performance

  16. Anàlisi experimental de la problemàtica de càrrega-descàrrega de ACEE aplicables en transports

    OpenAIRE

    Garrigosa i Garcia, Ramón

    2017-01-01

    lt's a well-known fact that the flywheel stores energy inside, and this energy is proportional to the rotational speed and the moment of inertia. lf the moment of inertia increases, the energy increases in the same proportion to it. But if the rotational speed increases, the energy increases in the quadratic portian. Then, the faster the rotation, the greater the energy storage becomes. lf it engages an electric machine with a flywheel, this is Kinetic storage. The electric machine will be...

  17. Sized-related changes in winter condition of male calves in reindeer

    Directory of Open Access Journals (Sweden)

    T. Helle

    1987-06-01

    Full Text Available Size-related changes in body condition of free-ranging male calves of semi-domesticated reindeer were studied in northern Finland from October 1983 to February 1984. In October-November, back fat depth or muscle fat percent correlated positively with the body size (=back length. In January, the highest means especially for muscle fat percent were found among medium-sized calves. Carcass weight and weight/back length ratio correlated positively with size, excluding February sample, where correlation for carcass weight was non-significant and for weight/back length ratio negative. Weight in the autumn correlated negatively with weight in February. Therefore, normalizing selection for body size (working against small and large phenotypes is expected to occur in late winter. Small calves may be at greater mortality risk because of lower initial body reserves. Large calves commonly disperse during the rutting season and they may suffer most from increased food competition later in winter. Using of medium-sized calves for breeding might be the safest policy on ranges characterized by short food supply and difficult snow conditions.Koon vaikutus poron urosvasojen talviseen kuntoon.Abstract in Finnish / Tiivistelmä: Koon vaikutusta vapaana laiduntavien poron urosvasojen kuntoon tutkittiin Pohjois-Suomessa loka-helmikuussa talvella 1983-84. Loka-marraskuussa selkärasvan paksuus tai lihaksen rasvaprosentti riippui vasan koosta ( = selän pituus. Tammikuussa sen sijaan lihaksen rasvaprosentti oli korkein keskikokoisilla vasoilla. Ruhopaino sekä ruhopaino/selän pituus oli yleensa riippuvainen koosta. Helmikuussa ruhopainon riippuvuus koosta ei ollut enää tilastollisesti merkitsevä, ja koon ja ruhopainon/selänpituuden välinen korrelaatio oli negatiivinen. Eniten painoa menettivät (% loka-helmikuun välillä suurikokoisimmat vasat. Havainnot viittaavat siihen, että talvella esiintyvä kuolleisuus on normalisoivaa koon suhteen (karsii pieniä ja

  18. Siirtyminen IPv6-protokollaan yrityksen verkkolaitteistossa

    OpenAIRE

    Lindén, Kalle

    2012-01-01

    Tämän opinnäytetyön tarkoituksena on selvittää, mitä muutoksia Päijät-Hämeen koulutuskonsernin (PHKK) tietoverkon runkolaitteissa tarvitsee tehdä, jotta voidaan ottaa IPv6-protokolla käyttöön. Siirtyminen IPv6-protokollaan tulee olemaan välttämätön toimenpide, koska IPv4-protokollasta loppuvat uudet yksilölliset osoitteet. IPv4- ja IPv6-protokollien suurimmat erot ovat osoitekentän koon kasvaminen 32 bitistä 128 bittiin. Aluksi IPv4-osoitteistuksessa oli käytössä luokallinen osoitejärjest...

  19. observer-based diagnostics and monitoring of vibrations in nuclear reactor core cooling system

    International Nuclear Information System (INIS)

    Siry, S.A K.

    2007-01-01

    analysis and diagnostics of vibration in industrial systems play a significant rule to prevent severe severe damages . drive shaft vibration is a complicated phenomenon composed of two independent forms of vibrations, translational and torsional. translational vibration measurements in case of the reactor core cooling system are introduced. the system under study consists of the three phase induction motor, flywheel, centrifugal pump, and two coupling between motor-flywheel, and flywheel-pump. this system structure is considered to be one where the blades are pegged into the discs fitting into the shafts. a non-linear model to simulate vibration in the reactor core cooling system will be introduced. simulation results of an operating reactor core cooling system using the actual parameters will be presented to validate the accuracy and reliability of the proposed analytical method the accuracy in analyzing the results depends on the system model. the shortcomings of the conventional model will be avoided through the use of that accurate nonlinear model which improve the simulation of the reactor core cooling system

  20. Electrochemical Storage Systems for Application to Isolated Wind Energy Plants; Sistemas Electromecanicos de Acumulacion de Energia para Aplicacion en Plantas Eolicas Aislados

    Energy Technology Data Exchange (ETDEWEB)

    Avia Aranda, F.; Cruz Cruz, I. [CIEMAT. Madrid (Spain)

    1999-03-01

    Substantial technology advances have occurred during the last decade that have had and appreciated impact on performance and feasibility of the Electromechanical Storage Systems. Improvements in magnetic bearings, composite materials, power conversion systems, microelectronic control systems and computer simulation models have increased flywheel reliability, and storage capacity, while decreasing overall system size, weight and cost. These improvement have brought flywheels to the forefront in the quest for alternate systems. The results of the study carried out under the scope of the SEDUCTOR, about the state of art of the Electromechanical Storage Systems is presented in this report. (Author) 15 refs.

  1. Electromechanical Storage Systems for Application to Isolated Wind Energy Plants

    International Nuclear Information System (INIS)

    Avia Aranda, F.; Cruz Cruz, I.

    1999-01-01

    Substantial technology advances have occurred during the last decade that have had and appreciated impact on performance and feasibility of the Electromechanical Storage Systems. Improvements in magnetic bearings, composite materials, power conversion systems, microelectronic control systems and computer simulation models have increased flywheel reliability, and energy storage capacity, while decreasing overall system size, weight and cost. These improvements have brought flywheels to the forefront in the quest for alternate systems. The result of the study carried out under the scope of the SEDUCTOR, about the state of art of the Electromechanical Storage Systems is presented in this report. (Author) 15 refs

  2. Study on the transport by superconducting elevators

    Energy Technology Data Exchange (ETDEWEB)

    Ona, K. [Technov Inc., Tokyo (Japan)

    1999-02-01

    A study on the development of a transport system using the pinning effect of a superconducting bulk structure was undertaken and a model of a flywheel for electric power storage was manufactured by introducing a bearing applying the pinning effect to investigate the feasibility through its operation. The operation behavior of vertical transport combining the superconducting bulk structure and the electromagnetic coils reproduced the predictions of simulation. As for the electric power storage via flywheel, it was confirmed that the lighting duration of a indicating lamp was elongated from the ordinary interval, 1 min., to 4 min. (H. Baba)

  3. Reactor coolant pump type RUV for Westinghouse Electric Company LLC reactor AP1000 TM

    International Nuclear Information System (INIS)

    Baumgarten, S.; Brecht, B.; Bruhns, U.; Fehring, P.

    2010-01-01

    The RUV is a reactor coolant pump, specially designed for the Westinghouse Electric Company LLC AP1000 TM reactor. It is a hermetically sealed, wet winding motor pump. The RUV is a very compact, vertical pump/motor unit, designed to fit into the compartment next to the reactor pressure vessel. Each of the two steam generators has two pump casings welded to the channel head by the suction nozzle. The pump/motor unit consists of a pump part, where a semi-axial impeller/diffuser combination is mounted in a one-piece pump casing. Computational Fluid Dynamics methods combined with various hydraulic tests in a 1:2 scale hydraulic test assure full compliance with the specific customer requirements. A short and rigid shaft, supported by a radial bearing, connects the impeller with the high inertia flywheel. This flywheel consists of a one-piece forged stainless steel cylinder, with an option for several smaller heavy metal cylinders inside. The flywheel is located inside the thermal barrier, which forms part of the pressure boundary. A specific arrangement of cooling water circuits guarantees a homogeneous temperature distribution in and around the flywheel, minimizes the friction losses of the flywheel and protects the motor from hot coolant. The driving torque is transmitted by the motor shaft, which itself is supported by two radial bearings. A three-phase, high-voltage squirrel-cage induction motor generates the driving torque. Due to the wet winding concept it is possible to achieve positive effects regarding motor lifetime. The cooling water is forced through the stator windings and the gap between rotor and stator by an auxiliary impeller. Furthermore, this wet winding motor concept has higher efficiency as compared to a canned motor since there are no eddy current losses. As part of the design process and in addition to the hydraulic scale model, a complete half scale model pump was built. It was used to verify the calculations performed like coast

  4. Catalytic Activity and Structure Properties of Doped VOHPO4 ·0.5H2O with Nanosized Ru, Au, Fe and Mn in Benzene Hydroxylation

    CSIR Research Space (South Africa)

    Makgwane, PR

    2013-01-01

    Full Text Available . Taufiq-Yap, S. Nor Asrina, G. J. Hutchings, N. F. Dummer, and J. K. Bartley, J. Natural Gas 162, 31 (1996). 26. M. Choi, C. Han, I. T. Kim, J. C. An, J. J. Lee, H. K. Lee, and J. Shim, J. Nanosci. Nanotechnol. 11, 838 (2011). 27. K. Ki-Joong, S. Jae-Koon.... Today 111, 22 (2006). 35. R. Tanner, P. Gill, R. Wells, J. E. Bailie, G. Kelly, S. D. Jackson, and G. J. Hutchings, Phys. Chem. Chem. Phys. 2, 688 (2002). 36. C.-C. Yang, Y.-J. Lee, and J. M. Yang, J. Power Sources 188, 30 (2009). Received: 31 October...

  5. Activating gender stereotypes during online spoken language processing: evidence from Visual World Eye Tracking.

    Science.gov (United States)

    Pyykkönen, Pirita; Hyönä, Jukka; van Gompel, Roger P G

    2010-01-01

    This study used the visual world eye-tracking method to investigate activation of general world knowledge related to gender-stereotypical role names in online spoken language comprehension in Finnish. The results showed that listeners activated gender stereotypes elaboratively in story contexts where this information was not needed to build coherence. Furthermore, listeners made additional inferences based on gender stereotypes to revise an already established coherence relation. Both results are consistent with mental models theory (e.g., Garnham, 2001). They are harder to explain by the minimalist account (McKoon & Ratcliff, 1992) which suggests that people limit inferences to those needed to establish coherence in discourse.

  6. High Tc superconducting energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank [Adelwitz Technologiezentrum GmbH (ATZ), Arzberg-Adelwitz (Germany)

    2012-07-01

    Electric energy is basic to heat and light our homes, to power our businesses and to transport people and goods. Powerful storage techniques like SMES, Flywheel, Super Capacitor, and Redox - Flow batteries are needed to increase the overall efficiency, stability and quality of electrical grids. High-Tc superconductors (HTS) possess superior physical and technical properties and can contribute in reducing the dissipation and losses in electric machines as motors and generators, in electric grids and transportation. The renewable energy sources as solar, wind energy and biomass will require energy storage systems even more as a key technology. We survey the physics and the technology status of superconducting flywheel energy storage (FESS) and magnetic energy storage systems (SMES) for their potential of large-scale commercialization. We report about a 10 kWh / 250 kW flywheel with magnetic stabilization of the rotor. The progress of HTS conductor science and technological engineering are basic for larger SMES developments. The performance of superconducting storage systems is reviewed and compared. We conclude that a broad range of intensive research and development in energy storage is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  7. Hydrazine APU Starter Development.

    Science.gov (United States)

    1983-06-01

    electrical solenoid valve is energized. Flywheel speed is monitored independently of the drive shaft speed (rotor speed) via a photo cell mounted in the...center of the top plate. The photocell detects the passage of a black stripe that is painted on the flywheel. Stall torque is monitored with a load cell ...zi Nt1 0m < -C3C C=, * r C ~ L 13 *36 *Si 0 IP *45 a T a *z a oz *it a *t a i a-a 1381 C,3( ( C ( C rcr ~ (C~rrC .C 6v 20 c, f4- 0 *0 0 04 *0 El 06 *0b

  8. Superconducting magnet for maglev system. Fujoshiki tetsudoyo chodendo jishaku

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, M; Maeda, H; Sanada, Y [Toshiba Corp., Tokyo (Japan)

    1991-04-20

    The magnetically levitated vehicle (Maglev) system use superconducting magnet was explained in characteristics and present development status. The development of Maglev system, using superconducting magnet, commenced in 1960 {prime}s by ex-Japan National Railways, then succeeded by the Railway Technical Research Institute in 1987, made a long-term progress to be put to practical use. Then, added with the Central Japan Railway Company and Japan Railway Construction Public Company, the project team commenced the construction of Yamanashi test track in 1990, to aim at putting to practical use to be finally confirmed. On the other hand, actual vehicle use superconducting magnet has also entered the final development stage. For the superconducting coil for the Miyazaki test track use, development was made of integrated submersion technology of coil winding by resin, coil-binding structure with cramps to resist high electromagnetic force, generated in the superconducting coil, and coil inner vessel by welding thin stainless steel plate. For the Yamanashi test track use, made were heightening in thermal stability against the quenching phenomenon and optimization in coil inner vessel structure by simulation to confirm the highest magnetomotive force to be 1004kA. 8 figs., 1 tab.

  9. Force and power characteristics of a resistive exercise device for use in space

    Science.gov (United States)

    Berg, Hans E.; Tesch, Per A.

    We have developed a non-gravity dependent mechanical device, which provides resistance during coupled concentric and eccentric muscle actions, through the inertia of a spinning fly-wheel (Fly-Wheel Ergometry; FWE). Our research shows that lower-limb FWE exercise can produce forces and thus muscular stress comparable to what is typical of advanced resistance training using free weights. FWE also offers greater training stimuli during eccentric relative to concentric muscle actions, as evidenced by force and electromyographic (EMG) measurements. Muscle use of specific muscle groups, as assessed by the exercise-induced contrast shift of magnetic resonance images, is similar during lower-limb FWE and the barbell squat. Unlike free-weight exercise, FWE allows for maximal voluntary effort in each repetition of an exercise bout. Likewise, FWE exercise, not unassisted free-weight exercise, produces eccentric "overload". Collectively, the inherent features of this resistive exercise device and the results of the physiological evaluations we have performed, suggest that resistance exercise using FWE could be used as an effective exercise counter-measure in space. The flywheel principle can be employed to any exercise configuration and designed into a compact device allowing for exercises stressing those muscles and bone structures, which are thought to be most affected by long-duration spaceflight.

  10. ISO New England: Results of Ancillary Service Pilot Programs, Alternative Technology Regulation Pilot Program and Demand Response Reserves Pilot Program

    Energy Technology Data Exchange (ETDEWEB)

    Lowell, Jon [ISO New England, Holyoke, MA (United States); Yoshimura, Henry [ISO New England, Holyoke, MA (United States)

    2011-10-26

    This PowerPoint presentation compares performance of pilot program assets and generation resources in alternative technology regulation and demand response reserves for flywheels and residential electric thermal storage.

  11. Near-term electric test vehicle ETV-2. Phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    A unique battery-powered passenger vehicle has been developed that provides a significant improvement over conventional electric vehicle performance, particularly during stop-and-go driving. The vehicle is unique in two major respects: (1) the power system incorporates a flywheel that stores energy during regenerative braking and makes possible the acceleration capability needed to keep up with traffic without reducing range to unacceptable values; and (2) lightweight plastic materials are used for the vehicle unibody to minimize weight and increase range. These features were analyzed and demonstrated in an electric test vehicle, ETV-2. Characteristics of this vehicle are summarized. Information is presented on: vehicle design, fabrication, safety testing, and performance testing; power system design and operation; flywheel; battery pack performance; and controls and electronic equipment. (LCL)

  12. FLYWHEEL AND A DC MACHINE

    Directory of Open Access Journals (Sweden)

    IVAN ALCALÁ

    2014-01-01

    Full Text Available Este artículo describe el análisis, modelado y simulación de un vehículo eléctrico (EV enfocado al desarrollo de un banco de pruebas para reproducir la dinámica del EV. El banco está formado por un drive de motor de inducción (IM acoplado directamente a una máquina de DC y a un volante de inercia a través de una transmisión. El volante de inercia y la máquina de DC reproducen la dinámica y las fuerzas que actúan en el vehículo. Se propone una metodología para diseñar un banco de pruebas de EV para estudiar el comportamiento de vehículos eléctricos cercano a las condiciones de operación reales. El análisis de las fuerzas en el EV en conjunto con la máquina DC define las condiciones de operación del EV. El modelado y la simulación son desarrollados en MATLAB/Simulink, el banco de pruebas implementado es controlado por un DSP. Finalmente, los resultados de simulación y experimentales obtenidos validan el funcionamiento del banco de prueba.

  13. Creative Industries as a Flywheel

    NARCIS (Netherlands)

    Rutten, P.; Marlet, G.A.; Oort, F.G. van

    2011-01-01

    The value of the creative industries to the economy and society has generally been viewed in terms of jobs created and contribution to gross national or regional product. This study shows that it’s time to reassess the industry’s image and its social and economic significance. It looks beyond job

  14. Practical applications of superconducting technology; Chodendo gijutsu to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, M.; Yamamoto, K.; Urata, M. [Toshiba Corp., Tokyo (Japan)

    1995-11-01

    Remarkable progress has been made in superconducting technology recently. This paper describes the details and technical features of every cooling type of practical superconducting magnet (SCM), including the SCM for magnetic resonance imaging (MRI), SCM for semiconductor pulling devices, high-field SCM, SCM for magnetically confined plasma devices, and SCM for particle detectors. Commercial production of pool-boil-cooled SCMs has been realized by reducing helium evaporation and decreasing the frequency of helium pouring. The development of forced-cooled SCMs has made it possible to build large SCMs. Moreover, the development of the 4 K-GM refrigerator has enabled liquid-helium-free SCMs to be introduced. Since this type of SCM can be operated merely by turning on a switch, SCMs are expected to come into more widespread use. 7 refs., 1 fig.

  15. Development of AC-DC power system simulator

    International Nuclear Information System (INIS)

    Ichikawa, Tatsumi; Ueda, Kiyotaka; Inoue, Toshio

    1984-01-01

    A modeling and realization technique is described for realtime plant dynamics simulation of nuclear power generating unit in AC-DC power system simulator. Dynamic behavior of reactor system and steam system is important for investigation a further adequate unit control and protection system to system faults in AC and DC power system. Each unit of two nuclear power generating unit in the power system simulator consists of micro generator, DC motors, flywheels and process computer. The DC motor and flywheel simulates dynamic characteristics of steam turbine, and process computer simulates plant dynamics by digital simulation. We have realized real-time plant dynamics simulation by utilizing a high speed process I/O and a high speed digital differential analyzing processor (DDA) in which we builted a newly developed simple plant model. (author)

  16. Nonlinear electromechanical modelling and dynamical behavior analysis of a satellite reaction wheel

    Science.gov (United States)

    Aghalari, Alireza; Shahravi, Morteza

    2017-12-01

    The present research addresses the satellite reaction wheel (RW) nonlinear electromechanical coupling dynamics including dynamic eccentricity of brushless dc (BLDC) motor and gyroscopic effects, as well as dry friction of shaft-bearing joints (relative small slip) and bearing friction. In contrast to other studies, the rotational velocity of the flywheel is considered to be controllable, so it is possible to study the reaction wheel dynamical behavior in acceleration stages. The RW is modeled as a three-phases BLDC motor as well as flywheel with unbalances on a rigid shaft and flexible bearings. Improved Lagrangian dynamics for electromechanical systems is used to obtain the mathematical model of the system. The developed model can properly describe electromechanical nonlinear coupled dynamical behavior of the satellite RW. Numerical simulations show the effectiveness of the presented approach.

  17. Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

    2008-03-01

    This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

  18. Transport through track etched polymeric blend membrane

    Indian Academy of Sciences (India)

    Unknown

    Department of Physics, University of Rajasthan, Jaipur 302 004, India. MS received 10 June 2005 ... Both the track and bulk etching takes place in the irradiated membrane. ... using rotating flywheel attachment, the details having been given ...

  19. Hybrid Vehicle Technology Constraints and Application Assessment Study : Volume 3. Sections 5 through 9.

    Science.gov (United States)

    1977-11-01

    This four-volume report presents analyses and assessments of both heat engine/battery- and heat engine/flywheel-powered hybrid vehicles to determine if they could contribute to near-term (1980-1990) reductions in transportation energy consumption und...

  20. Hybrid Vehicle Technology Constraints and Application Assessment Study : Volume 1. Summary.

    Science.gov (United States)

    1977-11-01

    This four-volume report presents analyses and assessments of both heat engine/battery- and heat engine/flywheel-powered hybrid vehicles to determine if they could contribute to near-term (1980-1990) reductions in transportation energy consumption und...

  1. Hybrid Vehicle Technology Constraints and Application Assessment Study : Volume 2. Sections 1 through 4.

    Science.gov (United States)

    1977-01-01

    This four-volume report presents analyses and assessments of both heat engine/battery- and heat engine/flywheel-powered hybrid vehicles to determine if they could contribute to near-term (1980-1990) reductions in transportation energy consumption und...

  2. Hybrid Vehicle Technology Constraints and Application Assessment Study : Volume 4. Sections 10, 11, and Appendix.

    Science.gov (United States)

    1977-01-01

    This four-volume report presents analyses and assessments of both heat engine/battery- and heat engine/flywheel-powered hybrid vehicles to determine if they could contribute to near-term (1980-1990) reductions in transportation energy consumption und...

  3. SIMWEST: A simulation model for wind and photovoltaic energy storage systems (CDC user's manual), volume 1

    Science.gov (United States)

    Warren, A. W.; Esinger, A. W.

    1979-01-01

    Procedures are given for using the SIMWEST program on CDC 6000 series computers. This expanded software package includes wind and/or photovoltaic systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel, and pneumatic).

  4. Utilization of rotor kinetic energy storage for hybrid vehicles

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  5. Fault Diagnosis for Satellite Sensors and Actuators using Nonlinear Geometric Approach and Adaptive Observers

    DEFF Research Database (Denmark)

    Baldi, P.; Blanke, Mogens; Castaldi, P.

    2018-01-01

    This paper presents a novel scheme for diagnosis of faults affecting sensors that measure the satellite attitude, body angular velocity, flywheel spin rates, and defects in control torques from reaction wheel motors. The proposed methodology uses adaptive observers to provide fault estimates that...

  6. Wind-energy storage

    Science.gov (United States)

    Gordon, L. H.

    1980-01-01

    Program SIMWEST can model wind energy storage system using any combination of five types of storage: pumped hydro, battery, thermal, flywheel, and pneumatic. Program is tool to aid design of optional system for given application with realistic simulation for further evaluation and verification.

  7. 76 FR 66995 - David T. Koon, M.D.; Revocation of Registration

    Science.gov (United States)

    2011-10-28

    ... authority for reasons other than through formal disciplinary action of a State board.'' John B. Freitas, 74... actions by the South Carolina Board of Medical Examiners and the South Carolina Bureau of Drug Control...

  8. An overview of flywheel energy systems.

    Energy Technology Data Exchange (ETDEWEB)

    Wolsky, A. M.; Energy Systems

    2002-05-01

    Passive magnetic bearings incorporating permanent magnets and ReBaCuO, together with carbon fibre, offer the possibility of increasing the stored, volumetric energy density of FES and unprecedentedly low idling loss of FES. Its stored energy need only satisfy customers needs for the time it takes to bring on conventional 'back-up'. The FES itself must come up to power quickly enough to avoid any disruption in the customer's operation (e.g., continuous industrial processes involving fragile materials, for example paper forming). Such customers do not care about the price of electricity nearly as much as they care about not ruining their product, damaging their machines or having 'clean ups' that stop or slow output. Firms that engage in electronic commerce and/or telecommunications also value uninterruptible power. Another set of potential customers (construction, electric railroads) may wish to avoid fluctuations in their electrical supply or they may wish to avoid causing harm to others who may hold them liable for poor power quality. Finally, real time prices (e.g., every 15 s) and real time commands, disseminated via internet, and distributed storage might enable reduced system generation costs. Generators and FES makers would have to cooperate to make this feasible. Now, the central techno-economic challenge is to build a high-power, low-loss motor generator that reaches full power in a very short time.

  9. Design of a low-cost hybrid powertrain with large fuel savings

    NARCIS (Netherlands)

    Berkel, van K.; Romers, L.H.J.; Vroemen, B.G.; Hofman, T.; Steinbuch, M.

    2010-01-01

    This paper presents a new design of a low-cost hybrid powertrain with large fuel savings. The hybrid powertrain contains only low-cost mechanical components, such as a flywheel module and a continuously variable transmission (CVT). Noelectrical motor/generator or battery is used. Based on

  10. Energy Storage.

    Science.gov (United States)

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  11. Design and construction aspects of a zero inertia CVT for passenger cars

    NARCIS (Netherlands)

    Druten, van R.M.; Tilborg, van P.G.; Rosielle, P.C.J.N.; Schouten, M.J.W.

    2000-01-01

    This paper concentrates on the design and construction aspects of a transmission for a mid-class passenger car with internal combustion engine. The transmission, consisting of a Continuously Variable Transmission (CVT) with a Van Doorne V-belt, a planetary gear set and a compact steel flywheel is

  12. Development of a Cryogenic Hydrogen Maser at the NPL

    National Research Council Canada - National Science Library

    Mossavati, R

    1992-01-01

    .... The system will be used to test various wall coatings adsorbed on top of a PTFE buffer underlayer. The CHM is expected to be used as a flywheel frequency standard at the NPL with medium-term stability of one part in 10(exp 14) or better.

  13. Design of Attitude Control Actuators for a Simulated Spacecraft

    Science.gov (United States)

    2011-03-24

    however, there are many dual-use applications, such as regenerative braking technology and flywheel energy storage. The reaction wheel system on Simsat...as the reaction wheels change angular velocity. 2.3.5 Control Moment Gyroscopes. The second category of momentum ex- change devices is the control

  14. 78 FR 17350 - Foreign-Trade Zone 262-Southaven (Desoto County), Mississippi; Notification of Proposed...

    Science.gov (United States)

    2013-03-21

    ... payments on the foreign status components used in export production. On its domestic sales, METC would be... of transmissions, flywheels, gear boxes, electric motors and generators, batteries, lamps, radios and... be admitted to the proposed subzone under privileged foreign status (19 CFR 146.41) or domestic (duty...

  15. 75 FR 60083 - Notice of Petitions by Firms for Determination of Eligibility To Apply for Trade Adjustment...

    Science.gov (United States)

    2010-09-29

    ... blocks, flywheels, and snatch OK 74115. blocks. Melron Corporation 8110 Technology Drive, 9/23/10 The... 0516. using various wires, plastics, and rubber and metal components. Niche Electronics Technologies... parts. Solid Comfort, Inc 3931 37th Avenue South, Fargo, 9/20/10 The firm manufactures furniture made...

  16. Electrochemistry and Storage Panel Report

    Science.gov (United States)

    Stedman, J. K.; Halpert, G.

    1984-01-01

    Design and performance requirements for electrochemical power storage systems are discussed and some of the approaches towards satisfying these constraints are described. Geosynchronous and low Earth orbit applications, radar type load constraints, and high voltage systems requirements are addressed. In addition, flywheel energy storage is discussed.

  17. Combined Geometric and Neural Network Approach to Generic Fault Diagnosis in Satellite Actuators and Sensors

    DEFF Research Database (Denmark)

    Baldi, P.; Blanke, Mogens; Castaldi, P.

    2016-01-01

    This paper presents a novel scheme for diagnosis of faults affecting the sensors measuring the satellite attitude, body angular velocity and flywheel spin rates as well as defects related to the control torques provided by satellite reaction wheels. A nonlinear geometric design is used to avoid t...

  18. Individual Muscle use in Hamstring Exercises by Soccer Players Assessed using Functional MRI.

    Science.gov (United States)

    Fernandez-Gonzalo, R; Tesch, P A; Linnehan, R M; Kreider, R B; Di Salvo, V; Suarez-Arrones, L; Alomar, X; Mendez-Villanueva, A; Rodas, G

    2016-06-01

    This study used functional magnetic resonance imaging (fMRI) to compare individual muscle use in exercises aimed at preventing hamstring injuries. Thirty-six professional soccer players were randomized into 4 groups, each performing either Nordic hamstring, flywheel leg curl, Russian belt or conic-pulley exercise. MRIs were performed before and immediately after a bout of 4 sets of 8 repetitions. Pre-post exercise differences in contrast shift (T2) were analyzed for the long (BFLh) and short head (BFSh) of biceps femoris, semitendinosus (ST), semimembranosus (SM) and gracilis (GR) muscles. Flywheel leg curl increased (Phamstring, GR (39%), ST (16%) and BFSh (14%) showed increased T2 (Phamstring and GR muscle use. However, no single exercise executed was able to increase T2 of all hamstring and synergist muscles analyzed. It is therefore suggested that multiple exercises must be carried out to bring in, and fully activate all knee flexors and hip extensors. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Optimal regenerative braking with a push-belt CVT: an experimental study

    NARCIS (Netherlands)

    Berkel, van K.; Hofman, T.; Vroemen, B.G.; Steinbuch, M.

    2010-01-01

    This paper describes the approach and the results of efficiency experiments on a push-belt Continuously Variable Transmission (CVT) in a new hybrid drive train. The hybrid drive train uses the push-belt CVT to charge a flywheel, with the kinetic energy of the vehicle during regenerative braking and

  20. Optimal regenerative braking with a push-belt CVT : an experimental study

    NARCIS (Netherlands)

    van Berkel, K.; Hofman, T.; Vroemen, B.; Steinbuch, M.

    2010-01-01

    This paper describes the approach and the results of efficiency experiments on a push-belt Continuously Variable Transmission (CVT) in a new hybrid drive train. The hybrid drive train uses the push-belt CVT to “charge” a flywheel, with the kinetic energy of the vehicle during regenerative braking

  1. On Musical and Educational Habit-Taking: Pragmatism, Sociology, and Music Education

    Science.gov (United States)

    Goble, J. Scott

    2005-01-01

    In his recent historical-philosophical offering, "The Enormous Flywheel of Society: Pragmatism's Habitual Conception of Action and Social Theory," Finnish scholar Erkki Kilpinen explores the historical development of pragmatism as a philosophy and describes its varying influence on the development of the social sciences in the United States.…

  2. 40 CFR 86.229-94 - Road load force, test weight, and inertia weight class determination.

    Science.gov (United States)

    2010-07-01

    ... inertia weight class determination. 86.229-94 Section 86.229-94 Protection of Environment ENVIRONMENTAL... § 86.229-94 Road load force, test weight, and inertia weight class determination. (a) Flywheels... vehicle weight (pounds) Equivalent test weight (pounds) Inertia weight class (pounds) Up-1,062 1,000 1,000...

  3. 40 CFR 86.129-80 - Road load power, test weight, and inertia weight class determination.

    Science.gov (United States)

    2010-07-01

    ... inertia weight class determination. 86.129-80 Section 86.129-80 Protection of Environment ENVIRONMENTAL... power, test weight, and inertia weight class determination. (a) Flywheels, electrical or other means of... weight (pounds) Equivalent test weight (pounds) Inertia weight class (pounds) Up to 1,062 1,000 1,000 1...

  4. 30 CFR 56.14107 - Moving machine parts.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Moving machine parts. 56.14107 Section 56.14107... Safety Devices and Maintenance Requirements § 56.14107 Moving machine parts. (a) Moving machine parts... takeup pulleys, flywheels, couplings, shafts, fan blades, and similar moving parts that can cause injury...

  5. Comparative analysis of two hybrid energy storage systems used in a two front wheel driven electric vehicle during extreme start-up and regenerative braking operations

    International Nuclear Information System (INIS)

    Itani, Khaled; De Bernardinis, Alexandre; Khatir, Zoubir; Jammal, Ahmad

    2017-01-01

    Highlights: • Comparison of HESS Ultracapacitor and Flywheel for maximizing EV energy recovery. • Energy recovery performed for extreme two front-wheel driven EV brake conditions. • Regenerative EV braking control strategies and constraints for HESS. • Comparative cost effectiveness for two HESS solutions Ultracapacitors and Flywheel. - Abstract: This paper presents the comparative study of two hybrid energy storage systems (HESS) of a two front wheel driven electric vehicle. The primary energy source of the HESS is a Li-Ion battery, whereas the secondary energy source is either an ultracapacitor (UC) or a flywheel energy system (FES). The main role of the secondary source is to deliver/recover energy during high peak power demand, but also to increase battery lifetime, considered among the most expensive items in the electric vehicle. As a first step, a techno-economic comparative study, supported by strong literature research, is performed between the UC and the FES. The design and sizing of each element will be presented. The comparison criteria and specifications are also described. The adopted approach in this paper is based on an academic non-oriented point of view. In a second step, each of the HESS will be integrated in a more global Simulink model which includes the vehicle model, the traction control system (TCS), the regenerative braking system and the vehicle actuators. Simulation tests are performed for an extreme braking and vehicle starting-up operations. Tests are realized on two different surface road types and conditions (high and low friction roads) and for different initial system states. In order to show the most appropriate storage system regarding compactness, weight and battery constraints minimization, deep comparative analysis is provided.

  6. Project in fiscal 1988 for research and development of basic technologies in next generation industries. Research and development of superconducting materials and superconducting elements (Achievement report on research and development of high-temperature superconducting elements); 1988 nendo koon chodendo soshi no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-03-01

    With an objective of engineering utilization of superconducting materials in the electronics field, research and development has been inaugurated on superconducting elements having new functions. This paper summarizes the achievements in fiscal 1988. In the research of a superconducting element technology, researches were inaugurated on the four themes of the electric field effect type and charge injection type elements in the proximity effect type tri-terminal element, and low energy electron type and high energy electron type elements in the superconduction base type tri-terminal element. In bonding superconductors with semiconductors, discussions were given on a method to form both conductors by controlling oxygen concentrations of oxides having the same composition, and a method to laminate the superconductors on the semiconductors under super-high vacuum atmosphere. In the research of a new functional element technology, researches were inaugurated on the two themes of a single electron tunneling type tri-terminal element and a local potential tunneling type tri-terminal element. In addition, works were performed on epitaxial growth of high-quality superconducting films as a common basic technology, and such an assignment has been made clear as the necessity of controlling the crystalline azimuth. (NEDO)

  7. Motor-Generator powering the PS (Proton Synchrotron) main magnets

    CERN Multimedia

    1983-01-01

    This motor-generator,30 MW peak, 1500 r.p.m.,pulsed power supply for the PS main magnet replaced in 1968 the initial 3000 r.p.m. motor-generator-flywheel set which had served from the PS start-up in 1959 until end 1967. See also photo 8302337 and its abstract.

  8. 75 FR 33839 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Science.gov (United States)

    2010-06-15

    ... for the reactor coolant pump flywheel, currently contained in Salem Unit 1 surveillance requirement... also identify that the function of the P-4 interlock that allows arming of the steam dump valves and transfers the steam dump load rejection (T avg ) controller to the plant trip controller is not required in...

  9. High Performance Split-Stirling Cooler Program

    Science.gov (United States)

    1982-09-01

    or crankcase subassembly includes the two drive cranks 1800 apart, the two motor bearings, the flywheel and target wheel . This assembly is dynamically...DISPLACER SEAL FRICTION REGENERATOR FLOW @ lOPSI E"I’ •’ REGENERATOR RUNOUT COMP. BRG. LUBRICATION "COMP. PISTON SEAL COMP. PISTON SEAL FRICTION INTER

  10. 29 CFR 1926.1002 - Protective frames (roll-over protective structures, known as ROPS) for wheel-type agricultural...

    Science.gov (United States)

    2010-07-01

    ... SAE Handbook, or it may be examined at: any OSHA Regional Office; the OSHA Docket Office, U.S... horsepower. In case power-takeoff horsepower is unavailable, 95 percent of net engine flywheel horsepower... Engineers Yearbook, or it may be examined at: any OSHA Regional Office; the OSHA Docket Office, U.S...

  11. Electric-hybrid-vehicle simulation

    Science.gov (United States)

    Pasma, D. C.

    The simulation of electric hybrid vehicles is to be performed using experimental data to model propulsion system components. The performance of an existing ac propulsion system will be used as the baseline for comparative purposes. Hybrid components to be evaluated include electrically and mechanically driven flywheels, and an elastomeric regenerative braking system.

  12. Storage exploratory project. Energy program. Final report; Projet exploratoire Stockage. Programme Energie. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, Y. [Laboratoire d' Electrotechnique de Grenoble, UMR 5529 INPG/UJF - CNRS, ENSIEG, 38 - Saint-Martin-d' Heres (France); Ozil, P. [Laboratoire d' Electrochimie et de Physico-Chimie des Materiaux et des Interfaces (LEPMI), ENSEEG, 38 - Saint Martin d' Heres (France); Cheron, Y. [Laboratoire d' Electrotechnique et d' Electronique Industrielle, CNRS, 31 - Toulouse (France); Multon, B. [Laboratoire des Sciences de l' Information et des Systemes et Applications des Technologies de l' Information et de l' Energie (SATIE), 94 - Cachan (France); Carillo, S. [Centre Interuniversitaire de recherche et d' Ingenierie sur les Materiaux (CIRIMAT), 31 - Toulouse (France)

    2004-07-01

    The aim of this exploratory project was the analysis of the most efficient possibilities of electric power storage. It was limited to the electrochemical storage, the lead batteries which behavior is not completely characterized, the flywheel energy storage and the development of simulation. This report presents the results of the works. (A.L.B.)

  13. Progress in electrical energy storage system:A critical review

    Institute of Scientific and Technical Information of China (English)

    Haisheng Chen; Thang Ngoc Cong; Wei Yang; Chunqing Tan; Yongliang Li; Yulong Ding

    2009-01-01

    Electrical energy storage technologies for stationary applications are reviewed.Particular attention is paid to pumped hydroelectric storage,compressed air energy storage,battery,flow battery,fuel cell,solar fuel,superconducting magnetic energy storage, flywheel, capacitor/supercapacitor,and thermal energy torage.Comparison is made among these technologies in terms of technical characteris-tics,applications and deployment status.

  14. How Can We Change Our Habits if We Don't Talk about Them?

    Science.gov (United States)

    Mantie, Roger; Talbot, Brent C.

    2015-01-01

    For the late nineteenth century pragmatists, habits were of great interest. Habits, and the habit of changing habits, they believed, reflected if not defined human rationality, leading William James to describe habit as "the enormous fly-wheel of society." What the pragmatists did not adequately address (at least for us) is the role of…

  15. Kinetic energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M.; Folini, P.

    1983-09-03

    A flywheel system for the purpose of energy storage in decentral solar- or wind energy plants is introduced. The system comprises a rotor made out of plastic fibre, a motor/generator serving as electro-mechanical energy converter and a frequency-voltage transformer serving as electric adapter. The storable energy quantity amounts to several kWh.

  16. The Characterization and Circumvention of Carbon Nanotube Junctions - The Route to Practical Carbon Conductors Through Extreme Frequency, Fields, and Light

    Science.gov (United States)

    2015-05-22

    pictured here. It is used as a gigantic flywheel. B. The cryogenic magnet capable of 100 T. In our study we only wnet to 60 T. C. An example of the...but magnetoresistance MR, which is the change of resistance normalized by the original resistance: MR= (R(B)-R(0))/R(0). In general, literature

  17. Kinetic energy recovery systems in motor vehicles

    Science.gov (United States)

    Śliwiński, C.

    2016-09-01

    The article draws attention to the increasing environmental pollution caused by the development of vehicle transport and motorization. Different types of design solutions used in vehicles for the reduction of fuel consumption, and thereby emission of toxic gasses into the atmosphere, were specified. Historical design solutions concerning energy recovery devices in mechanical vehicles which used flywheels to accumulate kinetic energy were shown. Developmental tendencies in the area of vehicle manufacturing in the form of hybrid electric and electric devices were discussed. Furthermore, designs of energy recovery devices with electrical energy storage from the vehicle braking and shock absorbing systems were presented. A mechanical energy storing device using a flywheel operating under vacuum was presented, as were advantages and disadvantages of both systems, the limitations they impose on individual constructions and safety issues. The paper also discusses a design concept of an energy recovery device in mechanical vehicles which uses torsion springs as the main components of energy accumulation during braking. The desirability of a cooperation of both the mechanical- and electrical energy recovery devices was indicated.

  18. Design mechanic generator under speed bumper to support electricity recourse for urban traffic light

    Science.gov (United States)

    Sabri, M.; Lauzuardy, Jason; Syam, Bustami

    2018-03-01

    The electrical energy needs for the traffic lights in some cities of developing countries cannot be achieved continuously due to limited capacity and interruption of electricity distribution, the main power plant. This issues can lead to congestion at the crossroads. To overcome the problem of street chaos due to power failure, we can cultivate to provide electrical energy from other sources such as using the bumper to generate kinetic energy, which can be converted into electrical energy. This study designed a generator mechanic that will be mounted on the bumper construction to generate electricity for the purposes of traffic lights at the crossroads. The Mechanical generator is composed of springs, levers, sprockets, chains, flywheel and customize power generator. Through the rotation of the flywheel, we can earned 9 Volt DC voltage and electrical current of 5.89 Ampere. This achievement can be used to charge the accumulator which can be used to power the traffic lights, and to charge the accumulator capacity of 6 Ah, the generator works in the charging time for 1.01 hours.

  19. Energy storage: potential analysis is still on the way

    International Nuclear Information System (INIS)

    Signoret, Stephane; Dejeu, Mathieu; Deschaseaux, Christelle; De Santis, Audrey; Cygler, Clement; Petitot, Pauline

    2014-01-01

    A set of articles gives an overview of the status and current evolutions of the energy storage sector. The different technologies (flywheel, lithium-ion batteries, NaS or Zebra batteries, compressed air energy storage or CAES, 2. generation CAES, pump storage power plants or PSP) have different applications areas, and also different technological maturity levels. PSPs have probably the best potential nowadays, but investors must be supported. In an interview, a member of the CNRS evokes the main researches, the obstacles in the development of solar thermodynamic plants, technology transfers, and the potential of hydrogen for massive energy storage. An article outlines the need to develop the battery market. Several technological examples and experiments are then presented: Nice Grid (storage at the source level), FlyProd (energy storage by flywheel). An article then addresses the issue of heat storage, notably in a situation of energy co-generation. Researches and prototype development are then presented, the objective of which is to obtain an adiabatic CAES. The last articles address the development of hydrogen to store energy (technologies) and a first technological demonstrator

  20. Energy storage for load leveling; Fuka heijunka ni kakasenai denryoku chozo

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, S. [Tokyo Electric Power Co. Inc., Tokyo (Japan)

    1996-09-20

    This paper introduces features and state of development of electric power storage technologies. Pumped storage power generation is a technology to store electric power by utilizing energy of position. However, because the plant locations are limited to mountainous areas far away from power demand areas, development of power storage technologies is being progressed from a new viewpoint of installing plants in the vicinity of demand areas. Superconduction power storage continues flowing current into a superconductor coil to store the power as electromagnetic energy, which is drawn out as electric power on request. Research and development is in progress in Japan on superconductor coils, permanent current switches, and control and protection systems. A flywheel system stores energy by rotating a disk at high speeds. Element technologies are being developed on long-period storage technologies such as superconductor magnetic bearings and high-speed rotating flywheels. For new load leveling batteries, development efforts are being given on sodium-sulfur batteries, zinc-bromine batteries, redox flow batteries, and lithium batteries. 3 refs., 1 fig., 2 tabs.

  1. Design study of flat belt CVT for electric vehicles

    Science.gov (United States)

    Kumm, E. L.

    1980-01-01

    A continuously variable transmission (CVT) was studied, using a novel flat belt pulley arrangement which couples the high speed output shaft of an energy storage flywheel to the drive train of an electric vehicle. A specific CVT arrangement was recommended and its components were selected and sized, based on the design requirements of a 1700 KG vehicle. A design layout was prepared and engineering calculations made of component efficiencies and operating life. The transmission efficiency was calculated to be significantly over 90% with the expected vehicle operation. A design consistent with automotive practice for low future production costs was considered, together with maintainability. The technology advancements required to develop the flat belt CVT were identified and an estimate was made of how the size of the flat belt CVT scales to larger and smaller design output torques. The suitability of the flat belt CVT for alternate application to an electric vehicle powered by an electric motor without flywheel and to a hybrid electric vehicle powered by an electric motor with an internal combustion engine was studied.

  2. Fiscal 1998 achievement report on regional consortium research and development project. Venture business fostering regional consortium in its 2nd year--Creation of key industries (Research and development of high-temperature oxide superconductive system); 1998 nendo koon sankabutsu chodendo system no kaihatsu kenkyu seika hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Research and development of heavy-current high-voltage technologies is conducted for oxide superconductive transformers for the purpose of rendering superconductive the power distribution transformers installed in large numbers at urban underground substations. A proposition is made of a high-efficiency conductor constructing method in which a transposed parallel conductor is constituted of strands which are Bi-2223 Ag-Mn sheath tape wires, and the method is proved to be valid. A winding structure is contrived in which parallel conductors are mechanically reinforced and provided with cooling channels, and technologies to deal with short-circuit currents and rush currents in case of accidents are established. After conducting numerical simulations of the response of a model to thunderstroke impulses and test of model coil withstand voltages, an electrical insulation technology that complies with JEC (Japanese Electrotechnical Committee) specifications for liquid nitrogen cooled power facilities is established. Making use of the results of technological development efforts for each element technology, a 22kV/6.9kV-1,000kVA high-temperature oxide superconductive transformer is successfully fabricated. The product of the efforts stands higher than the equipment performance level set forth in the initial development plan. (NEDO)

  3. A diffusion decision model analysis of evidence variability in the lexical decision task.

    Science.gov (United States)

    Tillman, Gabriel; Osth, Adam F; van Ravenzwaaij, Don; Heathcote, Andrew

    2017-12-01

    The lexical-decision task is among the most commonly used paradigms in psycholinguistics. In both the signal-detection theory and Diffusion Decision Model (DDM; Ratcliff, Gomez, & McKoon, Psychological Review, 111, 159-182, 2004) frameworks, lexical-decisions are based on a continuous source of word-likeness evidence for both words and non-words. The Retrieving Effectively from Memory model of Lexical-Decision (REM-LD; Wagenmakers et al., Cognitive Psychology, 48(3), 332-367, 2004) provides a comprehensive explanation of lexical-decision data and makes the prediction that word-likeness evidence is more variable for words than non-words and that higher frequency words are more variable than lower frequency words. To test these predictions, we analyzed five lexical-decision data sets with the DDM. For all data sets, drift-rate variability changed across word frequency and non-word conditions. For the most part, REM-LD's predictions about the ordering of evidence variability across stimuli in the lexical-decision task were confirmed.

  4. A Megawatt Power Module for Ship Service - Supplement. Volume 1: Program Technical Report

    Science.gov (United States)

    2007-06-01

    Alternator” otherwise known as an “AC Homopolar ” or “Synchronous Homopolar ” machine for this application. The various motor /generator machine...After reviewing alternative motor /generator technologies as discussed above, a Homopolar Inductor Alternator (HIA) was selected for the technology...integrated flywheel energy storage system with homopolar inductor motor /generator and high-frequency drive”, Industry Applications, IEEE Transactions on

  5. Inertial Sea Wave Energy Converter from Mediterranean Sea to Ocean - Design Optimization

    Science.gov (United States)

    Calleri, Marco

    Optimization of the number of gyroscopes and flywheel rotational speed of a Wave Energy Converter able to produce 725 kW as the nominal power, in the chosen installation site, respecting some imposed constraints and some dimensions from the previous design, by minimizing the cost of the device and the bearing power losses, through the minimization of the LCOE of the device.

  6. Controlling a Four-Quadrant Brushless Three-Phase dc Motor

    Science.gov (United States)

    Nola, F. J.

    1986-01-01

    Control circuit commutates windings of brushless, three-phase, permanent-magnet motor operating from power supply. With single analog command voltage, controller makes motor accelerate, drive steadily, or brake regeneratively, in clockwise or counterclockwise direction. Controller well suited for use with energy-storage flywheels, actuators for aircraft-control surfaces, cranes, industrial robots, and other electromechanical systems requiring bidirectional control or sudden stopping and reversal.

  7. Stateline: The State/Federal Cogs of Change

    Science.gov (United States)

    Christie, Kathy

    2004-01-01

    It is difficult to find a person who unabashedly admires each and every detail of the No Child Left Behind (NCLB) Act. However, amid all the howls and moans about the implementation of NCLB, the flywheel has been whirring, catching, and turning. In some places, it has turned more than in others, but no matter what the underlying philosophy or…

  8. KNBK for preparing well shafts for lowering casings

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V B; Shchukin, R K

    1981-01-01

    The experience of preparing a well for reinforcement in the association ''Kuban'morneftegaz orom'' is shown using traditional KNBK of increasing hardness after the end of drilling the interval and KNBK included in the above-bit area of the flywheel, UBTS or blade stabilizers whose outer diameter is determined by calculation, and guarantees preparation of the shaft for reinforcement during rotary drilling.

  9. Pulse excitation experiment of a superconducting generator; chodendo hatsudenki no parusu reiki shiken

    Energy Technology Data Exchange (ETDEWEB)

    Miyaike, K.; Iimura, T.; Nishimura, M.; Arata, M.; Takabatake, M. [Toshiba Ltd., Tokyo (Japan); Yamada, M.; Kanamori, Y.; Hasegawa, K. [Kansai Electric Power Co., Inc., Osaka (Japan)

    1999-11-10

    Efficiency improvement, improvement in the stability of electric power system it is miniaturization and weight reduction can be expected in comparison with the traditional-model generator superconducting generator. We produce the small superconducting generator for the experiment experimentally, and performance characteristics verification of the generator is carried out experimentally. This time, pulse excitation test of the superconducting generator was carried out, and the ac loss of the conductor by the pulse excitation investigated the effect on the quenching current. (NEDO)

  10. Development of new-concept superconducting power equipment; Shinkino chodendo denryoku kiki no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hamajima, T.; Tsurunaga, K.; Urata, M. [Toshiba Corp., Tokyo (Japan)

    1998-01-01

    The superconducting magnet energy storage (SMES) system has a function by which magnetic energy is stored in a superconducting coil without loss and discharged very rapidly into the power line when needed. The fault current limiter has a function by which transport current is passed without impedance and excessive fault current is restricted by generating large impedance in an emergency. These are the functions of new power equipment, which can not be realized by the conventional equipment. In the small-scale SMES project, Toshiba has fabricated 100 kWh-class element coils and 1 kWh/1 MW modules as the first step of practical application for power system control. For the superconducting fault current limiter, Toshiba has developed a 6.6 kV-1 kA class fault current limiter without supplying cooling medium such as helium, and limiting tests of fault current have been successfully conducted. Through the long-term tests of element coils for SMES and the system interconnection tests of module-type SMES, it is expected that the technological development for practical application is accelerated. 4 refs., 7 figs., 3 tabs.

  11. Rotation loss characteristics of superconducting magnetic bearings; Chodendo jikijikuju no kaiten sonshitsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Kameno, H.; Miyagawa, Y.; Takahata, R.; Ueyama, H. [Koyo Seiko Co., Ltd., Osaka (Japan)

    1999-11-25

    In order to clarify the rotation loss and levitation force reduction characteristics of two kinds of radial and axial-type superconducting magnetic bearings (SMB) consisting of a ring-shaped YBCO and a permanent magnet composite, we measured rotation losses and levitation forces of each SMB with a new rotation-loss measuring device using active magnetic bearings. The rotation loss of the SMB increased with increased initial load of the SMB. The levitation force of the SMB decreased remarkably just after activating the initial load to the SMB and during acceleration of the rotor suspended by the SMB. The reduction in levitation force was improved by means of applying a pre-load, that means a temporary load, before the initial load against the SMB. But the rotation loss of the SMB was increased as pre-load was increased. When the YBCO was cooled down from 77 to 66 K, the rotation loss of the SMB decreased as the temperature of the SC decreased. (author)

  12. Muscle damage and repeated bout effect induced by enhanced eccentric squats.

    Science.gov (United States)

    Coratella, Giuseppe; Chemello, Alessandro; Schena, Federico

    2016-12-01

    Muscle damage and repeated bout effect have been studied after pure eccentric-only exercise. The aim of this study was to evaluate muscle damage and repeated bout effect induced by enhanced eccentric squat exercise using flywheel device. Thirteen healthy males volunteered for this study. Creatine kinase blood activity (CK), quadriceps isometric peak torque and muscle soreness were used as markers of muscle damage. The dependent parameters were measured at baseline, immediately after and each day up to 96 hours after the exercise session. The intervention consisted of 100 repetitions of enhanced eccentric squat exercise using flywheel device. The same protocol was repeated after 4 weeks. After the first bout, CK and muscle soreness were significantly greater (P0.05), while isometric peak torque and muscle soreness returned to values similar to baseline after respectively 48 and 72 hours. All muscle damage markers were significantly lower after second compared to first bout. The enhanced eccentric exercise induced symptoms of muscle damage up to 96 hours. However, it provided muscle protection after the second bout, performed four weeks later. Although it was not eccentric-only exercise, the enhancement of eccentric phase provided muscle protection.

  13. Dynamic modeling of moment wheel assemblies with nonlinear rolling bearing supports

    Science.gov (United States)

    Wang, Hong; Han, Qinkai; Luo, Ruizhi; Qing, Tao

    2017-10-01

    Moment wheel assemblies (MWA) have been widely used in spacecraft attitude control and large angle slewing maneuvers over the years. Understanding and controlling vibration of MWAs is a crucial factor to achieving the desired level of payload performance. Dynamic modeling of a MWA with nonlinear rolling bearing supports is conducted. An improved load distribution analysis is proposed to more accurately obtain the contact deformations and angles between the rolling balls and raceways. Then, the bearing restoring forces are then obtained through iteratively solving the load distribution equations at every time step. The effects of preload condition, surface waviness, Hertz contact and elastohydrodynamic lubrication could all be reflected in the nonlinear bearing forces. Considering the mass imbalances of the flywheel, flexibility of supporting structures and rolling bearing nonlinearity, the dynamic model of a typical MWA is established based upon the energy theorem. Dynamic tests are conducted to verify the nonlinear dynamic model. The influences of flywheel mass eccentricity and inner/outer waviness amplitudes on the dynamic responses are discussed in detail. The obtained results would be useful for the design and vibration control of the MWA system.

  14. Effect of vacuum and temperature on the mechanical properties of an aramid/epoxy composite

    International Nuclear Information System (INIS)

    Hahn, H.T.; Chin, W.K.

    1981-01-01

    The mechanical properties of a Kevlar 49/epoxy composite intended for flywheel applications are investigated in the laboratory and simulated service environments. The filament-wound composites were preconditioned in the test environment for 1-5 months, during which weight change was monitored, then subjected to tensile and fatigue tests at room temperature or 75 deg in vacuum. A weight loss of only 1.63% is observed after 11 months in the simulated service environment, most of which is attributed to moisture desorbed in vacuum. In contrast to air at 75 C, the simulated service environment is also found to produce no deleterious effects on static and fatigue strengths, probably to moisture desorption and a lack of oxidation. A fatigue life of about 100,000 cycles for 95% survival proability is obtained at 70% of the average static strength, and the macroscopic failure mode, which results in a brush-like formation, is observed to be independent of the type of loading and preconditioning. It is concluded that an environment of 75 C in vacuum is no deterrent to the application of the composite in flywheels, however the possibility of increasing service temperature to 150 C should be investigated

  15. Protection requirements for the resistance of meteorite penetration of interplanetary spacecraft systems

    Energy Technology Data Exchange (ETDEWEB)

    Volkoff, John J.

    2014-03-31

    The Plutonium Recycle Test Reactor primary coolant pumps use face type mechanical shaft seals and incorporate a large flywheel for emergency ilow during power outages. The test and development work preceding and during initial PRTR operation revealed several major problems. These problems and their solutions are discussed. Mechanical seal life was extended from original rapid failures in a few hours to periods of several thousand hours. (auth)

  16. Power supply system for COMPASS tokamak re-installed at the IPP, Prague

    Czech Academy of Sciences Publication Activity Database

    Zajac, Jaromír; Pánek, Radomír; Žáček, František; Vlček, Jiří; Hron, Martin; Křivská, Alena; Hauptmann, R.; Daněk, M.; Šimek, J.; Prosek, J.

    2009-01-01

    Roč. 84, 7-11 (2009), s. 2020-2024 ISSN 0920-3796. [Symposium on Fusion Technology /25th./. Rostock, 15.09.2008-19.09.2008] Institutional research plan: CEZ:AV0Z20430508 Keywords : Compass * Power supply system * Flywheel-generator * Plasma start-up Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.122, year: 2009 http://dx.doi.org/10.1016/j.fusengdes.2008.11.092

  17. Power supply for the Spanish stellarator TJ-II, design, construction, and tests

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Lucia, C.; Alberdi, B.; Del Rio, J.M. [JEMA SA, Lasarte-Oria (Spain); Almoguera, L.; Blaumoser, M.; Kirpitchev, I.; Mendez, P. [Asociacion EURATOM-CIEMAT para Fusion, Madrid (Spain)

    1995-12-31

    Most of the components of the electrical power supply system of the new TJ-II stellarator, which is under construction in Madrid (Spain), are now constructed and tested. The flywheel synchronous generator is still under construction and its tests are planned for the end of 1995. The power plant is described in detail as well as the tests which have been carried out and their results.

  18. Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine.

    Science.gov (United States)

    Rapaport, D C

    2009-04-01

    A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency.

  19. 350 KVA motor generators

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    Each logic circuit in the central computers consumes only a fraction of a watt: however, the final load constituted by many such circuits plus peripheral equipment is nearly half a million watts. Shown here are two 350 KVA motor generators used to convert 50 Hz mains to 60 Hz (US standard). Flywheels on the M.G. shafts remove power dropouts of up to 0.5 s.

  20. Energy storage: feasibility study to collect, store and release energy from solar origin, using a kinetic battery stockage

    Energy Technology Data Exchange (ETDEWEB)

    Tatry, B

    1976-02-01

    The feasibility of using solar energy to feed an autonomous station providing electric current continuously was studied. As an energy storage device a 'superflywheel' (rotor with composite fibers - magnetic bearings) would be used. Results show that such an experiment can be reasonably envisaged only in highly sunny countries and that it becomes non profitable at our latitudes, despite the very good performance of the flywheel storage device.

  1. Letter of professional groups. Energies and fuel cells; La lettre des Groupe Professionnels, energies et piles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, M. [Supelec, 91 - Gif sur Yvette (France); Serre Combe, P. [CEA Grenoble, 38 (France); Sartorelli, G. [Maxwell Technologie, San Diego, CA (United States); Lafont, G. [PILLER France S.A., 92 - Nanterre (France); Green, A. [SAFT, 93170 Bagnolet (France); Perrin, M. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Fregere, J.P.

    2004-07-01

    These proceedings of the 'Arts et Metiers' professional groups treats of energy storage solutions for delocalized power generation units. Four types of energy storage systems are presented with their operation principle, advantages and drawbacks: fuel cells and hydrogen, super-capacitors, flywheels, conventional batteries (lithium-ion, lead, redox, nickel-cadmium, zinc-air), and comparison between the different energy storage solutions including compressed air. (J.S.)

  2. Energy recovery storage systems in electrical vehicles with batteries; Tecnicas de armazenamiento de energia em veiculos electricos a baterias

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, M.; Maia, J.; Foito, D.

    2004-07-01

    In this paper are presented three energy recovery storage systems that can be used in electrical vehicles with batteries. The first storage system uses ultra capacitors that is electrical energy storage, the second system is based on superconductivity magnetic storage, and the third system uses on kinetic energy stored in flywheels. It is also presented the power electronics needed to perform the energy systems. (Author)

  3. Commissioning of the JET flywheel-generator-convertor systems

    International Nuclear Information System (INIS)

    Huart, M.

    1985-01-01

    The JET Power Supply Scheme relies on a combination of generator convertors and mains driven transformer rectifiers to supply power to the four major pulse loads, namely the toroidal field coils, the poloidal field coils, the plasma positioning coils and the additional heating. The availability of a network with considerable pulse capability has allowed the generator-convertors to be dedicated, one to the poloidal field coils and the other to the toroidal field coils, thus making possible the use of diode in the output AC/DC convertors. Moreover, it has allowed the use of high p.u. machine reactance compatible with the pulse duty. The extent of supply covered by the Contract, awarded to GEC Large Machine Ltd of Rugby, includes the generators, driving/braking system, excitation system, control-monitoring and protection system, cooling system, output AC/DC convertors, inductors and DC busbars as well as all generator auxiliaries and cabling. Both generators were specified identical to reduce design, tool and spare costs

  4. Self-Bearing Motor-Generator for Flywheels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Self-bearing or ?bearingless? motors perform both motor and bearing support functions but such devices have not yet achieved speeds above 15,000 rpm. The innovation...

  5. Magnetic suspension and flywheels: Spaceborne and terrestrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Poubeau, P C

    1981-01-01

    Satellite attitude control, using inertia wheels, is discussed. Elimination of friction effects through application of magnetic bearings is considered. The inertia wheel/magnetic bearing configuration can also be used to store kinetic energy. Higher rotational velocities create a need for stronger rotor construction materials, improved mechanical properties can be achieved with composite materials. Kinetic energy storage for earthside applications (solar energy storage electric vehicles) is mentioned.

  6. FY 1998 report on the results of the research and development of fundamental technologies for superconductor applications; 1998 nendo chodendo oyo kiban gijutsu kenkyukaihatsu seika hokokusho. Chodendo oyo kiban gijutsu keknyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    As to the research on the superconductor manifestation mechanism, Y123 monocrystal which was partially replaced with Zn and Ni was manufactured, and it was made clear that the addition of these impurities greatly change anisotropy of superconductors. It was made clear that instability of lattice and magnetism is included in high temperature superconductor. Also made clear was an important role in the Nb/Ba replacement in existence of magnetic flux melting phase transfer and the magnetic field induced pinning effect. The manufacture of Y123 bicrystal membrane was successful by the liquid phase epitaxy method. The manufacture of non-copper base K-Bi-O new superconductor was successful by the ultra-high pressure synthesis method. The stabilized process was established for large size crystals of 15-20mm square in Y base and of 20-25mm square in Nd base. Also successful was the growth by LPE method of crystal with thick membrane of 20mm x 20mm x 10{mu}m on the MgO monocrystal substrate. The non-bicrystalization of Y base Nd base monocrystal was successful, and the peak phenomenon control in Jc-H was found out. By neutron irradiation, the acquisition magnetic field of 3.7T at 77K was achieved using bulk Y base 123 material with diameter of 3cm. And, the critical current density of 60,000 A/cm{sup 2} was achieved at 77K and 3T. (NEDO)

  7. Carbon Rod Radiant Source for Blast/Fire Interaction Experiments: Proof of Concept and Design.

    Science.gov (United States)

    1980-08-30

    traction motors , such as are used by Los Alamos Scientific Laboratory for unique pulse powered fields/beams, and a powerful low cost homopolar generator...tapping a high voltage AC transmission line (those used in the electroplating industry appear to have the right specifications), and homopolar -type...flywheel) generators. The AC rectification to DC was eliminated due to the very limited peak power available at Camp Parks. The one homopolar power source

  8. Numerical simulation and analysis of single grain YBCO processed from graded precursor powders

    OpenAIRE

    Zou, J; Ainslie, Mark Douglas; Hu, D; Zhai, W; Kumar, N Devendra; Durrell, John Hay; Shi, Yunhua; Cardwell, David Anthony

    2015-01-01

    Large single-grain bulk high-temperature superconducting materials can trap high magnetic fields in comparison with conventional permanent magnets, making them ideal candidates to develop more compact and efficient devices, such as actuators, magnetic levitation systems, flywheel energy storage systems and electric machines. However, macro-segregation of Y-211 inclusions in melt processed Y–Ba–Cu–O (YBCO) limits the macroscopic critical current density Jc of such bulk supercond...

  9. Experimental time to burnout of a prototypical ITER divertor plate during a simulated loss of flow accident

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, T.D. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Nuclear Engineering; Watson, R.D.; McDonald, J.M. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  10. Hybrid spacecraft attitude control system

    OpenAIRE

    Renuganth Varatharajoo; Ramly Ajir; Tamizi Ahmad

    2016-01-01

    The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS) consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl...

  11. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  12. Electric Machine Topologies in Energy Storage Systems

    OpenAIRE

    Santiago, Juan De; Oliveira, Janaina Goncalves de

    2010-01-01

    Energy storage development is essential if intermittent renewable energy generation is to increase. Pumped hydro, CAES and flywheels are environmentally friendly and economical storage alternatives that required electric motor/generators. The popularization of power electronics is relatively new and therefore the technology is still under development. There is not a clear winner when comparing technologies and therefore the optimal alternative depends on the specific requirements of the appli...

  13. Experimental time to burnout of a prototypical ITER divertor plate during a simulated loss of flow accident

    International Nuclear Information System (INIS)

    Marshall, T.D.

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components

  14. On KNBK for the preparation of shafts of drill-holes for the sinking casing strings

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V B; Shchukin, R K

    1981-01-01

    An experimental preparation of drill-holes for reinforcement performed by the Kubanomor neftagazprom firm is given based on the use of traditional KNBK of increasing rigidity after the interval has been completely drilled and KNBK inserted into the superchisel part of the flywheel, UBTS or rotary stabilizer, the outer diameters of which are determined computationally and help in preparation of the shaft for reinforcement in the process of rotary drilling.

  15. Improvement of Microgrid Dynamic Performance under Fault Circumstances using ANFIS for Fast Varying Solar Radiation and Fuzzy Logic Controller for Wind System

    Directory of Open Access Journals (Sweden)

    Izadbakhsh Maziar

    2014-12-01

    Full Text Available The microgrid (MG technology integrates distributed generations, energy storage elements and loads. In this paper, dynamic performance enhancement of an MG consisting of wind turbine was investigated using permanent magnet synchronous generation (PMSG, photovoltaic (PV, microturbine generation (MTG systems and flywheel under different circumstances. In order to maximize the output of solar arrays, maximum power point tracking (MPPT technique was used by an adaptive neuro-fuzzy inference system (ANFIS; also, control of turbine output power in high speed winds was achieved using pitch angle control technic by fuzzy logic. For tracking the maximum point, the proposed ANFIS was trained by the optimum values. The simulation results showed that the ANFIS controller of grid-connected mode could easily meet the load demand with less fluctuation around the maximum power point. Moreover, pitch angle controller, which was based on fuzzy logic with wind speed and active power as the inputs, could have faster responses, thereby leading to flatter power curves, enhancement of the dynamic performance of wind turbine and prevention of both frazzle and mechanical damages to PMSG. The thorough wind power generation system, PV system, MTG, flywheel and power electronic converter interface were proposed by using Mat-lab/Simulink.

  16. BILAM: a composite laminate failure-analysis code using bilinear stress-strain approximations

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, P.V. Jr.; Dasgupta, A.; Chun, Y.W.

    1980-10-01

    The BILAM code which uses constant strain laminate analysis to generate in-plane load/deformation or stress/strain history of composite laminates to the point of laminate failure is described. The program uses bilinear stress-strain curves to model layer stress-strain behavior. Composite laminates are used for flywheels. The use of this computer code will help to develop data on the behavior of fiber composite materials which can be used by flywheel designers. In this program the stress-strain curves are modelled by assuming linear response in axial tension while using bilinear approximations (2 linear segments) for stress-strain response to axial compressive, transverse tensile, transverse compressive and axial shear loadings. It should be noted that the program attempts to empirically simulate the effects of the phenomena which cause nonlinear stress-strain behavior, instead of mathematically modelling the micromechanics involved. This code, therefore, performs a bilinear laminate analysis, and, in conjunction with several user-defined failure interaction criteria, is designed to provide sequential information on all layer failures up to and including the first fiber failure. The modus operandi is described. Code BILAM can be used to: predict the load-deformation/stress-strain behavior of a composite laminate subjected to a given combination of in-plane loads, and make analytical predictions of laminate strength.

  17. National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC

    Energy Technology Data Exchange (ETDEWEB)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.; Elizondo, Marcelo A.; Jin, Chunlian; Nguyen, Tony B.; Viswanathan, Vilayanur V.; Zhang, Yu

    2012-06-01

    To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancing requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.

  18. New drive converter and digital control for the pulsed power supply system of ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Käsemann, Claus-Peter, E-mail: c.p.kaesemann@ipp.mpg.de [Max Planck Institute for Plasma Physics, Boltzmannstraße 2, 85748 Garching (Germany); Jacob, Christian; Nguyen, Hong Ha; Stobbe, Ferdinand; Mayer, Alois [Max Planck Institute for Plasma Physics, Boltzmannstraße 2, 85748 Garching (Germany); Sachs, Edgar; Klein, Reiner [Siemens AG, Industrial Automation Systems, Gleiwitzer Straße 555, 90475 Nürnberg (Germany)

    2015-10-15

    Highlights: • IGBT converter system with integrated control. • Proven technology reduces time and budget. • Flexibility to be integrated into a 35 years old installation. • Stable control algorithms for static and dynamic speed control. • Possibilities for active and reactive power management. - Abstract: Safety and reliability are major issues for the ASDEX Upgrade (AUG) pulsed power supply systems. To avoid long downtimes during an experimental campaign, fault-prone components have to be identified and treated early. This becomes even more important due to the AUG participation in the EUROfusion Medium Sized Tokamak (MST) program. Operating equipment which is up to 40 years old adds additional complications. This contribution describes one such example where a 35 year old flywheel generator at AUG was identified as fault-prone and pre-emptively upgraded with a new drive converter with integrated control. Most challenging was to adapt a modern converter, originally designed for wind turbines, toward a drive system for a flywheel-motor-generator system. To identify the layout of the controller and the control parameters, accurate modeling and comprehensive simulations were performed. This effort paid off during commissioning and measuring results verified the calculated design values. Finally, the system shows good performance during AUG plasma experiments.

  19. Cryocooler-cooled 10 T superconducting magnet; Reitoki chokurei hoshiki no 10T chodendo jishaku

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, T.; Yamamoto, K.; Urata, M. [Toshiba Corp., Tokyo (Japan)

    1995-09-01

    A superconducting magnet totally free of such cooling agents as liquefied helium has been developed, which can be cooled by a cryocooler alone in a direct cooler cooled method, and a success was attained when a 10T magnetic field was generated in a vacancy 10cm in diameter. The value is the highest in the world realized by a system not using a cooling medium (only 7.7T attained before this). The coil comprises a coil of an NbTi superconducting lead and a coil of Nb3Sn superconducting lead, and is impregnated with epoxy resin for reduction in size. It is cooled only by heat conduction thanks to a thermally coupled 4K cooler in vacuum, and necessitates the insertion of indium between the coil and a copper made cooling board which combination is further tightened up by a stainless steel wire. Furthermore, a superconducting oxide lead has been developed, with its performance not lowered even in an intensive magnetic field, for the supply of power to the coil, and this suppresses the infiltration of conduction caused heat and the generation of Joule heat. The magnet is designed small and light with dimensions 650{times}500{times}490mm (height), and can be operated by mere manipulation of a switch. 6 refs., 6 figs.

  20. The curator/patron: Foundations and contemporary art

    Directory of Open Access Journals (Sweden)

    Rebecca Coates

    2008-12-01

    Full Text Available This article addresses the role of private foundations in commissioning site-specific ephemeral art works: contemporary art projects of a temporary nature that are realised outside of public institutions. Though small in number, I argue that the private individuals creating and managing private foundations of this nature demonstrate a new form of patronage, creating in the process a new role of ‘curator/patron’. Equally, this process of realisation reflects the changing needs of contemporary art practice. Work of this scale and ambition would increasingly not be possible without the vision, perseverance and funding of these kinds of foundation. In Australia, this trend is demonstrated by two foundations: Kaldor Art Projects, and their commissioning of works by artists such as Christo and Jeanne-Claude, Gilbert & George and Jeff Koons; and the more recently formed Sherman Contemporary Art Foundation, whose first project was with Chinese artist Ai Weiwei. In this article, these examples are placed within the broader international context of foundation models such as Artangel, UK, Fondazione Nicola Trussardi, Milan, and The Public Art Fund, New York.

  1. Rules of engagement: incomplete and complete pronoun resolution.

    Science.gov (United States)

    Love, Jessica; McKoon, Gail

    2011-07-01

    Research on shallow processing suggests that readers sometimes encode only a superficial representation of a text and fail to make use of all available information. Greene, McKoon, and Ratcliff (1992) extended this work to pronouns, finding evidence that readers sometimes fail to automatically identify referents even when these are unambiguous. In this paper we revisit those findings. In 11 recognition probe, priming, and self-report experiments, we manipulated Greene et al.'s stories to discover under what circumstances a pronoun's referent is automatically understood. We lengthened the stories from 4 to 8 lines. This simple manipulation led to automatic and correct resolution, which we attribute to readers' increased engagement with the stories. We found evidence of resolution even when the additional text did not mention the pronoun's referent. In addition, our results suggest that the pronoun temporarily boosts the referent's accessibility, an advantage that disappears by the end of the next sentence. Finally, we present evidence from memory experiments that supports complete pronoun resolution for the longer but not the shorter stories.

  2. Rules of Engagement: Incomplete and Complete Pronoun Resolution

    Science.gov (United States)

    Love, Jessica; McKoon, Gail

    2011-01-01

    Research on shallow processing suggests that readers sometimes encode only a superficial representation of a text, failing to make use of all available information. Greene, McKoon and Ratcliff (1992) extended this work to pronouns, finding evidence that readers sometimes fail to automatically identify referents even when they are unambiguous. In this paper we revisit those findings. In 11 recognition probe, priming, and self-report experiments, we manipulated Greene et al.’s stories to discover under what circumstances a pronoun’s referent is automatically understood. We lengthened the stories from four to eight lines, a simple manipulation that led to automatic and correct resolution, which we attribute to readers’ increased engagement with the stories. We found evidence of resolution even when the additional text did not mention the pronoun’s referent. In addition, our results suggest that the pronoun temporarily boosts the referent’s accessibility, an advantage that disappears by the end of the next sentence. Finally, we present evidence from memory experiments that support complete pronoun resolution for the longer, but not the shorter, stories. PMID:21480757

  3. IN A PARALLEL UNIVERSE: HOW ART EXPLOITS TECHNOLOGY

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Technical innovation in the arts creates new opportunities for perceptual shifts that lead to lasting achievements. One of the most important events took place in the 15th century not far from CERN on the other side of the Alps in Venice. Titian, in one life time, exploited these new material developments to expand the range of expression like no other artist of his generation. Titian was able to harness these new innovations to emerge as the supreme competitor and hustler, a notion that seems very much a part of the modern promotion of art as exemplified by Warhol , Jeff Koons and Damian Hirst. The language of science and technology has created social networks, changed the mediums and the subject of fine art. Fast forward to CERN 2012, the most expensive experiment in the history of science. The knowledge of dark matter will either help confirm, or not, the Standard Model. This information will be part of what Michel Foucault calls "epistemological breaks", shifts in consciousness that change our p...

  4. Neutron beam experiments using nuclear research reactors: honoring the retirement of professor Bernard W. Wehring -II. 3. Preliminary Experiments to Determine Moisture in Carbon Composites Using PGAA

    International Nuclear Information System (INIS)

    Charlton, W.S.; Dorsey, D.J.

    2001-01-01

    A program currently exists at the Center for Electromechanics at the University of Texas at Austin (UT) to develop large carbon composite flywheels for energy storage and retrieval in transportation and space-based systems. Development of these flywheels requires detailed assessment of the flywheel's manufacturing process for defects and de-laminations. Current procedures for detecting these flaws make use of state-of-the-art acoustic techniques, which necessitate the submersion of the test object (in this case, the flywheels) in a water bath to increase coupling between the flywheel surface and the acoustic devices. Questions have been raised concerning the effect that any moisture uptake into the flywheel may have on the strength and reliability of the test objects. To determine the moisture uptake rates for these materials, preliminary experiments have been performed at the Nuclear Engineering Teaching Laboratory of UT using prompt gamma-ray activation analysis (PGAA). Current methods for determining moisture uptake in composite materials use gravimetric techniques, which contain numerous potential sources of error. PGAA allows for direct detection of the hydrogen content of the material and when used appropriately can eliminate many of the sources of error that exist in other techniques. PGAA has been used for material analysis and for the determination of hydrogen content in metals; however, significantly less effort has been spent using PGAA for advanced carbon composites. The objective of this study was to determine if a PGAA system could be used to determine moisture uptake rates in carbon composite materials while maintaining adherence to existing moisture uptake standards. Experiments to determine the moisture uptake of carbon composites consist of soaking a sample in a controlled environment (for instance, a water bath) for a period of time and then measuring the water content of the sample. The American Society for Testing and Materials (ASTM) standard

  5. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments

    Science.gov (United States)

    Chang, J. C.; Lockner, D. A.; Reches, Z.

    2012-12-01

    We simulated the slip of a fault-patch during a large earthquake by rapidly loading an experimental, ring-shaped fault with energy stored in a spinning flywheel. The flywheel abruptly delivers a finite amount of energy by spinning the fault-patch that spontaneously dissipates the energy without operator intervention. We conducted 42 experiments on Sierra White granite (SWG) samples, and 24 experiments on Kasota dolomite (KD) samples. Each experiment starts by spinning a 225 kg disk-shaped flywheel to a prescribed angular velocity. We refer to this experiment as an "earthquake-like slip-event" (ELSE). The strength-evolution in ELSE experiments is similar to the strength-evolution proposed for earthquake models and observed in stick-slip experiments. Further, we found that ELSE experiments are similar to earthquakes in at least three ways: (1) slip driven by the release of a finite amount of stored energy; (2) pattern of fault strength evolution; and (3) seismically observed values, such as average slip, peak-velocity and rise-time. By assuming that the measured slip, D, in ELSE experiments is equivalent to the average slip during an earthquake, we found that ELSE experiments (D = 0.003-4.6 m) correspond to earthquakes in moment-magnitude range of Mw = 4-8. In ELSE experiments, the critical-slip-distance, dc, has mean values of 2.7 cm and 1.2 cm for SWG and KD, that are much shorter than the 1-10 m in steady-state classical experiments in rotary shear systems. We attribute these dc values, to ELSE loading in which the fault-patch is abruptly loaded by impact with a spinning flywheel. Under this loading, the friction-velocity relations are strikingly different from those under steady-state loading on the same rock samples with the same shear system (Reches and Lockner, Nature, 2010). We further note that the slip acceleration in ELSE evolves systematically with fault strength and wear-rate, and that the dynamic weakening is restricted to the period of intense

  6. Energy storage

    International Nuclear Information System (INIS)

    Odru, P.

    2010-01-01

    This book proposes a broad overview of the technologies developed in the domains of on-board electricity storage (batteries, super-capacitors, flywheels), stationary storage (hydraulic dams, compressed air, batteries and hydrogen), and heat storage (sensible, latent and sorption) together with their relative efficiency, their expected developments and what advantages they can offer. Eminent specialists of this domain have participated to the redaction of this book, all being members of the Tuck's Foundation 'IDees' think tank. (J.S.)

  7. Equipment for checking bearing tolerances in sealed pumps, especially for nuclear engineering

    International Nuclear Information System (INIS)

    Zajic, V.

    1980-01-01

    The equipment consists of a guide pin passing through a coaxial telescopic insert mounted in a support nut for connection to the pump suction branch. The guide pin is fitted with a shoulder engaging with the pump flywheel and comprises a pin for exerting torsional, pitching and sliding motion. The support nut is provided with two guide surfaces (on the front face and on the circumference). A third guide surface is on the guide pin face. (H.S.)

  8. Enhanced efficiency of internal combustion engines by employing spinning gas.

    Science.gov (United States)

    Geyko, V I; Fisch, N J

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.

  9. Espiritismo:The Flywheel of the Puerto Rican Spiritual Traditions

    Directory of Open Access Journals (Sweden)

    Edil Torres Rivera

    2005-01-01

    Full Text Available Espiritismo es una práctica religiosa muy amplia entre puertorriqueños en Puerto Rico y los puertorriqueño en los EstadosUnidos. Espiritismo se ha encontrado ser efectivo en como terapia curativa en personas con problema psicológicos y detener efectos terapéuticos semejantes a los de psicoterapia y consejería. El espiritismo puertorriqueño es un sistemasincrético de los sistemas de creencias que combina las practicas espiritual-religiosa del las culturas pre-colombiana,africana, católica, y europeas en un solo sistema para satisfacer las necesidades espirituales así como las necesidadespsico-culturales de los puertorriqueños. Implicaciones y las sugerencias son proporcionadas para los profesionales de lasalud mental que quieren utilizar el espiritismo en sus prácticas con clientes puertorriqueños

  10. An overview of flywheel energy systems with HTS bearings

    Energy Technology Data Exchange (ETDEWEB)

    Wolsky, A.M. [Argonne National Laboratory, Argonne, IL (United States)]. E-mail: AWolsky@ANL.gov

    2002-05-01

    Passive magnetic bearings incorporating permanent magnets and ReBaCuO, together with carbon fibre, offer the possibility of increasing the stored, volumetric energy density of FES and unprecedentedly low idling loss of FES. Its stored energy need only satisfy customers' needs for the time it takes to bring on conventional 'back-up'. The FES itself must come up to power quickly enough to avoid any disruption in the customer's operation (e.g., continuous industrial processes involving fragile materials, for example paper forming). Such customers do not care about the price of electricity nearly as much as they care about not ruining their product, damaging their machines or having 'clean ups' that stop or slow output. Firms that engage in electronic commerce and/or telecommunications also value uninterruptible power. Another set of potential customers (construction, electric railroads) may wish to avoid fluctuations in their electrical supply or they may wish to avoid causing harm to others who may hold them liable for poor power quality. Finally, real time prices (e.g., every 15 s) and real time commands, disseminated via internet, and distributed storage might enable reduced system generation costs. Generators and FES makers would have to cooperate to make this feasible. Now, the central techno-economic challenge is to build a high-power, low-loss motor generator that reaches full power in a very short time. (author)

  11. Electricity demand and storage dispatch modeling for buildings and implications for the smartgrid

    Science.gov (United States)

    Zheng, Menglian; Meinrenken, Christoph

    2013-04-01

    As an enabler for demand response (DR), electricity storage in buildings has the potential to lower costs and carbon footprint of grid electricity while simultaneously mitigating grid strain and increasing its flexibility to integrate renewables (central or distributed). We present a stochastic model to simulate minute-by-minute electricity demand of buildings and analyze the resulting electricity costs under actual, currently available DR-enabling tariffs in New York State, namely a peak/offpeak tariff charging by consumed energy (monthly total kWh) and a time of use tariff charging by power demand (monthly peak kW). We then introduce a variety of electrical storage options (from flow batteries to flywheels) and determine how DR via temporary storage may increase the overall net present value (NPV) for consumers (comparing the reduced cost of electricity to capital and maintenance costs of the storage). We find that, under the total-energy tariff, only medium-term storage options such as batteries offer positive NPV, and only at the low end of storage costs (optimistic scenario). Under the peak-demand tariff, however, even short-term storage such as flywheels and superconducting magnetic energy offer positive NPV. Therefore, these offer significant economic incentive to enable DR without affecting the consumption habits of buildings' residents. We discuss implications for smartgrid communication and our future work on real-time price tariffs.

  12. Study of the mode of angular velocity damping for a spacecraft at non-standard situation

    Science.gov (United States)

    Davydov, A. A.; Sazonov, V. V.

    2012-07-01

    Non-standard situation on a spacecraft (Earth's satellite) is considered, when there are no measurements of the spacecraft's angular velocity component relative to one of its body axes. Angular velocity measurements are used in controlling spacecraft's attitude motion by means of flywheels. The arising problem is to study the operation of standard control algorithms in the absence of some necessary measurements. In this work this problem is solved for the algorithm ensuring the damping of spacecraft's angular velocity. Such a damping is shown to be possible not for all initial conditions of motion. In the general case one of two possible final modes is realized, each described by stable steady-state solutions of the equations of motion. In one of them, the spacecraft's angular velocity component relative to the axis, for which the measurements are absent, is nonzero. The estimates of the regions of attraction are obtained for these steady-state solutions by numerical calculations. A simple technique is suggested that allows one to eliminate the initial conditions of the angular velocity damping mode from the attraction region of an undesirable solution. Several realizations of this mode that have taken place are reconstructed. This reconstruction was carried out using approximations of telemetry values of the angular velocity components and the total angular momentum of flywheels, obtained at the non-standard situation, by solutions of the equations of spacecraft's rotational motion.

  13. Pulse power 350 V nickel-metal hydride battery power-D-005-00181

    Science.gov (United States)

    Eskra, Michael D.; Ralston, Paula; Salkind, Alvin; Plivelich, Robert F.

    Energy-storage devices are needed for applications requiring very high-power over short periods of time. Such devices have various military (rail guns, electromagnetic launchers, and DEW) and commercial applications, such as hybrid electric vehicles, vehicle starting (SLI), and utility peak shaving. The storage and delivery of high levels of burst power can be achieved with a capacitor, flywheel, or rechargeable battery. In order to reduce the weight and volume of many systems they must contain advanced state-of-the-art electrochemical or electromechanical power sources. There is an opportunity and a need to develop energy-storage devices that have improved high-power characteristics compared to existing ultra capacitors, flywheels or rechargeable batteries. Electro Energy, Inc. has been engaged in the development of bipolar nickel-metal hydride batteries, which may fulfil the requirements of some of these applications. This paper describes a module rated at 300 V (255 cells) (6 Ah). The volume of the module is 23 L and the mass is 56 kg. The module is designed to deliver 50 kW pulses of 10 s duration at 50% state-of-charge. Details of the mechanical design of the module, safety considerations, along with the results of initial electrical characterization testing by the customer will be discussed. Some discussion of the possibilities for design optimization is also included.

  14. Development of ABWR inertia-increased reactor internal pump and thicker sleeve nozzle

    International Nuclear Information System (INIS)

    Takahashi, Shirou; Shiina, Kouji; Matsumura, Seiichi

    2002-01-01

    The conventional reactor internal pumps (RIPs) in the ABWR have an inertia moment coming from the shafts and Motor-Generator sets, enabling the RIPs to continue running for a few seconds, when a trip of all RIPs event occurs. It is possible to simplify the RIPs' power supply system without affecting the core flow supply when the above event occurs by eliminating M-G sets, if the rotating inertia is increased. This inertia increase due to an additional flywheel, which leads to gains in weight and length, requires the larger diameter nozzle with the thicker sleeve. However, too large a nozzle diameter may change the hydraulic performance. In authors' previous study, the optimum nozzle diameter (492 mm) was selected through 1/5-scale test. In this study, the 492 mm nozzle and the inertia-increased RIP were verified through the full-scale tests. The rotating inertia time constant on coastdown characteristics (behavior of the RIP speed in the event of power loss) for the inertia-increased RIP doubled compared with the current RIP. The casing and the shaft vibration were also confirmed to satisfy the design criteria. Moreover, hydraulic performance and heat increase in the motor casing due to the flywheel were evaluated. The inertia increased RIP with the 492 mm nozzle maintained good performance. (author)

  15. Energy storage technology for electric and hybrid vehicles. Matching technology to design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, J. [Sycon Energikonsult AB, Malmoe (Sweden)

    1999-12-01

    A central issue when dealing with electrical vehicles has always been how to store energy in sufficient quantities. On April 27 through 28 1999 a workshop was held on this matter at University of California Davis (UC Davis). Organizer and host was Dr. Andrew Burke and the Institute of Transportation Studies (ITS) at UC Davis. The workshop included battery technology, ultra capacitors and fly wheels, but did not include fuel cell technology. In this paper the conference is reviewed with the emphasis on battery development. A section on ultra capacitors and flywheels is also included. The overall observation made at the conference is that most of the effort on energy storage in electric and hybrid vehicles are put into batteries. There is some development on ultra capacitors but almost none on flywheels. The battery also seems to be the choice of the car industry at this point, especially the pulse battery for engine dominant hybrid vehicles, like the Toyota Prius. The battery manufacturers seem to focus more on technology development than cost reduction at this point. An important technological issue as of now is to improve thermal management in order to increase life of the batteries. But when the technological goals are met focus must shift to cost minimization and marketing if the battery electric vehicle shall make a market break through.

  16. Evaluation of Reductive Option of Water Hammer Phenomenon for a Water Conveyance System, A Case Study of Shahid Shirdom Residential District-Tehran

    Directory of Open Access Journals (Sweden)

    Kiyomars roshangar

    2015-01-01

    Full Text Available Sudden changes in the boundary conditions of water transmission systems, such as sudden opening and closing of valves or abrupt on and off switching of pumps and turbines cause a transient flow called ‘water hammer’. In this study, comparisons were made between the effective parameters including pipeline material, on the one hand, and the equipment and tools available for reducing the effects of water hammer, on the other. For this purpose, a practical example of a water transmission line from a pumping station located near Shahid Shirdom Residential District to the upstream reservoir in Tehran was used for modeling by the Bentley Hammer XMV: 8 software. The results obtained for the different parameters and options were compared and it was revealed that, regarding the pipe material, GRP pipes reduced pressure by 49.1 Kpa compared to the Asbestos cement pipes and by 50.3 Kpa compared to the iron pipes. Comparison of the results for the protective systems indicated that the surge tank outperformed the other alternatives in controlling pressure such that maximum pressure was reduced by 3.9 bar when using surge tanks compared to the flywheel and by 5 bar compared to the check valve. Finally, it was found that the concurrent use of the surge tank and the flywheel would be the most ideal method for controlling the water hammer effects.

  17. 76 FR 44977 - Culturally Significant Objects Imported for Exhibition Determinations: “De Kooning: A Retrospective”

    Science.gov (United States)

    2011-07-27

    ... determine that the exhibition or display of the exhibit objects at The Museum of Modern Art in New York, New... Retrospective,'' imported from abroad for temporary exhibition within the United States, are of cultural...

  18. Analysis and simulation of centrifugal pendulum vibration absorbers

    OpenAIRE

    Smith, Emma

    2015-01-01

    When environmental laws are constricted and downsizing of engines has become the reality of the vehicle industry, there needs to be a solution for the rise in torsion vibrations in the drivetrain. These increased levels of torsion vibrations are mostly due to excitations from the firing pulses, which in turn have become increased due to higher cylinder pressures. One of the solutions for further dampening the system is to add a centrifugal pendulum absorber to the flywheel, and predicting the...

  19. Analysis of current distribution in a large superconductor; Chodendo dotai nai no denryu bunpu kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Hamajima, K.; Alamgir, A.K.M.; Harada, N.; Tsuda, M. [Yamaguchi Univ., Yamaguchi (Japan); Ono, M.; Takano, H. [Toshiba Corp., Tokyo (Japan)

    2000-04-25

    An imbalanced current distribution is often observed in cable-in-conduit (CIC) superconductors, which are composed of multistaged, triplet type sub-cables, and deteriorates the performance of the coils. Therefore, it is very important to analyze the current distribution in a superconductor and find out methods to obtain a homogeneous current distribution in the conductor. We apply a magnetic flux conservation in a loop contoured by electric center lines of filaments in two arbitrary strands located on adjacent layers in a coaxial multilayer superconductor, and then analyze the current distribution in the conductor. A generalized formula governing the current distribution can be described as explicit functions of the superconductor construction parameters, such as twist pitch, twist direction and radius of each layer. It is shown that we can obtain a homogeneous current distribution using this fundamental formula, which is a function of the twist pitches of layers. Moreover, it is demonstrated that we can control current distribution in the coaxial superconductor. (author)

  20. The rapid use of gender information: evidence of the time course of pronoun resolution from eyetracking.

    Science.gov (United States)

    Arnold, J E; Eisenband, J G; Brown-Schmidt, S; Trueswell, J C

    2000-07-14

    Eye movements of listeners were monitored to investigate how gender information and accessibility influence the initial processes of pronoun interpretation. Previous studies on this issue have produced mixed results, and several studies have concluded that gender cues are not automatically used during the early processes of pronoun interpretation (e.g. Garnham, A., Oakhill, J. & Cruttenden, H. (1992). The role of implicit causality and gender cue in the interpretation of pronouns. Language and Cognitive Processes, 73 (4), 231-255; Greene, S. B., McKoon, G. & Ratcliff, R. (1992). Pronoun resolution and discourse models. Journal of Experimental Psychology: Learning, Memory, and Cognition, 182, 266-283). In the two experiments presented here, participants viewed a picture with two familiar cartoon characters of either same or different gender. They listened to a text describing the picture, in which a pronoun referred to either the first, more accessible, character, or the second. (For example, Donald is bringing some mail to ¿Mickey/Minnie¿ while a violent storm is beginning. He's carrying an umbrellaellipsis.) The results of both experiments show rapid use of both gender and accessibility at approximately 200 ms after the pronoun offset.

  1. Energy storage

    International Nuclear Information System (INIS)

    2012-01-01

    After having outlined the importance of energy storage in the present context, this document outlines that it is an answer to economic, environmental and technological issues. It proposes a brief overview of the various techniques of energy storage: under the form of chemical energy (hydrocarbons, biomass, hydrogen production), thermal energy (sensitive or latent heat storage), mechanical energy (potential energy by hydraulic or compressed air storage, kinetic energy with flywheels), electrochemical energy (in batteries), electric energy (super-capacitors, superconductor magnetic energy storage). Perspectives are briefly evoked

  2. Controller for the Machine-Side Power Converter of a 2kW Switched Reluctance Motor; Controlador del Convertidor Electronico de Potencia Lado Maquina de un Motor de Reluctancia Variable de 2kW

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, C.

    2006-07-01

    The ACE2 project deals with the development of a kynetic energy storage (KES) system for power peak shaving in high speed railway substations. This KES system consists in a double power converter which drives a switched reluctance machine (SRM) along with a flywheel operating in a wide speed range. This document presents from a technical point of view the features of the controller for the machine-side power converter of a 2kW SRM prototype. Hardware and software issues are treated in detail. (Author)

  3. Controller for the Machine-Side Power Converter of a 2kW Switched Reluctance Motor; Controlador del Convertidor Electronico de Potencia Lado Red de un Motor de Reluctancia Variable de 2kW

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, C.

    2006-12-19

    The ACE2 project deals with the development of a kynetic energy storage (KES) system for power peak shaving in high speed railway substations. This KES system consists in a double power converter which drives a switched reluctance machine (SRM) along with a flywheel operating in a wide speed range. This document presents from a technical point of view the features of the controller for the machine-side power converter of a 2kW SRM prototype. Hardware and software issues are treated in detail. (Author)

  4. Reactor coolant pump motors manufacturing capability and references

    International Nuclear Information System (INIS)

    Baudin, Patyrick

    2008-01-01

    Flywheel: - Main inertia of the RCP rotor: - 2 disks, shrunk to the upper side of the shaft, driven in rotation by 3 keys. - Material: rolling A533 grade B class 1 low alloy steel plates - Major inertia of the RCP rotor (Allows a slow shut down of the RCP). - Centered by the runner collar in normal operating conditions. - Designed to withstand over-speed of 1.25 x nominal rotating speed. - Easy periodic ultrasonic inspection without disassembly of the flywheel and/or removal of the motor. Anti-reverse rotation device: Prevents reverse rotation of shaft-line when RCP is stopped and others running. 5 forged pawls assembled on the flywheel outside diameter. Ratchet plate with shock absorbers and springs. Operation: Pawls are maintained lifted by centrifugal effect since N > 150 rpm. During RCP shut-down, as N < 150 rpm pawls drop on the ratchet plate prevents reverse-rotation due to reverse torque. Inertia effects are limited by shock-absorbers. Double thrust bearing 'Kings bury' type designed to support loads of about 60 tons 8 babbit ted steel shoes with temperature sensors, equalizing pads distribute equal axial load on each shoe, designed to withstand normal, transient and incidental loading conditions. Viscosity pump ensure continuous oil lubrication and oil circulation to cooler. Instrumentation: shoes temperature (167 .deg. F max). High pressure oil pump provides an oil film between runner and shoes before and during RCP start-up and shut-down. Secondary function: oil spray into the upper guide bearing. Characteristics: minimum oil injection pressure 610 psi. Upper guide bearing 8 babbit ted steel shoes. Preloaded shoes to improve the vibratory behavior. Lubricated by oil. Oil capacity: ± 240 gallons. Magnetic core made of high silicon steel sheets, insulated on both sides with 'ALKOPHOS' Stacks of sheets are periodically spaced by vent spacers Winding made of rectangular section copper bars, insulated with mica tape Vacuum impregnation with epoxy resin End

  5. Reactor coolant pump motors manufacturing capability and references

    Energy Technology Data Exchange (ETDEWEB)

    Baudin, Patyrick [AREVA NP, Paris (France)

    2008-04-15

    Flywheel: - Main inertia of the RCP rotor: - 2 disks, shrunk to the upper side of the shaft, driven in rotation by 3 keys. - Material: rolling A533 grade B class 1 low alloy steel plates - Major inertia of the RCP rotor (Allows a slow shut down of the RCP). - Centered by the runner collar in normal operating conditions. - Designed to withstand over-speed of 1.25 x nominal rotating speed. - Easy periodic ultrasonic inspection without disassembly of the flywheel and/or removal of the motor. Anti-reverse rotation device: Prevents reverse rotation of shaft-line when RCP is stopped and others running. 5 forged pawls assembled on the flywheel outside diameter. Ratchet plate with shock absorbers and springs. Operation: Pawls are maintained lifted by centrifugal effect since N > 150 rpm. During RCP shut-down, as N < 150 rpm pawls drop on the ratchet plate prevents reverse-rotation due to reverse torque. Inertia effects are limited by shock-absorbers. Double thrust bearing 'Kings bury' type designed to support loads of about 60 tons 8 babbit ted steel shoes with temperature sensors, equalizing pads distribute equal axial load on each shoe, designed to withstand normal, transient and incidental loading conditions. Viscosity pump ensure continuous oil lubrication and oil circulation to cooler. Instrumentation: shoes temperature (167 .deg. F max). High pressure oil pump provides an oil film between runner and shoes before and during RCP start-up and shut-down. Secondary function: oil spray into the upper guide bearing. Characteristics: minimum oil injection pressure 610 psi. Upper guide bearing 8 babbit ted steel shoes. Preloaded shoes to improve the vibratory behavior. Lubricated by oil. Oil capacity: {+-} 240 gallons. Magnetic core made of high silicon steel sheets, insulated on both sides with 'ALKOPHOS' Stacks of sheets are periodically spaced by vent spacers Winding made of rectangular section copper bars, insulated with mica tape Vacuum impregnation

  6. Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chin-Hsiang; Yu, Ying-Ju [Department of Aeronautics and Astronautics, National Cheng Kung University, No. 1, Ta-Shieh Road, Tainan, Taiwan (China)

    2011-02-15

    Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism used in concentrating solar power system has been performed. A dynamic model of the mechanism is developed and then incorporated with the thermodynamic model so as to predict the transient behavior of the engine in the hot-start period. In this study, the engine is started from an initial rotational speed. The torques exerted by the flywheel of the engine at any time instant can be calculated by the dynamic model as long as the gas pressures in the chambers, the mass inertia, the friction force, and the external load have been evaluated. The instantaneous rotation speed of the engine is then determined by integration of the equation of rotational motion with respect to time, which in return affects the instantaneous variations in pressure and other thermodynamic properties of the gas inside the chambers. Therefore, the transient variations in gas properties inside the engine chambers and the dynamic behavior of the engine mechanism should be handled simultaneously via the coupling of the thermodynamic and dynamic models. An extensive parametric study of the effects of different operating and geometrical parameters has been performed, and results regarding the effects of mass moment of inertia of the flywheel, initial rotational speed, initial charged pressure, heat source temperature, phase angle, gap size, displacer length, and piston stroke on the engine transient behavior are investigated. (author)

  7. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume VI. Cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, K.S.

    1979-09-30

    The purpose of the cost analysis is to determine the economic feasibility of a variety of hybrid vehicles with respect to conventional vehicles specifically designed for the same duty cycle defined by the mission analysis. Several different hybrid configurations including parallel, parallel-flywheel, and series vehicles were evaluated. The ramifications of incorporating examples of advanced batteries, these being the advanced lead-acid, nickel-zinc, and sodium sulfur were also investigated. Vehicles were specifically designed with these batteries and for the driving cycles specified by the mission. Simulated operation on the missions yielded the energy consumption (petroleum and/or electricity) over the driving cycles. It was concluded that: in the event that gasoline prices reach $2.50 to $3.00/gal, hybrid vehicles in many applications will become economically competitive with conventional vehicles without subsidization; in some commercial applications hybrid vehicles could be economically competitive, when the gasoline price ranges from $1.20 to $1.50/gal. The cost per kWh per cycle of the advanced batteries is much more important economically than the specific energy; the series hybrid vehicles were found to be more expensive in comparison to the parallel or parallel-flywheel hybrids when designed as passenger vehicles; and hybrid vehicles designed for private use could become economically competitive and displace up to 50% of the fuel normally used on that mission if subsidies of $500 to $2000 were supplied to the owner/operator. (LCL)

  8. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  9. A solar engine using the thermal expansion of metals.

    Science.gov (United States)

    Beam, R.; Jedlicka, J.

    1973-01-01

    A thermal engine which uses solid metal as the single-phase working substance to convert solar energy into small amounts of mechanical energy is described. Test data are given for an engine whose working substance was annealed 304-type steel welded into a thin-walled tube that was mounted in a bearing at each end (making it free to rotate about its axis) with a flywheel mass at its midpoint. When heated on its upper surface, the tube rotates producing steady power. The theory of the engine is outlined.

  10. A solid rotor iron free asynchronous generator for the production of high energy pulses

    International Nuclear Information System (INIS)

    Rioux, C.; Sultanem, F.

    1976-01-01

    A rotating machine capable of charging a noncooled magnetic storage coil is described. The rotor of the machine which is formed by metallic cylinder rotating at high speed, also behaves as a flywheel. The stator is composed of a three-phase winding connected to a system of rectifiers and power factor correcting condensers, thus forming an auto excited asynchronous generator. A very high power density is achieved because the machine has non ferrous winding, which permits a magnetic field of a few teslas. The basic machine theory and experimental model built are described

  11. DTU International Energy Report 2013

    DEFF Research Database (Denmark)

    to make this possible. This energy report addresses energy storage from a broad perspective: It analyses smaller stores that can be used locally in for example heat storage in the individual home or vehicle, such as electric cars or hydrogen cars. The report also addresses decentralized storage...... as flywheels and batteries linked to decentralized energy systems. In addition it addresses large central storages as pumped hydro storage and compressed air energy storage and analyse this in connection with international transmission and trading over long distances. The report addresses electrical storage...

  12. Storage the electric power: yes, it is indispensable and it is possible. Why, where, how; Stocker l'electricite: oui, c'est indispensable, et c'est possible. Pourquoi, ou, comment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document describes the main characteristics of various electric power storage methods and their application domains. The large-scale storages include the hydraulic systems, those using compressed air, the batteries or those implementing a thermal way. The small-scale storages are electrochemical as the accumulators, the super-capacitors, mechanical as the flywheel, magnetic or also by the hydrogen use. The first part presents the necessity of the electric power storage, the second part the places of these storage. The third part details the forms of storage. (A.L.B.)

  13. Proposed TFTR electrical system

    International Nuclear Information System (INIS)

    Bronner, G.; Murray, J.

    1975-01-01

    The development of controlled thermonuclear fusion has progressed to the stage where the present facilities and energy available for future devices are not sufficient and must be increased by about a factor of ten. This report describes the proposed TFTR ac utility power distribution system, an energy storage motor generator flywheel facility, and the rectifier conversion equipment for the Toroidal Field Confining System (TF), Ohmic Heating System (OH), Equilibrium Field System (EF) and the Neutral Beam Heating System (NB). The general requirements are described and the special design considerations identified

  14. Magnetic Circuit Model of PM Motor-Generator to Predict Radial Forces

    Science.gov (United States)

    McLallin, Kerry (Technical Monitor); Kascak, Peter E.; Dever, Timothy P.; Jansen, Ralph H.

    2004-01-01

    A magnetic circuit model is developed for a PM motor for flywheel applications. A sample motor is designed and modeled. Motor configuration and selection of materials is discussed, and the choice of winding configuration is described. A magnetic circuit model is described, which includes the stator back iron, rotor yoke, permanent magnets, air gaps and the stator teeth. Iterative solution of this model yields flux linkages, back EMF, torque, power, and radial force at the rotor caused by eccentricity. Calculated radial forces are then used to determine motor negative stiffness.

  15. A review on distributed energy resources and MicroGrid

    Energy Technology Data Exchange (ETDEWEB)

    Jiayi, Huang; Chuanwen, Jiang; Rong, Xu [Department of Electrical Engineering, Shanghai Jiaotong University, Huashan Road 1954, Shanghai 200030 (China)

    2008-12-15

    The distributed energy resources (DER) comprise several technologies, such as diesel engines, micro turbines, fuel cells, photovoltaic, small wind turbines, etc. The coordinated operation and control of DER together with controllable loads and storage devices, such as flywheels, energy capacitors and batteries are central to the concept of MicroGrid (MG). MG can operate interconnected to the main distribution grid, or in an islanded mode. This paper reviews the researches and studies on MG technology. The operation of MG and the MG in the market environment are also described in the paper. (author)

  16. Fatigue degradation and failure of rotating composite structures - Materials characterisation and underlying mechanisms

    DEFF Research Database (Denmark)

    Gamstedt, Kristofer; Andersen, Svend Ib Smidt

    2001-01-01

    The present review concerns rotating composite structures, in which fatigue degradation is of key concern for in-service failure. Such applications are for instance rotor blades in wind turbines, helicopter rotor blades, flywheels for energy storage,marine and aeronautical propellers, and rolls...... for paper machines. The purpose is to identify areas where impending efforts should be made to make better use of composite materials in these applications. In order to obtain better design methodologies,which would allow more reliable and slender structures, improved test methods are necessary. Furthermore...

  17. DYNAMO: Distributed Leisure Yacht-Carried Sensor-Network for Atmosphere and Marine Data Crowdsourcing Applications

    DEFF Research Database (Denmark)

    Montella, Raffaele; Kosta, S.; Foster, I.

    2018-01-01

    Data crowdsourcing is a increasingly pervasive and lifestyle-changing technology, due to the flywheel effect that results from the interaction between the internet of things and cloud computing. In smart cities, for example, many initiatives harvest valuable data from citizen sensors. However, th...... weather and marine predictions via the use of data assimilation methods. We show our preliminary results about the DYNAMO Daemon, a SignalK server we embedded in the native level of the Android operating system enabling the data gathering and transfer from vessels to the cloud....

  18. Storage the electric power: yes, it is indispensable and it is possible. Why, where, how

    International Nuclear Information System (INIS)

    2003-01-01

    This document describes the main characteristics of various electric power storage methods and their application domains. The large-scale storages include the hydraulic systems, those using compressed air, the batteries or those implementing a thermal way. The small-scale storages are electrochemical as the accumulators, the super-capacitors, mechanical as the flywheel, magnetic or also by the hydrogen use. The first part presents the necessity of the electric power storage, the second part the places of these storage. The third part details the forms of storage. (A.L.B.)

  19. Design of a Bearingless Outer Rotor Induction Motor

    Directory of Open Access Journals (Sweden)

    Yuxin Sun

    2017-05-01

    Full Text Available A bearingless induction (BI motor with an outer rotor for flywheel energy storage systems is proposed due to the perceived advantages of simple rotor structure, non-contact support and high speed operation. Firstly, the configuration and operation principle of the proposed motor are described. Then several leading dimensional parameters are optimally calculated for achieving the maximum average values and the minimum ripples of torque output and suspension force. Finally, by using the finite element method, the characteristics and performance of the proposed machine are analyzed and verified.

  20. Assessment and preliminary design of an energy buffer for regenerative braking in electric vehicles

    Science.gov (United States)

    Buchholz, R.; Mathur, A. K.

    1979-01-01

    Energy buffer systems, capable of storing the vehicle energy during braking and reusing this stored energy during acceleration, were examined. Some of these buffer systems when incorporated in an electric vehicle would result in an improvement in the performance and range under stop and go driving conditions. Buffer systems considered included flywheels, hydropneumatic, pneumatic, spring, and regenerative braking. Buffer ranking and rating criteria were established. Buffer systems were rated based on predicted range improvements, consumer acceptance, driveability, safety, reliability and durability, and initial and life cycle costs. A hydropneumatic buffer system was selected.

  1. Bearing design for flywheel energy storage using high-TC superconductors

    Science.gov (United States)

    Hull, John R.; Mulcahy, Thomas M.

    2000-01-01

    A high temperature superconductor material bearing system (38) This system (38) includes a rotor (50) having a ring permanent magnet (60), a plurality of permanent magnets (16, 20 and 70) for interacting to generate levitation forces for the system (38). This group of magnets are a push/pull bearing (75). A high temperature superconductor structure (30) interacts with the ting permanent magnet (60) to provide stabilizing forces for the system (38).

  2. Carbon/manganese oxide based fuel cell electrocatalyst using "Flywheel" principle

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jiří; Klápště, Břetislav; Velická, Jana; Sedlaříková, M.; Novák, V.; Reiter, Jakub

    2005-01-01

    Roč. 8, č. 1 (2005), s. 1-4 ISSN 1480-2422 Institutional research plan: CEZ:AV0Z40320502 Keywords : manganese oxide * oxygen electrode * bifunctional electrode Subject RIV: CA - Inorganic Chemistry Impact factor: 0.772, year: 2005

  3. Improvement of superconducting cylindrical linear induction motor; Chodendo entokeitan ichiji rinia yudo mota no tokusei kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kikuma, T.; Tomita, M.; Ishiyama, A. [Waseda Univ., Tokyo (Japan)

    1999-11-10

    For the purpose of we examining the effect of characteristics and ac loss under real machine operating environment of the alternating current superconductivity winding for a realization of the superconductive AC machine vessel, cylindrical shortness first linear guiding motor which used NbTi/CuNi superconducting cable for the primary winding was produced experimentally. The coil number was increased from 6 in 14 this time, and the optimization of the primary current was done, and the improvement on characteristics was attempted. Here, starting torque characteristics, quenching detection protection control circuit are reported. (NEDO)

  4. Novel Control Strategy for Multiple Run-of-the-River Hydro Power Plants to Provide Grid Ancillary Services

    Energy Technology Data Exchange (ETDEWEB)

    Mohanpurkar, Manish; Luo, Yusheng; Hovsapian, Rob; Muljadi, Eduard; Gevorgian, Vahan; Koritarov, Vladimir

    2017-05-01

    Electricity generated by Hydropower Plants (HPPs) contributes a considerable portion of bulk electricity generation and delivers it with a low carbon footprint. In fact, HPP electricity generation provides the largest share from renewable energy resources, which includes solar and wind energy. The increasing penetration of wind and solar penetration leads to a lowered inertia in the grid and hence poses stability challenges. In recent years, breakthrough in energy storage technologies have demonstrated the economic and technical feasibility of extensive deployments in power grids. Multiple ROR HPPs if integrated with scalable, multi time-step energy storage so that the total output can be controlled. Although, the size of a single energy storage is far smaller than that of a typical reservoir, cohesively managing multiple sets of energy storage distributed in different locations is proposed. The ratings of storages and multiple ROR HPPs approximately equals the rating of a large, conventional HPP. The challenges associated with the system architecture and operation are described. Energy storage technologies such as supercapacitors, flywheels, batteries etc. can function as a dispatchable synthetic reservoir with a scalable size of energy storage will be integrated. Supercapacitors, flywheels, and battery are chosen to provide fast, medium, and slow responses to support grid requirements. Various dynamic and transient power grid conditions are simulated and performances of integrated ROR HPPs with energy storage is provided. The end goal of this research is to investigate the inertial equivalence of a large, conventional HPP with a unique set of multiple ROR HPPs and optimally rated energy storage systems.

  5. Progress in large domain HTS levitator fabrication for frictionless bearing applications

    International Nuclear Information System (INIS)

    Sengupta, S.; Gaines, J.R. Jr.

    1995-01-01

    Due to the dramatic worldwide growth in the electrical energy consumption, by both industries and households, power utilities are forced to respond to significant fluctuation in output requirements during peak hours. Consumer energy demand can change as much as 30 percent over a 12 hour period. Without the capacity to store energy, electric utilities are forced to cycle base-load power plants to accommodate these swings. This procedure is expensive to utility companies, and requires transmission capacity for maximum peak loads as demand increases. A successful storage technology would, (1) enable utilities to reduce costs through efficient load leveling through the utilization of available night time transmission capacity, and (2) reduce the need to constantly construct new transmission lines to accommodate demand increases [1]. One potential strategy to meet this need is through the usage of high efficiency flywheel energy storage (FES) devices. With these devices, power plants will be able to maintain a leveled production schedule where excess output during low demand periods is stored in the flywheels. Excess power can be extracted later for consumption during peak hours. Further, environmental constraints and dwindling fossil fuel supplies will cause migration toward alternative energy sources. Prior usage of these sources has been restricted because of the lack of suitable storage methods. The FES devices when coupled with abundant energy sources, like solar and wind, can revolutionize the power generation industry and provide means to effectively produce cheap and environmentally clean power for industrial as well as domestic uses

  6. FY 2000 research and development of fundamental technologies for AC superconducting power devices. R and D of fundamental technologies for superconducting power cables and faults current limiters, R and D of superconducting magnets for power applications, and study on the total systems and related subjects; 2000 nendo koryu chodendo denryoku kiki kiban gijutsu kenkyu kaihatsu seika hokokusho. Chodendo soden cable kiban gijutsu no kenkyu kaihatsu, chodendo genryuki kiban gijutsu no kenkyu kaihatsu, denryokuyo chodendo magnet no kenkyu kaihatsu, total system nado no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The project for research and development of fundamental technologies for AC superconducting power devices has been started, and the FY 2000 results are reported. The R and D of fundamental technologies for superconducting power cables include grasping the mechanical characteristics associated with integration necessary for fabrication of large current capacity and long cables; development of barrier cable materials by various methods; and development of short insulated tubes as cooling technology for long superconducting cables, and grasping its thermal/mechanical characteristics. The R and D of faults current limiters include introduction of the unit for superconducting film fabrication, determination of the structures and layouts for large currents, and improvement of performance of each device for high voltages. R and D of superconducting magnets for power applications include grasping the fundamental characteristics of insulation at cryogenic temperature, completion of the insulation designs for high voltage/current lead bushing, and development of prototype sub-cooled nitrogen cooling unit for cooling each AC power device. Study on the total systems and related subjects include analysis for stabilization of the group model systems, to confirm improved voltage stability when the superconducting cable is in service. (NEDO)

  7. Searching for Judy: How small mysteries affect narrative processes and memory

    Science.gov (United States)

    Love, Jessica; McKoon, Gail; Gerrig, Richard J.

    2010-01-01

    Current theories of text processing say little about how author’s narrative choices, including the introduction of small mysteries, can affect readers’ narrative experiences. Gerrig, Love, and McKoon (2009) provided evidence that one type of small mystery—a character introduced without information linking him or her to the story—affects readers’ moment-by-moment processing. For that project, participants read stories that introduced characters by proper name alone (e.g., Judy) or with information connecting the character to the rest of the story (e.g., our principal Judy). In an on-line recognition probe task, responses to the character’s name three lines after his or her introduction were faster when the character had not been introduced with connecting information, suggesting that the character remained accessible awaiting resolution. In the four experiments in this paper, we extended our theoretical analysis of small mysteries. In Experiments 1 and 2, we found evidence that trait information (e.g., daredevil Judy) is not sufficient to connect a character to a text. In Experiments 3 and 4, we provide evidence that the moment-by-moment processing effects of such small mysteries also affect readers’ memory for the stories. We interpret the results in terms of Kintsch’s Construction-Integration model (1988) of discourse processing. PMID:20438273

  8. Research on magnet replicas and the very incomplete Meissner effect. Final technical report, January 15, 1991--January 15, 1994

    International Nuclear Information System (INIS)

    Weinstein, R.

    1994-08-01

    A wide variety of temperature/processing changes and high energy irradiation has substantially increased B t,max . This plus variation of the HTS mix to Y 1.7 Ba 2 Cu 3 O 7 Pt 0.01 U 235 (25 ppM) has increased trapped field by a factor of 8 and promises an additional factor of 2. The original goal, to produce 10,000 Gauss of trapped field, has been exceeded by a factor of 7. Various applications, including motors, generators, levitating bearings, flywheels, magnetic bumpers, and MHD propulsion are in progress at various labs and industries

  9. Levitation properties of superconducting magnetic bearings using superconducting coils and bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Yuuki; Seino, Hiroshi; Nagashima, Ken [Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan)

    2010-11-15

    We have been developing a flywheel energy storage system (FESS) with 36 MJ energy capacity for a railway system with superconducting magnetic bearings (SMBs). We prepared two kinds of models using superconducting coils and bulk superconductors (SCs). One model demonstrated SMB load capacity of 20 kN and the other model proved non-contact stable levitation and non-contact rotation with SMBs. Combining these results, the feasibility of a 36 MJ energy capacity FESS with SMBs completely inside a cryostat has been confirmed. In this paper, we report the levitation properties of SMBs in these models.

  10. Energy Storage System

    Science.gov (United States)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  11. Top-class technology for top-class sport; Spitzentechnologie fuer den Spitzensport

    Energy Technology Data Exchange (ETDEWEB)

    Bolliger, R.

    2008-07-01

    This article takes a look at the solar and electrical installations at the Letzigrund stadium in Zurich, Switzerland. The 223 kW photovoltaics installation on the roof of the football and light-athletics stadium is described. The design of the solar installation, which had to meet stringent architectural requirements, is discussed. The innovative mounting system used is described. Power management in the stadium, including two power feeds from different utility substations is discussed. A no-break system to guarantee that no power outages occur uses flywheel technology to cover the period of time when switching over from one power feed to the other.

  12. Impact of Storage Technologies upon Power System Losses

    Directory of Open Access Journals (Sweden)

    DULAU Lucian Ioan

    2015-05-01

    Full Text Available The paper describes the main characteristics of storage technologies. The most important storage technologies are the batteries, hydrogen, pumped hydro, flywheels, compressed air, super-capacitors and superconducting magnetic devices. The storage technologies can be classified based on the function principle into electrochemical, mechanical and electromagnetic devices. The storage systems can also be classified based on their capacity to store power into short and long term devices. A power flow analysis is performed for the situation with and without a storage unit. The storage unit is inserted into the IEEE 14 bus test system.

  13. Engineering properties of a filament-wound Kevlar 49/epoxy composite

    International Nuclear Information System (INIS)

    Hahn, H.T.; Chin, W.K.

    1981-01-01

    The effect of a flywheel service environment on transverse tension and compression, and longitudinal compression and shear properties of a filament-wound Kevlar/epoxy composite are evaluated. Shear strength and modulus were reduced by moisture desorption during preconditioning in a vacuum at 75 C, although room temperature strength and modulus increased for longitudinal compression. The desorption induced cracking of the laminate plies through increased residual stresses, which at 25 C were 15 MPa, higher than the transverse strength. The 75 C temperature caused lower strength and moduli except for longitudinal tension, and the complete test results are listed

  14. Science and technology review, April 1996

    Energy Technology Data Exchange (ETDEWEB)

    Failor, B.; Stull, S. [eds.

    1996-04-01

    There are two main feature articles in this publication. The first article tells of how using off-the-shelf computers, state-of-the-art CCDs, and a network of collaborators, scientist at Lawrence Livermore National Lab explore the composition of dark matter. Indications are that MACHOs (MAssive Compact Halo Objects) make up the bulk of dark matter in the universe. The second article discusses a new breed of Livermore-developed, flywheel-based energy storage systems using new materials, new technologies, and new thinking to develop a new electromechanical battery. Patents and research highlights are also listed in this publication.

  15. Controller for the Power Converters of the O/OMOTOR Prototype Switched Reluctance Machine of the ACE2 Project; Controlador de los Convertidores Electronicos de Potencia de la Maquina Variable Prototipo O/OMOTOR del Proyecto ACE2

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, C

    2006-12-19

    The ACE2 project deals with the development of a kynetic energy storage (KES) system for power peak shaving in high speed railway substations. This KES system consists in a double power converter which drives a switched reluctance machine (SRM) along with a flywheel operating in a wide speed range. This document presents from a technical point of view the features of the controller of the power converters for the U and UMOTOR SRM prototypes of that project. Hardware and software issues are treated in detail and the guide for the final user managing the KES module is introduced. (Author) 3 refs.

  16. Levitation properties of superconducting magnetic bearings using superconducting coils and bulk superconductors

    International Nuclear Information System (INIS)

    Arai, Yuuki; Seino, Hiroshi; Nagashima, Ken

    2010-01-01

    We have been developing a flywheel energy storage system (FESS) with 36 MJ energy capacity for a railway system with superconducting magnetic bearings (SMBs). We prepared two kinds of models using superconducting coils and bulk superconductors (SCs). One model demonstrated SMB load capacity of 20 kN and the other model proved non-contact stable levitation and non-contact rotation with SMBs. Combining these results, the feasibility of a 36 MJ energy capacity FESS with SMBs completely inside a cryostat has been confirmed. In this paper, we report the levitation properties of SMBs in these models.

  17. High voltage power supplies for the neutral beam injectors of the stellarator TJ-II

    International Nuclear Information System (INIS)

    Alonso, J.; Liniers, M.; Martinez Laso, L.; Jauregi, E.; Lucia, C.; Valcarcel, F.

    2001-01-01

    Neutral beam injection will be available for the second experimental phase of TJ-II. Two injectors, set in co-counter configuration, will inject into the plasma two 40 keV H 0 beams, each of up to 1 MW. The two high voltage power supplies to feed the acceleration grids of the injectors, described in this paper, are of the transformer-rectifier type, taking their primary energy from a pulsed flywheel generator, and are coupled to the acceleration grids through a switching device. This environment effectively sets the main operation limits and protection requirements of the power supplies

  18. PLASTICITY OF SELECTED METALLIC MATERIALS IN DYNAMIC DEFORMATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Jacek PAWLICKI

    2014-06-01

    Full Text Available Characteristics of a modernized flywheel machine has been presented in the paper. The laboratory stand enables to perform dynamic tensile tests and impact bending with a linear velocity of the enforcing element in the range of 5÷40 m/s. A new data acquisition system, based on the tensometric sensors, allows for significant qualitative improvement of registered signals. Some preliminary dynamic forming tests were performed for the selected group of metallic materials. Subsequent microstructural examinations and identification of the fracture type enabled to describe a correlation between strain rate, strain and microstructure.

  19. FY 1998 result report on development of superconductive power application technologies. Pt. 1. Research and development of superconductive wire materials / Research of a total system / Research and development of a freezing system / Demonstration tests; 1998 nendo chodendo denryoku oyo gijutsu kaihatsu. 1. Chodendo senzai no kenkyu kaihatsu, chodendo hatsudenki no kenkyu kaihatsu, total system no kenkyu, reito system no kenkyu kaihatsu, jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Superconductive technologies are introduced into electric power devices for attempts of achieving higher stabilization, density and efficiency, as well as size and weight reduction and improvement in performance of the devices. The project has been worked on since fiscal 1998 as part of the New Sunshine Project. Fiscal 1998 being the eleventh year has taken the following subjects as the research promotion policies: establishment of plans targeted at accomplishment of the goals of the project; adequate and reliable implementation of verification of technological assignments; and steady and efficient demonstration tests. Subsequent to the previous year during which site demonstration tests were completed on a low-speed responsive model machine, the site demonstration test has begun on the ultra high-speed responsive model machine as the final stage of the project. The ultra high-speed responsive model machine was coupled with a freezing system and a load synchronizing machine, and different kinds of test were carried out where good results were obtained. Researches were conducted on characteristics improvement and device element technologies aimed at achieving the practical application level by utilizing the respective features of AC metal-based wires and oxide-based wires, where sound results were obtained. Also in an improved freezing system, valuable data were attained as part of establishing the basic technologies for a superconductive power generation system. (NEDO)

  20. Control of Flywheel Energy Storage Systems in Electrical Vehicle Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo

    energy storage system (FESS). The proposed PhD project supports a corresponding smart control strategy that could be termed “charging station to grid (CS2G)”. It explores the possibility of using a dedicated energy storage system (FESS) within the charging station to alleviate grid and market conditions...... converters is built and analyzed. |Based on modeling analysis, centralized and distributed control methods are both explored to realize the coordination control of each components in the system. Specially, this project proposes a “dc voltage vs speed” droop strategy for FESS control based on distributed bus...... function method when the system switches its operation behavior between two modes. Finally, a downscaled FCS prototype with FESS is built in the intelligent MG lab, and experiments and hardware-in-loop simulation results are conducted to verify the effectiveness and feasibility with the proposed FCS...

  1. Control of Flywheel Energy Storage Systems in Electrical Vehicle Charging Stations

    OpenAIRE

    Sun, Bo

    2017-01-01

    Growing environmental awareness and strong political impetus have resulted in plug-in electric vehicles (PEV) becoming ever more attractive means of transportation. They are expected to have a significant impact to the overall loading of future distribution networks. Thus, current distribution grids need to be updated in order to accommodate PEV fleets, which are recognized in smart grid (SG) objective. The prevailing concern in that sense is the combined impact of a large number of randomly ...

  2. Servo-Drive Amplifier for Micro-Satellite Superconductor-Levitated Flywheels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new servo-drive technology is available to support energy storage and navigation for micro-satellites. Exploiting the ?pinning? effect of high-temperature...

  3. Deep subduction of hot young oceanic slab required by the Syros eclogites

    Science.gov (United States)

    Flemetakis, Stamatis; Moulas, Evangelos; Kostopoulos, Dimitrios; Chatzitheodoridis, Elias

    2014-05-01

    The Cycladic islands of Syros and Siphnos, Aegean Sea, Greece, represent subducted IAT and BABB remnants of the Neotethyan Pindos Ocean. Garnet porphyroblasts (Ø=1mm) in a glaucophane-zoisite eclogite from Kini locality on Syros are compositionally zoned and display a unique prograde heating path from a high-pressure greenschist-facies core with high XSps and low Mg# via a blueschist-facies mantle with moderate XSps and Mg# to an eclogite-facies rim with low XSps and high Mg#. The outermost 35 μm of the garnet rims show flat XSps with rapidly increasing outwards Mg#. Na-Act-Chl-Ph rimmed by Gln mark the greenschist-blueschist facies transition, whereas Pg rimmed by Omp and the incoming of Rt at the expense of Ttn signify the blueschist-eclogite facies transition. Raman barometry of quartz inclusions in the eclogitic garnet rims coupled with elastic modelling of the garnet host [1], and Zr-in-Rt and Grt-Cpx-Ph thermobarometry revealed near-UHP P-T conditions of the order of 2.6 GPa/660°C (maximum residual pressure was 0.8-0.9GPa). By contrast, the greenschist-blueschist transition lies at ~0.75 GPa/355°C. This pressure is in excellent agreement with the position of the albite = jadeite + quartz boundary calculated at 350°C using the observed omphacite composition corrected for jadeite activity (Koons & Thompson, 1985) [2]. As a result, Cpx inclusions in garnet core signify the early entrance of garnet in the subduction zone history of the slab. Furthermore, the early growth of garnet (in lower pressures) observed in eclogites from Syros lies in great agreement with published slab-geotherms that indicate hot subduction and show a precocious garnet growth (Baxter and Caddick, 2013) [3]. The complete absence of lawsonite and the great abundance of zoisite crystals, based on the stability fields of both minerals (Poli et al., 2009) [4], further constrain the P-T trajectory of the slab. Our new P-T estimates match published T distributions on the slab surface

  4. MRI-Based Regional Muscle Use during Hamstring Strengthening Exercises in Elite Soccer Players.

    Science.gov (United States)

    Mendez-Villanueva, Alberto; Suarez-Arrones, Luis; Rodas, Gil; Fernandez-Gonzalo, Rodrigo; Tesch, Per; Linnehan, Richard; Kreider, Richard; Di Salvo, Valter

    2016-01-01

    The present study examined site-specific hamstring muscles use with functional magnetic resonance imaging (MRI) in elite soccer players during strength training. Thirty-six players were randomized into four groups, each performing either Nordic hamstring, flywheel leg-curl, Russian belt or the hip-extension conic-pulley exercise. The transverse relaxation time (T2) shift from pre- to post-MRI were calculated for the biceps femoris long (BFl) and short (BFs) heads, semitendinosus (ST) and semimembranosus (SM) muscles at proximal, middle and distal areas of the muscle length. T2 values increased substantially after flywheel leg-curl in all regions of the BFl (from 9±8 to 16±8%), BFs (41±6-71±11%), and ST (60±1-69±7%). Nordic hamstring induced a substantial T2 increase in all regions of the BFs (13±8-16±5%) and ST (15±7-17±5%). T2 values after the Russian belt deadlift substantially increased in all regions of the BFl (6±4-7±5%), ST (8±3-11±2%), SM (6±4-10±4%), and proximal and distal regions of BFs (6±6-8±5%). T2 values substantially increased after hip-extension conic-pulley only in proximal and middle regions of BFl (11±5-7±5%) and ST (7±3-12±4%). The relevance of such MRI-based inter- and intra-muscle use in designing more effective resistance training for improving hamstring function and preventing hamstring injuries in elite soccer players should be explored with more mechanistic studies.

  5. The fly wheel exercise device (FWED): A countermeasure against bone loss and muscle atrophy

    Science.gov (United States)

    Hueser, Detlev; Wolff, Christian; Berg, Hans E.; Tesch, Per A.; Cork, Michael

    2008-01-01

    The flywheel exercise device (FWED) is planned for use as an in-flight exercise system, to demonstrate its efficacy as a countermeasure device to prevent muscle atrophy, bone loss and impairment of muscle function in human beings in response to long duration spaceflight. It is intended to be used on the International Space Station (ISS) and will be launched by the European cargo carrier, the automated transfer vehicle (ATV) in late 2005. The FWED is a non-gravity-dependent mechanical device based on the Yo-Yo principle, which provides resistance during coupled concentric and eccentric muscle actions, through the inertia of a spinning flywheel. Currently, the development of a FWED Flight and Ground Model is in progress and is due to be completed in May 2004. An earlier developed prototype is available that has been used for various ground studies. Our FWED design provides a maximum of built-in safety and support to the operation by one astronaut. This is achieved in particular by innovative mechanical design features and an easy, safe to use man-machine interface. The modular design is optimized for efficient set-up and maintenance operations to be performed in orbit by the crew. The mechanical subsystem of the FWED includes a μg disturbance suspension, which minimizes the mechanical disturbances of the exercising subject at the mechanical interface to the ISS. During the FWED operation the astronaut is guided through the exercises by the data management subsystem, which acquires sensor data from the FWED, calculates and displays real-time feedback to the subject, and stores all data on hard disk and personalized storage media for later scientific analysis.

  6. Testing and analysis of a fast discharge homopolar machine (FDX)

    International Nuclear Information System (INIS)

    Bullion, T.M.; Zowarka, R.; Driga, M.D.; Gully, J.H.; Rylander, H.G.; Tolk, K.M.; Weldon, W.F.; Woodson, H.H.

    1979-01-01

    The Fast Discharge Experiment (FDX) is a 0.36 MJ, 200 V homopolar machine designed to discharge in one millisecond. This experiment is intended to establish the fundamental limitations involved in extracting energy in the shortest time from a flywheel using homopolar conversion. After initial testing of FDX was completed and data was analyzed, problems limiting performance were identified. Various components of the machine were redesigned and modified to correct these problems. A second set of tests, including short circuit discharges from various speeds, has recently been conducted. Results and analysis of these tests will be presented. New problems encountered as well as recommendations for additional work will also be given

  7. Simulation model for wind energy storage systems. Volume I. Technical report. [SIMWEST code

    Energy Technology Data Exchange (ETDEWEB)

    Warren, A.W.; Edsinger, R.W.; Chan, Y.K.

    1977-08-01

    The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume I gives a brief overview of the SIMWEST program and describes the two NASA defined simulation studies.

  8. FY 1975 Report on results of Sunshine Project. Development of techniques of digging high-temperature beds (Feasibility study on digging high-temperature beds); 1975 nendo koon chiso kussaku gijutsu no kaihatsu seika hokokusho. Koon chiso kussaku ni kansuru feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-31

    The environmental conditions for which the digging techniques are to be developed have been set at 3,000 to 5,000 m as depth, 400 degrees C as temperature and 500 kg/cm{sup 2} as pressure. The environmental temperature was set at 250 degrees C as the first phase in the previous year. In this year, the temperature level is increased to 400 degrees C for the feasibility study on technological development. For development of the high-temperature bed digging apparatuses, masts, sub-structures, drawworks, slurry pumps, and pipe addition handling are studied as the problems involved in the rotary table method. Also studied are the related themes, e.g., drill pipes, drill collars, casing pipes, slurry, cementing and instruments to be installed in geothermal wells. For development of the bits, various problems to be solved are studied, including slurry circulation systems, bit diameter and speed of rotation, and bit configurations as those involved in the digging systems; heat-resistant materials, bit tooth forms, hardening of the edges, bearing configurations and cooling mechanisms as those involved in the bit structures; and optimum service conditions and selective use standards for roller cutter and solid bits. Other items studied include structures of the apparatuses for geothermal well mouth, and wear of digging tools for the air drilling method. (NEDO)

  9. Keats et de Kooning : Pour un romantisme expressionniste abstrait ou la mise en image de l’épitaphe ‘Here lies one whose name was writ in water’: Keats and de Kooning or the abstract expressionist vision of a Romantic epitaph

    Directory of Open Access Journals (Sweden)

    Caroline Bertonèche

    2007-01-01

    Full Text Available The article explores the comparative dialectic between John Keats’s choice of a visual epitaph, theatrically staged as a fluid, evanescent metaphor of poetic identity in relation to Romantic writing, and Willem de Kooning’s late awareness and expressionist interpretation of it. The modernity of Keats’s epitaphic imagery seemed to have been an uncanny preamble to de Kooning’s gestural art or pictorial pantomimes on the themes of impermanence and forgetfulness, memory and death. Close in many other ways, despite chronological and geographical differences, the two inspired artists meet around their creative intermingling of the picturesque and the poetic: the rhythmic liquidity, the verse schemes, the chiaroscuros, the ‘dripping’ technique, the ‘erasures’, the fading colours… Keats’s strangely melancholic but also deeply ironic and contrasted lyricism meets de Kooning’s mixed style of painting, torn as it is between the realms of tradition and novelty, of figurative and abstract art. A writer and a reader, an indolent poet and an ‘action painter’, they are, above all, or aspire to be, especially with regard to this mysterious conception and meaningful depiction of an epitaph, immortal artists as well as enlightened visionaries.

  10. Impact of design options on natural circulation performance of the AFR-300 advanced fast reactor

    International Nuclear Information System (INIS)

    Dunn, F. D.

    2002-01-01

    The AFR-300, Advanced Fast Reactor (300 Mwe), has been proposed as a Generation IV concept. It could also be used to dispose of surplus weapons grade plutonium or as an actinide burner for transmutation of high level radioactive waste. AFR-300 uses metallic fuel and sodium coolant. The design of AFR-300 takes account of the successful design and operation of EBR-II, but the AFR-300 design includes a number of advances such as an advanced fuel cycle, inspectability and improved economics. One significant difference between AFR-300 and EBR-II is that AFR-300 is considerably larger. Another significant difference is that AFR-300 has no auxiliary EM pump in the primary loop to guarantee positive core flow when the main primary pumps are shut down. Thus, one question that has come up in connection with the AFR-300 design is whether natural circulation flow is sufficient to prevent damage to the core if the primary pumps fail. Insufficient natural circulation flow through the core could result in high cladding temperatures and cladding failure due to eutectic penetration of the cladding by the metal fuel. The rate of eutectic penetration of the cladding is strongly temperature dependent, so cladding failure depends on how hot the cladding gets and how long it is at elevated temperatures. To investigate the adequacy of natural circulation flow, a number of pump failure transients and a number of design options have been analyzed with the SASSYS-1 systems analysis code. This code has been validated for natural circulation behavior by analysis of Shutdown Heat Removal Tests performed in EBR-II. The AFR-300 design includes flywheels on the primary pumps to extend the pump coastdown times, and the size of the flywheels can be picked to give optimum coastdown times. One series of transients that has been run consists of protected loss-of-flow transients with various values for the combined moment of inertia of the pump, the motor and the flywheel giving coastdown times from 70

  11. Improvement of superconducting cylindrical linear induction motor; Chodendo entogata tan'ichiji rinia yudo mota no tokusei kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kikuma, T.; Ishiyama, A. [Waseda Univ., Tokyo (Japan)

    2000-05-29

    For the purpose of examining the characteristics (effect of stability and ac loss by the higher harmonic wave etc.) of an alternating current superconductivity winding under a real machine operating environment of the super-conductive AC machine vessel, authors produced a cylindrical shortness first linear guiding motor (SCLIM) which used the NbTi/CuNi super-conducting cable for the first excitation winding experimentally. In this study, the evaluation of the start up thrust and operation confirmation of the quenching detection protection circuit were carried out using the produced SCLIM. In the quenching detection protection control circuit, the first excitation winding was divided into an internal layer and an outer layer, and both layers were excited in the 2 layer division and a quenching detection protection circuit was installed on the 2 layers respectively. The circuit of a part of fact by this of the phase in which the quench was generated and observed was cut off, and the operation would be able to be continued in part of the remainder of the phase and other two phases. Here, it is to cut off the quenched phase from the circuit, when the phase current becomes zero, and the other effect on the phase is held as small as possible. (NEDO)

  12. Next-generation mass standard using the superconducting magnetic levitation method; Chodendo jiki fujoho ni yoru jisedai shitsuryo hyojun

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Yukinobu; Shiota, Fuyuhiko; Fujii, Yusaku [National Research Laboratory of Metrology, Tsukuba (Japan)

    1999-10-25

    The Present mass standard based on the prototype of the kilogram has some serious problems such as surface contamination and unrecoverablity in the case of damage or loss. Research on monitoring and finally replacing the present mass standard are therefore encouraged and some approaches have been proposed. In this article, the superconducting magnetic levitation method, which is one of the approaches that also makes use of the unique properties of superconductivity, is reviewed together with a brief description about mass and electric standards. (author)

  13. Frank Gilbreth and health care delivery method study driven learning.

    Science.gov (United States)

    Towill, Denis R

    2009-01-01

    The purpose of this article is to look at method study, as devised by the Gilbreths at the beginning of the twentieth century, which found early application in hospital quality assurance and surgical "best practice". It has since become a core activity in all modern methods, as applied to healthcare delivery improvement programmes. The article traces the origin of what is now currently and variously called "business process re-engineering", "business process improvement" and "lean healthcare" etc., by different management gurus back to the century-old pioneering work of Frank Gilbreth. The outcome is a consistent framework involving "width", "length" and "depth" dimensions within which healthcare delivery systems can be analysed, designed and successfully implemented to achieve better and more consistent performance. Healthcare method (saving time plus saving motion) study is best practised as co-joint action learning activity "owned" by all "players" involved in the re-engineering process. However, although process mapping is a key step forward, in itself it is no guarantee of effective re-engineering. It is not even the beginning of the end of the change challenge, although it should be the end of the beginning. What is needed is innovative exploitation of method study within a healthcare organisational learning culture accelerated via the Gilbreth Knowledge Flywheel. It is shown that effective healthcare delivery pipeline improvement is anchored into a team approach involving all "players" in the system especially physicians. A comprehensive process study, constructive dialogue, proper and highly professional re-engineering plus managed implementation are essential components. Experience suggests "learning" is thereby achieved via "natural groups" actively involved in healthcare processes. The article provides a proven method for exploiting Gilbreths' outputs and their many successors in enabling more productive evidence-based healthcare delivery as summarised

  14. MRI-Based Regional Muscle Use during Hamstring Strengthening Exercises in Elite Soccer Players

    Science.gov (United States)

    Mendez-Villanueva, Alberto; Suarez-Arrones, Luis; Rodas, Gil; Fernandez-Gonzalo, Rodrigo; Tesch, Per; Linnehan, Richard; Kreider, Richard; Di Salvo, Valter

    2016-01-01

    The present study examined site-specific hamstring muscles use with functional magnetic resonance imaging (MRI) in elite soccer players during strength training. Thirty-six players were randomized into four groups, each performing either Nordic hamstring, flywheel leg-curl, Russian belt or the hip-extension conic-pulley exercise. The transverse relaxation time (T2) shift from pre- to post-MRI were calculated for the biceps femoris long (BFl) and short (BFs) heads, semitendinosus (ST) and semimembranosus (SM) muscles at proximal, middle and distal areas of the muscle length. T2 values increased substantially after flywheel leg-curl in all regions of the BFl (from 9±8 to 16±8%), BFs (41±6–71±11%), and ST (60±1–69±7%). Nordic hamstring induced a substantial T2 increase in all regions of the BFs (13±8–16±5%) and ST (15±7–17±5%). T2 values after the Russian belt deadlift substantially increased in all regions of the BFl (6±4–7±5%), ST (8±3–11±2%), SM (6±4–10±4%), and proximal and distal regions of BFs (6±6–8±5%). T2 values substantially increased after hip-extension conic-pulley only in proximal and middle regions of BFl (11±5–7±5%) and ST (7±3–12±4%). The relevance of such MRI-based inter- and intra-muscle use in designing more effective resistance training for improving hamstring function and preventing hamstring injuries in elite soccer players should be explored with more mechanistic studies. PMID:27583444

  15. Flywheel-Based Distributed Bus Signalling Strategy for the Public Fast Charging Station

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Sucic, Stepjan; Vasquez, Juan Carlos

    2014-01-01

    Fast charging stations (FCS) are able to recharge plug-in hybrid electric vehicles (pHEVs) in less than half an hour, thus representing an appealing concept to vehicle owners since the off-road time is similar as for refuelling at conventional public gas stations. However, since these FCS plugs...

  16. Superconducting Magnetic Bearings for Space-Based Flywheel Energy Storage Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Balcones Technologies, LLC proposes to adapt technologies developed by and resident in The University of Texas at Austin Center for Electromechanics (CEM) in the...

  17. Energy storage device based on flywheel, power converters and Simulink real-time

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Kedra, Bartosz; Malkowski, Robert

    2017-01-01

    by Gdansk University of Technology in Poland. Paper is divided into four sections. First section of the paper provides introductory information on the Energy Storage Device and its capabilities. In the second section of the paper concept of the unit is presented. Requirements for the unit are described...... as well as proposed and introduced functions are listed. Implementation details are given in third section of paper. Hardware structure is presented and described. Information about used communication interface, data maintenance and storage solution, as well as used Simulink realtime features...

  18. Industrial and scientific technology research and development project in fiscal 1997 commissioned by the New Energy and Industrial Technology Development Organization. Research and development of superconducting materials and transistors (report on overall investigation of superconductive devices); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Chodendo zairyo chodendo soshi no kenkyu kaihatsu (chodendo soshika gijutsu kaihatsu seika hokokusho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper describes development of superconducting new function transistors. Fiscal 1997 as the final year of the project advanced improvement in such transistor-using processes as formation and micro-processing of superconducting thin films to show enhancement in characteristics of high-temperature superconducting transistors and possibility of their application utilizing their high speed motions. Furthermore, fundamental technologies were studied with an aim on junction transistors to be applied as circuits. For field effect transistors, evaluation was performed on critical current distribution of step-type particle boundary junction to make it possible to evaluate characteristics of hundreds of transistors. At the same time, a magnetic flux quantum parametron gate with three-layer structure was fabricated to identify its operation. In superconducting-base transistors, strong reflection was recognized on temperature dependence of permittivity of an Nb-doped strontium titanate substrate used for collectors, by which barrier height was reduced. In the junction transistor and circuit technology, isotropic ramp-edge junctions were fabricated, and so was a frequency divider circuit with single magnetic flux quantum mode operation for evaluating high-speed response characteristics. High time resolution current was observed successfully by using a high-temperature superconducting sampler system. 148 refs., 127 figs., 4 tabs.

  19. Achievement report for fiscal 1996 on the research and development of superconductor technology to power generation. Pt. 1. Research and development of superconducting wire, generator, total system, and refrigeration system; and verification test; 1996 nendo chodendo denryoku oyo gijutsu kaihatsu seika hokokusho. 1. Chodendo senzai no kenkyu kaihatsu, chodendo hatsudenki no kenkyu kaihatsu, total system no kenkyu, reito system no kenkyu kaihatsu, jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    In the research and development of superconducting wires, studies are conducted to increase the current capacity of NbTi and Nb{sub 3}Sn metal wires and to improve their properties, and to increase the current capacity of oxide materials and improve their performance making full use of the features of each manufacturing method. In the development of superconducting generators, a slow excitation response type is tested for verification, and a good result is attained; and a quick excitation response type is tested for field winding static excitation, and good performance is exhibited. Using the results so far achieved, the 200,000kW class pilot machine concept design is reviewed. In the study of total systems, feasibility is studied of a quench test for the 70,000kW class machine through simulation analyses, etc. In the development of refrigeration systems, efforts are exerted to improve on the conventional type in terms of reliability and to further improve on the improved version in terms of performance and space-saving feature. One of the endeavors involves the development of a He Brayton cycle turbine driven compressor. A multilayer cylindrical rotor is verified in terms of functions, characteristics, reliability and durability, and various data are collected toward the development of a pilot machine. (NEDO)

  20. Integrated Power and Attitude Control System (IPACS) technology developments

    Science.gov (United States)

    Eisenhaure, David B.; Bechtel, Robert; Hockney, Richard; Oglevie, Ron; Olszewski, Mitch

    1990-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of storing electrical energy in flywheels and utilizing the resulting angular momentum for spacecraft attitude control. Such a system has been shown to have numerous attractive features relative to more contemporary technology, and is appropriate to many applications (including high-performance slewing actuators). Technology advances over the last two decades in composite rotors, motor/generator/electronics, and magnetic bearings are found to support the use of IPACS for increasingly sophisticated applications. It is concluded that the concept offers potential performance advantages as well as savings in mass and life-cycle cost. Viewgraphs and discussion on IPACS are included.

  1. Self-regulating energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhaure, D.B.; Downer, J.R.; Bliamptis, T.E.; Oberbeck, G.A.; Hendrie, S.D.

    1986-10-14

    This patent describes a self-regulating energy storage system which consists of: an a.c. motor/generator including a rotor; a flywheel attached to the motor/generator; means for monitoring the position of the motor/generator rotor; means for resolving current to and from the motor/generator; a pulse width modulated bidirectional inverter interconnecting the motor/generator with a power supply bus having a voltage to be regulated; a summing circuit for determining differences between a reference voltage and the voltage on the power supply bus to be regulated; and a pulse width modulation switch control responsive to the summing circuit, to the means for monitoring, and to the means for resolving.

  2. Review of electrical energy storage technologies and systems and of their potential for the UK

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the findings of a review of current energy storage technologies and their potential application in the UK. Five groups of storage technologies are examined: compressed air energy storage; battery energy storage systems including lead-acid, nickel-cadmium, sodium-sulphur, sodium-nickel and lithium ion batteries; electrochemical flow cell systems, including the vanadium redox battery, the zinc bromide battery and the polysulphide battery; kinetic energy storage systems, ie flywheel storage; and fuel cell/electrolyser systems based on hydrogen. Details are given of the technology, its development status, potential applications and the key developers, manufacturers and suppliers. The opportunities available to UK industry and the potential for systems integration and wealth creation are also discussed.

  3. Validation of an In Vitro Bioaccessibility Test Method for Estimation of Bioavailability of Arsenic from Soil and Sediment

    Science.gov (United States)

    2012-12-01

    rotated within a Plexiglas tank by an electric motor with a magnetic flywheel. The water bath must be filled such that the extraction bottles are...Leadville, CO II 7 259.3 [h] Clark Fork Tailings Milltown Reservoir Sediments NPL  Site Milltown, MT Pilot 15 10 [d] El  Paso  TM1 El  Paso /Dona Ana...County Metals  Survey Site El  Paso , TX / Dona Ana  County, NM III 5 10 [d] El  Paso  TM2 El  Paso /Dona Ana County Metals  Survey Site El  Paso , TX / Dona Ana

  4. A concept of an electricity storage system with 50 MWh storage capacity

    Directory of Open Access Journals (Sweden)

    Józef Paska

    2012-06-01

    Full Text Available Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy, and direct storage (in an electric or magnetic fi eld. Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers and hydrogen storage. These technologies have diff erent technical characteristics and economic parameters that determine their usability. This paper presents two concepts of an electricity storage tank with a storage capacity of at least 50 MWh, using the BES battery energy storage and CAES compressed air energy storage technologies.

  5. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume I. Study summary and concept screening. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This study was directed at a review of storage technologies, and particularly those which might be best suited for use in conjunction with wind and photovoltaics. The potential ''worth'' added by incorporating storage was extensively analyzed for both wind and photovoltaics. Energy storage concepts studied include (1) above ground pumped hydro storage, (2) underground pumped hydro storage, (3) thermal storage-oil, (4) thermal storage-steam, (5) underground compressed air storage, (6) pneumatic storage, (7) lead-acid batteries, (8) advanced batteries, (9) inertial storage (flywheel), (10) hydrogen generation and storage, and (11) superconducting magnetic energy storage. The investigations performed and the major results, conclusions, and recommendations are presented in this volume. (WHK)

  6. A review on electrochemical double-layer capacitors

    International Nuclear Information System (INIS)

    Sharma, Pawan; Bhatti, T.S.

    2010-01-01

    Various energy storage technologies have been developed in the market for various applications. Batteries flywheels, fuel cells are a few which are much common, those are being used in several countries and also research is also carrying on these technologies to make much better them. The electrochemical double-layer capacitor (EDLC) is an emerging technology, which really plays a key part in fulfilling the demands of electronic devices and systems, for present and future. This paper presents the historical background, classification, construction, modeling, testing, and voltage balancing of the EDLC technology. The applications of EDLC in electrical vehicles, power quality, and others are also discussed and their advantages over other storages technologies are also discussed.

  7. Adaptive identification of vessel's added moments of inertia with program motion

    Science.gov (United States)

    Alyshev, A. S.; Melnikov, V. G.

    2018-05-01

    In this paper, we propose a new experimental method for determining the moments of inertia of the ship model. The paper gives a brief review of existing methods, a description of the proposed method and experimental stand, test procedures and calculation formulas and experimental results. The proposed method is based on the energy approach with special program motions. The ship model is fixed in a special rack consisting of a torsion element and a set of additional servo drives with flywheels (reactive wheels), which correct the motion. The servo drives with an adaptive controller provide the symmetry of the motion, which is necessary for the proposed identification procedure. The effectiveness of the proposed approach is confirmed by experimental results.

  8. Controlled storage for distributed power generation and optimised energy flow in low-voltage mains; Steuerbare Speicher zur Optimierung des Energieflusses in Niederspannungsnetzen mit DEA

    Energy Technology Data Exchange (ETDEWEB)

    Hoeckel, M.; Vollenwyder, R. [Berner Fachhochschule, Hochschule fuer Technik und Informatik (BFH-HTI), Biel (Switzerland); Buholzer, M.; Kreyenbuehl, U. [RIPEnergy AG, Zollikon (Switzerland); Schnyder, G.; Mauchle, P. [Schnyder Ingenieure AG, Huenenberg (Switzerland)

    2005-07-01

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) examines ways to optimise energy flows in mains networks that include distributed generation facilities. Increasing use of decentralised generation, its effects on the operation of low-voltage mains and the efficient use of the 400 V mains is discussed. The principles of operation and construction of controlled storage installations are discussed and concrete examples of their use in both grid-connected and island operation are quoted. Alternatives to storage are looked at from both the technical and economic points of view. The storage technologies used such as flywheels, supercaps, redox-flow batteries and lead-acid accumulators are briefly assessed and the results of simulations are discussed.

  9. High speed reaction wheels for satellite attitude control and energy storage

    Science.gov (United States)

    Studer, P.; Rodriguez, E.

    1985-01-01

    The combination of spacecraft attitude control and energy storage (ACES) functions in common hardware, to synergistically maintain three-axis attitude control while supplying electrical power during earth orbital eclipses, allows the generation of control torques by high rotating speed wheels that react against the spacecraft structure via a high efficiency bidirectional energy conversion motor/generator. An ACES system encompasses a minimum of four wheels, controlling power and the three torque vectors. Attention is given to the realization of such a system with composite flywheel rotors that yield high energy density, magnetic suspension technology yielding low losses at high rotational speeds, and an ironless armature permanent magnet motor/generator yielding high energy conversion efficiency.

  10. Photovoltaic power systems energy storage

    International Nuclear Information System (INIS)

    Buldini, P.L.

    1991-01-01

    Basically, the solar photovoltaic power system consists of: Array of solar panels; Charge/voltage stabilizer; Blocking diode and Storage device. The storage device is a very important part of the system due to the necessity to harmonize the inevitable time shift between energy supply and demand. As energy storage, different devices can be utilized, such as hydropumping, air or other gas compression, flywheel, superconducting magnet, hydrogen generation and so on, but actually secondary (rechargeable) electrochemical cells appear to be the best storage device, due to the direct use for recharge of the d.c. current provided by the solar panels, without any intermediate step of energy transformation and its consequent loss of efficiency

  11. Report on achievements in fiscal 1979 in Sunshine Project. Development of a high-temperature ground layer drilling technology (feasibility study on high-temperature ground layer drilling); 1979 nendo koon chiso kussaku gijutsu no kaihatsu seika hokokusho. Koon chiso kussaku ni kansuru feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This paper reports research achievements on the following items: (1) a roller cutter bit, (2) solid bit and air friction bit, and (3) bit materials. In Item 1, fabrication and test were performed on a roller cutter bit on which studies were made for use, heat treatment, and manufacturing method of improved heat resistant steels. Effects were obtained in tip retention force when high-temperature rocks are drilled. Research and development was made on construction of a bearing as a friction type bit, in which dry bearing pressed in with a solid lubricating agent was inserted into an outer race. In Item 2, an indoor drilling test was carried out on a solid bit using two-layered ultra hard tip. A durability test on an air friction bit bearing recognized no wear on a check after operation of about 40 hours under a load of 3 tons and at a rotation speed of 80 rpm. Thus, the bearing was considered sufficiently reliable from the aspect of durability. In mud water drilling in the field, some wear was observed in the thrust direction. In Item 3, studies were performed on heat and corrosion resistant tip materials, bit materials using heat resistant alloys, improvement in bearing materials, strengthening of inside of a cutter made of metallurgically sintered powder, provision of heat resistance onto bit materials, indoor cutting tests, and seals for bits. (NEDO)

  12. Report on the achievements in fiscal 1999. Research and development on a basic technology to apply superconductivity (Research and development on a basic technology to apply superconductivity); 1999 nendo chodendo oyo kiban gijutsu kenkyu kaihatsu seika hokokusho. Chodendo oyo kiban gijutsu kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    The development of a basic technology to improve superconductivity characteristics has performed (1) studies on the high-temperature superconductivity mechanism, (2) studies on the critical current mechanism, and (3) search for materials. In Item (1), composition and temperature dependence were investigated by measuring superconductivity gap and change in the electron state of pseudo gap using photo-electron spectra and Raman scattering spectra. In Item (2), magnetic flux behavior in the vicinity of the irreversible line was investigated on magnetic flux dynamics of Bi2212 by measuring magnetic resistance and magnetization. High viscosity condition having strong magnetic flux liquid zone was discovered. In Item (3), Sr was used in place of Ba as the constituting element, and several new mercury-based superconductors were synthesized successfully by using the high pressure synthesizing method. In developing superconductive bulk materials and wire materials, elucidation was given on (1) an element technology for high magnetic power bulk materials, (2) an element technology for high critical temperature bulk materials, (3) a fundamental technology for manufacturing next generation wire materials, (4) a fundamental technology for manufacturing next generation large current conductors, and (5) growth mechanism in wire material crystals. Development of laminating and processing technologies for superconductive materials has worked on (1) a single crystal substrate technology, (2) a thin film lamination technology, (3) a standard bonding technology, (4) an advanced bonding technology, and (5) a thin film and bond evaluation technology. (NEDO)

  13. Symposium Introduction: Studies of women and men in bed and in space

    Science.gov (United States)

    Hargens, Alan

    INTRODUCTION: Some gender differences in response to microgravity have been noted previously. Furthermore current exercise systems for space flight do not provide loads equal to those on Earth. We hypothesized that supine LBNP treadmill exercise combined with flywheel resistive exercise maintains upright physiologic responses and tissue mass following 30-days and 60-days of head-down tilt (HDT) bed rest (BR). METHODS: For WISE-2005, 16 healthy women (age 25-40 years) underwent a 20-day baseline period, followed by 60-days continuous HDT (-6 degrees) BR and then by recovery for an additional 20-days. Women were assigned to either a control group (CON, n=8) who performed no exercise or to an exercise group (EX, n=8). EX subjects performed a 40-min, variable intensity (40-80 RESULTS: For WISE-2005, post-BR orthostatic tolerance (time to pre-syncope) was signifi- cantly better in the EX group than that in the CON group (p¡ 0.05). On BR day 50, heart rate (HR) was elevated at supine rest for the CON, but not for EX. Moreover, during a supine LBNP stress test at 30 mmHg, the HR increase from Pre-BR to BR day 50 for the EX group was less than that for CON. Heart mass decreased significantly in CON, but increased signifi- cantly in EX. Post-BR upright VO2pk, muscle strength, and endurance decreased significantly in CON, but were preserved in EX. Post-BR bone resorption was greater than pre-BR in both groups. Helical peptide and N-telopeptide excretions increased in both CON and EX. However, bone-specific alkaline phosphatase, a bone formation marker, tended to be higher in EX than in CON. DISCUSSION AND CONCLUSIONS: Previously we found that orthostatic tolerance is lower in women than that in men. For WISE-2005, supine treadmill exercise protocol within LBNP along with flywheel resistive exercise maintains orthostatic responses, upright exercise capacity, heart mass, muscle strength and endurance during 60-days HDT BR. By comparison with previous studies, cardiac atrophy

  14. Nonmagnetic concrete. Guide for the superconductive magnetically levitated train system (Maglev); Hijisei concrete. Chodendo jiki fujoshiki tetsudoyo guide way

    Energy Technology Data Exchange (ETDEWEB)

    Tottori, S; Sato, T [Railway Technical Research Institute, Tokyo (Japan)

    1994-07-01

    Non-magnetization is applied to concrete structures with which magnetic environment is a problem, such as a guideway for superconductive magnetically levitated train system (Maglev) and geomagnetism observation facilities. As an example, this paper introduces the conception and the design methods of guideways for Maglev. If reinforcing bars or tensing materials of common steel are placed close to a vehicle, inductive current is generated in the steel due to moving magnetic field, causing a problem to form part of driving resistance. The inductive current includes loop current and eddy current. The former current may be prevented if the contact resistance in steels with each other is about one ohm or more, but the latter current has no other means but to minimize it as long as the material is electrically conductive. Conceivable measures may include the use as reinforcing bars of non magnetic high Mn-steel with electric specific resistance of 4 to 5 times as large as that for common steel reinforcing bars, and the use of continuous reinforcing fibers such as aramid. The latter material requires strength design especially importantly, but has obtained good result when it was constructed at the experimental linear motor train guideway at Miyazaki, Japan. 5 refs., 6 figs.

  15. Examining objects with penetrating radiation

    International Nuclear Information System (INIS)

    Taylor, S.K.; Erker, J.W.; Carper, R.L.

    1979-01-01

    In a tomographic scanner in which a source or beam of radiation is moved with a varying speed, and in particular in a traverse and rotate type scanner, a carrier carrying the radiation source and detectors is traversed relative to the patient with simple harmonic motion. Methods of reducing the vibration are described using a motor, which may include a flywheel, running at substantially constant speed to traverse the carriage. The vibration is further reduced by connecting to the carriage a motor for rotating the carriage via a flexible drive, e.g. a chain. Cable connections to the X-ray tube and other elements carried by the movable carriage are simplified with a bicycle-chain like flexible cable support. (author)

  16. Applied superconductivity. Handbook on devices and applications. Vol. 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Paul (ed.) [Jena Univ. (Germany). Inst. fuer Festkoerperphysik, AG Tieftemperaturphysik

    2015-07-01

    The both volumes contain the following 12 chapters: 1. Fundamentals; 2. Superconducting Materials; 3. Technology, Preparation, and Characterization (bulk materials, thin films, multilayers, wires, tapes; cooling); 4, Superconducting Magnets; 5. Power Applications (superconducting cables, superconducting current leads, fault current limiters, transformers, SMES and flywheels; rotating machines; SmartGrids); 6. Superconductive Passive Devices (superconducting microwave components; cavities for accelerators; superconducting pickup coils; magnetic shields); 7. Applications in Quantum Metrology (superconducting hot electron bolometers; transition edge sensors; SIS Mixers; superconducting photon detectors; applications at Terahertz frequency; detector readout); 8. Superconducting Radiation and Particle Detectors; 9. Superconducting Quantum Interference (SQUIDs); 10. Superconductor Digital Electronics; 11. Other Applications (Josephson arrays as radiation sources. Tunable microwave devices) and 12. Summary and Outlook (of the superconducting devices).

  17. Applied superconductivity. Handbook on devices and applications. Vol. 1 and 2

    International Nuclear Information System (INIS)

    Seidel, Paul

    2015-01-01

    The both volumes contain the following 12 chapters: 1. Fundamentals; 2. Superconducting Materials; 3. Technology, Preparation, and Characterization (bulk materials, thin films, multilayers, wires, tapes; cooling); 4, Superconducting Magnets; 5. Power Applications (superconducting cables, superconducting current leads, fault current limiters, transformers, SMES and flywheels; rotating machines; SmartGrids); 6. Superconductive Passive Devices (superconducting microwave components; cavities for accelerators; superconducting pickup coils; magnetic shields); 7. Applications in Quantum Metrology (superconducting hot electron bolometers; transition edge sensors; SIS Mixers; superconducting photon detectors; applications at Terahertz frequency; detector readout); 8. Superconducting Radiation and Particle Detectors; 9. Superconducting Quantum Interference (SQUIDs); 10. Superconductor Digital Electronics; 11. Other Applications (Josephson arrays as radiation sources. Tunable microwave devices) and 12. Summary and Outlook (of the superconducting devices).

  18. Annual report 1982

    International Nuclear Information System (INIS)

    1983-06-01

    This annual report gives a survey of the activities of ECN at The Hague and Petten, Netherlands, in 1982. These activities are concerned with energy generation and development and with scientific and technical applications of thermal neutrons, which are available from the High Flux Reactor and the Low Flux Reactor at Petten. The Energy Study Centre (ESC), a special department of ECN, is engaged with social-economic studies on energy generation and utilization. ESC also investigates the consequences of energy scenarios. The Bureau Energy Research Projects (BEOP) coordinates and administers all national research projects, especially on flywheels, solar energy, wind power and coal combustion. After a survey of staffing and finances the report ends with a list of ECN publications

  19. Analysis of the TFTR toroidal field power supply and its interactions with other loads

    International Nuclear Information System (INIS)

    Newell, W.E.

    1976-01-01

    The rectifiers which supply the four major pulsed loads of the Tokamak Fusion Test Reactor (TFTR) share two flywheel generators. Thus there is a possibility of significant interaction between these rectifiers by way of the notched voltage waveforms which they create at the generator terminals. This paper presents an analysis of the build up of current in the toroidal field (TF) coil, which is the largest load. From this analysis, the notched waveform caused by the TF rectifier is derived and its effect on the other rectifiers is investigated. It is concluded that with the present conceptual design parameters, the external effects of the interactions are likely to be small. However, the internal control circuits of the rectifiers must be carefully designed to minimize those effects

  20. The stationary storage of energy. Available technologies and CEA researches

    International Nuclear Information System (INIS)

    2012-01-01

    After a discussion of the main challenges related to the stationary storage of energy, this publication proposes an overview of the different available technologies: plant for transfer of energy by pumping, compressed air, energy flywheels, hydrogen, lithium-ion battery, redox-flow battery, thermal storage by sensitive heat, thermal-chemical storage coupled to a thermal solar system, thermal storage by phase change, superconductive inductance storage, super-capacitors. It discusses the criteria of choice of storage technology, either for electric energy storage or for heat storage. It proposes an overview of researches performed within the CEA on storage systems: electrochemical, thermal, and hydrogen-based storages. The final chapter addresses current fundamental researches on storage in the field of lithium-ion batteries, hydrogen as a fuel, and thermoelectricity

  1. Design definition of a mechanical capacitor

    Science.gov (United States)

    Michaelis, T. D.; Schlieban, E. W.; Scott, R. D.

    1977-01-01

    A design study and analyses of a 10 kW-hr, 15 kW mechanical capacitor system was studied. It was determined that magnetically supported wheels constructed of advanced composites have the potential for high energy density and high power density. Structural concepts are analyzed that yield the highest energy density of any structural design yet reported. Particular attention was paid to the problem of 'friction' caused by magnetic and I to the second power R losses in the suspension and motor-generator subsystems, and low design friction levels have been achieved. The potentially long shelf life of this system, and the absence of wearing parts, provide superior performance over conventional flywheels supported with mechanical bearings. Costs and economies of energy storage wheels were reviewed briefly.

  2. The priming of priming: Evidence that the N400 reflects context-dependent post-retrieval word integration in working memory.

    Science.gov (United States)

    Steinhauer, Karsten; Royle, Phaedra; Drury, John E; Fromont, Lauren A

    2017-06-09

    Which cognitive processes are reflected by the N400 in ERPs is still controversial. Various recent articles (Lau et al., 2008; Brouwer et al., 2012) have revived the idea that only lexical pre-activation processes (such as automatic spreading activation, ASA) are strongly supported, while post-lexical integrative processes are not. Challenging this view, the present ERP study replicates a behavioral study by McKoon and Ratcliff (1995) who demonstrated that a prime-target pair such as finger - hand shows stronger priming when a majority of other pairs in the list share the analogous semantic relationship (here: part-whole), even at short stimulus onset asynchronies (250ms). We created lists with four different types of semantic relationship (synonyms, part-whole, category-member, and opposites) and compared priming for pairs in a consistent list with those in an inconsistent list as well as unrelated items. Highly significant N400 reductions were found for both relatedness priming (unrelated vs. inconsistent) and relational priming (inconsistent vs. consistent). These data are taken as strong evidence that N400 priming effects are not exclusively carried by ASA-like mechanisms during lexical retrieval but also include post-lexical integration in working memory. We link the present findings to a neurocomputational model for relational reasoning (Knowlton et al., 2012) and to recent discussions of context-dependent conceptual activations (Yee and Thompson-Schill, 2016). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Modeling and Control of Flexible HEV Charging Station upgraded with Flywheel Energy Storage

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Shafiee, Qobad; Wu, Dan

    2014-01-01

    This paper deals with the design of a fast DC charging station (FCS) for hybrid electric vehicles (HEVs) that is connected at a remote location. Power rating of this new technology can go up to a hundred kW and it represents a main challenge for its broad acceptance in distribution systems...

  4. Lay Hold! Heave! Building Speed: Excitement and Satisfaction in Pushing the BGE Flywheel

    Science.gov (United States)

    2009-04-01

    future. Accessions has stirred up a significant review of how the Army runs the business of bringing in new lieutenants and leveraging their academic ...occasional plagiarism . Tablet personal computers (PCs) have been purchased for one ECCC small group, and the sec- ond pilot of use of the Tablet PC

  5. FY 1998 result report. Study of a total system for the development of superconductor power application technology (Feasibility study of commercialization of superconductivity technology and study of the introductory effect. Future superconductivity technology development in Japan); 1998 nendo seika hokokusho. Chodendo denryoku oyo gijutsu kaihatsu total system nado no kenkyu chodendo gijutsu no jitsuyoka kanosei oyobi donyu kokanado no chosa (Nippon ni okeru chodendo gijutsu kaihatsu no kongo no hokosei)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    As a part of the New Sunshine Project, 'an R and D project on superconductor power application technology,' an examinational study was made as a mini project to clarify the developmental course for commercialization of superconductor technology. The superconductor technology is being watched with interest as a technology in the 21st century. In the application to the electric power/energy field, in particular, expected are the energy saving effect by high operation efficiency, excellent environmentality, developmental potentiality of new equipment/system by the application of ferromagnetism, etc. Accordingly, the paper analytically arranged the needs of superconductor devices in Japan and abroad and the technology seeds corresponding to the needs, and prepared the developmental subjects of superconductor technology. These developmental steps and the mutual relationship were expressed in an R and D framework. At the same time, as to the superconductivity, a survey outlined the projects carried out in each government office in Japan. The future developmental course was indicated, and proposals were made on the equipment/system as object which are the subjects for urgent development for commercialization. (NEDO)

  6. Achievement report on developing superconductor power applied technologies in fiscal 1999 (2). Research and development of superconductor wire materials, research and development of superconductor power generators, research of total systems, research and development of freezing systems, and verification tests; 1999 nendo chodendo denryoku oyo gijutsu kaihatsu seika hokokusho. 2. Chodendo senzai no kenkyu kaihatsu / chodendo hatsudenki no kenkyu kaihatsu / total system no kenkyu / reito system no kenkyu kaihatsu / jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With an objective to achieve higher efficiency, higher density, and higher stability in power systems, research and development has been performed on superconductor power generators. This paper summarizes the achievements thereof in fiscal 1999. A verification test was given on the rotor of an ultra high speed responding generator. In a sudden short circuit test using the different phase charging method, no anomalies were found such as quench generation and vibration changes, wherein the healthiness of the generator was verified. In the VVVF actuation test, knowledge was acquired on the actuation method when the ultra high speed responding generator is applied to a combined cycle plant. After the verification test has been completed, the disassembly inspections such as visual check and non-destructive test were performed. With regard to the vacuum leakage found in the rotor under very low temperatures, the causes were presumed and the countermeasures were discussed by observing the weld structures. In the design research, the conception design on the 200-MW pilot generator was reviewed by reflecting the results of the verification tests on the model generator. At the same time, trial design was made on a 600-MW target generator. In summarizing the overall research achievements, the achievements and evaluations were summarized on technological issues that have been allotted to each research member. (NEDO)

  7. Achievement report for fiscal 1998 on the development of superconductor power application technology. 2. Research and development of superconducting wire and superconductive power generator, research of total system, research and development of refrigeration system, and verification test; 1998 nendo chodendo denryoku oyo gijutsu kaihatsu seika hokokusho. 2. Chodendo senzai no kenkyu kaihatsu, chodendo hatsudenki no kenkyu kaihatsu, total sytsem no kenkyu, reito system no kenkyu kaihatsu, jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The slow excitation response type power generator is studied when the rotor and stator of a 70,000kW-class model are combinedly subjected to an on-site verification test, when a good result is obtained. The rotor is disassembled for inspection, and its members are found to be sound without any problem in terms of mechanical strength. The quick excitation response type is studied when a 70,000kW model is experimentally built and subjected to an on-site verification test after a rotation and excitation test in the factory, when the pilot machine concept design is reviewed. In the study of a total system, efforts continue for the review of the model machine test method, improvement on generator design and analytical methods, development of operating methods, and the effect of its introduction into the power system. Since a He-refrigerated system is requested to exhibit high reliability for application to power equipment and to be capable of continuous long-period operation, a system having constituents with their reliability enhanced and an appropriate redundant system is developed, and a verification study is under way which will continue for more than 10,000 hours. Described also is an oil-free low-temperature turbo refrigerator. The latest quick excitation response type rotor is also tested for verification. (NEDO)

  8. FY 1998 result report. Study of a total system for the development of superconductor power application technology (Feasibility study of commercialization of superconductivity technology and study of the introductory effect. Future superconductivity technology development in Japan); 1998 nendo seika hokokusho. Chodendo denryoku oyo gijutsu kaihatsu total system nado no kenkyu chodendo gijutsu no jitsuyoka kanosei oyobi donyu kokanado no chosa (Nippon ni okeru chodendo gijutsu kaihatsu no kongo no hokosei)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    As a part of the New Sunshine Project, 'an R and D project on superconductor power application technology,' an examinational study was made as a mini project to clarify the developmental course for commercialization of superconductor technology. The superconductor technology is being watched with interest as a technology in the 21st century. In the application to the electric power/energy field, in particular, expected are the energy saving effect by high operation efficiency, excellent environmentality, developmental potentiality of new equipment/system by the application of ferromagnetism, etc. Accordingly, the paper analytically arranged the needs of superconductor devices in Japan and abroad and the technology seeds corresponding to the needs, and prepared the developmental subjects of superconductor technology. These developmental steps and the mutual relationship were expressed in an R and D framework. At the same time, as to the superconductivity, a survey outlined the projects carried out in each government office in Japan. The future developmental course was indicated, and proposals were made on the equipment/system as object which are the subjects for urgent development for commercialization. (NEDO)

  9. Report on results for fiscal 1997 on development of superconducting electric power application technology. Pt. 2. R and D of superconducting wire, R and D of superconducting generator, studies on total system, R and D of refrigeration system, and verification test; 1997 nendo chodendo denryoku oyo gijutsu kaihatsu seika hokokusho. Chodendo senzai no kenkyu kaihatsu, chodendo hatsudenki no kenkyu kaihatsu, total system no kenkyu, reito system no kenkyu kaihatsu, jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report refers, continuously to the Part 1, to the in-situ verification test of the slow-response type model machine rotor and to the review of the conceptual design of the pilot machine. On the basis of the R and D results of various element technology/partial models obtained before the previous fiscal year, the design, manufacturing and factory test had been conducted for a 70,000kW class slow-response type model machine rotor. This year, an in-situ verification test was performed to complete the test of all planned test items. Using the technological results obtained in the design, manufacturing and test of the 70,000kW class model machine, the conceptual design is being reviewed of the 200,000kW class pilot machine. In the aspect of the functional design, accurate grasping of the thermal load is essential for the purpose of attaining a large capacity for a superconducting generator, as a part of which a thermal load analytical method was planned to be established for a torque tube heat exchanger. The reasonableness of the analysis was verified through a comparison with the factory test result of the 70,000kW class slow-response type rotor, indicating good agreement between the calculation result and the actual measurement, and enabling the result to be obtained that explains dependency of the thermal load on the number of revolution. (NEDO)

  10. Achievement report on developing superconductor power applied technologies in fiscal 1999 (1). Research and development of superconductor wire materials, research and development of superconductor power generators, research of total systems, research and development of freezing systems, and verification tests; 1999 nendo chodendo denryoku oyo gijutsu kaihatsu seika hokokusho. 1. Chodendo senzai no kenkyu kaihatsu / chodendo hatsudenki no kenkyu kaihatsu / total system no kenkyu / reito system no kenkyu kaihatsu / jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With an objective to achieve higher efficiency, higher density, and higher stability in power systems, research and development has been performed on superconductor power applied technologies. This paper summarizes the achievements thereof in fiscal 1999. In research and development of the superconductor wire materials, decrease in loss and increase in capacity of the conductors were progressed for the Nb{sub 3}Sn wire material, whereas its mechanical properties and stability were evaluated. In research and development of the superconductor generators, an ultra high speed responding generator was verified of its healthiness in a sudden short circuit test. A linkage test with an operating 77-kV system was performed, wherein verification was given that the superconductor generator can be operated stably against various disturbances. In research and development of the freezing systems, an improved system was structured, which achieved operation of 11,390 hours in a single system as a result of the high reliability of the oil-free structure. In the verification tests, the ultra high speed responding model generator was connect to the freezing system to give such tests as load test, onerous test, actuation test by using the M-G system, and 77-kV system linkage test. The functions, reliability, and durability of the system were verified, and different data were acquired. (NEDO)

  11. Report on research and development achievements in fiscal 1980 in Sunshine Project. Development of a high-temperature bed drilling technology (Feasibility study on high-temperature bed drilling); 1980 nendo koon chiso kusaku gijutsu no kaihatsu seika hokokusho. Koon chiso kussaku ni kansuru feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    Discussions were given on feasibility of a technology to drill efficiently a high-temperature bed (350 degrees C and 400 kg/cm{sup 2}) to 3 to 5 km. This paper summarizes the bit items for development (bearings, cutters, blade tips, sealing materials, a tip retaining method and structures). The roller cutter bit had the retaining power of the mother cutter material strengthened by using improved carbonized steel and heat treatment. A bit bearing using heat resistant material showed a life of 40 hours or longer at 350 degrees C. The solid bit using a two-layered ultra hard blade tip achieved a drilling rate of 0.84 m/h without any breakage. Studies were also advanced on the air friction drilling method. This paper also dwelled on heat and corrosion resistant blade tips, materials, enhancement of heat resistance in powder sintered cutters, and studies on the bit sealing. In addition to discussions on the percussion drilling as a new drilling method, discussions were given on slanted drilling, air drilling and multi-leg drilling. The paper summarizes these discussions together with development problems to be solved in the future. Research and development works were carried out also on an explosion preventing device, a roll packer, and a rotating head prevent device. (NEDO)

  12. Resistance Training with Co-ingestion of Anti-inflammatory Drugs Attenuates Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Daniele A. Cardinale

    2017-12-01

    Full Text Available Aim: The current study aimed to examine the effects of resistance exercise with concomitant consumption of high vs. low daily doses of non-steroidal anti-inflammatory drugs (NSAIDs on mitochondrial oxidative phosphorylation in skeletal muscle. As a secondary aim, we compared the effects of eccentric overload with conventional training.Methods: Twenty participants were randomized to either a group taking high doses (3 × 400 mg/day of ibuprofen (IBU; 27 ± 5 year; n = 11 or a group ingesting a low dose (1 × 75 mg/day of acetylsalicylic acid (ASA; 26 ± 4 year; n = 9 during 8 weeks of supervised knee extensor resistance training. Each of the subject's legs were randomized to complete the training program using either a flywheel (FW device emphasizing eccentric overload, or a traditional weight stack machine (WS. Maximal mitochondrial oxidative phosphorylation (CI+IIP from permeabilized skeletal muscle bundles was assessed using high-resolution respirometry. Citrate synthase (CS activity was assessed using spectrophotometric techniques and mitochondrial protein content using western blotting.Results: After training, CI+IIP decreased (P < 0.05 in both IBU (23% and ASA (29% with no difference across medical treatments. Although CI+IIP decreased in both legs, the decrease was greater (interaction p = 0.015 in WS (33%, p = 0.001 compared with FW (19%, p = 0.078. CS activity increased (p = 0.027 with resistance training, with no interactions with medical treatment or training modality. Protein expression of ULK1 increased with training in both groups (p < 0.001. The increase in quadriceps muscle volume was not correlated with changes in CI+IIP (R = 0.16.Conclusion: These results suggest that 8 weeks of resistance training with co-ingestion of anti-inflammatory drugs reduces mitochondrial function but increases mitochondrial content. The observed changes were not affected by higher doses of NSAIDs consumption, suggesting that the resistance training

  13. Proportional-integral controller based small-signal analysis of hybrid distributed generation systems

    International Nuclear Information System (INIS)

    Ray, Prakash K.; Mohanty, Soumya R.; Kishor, Nand

    2011-01-01

    Research highlights: → We aim to minimize the deviation of frequency in an integrated energy resources like offshore wind, photovoltaic (PV), fuel cell (FC) and diesel engine generator (DEG) along with the energy storage elements like flywheel energy storage system (FESS) and battery energy storage system (BESS). → Further ultracapacitor (UC) as an alternative energy storage element and proportional-integral (PI) controller is addressed in order to achieve improvements in the deviation of frequency profiles. → A comparative assessment of frequency deviation for different hybrid systems is also carried out in the presence of high voltage direct current (HVDC) link and high voltage alternating current (HVAC) line. → In the study both qualitative and quantitative analysis reflects the improvements in frequency deviation profiles with use of ultracapacitor (UC) as energy storage element. -- Abstract: The large band variation in the wind speed and unpredictable solar radiation causes remarkable fluctuations of output power in offshore wind and photovoltaic system respectively, which leads to large deviation in the system frequency. In this context, to minimize the deviation in frequency, this paper presents integration of different energy resources like offshore wind, photovoltaic (PV), fuel cell (FC) and diesel engine generator (DEG) along with the energy storage elements like flywheel energy storage system (FESS) and battery energy storage system (BESS). Further ultracapacitor (UC) as an alternative energy storage element and proportional-integral (PI) controller is addressed in order to achieve improvements in the deviation of frequency profiles. A comparative assessment of frequency deviation for different hybrid systems is also carried out in the presence of high-voltage direct current (HVDC) link and high-voltage alternating current (HVAC) line. Frequency deviation for different isolated hybrid systems are presented graphically as well as in terms of

  14. Damping System for Torsional Resonances in Generator Shafts Using a Feedback Controlled Buffer Storage of Magnetic Energy at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Kaesemann, C.-P.; Huart, M.; Mueller, P.; Sigalov, A.

    2006-01-01

    The electrical power and energy for ASDEX Upgrade (AUG) is provided by three separate pulsed networks based on flywheel generators. Major damages at couplings of the shaft of the synchronous generator EZ4 (220 MVA / 600 MWs) were discovered during a routine check. The damage can only be explained by torsional resonances in the generator shaft which are excited by active power transients from the converter loads. For generator protection, torque sensors were installed near the coupling between the flywheel and the rotor. They cause an early termination of plasma experiments if a predefined torque level is exceeded. These terminations limited the achievable plasma current flattop time of AUG significantly. Since a low natural damping of the torsional resonances was identified as a major cause of the phenomena observed, novel feedback controlled DC circuits were developed providing electromagnetic damping for the generator shafts in case of excitation. Each damping circuit consists of a DC choke, acting as a buffer storage of magnetic energy, fed by a thyristor converter. The current reference for the converter is derived from the torque sensor signals. This enables the choke current to alternate with the measured natural frequency of the shaft assembly. Thus, with proper phasing, torsional resonances in generator shaft systems weighing more than 100 tons can be damped with little additional power. Since April 2003, the damping circuits have been routinely operated during all plasma experiments. Despite the low damping power used, torsional resonances could be reduced to a value that avoids a trip signal from the torque sensors. This paper describes the results from analysing, designing and testing of the feedback controlled buffer storage of magnetic energy, representing an effective and low cost solution for damping torsional resonances in electric power systems. It will present the layout, analyse the results of measurements obtained during commissioning and

  15. A deployable mechanism concept for the collection of small-to-medium-size space debris

    Science.gov (United States)

    St-Onge, David; Sharf, Inna; Sagnières, Luc; Gosselin, Clément

    2018-03-01

    Current efforts in active debris removal strategies and mission planning focus on removing the largest, most massive debris. It can be argued, however, that small untrackable debris, specifically those smaller than 5 cm in size, also pose a serious threat. In this work, we propose and analyze a mission to sweep the most crowded Low Earth Orbit with a large cupola device to remove small-to-medium-size debris. The cupola consists of a deployable mechanism expanding more than 25 times its storage size to extend a membrane covering its surface. The membrane is sufficiently stiff to capture most small debris and to slow down the medium-size objects, thus accelerating their fall. An overview of the design of a belt-driven rigid-link mechanism proposed to support the collecting cupola surface is presented, based on our previous work. Because of its large size, the cupola will be subject to significant aerodynamic drag; thus, orbit maintenance analysis is carried out using the DTM-2013 atmospheric density model and it predicts feasible requirements. While in operation, the device will also be subject to numerous hyper-velocity impacts which may significantly perturb its orientation from the desired attitude for debris collection. Thus, another important feature of the proposed debris removal device is a distributed array of flywheels mounted on the cupola for reorienting and stabilizing its attitude during the mission. Analysis using a stochastic modeling framework for hyper-velocity impacts demonstrates that three-axes attitude stabilization is achievable with the flywheels array. MASTER-2009 software is employed to provide relevant data for all debris related estimates, including the debris fluxes for the baseline mission design and for assessment of its expected performance. Space debris removal is a high priority for ensuring sustainability of space and continual launch and operation of man-made space assets. This manuscript presents the first analysis of a small

  16. Electromagnetic analysis of HTSC by advanced fluxoid dynamics method; Kairyogata jisoku ryoshi doryokugakuho ni yoru koon chodendotai no denji kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Demachi, K.; Nakano, M.; Miya, K. [The Univ. of Tokyo, Tokyo (Japan). Graduate School of Engineering

    2000-05-29

    In this study, the improved fluxoid quantum dynamics method which applied the handling of the lattice in the lattice gas automaton method into the fluxoid quantum dynamics was developed. The saving of a memory capacity and the speedup of the calculation were carried out. Using a BSCCO single crystal which introduced a pinning center by the heavy ion irradiation as an analysis object, the validity of this technique was shown by the comparison with the experimental result. By the improved fluxoid quantum dynamics method, the space was made discrete by the triangular lattice in the two-dimensional system. The fluxoid quantum exists only on the lattice point, and received the force from the fluxoid quantum, the Meissner magnetic field and the pinning center in the circumference, and then moved to the 6 neighboring lattice points. Since the pattern of the positional relation of the fluxoid quantum was limited by the use of triangular lattice, the high-speed computation became possible by storing the interaction force into a database. The dependence for the radiation value of the torque in the axial type super-conductive magnet bearings was analyzed, and the possibility of the rotational loss control by the heavy ion irradiation was shown. (NEDO)

  17. Validation gets underway on Sizewell ''Incredibility of Failure'' components

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The Inspection Validation Centre (IVC) of AEA Reactor Services in the UK has begun an eighteen month programme to validate the procedures and personnel of OIS plc, the inspection agents chosen by Nuclear Electric to carry out the pre-service ultrasonic inspection of the Sizewell B Pressurized Water Reactor components assigned to the ''Incredibility of Failure'' (IoF) category. The work involves several Sizewell B primary circuit components - the steam generators, pressurizer, and primary pumps - and will consider the inspections to be applied to the circumferential and nozzle-to-shell welds, nozzle inner radii and the pump fly-wheel forging. The validation will provide independent confirmation that OIS personnel are capable of using manual and automated methods to find and size any flaws of structural concern in these components. (author)

  18. Simulation model for wind energy storage systems. Volume III. Program descriptions. [SIMWEST CODE

    Energy Technology Data Exchange (ETDEWEB)

    Warren, A.W.; Edsinger, R.W.; Burroughs, J.D.

    1977-08-01

    The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume III, the SIMWEST program description contains program descriptions, flow charts and program listings for the SIMWEST Model Generation Program, the Simulation program, the File Maintenance program and the Printer Plotter program. Volume III generally would not be required by SIMWEST user.

  19. Effect of Process Variables on the Inertia Friction Welding of Superalloys LSHR and Mar-M247

    Science.gov (United States)

    Mahaffey, D. W.; Senkov, O. N.; Shivpuri, R.; Semiatin, S. L.

    2016-08-01

    The effect of inertia friction welding process parameters on microstructure evolution, weld plane quality, and the tensile behavior of welds between dissimilar nickel-base superalloys was established. For this purpose, the fine-grain, powder metallurgy alloy LSHR was joined to coarse-grain cast Mar-M247 using a fixed level of initial kinetic energy, but different combinations of the flywheel moment of inertia and initial rotation speed. It was found that welds made with the largest moment of inertia resulted in a sound bond with the best microstructure and room-temperature tensile strength equal to or greater than that of the parent materials. A relationship between the moment of inertia and weld process efficiency was established. The post-weld tensile behavior was interpreted in the context of observed microstructure gradients and weld-line defects.

  20. A climate of change

    International Nuclear Information System (INIS)

    Figueres Olsen, J.M.; Figueres, C.

    2000-01-01

    Global climate change has ceased to be strictly an environmental threat, lurking in the future. Its potential impacts could well make it the greatest social and economic challenge that humanity will have to face in the coming century. The first is competition. An energy revolution is now in the making, with advanced new technologies such as fuel cells, photovoltaics, wind turbines and flywheels entering the market. The reason why we moved beyond the horse and buggy a hundred years ago was not because we ran out of hay. Similarly, there is no doubt that the planet still has impressive oil reserves. However, as was the case when the oil era first emerged, those industries that successfully incorporate the new technologies will be well positioned to succeed economically in the 21 st century

  1. Proposal of Magnetic Circuit using Magnetic Shielding with Bulk-Type High Tc Superconductors

    Science.gov (United States)

    Fukuoka, Katsuhiro; Hashimoto, Mitsuo; Tomita, Masaru; Murakami, Masato

    Recently, bulk-type high Tc superconductors having a characteristic of critical current density over 104 A/cm2 in liquid nitrogen temperature (77K) on 1T, can be produced. They are promising for many practical applications such as a magnetic bearing, a magnetic levitation, a flywheel, a magnetic shielding and others. In this research, we propose a magnetic circuit that is able to use for the magnetic shield of plural superconductors as an application of bulk-type high Tc superconductors. It is a closed magnetic circuit by means of a toroidal core. Characteristics of the magnetic circuit surrounded with superconductors are evaluated and the possibility is examined. As the magnetic circuit of the ferrite core is surrounded with superconductors, the magnetic flux is shielded even if it leaked from the ferrite core.

  2. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    DEFF Research Database (Denmark)

    Yang, Bo; Makarov, Yuri; Desteese, John

    2008-01-01

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results...... and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries...... of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service...

  3. Development of Simulator for High-Speed Elevator System

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Hyung Min; Kim, Sung Jun; Sul, Seung Ki; Seok, Ki Riong [Seoul National University, Seoul(Korea); Kwon, Tae Seok [Hanyang University, Seoul(Korea); Kim, Ki Su [Konkuk University, Seoul(Korea); Shim, Young Seok [Inha University, incheon(Korea)

    2002-02-01

    This paper describes the dynamic load simulator for high-speed elevator system, which can emulate 3-mass system as well as equivalent 1-mass system 1-mass system. In order to implement the equivalent inertia of entire elevator system, the conventional simulators have generally utilized the mechanical inertia(flywheel) with large radius, which makes the entire system large and heavy. In addition, the mechanical inertia should be replaced each time in order to test another elevator system. In this paper, the dynamic load simulation methods using electrical inertia are presented so that the volume and weight of simulator system are greatly reduced and the adjustment of inertia value can be achieved easily by software. Experimental results show the feasibility of this simulator system. (author). 5 refs., 7 figs., 2 tabs.

  4. Simulation model for wind energy storage systems. Volume II. Operation manual. [SIMWEST code

    Energy Technology Data Exchange (ETDEWEB)

    Warren, A.W.; Edsinger, R.W.; Burroughs, J.D.

    1977-08-01

    The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume II, the SIMWEST operation manual, describes the usage of the SIMWEST program, the design of the library components, and a number of simple example simulations intended to familiarize the user with the program's operation. Volume II also contains a listing of each SIMWEST library subroutine.

  5. Materials process and applications of single grain (RE)-Ba-Cu-O bulk high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Li Beizhan; Zhou Difan; Xu Kun; Hara, Shogo; Tsuzuki, Keita; Miki, Motohiro; Felder, Brice; Deng Zigang [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology (TUMSAT), 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Izumi, Mitsuru, E-mail: izumi@kaiyodai.ac.jp [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology (TUMSAT), 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan)

    2012-11-20

    This paper reviews recent advances in the melt process of (RE)-Ba-Cu-O [(RE)BCO, where RE represents a rare earth element] single grain high-temperature superconductors (HTSs), bulks and its applications. The efforts on the improvement of the magnetic flux pinning with employing the top-seeded melt-growth process technique and using a seeded infiltration and growth process are discussed. Which including various chemical doping strategies and controlled pushing effect based on the peritectic reaction of (RE)BCO. The typical experiment results, such as the largest single domain bulk, the clear TEM observations and the significant critical current density, are summarized together with the magnetization techniques. Finally, we highlight the recent prominent progress of HTS bulk applications, including Maglev, flywheel, power device, magnetic drug delivery system and magnetic resonance devices.

  6. Stochastic control applied to the ISWEC Wave Energy System

    International Nuclear Information System (INIS)

    Bracco, Giovanni; Casassa, Maria; Giorcelli, Ermanno; Mattiazzo, Giuliana; Passione, Biagio; Raffero, Mattia; Vissio, Giacomo; Martini, Michele

    2015-01-01

    ISWEC (Inertial Sea Wave Energy Converter) is a floating marine device able to harvest sea waves energy by the interaction between the pitching motion of a floater and a spinning flywheel which can drive an electric PTO. In the ISWEC the hull dynamics is governed and controlled by the gyroscopic torque. The optimal control logic results in tuning the floater dynamics to the incoming waves in order to maximize the power transfer from the waves to the floater. In this paper the control problems of the ISWEC are stated and a control scheme based on the sub-optimal stochastic control logic is presented. The control scheme here presented has been tested using real wave records acquired at the deployment location in Pantelleria Island, which is one of the most energetic sites of the Mediterranean Sea.

  7. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments

    Science.gov (United States)

    Chang, Jefferson C.; Lockner, David A.; Reches, Z.

    2012-01-01

    After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth’s crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (Mw) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake’s rupture front quickens dynamic weakening by intense wear of the fault zone.

  8. Adaptive FTC based on Control Allocation and Fault Accommodation for Satellite Reaction Wheels

    DEFF Research Database (Denmark)

    Baldi, P.; Blanke, Mogens; Castaldi, P.

    2016-01-01

    and fault accommodation module directly exploiting the on-line fault estimates. The use of the nonlinear geometric approach and radial basis function neural networks allows to obtain a precise fault isolation, independently from the knowledge of aerodynamic disturbance parameters, and to design generalised......This paper proposes an active fault tolerant control scheme to cope with faults or failures affecting the flywheel spin rate sensors or satellite reaction wheel motors. The active fault tolerant control system consists of a fault detection and diagnosis module along with a control allocation...... estimation filters, which do not need a priori information about the internal model of the signal to be estimated. The adaptive control allocation and sensor fault accommodation can handle both temporal faults and failures. Simulation results illustrate the convincing fault correction and attitude control...

  9. Materials process and applications of single grain (RE)-Ba-Cu-O bulk high-temperature superconductors

    Science.gov (United States)

    Li, Beizhan; Zhou, Difan; Xu, Kun; Hara, Shogo; Tsuzuki, Keita; Miki, Motohiro; Felder, Brice; Deng, Zigang; Izumi, Mitsuru

    2012-11-01

    This paper reviews recent advances in the melt process of (RE)-Ba-Cu-O [(RE)BCO, where RE represents a rare earth element] single grain high-temperature superconductors (HTSs), bulks and its applications. The efforts on the improvement of the magnetic flux pinning with employing the top-seeded melt-growth process technique and using a seeded infiltration and growth process are discussed. Which including various chemical doping strategies and controlled pushing effect based on the peritectic reaction of (RE)BCO. The typical experiment results, such as the largest single domain bulk, the clear TEM observations and the significant critical current density, are summarized together with the magnetization techniques. Finally, we highlight the recent prominent progress of HTS bulk applications, including Maglev, flywheel, power device, magnetic drug delivery system and magnetic resonance devices.

  10. Status of the superconductive Maglev program in the United States; Amerika ni okeru chodendo jiki fujo tetsudo keikaku no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Osaki, H [Tokyo Univ. (Japan). Faculty of Engineering

    1994-07-25

    In the United States, high speed transportation plan was approved in 1965, and research and development of the superconductive magnetically levitated system (Maglev) became active. Although research and development for design, construction, and test for 500km/h Maglev were started in 1974, the federal government ordered to stop in 1975 all the development projects of high speed transportation traffic systems, and the activity slowed down very much as compared with those in Japan, Germany, and other countries. In 1990, the National Maglev Initiative (NMI) project was established. The feature which is different from those of Japanese and German systems is 0.16g and larger acceleration, which allows to shorten the transit time between stations. Development plan for Maglev prototype was approved officially in November, 1991. Features of levitation, guidance, propulsion as well as the carriage lineup of the 4 systems conceptually designed in the NMI project are introduced. 22 refs., 4 figs., 57 tabs.

  11. REFINED SYSTEM PARAMETERS AND TTV STUDY OF TRANSITING EXOPLANETARY SYSTEM HAT-P-20

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Leilei; Gu, Shenghong; Wang, Xiaobin; Cao, Dongtao; Wang, Yibo; Xiang, Yue [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Cameron, Andrew Collier [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Hui, Ho-Keung; Kwok, Chi-Tai [Ho Koon Nature Education cum Astronomical Centre, Sik Sik Yuen, Hong Kong (China); Yeung, Bill; Ng, Eric [Hong Kong Astronomical Society, Hong Kong (China); Horta, Ferran Grau, E-mail: wangxb@ynao.ac.cn [Observatori Ca l’Ou, C/de Dalt 18, Sant Martí Sesgueioles (Spain)

    2017-01-01

    We report new photometric observations of the transiting exoplanetary system HAT-P-20, obtained using CCD cameras at Yunnan Observatories and Ho Koon Nature Education cum Astronomical Centre, China, from 2010 to 2013, and Observatori Ca l’Ou, Sant Marti Sesgueioles, Spain, from 2013 to 2015. The observed data are corrected for systematic errors according to the coarse de-correlation and SYSREM algorithms, so as to enhance the signal of the transit events. In order to consistently model the star spots and transits of this exoplanetary system, we develop a highly efficient tool STMT based on the analytic models of Mandel and Agol and Montalto et al. The physical parameters of HAT-P-20 are refined by homogeneously analyzing our new data, the radial velocity data, and the earlier photometric data in the literature with the Markov chain Monte Carlo technique. New radii and masses of both host star and planet are larger than those in the discovery paper due to the discrepancy of the radius among K-dwarfs between predicted values by standard stellar models and empirical calibration from observations. Through the analysis of all available mid-transit times calculated with the normal model and spotted model, we conclude that the periodic transit timing variations in these transit events revealed by employing the normal model are probably induced by spot crossing events. From the analysis of the distribution of occulted spots by HAT-P-20b, we constrain the misaligned architecture between the planetary orbit and the spin of the host star.

  12. Modified Cross Feedback Control for a Magnetically Suspended Flywheel Rotor with Significant Gyroscopic Effects

    Directory of Open Access Journals (Sweden)

    Yuan Ren

    2014-01-01

    Full Text Available For magnetically suspended rigid rotors (MSRs with significant gyroscopic effects, phase lag of the control channel is the main factor influencing the system nutation stability and decoupling performance. At first, this paper proves that the phase lag of the cross channel instead of the decentralized channel is often the main factor influencing the system nutation stability at high speeds. Then a modified cross feedback control strategy based on the phase compensation of cross channel is proposed to improve the stability and decoupling performances. The common issues associated with the traditional control methods have been successfully resolved by this method. Analysis, simulation, and experimental results are presented to demonstrate the feasibility and superiority of the proposed control method.

  13. Research and development of basic technologies for the next generation industries. Summary of research achievements in fiscal 1992 (Research and development of superconductor materials and superconductor elements); Jisedai sangyo kiban gijutsu kenkyu kaihatsu 1992 nendo no kenkyu seika no gaiyo. Chodendo zairyo chodendo soshi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-05-01

    With an objective to establish basic technologies, research and development has been carried out to make it possible to utilize high-temperature superconductor materials in terms of engineering in the fields of electronics and electric power. In the research on superconductor materials in fiscal 1992, it was discovered from measurements of temperature change in polarization dependent EXAFS in thin YBCO film grown on an MgO substrate that relative displacement in copper atoms in CuO{sub 2} plane and peak oxygen, and relative displacement in copper atoms on a primary chain and peak oxygen show apparent increase at the critical superconduction temperature. It was verified that this phenomenon does not occur in materials that do not show superconduction. In the research and development of superconductor elements, full-swing research has begun toward establishing the following technologies: process technologies for a substrate that meets requirement of surface flatness required in electronic elements, a superconductor thin film that assures uniformity in interface composition and the laminated thin film tunnel junction that combines the superconductor thin film, an inter-layer insulation film, and ultra-fine processing to suppress deterioration, and a tunnel element technology as a technology to put the above technologies together. (NEDO)

  14. Power supply requirements for a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Brooks, J.N.; Kustom, R.L.

    1979-01-01

    The power supply requirements for a 7-m major radius commerical tokamak reactor have been examined, using a system approach combining models of the reactor and poloidal coil set, plasma burn cycle and magnetohydrodynamics calculations, and power supply characteristics and cost data. A conventional system using a motor-generator flywheel set and solid-state rectifier-inverter power supplies was studied in addition to systems using a homopolar generator, superconducting energy storage inductor, and dump resistors. The requirements and cost of the power supplies depend on several factors but most critically on the ohmic heating ramp time used for startup. Long ramp times (greater than or equal to 8 s) seem to be feasible, from the standpoint of resistive volt-second losses, and would appear to make conventional systems quite competitive with nonconventional ones, which require further research and development

  15. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  16. Batteries in network-independent electric power supply plants. Demands on batteries, storage concepts, lead batteries, load condition, operation management; Batterien in netzfernen Stromversorgungsanlagen. Anforderungen an Batterien, Speicherkonzepte, Bleibatterien, Ladezustand, Betriebsfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, R.; Sauer, D.U. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg (Germany)

    2005-07-01

    In principal there are the storage possibilities, which mainly distinguish themselves by the type of energy for storage:1) electric storage; a) supra-conducting ring storage, b) condensers; 2) mechanical storage; a) water high storage, b) flywheels, c) (cavern-) pressurized air storage; 3) electro-chemical storage; a) gas storage systems (with electrolysis or fuel cell unit), b) accumulators with external storage (e.g. FeCR-Redox system), c) accumulators with internal storage (e.g.) Pb/PbO{sub 2}, NiCd). A few electro-chemical storage systems only are economically and technically feasible today. This contribution focuses on these systems, in particular on lead-acid accumulators. An overview of terms, which are often used related to battery storage, can be found at the end. A detailed bibliography is supposed to give the reader specific answers to various questions. (orig.)

  17. Contributions to the 14th symposium on fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Andreani, R.

    1987-02-01

    The FTU (Frascati Tokamak Upgrade) aims to achieve high values of nt and temperature. High densities and confinement times should be reached by the use of high magnetic fields (8T) and reduced size and a strong lower hybrid additional heating (8 MW at 8 GHz) will be applied to raise plasma temperature. The main features of the machine are: liquid nitrogen cooling, to reduce power and energy consumption, flexibility in plasma current and position control, all stainless steel vacum chamber, liner and limiter stuctures. The machine is presently in an advanced construction stage. The new 250 MVA flywheel generator and few component parts are already in Frascati in the new buildings and the project team is pushing to keep the envisaged timing that should see the first operation of the machine at room temperature at the end of 1987.

  18. IECEC '92; Proceedings of the 27th Intersociety Energy Conversion Engineering Conference, San Diego, CA, Aug. 3-7, 1992. Vols. 1-6

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The present conference discusses spacecraft power requirements, spacecraft nuclear power reactors, power electronics, aerospace fuel cells and batteries, automated spacecraft power systems and power electronics, small excore heat pipe thermionic reactor technology, spacecraft solar power, thermoelectrics for reactors, high voltage systems, spacecraft static/dynamic conversion component technology, wireless power transmission, isotopic-fueled power systems, and aircraft electric power. Also discussed are alkali-metal thermoelectric converters, advanced heat engine cycles, terrestrial electric propulsion, fuel cells for terrestrial applications, MHD systems, magnetic bearings and flywheels, aquifer thermal storage, superconducting devices, nucler fusion power, marine energy systems, Stirling engine cycle analyses and models, Stirling refrigerators and cryocoolers, efficiency and conservation-related practices, Stirling heat pumps, Stirling cycle solar (terrestrial) energy systems, Stirling engine component technologies, environmental impacts of energy systems, Stirling-based power generation, and Stirling heat transport systems

  19. Composites in energy generation and storage systems - An overview

    Science.gov (United States)

    Fulmer, R. W.

    Applications of glass-fiber reinforced composites (GER) in renewable and high-efficiency energy systems which are being developed to replace interim, long-term unacceptable energy sources such as foreign oil are reviewed. GFR are noted to have design flexibility, high strength, and low cost, as well as featuring a choice of fiber orientation and type of reinforcement. Blades, hub covers, nacelles, and towers for large and small WECS are being fabricated and tested and are displaying satisfactory strength, resistance to corrosion and catastrophic failure, impact tolerance, and light weight. Promising results have also been shown in the use of GFR as flywheel material for kinetic energy storage in conjunction with solar and wind electric systems, in electric cars, and as load levellers. Other applications are for heliostats, geothermal power plant pipes, dam-atoll tidal wave energy systems, and intake pipes for OTECs.

  20. Interlaminar stress analysis for carbon/epoxy composite space rotors

    Directory of Open Access Journals (Sweden)

    C Lian

    2016-09-01

    Full Text Available This paper extends the previous works that appears in the International Journal of Multiphysics, Varatharajoo, Salit and Goh (2010. An approach incorporating cohesive zone modelling technique is incorporated into an optimized flywheel to properly simulate the stresses at the layer interfaces. Investigation on several fiber stacking sequences are also conducted to demonstrate the effect of fiber orientations on the overall rotor stress as well as the interface stress behaviour. The results demonstrated that the rotor interlaminar stresses are within the rotor materials' ultimate strength and that the fiber direction with a combination of 45°/-45°/0° offers the best triple layer rotor among the few combinations selected for this analysis. It was shown that the present approach can facilitate also further investigation on the interface stress behaviour of rotating rotors.

  1. Status of electrical energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents an overview of the status of electrical storage systems in the light of the growing use of renewable energy sources and distributed generation (DG) in meeting emission targets and in the interest of the UK electricity supply industry. Examples of storage technologies, their applications and current status are examined along with technical issues and possible activities by UK industries. Details are given of development opportunities in the fields of flow cells, advanced batteries - lithium batteries, high temperature batteries, flywheels, and capacitors. Power conversion systems and system integration, the all-electric ship project, and compressed air energy storage are discussed. Opportunities for development and deployment, small scale systems, demonstration programmes, and research and development issues are considered. An outline of the US Department of Energy Storage programme is given in the Annex to the report.

  2. Design technology development of the main coolant pump for an integral reactor

    International Nuclear Information System (INIS)

    Park, J. S.; Lee, J. S.; Kim, M. H.; Kim, D. W.; Kim, J. I.

    2004-01-01

    All of the reactor coolant pump currently used in commercial nuclear power plant were imported from foreign country. Now, the developing program of design technology for the reactor coolant pump will be started in a few future by domestic researchers. At this stage, the design technology of the main coolant pump for an integral reactor is developed based on the regulation of domestic nuclear power plant facilities. The main coolant pump is a canned motor axial pump, which accommodates all constraints required from the integral reactor system. The main coolant pump does not have mechanical seal device because the rotor of motor and the shaft of impeller are the same one. There is no flywheel on the rotating shaft of main coolant pump so that the coastdown duration time is short when the electricity supply is cut off

  3. Development of inertia-increased reactor internal pump

    International Nuclear Information System (INIS)

    Tanaka, Masaaki; Matsumura, Seiichi; Kikushima, Jun; Kawamura, Shinichi; Yamashita, Norimichi; Kurosaki, Toshikazu; Kondo, Takahisa

    2000-01-01

    The Reactor Internal Pump (RIP) was adopted for the Reactor Recirculation System (RRS) of Advanced Boiling Water Reactor (ABWR) plants, and ten RIPs are located at the bottom of the reactor pressure vessel. In order to simplify the power supply system for the RIPs, a new inertia-increased RIP was developed, which allows to eliminate the Motor-Generator (M-G) sets. The rotating inertia was increased approximately 2.5 times of current RIP inertia by addition of flywheel on its main shaft. A full scale proving test of the inertia-increased RIP under actual plant operating conditions using full scale test loop was performed to evaluate vibration characteristics and coast down characteristics. From the results of this proving test, the validity of the new inertia-increased RIP and its power supply system (without M-G sets) was confirmed. (author)

  4. Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link

    DEFF Research Database (Denmark)

    Wang, L.; Lee, D. J.; Lee, W. J.

    2008-01-01

    wind turbines andWells turbines to respectively capture wind energy and wave energy from marine wind and oceanwave. In addition to wind-turbine generators(WTGs) andwave-energy turbine generators (WETGs) employed in the studied system, diesel-engine generators (DEGs) and an aqua electrolyzer (AE......This paper presents both time-domain and frequency-domain simulated results of a novel marine hybrid renewable-energy power generation/energy storage system (PG/ESS) feeding isolated loads through an high-voltage direct current (HVDC) link. The studied marine PG subsystems comprise both offshore......) absorbing a part of generated energy from WTGs and WETGs to generate available hydrogen for fuel cells (FCs) are also included in the PG subsystems. The ES subsystems consist of a flywheel energy storage system(FESS) and a compressed air energy storage (CAES) system to balance the required energy...

  5. Passive magnetic bearing system

    Science.gov (United States)

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  6. Report on results for fiscal 1996 on development of superconducting electric power application technology. Pt. 2. R and D of superconducting wire, R and D of superconducting generator, studies on total system, R and D of refrigeration system, and verification test; 1996 nendo chodendo denryoku oyo gijutsu kaihatsu seika hokokusho. 2. Chodendo senzai no kenkyu kaihatsu, chodendo hatsudenki no kenkyu kaihatsu, total system no kenkyu, reito system no kenkyu kaihatsu, jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    In fiscal 1996, the initial cooling test and rotary excitation test were conducted for the 70,000kW slow-response type model machine, with the basic characteristics of the rotor verified such as the cooling characteristics, shaft vibration characteristics, mechanical strength, and superconductivity stability, and with the results of the studies explained. The rotor of the 70,000kW slow-response type model was installed in the test site, and the field test was carried out in 1997. For this purpose, research test was performed by the element technology of the model machine and the partial model. The technological development items, trial manufacture and test items were field winding, multi cylindrical rotor and damper. Upon the test results using the element and partial model, the design and manufacturing were implemented of the superconducting generator of a slow-response type excitation method with the output of 70,000kW class. Performed were the basic characteristic test, long-term operation test and severity test on the assumption of abnormality, verifying the characteristics and reliability of the generator as well as obtaining data concerning an excessive electromagnetic force and heat generation. From the test data and the analysis/evaluation results obtained on the model machine, the 200,000kW class pilot machine was reviewed in the conceptual design. (NEDO)

  7. Report on results for fiscal 1997 on development of superconducting electric power application technology. Pt. 1. R and D of superconducting wire, R and D of superconducting generator, studies on total system, R and D of refrigeration system, and verification test; 1997 nendo chodendo denryoku oyo gijutsu kaihatsu seika hokokusho. 1. Chodendo senzai no kenkyu kaihatsu, chodendo hatsudenki no kenkyu kaihatsu, total system no kenkyu, reito system no kenkyu kaihatsu, jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report explains the outline as Part 1. In fiscal 1997, the 10th year of the project, a multi cylindrical rotary model for which an in-situ verification test was finished was brought back to the plant and dismantled for examination, while the in-situ verification test of a slow-response type model machine rotor was conducted in combination with a refrigeration system. In addition, in the research of AC wire materials and oxide based materials, studies were made with a purpose of high characterization and long wire materialization. In the metallic materials, a 10kANbTi conductor was developed while, in oxide-based materials, research was done on performance improvement and wire materialization based on various synthesizing methods. The manufacturing, factory test and in-situ text were conducted for a 70,000kW model machine with the purpose of R and D of a 200,000kW class pilot machine. Examination was made on the test method of the 70,000kW class model machine, operation technology of a superconducting generation system, and the effect of introducing the superconducting generator into a power system. In the conventional refrigeration system, a single unit test was carried out for the liquefaction, liquid storing capacity, etc., of the system. The 70,000kW class model machine was put through a test for confirming the general operation including the refrigeration system. (NEDO)

  8. Generation by heated rock. Technology for hot dry rock geothermal power; Yakeishi ni mizu de hatsuden. Koon gantai hatsuden no gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Y. [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1995-06-15

    Japan is one of the most distinguished volcanic country in the world and about 8% of the active volcanos of the world are distributed in Japan. This kind of a large quantity and natural energy resource near us are used as hot springs in the whole country and as for electricity in 10 geothermal power stations. In future, if this enormous underground geothermal energy could be utilized safely and economically by using new power generation system like hot dry rock geothermal power generation (HDR), it may contribute a little to the 21st century`s energy problem of Japan. Central Research Inst. of Electric Power Industry has installed `Okachi HDR testing ground` in Okachi-machi of Akita Ken, and is carrying out experiments since 1989. Hot dry rock geothermal power generation is a method in which water is injected to the hot dry rock and the thermal energy is recovered that the natural rock bed is used as a boiler. However, development of many new technologies is necessary to bring this system in practical use. 9 refs., 5 figs., 1 tab.

  9. 56th (fiscal 1997) Meeting on Cryogenics and Superconductivity; Dai 56 kai 1997 nendo shunki teion kogaku chodendo gakkai koen gaiyoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-14

    In the meeting, 266 papers were made public which deal with the following fields: GM refrigerators, pulse tube refrigerators, cold storage equipment, Bi-2212 system, coil application, superconducting generators, LHD/ITER/accelerators, cable-in conduit conductors, electromagnetic phenomena/proximity effect, oxide cable, Nb3Sn, Nb3Al, metal materials, WE-NET, friction/organic materials, composite materials, Nb3Sn, Nb3Al wires, strand wire structure analysis, hybrid superconducting wire, Y system, Bi system, low temperature device, measurement, high magnetic field NMR magnet, oxide NMR application, Bi-2223 system wire, pinning, NbTi ac wire, pinning/ac loss, various characteristics, superconducting application, refrigerating system, heat transfer, cryostat, Hg/Ti/Y system wire, ac loss/application, superconducting electric power storage system and the development of element technology therefor, current limiter/magnetic flotation, stability and drift of strand conductors, stability, ITER, LHD/accelerator/SLIM, oxide application, conductor stability test and others, and quench of ac cable.

  10. Effects of 2 Types of Activation Protocols Based on Postactivation Potentiation on 50-m Freestyle Performance.

    Science.gov (United States)

    Cuenca-Fernández, Francisco; Ruiz-Teba, Ana; López-Contreras, Gracia; Arellano, Raúl

    2018-06-14

    Cuenca-Fernández, F, Ruiz-Teba, A, López-Contreras, G, and Arellano, R. Effects of 2 types of activation protocols based on postactivation potentiation on 50-m freestyle performance. J Strength Cond Res XX(X): 000-000, 2018-Postactivation potentiation (PAP) is a phenomenon which improves muscle contractility, strength, and speed in sporting performances through previously applied maximal or submaximal loads on the muscle system. This study aimed to assess the effects of 2 types of activation protocols based on PAP, on sprint swimming performance. A repeated-measures design was used to compare 3 different scenarios before a 50-m race. First, all of the participants performed a standard warm-up (SWU), consisting of a 400-m swim followed by dynamic stretching. This protocol acted as the control. Subsequently, the swimmers were randomly assigned into 2 groups: the swimmers in the first group performed the SWU followed by a PAP one-repetition maximum warm-up (RMWU), consisting of 3 "lunge" and 3 "arm stroke" repetitions, both at 85% of the one-repetition maximum. The swimmers in the second group performed the SWU followed by a PAP eccentric flywheel warm-up (EWU), consisting of one set of 4 repetitions of exercises of both the lower and upper limbs on an adapted eccentric flywheel at the maximal voluntary contraction. The time required for the swimmers to swim 5 and 10 m was shorter with the PAP protocols. The swimming velocity of the swimmers who underwent the EWU and RMWU protocols was faster at 5 and 10 m. The best total swimming time was not influenced by any of the protocols. When isolating swimming (excluding start performance and turn), best time was achieved with the SWU and RMWU compared with EWU (SWU: 20.86 ± 0.95 seconds; EWU: 21.25 ± 1.12 seconds; RMWU: 20.97 ± 1.22 seconds). In conclusion, a warm-up based on PAP protocols might exert an influence on performance in the first meters of a 50-m race. Nevertheless, other factors, such as fatigue, could

  11. NEDO fuel/storage technology subcommittee. 18th project report meeting; NEDO nenryo chozo gijutsu bunkakai. Dai 18 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Taro Yamayasu, a NEDO (New Energy and Industrial Technology Development Organization) director, reports fuel and storage technologies, taking reference to the research and development of technologies relating to fuel cell power generation, cell power storage system of a novel type, ceramic gas turbine, superconductor-generated power application, wide-area energy utilization network system (urbane eco-energy system), high-temperature superconductor-supported flywheel power storage, demonstration of a novel method of load levelling, demonstration test for the establishment of a centralized control system, and so forth. Reported also is research and development involving a molten carbonate fuel cell power generation system, current status of distributed cell power storage system development (large lithium secondary storage battery technology development), current status of superconductor-generated power application technology, regenerative cycle type 2-shaft ceramic gas turbine for a 300kW-class cogeneration system, high-density latent heat transportation, and so forth. (NEDO)

  12. Real-Time Measurement of Machine Efficiency during Inertia Friction Welding.

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Daniel Joseph [The Ohio State Univ., Columbus, OH (United States); Mahaffey, David [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Senkov, Oleg [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Semiatin, Sheldon [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Zhang, Wei [The Ohio State Univ., Columbus, OH (United States)

    2017-12-01

    Process efficiency is a crucial parameter for inertia friction welding (IFW) that is largely unknown at the present time. A new method has been developed to determine the transient profile of the IFW process efficiency by comparing the workpiece torque used to heat and deform the joint region to the total torque. Particularly, the former is measured by a torque load cell attached to the non-rotating workpiece while the latter is calculated from the deceleration rate of flywheel rotation. The experimentally-measured process efficiency for IFW of AISI 1018 steel rods is validated independently by the upset length estimated from an analytical equation of heat balance and the flash profile calculated from a finite element based thermal stress model. The transient behaviors of torque and efficiency during IFW are discussed based on the energy loss to machine bearings and the bond formation at the joint interface.

  13. Ignition system for an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, G

    1977-05-12

    The invention pertains to ignition systems for internal combustion engines; in particular, these are used in the engines of modern small motorcycles, where power is supplied by means of a so-called flywheel magneto, so that there is no need for an additional battery. The invention will prevent back-kicking. This is achieved by the following means: in the right direction of rotation of the internal combustion engine, due to an axial magnetic unsymmetry of the rotor, a voltage component that can switch the electronic switch will occur only in one of the two parts of the control winding at the point of ignition. In the wrong direction of rotation, on the other hand, this voltage component will only occur in the other part of the control winding and will act in direction on a diode connected in parallel to this part of the winding.

  14. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

  15. Comparative analysis of aluminum-air battery propulsion systems for passenger vehicles

    Science.gov (United States)

    Salisbury, J. D.; Behrin, E.; Kong, M. K.; Whisler, D. J.

    1980-02-01

    Three electric propulsion systems using an aluminum air battery were analyzed and compared to the internal combustion engine (ICE) vehicle. The engine and fuel systems of a representative five passenger highway vehicle were replaced conceptually by each of the three electric propulsion systems. The electrical vehicles were constrained by the computer simulation to be equivalent to the ICE vehicle in range and acceleration performance. The vehicle masses and aluminum consumption rates were then calculated for the electric vehicles and these data were used as figures of merit. The Al-air vehicles analyzed were (1) an Al-air battery only electric vehicle; (2) an Al-air battery combined with a nickel zinc secondary battery for power leveling and regenerative braking; and (3) an Al-air battery combined with a flywheel for power leveling and regenerative braking. All three electric systems compared favorably with the ICE vehicle.

  16. Zero emission vehicle for dense grid urban public transportation

    Energy Technology Data Exchange (ETDEWEB)

    D' Ovidio, G. [University of l' Aquila, Faculty of Engineering, DAU (Italy)

    2000-07-01

    This paper reports the operating scheme of a public transportation vehicle with zero polluting emission, working in urban areas in a transport network which has short and regular stop spacing not greater than 400-500 m, and by segments covered by 'shuttle-type' vehicles with high operating frequencies. In particular, the traction of the vehicle, of electric type exclusively, is supported by the functional coupling of an accumulation and alimentation system composed respectively of Fuel Cell e Flywheel Energy Storage Unite. This study proposes and analyzes a typology of hybrid vehicle of which the configuration of traction is specialized for the exigency connected to the different phases of the motion. The study contains the analysis and the measurement of the principal components of the propulsion system to the vary of the loading capabilities of the vehicles and of the geometric characteristic of the transport network.

  17. The ohmic heating power supply for HL-1 tokamak

    International Nuclear Information System (INIS)

    Mingrui, Z.; Jiashun, C.

    1986-01-01

    A combination of capacitor banks, inductor and DC Fly wheel-Generator sets are used as ohmic heating power supply (OHPS) for HL-1, which is the largest tokamak in China. This system can give changeable waveform of current in a simple way, because of the use of protection for capacitor banks by changeable connection in easy way. Since the technology of forced zero current in the commutating breaker and synchronous self-triggering crowbar are used, the smooth conversion between the wave front provided by discharge of the capacitor banks and the flat top sustained by the inductor and flywheel realized. The performance of the system was tested by a dummy load and the system has been used in the HL-1 experiments. It is confirmed that this system is sufficiently available for the ohmic heating and has important effects on the long plasma lasting time on the order of 1 sec

  18. Condition monitoring of main coolant pumps, Dhruva

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Acharya, V.N.; Tikku, A.C.; Mishra, S.K.

    2002-01-01

    Full text: Dhruva is a 100 MW research reactor with natural uranium fuel, heavy water as moderator and primary coolant. Three Centrifugal pumps circulate the primary coolant across the core and the heat exchangers. Each pump is coupled to a flywheel (FW) assembly in order to meet operational safety requirements. All the 3 main coolant pump (MCP) sets are required to operate during operation of the reactor. The pump-sets are in operation since the year 1984 and have logged more than 1,00,000 hrs. Frequent breakdowns of its FW bearings were experienced during initial years of operation. Condition monitoring of these pumps, largely on vibration based parameters, was initiated on regular basis. Break-downs of main coolant pumps reduced considerably due to the fair accurate predictions of incipient break-downs and timely maintenance efforts. An effort is made in this paper to share the experience

  19. Status and future perspective of applications of high temperature superconductors

    Science.gov (United States)

    Tanaka, Shoji

    The material research on the high temperature superconductivity for the past ten years gave us sufficient information on the new phenomena of these new materials. It seems that new applications in a very wide range of industries are increasing rapidly. In this report three main topics of the applications are given ; [a] progress of the superconducting bulk materials and their applications to the flywheel electricity storage system and others, [b] progress in the development of superconducting tapes and their applications to power cables, the high field superconducting magnet for the SMES and for the pulling system of large silicon single crystal, and [c] development of new superconducting electronic devices (SFQ) and the possiblity of the application to next generation supercomputers. These examples show the great capability of the superconductivity technology and it is expected that the real superconductivity industry will take off around the year of 2005.

  20. Computer System For Diagnostics of Mobile Machinery Transmission

    Directory of Open Access Journals (Sweden)

    G. L. Antipenko

    2004-01-01

    Full Text Available A new method for diagnostics of mechanical transmissions of mobile machinery is proposed in the paper. The method presupposes an application of computing equipment and its purpose is to decrease labor-consumption of diagnostics procedure and increase diagnostics efficiency.The method is based on comparison of duration of impulse periods picked up at primary transducers which are installed at transmission input and output. A signal picked up at a flywheel ring gear is taken as a reference signal.While selecting clearances of one and then the direction in speed-up - braking transmission regime changes in number of reference impulses at output provide data on angular clearance value in every gearing. As data are supplied registration and processing of results and forecasting of residual resource are to be done with the help of a program on the basis of realized algorithms for every gearing.