WorldWideScience

Sample records for kinematics star formation

  1. Kinematic evidence for feedback-driven star formation in NGC 1893

    Science.gov (United States)

    Lim, Beomdu; Sung, Hwankyung; Bessell, Michael S.; Lee, Sangwoo; Lee, Jae Joon; Oh, Heeyoung; Hwang, Narae; Park, Byeong-Gon; Hur, Hyeonoh; Hong, Kyeongsoo; Park, Sunkyung

    2018-06-01

    OB associations are the prevailing star-forming sites in the Galaxy. Up to now, the process of how OB associations were formed remained a mystery. A possible process is self-regulating star formation driven by feedback from massive stars. However, although a number of observational studies uncovered various signposts of feedback-driven star formation, the effectiveness of such feedback has been questioned. Stellar and gas kinematics is a promising tool to capture the relative motion of newborn stars and gas away from ionizing sources. We present high-resolution spectroscopy of stars and gas in the young open cluster NGC 1893. Our findings show that newborn stars and the tadpole nebula Sim 130 are moving away from the central cluster containing two O-type stars, and that the time-scale of sequential star formation is about 1 Myr within a 9 pc distance. The newborn stars formed by feedback from massive stars account for at least 18 per cent of the total stellar population in the cluster, suggesting that this process can play an important role in the formation of OB associations. These results support the self-regulating star formation model.

  2. Spiral structure and star formation. II. Stellar lifetimes and cloud kinematics

    International Nuclear Information System (INIS)

    Hausman, M.A.; Roberts, W.W. Jr.

    1984-01-01

    We present further results of our model, introduced in Paper I, of star formation and star-gas interactions in the cloud-dominated ISMs of spiral density wave galaxies. The global density distribution and velocity field of the gas clouds are virtually independent of stellar parameters and even of mean free path for the wide range of values studied, but local density variations are found which superficially resemble cloud complexes. Increasing the average life span of ''spiral tracer'' stellar associations beyond about 20 Myr washes out the spiral pattern which younger associations show. Allowing clouds to form several successive associations (sequential star formation) slightly increases the frequency of interarm, young-star spurs and substantially increases the average star formation rate. The mean velocity field of clouds shows tipped oval streamlines, similar to both continuum gas dynamical models and stellar-kinematic models of spiral density waves. These streamlines are almost ballistic orbits except close to the spiral arms. Newly formed stellar associations leave the spiral density peak with initial tangential velocitie shigher than ''postshock'' values and do not fall back into the ''preshock'' region. By varying our stellar parametes within physically reasonable limits, we may reproduce spiral galaxies with a wide range of morphological appearaces

  3. GMC Collisions as Triggers of Star Formation. III. Density and Magnetically Regulated Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Benjamin [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Tan, Jonathan C. [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Christie, Duncan [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Collins, David, E-mail: ben.wu@nao.ac.jp [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

    2017-06-01

    We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three-dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation subgrid models. Two such models are explored: (1) “Density-Regulated,” i.e., fixed efficiency per free-fall time above a set density threshold and (2) “Magnetically Regulated,” i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMC collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between the non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial substructure and more disturbed kinematics.

  4. PHIBSS: MOLECULAR GAS, EXTINCTION, STAR FORMATION, AND KINEMATICS IN THE z = 1.5 STAR-FORMING GALAXY EGS13011166

    Energy Technology Data Exchange (ETDEWEB)

    Genzel, R.; Tacconi, L. J.; Kurk, J.; Wuyts, S.; Foerster Schreiber, N. M.; Gracia-Carpio, J. [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Giessenbachstr., D-85748 Garching (Germany); Combes, F.; Freundlich, J. [Observatoire de Paris, LERMA, CNRS, 61 Av. de l' Observatoire, F-75014 Paris (France); Bolatto, A. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Cooper, M. C. [Department of Physics and Astronomy, Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Neri, R. [IRAM, 300 Rue de la Piscine, F-38406 St. Martin d' Heres, Grenoble (France); Nordon, R. [Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Bournaud, F. [Service d' Astrophysique, DAPNIA, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Burkert, A. [Universitaetssternwarte der Ludwig-Maximiliansuniversitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Comerford, J. [Department of Astronomy and McDonald Observatory, 1 University Station, C1402 Austin, TX 78712-0259 (United States); Cox, P. [Department of Physics, Le Conte Hall, University of California, 94720 Berkeley, CA (United States); Davis, M. [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Garcia-Burillo, S. [Observatorio Astronomico Nacional-OAN, Observatorio de Madrid, Alfonso XII, 3, E-28014 Madrid (Spain); Naab, T. [Max-Planck Institut fuer Astrophysik, Karl Schwarzschildstrasse 1, D-85748 Garching (Germany); Lutz, D., E-mail: genzel@mpe.mpg.de, E-mail: linda@mpe.mpg.de; and others

    2013-08-10

    We report matched resolution imaging spectroscopy of the CO 3-2 line (with the IRAM Plateau de Bure millimeter interferometer) and of the H{alpha} line (with LUCI at the Large Binocular Telescope) in the massive z = 1.53 main-sequence galaxy EGS 13011166, as part of the ''Plateau de Bure high-z, blue-sequence survey'' (PHIBSS: Tacconi et al.). We combine these data with Hubble Space Telescope V-I-J-H-band maps to derive spatially resolved distributions of stellar surface density, star formation rate, molecular gas surface density, optical extinction, and gas kinematics. The spatial distribution and kinematics of the ionized and molecular gas are remarkably similar and are well modeled by a turbulent, globally Toomre unstable, rotating disk. The stellar surface density distribution is smoother than the clumpy rest-frame UV/optical light distribution and peaks in an obscured, star-forming massive bulge near the dynamical center. The molecular gas surface density and the effective optical screen extinction track each other and are well modeled by a ''mixed'' extinction model. The inferred slope of the spatially resolved molecular gas to star formation rate relation, N = dlog{Sigma}{sub starform}/dlog{Sigma}{sub molgas}, depends strongly on the adopted extinction model, and can vary from 0.8 to 1.7. For the preferred mixed dust-gas model, we find N = 1.14 {+-} 0.1.

  5. Not all stars form in clusters - measuring the kinematics of OB associations with Gaia

    Science.gov (United States)

    Ward, Jacob L.; Kruijssen, J. M. Diederik

    2018-04-01

    It is often stated that star clusters are the fundamental units of star formation and that most (if not all) stars form in dense stellar clusters. In this monolithic formation scenario, low-density OB associations are formed from the expansion of gravitationally bound clusters following gas expulsion due to stellar feedback. N-body simulations of this process show that OB associations formed this way retain signs of expansion and elevated radial anisotropy over tens of Myr. However, recent theoretical and observational studies suggest that star formation is a hierarchical process, following the fractal nature of natal molecular clouds and allowing the formation of large-scale associations in situ. We distinguish between these two scenarios by characterizing the kinematics of OB associations using the Tycho-Gaia Astrometric Solution catalogue. To this end, we quantify four key kinematic diagnostics: the number ratio of stars with positive radial velocities to those with negative radial velocities, the median radial velocity, the median radial velocity normalized by the tangential velocity, and the radial anisotropy parameter. Each quantity presents a useful diagnostic of whether the association was more compact in the past. We compare these diagnostics to models representing random motion and the expanding products of monolithic cluster formation. None of these diagnostics show evidence of expansion, either from a single cluster or multiple clusters, and the observed kinematics are better represented by a random velocity distribution. This result favours the hierarchical star formation model in which a minority of stars forms in bound clusters and large-scale, hierarchically structured associations are formed in situ.

  6. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tie; Wu Yuefang; Zhang Huawei [Department of Astronomy, Peking University, 100871 Beijing (China); Qin Shengli, E-mail: liutiepku@gmail.com [I. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany)

    2012-05-20

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10{sup 3} cm{sup -3} and kinematic temperature {approx}20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.

  7. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    International Nuclear Information System (INIS)

    Liu Tie; Wu Yuefang; Zhang Huawei; Qin Shengli

    2012-01-01

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10 3 cm –3 and kinematic temperature ∼20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.

  8. AGN feedback in action? - outflows and star formation in type 2 AGNs

    Science.gov (United States)

    Woo, Jong-Hak

    2017-01-01

    We present the statistical constraints on the ionized gas outflows and their connection to star formation, using a large sample of ~110,000 AGNs and star-forming galaxies at z dispersion of star forming galaxies can be entirely accounted by the gravitational potential of host galaxies, AGNs clearly show non-gravitational kinematics, which is comparable to or stronger than the virial motion caused by the gravitational potential. Second, the distribution in the [OIII] velocity - velocity dispersion diagram dramatically expands toward large values with increasing AGN luminosity, implying that the outflows are AGN-driven. Third, the fraction of AGNs with a signature of outflow kinematics, steeply increases with AGN luminosity and Eddington ratio. In particular, the majority of luminous AGNs presents strong non-gravitational kinematics in the [OIII] profile. Interestingly, we find that the specific star formation of non-outflow AGNs is much lower than that of strong outflow AGNs, while the star formation rate of strong outflow AGNs is comparable to that of star forming galaxies. We interpret this trend as a delayed AGN feedback as it takes dynamical time for the outflows to suppress star formation in galactic scales.

  9. IONIZED GAS KINEMATICS AT HIGH RESOLUTION. V. [Ne ii], MULTIPLE CLUSTERS, HIGH EFFICIENCY STAR FORMATION, AND BLUE FLOWS IN HE 2–10

    International Nuclear Information System (INIS)

    Beck, Sara; Turner, Jean; Lacy, John; Greathouse, Thomas

    2015-01-01

    We measured the 12.8 μm [Ne ii] line in the dwarf starburst galaxy He 2–10 with the high-resolution spectrometer TEXES on the NASA IRTF. The data cube has a diffraction-limited spatial resolution of ∼1″ and a total velocity resolution, including thermal broadening, of ∼5 km s −1 . This makes it possible to compare the kinematics of individual star-forming clumps and molecular clouds in the three dimensions of space and velocity, and allows us to determine star formation efficiencies. The kinematics of the ionized gas confirm that the starburst contains multiple dense clusters. From the M/R of the clusters and the ≃30%–40% star formation efficiencies, the clusters are likely to be bound and long lived, like globulars. Non-gravitational features in the line profiles show how the ionized gas flows through the ambient molecular material, as well as a narrow velocity feature, which we identify with the interface of the H ii region and a cold dense clump. These data offer an unprecedented view of the interaction of embedded H ii regions with their environment

  10. Star-formation complexes in the `galaxy-sized' supergiant shell of the galaxy Holmberg I

    Science.gov (United States)

    Egorov, Oleg V.; Lozinskaya, Tatiana A.; Moiseev, Alexei V.; Smirnov-Pinchukov, Grigory V.

    2018-05-01

    We present the results of observations of the galaxy Holmberg I carried out at the Russian 6-m telescope in the narrow-band imaging, long-slit spectroscopy, and scanning Fabry-Perot interferometer modes. A detailed analysis of gas kinematics, ionization conditions, and metallicity of star-forming regions in the galaxy is presented. The aim of the paper is to analyse the propagation of star formation in the galaxy and to understand the role of the ongoing star formation in the evolution of the central `galaxy-sized' supergiant H I shell (SGS), where all regions of star formation are observed. We show that star formation in the galaxy occurs in large unified complexes rather than in individual giant H II regions. Evidence of the triggered star formation is observed both on scales of individual complexes and of the whole galaxy. We identified two supernova-remnant candidates and one late-type WN star and analysed their spectrum and surrounding-gas kinematics. We provide arguments indicating that the SGS in Holmberg I is destructing by the influence of star formation occurring on its rims.

  11. On the kinematics of visual binary and multiple stars of the FK4 cataloque

    International Nuclear Information System (INIS)

    Starikova, G.A.

    1981-01-01

    Kinematic features of single, binary and multiple stars are considered. To compare kinematics of such stars with the kinematics of single stars the data on positions and proper motions of those stars which are given in the basic catalogue FK4. Single as well as visual binary and multiple stars united because of their limited content in FK4 have been subdivided by spectra and classes of luminosity into groups with account for known kinematic peculiarities of various spectral groups. Kinematic features for the studied spectral groups are given. By the stars of the FK4 catalogue for various spectral classes the difference of kinematic features of single, visual binary and multiple stars is obtained. However the values of these differences need to be specified due to small number of stars included in five of six groups considered

  12. Gas kinematics and star formation in the filamentary molecular cloud G47.06+0.26

    Science.gov (United States)

    Xu, Jin-Long; Xu, Ye; Zhang, Chuan-Peng; Liu, Xiao-Lan; Yu, Naiping; Ning, Chang-Chun; Ju, Bing-Gang

    2018-01-01

    Aims: We performed a multi-wavelength study toward the filamentary cloud G47.06+0.26 to investigate the gas kinematics and star formation. Methods: We present the 12CO (J = 1-0), 13CO (J = 1-0) and C18O (J = 1-0) observations of G47.06+0.26 obtained with the Purple Mountain Observation (PMO) 13.7 m radio telescope to investigate the detailed kinematics of the filament. Radio continuum and infrared archival data were obtained from the NRAO VLA Sky Survey (NVSS), the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL), the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) survey, and the Multi-band Imaging Photometer Survey of the Galaxy (MIPSGAL). To trace massive clumps and extract young stellar objects in G47.06+0.26, we used the BGPS catalog v2.0 and the GLIMPSE I catalog, respectively. Results: The 12CO (J = 1-0) and 13CO (J = 1-0) emission of G47.06+0.26 appear to show a filamentary structure. The filament extends about 45' (58.1 pc) along the east-west direction. The mean width is about 6.8 pc, as traced by the 13CO (J = 1-0) emission. G47.06+0.26 has a linear mass density of 361.5 M⊙pc-1. The external pressure (due to neighboring bubbles and H II regions) may help preventing the filament from dispersing under the effects of turbulence. From the velocity-field map, we discern a velocity gradient perpendicular to G47.06+0.26. From the Bolocam Galactic Plane Survey (BGPS) catalog, we found nine BGPS sources in G47.06+0.26, that appear to these sources have sufficient mass to form massive stars. We obtained that the clump formation efficiency (CFE) is 18% in the filament. Four infrared bubbles were found to be located in, and adjacent to, G47.06+0.26. Particularly, infrared bubble N98 shows a cometary structure. CO molecular gas adjacent to N98 also shows a very intense emission. H II regions associated with infrared bubbles can inject the energy to surrounding gas. We calculated the kinetic energy, ionization energy, and thermal energy

  13. Spiral Structure and Global Star Formation Processes in M 51

    Science.gov (United States)

    Gruendl, Robert A.

    1994-12-01

    The nearby grand design spiral galaxy, M 51, is an obvious proving ground for studies of spiral structure and large scale star formation processes. New near--infrared observations of M 51 made with COB (Cryogenic Optical Bench) on the Kitt Peak 1.3m allow us to examine the stellar distribution and the young star formation regions as well as probe regions of high extinction such as dust lanes. We also present an analysis of the kinematics of the ionized gas observed with the Maryland--Caltech Imaging Fabry Perot. The color information we derive from the near--infrared bands provides a more accurate tracer of extinction than optical observations. We find that the dust extinction and CO emission in the arms are well correlated. Our kinematic data show unambiguously that these dense gas concentrations are associated with kinematic perturbations. In the inner disk, these perturbations are seen to be consistent with the streaming motions predicted by classical density wave theory. The dust lanes, and presumably the molecular arms, form a narrow ridge that matches these velocity perturbations wherever the viewing angle is appropriate. This interpretation requires that the corotation radius be inward of the outer tidal arms. The outer tidal arms however show streaming velocities of the sign that would be expected interior to the corotation point. This can be reconciled if the outer arms are part of a second spiral pattern, most likely due to the interaction with the companion NGC 5195. The near--infrared observations also show emission from the massive star forming regions. These observations are less affected by extinction than optical observations of H II regions and show clearly that the sites of massive star formation are correlated with but downstream from the concentrations of dense molecular material. This provides clear evidence that the ISM has been organized by the streaming motions which have in turn triggered massive star formation.

  14. Kinematics of the inner thousand AU region around the young massive star AFGL 2591-VLA3: a massive disk candidate?

    NARCIS (Netherlands)

    Wang, K. -S.; van der Tak, F. F. S.; Hogerheijde, M. R.

    Context. Recent detections of disks around young high-mass stars support the idea of massive star formation through accretion rather than coalescence, but the detailed kinematics in the equatorial region of the disk candidates is not well known, which limits our understanding of the accretion

  15. Star-Formation Histories, Abundances, and Kinematics of Dwarf Galaxies in the Local Group

    NARCIS (Netherlands)

    Tolstoy, Eline; Hill, Vanessa; Tosi, Monica; Blandford, R; Kormendy, J; VanDishoeck, E

    2009-01-01

    Within the Local Universe galaxies can be studied in great detail star by star, and here we review the results of quantitative studies in nearby dwarf galaxies. The color-magnitude diagram synthesis method is well established as the most accurate way to determine star-formation histories of galaxies

  16. The DiskMass Survey. VIII. On the Relationship between Disk Stability and Star Formation

    NARCIS (Netherlands)

    Westfall, Kyle B.; Andersen, David R.; Bershady, Matthew A.; Martinsson, Thomas P. K.; Swaters, Robert A.; Verheijen, Marc A. W.

    2014-01-01

    We study the relationship between the stability level of late-type galaxy disks and their star-formation activity using integral-field gaseous and stellar kinematic data. Specifically, we compare the two-component (gas+stars) stability parameter from Romeo & Wiegert (Q RW), incorporating stellar

  17. The diskmass survey. VIII. On the relationship between disk stability and star formation

    Energy Technology Data Exchange (ETDEWEB)

    Westfall, Kyle B.; Verheijen, Marc A. W. [Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen (Netherlands); Andersen, David R. [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Bershady, Matthew A. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Martinsson, Thomas P. K. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Swaters, Robert A., E-mail: westfall@astro.rug.nl [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2014-04-10

    We study the relationship between the stability level of late-type galaxy disks and their star-formation activity using integral-field gaseous and stellar kinematic data. Specifically, we compare the two-component (gas+stars) stability parameter from Romeo and Wiegert (Q {sub RW}), incorporating stellar kinematic data for the first time, and the star-formation rate estimated from 21 cm continuum emission. We determine the stability level of each disk probabilistically using a Bayesian analysis of our data and a simple dynamical model. Our method incorporates the shape of the stellar velocity ellipsoid (SVE) and yields robust SVE measurements for over 90% of our sample. Averaging over this subsample, we find a meridional shape of σ{sub z}/σ{sub R}=0.51{sub −0.25}{sup +0.36} for the SVE and, at 1.5 disk scale lengths, a stability parameter of Q {sub RW} = 2.0 ± 0.9. We also find that the disk-averaged star-formation-rate surface density ( Σ-dot {sub e,∗}) is correlated with the disk-averaged gas and stellar mass surface densities (Σ {sub e,} {sub g} and Σ {sub e,} {sub *}) and anti-correlated with Q {sub RW}. We show that an anti-correlation between Σ-dot {sub e,∗} and Q {sub RW} can be predicted using empirical scaling relations, such that this outcome is consistent with well-established statistical properties of star-forming galaxies. Interestingly, Σ-dot {sub e,∗} is not correlated with the gas-only or star-only Toomre parameters, demonstrating the merit of calculating a multi-component stability parameter when comparing to star-formation activity. Finally, our results are consistent with the Ostriker et al. model of self-regulated star-formation, which predicts Σ-dot {sub e,∗}/Σ{sub e,g}∝Σ{sub e,∗}{sup 1/2}. Based on this and other theoretical expectations, we discuss the possibility of a physical link between disk stability level and star-formation rate in light of our empirical results.

  18. A Study of Two Dwarf Irregular Galaxies with Asymmetrical Star Formation Distributions

    Science.gov (United States)

    Hunter, Deidre A.; Gallardo, Samavarti; Zhang, Hong-Xin; Adamo, Angela; Cook, David O.; Oh, Se-Heon; Elmegreen, Bruce G.; Kim, Hwihyun; Kahre, Lauren; Ubeda, Leonardo; Bright, Stacey N.; Ryon, Jenna E.; Fumagalli, Michele; Sacchi, Elena; Kennicutt, R. C.; Tosi, Monica; Dale, Daniel A.; Cignoni, Michele; Messa, Matteo; Grebel, Eva K.; Gouliermis, Dimitrios A.; Sabbi, Elena; Grasha, Kathryn; Gallagher, John S., III; Calzetti, Daniela; Lee, Janice C.

    2018-03-01

    Two dwarf irregular galaxies, DDO 187 and NGC 3738, exhibit a striking pattern of star formation: intense star formation is taking place in a large region occupying roughly half of the inner part of the optical galaxy. We use data on the H I distribution and kinematics and stellar images and colors to examine the properties of the environment in the high star formation rate (HSF) halves of the galaxies in comparison with the low star formation rate halves. We find that the pressure and gas density are higher on the HSF sides by 30%–70%. In addition we find in both galaxies that the H I velocity fields exhibit significant deviations from ordered rotation and there are large regions of high-velocity dispersion and multiple velocity components in the gas beyond the inner regions of the galaxies. The conditions in the HSF regions are likely the result of large-scale external processes affecting the internal environment of the galaxies and enabling the current star formation there.

  19. High-Resolution Imaging of Dense Gas Structure and Kinematics in Nearby Molecular Clouds with the CARMA Large Area Star Formation Survey

    Science.gov (United States)

    Storm, Shaye

    This thesis utilizes new observations of dense gas in molecular clouds to develop an empirical framework for how clouds form structures which evolve into young cores and stars. Previous observations show the general turbulent and hierarchical nature of clouds. However, current understanding of the star formation pathway is limited by existing data that do not combine angular resolution needed to resolve individual cores with area coverage required to capture entire star-forming regions and with tracers that can resolve gas motions. The original contributions of this thesis to astrophysical research are the creation and analysis of the largest-area high-angular-resolution maps of dense gas in molecular clouds to-date, and the development of a non-binary dendrogram algorithm to quantify the hierarchical nature and three-dimensional morphology of cloud structure. I first describe the CARMA Large Area Star Formation Survey, which provides spectrally imaged N2H+, HCO+, and HCN (J = 1→0) emission across diverse regions of the Perseus and Serpens Molecular Clouds. I then present a detailed analysis of the Barnard 1 and L1451 regions in Perseus. A non-binary dendrogram analysis of Barnard 1 N2H emission and all L1451 emission shows that the most hierarchically complex gas corresponds with sub-regions actively forming young stars. I estimate the typical depth of molecular emission in each region using the spatial and kinematic properties of dendrogram-identified structures. Barnard 1 appears to be a sheet-like region at the largest scales with filamentary substructure, while the L1451 region is composed of more spatially distinct ellipsoidal structures. I then do a uniform comparison of the hierarchical structure and young stellar content of all five regions. The more evolved regions with the most young stellar objects (YSOs) and strongest emission have formed the most hierarchical levels. However, all regions show similar mean branching properties at each level

  20. Kinematics and age of 15 stars-photometric solar analogs

    Science.gov (United States)

    Galeev, A. I.; Shimansky, V. V.

    2008-03-01

    The radial and space velocities are inferred for 15 stars that are photometric analogs of the Sun. The space velocity components (U, V, W) of most of these stars lie within the 10-60 km/s interval. The star HD 225239, which in our previous papers we classified as a subgiant, has a space velocity exceeding 100 km/s, and belongs to the thick disk. The inferred fundamental parameters of the atmospheres of solar analogs are combined with published evolutionary tracks to estimate the masses and ages of the stars studied. The kinematics of photometric analogs is compared to the data for a large group of solar-type stars.

  1. SDSS-IV MaNGA: properties of galaxies with kinematically decoupled stellar and gaseous components

    Science.gov (United States)

    Jin, Yifei; Chen, Yanmei; Shi, Yong; Tremonti, C. A.; Bershady, M. A.; Merrifield, M.; Emsellem, E.; Fu, Hai; Wake, D.; Bundy, K.; Lin, Lihwai; Argudo-Fernandez, M.; Huang, Song; Stark, D. V.; Storchi-Bergmann, T.; Bizyaev, D.; Brownstein, J.; Chisholm, J.; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Masters, K. L.; Malanushenko, E.; Pan, Kaike; Riffel, R. A.; Roman-Lopes, A.; Simmons, A.; Thomas, D.; Wang, Lan; Westfall, K.; Yan, Renbin

    2016-11-01

    We study the properties of 66 galaxies with kinematically misaligned gas and stars from MaNGA survey. The fraction of kinematically misaligned galaxies varies with galaxy physical parameters, I.e. M*, SFR and sSFR. According to their sSFR, we further classify these 66 galaxies into three categories, 10 star-forming, 26 `Green Valley' and 30 quiescent ones. The properties of different types of kinematically misaligned galaxies are different in that the star-forming ones have positive gradient in Dn4000 and higher gas-phase metallicity, while the green valley/quiescent ones have negative Dn4000 gradients and lower gas-phase metallicity on average. There is evidence that all types of the kinematically misaligned galaxies tend to live in more isolated environment. Based on all these observational results, we propose a scenario for the formation of star-forming galaxies with kinematically misaligned gas and stars - the progenitor accretes misaligned gas from a gas-rich dwarf or cosmic web, the cancellation of angular momentum from gas-gas collisions between the pre-existing gas and the accreted gas largely accelerates gas inflow, leading to fast centrally concentrated star formation. The higher metallicity is due to enrichment from this star formation. For the kinematically misaligned green valley and quiescent galaxies, they might be formed through gas-poor progenitors accreting kinematically misaligned gas from satellites which are smaller in mass.

  2. Rates of star formation

    International Nuclear Information System (INIS)

    Larson, R.B.

    1977-01-01

    It is illustrated that a theoretical understanding of the formation and evolution of galaxies depends on an understanding of star formation, and especially of the factors influencing the rate of star formation. Some of the theoretical problems of star formation in galaxies, some approaches that have been considered in models of galaxy evolution, and some possible observational tests that may help to clarify which processes or models are most relevant are reviewed. The material is presented under the following headings: power-law models for star formation, star formation processes (conditions required, ways of achieving these conditions), observational indications and tests, and measures of star formation rates in galaxies. 49 references

  3. Correlating The Star Formation Histories Of MaNGA Galaxies With Their Past AGN Activity

    Science.gov (United States)

    Gonzalez Ortiz, Andrea

    2017-01-01

    We investigate active galactic nuclei (AGN) as a primary mechanism affecting star formation in MaNGA galaxies. Using the Pipe3D code, we modeled the stellar population from MaNGA spectra and derived the star formation histories of 53 AGN host galaxies. We seek to compare the star formation histories of the host galaxies of AGN with the ages of their radio lobes to better understand the role of AGN feedback in the star formation histories of MaNGA galaxies. MaNGA (Mapping Nearby Galaxies at APO) is one of the three core programs in the fourth generation Sloan Digital Sky Survey(SDSS). MaNGA will investigate the internal kinematics of nearly 10,000 local galaxies through dithered observations using fiber integral field units (IFUs) that vary in diameter from 12" (19 fibers) to 32" (127 fibers). In this poster, we present initial results on the star formation histories of MaNGA AGN host galaxies. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  4. IDENTIFYING THE YOUNG LOW-MASS STARS WITHIN 25 pc. II. DISTANCES, KINEMATICS, AND GROUP MEMBERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Shkolnik, Evgenya L. [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 (United States); Anglada-Escude, Guillem [Institut fuer Astrophysik, Universitaet Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Liu, Michael C.; Bowler, Brendan P. [Institute for Astronomy, University of Hawaii at Manoa 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Weinberger, Alycia J.; Boss, Alan P. [Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States); Reid, I. Neill [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Tamura, Motohide, E-mail: shkolnik@lowell.edu [National Astronomical Observatory of Japan, Tokyo (Japan)

    2012-10-10

    We have conducted a kinematic study of 165 young M dwarfs with ages of {approx}<300 Myr. Our sample is composed of stars and brown dwarfs with spectral types ranging from K7 to L0, detected by ROSAT and with photometric distances of {approx}<25 pc assuming that the stars are single and on the main sequence. In order to find stars kinematically linked to known young moving groups (YMGs), we measured radial velocities for the complete sample with Keck and CFHT optical spectroscopy and trigonometric parallaxes for 75 of the M dwarfs with the CAPSCam instrument on the du Pont 2.5 m Telescope. Due to their youthful overluminosity and unresolved binarity, the original photometric distances for our sample underestimated the distances by 70% on average, excluding two extremely young ({approx}<3 Myr) objects found to have distances beyond a few hundred parsecs. We searched for kinematic matches to 14 reported YMGs and identified 10 new members of the AB Dor YMG and 2 of the Ursa Majoris group. Additional possible candidates include six Castor, four Ursa Majoris, two AB Dor members, and one member each of the Her-Lyr and {beta} Pic groups. Our sample also contains 27 young low-mass stars and 4 brown dwarfs with ages {approx}<150 Myr that are not associated with any known YMG. We identified an additional 15 stars that are kinematic matches to one of the YMGs, but the ages from spectroscopic diagnostics and/or the positions on the sky do not match. These warn against grouping stars together based only on kinematics and that a confluence of evidence is required to claim that a group of stars originated from the same star-forming event.

  5. The Star Formation Scenario in the Galactic Range from Ophiuchus to Chamaeleon

    Science.gov (United States)

    Sartori, Marília J.

    2000-07-01

    The molecular cloud complexes of Chamaeleon, Lupus and Ophiuchus, and the OB sub-groups of stars that form the Scorpius OB2 association are located at galactic longitudes in the interval 290° to 360°, all of them in a distance range from 100 to 200 pc. The distribution of known young stars in this region, both of low and of high mass, suggests that they belong to a single large structure. Moreover, a significant number of pre-main sequence (PMS) stars far from the star-forming clouds have been recently discovered. This scenario suggests that a global analysis of the star formation must be performed, especially of such nearby regions for which a large amount of data can be obtained. In order to test the models that intend to describe the history of star formation in these nearby star-forming regions, we collected information on the distribution of gas and dust and on the related young stellar populations. We mapped the molecular clouds of the complexes located in Chamaeleon, Lupus and Ophiuchus by means of an automatic method for star counting on plates of the Digitized Sky Survey. Another improvement with respect to the traditional star counts method is that we have adopted a relation between the extinction and the number of stars based on the predictions of the Galaxy's model by Ortiz & Lépine (1993, A&A 279, 90). Our maps confirm that there is an extended distribution of dust in the regions between the main clouds. We built a complete list of PMS and early-type stars from the literature, including all the available distance, radial velocity and proper motion data. We completed these data with our own determinations of proper motions of PMS stars, using positions obtained with the Valinhos Meridian Circle (IAG/USP, Brazil), photographic plates and public catalogs (Teixeira et al. 2000, A&A in press). Using these kinematical data and comparing the positions and spatial velocities of PMS stars to those of early-type stars, we verified that the kinematics of the

  6. Star formation

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1978-01-01

    Theoretical models of star formation are discussed beginning with the earliest stages and ending in the formation of rotating, self-gravitating disks or rings. First a model of the implosion of very diffuse gas clouds is presented which relies upon a shock at the edge of a galactic spiral arm to drive the implosion. Second, models are presented for the formation of a second generation of massive stars in such a cloud once a first generation has formed. These models rely on the ionizing radiation from massive stars or on the supernova shocks produced when these stars explode. Finally, calculations of the gravitational collapse of rotating clouds are discussed with special focus on the question of whether rotating disks or rings are the result of such a collapse. 65 references

  7. CARMA LARGE AREA STAR FORMATION SURVEY: STRUCTURE AND KINEMATICS OF DENSE GAS IN SERPENS MAIN

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katherine I.; Storm, Shaye; Mundy, Lee G.; Teuben, Peter; Pound, Marc W.; Salter, Demerese M.; Chen, Che-Yu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Fernández-López, Manuel; Looney, Leslie W.; Segura-Cox, Dominique [Department of Astronomy, University of Illinois, Urbana-Champaign, IL 61801 (United States); Rosolowsky, Erik [Departments of Physics and Statistics, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna BC V1V 1V7 (Canada); Arce, Héctor G.; Plunkett, Adele L. [Department of Astronomy, Yale University, PO Box 208101, New Haven, CT 06520-8101 (United States); Ostriker, Eve C. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Shirley, Yancy L. [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Kwon, Woojin [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen (Netherlands); Kauffmann, Jens [Max Planck Institut für Radioastronomie, Auf dem Hügel 69 D-53121, Bonn Germany (Germany); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Volgenau, N. H. [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Tassis, Konstantinos, E-mail: ijlee9@astro.umd.edu [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, PO Box 2208, GR-710 03, Heraklion, Crete (Greece); and others

    2014-12-20

    We present observations of N{sub 2}H{sup +} (J = 1 → 0), HCO{sup +} (J = 1 → 0), and HCN (J = 1 → 0) toward the Serpens Main molecular cloud from the CARMA Large Area Star Formation Survey (CLASSy). We mapped 150 arcmin{sup 2} of Serpens Main with an angular resolution of ∼7''. The gas emission is concentrated in two subclusters (the NW and SE subclusters). The SE subcluster has more prominent filamentary structures and more complicated kinematics compared to the NW subcluster. The majority of gas in the two subclusters has subsonic to sonic velocity dispersions. We applied a dendrogram technique with N{sub 2}H{sup +}(1-0) to study the gas structures; the SE subcluster has a higher degree of hierarchy than the NW subcluster. Combining the dendrogram and line fitting analyses reveals two distinct relations: a flat relation between nonthermal velocity dispersion and size, and a positive correlation between variation in velocity centroids and size. The two relations imply a characteristic depth of 0.15 pc for the cloud. Furthermore, we have identified six filaments in the SE subcluster. These filaments have lengths of ∼0.2 pc and widths of ∼0.03 pc, which is smaller than a characteristic width of 0.1 pc suggested by Herschel observations. The filaments can be classified into two types based on their properties. The first type, located in the northeast of the SE subcluster, has larger velocity gradients, smaller masses, and nearly critical mass-per-unit-length ratios. The other type, located in the southwest of the SE subcluster, has the opposite properties. Several YSOs are formed along two filaments which have supercritical mass per unit length ratios, while filaments with nearly critical mass-per-unit-length ratios are not associated with YSOs, suggesting that stars are formed on gravitationally unstable filaments.

  8. Current star formation in S0 galaxies: NGC 4710

    International Nuclear Information System (INIS)

    Wrobel, J.M.

    1990-01-01

    Elliptical (E) and lenticular (S0) galaxies lack the substantial interstellar medium (ISM) found in the star-forming spiral galaxies. However, significant numbers of E and S0 galaxies are known to contain detectable amounts of interstellar matter (e.g., Jura 1988). Thus, it is worth investigating whether these galaxies are currently able to form stars from their ISM, or whether they should be consigned to the dustbin of inert objects (Thronson and Bally 1987). The results strongly imply that current star formation is responsible for NGC 4710's far infrared and radio continuum properties. If this is indeed the case, then one expects this star formation to be fueled by molecular gas, which is presumably dominated by H2 and can be traced by the CO-12 J=1 to 0 line. Both Kenney and Young (1988) and Sage and Wrobel (1989) have detected such an emission line from NGC 4710, and infer the presence of more than 10(exp 8) solar mass of H2. The origin of the molecular gas in NGC 4710 remains a mystery. The galaxy is very deficient in HI (Kenney and Young, in preparation), suggesting that it originally was a spiral galaxy from which the outer, mainly atomic, gas was stripped by the ram pressure of the Virgo Cluster's intracluster medium, leaving only a central interstellar medium (ISM) rich in molecular gas. Alternatively, the CO may have originated via stellar mass loss with subsequent cooling, cooling flows, or capture from a gas-rich companion. Information on the morphology and kinematics of the CO can be compared with that of the galaxy's other gases and stars to distinguish among these various possible origins for the molecular gas. Major axis CO mapping with single dishes indicate an unresolved source. Thus, a millimeter array is currently being used to image NGC 4710 in CO to provide the needed morphological and kinematical data

  9. An ALMA view of star formation efficiency suppression in early-type galaxies after gas-rich minor mergers

    Science.gov (United States)

    van de Voort, Freeke; Davis, Timothy A.; Matsushita, Satoki; Rowlands, Kate; Shabala, Stanislav S.; Allison, James R.; Ting, Yuan-Sen; Sansom, Anne E.; van der Werf, Paul P.

    2018-05-01

    Gas-rich minor mergers contribute significantly to the gas reservoir of early-type galaxies (ETGs) at low redshift, yet the star formation efficiency (SFE; the star formation rate divided by the molecular gas mass) appears to be strongly suppressed following some of these events, in contrast to the more well-known merger-driven starbursts. We present observations with the Atacama Large Millimeter/submillimeter Array (ALMA) of six ETGs, which have each recently undergone a gas-rich minor merger, as evidenced by their disturbed stellar morphologies. These galaxies were selected because they exhibit extremely low SFEs. We use the resolving power of ALMA to study the morphology and kinematics of the molecular gas. The majority of our galaxies exhibit spatial and kinematical irregularities, such as detached gas clouds, warps, and other asymmetries. These asymmetries support the interpretation that the suppression of the SFE is caused by dynamical effects stabilizing the gas against gravitational collapse. Through kinematic modelling we derive high velocity dispersions and Toomre Q stability parameters for the gas, but caution that such measurements in edge-on galaxies suffer from degeneracies. We estimate merger ages to be about 100 Myr based on the observed disturbances in the gas distribution. Furthermore, we determine that these galaxies lie, on average, two orders of magnitude below the Kennicutt-Schmidt relation for star-forming galaxies as well as below the relation for relaxed ETGs. We discuss potential dynamical processes responsible for this strong suppression of star formation surface density at fixed molecular gas surface density.

  10. Observational evidence for supernova-induced star formation: Canis Major R1

    International Nuclear Information System (INIS)

    Herbst, W.; Assousa, G.E.

    1977-01-01

    The R association CMa R1, which contains two classical Herbig emission stars (Z CMa and HD 53367) and several other extremely young stellar objects, is found to lie at the edge of a large-scale ring of emission nebulosity. The form of the ring, which is also seen at radio wavelengths, and the absence of luminous stellar objects at its center suggest that it may be a relatively old supernova remnant (SNR). This suggestion is greatly strengthened by the discovery of an expanding H I shell coincident with the optical feature and the discovery of a runaway star, HD 54662, in CMa OB1. An age of order 5 x 10 5 years is derived for the SNR by comparing its properties with theoretical expectation based on models of SNRs evolving in a uniform medium. The close agreement between the likely ages of the stars and the age of the SNR, as well as the location of the recently formed objects with respect to the supernova shell, strongly support the hypothesis that a supernova event triggered star formation in CMa R1. Several other cases where evidence exists for supernova-induced star formation are briefly discussed, the most interesting being the Orion region where the hypothesis may provide a simple explanation for such diverse features as the runaway stars, Barnard's loop, and the gas kinematics and recent star formation in the Trapezium region

  11. Connecting the Cosmic Star Formation Rate with the Local Star Formation

    Science.gov (United States)

    Gribel, Carolina; Miranda, Oswaldo D.; Williams Vilas-Boas, José

    2017-11-01

    We present a model that unifies the cosmic star formation rate (CSFR), obtained through the hierarchical structure formation scenario, with the (Galactic) local star formation rate (SFR). It is possible to use the SFR to generate a CSFR mapping through the density probability distribution functions commonly used to study the role of turbulence in the star-forming regions of the Galaxy. We obtain a consistent mapping from redshift z˜ 20 up to the present (z = 0). Our results show that the turbulence exhibits a dual character, providing high values for the star formation efficiency ( ˜ 0.32) in the redshift interval z˜ 3.5{--}20 and reducing its value to =0.021 at z = 0. The value of the Mach number ({{ M }}{crit}), from which rapidly decreases, is dependent on both the polytropic index (Γ) and the minimum density contrast of the gas. We also derive Larson’s first law associated with the velocity dispersion ( ) in the local star formation regions. Our model shows good agreement with Larson’s law in the ˜ 10{--}50 {pc} range, providing typical temperatures {T}0˜ 10{--}80 {{K}} for the gas associated with star formation. As a consequence, dark matter halos of great mass could contain a number of halos of much smaller mass, and be able to form structures similar to globular clusters. Thus, Larson’s law emerges as a result of the very formation of large-scale structures, which in turn would allow the formation of galactic systems, including our Galaxy.

  12. Small Galactic H II regions. II. The molecular clouds and star formation

    International Nuclear Information System (INIS)

    Hunter, D.A.; Thronson, H.A. Jr.; Wilton, C.

    1990-01-01

    CO maps of molecular clouds associated with 11 small Galactic H II regions are presented and compared with IR images obtained by IRAS. The molecular masses of the clouds are computed and compared with the masses of the stellar content. The mapped clouds have masses of 1000-60,000 solar and are typical of the more numerous, smaller Galactic molecular clouds. All of the clouds have recently made massive OB stars, and many have complex spatial and kinematic structures. The coincidence of IRAS sources and CO peaks suggests that many of the clouds have sites of star formation other than the optically visible H II region. Star-formation efficiencies are uncertain, with values for the clouds ranging from 0.02 to 0.6 with an average value of 0.2. There is no trend of the upper stellar mass limit with Galactic radius and with molecular cloud mass. 53 refs

  13. Identifying the Young Low-mass Stars within 25 pc. II. Distances, Kinematics, and Group Membership

    Science.gov (United States)

    Shkolnik, Evgenya L.; Anglada-Escudé, Guillem; Liu, Michael C.; Bowler, Brendan P.; Weinberger, Alycia J.; Boss, Alan P.; Reid, I. Neill; Tamura, Motohide

    2012-10-01

    We have conducted a kinematic study of 165 young M dwarfs with ages of lsim300 Myr. Our sample is composed of stars and brown dwarfs with spectral types ranging from K7 to L0, detected by ROSAT and with photometric distances of lsim25 pc assuming that the stars are single and on the main sequence. In order to find stars kinematically linked to known young moving groups (YMGs), we measured radial velocities for the complete sample with Keck and CFHT optical spectroscopy and trigonometric parallaxes for 75 of the M dwarfs with the CAPSCam instrument on the du Pont 2.5 m Telescope. Due to their youthful overluminosity and unresolved binarity, the original photometric distances for our sample underestimated the distances by 70% on average, excluding two extremely young (lsim3 Myr) objects found to have distances beyond a few hundred parsecs. We searched for kinematic matches to 14 reported YMGs and identified 10 new members of the AB Dor YMG and 2 of the Ursa Majoris group. Additional possible candidates include six Castor, four Ursa Majoris, two AB Dor members, and one member each of the Her-Lyr and β Pic groups. Our sample also contains 27 young low-mass stars and 4 brown dwarfs with ages lsim150 Myr that are not associated with any known YMG. We identified an additional 15 stars that are kinematic matches to one of the YMGs, but the ages from spectroscopic diagnostics and/or the positions on the sky do not match. These warn against grouping stars together based only on kinematics and that a confluence of evidence is required to claim that a group of stars originated from the same star-forming event. Based on observations collected at the W. M. Keck Observatory, the Canada-France-Hawaii Telescope, the du Pont Telescope at Las Campanas Observatory, and the Subaru Telescope. The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial

  14. What Determines Star Formation Rates?

    Science.gov (United States)

    Evans, Neal John

    2017-06-01

    The relations between star formation and gas have received renewed attention. We combine studies on scales ranging from local (within 0.5 kpc) to distant galaxies to assess what factors contribute to star formation. These include studies of star forming regions in the Milky Way, the LMC, nearby galaxies with spatially resolved star formation, and integrated galaxy studies. We test whether total molecular gas or dense gas provides the best predictor of star formation rate. The star formation ``efficiency," defined as star formation rate divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all the molecular gas. We suggest ways to further develop the concept of "dense gas" to incorporate other factors, such as turbulence.

  15. CHEMICAL AND KINEMATICAL PROPERTIES OF BLUE STRAGGLER STARS AND HORIZONTAL BRANCH STARS IN NGC 6397

    International Nuclear Information System (INIS)

    Lovisi, L.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Contreras Ramos, R.; Gratton, R.

    2012-01-01

    We used three sets of high-resolution spectra acquired with the multifiber facility FLAMES at the Very Large Telescope of the European Southern Observatory to investigate the chemical and kinematical properties of a sample of 42 horizontal branch (HB) stars, 18 blue straggler stars (BSSs), and 86 main-sequence (MS) turnoff (TO) and sub-giant branch stars in the nearby globular cluster NGC 6397. We measured rotational velocities and Fe, O, and Mg abundances. All of the unevolved stars in our sample have low rotational velocites (vsin i –1 ), while the HB stars and BSSs show a broad distribution, with values ranging from 0 to ∼70 km s –1 . For HB stars with T 8200 K and T > 10,500 K, respectively) also show significant deviations in their iron abundance with respect to the cluster metallicity (as traced by the unevolved stars, [Fe/H] = –2.12). While similar chemical patterns have already been observed in other hot HB stars, this is the first evidence ever collected for BSSs. We interpret these abundance anomalies as due to the metal radiative levitation, occurring in stars with shallow or no convective envelopes.

  16. Star Cluster Structure from Hierarchical Star Formation

    Science.gov (United States)

    Grudic, Michael; Hopkins, Philip; Murray, Norman; Lamberts, Astrid; Guszejnov, David; Schmitz, Denise; Boylan-Kolchin, Michael

    2018-01-01

    Young massive star clusters (YMCs) spanning 104-108 M⊙ in mass generally have similar radial surface density profiles, with an outer power-law index typically between -2 and -3. This similarity suggests that they are shaped by scale-free physics at formation. Recent multi-physics MHD simulations of YMC formation have also produced populations of YMCs with this type of surface density profile, allowing us to narrow down the physics necessary to form a YMC with properties as observed. We show that the shallow density profiles of YMCs are a natural result of phase-space mixing that occurs as they assemble from the clumpy, hierarchically-clustered configuration imprinted by the star formation process. We develop physical intuition for this process via analytic arguments and collisionless N-body experiments, elucidating the connection between star formation physics and star cluster structure. This has implications for the early-time structure and evolution of proto-globular clusters, and prospects for simulating their formation in the FIRE cosmological zoom-in simulations.

  17. Stacked Star Formation Rate Profiles of Bursty Galaxies Exhibit “Coherent” Star Formation

    Science.gov (United States)

    Orr, Matthew E.; Hayward, Christopher C.; Nelson, Erica J.; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Kereš, Dušan; Chan, T. K.; Schmitz, Denise M.; Miller, Tim B.

    2017-11-01

    In a recent work based on 3200 stacked Hα maps of galaxies at z˜ 1, Nelson et al. find evidence for “coherent star formation”: the stacked star formation rate (SFR) profiles of galaxies above (below) the “star formation main sequence” (MS) are above (below) that of galaxies on the MS at all radii. One might interpret this result as inconsistent with highly bursty star formation and evidence that galaxies evolve smoothly along the MS rather than crossing it many times. We analyze six simulated galaxies at z˜ 1 from the Feedback in Realistic Environments (FIRE) project in a manner analogous to the observations to test whether the above interpretations are correct. The trends in stacked SFR profiles are qualitatively consistent with those observed. However, SFR profiles of individual galaxies are much more complex than the stacked profiles: the former can be flat or even peak at large radii because of the highly clustered nature of star formation in the simulations. Moreover, the SFR profiles of individual galaxies above (below) the MS are not systematically above (below) those of MS galaxies at all radii. We conclude that the time-averaged coherent star formation evident stacks of observed galaxies is consistent with highly bursty, clumpy star formation of individual galaxies and is not evidence that galaxies evolve smoothly along the MS.

  18. Small scale kinematics of massive star-forming cores

    NARCIS (Netherlands)

    Wang, Kuo-Song

    2013-01-01

    Unlike the formation of Solar-type stars, the formation of massive stars (M>8 Msun) is not yet well understood. For Solar-type protostars, the presence of circumstellar or protoplanetary disks which provide a path for mass accretion onto protostars is well established. However, to date only few

  19. On the kinematics of a runaway Be star population

    Science.gov (United States)

    Boubert, D.; Evans, N. W.

    2018-04-01

    We explore the hypothesis that B type emission-line stars (Be stars) have their origin in mass-transfer binaries by measuring the fraction of runaway Be stars. We assemble the largest-to-date catalogue of 632 Be stars with 6D kinematics, exploiting the precise astrometry of the Tycho-Gaia Astrometric Solution (TGAS) from the first Gaia Data Release. Using binary stellar evolution simulations, we make predictions for the runaway and equatorial rotation velocities of a runaway Be star population. Accounting for observational biases, we calculate that if all classical Be stars originated through mass transfer in binaries, then 17.5% of the Be stars in our catalogue should be runaways. The remaining 82.5% should be in binaries with subdwarfs, white dwarfs or neutron stars, because those systems either remained bound post-supernova or avoided the supernova entirely. Using a Bayesian methodology, we compare the hypothesis that each Be star in our catalogue is a runaway to the null hypothesis that it is a member of the Milky Way disc. We find that 13.1^{+2.6}_{-2.4}% of the Be stars in our catalogue are runaways, and identify a subset of 40 high-probability runaways. We argue that deficiencies in our understanding of binary stellar evolution, as well as the degeneracy between velocity dispersion and number of runaway stars, can explain the slightly lower runaway fraction. We thus conclude that all Be stars could be explained by an origin in mass-transfer binaries. This conclusion is testable with the second Gaia data release (DR2).

  20. Spatial and kinematic structure of Monoceros star-forming region

    Science.gov (United States)

    Costado, M. T.; Alfaro, E. J.

    2018-05-01

    The principal aim of this work is to study the velocity field in the Monoceros star-forming region using the radial velocity data available in the literature, as well as astrometric data from the Gaia first release. This region is a large star-forming complex formed by two associations named Monoceros OB1 and OB2. We have collected radial velocity data for more than 400 stars in the area of 8 × 12 deg2 and distance for more than 200 objects. We apply a clustering analysis in the subspace of the phase space formed by angular coordinates and radial velocity or distance data using the Spectrum of Kinematic Grouping methodology. We found four and three spatial groupings in radial velocity and distance variables, respectively, corresponding to the Local arm, the central clusters forming the associations and the Perseus arm, respectively.

  1. Formation of stars and star clusters in colliding galaxies

    International Nuclear Information System (INIS)

    Belles, Pierre-Emmanuel

    2012-01-01

    Mergers are known to be essential in the formation of large-scale structures and to have a significant role in the history of galaxy formation and evolution. Besides a morphological transformation, mergers induce important bursts of star formation. These starburst are characterised by high Star Formation Efficiencies (SFEs) and Specific Star Formation Rates, i.e., high Star Formation Rates (SFR) per unit of gas mass and high SFR per unit of stellar mass, respectively, compared to spiral galaxies. At all redshifts, starburst galaxies are outliers of the sequence of star-forming galaxies defined by spiral galaxies. We have investigated the origin of the starburst-mode of star formation, in three local interacting systems: Arp 245, Arp 105 and NGC 7252. We combined high-resolution JVLA observations of the 21-cm line, tracing the HI diffuse gas, with UV GALEX observations, tracing the young star-forming regions. We probe the local physical conditions of the Inter-Stellar Medium (ISM) for independent star-forming regions and explore the atomic-to-dense gas transformation in different environments. The SFR/HI ratio is found to be much higher in central regions, compared to outer regions, showing a higher dense gas fraction (or lower HI gas fraction) in these regions. In the outer regions of the systems, i.e., the tidal tails, where the gas phase is mostly atomic, we find SFR/HI ratios higher than in standard HI-dominated environments, i.e., outer discs of spiral galaxies and dwarf galaxies. Thus, our analysis reveals that the outer regions of mergers are characterised by high SFEs, compared to the standard mode of star formation. The observation of high dense gas fractions in interacting systems is consistent with the predictions of numerical simulations; it results from the increase of the gas turbulence during a merger. The merger is likely to affect the star-forming properties of the system at all spatial scales, from large scales, with a globally enhanced turbulence

  2. Insights from simulations of star formation

    International Nuclear Information System (INIS)

    Larson, Richard B

    2007-01-01

    Although the basic physics of star formation is classical, numerical simulations have yielded essential insights into how stars form. They show that star formation is a highly nonuniform runaway process characterized by the emergence of nearly singular peaks in density, followed by the accretional growth of embryo stars that form at these density peaks. Circumstellar discs often form from the gas being accreted by the forming stars, and accretion from these discs may be episodic, driven by gravitational instabilities or by protostellar interactions. Star-forming clouds typically develop filamentary structures, which may, along with the thermal physics, play an important role in the origin of stellar masses because of the sensitivity of filament fragmentation to temperature variations. Simulations of the formation of star clusters show that the most massive stars form by continuing accretion in the dense cluster cores, and this again is a runaway process that couples star formation and cluster formation. Star-forming clouds also tend to develop hierarchical structures, and smaller groups of forming objects tend to merge into progressively larger ones, a generic feature of self-gravitating systems that is common to star formation and galaxy formation. Because of the large range of scales and the complex dynamics involved, analytic models cannot adequately describe many aspects of star formation, and detailed numerical simulations are needed to advance our understanding of the subject. 'The purpose of computing is insight, not numbers.' Richard W Hamming, in Numerical Methods for Scientists and Engineers (1962) 'There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.' William Shakespeare, in Hamlet, Prince of Denmark (1604) (key issues review)

  3. Insights from simulations of star formation

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Richard B [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States)

    2007-03-15

    Although the basic physics of star formation is classical, numerical simulations have yielded essential insights into how stars form. They show that star formation is a highly nonuniform runaway process characterized by the emergence of nearly singular peaks in density, followed by the accretional growth of embryo stars that form at these density peaks. Circumstellar discs often form from the gas being accreted by the forming stars, and accretion from these discs may be episodic, driven by gravitational instabilities or by protostellar interactions. Star-forming clouds typically develop filamentary structures, which may, along with the thermal physics, play an important role in the origin of stellar masses because of the sensitivity of filament fragmentation to temperature variations. Simulations of the formation of star clusters show that the most massive stars form by continuing accretion in the dense cluster cores, and this again is a runaway process that couples star formation and cluster formation. Star-forming clouds also tend to develop hierarchical structures, and smaller groups of forming objects tend to merge into progressively larger ones, a generic feature of self-gravitating systems that is common to star formation and galaxy formation. Because of the large range of scales and the complex dynamics involved, analytic models cannot adequately describe many aspects of star formation, and detailed numerical simulations are needed to advance our understanding of the subject. 'The purpose of computing is insight, not numbers.' Richard W Hamming, in Numerical Methods for Scientists and Engineers (1962) 'There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.' William Shakespeare, in Hamlet, Prince of Denmark (1604) (key issues review)

  4. A WIDE-FIELD NARROWBAND OPTICAL SURVEY OF THE BRAID NEBULA STAR FORMATION REGION IN CYGNUS OB7

    International Nuclear Information System (INIS)

    Magakian, Tigran Yu.; Nikogossian, Elena H.; Movsessian, Tigran; Aspin, Colin; Pyo, Tae-Soo; Khanzadyan, Tigran; Smith, Michael D.; Mitchison, Sharon; Davis, Chris J.; Beck, Tracy L.; Moriarty-Schieven, Gerald H.

    2010-01-01

    We study the population of Herbig-Haro (HH) flows and jets in an area of Cygnus OB7 designated the Braid Nebula star formation region. This complex forms part of the L 1003 dark cloud, and hosts two FU Orionis (FUor)-like objects as well as several other active young stars. To trace outflow activity and to relate both known and newly discovered flows to young star hosts we intercompare new, deep, narrowband Hα and [S II] optical images taken on the Subaru 8 m Telescope on Mauna Kea, Hawaii. Our images show that there is considerable outflow and jet activity in this region suggesting the presence of an extensive young star population. We confirm that both of the FUor-like objects drive extensive HH flows and document further members of the flows in both objects. The L 1003 star formation complex is a highly kinematically active region with young stars in several different stages of evolution. We trace collimated outflows from numerous young stars although the origin of some HH objects remains elusive.

  5. Star Formation in low mass galaxies

    Science.gov (United States)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have

  6. Star-forming galaxy models: Blending star formation into TREESPH

    Science.gov (United States)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    We have incorporated star-formation algorithms into a hybrid N-body/smoothed particle hydrodynamics code (TREESPH) in order to describe the star forming properties of disk galaxies over timescales of a few billion years. The models employ a Schmidt law of index n approximately 1.5 to calculate star-formation rates, and explicitly include the energy and metallicity feedback into the Interstellar Medium (ISM). Modeling the newly formed stellar population is achieved through the use of hybrid SPH/young star particles which gradually convert from gaseous to collisionless particles, avoiding the computational difficulties involved in creating new particles. The models are shown to reproduce well the star-forming properties of disk galaxies, such as the morphology, rate of star formation, and evolution of the global star-formation rate and disk gas content. As an example of the technique, we model an encounter between a disk galaxy and a small companion which gives rise to a ring galaxy reminiscent of the Cartwheel (AM 0035-35). The primary galaxy in this encounter experiences two phases of star forming activity: an initial period during the expansion of the ring, and a delayed phase as shocked material in the ring falls back into the central regions.

  7. RECENT STAR FORMATION IN THE LEADING ARM OF THE MAGELLANIC STREAM

    Energy Technology Data Exchange (ETDEWEB)

    Casetti-Dinescu, Dana I. [Department of Physics, Southern Connecticut State University, 501 Crescent Street, New Haven, CT 06515 (United States); Bidin, Christian Moni [Instituto de Astronomía, Universidad Católica del Norte, Avenue Angamos 0610, Antofagasta (Chile); Girard, Terrence M.; Van Altena, William F. [Astronomy Department, Yale University, 260 Whitney Avenue, New Haven, CT 06511 (United States); Méndez, Réne A. [Departmento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Vieira, Katherine [Centro de Investigaciones de Astronomía, Apartado Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Korchagin, Vladimir I., E-mail: casettid1@southernct.edu, E-mail: dana.casetti@yale.edu, E-mail: terry.girard@yale.edu, E-mail: william.vanaltena@yale.edu, E-mail: chr.moni.bidin@gmail.com, E-mail: ramendez.uchile@gmail.com, E-mail: kvieira@cida.ve, E-mail: vkorchagin@sfedu.ru [Institute of Physics, Southern Federal University, Stachki Street 124, 344090, Rostov-on-Don (Russian Federation)

    2014-04-01

    Strongly interacting galaxies undergo a short-lived but dramatic phase of evolution characterized by enhanced star formation, tidal tails, bridges, and other morphological peculiarities. The nearest example of a pair of interacting galaxies is the Magellanic Clouds, whose dynamical interaction produced the gaseous features known as the Magellanic Stream trailing the pair's orbit about the Galaxy, the bridge between the Clouds, and the leading arm (LA), a wide and irregular feature leading the orbit. Young, newly formed stars in the bridge are known to exist, giving witness to the recent interaction between the Clouds. However, the interaction of the Clouds with the Milky Way (MW) is less well understood. In particular, the LA must have a tidal origin; however, no purely gravitational model is able to reproduce its morphology and kinematics. A hydrodynamical interaction with the gaseous hot halo and disk of the Galaxy is plausible as suggested by some models and supporting neutral hydrogen (H I) observations. Here we show for the first time that young, recently formed stars exist in the LA, indicating that the interaction between the Clouds and our Galaxy is strong enough to trigger star formation in certain regions of the LA—regions in the outskirts of the MW disk (R ∼ 18 kpc), far away from the Clouds and the bridge.

  8. RECENT STAR FORMATION IN THE LEADING ARM OF THE MAGELLANIC STREAM

    International Nuclear Information System (INIS)

    Casetti-Dinescu, Dana I.; Bidin, Christian Moni; Girard, Terrence M.; Van Altena, William F.; Méndez, Réne A.; Vieira, Katherine; Korchagin, Vladimir I.

    2014-01-01

    Strongly interacting galaxies undergo a short-lived but dramatic phase of evolution characterized by enhanced star formation, tidal tails, bridges, and other morphological peculiarities. The nearest example of a pair of interacting galaxies is the Magellanic Clouds, whose dynamical interaction produced the gaseous features known as the Magellanic Stream trailing the pair's orbit about the Galaxy, the bridge between the Clouds, and the leading arm (LA), a wide and irregular feature leading the orbit. Young, newly formed stars in the bridge are known to exist, giving witness to the recent interaction between the Clouds. However, the interaction of the Clouds with the Milky Way (MW) is less well understood. In particular, the LA must have a tidal origin; however, no purely gravitational model is able to reproduce its morphology and kinematics. A hydrodynamical interaction with the gaseous hot halo and disk of the Galaxy is plausible as suggested by some models and supporting neutral hydrogen (H I) observations. Here we show for the first time that young, recently formed stars exist in the LA, indicating that the interaction between the Clouds and our Galaxy is strong enough to trigger star formation in certain regions of the LA—regions in the outskirts of the MW disk (R ∼ 18 kpc), far away from the Clouds and the bridge

  9. Orbit elements and kinematics of the halo stars and the old disk population: evidence for active phases in the evolution of the Galaxy

    International Nuclear Information System (INIS)

    Marsakov, V.A.; Suchkov, A.A.

    1978-01-01

    The distributions of orbits eccentricities and of angular momenta for the halo stars and for the old disk population are considered. The distributions have gaps separating the halo from the disk and diving the halo population into three groups. From the point of view of star formation during the collapse at the earliy stages of evolution the gaps evidence that threre were in the Galaxy long periods of suppression of star formation. The kinematics and the orbit elements of the halo stars and of the old disk population allow to conclude that there was no significant relaxation in the halo; the halo subsystems are not stationary, they perform radial oscillations with respect to the galactic centre; the velocity dispersion in the galactic rotation direction for the halo stars having the same age does not exceed 20-40 km/s; the dispersion of the velocity component along the galactic radius is symmetrically higher for the subsystems with a greater eccentrically and reaches 215 km/s for the stars with the greatest eccentricaities; the sing of the angular momentum in the protogalactic gas cloud probably changed at some distance form the galactic centre

  10. CLUSTERED STAR FORMATION AND OUTFLOWS IN AFGL 2591

    International Nuclear Information System (INIS)

    Sanna, A.; Carrasco-González, C.; Menten, K. M.; Brunthaler, A.; Reid, M. J.; Moscadelli, L.; Rygl, K. L. J.

    2012-01-01

    We report on a detailed study of the water maser kinematics and radio continuum emission toward the most massive and young object in the star-forming region AFGL 2591. Our analysis shows at least two spatial scales of multiple star formation, one projected across 0.1 pc on the sky and another one at about 2000 AU from a ZAMS star of about 38 M ☉ . This young stellar object drives a powerful jet- and wind-driven outflow system with the water masers associated to the outflow walls, previously detected as a limb-brightened cavity in the NIR band. At about 1300 AU to the north of this object a younger protostar drives two bow shocks, outlined by arc-like water maser emission, at 200 AU either side of the source. We have traced the velocity profile of the gas that expands along these arc-like maser structures and compared it with the jet-driven outflow model. This analysis suggests that the ambient medium around the northern protostar is swept up by a jet-driven shock (>66 km s –1 ) and perhaps a lower-velocity (∼10 km s –1 ) wind with an opening angle of about 20° from the jet axis.

  11. CLUSTERED STAR FORMATION AND OUTFLOWS IN AFGL 2591

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, A.; Carrasco-Gonzalez, C.; Menten, K. M.; Brunthaler, A. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Reid, M. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Moscadelli, L. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze (Italy); Rygl, K. L. J., E-mail: asanna@mpifr-bonn.mpg.de [IFSI-INAF, Istituto di Fisica dello Spazio Interplanetario, Via del Fosso del Cavaliere 100, 00133 Roma (Italy)

    2012-02-01

    We report on a detailed study of the water maser kinematics and radio continuum emission toward the most massive and young object in the star-forming region AFGL 2591. Our analysis shows at least two spatial scales of multiple star formation, one projected across 0.1 pc on the sky and another one at about 2000 AU from a ZAMS star of about 38 M{sub Sun }. This young stellar object drives a powerful jet- and wind-driven outflow system with the water masers associated to the outflow walls, previously detected as a limb-brightened cavity in the NIR band. At about 1300 AU to the north of this object a younger protostar drives two bow shocks, outlined by arc-like water maser emission, at 200 AU either side of the source. We have traced the velocity profile of the gas that expands along these arc-like maser structures and compared it with the jet-driven outflow model. This analysis suggests that the ambient medium around the northern protostar is swept up by a jet-driven shock (>66 km s{sup -1}) and perhaps a lower-velocity ({approx}10 km s{sup -1}) wind with an opening angle of about 20 Degree-Sign from the jet axis.

  12. Star Formation in Irregular Galaxies.

    Science.gov (United States)

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  13. The Kinematics of Multiple-peaked Lyα Emission in Star-forming Galaxies at z ~ 2-3

    Science.gov (United States)

    Kulas, Kristin R.; Shapley, Alice E.; Kollmeier, Juna A.; Zheng, Zheng; Steidel, Charles C.; Hainline, Kevin N.

    2012-01-01

    We present new results on the Lyα emission-line kinematics of 18 z ~ 2-3 star-forming galaxies with multiple-peaked Lyα profiles. With our large spectroscopic database of UV-selected star-forming galaxies at these redshifts, we have determined that ~30% of such objects with detectable Lyα emission display multiple-peaked emission profiles. These profiles provide additional constraints on the escape of Lyα photons due to the rich velocity structure in the emergent line. Despite recent advances in modeling the escape of Lyα from star-forming galaxies at high redshifts, comparisons between models and data are often missing crucial observational information. Using Keck II NIRSPEC spectra of Hα (z ~ 2) and [O III]λ5007 (z ~ 3), we have measured accurate systemic redshifts, rest-frame optical nebular velocity dispersions, and emission-line fluxes for the objects in the sample. In addition, rest-frame UV luminosities and colors provide estimates of star formation rates and the degree of dust extinction. In concert with the profile sub-structure, these measurements provide critical constraints on the geometry and kinematics of interstellar gas in high-redshift galaxies. Accurate systemic redshifts allow us to translate the multiple-peaked Lyα profiles into velocity space, revealing that the majority (11/18) display double-peaked emission straddling the velocity-field zero point with stronger red-side emission. Interstellar absorption-line kinematics suggest the presence of large-scale outflows for the majority of objects in our sample, with an average measured interstellar absorption velocity offset of langΔv absrang = -230 km s-1. A comparison of the interstellar absorption kinematics for objects with multiple- and single-peaked Lyα profiles indicate that the multiple-peaked objects are characterized by significantly narrower absorption line widths. We compare our data with the predictions of simple models for outflowing and infalling gas distributions around

  14. Bursting star formation and the overabundance of Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Bodigfee, G.; Deloore, C.

    1985-01-01

    The ratio of the number of WR-stars to their OB progenitors appears to be significantly higher in some extragalactic systems than in our Galaxy. This overabundance of Wolf-Rayet-stars can be explained as a consequence of a recent burst of star formation. It is suggested that this burst is the manifestation of a long period nonlinear oscillation in the star formation process, produced by positive feedback effects between young stars and the interstellar medium. Star burst galaxies with large numbers of WR-stars must generate gamma fluxes but due to the distance, all of them are beyond the reach of present-day detectors, except probably 30 Dor

  15. Tidal interaction, star formation and chemical evolution in blue compact dwarf galaxy Mrk 22

    Science.gov (United States)

    Paswan, A.; Omar, A.; Jaiswal, S.

    2018-02-01

    The optical spectroscopic and radio interferometric H I 21 cm-line observations of the blue compact dwarf galaxy Mrk 22 are presented. The Wolf-Rayet (WR) emission-line features corresponding to high ionization lines of He II λ4686 and C IV λ5808 from young massive stars are detected. The ages of two prominent star-forming regions in the galaxy are estimated as ∼10 and ∼ 4 Myr. The galaxy has non-thermal radio deficiency, which also indicates a young starburst and lack of supernovae events from the current star formation activities, consistent with the detection of WR emission-line features. A significant N/O enrichment is seen in the fainter star-forming region. The gas-phase metallicities [12 + log(O/H)] for the bright and faint regions are estimated as 7.98±0.07 and 7.46±0.09, respectively. The galaxy has a large diffuse H I envelop. The H I images reveal disturbed gas kinematics and H I clouds outside the optical extent of the galaxy, indicating recent tidal interaction or merger in the system. The results strongly indicate that Mrk 22 is undergoing a chemical and morphological evolution due to ongoing star formation, most likely triggered by a merger.

  16. Star formations rates in the Galaxy

    International Nuclear Information System (INIS)

    Smith, L.F.; Mezger, P.G.; Biermann, P.

    1978-01-01

    Data relevant to giant HII regions in the Galaxy are collected. The production rate for Lyman continuum photons by O stars in giant HII regions is 4.7 10 52 s -1 in the whole Galaxy. The corresponding present rate of star formation is M (sun)/yr, of which 74% occurs in main spiral arms, 13% in the interarm region and 13% in the galactic center. The star formation rates, the observed heavy element and deuterium abundances in the solar neighbourhood are compared to model predictions based on star formation proportional to a power (k) of the gas surface density. The mass function is terminated at Msub(u)=100 M (sun) above and M 1 below. Msub(u)=50 M (sun) is also considered. Comparing with data derived from observations a) the star formation rate, b) metal abundances, c) deuterium abundances, and d) colors of the stellar population, we find that models of k=1/2 to 1, and M 1 1 M (sun) are formed together with O and B stars, but under rather special conditions of the interstellar gas, while lower mass stars form wherever dense molecular clouds exist. The high rate of star formation in the galactic center may represent a burst. (orig.) [de

  17. Radiation pressure in super star cluster formation

    Science.gov (United States)

    Tsang, Benny T.-H.; Milosavljević, Miloš

    2018-05-01

    The physics of star formation at its extreme, in the nuclei of the densest and the most massive star clusters in the universe—potential massive black hole nurseries—has for decades eluded scrutiny. Spectroscopy of these systems has been scarce, whereas theoretical arguments suggest that radiation pressure on dust grains somehow inhibits star formation. Here, we harness an accelerated Monte Carlo radiation transport scheme to report a radiation hydrodynamical simulation of super star cluster formation in turbulent clouds. We find that radiation pressure reduces the global star formation efficiency by 30-35%, and the star formation rate by 15-50%, both relative to a radiation-free control run. Overall, radiation pressure does not terminate the gas supply for star formation and the final stellar mass of the most massive cluster is ˜1.3 × 106 M⊙. The limited impact as compared to in idealized theoretical models is attributed to a radiation-matter anti-correlation in the supersonically turbulent, gravitationally collapsing medium. In isolated regions outside massive clusters, where the gas distribution is less disturbed, radiation pressure is more effective in limiting star formation. The resulting stellar density at the cluster core is ≥108 M⊙ pc-3, with stellar velocity dispersion ≳ 70 km s-1. We conclude that the super star cluster nucleus is propitious to the formation of very massive stars via dynamical core collapse and stellar merging. We speculate that the very massive star may avoid the claimed catastrophic mass loss by continuing to accrete dense gas condensing from a gravitationally-confined ionized phase.

  18. Processes and problems in secondary star formation

    International Nuclear Information System (INIS)

    Klein, R.I.; Whitaker, R.W.; Sandford, M.T. II.

    1984-03-01

    Recent developments relating the conditions in molecular clouds to star formation triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the formation of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of the observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding inter-cloud gas flows leading to non-linear inhomogeneous cloud structures in an intially smooth cloud. This clumpy morphology has important consequences for secondary formation. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation driven implosion as a promising secondary star formation mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the formation of new stars in congruent to 1-3 x 10 4 years and could account for the recent evidence for new massive star formation in several UCHII regions. It is concluded that, while no single theory adequately explains the variety of star formation observed, a uniform description of star formation is likely to involve several secondary processes. Advances in the theory of star formation will require multiple dimensional calculations of coupled processes. The important non-linear interactions include hydrodynamics, radiation transport, and magnetic fields

  19. Processes and problems in secondary star formation

    International Nuclear Information System (INIS)

    Klein, R.I.; Whitaker, R.W.; Sandford, M.T. II

    1985-01-01

    Recent developments relating the conditions in molecular clouds to star formation triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the formation of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding intercloud gas flows leading to nonlinear inhomogeneous cloud structures in an initially smooth cloud. This clumpy morphology has important consequences for secondary formation. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation-driven implosion as a promising secondary star formation mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation-driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the formation of new stars in -- 1-3 x 10/sup 4/ yr and could account for the recent evidence for new massive star formation in several ultracompact H II regions. It is concluded that, while no single theory adequately explains the variety of star formation observed, a uniform description of star formation is likely to involve several secondary processes. Advances in the theory of star formation will require multi-dimensional calculations of coupled processes. Important nonlinear interactions include hydrodynamics, radiation transport, and magnetic fields

  20. Self-regulating star formation and disk structure

    International Nuclear Information System (INIS)

    Dopita, M.A.

    1987-01-01

    Star formation processes determine the disk structure of galaxies. Stars heavier than about 1 solar mass determine the chemical evolution of the system and are produced at a rate which maintains (by the momentum input of the stars) the phase structure, pressure, and vertical velocity dispersion of the gas. Low mass stars are produced quiescently within molecular clouds, and their associated T-Tauri winds maintain the support of molecular clouds and regulate the star formation rate. Inefficient cooling suppresses this mode of star formation at low metallicity. Applied to the solar neighborhood, such a model can account for age/metallicity relationships, the increase in the O/Fe ratio at low metallicity, the paucity of metal-poor G and K dwarf stars, the missing mass in the disk and, possibly, the existence of a metal-poor thick disk. For other galaxies, it accounts for constant w-velocity dispersion of the gas, the relationship between gas content and specific rates of star formation, the surface brightness/metallicity relationship and for the shallow radial gradients in both star formation rates and HI content. 71 references

  1. Relations between age, metallicity and kinematics of F-G stars of the Galactic disk

    International Nuclear Information System (INIS)

    Shevelev, Yu.G.; Marsakov, V.A.; Suchkov, A.A.

    1989-01-01

    The data for ∼ 5500 F-G stars are used to study their kinematics, metal abindance and HR diagram in terms of uvby photometry. The age-metallicity, velocity-metallicity, and age-velocity relations are derived. An estimate for the age of the galactic disk is obtained. The following is shown: 1) At[Fe/H] -0.1, turn out to be kinematically younger than these G dwarfs. The same paradox is revealed by G and K giants

  2. Star formation: Cosmic feast

    Science.gov (United States)

    Scaringi, Simone

    2017-03-01

    Low-mass stars form through a process known as disk accretion, eating up material that orbits in a disk around them. It turns out that the same mechanism also describes the formation of more massive stars.

  3. Star formation in active galaxies and quasars

    International Nuclear Information System (INIS)

    Heckman, T.M.

    1987-01-01

    I review the observational evidence for a causal or statistical link between star formation and active galactic nuclei. The chief difficulty is in quantitatively ascertaining the star formation rate in active galaxies: most of the readily observable manifestations of star formation superficially resemble those of an active nucleus. Careful multi-wavelength spatially-resolved observations demonstrate that many Seyfert galaxies are undergoing star formation. Our survey of CO emission from Seyferts (interpreted in conjunction IRAS data) suggests that type 2 Seyferts have unusually high rates of star formation, but type 1 Seyferts do not. Recent work also suggests that many powerful radio galaxies may be actively forming stars: radio galaxies with strong emission-lines often have blue colors and strong far-infrared emission. Determining the star formation rate in the host galaxies of quasars is especially difficult. Multi-color imaging and long-slit spectroscopy suggests that many of the host galaxies of radio-loud quasars are blue and a cold interstellar medium has been detected in some quasar hosts

  4. New method for determination of star formation history

    OpenAIRE

    Čeponis, Marius

    2017-01-01

    A New Method for Determination of Star Formation History Without stars there would not be any life and us. Almost all elements in our bodies are made in stars. Yet we still don‘t fully understand all the processes governing formation and evolution of stellar systems. Their star formation histories really help in trying to understand these processes. In this work a new Bayesian method for determination of star formation history is proposed. This method uses photometric data of resolved stars a...

  5. A VLT/FLAMES STUDY OF THE PECULIAR INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 1846. I. KINEMATICS

    International Nuclear Information System (INIS)

    Mackey, A. D.; Da Costa, G. S.; Yong, D.; Ferguson, A. M. N.

    2013-01-01

    In this paper we present high-resolution VLT/FLAMES observations of red giant stars in the massive intermediate-age Large Magellanic Cloud star cluster NGC 1846, which, on the basis of its extended main-sequence turnoff (EMSTO), possesses an internal age spread of ≈300 Myr. We describe in detail our target selection and data reduction procedures, and construct a sample of 21 stars possessing radial velocities indicating their membership of NGC 1846 at high confidence. We consider high-resolution spectra of the planetary nebula Mo-17, and conclude that this object is also a member of the cluster. Our measured radial velocities allow us to conduct a detailed investigation of the internal kinematics of NGC 1846, the first time this has been done for an EMSTO system. The key result of this work is that the cluster exhibits a significant degree of systemic rotation, of a magnitude comparable to the mean velocity dispersion. Using an extensive suite of Monte Carlo models we demonstrate that, despite our relatively small sample size and the substantial fraction of unresolved binary stars in the cluster, the rotation signal we detect is very likely to be genuine. Our observations are in qualitative agreement with the predictions of simulations modeling the formation of multiple populations of stars in globular clusters, where a dynamically cold, rapidly rotating second generation is a common feature. NGC 1846 is less than one relaxation time old, so any dynamical signatures encoded during its formation ought to remain present.

  6. Probing Minor-merger-driven Star Formation In Early-type Galaxies Using Spatially-resolved Spectro-photometric Studies

    Science.gov (United States)

    Kaviraj, Sugata; Crockett, M.; Silk, J.; O'Connell, R. W.; Whitmore, B.; Windhorst, R.; Cappellari, M.; Bureau, M.; Davies, R.

    2012-01-01

    Recent studies that leverage the rest-frame ultraviolet (UV) spectrum have revealed widespread recent star formation in early-type galaxies (ETGs), traditionally considered to be old, passively-evolving systems. This recent star formation builds 20% of the ETG stellar mass after z 1, driven by repeated minor mergers between ETGs and small, gas-rich satellites. We demonstrate how spatially-resolved studies, using a combination of high-resolution UV-optical imaging and integral-field spectroscopy (IFS), is a powerful tool to quantify the assembly history of individual ETGs and elucidate the poorly-understood minor-merger process. Using a combination of WFC3 UV-optical (2500-8200 angstroms) imaging and IFS from the SAURON project of the ETG NGC 4150, we show that this galaxy experienced a merger with mass ratio 1:15 around 0.9 Gyr ago, which formed 3% of its stellar mass and a young kinematically-decoupled core. A UV-optical analysis of its globular cluster system shows that the bulk of the stars locked up in these clusters likely formed 6-7 Gyrs in the past. We introduce a new HST-WFC3 programme, approved in Cycle 19, which will leverage similar UV-optical imaging of a representative sample of nearby ETGs from SAURON to study the recent star formation and its drivers in unprecedented detail and put definitive constraints on minor-merger-driven star formation in massive galaxies at late epochs.

  7. BAYESIAN ANALYSIS TO IDENTIFY NEW STAR CANDIDATES IN NEARBY YOUNG STELLAR KINEMATIC GROUPS

    International Nuclear Information System (INIS)

    Malo, Lison; Doyon, René; Lafrenière, David; Artigau, Étienne; Gagné, Jonathan; Baron, Frédérique; Riedel, Adric

    2013-01-01

    We present a new method based on a Bayesian analysis to identify new members of nearby young kinematic groups. The analysis minimally takes into account the position, proper motion, magnitude, and color of a star, but other observables can be readily added (e.g., radial velocity, distance). We use this method to find new young low-mass stars in the β Pictoris and AB Doradus moving groups and in the TW Hydrae, Tucana-Horologium, Columba, Carina, and Argus associations. Starting from a sample of 758 mid-K to mid-M (K5V-M5V) stars showing youth indicators such as Hα and X-ray emission, our analysis yields 214 new highly probable low-mass members of the kinematic groups analyzed. One is in TW Hydrae, 37 in β Pictoris, 17 in Tucana-Horologium, 20 in Columba, 6 in Carina, 50 in Argus, 32 in AB Doradus, and the remaining 51 candidates are likely young but have an ambiguous membership to more than one association. The false alarm rate for new candidates is estimated to be 5% for β Pictoris and TW Hydrae, 10% for Tucana-Horologium, Columba, Carina, and Argus, and 14% for AB Doradus. Our analysis confirms the membership of 58 stars proposed in the literature. Firm membership confirmation of our new candidates will require measurement of their radial velocity (predicted by our analysis), parallax, and lithium 6708 Å equivalent width. We have initiated these follow-up observations for a number of candidates, and we have identified two stars (2MASSJ01112542+1526214, 2MASSJ05241914-1601153) as very strong candidate members of the β Pictoris moving group and one strong candidate member (2MASSJ05332558-5117131) of the Tucana-Horologium association; these three stars have radial velocity measurements confirming their membership and lithium detections consistent with young age.

  8. KMOS"3"D Reveals Low-level Star Formation Activity in Massive Quiescent Galaxies at 0.7 < z < 2.7

    International Nuclear Information System (INIS)

    Belli, Sirio; Genzel, Reinhard; Förster Schreiber, Natascha M.; Wisnioski, Emily; Wilman, David J.; Mendel, J. Trevor; Beifiori, Alessandra; Bender, Ralf; Burkert, Andreas; Chan, Jeffrey; Davies, Rebecca L.; Davies, Ric; Fabricius, Maximilian; Fossati, Matteo; Galametz, Audrey; Lang, Philipp; Lutz, Dieter; Wuyts, Stijn; Brammer, Gabriel B.; Momcheva, Ivelina G.

    2017-01-01

    We explore the H α emission in the massive quiescent galaxies observed by the KMOS"3"D survey at 0.7 < z < 2.7. The H α line is robustly detected in 20 out of 120 UVJ -selected quiescent galaxies, and we classify the emission mechanism using the H α line width and the [N ii]/H α line ratio. We find that AGNs are likely to be responsible for the line emission in more than half of the cases. We also find robust evidence for star formation activity in nine quiescent galaxies, which we explore in detail. The H α kinematics reveal rotating disks in five of the nine galaxies. The dust-corrected H α star formation rates are low (0.2–7 M _⊙ yr"−"1), and place these systems significantly below the main sequence. The 24 μ m-based, infrared luminosities, instead, overestimate the star formation rates. These galaxies present a lower gas-phase metallicity compared to star-forming objects with similar stellar mass, and many of them have close companions. We therefore conclude that the low-level star formation activity in these nine quiescent galaxies is likely to be fueled by inflowing gas or minor mergers, and could be a sign of rejuvenation events.

  9. Gas Content and Kinematics in Clumpy, Turbulent Star-forming Disks

    International Nuclear Information System (INIS)

    White, Heidi A.; Abraham, Roberto G.; Fisher, David B.; Glazebrook, Karl; Murray, Norman; Bolatto, Alberto D.; Green, Andrew W.; Mentuch Cooper, Erin; Obreschkow, Danail

    2017-01-01

    We present molecular gas-mass estimates for a sample of 13 local galaxies whose kinematic and star-forming properties closely resemble those observed in z ≈ 1.5 main-sequence galaxies. Plateau de Bure observations of the CO[1-0] emission line and Herschel Space Observatory observations of the dust emission both suggest molecular gas-mass fractions of ∼20%. Moreover, dust emission modeling finds T dust < 30 K, suggesting a cold dust distribution compared to their high infrared luminosity. The gas-mass estimates argue that z ∼ 0.1 DYNAMO galaxies not only share similar kinematic properties with high- z disks, but they are also similarly rich in molecular material. Pairing the gas-mass fractions with existing kinematics reveals a linear relationship between f gas and σ / v c , consistent with predictions from stability theory of a self-gravitating disk. It thus follows that high gas-velocity dispersions are a natural consequence of large gas fractions. We also find that the systems with the lowest t dep (∼0.5 Gyr) have the highest ratios of σ / v c and more pronounced clumps, even at the same high molecular gas fraction.

  10. Gas Content and Kinematics in Clumpy, Turbulent Star-forming Disks

    Energy Technology Data Exchange (ETDEWEB)

    White, Heidi A.; Abraham, Roberto G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H8 (Canada); Fisher, David B.; Glazebrook, Karl [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Murray, Norman [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto ON M5S 3H8 (Canada); Bolatto, Alberto D. [Department of Astronomy and Joint Space Institute, University of Maryland, College Park, MD 20642 (United States); Green, Andrew W. [Australian Astronomical Observatory, P.O. Box 970, North Ryde, NSW 1670 (Australia); Mentuch Cooper, Erin [Astronomy Department, University of Texas at Austin, Austin, TX 78712 (United States); Obreschkow, Danail [International Centre for Radio Astronomy Research (ICRAR), University of Western Australia, M468, Crawley, WA 6009 (Australia)

    2017-09-01

    We present molecular gas-mass estimates for a sample of 13 local galaxies whose kinematic and star-forming properties closely resemble those observed in z ≈ 1.5 main-sequence galaxies. Plateau de Bure observations of the CO[1-0] emission line and Herschel Space Observatory observations of the dust emission both suggest molecular gas-mass fractions of ∼20%. Moreover, dust emission modeling finds T {sub dust} < 30 K, suggesting a cold dust distribution compared to their high infrared luminosity. The gas-mass estimates argue that z ∼ 0.1 DYNAMO galaxies not only share similar kinematic properties with high- z disks, but they are also similarly rich in molecular material. Pairing the gas-mass fractions with existing kinematics reveals a linear relationship between f {sub gas} and σ / v {sub c}, consistent with predictions from stability theory of a self-gravitating disk. It thus follows that high gas-velocity dispersions are a natural consequence of large gas fractions. We also find that the systems with the lowest t {sub dep} (∼0.5 Gyr) have the highest ratios of σ / v{sub c} and more pronounced clumps, even at the same high molecular gas fraction.

  11. Star formation histories of irregular galaxies

    International Nuclear Information System (INIS)

    Gallagher, J.S. III; Hunter, D.A.; Tutukov, A.V.

    1984-01-01

    We explore the star formation histories of a selection of irregular and spiral galaxies by using three parameters that sample the star formation rate (SFR) at different epochs: (1) the mass of a galaxy in the form of stars measures the SFR integrated over a galaxy's lifetime; (2) the blue luminosity is dominated primarily by stars formed over the past few billion years; and (3) Lyman continuum photon fluxes derived from Hα luminosities give the current ( 8 yr) SFR

  12. SDSS-IV MaNGA - the spatially resolved transition from star formation to quiescence

    Science.gov (United States)

    Belfiore, Francesco; Maiolino, Roberto; Maraston, Claudia; Emsellem, Eric; Bershady, Matthew A.; Masters, Karen L.; Bizyaev, Dmitry; Boquien, Médéric; Brownstein, Joel R.; Bundy, Kevin; Diamond-Stanic, Aleksandar M.; Drory, Niv; Heckman, Timothy M.; Law, David R.; Malanushenko, Olena; Oravetz, Audrey; Pan, Kaike; Roman-Lopes, Alexandre; Thomas, Daniel; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2017-04-01

    Using spatially resolved spectroscopy from SDSS-IV MaNGA we have demonstrated that low ionization emission-line regions (LIERs) in local galaxies result from photoionization by hot evolved stars, not active galactic nuclei, hence tracing galactic region hosting old stellar population where, despite the presence of ionized gas, star formation is no longer occurring. LIERs are ubiquitous in both quiescent galaxies and in the central regions of galaxies where star formation takes place at larger radii. We refer to these two classes of galaxies as extended LIER (eLIER) and central LIER (cLIER) galaxies, respectively. cLIERs are late-type galaxies primarily spread across the green valley, in the transition region between the star formation main sequence and quiescent galaxies. These galaxies display regular disc rotation in both stars and gas, although featuring a higher central stellar velocity dispersion than star-forming galaxies of the same mass. cLIERs are consistent with being slowly quenched inside-out; the transformation is associated with massive bulges, pointing towards the importance of bulge growth via secular evolution. eLIERs are morphologically early types and are indistinguishable from passive galaxies devoid of line emission in terms of their stellar populations, morphology and central stellar velocity dispersion. Ionized gas in eLIERs shows both disturbed and disc-like kinematics. When a large-scale flow/rotation is observed in the gas, it is often misaligned relative to the stellar component. These features indicate that eLIERs are passive galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Importantly, quiescent galaxies devoid of line emission reside in denser environments and have significantly higher satellite fraction than eLIERs. Environmental effects thus represent the likely cause for the existence of line-less galaxies on the red sequence.

  13. COMPLEX GAS KINEMATICS IN COMPACT, RAPIDLY ASSEMBLING STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Amorin, R.; Vilchez, J. M.; Perez-Montero, E. [Instituto de Astrofisica de Andalucia-CSIC, Glorieta de la Astronomia S/N, E-18008 Granada (Spain); Haegele, G. F.; Firpo, V. [Facultad de Ciencias Astronomicas y Geofisicas, Universidad de la Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina); Papaderos, P., E-mail: amorin@iaa.es [Centro de Astrofisica and Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-08-01

    Deep, high-resolution spectroscopic observations have been obtained for six compact, strongly star-forming galaxies at redshift z {approx} 0.1-0.3, most of them also known as green peas. Remarkably, these galaxies show complex emission-line profiles in the spectral region including H{alpha}, [N II] {lambda}{lambda}6548, 6584, and [S II] {lambda}{lambda}6717, 6731, consisting of the superposition of different kinematical components on a spatial extent of few kiloparsecs: a very broad line emission underlying more than one narrower component. For at least two of the observed galaxies some of these multiple components are resolved spatially in their two-dimensional spectra, whereas for another one a faint detached H{alpha} blob lacking stellar continuum is detected at the same recessional velocity {approx}7 kpc away from the galaxy. The individual narrower H{alpha} components show high intrinsic velocity dispersion ({sigma} {approx} 30-80 km s{sup -1}), suggesting together with unsharped masking Hubble Space Telescope images that star formation proceeds in an ensemble of several compact and turbulent clumps, with relative velocities of up to {approx}500 km s{sup -1}. The broad underlying H{alpha} components indicate in all cases large expansion velocities (full width zero intensity {>=}1000 km s{sup -1}) and very high luminosities (up to {approx}10{sup 42} erg s{sup -1}), probably showing the imprint of energetic outflows from supernovae. These intriguing results underline the importance of green peas for studying the assembly of low-mass galaxies near and far.

  14. Star formation in the multiverse

    International Nuclear Information System (INIS)

    Bousso, Raphael; Leichenauer, Stefan

    2009-01-01

    We develop a simple semianalytic model of the star formation rate as a function of time. We estimate the star formation rate for a wide range of values of the cosmological constant, spatial curvature, and primordial density contrast. Our model can predict such parameters in the multiverse, if the underlying theory landscape and the cosmological measure are known.

  15. StarDOM: From STAR format to XML

    International Nuclear Information System (INIS)

    Linge, Jens P.; Nilges, Michael; Ehrlich, Lutz

    1999-01-01

    StarDOM is a software package for the representation of STAR files as document object models and the conversion of STAR files into XML. This allows interactive navigation by using the Document Object Model representation of the data as well as easy access by XML query languages. As an example application, the entire BioMagResBank has been transformed into XML format. Using an XML query language, statistical queries on the collected NMR data sets can be constructed with very little effort. The BioMagResBank/XML data and the software can be obtained at http://www.nmr.embl-heidelberg.de/nmr/StarDOM/

  16. TIME-VARYING DYNAMICAL STAR FORMATION RATE

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chang, Philip; Murray, Norman, E-mail: evelee@berkeley.edu [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON M5S 3H8 (Canada)

    2015-02-10

    We present numerical evidence of dynamic star formation in which the accreted stellar mass grows superlinearly with time, roughly as t {sup 2}. We perform simulations of star formation in self-gravitating hydrodynamic and magnetohydrodynamic turbulence that is continuously driven. By turning the self-gravity of the gas in the simulations on or off, we demonstrate that self-gravity is the dominant physical effect setting the mass accretion rate at early times before feedback effects take over, contrary to theories of turbulence-regulated star formation. We find that gravitational collapse steepens the density profile around stars, generating the power-law tail on what is otherwise a lognormal density probability distribution function. Furthermore, we find turbulent velocity profiles to flatten inside collapsing regions, altering the size-line width relation. This local flattening reflects enhancements of turbulent velocity on small scales, as verified by changes to the velocity power spectra. Our results indicate that gas self-gravity dynamically alters both density and velocity structures in clouds, giving rise to a time-varying star formation rate. We find that a substantial fraction of the gas that forms stars arrives via low-density flows, as opposed to accreting through high-density filaments.

  17. The formation of galaxies from pregalactic stars

    International Nuclear Information System (INIS)

    Jones, Janet

    1982-01-01

    A knowledge of how and when the first stars formed is vital for our understanding of the formation and early evolution of galaxies. Evidence is given that the first stars were pregalactic: indeed, that at least two generations of stars had formed before galaxies collapsed. A model is presented describing the effects of pregalactic stars on galaxy evolution. The first generation -primordial stars- were massive and few in number. A brief description is given for the formation of such a star. The second generation included stars of all masses and involved widespread star formation. Gas ejected from these stars on timescales of 6 x 10 7 to 6 x 10 8 years induced a qualitative change into the dynamics of collapsing perturbations, leading to a characteristic mass of galaxies of 10 10 - 10 12 M 0 . Variations in the rate of gas ejection were responsible for different morphological structures - elliptical and spirals. A few comments are made on some other implications of the model

  18. The impact of Einstein observations on our understanding of low mass star formation

    International Nuclear Information System (INIS)

    Walter, F.M.

    1990-01-01

    Prior to 1980, the world of pre-main sequence stars, if not well understood, was at least well defined. The Herbig and Rao (1972) catalog listed 69 pre-main sequence stars in Tau-Aur, with the vast majority clearly being T Tauri stars. The characteristics of the classical T Tauri stars include strong Hα emission, with W λ (Hα)>5-10A; forbidden line emission; continuum ultraviolet and IR excesses; veiling of the absorption line spectrum; significant stellar variability; Li I λ6707A absorption; and association with dark clouds and/or emission nebulosities. Star forming regions were observed extensively with the Einstein Observatory, and showed the abundance of stellar X-ray sources in the Orion Nebula. About 1/3 of the known T Tauri stars were detected as X-ray sources, yet the vast majority of the X-ray sources detected were coincident with anonymous stars not suspected to be pre-main sequence stars. In the grand tradition of X-ray astronomy, X-ray astronomers trooped to telescopes to identify the optical counterparts. It was shown that 5 of the counterparts were K7-M0 stars, above the main sequence, with strong Li I absorption and that these stars were kinematic members of the Tau-Aur star formation complex. Since then, additional members of this class of naked T Tauri Stars (NTTS) have been studied, and charts provided for X-ray selected pre-main sequence star candidates in the general vicinity of Tau-Aur. Thirty five X-ray sources have been selected and optically confirmed as NTTS in Tau-Aur

  19. GMC Collisions as Triggers of Star Formation. II. 3D Turbulent, Magnetized Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Benjamin; Tan, Jonathan C. [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Loo, Sven Van [School of Physics and Astronomy, University of Leeds (United Kingdom); Christie, Duncan [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Collins, David [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

    2017-02-01

    We investigate giant molecular cloud collisions and their ability to induce gravitational instability and thus star formation. This mechanism may be a major driver of star formation activity in galactic disks. We carry out a series of 3D, magnetohydrodynamics (MHD), adaptive mesh refinement simulations to study how cloud collisions trigger formation of dense filaments and clumps. Heating and cooling functions are implemented based on photo-dissociation region models that span the atomic-to-molecular transition and can return detailed diagnostic information. The clouds are initialized with supersonic turbulence and a range of magnetic field strengths and orientations. Collisions at various velocities and impact parameters are investigated. Comparing and contrasting colliding and non-colliding cases, we characterize morphologies of dense gas, magnetic field structure, cloud kinematic signatures, and cloud dynamics. We present key observational diagnostics of cloud collisions, especially: relative orientations between magnetic fields and density structures, like filaments; {sup 13}CO( J = 2-1), {sup 13}CO( J = 3-2), and {sup 12}CO( J = 8-7) integrated intensity maps and spectra; and cloud virial parameters. We compare these results to observed Galactic clouds.

  20. KMOS{sup 3D} Reveals Low-level Star Formation Activity in Massive Quiescent Galaxies at 0.7 < z < 2.7

    Energy Technology Data Exchange (ETDEWEB)

    Belli, Sirio; Genzel, Reinhard; Förster Schreiber, Natascha M.; Wisnioski, Emily; Wilman, David J.; Mendel, J. Trevor; Beifiori, Alessandra; Bender, Ralf; Burkert, Andreas; Chan, Jeffrey; Davies, Rebecca L.; Davies, Ric; Fabricius, Maximilian; Fossati, Matteo; Galametz, Audrey; Lang, Philipp; Lutz, Dieter [Max-Planck-Institut für Extraterrestrische Physik (MPE), Giessenbachstr. 1, D-85748 Garching (Germany); Wuyts, Stijn [Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom); Brammer, Gabriel B.; Momcheva, Ivelina G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2017-05-20

    We explore the H α emission in the massive quiescent galaxies observed by the KMOS{sup 3D} survey at 0.7 < z < 2.7. The H α line is robustly detected in 20 out of 120 UVJ -selected quiescent galaxies, and we classify the emission mechanism using the H α line width and the [N ii]/H α line ratio. We find that AGNs are likely to be responsible for the line emission in more than half of the cases. We also find robust evidence for star formation activity in nine quiescent galaxies, which we explore in detail. The H α kinematics reveal rotating disks in five of the nine galaxies. The dust-corrected H α star formation rates are low (0.2–7 M {sub ⊙} yr{sup −1}), and place these systems significantly below the main sequence. The 24 μ m-based, infrared luminosities, instead, overestimate the star formation rates. These galaxies present a lower gas-phase metallicity compared to star-forming objects with similar stellar mass, and many of them have close companions. We therefore conclude that the low-level star formation activity in these nine quiescent galaxies is likely to be fueled by inflowing gas or minor mergers, and could be a sign of rejuvenation events.

  1. Delayed star formation in isolated dwarf galaxies: Hubble space telescope star formation history of the Aquarius dwarf irregular

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania, 7001 Australia (Australia); Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55441 (United States); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, Dominion Astrophysical Observatory, Victoria, BC, V9E 2E7 Canada (Canada); Brooks, Alyson M. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Leaman, Ryan, E-mail: andrew.cole@utas.edu.au, E-mail: drw@ucsc.edu, E-mail: adolphin@raytheon.com, E-mail: skillman@astro.umn.edu, E-mail: alan.mcconnachie@nrc-cnrc.gc.ca, E-mail: abrooks@physics.rutgers.edu, E-mail: rleaman@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈6-8 Gyr ago (z ≈ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M {sub H} {sub I}/M {sub *}, dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.

  2. Star formation is boosted (and quenched) from the inside-out: radial star formation profiles from MaNGA

    Science.gov (United States)

    Ellison, Sara L.; Sánchez, Sebastian F.; Ibarra-Medel, Hector; Antonio, Braulio; Mendel, J. Trevor; Barrera-Ballesteros, Jorge

    2018-02-01

    The tight correlation between total galaxy stellar mass and star formation rate (SFR) has become known as the star-forming main sequence. Using ˜487 000 spaxels from galaxies observed as part of the Sloan Digital Sky Survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we confirm previous results that a correlation also exists between the surface densities of star formation (ΣSFR) and stellar mass (Σ⋆) on kpc scales, representing a `resolved' main sequence. Using a new metric (ΔΣSFR), which measures the relative enhancement or deficit of star formation on a spaxel-by-spaxel basis relative to the resolved main sequence, we investigate the SFR profiles of 864 galaxies as a function of their position relative to the global star-forming main sequence (ΔSFR). For galaxies above the global main sequence (positive ΔSFR) ΔΣSFR is elevated throughout the galaxy, but the greatest enhancement in star formation occurs at small radii (<3 kpc, or 0.5Re). Moreover, galaxies that are at least a factor of 3 above the main sequence show diluted gas phase metallicities out to 2Re, indicative of metal-poor gas inflows accompanying the starbursts. For quiescent/passive galaxies that lie at least a factor of 10 below the star-forming main sequence, there is an analogous deficit of star formation throughout the galaxy with the lowest values of ΔΣSFR in the central 3 kpc. Our results are in qualitative agreement with the `compaction' scenario in which a central starburst leads to mass growth in the bulge and may ultimately precede galactic quenching from the inside-out.

  3. The Epoch of Disk Formation: z is Approximately l to Today

    Science.gov (United States)

    Kassin, Susan; Gardner, Jonathan; Weiner, Ben; Faber, Sandra

    2012-01-01

    We present data on galaxy kinematics, morphologies, and star-formation rates over 0.1 less than z less than 1.2 for approximately 500 blue galaxies. These data show how systems like our own Milky-Way have come into being. At redshifts around 1, about half the age of the Universe ago, Milky-Way mass galaxies were different beasts than today. They had a significant amount of disturbed motions, disturbed morphologies, shallower potential wells, higher specific star-formation rates, and likely higher gas fractions. Since redshift approximately 1, galaxies have decreased in disturbed motions, increased in rotation velocity and potential well depth, become more well-ordered morphologically, and decreased in specific star-formation rate. We find interrelationships between these measurements. Galaxy kinematics are correlated with morphology and specific star-formation rate such that galaxies with the fastest rotation velocities and the least amounts of disturbed motions have the most well-ordered morphologies and the lowest specific star-formation rates. The converse is true. Moreover, we find that the rate at which galaxies become more well-ordered kinematically (i.e., increased rotation velocity, decreased disturbed motions) and morphologically is directly proportional to their stellar mass.

  4. Search of massive star formation with COMICS

    Science.gov (United States)

    Okamoto, Yoshiko K.

    2004-04-01

    Mid-infrared observations is useful for studies of massive star formation. Especially COMICS offers powerful tools: imaging survey of the circumstellar structures of forming massive stars such as massive disks and cavity structures, mass estimate from spectroscopy of fine structure lines, and high dispersion spectroscopy to census gas motion around formed stars. COMICS will open the next generation infrared studies of massive star formation.

  5. HOW GALACTIC ENVIRONMENT REGULATES STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Meidt, Sharon E. [Max-Planck-Institut für Astronomie/Königstuhl 17 D-69117 Heidelberg (Germany)

    2016-02-10

    In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars—internal structure versus external, environmental influences—providing a unified picture for the regulation of star formation in galaxies. In the presence of external pressure, the pressure gradient set up within a self-gravitating turbulent (isothermal) cloud leads to a non-uniform density distribution. Thus the local environment of a cloud influences its internal structure. In the simple equilibrium model, the fraction of gas at high density in the cloud interior is determined simply by the cloud surface density, which is itself inherited from the pressure in the immediate surroundings. This idea is tested using measurements of the properties of local clouds, which are found to show remarkable agreement with the simple equilibrium model. The model also naturally predicts the star formation relation observed on cloud scales and at the same time provides a mapping between this relation and the closer-to-linear molecular star formation relation measured on larger scales in galaxies. The key is that pressure regulates not only the molecular content of the ISM but also the cloud surface density. I provide a straightforward prescription for the pressure regulation of star formation that can be directly implemented in numerical models. Predictions for the dense gas fraction and star formation efficiency measured on large-scales within galaxies are also presented, establishing the basis for a new picture of star formation regulated by galactic environment.

  6. Formation of stars and stellar clusters in galactic environment

    OpenAIRE

    Smilgys, Romas

    2018-01-01

    Star and stellar cluster formation in spiral galaxies is one of the biggest questions of astrophysics. In this thesis, I study how star formation, and the formation of stellar clusters, proceeds using SPH simulations. These simulations model a region of 400 pc and 10⁷ solar masses. Star formation is modelled through the use of sink particles which represent small groups of stars. Star formation occurs in high density regions, created by galactic spiral arm passage. The spiral shock compresses...

  7. The Star Formation History and Morphological Evolution of the Draco Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Aparicio, Antonio; Carrera, Ricardo; Martínez-Delgado, David

    2001-11-01

    The photometric and morphological properties, as well as the star formation history, of the Draco dwarf spheroidal galaxy are analyzed on the basis of wide-field CCD photometry of the resolved stars covering about 1 deg2. Draco is at a distance of d=80+/-7 kpc and has a metallicity, [Fe/H], of -1.8+/-0.2. No metallicity gradient is detected. The star surface density distribution can be fitted by a single exponential law of scale length α=5.0‧+/-0.1‧. The central surface magnitude is μ''V''=24.4+/-0.5, and the core radius is rc=7.5‧+/-0.3‧ (equivalent to rc=175+/-7 pc). Within errors, the same scale lengths are found for the density profiles along the semimajor and semiminor axes (rescaled to semimajor-axis units, using the ellipticity of the galaxy) of Draco. There are hence no evidences of a tidal tail associated with Draco. The tidal radius of the galaxy is found to be rt~=42' (~=1 kpc). The possibility that the large mass-to-light relation in Draco could be accounted for by a convenient spatial orientation is tested. An upper limit to Draco's size along the line of sight is ~14 kpc. This is too small to account for the velocity dispersion of Draco if it were due to projection effects only, and it implies that other mechanisms (e.g., dark matter) are required. The stellar population of Draco is mainly old. Although some intermediate-age population is present in Draco, most of the star formation (up to 90%) took place before ~10 Gyr ago. No significant star formation activity is detected in the last ~2 Gyr. Two methods (partial model and subgiant) have been used to investigate the star formation history of Draco, both producing results in good qualitative agreement. No difference is found between the scale lengths of the distributions of old (>~9 Gyr) and young (~2-3 Gyr) stars, indicating either that both populations were formed under the same kinematic conditions, or that any initial difference was afterward erased.

  8. The Formation and Early Evolution of Embedded Massive Star Clusters

    Science.gov (United States)

    Barnes, Peter

    We propose to combine Spitzer, WISE, Herschel, and other archival spacecraft data with an existing ground- and space-based mm-wave to near-IR survey of molecular clouds over a large portion of the Milky Way, in order to systematically study the formation and early evolution of massive stars and star clusters, and provide new observational calibrations for a theoretical paradigm of this key astrophysical problem. Central Objectives: The Galactic Census of High- and Medium-mass Protostars (CHaMP) is a large, unbiased, uniform, and panchromatic survey of massive star and cluster formation and early evolution, covering 20°x6° of the Galactic Plane. Its uniqueness lies in the comprehensive molecular spectroscopy of 303 massive dense clumps, which have also been included in several archival spacecraft surveys. Our objective is a systematic demographic analysis of massive star and cluster formation, one which has not been possible without knowledge of our CHaMP cloud sample, including all clouds with embedded clusters as well as those that have not yet formed massive stars. For proto-clusters deeply embedded within dense molecular clouds, analysis of these space-based data will: 1. Yield a complete census of Young Stellar Objects in each cluster. 2. Allow systematic measurements of embedded cluster properties: spectral energy distributions, luminosity functions, protostellar and disk fractions, and how these vary with cluster mass, age, and density. Combined with other, similarly complete and unbiased infrared and mm data, CHaMP's goals include: 3. A detailed comparison of the embedded stellar populations with their natal dense gas to derive extinction maps, star formation efficiencies and feedback effects, and the kinematics, physics, and chemistry of the gas in and around the clusters. 4. Tying the demographics, age spreads, and timescales of the clusters, based on pre-Main Sequence evolution, to that of the dense gas clumps and Giant Molecular Clouds. 5. A

  9. The formation of stars

    CERN Document Server

    Stahler, Steven W

    2008-01-01

    This book is a comprehensive treatment of star formation, one of the most active fields of modern astronomy. The reader is guided through the subject in a logically compelling manner. Starting from a general description of stars and interstellar clouds, the authors delineate the earliest phases of stellar evolution. They discuss formation activity not only in the Milky Way, but also in other galaxies, both now and in the remote past. Theory and observation are thoroughly integrated, with the aid of numerous figures and images. In summary, this volume is an invaluable resource, both as a text f

  10. Gravitational instability, evolution of galaxies and star formation

    International Nuclear Information System (INIS)

    Palous, J.

    1979-01-01

    The gravitational collapse is the key to the theories of galaxy and star formation. The observations, showing intrinsic differences between elliptical and spiral galaxies, guide our fundamental conceptions on the formation and evolution of systems in question. Stars in elliptical galaxies and in spherical components of spiral galaxies were formed in a short period of time during early phases of protogalactic collapse, at a time of violent star formation. The disc-like components of spiral galaxies, however, were built gradually in the course of galactic evolution. Star formation in elliptical galaxies is described by the collision model of interstellar clouds, while star formation in discs is characterised by several processes: the expansion of HII regions, the expansion of supernovae remnants and the shock wave related to the presence of the spiral structure. (author)

  11. Star Formation in Merging Galaxies Using FIRE

    Science.gov (United States)

    Perez, Adrianna; Hung, Chao-Ling; Naiman, Jill; Moreno, Jorge; Hopkins, Philip

    2018-01-01

    Galaxy interactions and mergers are efficient mechanisms to birth stars at rates that are significantly higher than found in our Milky Way galaxy. The Kennicut-Schmidt (KS) relation is an empirical relationship between the star-forming rate and gas surface densities of galaxies (Schmidt 1959; Kennicutt 1998). Although most galaxies follow the KS relation, the high levels of star formation in galaxy mergers places them outside of this otherwise tight relationship. The goal of this research is to analyze the gas content and star formation of simulated merging galaxies. Our work utilizes the Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high-resolution cosmological simulation that resolves star-forming regions and incorporates stellar feedback in a physically realistic way. In this work, we have noticed a significant increase in the star formation rate at first and second passage, when the two black holes of each galaxy approach one other. Next, we will analyze spatially resolved star-forming regions over the course of the interacting system. Then, we can study when and how the rates that gas converts into stars deviate from the standard KS. These analyses will provide important insights into the physical mechanisms that regulate star formation of normal and merging galaxies and valuable theoretical predictions that can be used to compare with current and future observations from ALMA or the James Webb Space Telescope.

  12. Probes of Cosmic Star Formation History

    Indian Academy of Sciences (India)

    I summarize X-ray diagnostic studies of cosmic star formation history in terms of evolutionary schemes for X-ray binary evolution in normal galaxies with evolving star formation. Deep X-ray imaging studies by Chandra and XMM-Newton are now beginning to constrain both the X-ray luminosity evolution of galaxies and the ...

  13. A mathematical model of star formation in the Galaxy

    Directory of Open Access Journals (Sweden)

    M.A. Sharaf

    2012-06-01

    Full Text Available This paper is generally concerned with star formation in the Galaxy, especially blue stars. Blue stars are the most luminous, massive and the largest in radius. A simple mathematical model of the formation of the stars is established and put in computational algorithm. This algorithm enables us to know more about the formation of the star. Some real and artificial examples had been used to justify this model.

  14. KEY ISSUES REVIEW: Insights from simulations of star formation

    Science.gov (United States)

    Larson, Richard B.

    2007-03-01

    Although the basic physics of star formation is classical, numerical simulations have yielded essential insights into how stars form. They show that star formation is a highly nonuniform runaway process characterized by the emergence of nearly singular peaks in density, followed by the accretional growth of embryo stars that form at these density peaks. Circumstellar discs often form from the gas being accreted by the forming stars, and accretion from these discs may be episodic, driven by gravitational instabilities or by protostellar interactions. Star-forming clouds typically develop filamentary structures, which may, along with the thermal physics, play an important role in the origin of stellar masses because of the sensitivity of filament fragmentation to temperature variations. Simulations of the formation of star clusters show that the most massive stars form by continuing accretion in the dense cluster cores, and this again is a runaway process that couples star formation and cluster formation. Star-forming clouds also tend to develop hierarchical structures, and smaller groups of forming objects tend to merge into progressively larger ones, a generic feature of self-gravitating systems that is common to star formation and galaxy formation. Because of the large range of scales and the complex dynamics involved, analytic models cannot adequately describe many aspects of star formation, and detailed numerical simulations are needed to advance our understanding of the subject. 'The purpose of computing is insight, not numbers.' Richard W Hamming, in Numerical Methods for Scientists and Engineers (1962) 'There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.' William Shakespeare, in Hamlet, Prince of Denmark (1604)

  15. The interstellar medium and star formation in local galaxies: Variations of the star formation law in simulations

    International Nuclear Information System (INIS)

    Becerra, Fernando; Escala, Andrés

    2014-01-01

    We use the adaptive mesh refinement code Enzo to model the interstellar medium (ISM) in isolated local disk galaxies. The simulation includes a treatment for star formation and stellar feedback. We get a highly supersonic turbulent disk, which is fragmented at multiple scales and characterized by a multi-phase ISM. We show that a Kennicutt-Schmidt relation only holds when averaging over large scales. However, values of star formation rates and gas surface densities lie close in the plot for any averaging size. This suggests an intrinsic relation between stars and gas at cell-size scales, which dominates over the global dynamical evolution. To investigate this effect, we develop a method to simulate the creation of stars based on the density field from the snapshots, without running the code again. We also investigate how the star formation law is affected by the characteristic star formation timescale, the density threshold, and the efficiency considered in the recipe. We find that the slope of the law varies from ∼1.4 for a free-fall timescale, to ∼1.0 for a constant depletion timescale. We further demonstrate that a power law is recovered just by assuming that the mass of the new stars is a fraction of the mass of the cell m * = ερ gas Δx 3 , with no other physical criteria required. We show that both efficiency and density threshold do not affect the slope, but the right combination of them can adjust the normalization of the relation, which in turn could explain a possible bi-modality in the law.

  16. LoCuSS: THE SLOW QUENCHING OF STAR FORMATION IN CLUSTER GALAXIES AND THE NEED FOR PRE-PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Haines, C. P. [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Correo Central, Santiago (Chile); Pereira, M. J.; Egami, E.; Rawle, T. D. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Smith, G. P.; Ziparo, F.; McGee, S. L. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Babul, A. [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 1A1 (Canada); Finoguenov, A. [Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-0014 Helsinki (Finland); Okabe, N. [Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), P.O. Box 23-141, Taipei 10617, Taiwan (China); Moran, S. M., E-mail: cphaines@das.uchile.cl [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-06-10

    We present a study of the spatial distribution and kinematics of star-forming galaxies in 30 massive clusters at 0.15 < z < 0.30, combining wide-field Spitzer 24 μm and GALEX near-ultraviolet imaging with highly complete spectroscopy of cluster members. The fraction (f{sub SF}) of star-forming cluster galaxies rises steadily with cluster-centric radius, increasing fivefold by 2r{sub 200}, but remains well below field values even at 3r{sub 200}. This suppression of star formation at large radii cannot be reproduced by models in which star formation is quenched in infalling field galaxies only once they pass within r{sub 200} of the cluster, but is consistent with some of them being first pre-processed within galaxy groups. Despite the increasing f{sub SF}-radius trend, the surface density of star-forming galaxies actually declines steadily with radius, falling ∼15× from the core to 2r{sub 200}. This requires star formation to survive within recently accreted spirals for 2–3 Gyr to build up the apparent over-density of star-forming galaxies within clusters. The velocity dispersion profile of the star-forming galaxy population shows a sharp peak of 1.44 σ{sub ν} at 0.3r{sub 500}, and is 10%–35% higher than that of the inactive cluster members at all cluster-centric radii, while their velocity distribution shows a flat, top-hat profile within r{sub 500}. All of these results are consistent with star-forming cluster galaxies being an infalling population, but one that must also survive ∼0.5–2 Gyr beyond passing within r{sub 200}. By comparing the observed distribution of star-forming galaxies in the stacked caustic diagram with predictions from the Millennium simulation, we obtain a best-fit model in which star formation rates decline exponentially on quenching timescales of 1.73 ± 0.25 Gyr upon accretion into the cluster.

  17. Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Grasha, K.; Calzetti, D. [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Elmegreen, B. G. [IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY (United States); Adamo, A.; Messa, M. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, Stockholm (Sweden); Aloisi, A.; Bright, S. N.; Lee, J. C.; Ryon, J. E.; Ubeda, L. [Space Telescope Science Institute, Baltimore, MD (United States); Cook, D. O. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA (United States); Dale, D. A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY (United States); Fumagalli, M. [Institute for Computational Cosmology and Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham (United Kingdom); Gallagher III, J. S. [Department of Astronomy, University of Wisconsin–Madison, Madison, WI (United States); Gouliermis, D. A. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120, Heidelberg (Germany); Kahre, L. [Department of Astronomy, New Mexico State University, Las Cruces, NM (United States); Kim, H. [Gemini Observatory, La Serena (Chile); Krumholz, M. R., E-mail: kgrasha@astro.umass.edu [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia)

    2017-06-10

    We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25–0.6 power, and that the maximum size over which star formation is physically correlated ranges from ∼200 pc to ∼1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are close to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy’s shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.

  18. Kinematics and M(sub v) calibration of K and M dwarf stars using Hipparcos data

    Science.gov (United States)

    Upgren, A. R.; Ratnatunga, K. U.; Casertano, S.; Weis, E.

    1997-01-01

    The luminosities and kinematics of lower main sequence stars in a spectroscopically selected sample covering spectral types K 3 to M 5 are determined using Hipparcos parallaxes and proper motions. The stars separate into two kinematically distinct components, called young disk and old disk components. The young component has velocity dispersion (30, 17, 12) km/s in the U, V and W directions, respectively, and features an asymmetric drift of 8 km/s, a vertex deviation of 10 +/- 3 deg and an absolute magnitude of 10.48 mag at color (R - I)(sub Kron) = 1.0 mag. The respective features of the old component are: (56, 34, 31) km/s, 28 km/s and 0.6 mag at the same color. The slope and intrinsic width of the magnitude calibration of each component are determined. The analysis is used to investigate the possible presence of residual systematic discrepancies of the model with Hipparcos data. There are indications of a possible underestimation of the parallax errors.

  19. Inflow of atomic gas fuelling star formation

    DEFF Research Database (Denmark)

    Michałowski, M. J.; Gentile, G.; Hjorth, Jeppe

    2016-01-01

    Gamma-ray burst host galaxies are deficient in molecular gas, and show anomalous metal-poor regions close to GRB positions. Using recent Australia Telescope Compact Array (ATCA) Hi observations we show that they have substantial atomic gas reservoirs. This suggests that star formation in these ga......Gamma-ray burst host galaxies are deficient in molecular gas, and show anomalous metal-poor regions close to GRB positions. Using recent Australia Telescope Compact Array (ATCA) Hi observations we show that they have substantial atomic gas reservoirs. This suggests that star formation...... in these galaxies may be fuelled by recent inflow of metal-poor atomic gas. While this process is debated, it can happen in low-metallicity gas near the onset of star formation because gas cooling (necessary for star formation) is faster than the Hi-to-H2 conversion....

  20. Black-hole-regulated star formation in massive galaxies

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  1. Black-hole-regulated star formation in massive galaxies.

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  2. Rotation and kinematics of the premain-sequence stars in Taurus-Auriga with Ca II emission

    Science.gov (United States)

    Hartmann, Lee W.; Soderblom, David R.; Stauffer, John R.

    1987-01-01

    Radial velocities and v sin i values for the stars in the Taurus-Auriga region that were found to have strong Ca II H and K emission by Herbig, Vrba, and Rydgren 'HVR', (1986) are reported. Most of the velocities are determined to better than 2 km/s precision. The kinematic properties of the Ca II emission stars with strong Li are found to be indistinguishable from conventional T Tauris in Taurus-Auriga, contrary to HVR. These Li-rich stars also rotate like T Tauris. Most of the stars that lack Li are probable or possible members of the Hyades, in the foreground, and are among the brightest and most active stars in that cluster for their spectral types. It is suggested following Jones and Herbig (1979), that the apparent absence of low-mass stars older than 10 Myr in Taurus-Auriga is real, and is due to the finite lifetime of the cloud.

  3. Rotation and kinematics of the premain-sequence stars in Taurus-Auriga with CA II emission

    Science.gov (United States)

    Hartmann, Lee W.; Soderblom, David R.; Stauffer, John R.

    1987-04-01

    The authors report radial velocities and v sin i values for the stars in the Taurus-Auriga region that were found to have strong Ca II H and K emission by Herbig, Vrba, and Rydgren (HVR). Most of the velocities are determined to better than 2 km s-1 precision. The authors find the kinematic properties of the Ca II emission stars with strong Li to be indistinguishable from conventional T Tauris in Taurus-Auriga, contrary to HVR. These Li-rich stars also rotate like T Tauris. Most of the stars that lack Li are probable or possible members of the Hyades, in the foreground, and are among the brightest and most active stars in that cluster for their spectral types. The authors suggest, following Jones and Herbig, that the apparent absence of low-mass stars older than 10 Myr in Taurus-Auriga is real, and is due to the finite lifetime of the cloud.

  4. THE STAR FORMATION LAWS OF EDDINGTON-LIMITED STAR-FORMING DISKS

    International Nuclear Information System (INIS)

    Ballantyne, D. R.; Armour, J. N.; Indergaard, J.

    2013-01-01

    Two important avenues into understanding the formation and evolution of galaxies are the Kennicutt-Schmidt (K-S) and Elmegreen-Silk (E-S) laws. These relations connect the surface densities of gas and star formation (Σ gas and Σ-dot * , respectively) in a galaxy. To elucidate the K-S and E-S laws for disks where Σ gas ∼> 10 4 M ☉ pc –2 , we compute 132 Eddington-limited star-forming disk models with radii spanning tens to hundreds of parsecs. The theoretically expected slopes (≈1 for the K-S law and ≈0.5 for the E-S relation) are relatively robust to spatial averaging over the disks. However, the star formation laws exhibit a strong dependence on opacity that separates the models by the dust-to-gas ratio that may lead to the appearance of a erroneously large slope. The total infrared luminosity (L TIR ) and multiple carbon monoxide (CO) line intensities were computed for each model. While L TIR can yield an estimate of the average Σ-dot * that is correct to within a factor of two, the velocity-integrated CO line intensity is a poor proxy for the average Σ gas for these warm and dense disks, making the CO conversion factor (α CO ) all but useless. Thus, observationally derived K-S and E-S laws at these values of Σ gas that uses any transition of CO will provide a poor measurement of the underlying star formation relation. Studies of the star formation laws of Eddington-limited disks will require a high-J transition of a high density molecular tracer, as well as a sample of galaxies with known metallicity estimates.

  5. THE STAR FORMATION HISTORY OF THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Harris, Jason; Zaritsky, Dennis

    2009-01-01

    We present the first ever global, spatially resolved reconstruction of the star formation history (SFH) of the Large Magellanic Cloud (LMC), based on the application of our StarFISH analysis software to the multiband photometry of 20 million of its stars from the Magellanic Clouds Photometric Survey. The general outlines of our results are consistent with previously published results: following an initial burst of star formation, there was a quiescent epoch from approximately 12 to 5 Gyr ago. Star formation then resumed and has proceeded until the current time at an average rate of roughly 0.2 M sun yr -1 , with temporal variations at the factor of 2 level. The re-ignition of star formation about 5 Gyr ago, in both the LMC and Small Magellanic Cloud (SMC), is suggestive of a dramatic event at that time in the Magellanic system. Among the global variations in the recent star formation rate are peaks at roughly 2 Gyr, 500 Myr, 100 Myr, and 12 Myr. The peaks at 500 Myr and 2 Gyr are nearly coincident with similar peaks in the SFH of the SMC, suggesting a joint history for these galaxies extending back at least several Gyr. The chemical enrichment history recovered from our StarFISH analysis is in broad agreement with that inferred from the LMC's star cluster population, although our constraints on the ancient chemical enrichment history are weak. We conclude from the concordance between the star formation and chemical enrichment histories of the field and cluster populations that the field and cluster star formation modes are tightly coupled.

  6. Shock-induced star formation in a model of the Mice

    OpenAIRE

    Barnes, Joshua E.

    2004-01-01

    Star formation plays an important role in the fate of interacting galaxies. To date, most galactic simulations including star formation have used a density-dependent star formation rule designed to approximate a Schmidt law. Here, I present a new star formation rule which is governed by the local rate of energy dissipation in shocks. The new and old rules are compared using self-consistent simulations of NGC 4676; shock-induced star formation provides a better match to the observations of thi...

  7. Photoionization-regulated star formation and the structure of molecular clouds

    Science.gov (United States)

    Mckee, Christopher F.

    1989-01-01

    A model for the rate of low-mass star formation in Galactic molecular clouds and for the influence of this star formation on the structure and evolution of the clouds is presented. The rate of energy injection by newly formed stars is estimated, and the effect of this energy injection on the size of the cloud is determined. It is shown that the observed rate of star formation appears adequate to support the observed clouds against gravitational collapse. The rate of photoionization-regulated star formation is estimated and it is shown to be in agreement with estimates of the observed rate of star formation if the observed molecular cloud parameters are used. The mean cloud extinction and the Galactic star formation rate per unit mass of molecular gas are predicted theoretically from the condition that photionization-regulated star formation be in equilibrium. A simple model for the evolution of isolated molecular clouds is developed.

  8. ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Moorman, Crystal M.; Moreno, Jackeline; White, Amanda; Vogeley, Michael S. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Hoyle, Fiona [Pontifica Universidad Catolica de Ecuador, 12 de Octubre 1076 y Roca, Quito (Ecuador); Giovanelli, Riccardo; Haynes, Martha P., E-mail: crystal.m.moorman@drexel.edu [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University Ithaca, NY 14853 (United States)

    2016-11-10

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on timescales of 10 and 100 Myr, using H α emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable H i detections from ALFALFA. For the full H i detected sample, SSFRs do not vary systematically with large-scale environment. However, investigating only the H i detected dwarf galaxies reveals a trend toward higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit H i mass (known as the star formation efficiency; SFE) of a galaxy, as a function of environment. For the overall H i detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies still does not reveal a statistically significant difference between SFEs in voids versus walls. These results suggest that void environments, on average, provide a nurturing environment for dwarf galaxy evolution allowing for higher specific star formation rates while forming stars with similar efficiencies to those in walls.

  9. Star formation properties of galaxy cluster A1767

    International Nuclear Information System (INIS)

    Yan, Peng-Fei; Li, Feng; Yuan, Qi-Rong

    2015-01-01

    Abell 1767 is a dynamically relaxed, cD cluster of galaxies with a redshift of 0.0703. Among 250 spectroscopically confirmed member galaxies within a projected radius of 2.5r 200 , 243 galaxies (∼ 97%) are spectroscopically covered by the Sloan Digital Sky Survey. Based on this homogeneous spectral sample, the stellar evolutionary synthesis code STARLIGHT is applied to investigate the stellar populations and star formation histories of galaxies in this cluster. The star formation properties of galaxies, such as mean stellar ages, metallicities, stellar masses, and star formation rates, are presented as functions of local galaxy density. A strong environmental effect is found such that massive galaxies in the high-density core region of the cluster tend to have higher metallicities, older mean stellar ages, and lower specific star formation rates (SSFRs), and their recent star formation activities have been remarkably suppressed. In addition, the correlations of the metallicity and SSFR with stellar mass are confirmed. (paper)

  10. RADIATION-DRIVEN IMPLOSION AND TRIGGERED STAR FORMATION

    International Nuclear Information System (INIS)

    Bisbas, Thomas G.; Wuensch, Richard; Whitworth, Anthony P.; Walch, Stefanie; Hubber, David A.

    2011-01-01

    We present simulations of initially stable isothermal clouds exposed to ionizing radiation from a discrete external source, and identify the conditions that lead to radiatively driven implosion and star formation. We use the smoothed particle hydrodynamics code SEREN and a HEALPix-based photoionization algorithm to simulate the propagation of the ionizing radiation and the resulting dynamical evolution of the cloud. We find that the incident ionizing flux, Φ LyC , is the critical parameter determining the cloud evolution. At moderate fluxes, a large fraction of the cloud mass is converted into stars. As the flux is increased, the fraction of the cloud mass that is converted into stars and the mean masses of the individual stars both decrease. Very high fluxes simply disperse the cloud. Newly formed stars tend to be concentrated along the central axis of the cloud (i.e., the axis pointing in the direction of the incident flux). For given cloud parameters, the time, t * , at which star formation starts is proportional to Φ -1/3 LyC . The pattern of star formation found in the simulations is similar to that observed in bright-rimmed clouds.

  11. Chemical composition of stars in kinematical substructures of the galactic disk

    Directory of Open Access Journals (Sweden)

    Gorbaneva T.I.

    2012-02-01

    Full Text Available The Y, Zr, La, Ce, Nd , Sm and Eu abundances were found in LTE approach, and the abundance of Ba was computed in NLTE approximation for 280 FGK dwarfs in the region of metallicity of − 1<[Fe]< + 0.3. The selection of stars belonging to thin and thick disks and the stream Hercules was made on kinematic criteria. The analysis of enrichment of the different substructures of the Galaxy with α-element (Mg, Si, the iron peak (Ni and neutron-capture elements was carried out.

  12. THE STAR FORMATION LAWS OF EDDINGTON-LIMITED STAR-FORMING DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Ballantyne, D. R.; Armour, J. N.; Indergaard, J., E-mail: david.ballantyne@physics.gatech.edu [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2013-03-10

    Two important avenues into understanding the formation and evolution of galaxies are the Kennicutt-Schmidt (K-S) and Elmegreen-Silk (E-S) laws. These relations connect the surface densities of gas and star formation ({Sigma}{sub gas} and {Sigma}-dot{sub *}, respectively) in a galaxy. To elucidate the K-S and E-S laws for disks where {Sigma}{sub gas} {approx}> 10{sup 4} M{sub Sun} pc{sup -2}, we compute 132 Eddington-limited star-forming disk models with radii spanning tens to hundreds of parsecs. The theoretically expected slopes ( Almost-Equal-To 1 for the K-S law and Almost-Equal-To 0.5 for the E-S relation) are relatively robust to spatial averaging over the disks. However, the star formation laws exhibit a strong dependence on opacity that separates the models by the dust-to-gas ratio that may lead to the appearance of a erroneously large slope. The total infrared luminosity (L{sub TIR}) and multiple carbon monoxide (CO) line intensities were computed for each model. While L{sub TIR} can yield an estimate of the average {Sigma}-dot{sub *} that is correct to within a factor of two, the velocity-integrated CO line intensity is a poor proxy for the average {Sigma}{sub gas} for these warm and dense disks, making the CO conversion factor ({alpha}{sub CO}) all but useless. Thus, observationally derived K-S and E-S laws at these values of {Sigma}{sub gas} that uses any transition of CO will provide a poor measurement of the underlying star formation relation. Studies of the star formation laws of Eddington-limited disks will require a high-J transition of a high density molecular tracer, as well as a sample of galaxies with known metallicity estimates.

  13. Interstellar clouds and the formation of stars

    Energy Technology Data Exchange (ETDEWEB)

    Alfven, H; Carlqvist, P [Kungliga Tekniska Hoegskolan, Stockholm (Sweden). Institutionen foer Plasmafysik

    1978-05-01

    Part I gives a survey of the drastic revision of cosmic plasma physics which is precipitated by the exploration of the magnetosphere through in situ measurements. The 'pseudo-plasma formalism', which until now has almost completely dominated theoretical astrophysics, must be replaced by an experimentally based approach involving the introduction of a number of neglected plasma phenomena, such as electric double layers, critical velocity, and pinch effect. The general belief that star light is the main ionizer is shown to be doubtful; hydromagnetic conversion of gravitational and kinetic energy may often be much more important. In Part II the revised plasma physics is applied to dark clouds and star formation. Magnetic fields do not necessarily counteract the contraction of a cloud; they may just as well 'pinch' the cloud. Magnetic compression may be the main mechanism for forming interstellar clouds and keeping them together. Part III treats the formation of stars in a dusty cosmic plasma cloud. Star formation is due to an instability, but it is very unlikely that it has anything to do with the Jeans instability. A reasonable mechanism is that the sedimentation of 'dust' (including solid bodies of different size) is triggering off a gravitationally assisted accretion. A 'stellesimal' accretion analogous to the planetesimal accretion leads to the formation of a star surrounded by a very low density hollow in the cloud. Matter falling in from the cloud towards the star is the raw material for the formation of planets and satellites.

  14. Nuclear processing during star formation

    International Nuclear Information System (INIS)

    Newman, M.J.

    1978-01-01

    A preliminary survey was conducted of the thermonuclear energy release expected during star formation. The destruction of primordial deuterium provides substantial amounts of energy at surprisingly low temperatures, and must be considered in any meaningful treatment of star formation carried to stages in which the internal temperature exceeds a few hundred thousand degrees. Significant energy generation from consumption of initial lithium requires higher temperatures, of the order of a few million degrees. Depletion of primordial beryllium and boron may never provide an important energy source. The approach to equilibrium of the carbon--nitrogen cycle is dominant at temperatures approaching those characteristic of the central regions of main sequence stars. The present calculation should serve as a useful guide in choosing those nuclear processes to be included in a more detailed study. 8 figures, 2 tables

  15. Star Formation in Dusty Quasars

    Science.gov (United States)

    Lumsden, Stuart; Croom, Scott

    2012-04-01

    Quasar mode feedback is thought to be a crucial ingredient in galaxy formation for luminous merging and star-bursting systems at high redshift. The energy from the active nucleus should cause significant gas outflows, reducing the available free gas reservoir for future star formation. It is currently unknown which observational state best corresponds to the stage at which this "blowout" should occur. We intend to test one possible source population for this transition phase, by studying the molecular gas content in a small, statistically complete sample of 3 K-band selected reddened quasars from the AUS survey. All lie in the redshift range 2stars for form as well.

  16. Physics of star formation in galaxies

    CERN Document Server

    Palla, F

    2002-01-01

    Begining with a historical introduction, ""Star Formation: The Early History"", this text then presents two long articles on ""Pre-Main-Sequence Evolution of Stars and Young Clusters"" and ""Observations of Young Stellar Objects"".

  17. Star Formation Activity Beyond the Outer Arm. I. WISE -selected Candidate Star-forming Regions

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Natsuko; Yasui, Chikako; Saito, Masao [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan); Kobayashi, Naoto; Hamano, Satoshi, E-mail: natsuko.izumi@nao.ac.jp [Laboratory of Infrared High-resolution spectroscopy (LIH), Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan)

    2017-10-01

    The outer Galaxy beyond the Outer Arm provides a good opportunity to study star formation in an environment significantly different from that in the solar neighborhood. However, star-forming regions in the outer Galaxy have never been comprehensively studied or cataloged because of the difficulties in detecting them at such large distances. We studied 33 known young star-forming regions associated with 13 molecular clouds at R {sub G} ≥ 13.5 kpc in the outer Galaxy with data from the Wide-field Infrared Survey Explorer ( WISE ) mid-infrared all-sky survey. From their color distribution, we developed a simple identification criterion of star-forming regions in the outer Galaxy with the WISE color. We applied the criterion to all the WISE sources in the molecular clouds in the outer Galaxy at R {sub G} ≥ 13.5 kpc detected with the Five College Radio Astronomy Observatory (FCRAO) {sup 12}CO survey of the outer Galaxy, of which the survey region is 102.°49 ≤  l  ≤ 141.°54, −3.°03 ≤  b  ≤ 5.°41, and successfully identified 711 new candidate star-forming regions in 240 molecular clouds. The large number of samples enables us to perform the statistical study of star formation properties in the outer Galaxy for the first time. This study is crucial to investigate the fundamental star formation properties, including star formation rate, star formation efficiency, and initial mass function, in a primordial environment such as the early phase of the Galaxy formation.

  18. Star formation in N-body simulations .1. The impact of the stellar ultraviolet radiation on star formation

    NARCIS (Netherlands)

    Gerritsen, JPE; Icke, [No Value

    We present numerical simulations of isolated disk galaxies including gas dynamics and star formation. The gas is allowed to cool to 10 K, while heating of the gas is provided by the far-ultraviolet flux of all stars. Stars are allowed to form from the gas according to a Jeans instability criterion:

  19. Triggered star formation

    Czech Academy of Sciences Publication Activity Database

    Palouš, Jan; Ehlerová, Soňa

    2002-01-01

    Roč. 12, - (2002), s. 35-36 ISSN 1405-2059 R&D Projects: GA AV ČR IAA3003705; GA AV ČR KSK1048102 Institutional research plan: CEZ:AV0Z1003909 Keywords : interstellar medium * star formation * HI shells Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  20. Star formation in evolving molecular clouds

    Science.gov (United States)

    Völschow, M.; Banerjee, R.; Körtgen, B.

    2017-09-01

    Molecular clouds are the principle stellar nurseries of our universe; they thus remain a focus of both observational and theoretical studies. From observations, some of the key properties of molecular clouds are well known but many questions regarding their evolution and star formation activity remain open. While numerical simulations feature a large number and complexity of involved physical processes, this plethora of effects may hide the fundamentals that determine the evolution of molecular clouds and enable the formation of stars. Purely analytical models, on the other hand, tend to suffer from rough approximations or a lack of completeness, limiting their predictive power. In this paper, we present a model that incorporates central concepts of astrophysics as well as reliable results from recent simulations of molecular clouds and their evolutionary paths. Based on that, we construct a self-consistent semi-analytical framework that describes the formation, evolution, and star formation activity of molecular clouds, including a number of feedback effects to account for the complex processes inside those objects. The final equation system is solved numerically but at much lower computational expense than, for example, hydrodynamical descriptions of comparable systems. The model presented in this paper agrees well with a broad range of observational results, showing that molecular cloud evolution can be understood as an interplay between accretion, global collapse, star formation, and stellar feedback.

  1. Exploring the Origin of Kinematically Irregular Galaxies with MaNGA

    Science.gov (United States)

    Stark, David Vincent; Bundy, Kevin; Westfall, Kyle; Bershady, Matthew; Cheung, Edmond; Soler, Juan; Brinchmann, Jarle; Abraham, Roberto; Bizyaev, Dmitry; Masters, Karen; Weijmans, Anne-Marie; Chen, Yanmei; Jin, Yifei; Drory, Niv; Lopes, Alexandre Roman; Law, David

    2018-01-01

    Deviations from normal rotation in galaxies may have a number of potential drivers, including tidal interactions, gas inflows/outflows, spiral structure, bar/oval distortions, or other internally generated instabilities. Thanks to new massive IFU surveys like MaNGA, we can now characterize the gas and stellar kinematics of thousands of galaxies in the local universe, enabling statistical analyses on the frequency of disturbed kinematics, their origin, and their impact on their host galaxies. We present a census of kinematics in MaNGA using a modified version of the Radon transform to map radial variations in kinematic position angles (PA). We discuss the frequency of kinematically irregular disks, and describe commonly observed patterns in radial PA profiles. In order to constrain the drivers of these kinematic signatures, we analyze how they correlate with galaxy mass, environment, star formation history, and gas-phase metallicity.

  2. STAR FORMATION AT Z = 2.481 IN THE LENSED GALAXY SDSS J1110+6459: STAR FORMATION DOWN TO 30 PARSEC SCALES.

    Science.gov (United States)

    Johnson, Traci L; Rigby, Jane R; Sharon, Keren; Gladders, Michael D; Florian, Michael; Bayliss, Matthew B; Wuyts, Eva; Whitaker, Katherine E; Livermore, Rachael; Murray, Katherine T

    2017-07-10

    We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z =2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r star-forming regions smaller than 100 pc-physical scales not usually resolved at these redshifts by current telescopes-are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of order 1 kiloparsec. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time.

  3. KMOS LENsing Survey (KLENS): Morpho-kinematic analysis of star-forming galaxies at z 2

    Science.gov (United States)

    Girard, M.; Dessauges-Zavadsky, M.; Schaerer, D.; Cirasuolo, M.; Turner, O. J.; Cava, A.; Rodríguez-Muñoz, L.; Richard, J.; Pérez-González, P. G.

    2018-06-01

    We present results from the KMOS LENsing Survey (KLENS), which is exploiting gravitational lensing to study the kinematics of 24 star-forming galaxies at 1.4 10). We derive a M⋆ - σ0 relation, using the Tully-Fisher relation, which highlights that a different evolution of the velocity dispersion is expected depending on the stellar mass, with lower velocity dispersions for lower masses, and an increase for higher masses, stronger at higher redshift. The observed velocity dispersions from this work and from comparison samples spanning 0 2), where we observe higher velocity dispersions for low masses (log(M⋆/M⊙) 9.6) and lower velocity dispersions for high masses (log(M⋆/M⊙) 10.9) than expected. This discrepancy could, for instance, suggest that galaxies at high redshift do not satisfy the stability criterion, or that the adopted parametrization of the specific star formation rate and molecular properties fail at high redshift. Based on KMOS observations made with the European Southern Observatory VLT/Antu telescope, Paranal, Chile, collected under the program ID No. 095.A-0962(A)+(B).The reduced datacubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A72

  4. Star formation in the outskirts of disk galaxies

    NARCIS (Netherlands)

    Ferguson, AMN

    2002-01-01

    The far outer regions of galactic disks allow an important probe of both star formation and galaxy formation. I discuss how observations of HII regions in these low gas density, low metallicity environments can shed light on the physical processes which drive galactic star formation. The history of

  5. Clustered star formation and the origin of stellar masses.

    Science.gov (United States)

    Pudritz, Ralph E

    2002-01-04

    Star clusters are ubiquitous in galaxies of all types and at all stages of their evolution. We also observe them to be forming in a wide variety of environments, ranging from nearby giant molecular clouds to the supergiant molecular clouds found in starburst and merging galaxies. The typical star in our galaxy and probably in others formed as a member of a star cluster, so star formation is an intrinsically clustered and not an isolated phenomenon. The greatest challenge regarding clustered star formation is to understand why stars have a mass spectrum that appears to be universal. This review examines the observations and models that have been proposed to explain these fundamental issues in stellar formation.

  6. Densities and Kinematic Viscosities for the Systems Benzene + Methyl Formate, Benzene + Ethyl Formate, Benzene + Propyl Formate, and Benzene + Butyl Formate

    DEFF Research Database (Denmark)

    Emmerling, Uwe; Rasmussen, Peter

    1998-01-01

    a Redlich-Kister type of expression with temperature-independent parameters and the data for the systems benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate with temperature-dependent parameters. The viscosities have furthermore been compared to values predicted by means of the GC......Densities and kinematic viscosities have been measured for the system benzene + methyl formate at 20°C and for the systems benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate from 20°C to 50°C. The results for the system benzene + methyl formate have been correlated using...

  7. Star Formation, Quenching And Chemical Enrichment In Local Galaxies From Integral Field Spectroscopy

    Science.gov (United States)

    Belfiore, Francesco

    2017-08-01

    Within the currently well-established ΛCDM cosmological framework we still lack a satisfactory understanding of the processes that trigger, regulate and eventually quench star formation on galactic scales. Gas flows (including inflows from the cosmic web and supernovae-driven outflows) are considered to act as self-regulatory mechanisms, generating the scaling relations between stellar mass, star formation rate and metallicity observed in the local Universe by large spectroscopic surveys. These surveys, however, have so far been limited by the availability of only one spectrum per galaxy. The aim of this dissertation is to expand the study of star formation and chemical abundances to resolved scales within galaxies by using integral field spectroscopy (IFS) data, mostly from the ongoing SDSS-IV MaNGA survey. In the first part of this thesis I demonstrate the ubiquitous presence of extended low ionisation emission-line regions (LIERs) in both late- and early-type galaxies. By studying the Hα equivalent width and diagnostic line ratios radial profiles, together with tracers of the underlying stellar population, I show that LIERs are not due to a central point source but to hot evolved (post-asymptotic giant branch) stars. In light of this, I suggest a new classification scheme for galaxies based on their line emission. By analysing the colours, star formation rates, morphologies, gas and stellar kinematics and environmental properties of galaxies with substantial LIER emission, I identify two distinct populations. Galaxies where the central regions are LIER-like, but show star formation at larger radii are late types in which star formation is slowly quenched inside-out. This transformation is associated with massive bulges. Galaxies dominated by LIER emission at all radii, on the other hand, are red-sequence galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Quiescent galaxies devoid of line emission reside in denser

  8. Star Formation at the Galactic Center

    Science.gov (United States)

    Kohler, Susanna

    2015-08-01

    Could stars be forming in the inhospitable environment near Sagittarius A* in the heart of the Milky Way? A possible signature of low-mass star formation has recently been found just two light-years from the black hole at the center of our galaxy — a region that was previously thought to be too hostile for such activity. Searching for Signatures: Previous observations of the central few light-years of the Milky Way had focused on a population of about 200 massive, young and very bright stars in tight orbits around Sgr A*. These stars are only a few million years old and prompted scientists to wonder: have they somehow managed to form in situ, in spite of their close proximity to the black hole, or did they form further out and then migrate in? Motivated by this mystery, Farhad Yusef-Zadeh of Northwestern University and collaborators looked for evidence of even younger stars close to Sagittarius A*, which would demonstrate that star formation in the area is an ongoing process. Using the Very Large Array (VLA), the collaboration discovered several small sources in one arm of activity near Sgr A*. This 34-GHz image provides a close-up view of two protoplanetary disk candidates (labeled P26 and P8) located near Sgr A*. These objects are outlined on the right side by a bow shock caused by impacting stellar wind that streams from the young, hot stars closer to the Galactic center. The disks are thought to contain recently-formed, low-mass stars. (Credit: Yusef-Zadeh et al., 2015) Heated Disks: The team identified these sources as candidate photoevaporative protoplanetary disks, or “proplyds” — areas of dense, ionized gas and dust surrounding young, newly formed stars. The proplyd candidates are between 10,000 and 100,000 years old, and they lie along the edge of a large molecular cloud. It is likely that this cloud produced the disks by providing a reservoir of gas to feed the star-formation activity. The region surrounding these proplyds is blasted with harsh

  9. Testing Star Formation Laws in a Starburst Galaxy At Redshift 3 Resolved with ALMA

    Science.gov (United States)

    Sharda, P.; Federrath, C.; da Cunha, E.; Swinbank, A. M.; Dye, S.

    2018-04-01

    Using high-resolution (sub-kiloparsec scale) data obtained by ALMA, we analyze the star formation rate (SFR), gas content and kinematics in SDP 81, a gravitationally-lensed starburst galaxy at redshift 3. We estimate the SFR surface density (ΣSFR) in the brightest clump of this galaxy to be 357^{+135}_{-85} {M_{⊙}} yr^{-1} kpc^{-2}, over an area of 0.07 ± 0.02 kpc2. Using the intensity-weighted velocity of CO (5-4), we measure the turbulent velocity dispersion in the plane-of-the-sky and find σv, turb = 37 ± 5 km s-1 for the clump, in good agreement with previous estimates along the line of sight, corrected for beam smearing. Our measurements of gas surface density, freefall time and turbulent Mach number allow us to compare the theoretical SFR from various star formation models with that observed, revealing that the role of turbulence is crucial to explaining the observed SFR in this clump. While the Kennicutt Schmidt (KS) relation predicts an SFR surface density of Σ _{SFR,KS} = 52± 17 {M_{⊙}} yr^{-1} kpc^{-2}, the single-freefall model by Krumholz, Dekel and McKee (KDM) predicts Σ _{SFR,KDM} = 106± 37 {M_{⊙ }} yr^{-1} kpc^{-2}. In contrast, the multi-freefall (turbulence) model by Salim, Federrath and Kewley (SFK) gives Σ _{SFR,SFK} = 491^{+139 }_{-194} {M_{⊙ }} yr^{-1} kpc^{-2}. Although the SFK relation overestimates the SFR in this clump (possibly due to the negligence of magnetic fields), it provides the best prediction among the available models. Finally, we compare the star formation and gas properties of this galaxy to local star-forming regions and find that the SFK relation provides the best estimates of SFR in both local and high-redshift galaxies.

  10. Metal-poor star formation triggered by the feedback effects from Pop III stars

    Science.gov (United States)

    Chiaki, Gen; Susa, Hajime; Hirano, Shingo

    2018-04-01

    Metal enrichment by first-generation (Pop III) stars is the very first step of the matter cycle in structure formation and it is followed by the formation of extremely metal-poor (EMP) stars. To investigate the enrichment process by Pop III stars, we carry out a series of numerical simulations including the feedback effects of photoionization and supernovae (SNe) of Pop III stars with a range of masses of minihaloes (MHs), Mhalo, and Pop III stars, MPopIII. We find that the metal-rich ejecta reach neighbouring haloes and external enrichment (EE) occurs when the H II region expands before the SN explosion. The neighbouring haloes are only superficially enriched, and the metallicity of the clouds is [Fe/H] < -5. Otherwise, the SN ejecta fall back and recollapse to form an enriched cloud, i.e. an internal-enrichment (IE) process takes place. In the case where a Pop III star explodes as a core-collapse SN (CCSN), the MH undergoes IE, and the metallicity in the recollapsing region is -5 ≲ [Fe/H] ≲ -3 in most cases. We conclude that IE from a single CCSN can explain the formation of EMP stars. For pair-instability SNe (PISNe), EE takes place for all relevant mass ranges of MHs, consistent with the lack of observational signs of PISNe among EMP stars.

  11. MAGNETIC FLUX EXPULSION IN STAR FORMATION

    International Nuclear Information System (INIS)

    Zhao Bo; Li Zhiyun; Nakamura, Fumitaka; Krasnopolsky, Ruben; Shang, Hsien

    2011-01-01

    Stars form in dense cores of magnetized molecular clouds. If the magnetic flux threading the cores is dragged into the stars, the stellar field would be orders of magnitude stronger than observed. This well-known 'magnetic flux problem' demands that most of the core magnetic flux be decoupled from the matter that enters the star. We carry out the first exploration of what happens to the decoupled magnetic flux in three dimensions, using a magnetohydrodynamic (MHD) version of the ENZO adaptive mesh refinement code. The field-matter decoupling is achieved through a sink particle treatment, which is needed to follow the protostellar accretion phase of star formation. We find that the accumulation of the decoupled flux near the accreting protostar leads to a magnetic pressure buildup. The high pressure is released anisotropically along the path of least resistance. It drives a low-density expanding region in which the decoupled magnetic flux is expelled. This decoupling-enabled magnetic structure has never been seen before in three-dimensional MHD simulations of star formation. It generates a strong asymmetry in the protostellar accretion flow, potentially giving a kick to the star. In the presence of an initial core rotation, the structure presents an obstacle to the formation of a rotationally supported disk, in addition to magnetic braking, by acting as a rigid magnetic wall that prevents the rotating gas from completing a full orbit around the central object. We conclude that the decoupled magnetic flux from the stellar matter can strongly affect the protostellar collapse dynamics.

  12. The origin of kinematically distinct cores and misaligned gas discs in galaxies from cosmological simulations

    Science.gov (United States)

    Taylor, Philip; Federrath, Christoph; Kobayashi, Chiaki

    2018-06-01

    Integral field spectroscopy surveys provide spatially resolved gas and stellar kinematics of galaxies. They have unveiled a range of atypical kinematic phenomena, which require detailed modelling to understand. We present results from a cosmological simulation that includes stellar and AGN feedback. We find that the distribution of angles between the gas and stellar angular momenta of galaxies is not affected by projection effects. We examine five galaxies (≈6 per cent of well resolved galaxies) that display atypical kinematics; two of the galaxies have kinematically distinct cores (KDC), while the other three have counter-rotating gas and stars. All five form the majority of their stars in the field, subsequently falling into cosmological filaments where the relative orientation of the stellar angular momentum and the bulk gas flow leads to the formation of a counter-rotating gas disc. The accreted gas exchanges angular momentum with pre-existing co-rotating gas causing it to fall to the centre of the galaxy. This triggers low-level AGN feedback, which reduces star formation. Later, two of the galaxies experience a minor merger (stellar mass ratio ˜1/10) with a galaxy on a retrograde orbit compared to the spin of the stellar component of the primary. This produces the KDCs, and is a different mechanism than suggested by other works. The role of minor mergers in the kinematic evolution of galaxies may have been under-appreciated in the past, and large, high-resolution cosmological simulations will be necessary to gain a better understanding in this area.

  13. Environmental effects on star formation in dwarf galaxies and star clusters

    Science.gov (United States)

    Pasetto, Stefano; Cropper, Mark; fujita, Yutaka; Chiosi, Cesare; Grebel, Eva K.

    2015-08-01

    We investigate the competitive role of the different dissipative phenomena acting on the onset of star formation history of gravitationally bound system in an external environment.Ram pressure, Kelvin-Helmholtz instability, Rayleigh-Taylor, and tidal forces are accounted separately in an analytical framework and compared in their role in influencing the star forming regions. The two-fluids instability at the interface between a stellar system and its surrounding hotter and less dense environment is related to the star formation processes through a set of differential equations. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment useful in theoretical interpretations of numerical results as well as observational applications. We show how spherical coordinates naturally enlighten the interpretation of the two-fluids instability in a geometry that directly applies to astrophysical case. Finally, we consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams of the orbiting system thus investigating the detectability limits of these different effects for future observational projects and their relevance.The theoretical framework developed has direct applications to the cases of dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy.

  14. STAR FORMATION IN DISK GALAXIES. II. THE EFFECT OF STAR FORMATION AND PHOTOELECTRIC HEATING ON THE FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.

    2011-01-01

    We investigate the effect of star formation and diffuse photoelectric heating on the properties of giant molecular clouds (GMCs) formed in high-resolution (∼ H,c >100 cm -3 are identified as GMCs. Between 1000 and 1500 clouds are created in the simulations with masses M>10 5 M sun and 180-240 with masses M>10 6 M sun in agreement with estimates of the Milky Way's population. We find that the effect of photoelectric heating is to suppress the fragmentation of the interstellar medium, resulting in a filamentary structure in the warm gas surrounding clouds. This environment suppresses the formation of a retrograde rotating cloud population, with 88% of the clouds rotating prograde with respect to the galaxy after 300 Myr. The diffuse heating also reduces the initial star formation rate (SFR), slowing the conversation of gas into stars. We therefore conclude that the interstellar environment plays an important role in the GMC evolution. Our clouds live between 0 and 20 Myr with a high infant mortality (t' < 3 Myr) due to cloud mergers and star formation. Other properties, including distributions of mass, size, and surface density, agree well with observations. Collisions between our clouds are common, occurring at a rate of ∼ 1/4 of the orbital period. It is not clear whether such collisions trigger or suppress star formation at our current resolution. Our SFR is a factor of 10 higher than observations in local galaxies. This is likely due to the absence of localized feedback in our models.

  15. PROGRESSIVE STAR FORMATION IN THE YOUNG GALACTIC SUPER STAR CLUSTER NGC 3603

    International Nuclear Information System (INIS)

    Beccari, Giacomo; Spezzi, Loredana; De Marchi, Guido; Andersen, Morten; Paresce, Francesco; Young, Erick; Panagia, Nino; Bond, Howard; Balick, Bruce; Calzetti, Daniela; Carollo, C. Marcella; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; O'Connell, Robert W.; Saha, Abhijit

    2010-01-01

    Early Release Science observations of the cluster NGC 3603 with the WFC3 on the refurbished Hubble Space Telescope allow us to study its recent star formation history. Our analysis focuses on stars with Hα excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with Hα excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.

  16. Star Formation Histories of Dwarf Irregular Galaxies

    Science.gov (United States)

    Skillman, Evan

    1995-07-01

    We propose to obtain deep WFPC2 `BVI' color-magnitude diagrams {CMDs} for the dwarf irregular {dI} Local Group galaxies GR 8, Leo A, Pegasus, and Sextans A. In addition to resolved stars, we will use star clusters, and especially any globulars, to probe the history of intense star formation. These data will allow us to map the Pop I and Pop II stellar components, and thereby construct the first detailed star formation histories for non-interacting dI galaxies. Our results will bear on a variety of astrophysical problems, including the evolution of small galaxies, distances in the Local Group, age-metallicity distributions in small galaxies, ages of dIs, and the physics of star formation. The four target galaxies are typical dI systems in terms of luminosity, gas content, and H II region abundance, and represent a range in current star forming activity. They are sufficiently near to allow us to reach to stars at M_V = 0, have 0.1 of the luminosity of the SMC and 0.25 of its oxygen abundance. Unlike the SMC, these dIs are not near giant galaxies. This project will allow the extension of our knowledge of stellar populations in star forming galaxies from the spirals in the Local Group down to its smallest members. We plan to take maximum advantage of the unique data which this project will provide. Our investigator team brings extensive and varied experience in studies of dwarf galaxies, stellar populations, imaging photometry, and stellar evolution to this project.

  17. Peculiar early-type galaxies with central star formation

    International Nuclear Information System (INIS)

    Ge Chong; Gu Qiusheng

    2012-01-01

    Early-type galaxies (ETGs) are very important for understanding the formation and evolution of galaxies. Recent observations suggest that ETGs are not simply old stellar spheroids as we previously thought. Widespread recent star formation, cool gas and dust have been detected in a substantial fraction of ETGs. We make use of the radial profiles of g — r color and the concentration index from the Sloan Digital Sky Survey database to pick out 31 peculiar ETGs with central blue cores. By analyzing the photometric and spectroscopic data, we suggest that the blue cores are caused by star formation activities rather than the central weak active galactic nucleus. From the results of stellar population synthesis, we find that the stellar population of the blue cores is relatively young, spreading from several Myr to less than one Gyr. In 14 galaxies with H I observations, we find that the average gas fraction of these galaxies is about 0.55. The bluer galaxies show a higher gas fraction, and the total star formation rate (SFR) correlates very well with the H I gas mass. The star formation history of these ETGs is affected by the environment, e.g. in the denser environment the H I gas is less and the total SFR is lower. We also discuss the origin of the central star formation of these early-type galaxies.

  18. Star formation suppression and bar ages in nearby barred galaxies

    Science.gov (United States)

    James, P. A.; Percival, S. M.

    2018-03-01

    We present new spectroscopic data for 21 barred spiral galaxies, which we use to explore the effect of bars on disc star formation, and to place constraints on the characteristic lifetimes of bar episodes. The analysis centres on regions of heavily suppressed star formation activity, which we term `star formation deserts'. Long-slit optical spectroscopy is used to determine H β absorption strengths in these desert regions, and comparisons with theoretical stellar population models are used to determine the time since the last significant star formation activity, and hence the ages of the bars. We find typical ages of ˜1 Gyr, but with a broad range, much larger than would be expected from measurement errors alone, extending from ˜0.25 to >4 Gyr. Low-level residual star formation, or mixing of stars from outside the `desert' regions, could result in a doubling of these age estimates. The relatively young ages of the underlying populations coupled with the strong limits on the current star formation rule out a gradual exponential decline in activity, and hence support our assumption of an abrupt truncation event.

  19. Galaxies in the act of quenching star formation

    Science.gov (United States)

    Quai, Salvatore; Pozzetti, Lucia; Citro, Annalisa; Moresco, Michele; Cimatti, Andrea

    2018-04-01

    Detecting galaxies when their star-formation is being quenched is crucial to understand the mechanisms driving their evolution. We identify for the first time a sample of quenching galaxies selected just after the interruption of their star formation by exploiting the [O III] λ5007/Hα ratio and searching for galaxies with undetected [O III]. Using a sample of ˜174000 star-forming galaxies extracted from the SDSS-DR8 at 0.04 ≤ z growth of the quiescent population at these redshifts. Their main properties (i.e. star-formation rate, colours and metallicities) are comparable to those of the star-forming population, coherently with the hypothesis of recent quenching, but preferably reside in higher-density environments.Most candidates have morphologies similar to star-forming galaxies, suggesting that no morphological transformation has occurred yet. From a survival analysis we find a low fraction of candidates (˜ 0.58% of the star-forming population), leading to a short quenching timescale of tQ ˜ 50 Myr and an e-folding time for the quenching history of τQ ˜ 90 Myr, and their upper limits of tQ < 0.76 Gyr and τQ <1.5 Gyr, assuming as quenching galaxies 50% of objects without [O III] (˜7.5%).Our results are compatible with a 'rapid' quenching scenario of satellites galaxies due to the final phase of strangulation or ram-pressure stripping. This approach represents a robust alternative to methods used so far to select quenched galaxies (e.g. colours, specific star-formation rate, or post-starburst spectra).

  20. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    International Nuclear Information System (INIS)

    Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain; Nickerson, Sarah; Rosdahl, Joakim; Van Loo, Sven

    2017-01-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H 2 -dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H 2 -dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  1. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Michael J. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Teyssier, Romain; Nickerson, Sarah [Institute for Computational Science, University of Zurich, 8049 Zurich (Switzerland); Rosdahl, Joakim [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2017-06-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  2. GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES

    International Nuclear Information System (INIS)

    Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano

    2012-01-01

    Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 μm) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

  3. Star Formation-Driven Winds in the Early Universe

    Science.gov (United States)

    Peek, Matthew; Lundgren, Britt; Brammer, Gabriel

    2018-01-01

    Measuring the extent of star formation-driven winds from galaxies in the early universe is crucial for understanding of how galaxies evolve over cosmic time. Using WFC3/IR grism data from the Hubble Space Telescope (HST), we have measured the star formation rates and star formation rate surface densities of several hundred galaxies at redshift (z) = 1, when the universe was roughly half its present age. The galaxies we examine are also probed by background quasars, whose spectra provide information about the extent of metal-enriched gas in their halos. We use a computational pipeline to measure the density of the star formation in each galaxy and correlate these measurements with detections of Mg II absorption in nearby quasar spectra from the Sloan Digital Sky Survey. Our preliminary results support a model in which galaxies with high SFR surface densities drive metal-enriched gas out of the disk and into these galaxies’ extended halos, where that gas is detected in the spectra of more distant quasars.

  4. Propagating star formation and irregular structure in spiral galaxies

    International Nuclear Information System (INIS)

    Mueller, M.W.; Arnett, W.D.

    1976-01-01

    A simple model is proposed which describes the irregular optical appearance often seen in late-type spiral galaxies. If high-mass stars produce spherical shock waves which induce star formation, new high-mass stars will be born which, in turn, produce new shock waves. When this process operates in a differentially rotating disk, our numerical model shows that large-scale spiral-shaped regions of star formation are built up. The structure is seen to be most sensitive to a parameter which governs how often a region of the interstellar medium can undergo star formation. For a proper choice of this parameter, large-scale features disappear before differential rotation winds them up. New spiral features continuously form, so some spiral structure is seen indefinitely. The structure is not the classical two-armed symmetric spiral pattern which the density-wave theory attempts to explain, but it is asymmetric and disorderly.The mechanism of propagating star formation used in our model is consistent with observations which connect young OB associations with expanding shells of gas. We discuss the possible interaction of this mechanism with density waves

  5. Are star formation rates of galaxies bimodal?

    Science.gov (United States)

    Feldmann, Robert

    2017-09-01

    Star formation rate (SFR) distributions of galaxies are often assumed to be bimodal with modes corresponding to star-forming and quiescent galaxies, respectively. Both classes of galaxies are typically studied separately, and SFR distributions of star-forming galaxies are commonly modelled as lognormals. Using both observational data and results from numerical simulations, I argue that this division into star-forming and quiescent galaxies is unnecessary from a theoretical point of view and that the SFR distributions of the whole population can be well fitted by zero-inflated negative binomial distributions. This family of distributions has three parameters that determine the average SFR of the galaxies in the sample, the scatter relative to the star-forming sequence and the fraction of galaxies with zero SFRs, respectively. The proposed distributions naturally account for (I) the discrete nature of star formation, (II) the presence of 'dead' galaxies with zero SFRs and (III) asymmetric scatter. Excluding 'dead' galaxies, the distribution of log SFR is unimodal with a peak at the star-forming sequence and an extended tail towards low SFRs. However, uncertainties and biases in the SFR measurements can create the appearance of a bimodal distribution.

  6. THE NATURE OF STARBURSTS. III. THE SPATIAL DISTRIBUTION OF STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Dalcanton, Julianne J.; Weisz, Daniel R.; Williams, Benjamin F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Holtzman, Jon, E-mail: kmcquinn@astro.umn.edu [Department of Astronomy, New Mexico State University, Box 30001-Department 4500, 1320 Frenger Street, Las Cruces, NM 88003 (United States)

    2012-11-01

    We map the spatial distribution of recent star formation over a few Multiplication-Sign 100 Myr timescales in 15 starburst dwarf galaxies using the location of young blue helium burning stars identified from optically resolved stellar populations in archival Hubble Space Telescope observations. By comparing the star formation histories from both the high surface brightness central regions and the diffuse outer regions, we measure the degree to which the star formation has been centrally concentrated during the galaxies' starbursts, using three different metrics for the spatial concentration. We find that the galaxies span a full range in spatial concentration, from highly centralized to broadly distributed star formation. Since most starbursts have historically been identified by relatively short timescale star formation tracers (e.g., H{alpha} emission), there could be a strong bias toward classifying only those galaxies with recent, centralized star formation as starbursts, while missing starbursts that are spatially distributed.

  7. Star formation and the surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1985-01-01

    The (blue) surface brightness of spiral galaxies is significantly correlated with their Hα linewidth. This can be most plausibly interpreted as a correlation of surface brightness with star formation rate. There is also a significant difference in surface brightness between galaxies forming stars in a grand design spiral pattern and those with floc star formation regions. (author)

  8. Interactions, Starbursts, and Star Formation

    Directory of Open Access Journals (Sweden)

    Johan H. Knapen

    2015-12-01

    Full Text Available We study how interactions between galaxies affect star formation within them by considering a sample of almost 1500 of the nearest galaxies, all within a distance of ∼45 Mpc. We use the far-IR emission to define the massive star formation rate (SFR, and then normalise the SFR by the stellar mass of the galaxy to obtain the specific star formation rate (SSFR. We explore the distribution of (SSFR with morphological type and with stellar mass. We calculate the relative enhancement of SFR and SSFR for each galaxy by normalising them by the median SFR and SSFR values of individual control samples of similar non-interacting galaxies. We find that both the median SFR and SSFR are enhanced in interacting galaxies, and more so as the degree of interaction is higher. The increase is moderate, reaching a maximum of a factor of 1.9 for the highest degree of interaction (mergers. While the SFR and SSFR are enhanced statistically by interactions, in many individual interacting galaxies they are not enhanced at all. Our study is based on a representative sample of nearby galaxies and should be used to place constraints on studies based on samples of galaxies at larger distances.

  9. Testing the Relation between the Local and Cosmic Star Formation Histories

    International Nuclear Information System (INIS)

    Fields, B.D.

    1999-01-01

    Recently, there has been great progress toward observationally determining the mean star formation history of the universe. When accurately known, the cosmic star formation rate could provide much information about Galactic evolution, if the Milky Way close-quote s star formation rate is representative of the average cosmic star formation history. A simple hypothesis is that our local star formation rate is proportional to the cosmic mean. In addition, to specify a star formation history, one must also adopt an initial mass function (IMF); typically it is assumed that the IMF is a smooth function, which is constant in time. We show how to test directly the compatibility of all these assumptions by making use of the local (solar neighborhood) star formation record encoded in the present-day stellar mass function. Present data suggest that at least one of the following is false: (1) the local IMF is constant in time; (2) the local IMF is a smooth (unimodal) function; and/or (3) star formation in the Galactic disk was representative of the cosmic mean. We briefly discuss how to determine which of these assumptions fail and also improvements in observations, which will sharpen this test. copyright copyright 1999. The American Astronomical Society

  10. Distances, Kinematics, And Structure Of The Orion Complex

    Science.gov (United States)

    Kounkel, Marina; Hartmann, Lee

    2018-01-01

    I present an analysis of the structure and kinematics of the Orion Molecular Cloud Complex in an effort to better characterize the dynamical state of the closest region of ongoing massive star formation. I measured stellar parallax and proper motions with Orion Complex. This includes the first direct distance measurements for sources that are located outside of the Orion Nebula. I identified a number of binary systems in the VLBI dataset and fitted their orbital motion, which allows for the direct measurement of the masses of the individual components. Additionally, I have identified several stars that have been ejected from the Orion Nebula due to strong gravitational interactions with the most massive members. I complemented the parallax and proper motion measurements with the observations of optical radial velocities of the stars toward the Orion Complex, probing the histories of both dynamic evolution and star formation in the region, providing a 6-dimensional model of the Complex. These observations can serve as a baseline for comparison of the upcoming results from the Gaia space telescope

  11. ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z ∼ 3

    International Nuclear Information System (INIS)

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Lutz, Dieter; Nordon, Raanan; Berta, Stefano; Genzel, Reinhard; Magnelli, Benjamin; Poglitsch, Albrecht; Altieri, Bruno; Andreani, Paola; Aussel, Herve; Daddi, Emanuele; Elbaz, David; Bongiovanni, Angel; Cepa, Jordi; Garcia, Ana Perez; Cimatti, Andrea; Koekemoer, Anton M.; Maiolino, Roberto; McGrath, Elizabeth J.

    2011-01-01

    We compare multi-wavelength star formation rate (SFR) indicators out to z ∼ 3 in the GOODS-South field. Our analysis uniquely combines U to 8 μm photometry from FIREWORKS, MIPS 24 μm and PACS 70, 100, and 160 μm photometry from the PEP, and Hα spectroscopy from the SINS survey. We describe a set of conversions that lead to a continuity across SFR indicators. A luminosity-independent conversion from 24 μm to total infrared luminosity yields estimates of L IR that are in the median consistent with the L IR derived from PACS photometry, albeit with significant scatter. Dust correction methods perform well at low-to-intermediate levels of star formation. They fail to recover the total amount of star formation in systems with large SFR IR /SFR UV ratios, typically occuring at the highest SFRs (SFR UV+ I R ∼> 100 M sun yr -1 ) and redshifts (z ∼> 2.5) probed. Finally, we confirm that Hα-based SFRs at 1.5 SED and SFR UV+IR provided extra attenuation toward H II regions is taken into account (A V,neb = A V,continuum /0.44). With the cross-calibrated SFR indicators in hand, we perform a consistency check on the star formation histories inferred from spectral energy distribution (SED) modeling. We compare the observed SFR-M relations and mass functions at a range of redshifts to equivalents that are computed by evolving lower redshift galaxies backward in time. We find evidence for underestimated stellar ages when no stringent constraints on formation epoch are applied in SED modeling. We demonstrate how resolved SED modeling, or alternatively deep UV data, may help to overcome this bias. The age bias is most severe for galaxies with young stellar populations and reduces toward older systems. Finally, our analysis suggests that SFHs typically vary on timescales that are long (at least several 100 Myr) compared to the galaxies' dynamical time.

  12. A model for the origin of bursty star formation in galaxies

    Science.gov (United States)

    Faucher-Giguère, Claude-André

    2018-01-01

    We propose a simple analytic model to understand when star formation is time steady versus bursty in galaxies. Recent models explain the observed Kennicutt-Schmidt relation between star formation rate and gas surface densities in galaxies as resulting from a balance between stellar feedback and gravity. We argue that bursty star formation occurs when such an equilibrium cannot be stably sustained, and identify two regimes in which galaxy-scale star formation should be bursty: (i) at high redshift (z ≳ 1) for galaxies of all masses, and (ii) at low masses (depending on gas fraction) for galaxies at any redshift. At high redshift, characteristic galactic dynamical time-scales become too short for supernova feedback to effectively respond to gravitational collapse in galactic discs (an effect recently identified for galactic nuclei), whereas in dwarf galaxies star formation occurs in too few bright star-forming regions to effectively average out. Burstiness is also enhanced at high redshift owing to elevated gas fractions in the early Universe. Our model can thus explain the bursty star formation rates predicted in these regimes by recent high-resolution galaxy formation simulations, as well as the bursty star formation histories observationally inferred in both local dwarf and high-redshift galaxies. In our model, bursty star formation is associated with particularly strong spatiotemporal clustering of supernovae. Such clustering can promote the formation of galactic winds and our model may thus also explain the much higher wind mass loading factors inferred in high-redshift massive galaxies relative to their z ∼ 0 counterparts.

  13. On the angular momentum in star formation

    International Nuclear Information System (INIS)

    Horedt, G.P.

    1978-01-01

    The author discusses the rotation of interstellar clouds which are in a stage immediately before star formation. Cloud collisions seem to be the principal cause of the observed rotation of interstellar clouds. The rotational motion of the clouds is strongly influenced by turbulence. Theories dealing with the resolution of the angular momentum problem in star formation are classified into five major groups. The old idea that the angular momentum of an interstellar cloud passes during star formation into the angular momentum of double star systems and/or circumstellar clouds, is developed. It is suggested that a rotating gas cloud contracts into a ring-like structure which fragments into self-gravitating subcondensations. By collisions and gas accretion these subcondensations accrete into binary systems surrounded by circumstellar clouds. Using some rough approximations the authors find analytical expressions for the semi-major axis of the binary system and for the density of the circumstellar clouds as a function of the initial density and of the initial angular velocity of an interstellar cloud. The obtained values are well within the observational limits. (Auth.)

  14. Understanding the star formation modes in the distant universe

    International Nuclear Information System (INIS)

    Salmi, Fadia

    2012-01-01

    The goal of my PhD study consists at attempt to understand what are the main processes at the origin of the star formation in the galaxies over the last 10 billion years. While it was proposed in the past that merging of galaxies has a dominant role to explain the triggering of the star formation in the distant galaxies having high star formation rates, in the opposite, more recent studies revealed scaling laws linking the star formation rate in the galaxies to their stellar mass or their gas mass. The small dispersion of these laws seems to be in contradiction with the idea of powerful stochastic events due to interactions, but rather in agreement with the new vision of galaxy history where the latter are continuously fed by intergalactic gas. We were especially interested in one of this scaling law, the relation between the star formation (SFR) and the stellar mass (M*) of galaxies, commonly called the main sequence of star forming galaxies. We studied this main sequence, SFR-M"*, in function of the morphology and other physical parameters like the radius, the colour, the clumpiness. The goal was to understand the origin of the sequence's dispersion related to the physical processes underlying this sequence in order to identify the main mode of star formation controlling this sequence. This work needed a multi-wavelength approach as well as the use of galaxies profile simulation to distinguish between the different galaxy morphological types implied in the main sequence. (author) [fr

  15. The Reliability of [C II] as a Star Formation Rate Indicator

    Directory of Open Access Journals (Sweden)

    De Looze Ilse

    2011-09-01

    Full Text Available We present a calibration of the star formation rate (SFR as a function of the [C II] 157.74 μm luminosity for a sample of 24 star-forming galaxies in the nearby universe. In order to calibrate the SFR against the line luminosity, we rely on both GALEX FUV data, which is an ideal tracer of the unobscured star formation, and Spitzer MIPS 24 μm, to probe the dust-enshrouded fraction of star formation. For this sample of normal star-forming galaxies, the [C II] luminosity correlates well with the star formation rate. However, the extension of this relation to more quiescent (Hα EW≤10 Å or ultra luminous galaxies (LTIR ≥1012 L⊙ should be handled with caution, since these objects show a non-linearity in the L[C II]-to-LFIR ratio as a function of LFIR (and thus, their star formation activity. Two possible scenarios can be invoked to explain the tight correlation between the [C II] emission and the star formation activity on a global galaxy-scale. The first interpretation could be that the [C II] emission from photo dissociation regions arises from the immediate surroundings of actively star-forming regions and contributes a more or less constant fraction on a global galaxy-scale. Alternatively, we consider the possibility that the [C II] emission is associated to the cold interstellar medium, which advocates an indirect link with the star formation activity in a galaxy through the Schmidt law.

  16. Star formation: Sibling rivalry begins at birth

    Science.gov (United States)

    Kratter, Kaitlin M.

    2015-02-01

    High-resolution astronomical observations of a nearby molecular gas cloud have revealed a quadruplet of stars in the act of formation. The system is arguably the youngest multiple star system detected so far. See Letter p.213

  17. CARMA Large Area Star Formation Survey: Project Overview with Analysis of Dense Gas Structure and Kinematics in Barnard 1

    Science.gov (United States)

    Storm, Shaye; Mundy, Lee G.; Fernández-López, Manuel; Lee, Katherine I.; Looney, Leslie W.; Teuben, Peter; Rosolowsky, Erik; Arce, Héctor G.; Ostriker, Eve C.; Segura-Cox, Dominique M.; Pound, Marc W.; Salter, Demerese M.; Volgenau, Nikolaus H.; Shirley, Yancy L.; Chen, Che-Yu; Gong, Hao; Plunkett, Adele L.; Tobin, John J.; Kwon, Woojin; Isella, Andrea; Kauffmann, Jens; Tassis, Konstantinos; Crutcher, Richard M.; Gammie, Charles F.; Testi, Leonardo

    2014-10-01

    We present details of the CARMA Large Area Star Formation Survey (CLASSy), while focusing on observations of Barnard 1. CLASSy is a CARMA Key Project that spectrally imaged N2H+, HCO+, and HCN (J = 1 → 0 transitions) across over 800 square arcminutes of the Perseus and Serpens Molecular Clouds. The observations have angular resolution near 7'' and spectral resolution near 0.16 km s-1. We imaged ~150 square arcminutes of Barnard 1, focusing on the main core, and the B1 Ridge and clumps to its southwest. N2H+ shows the strongest emission, with morphology similar to cool dust in the region, while HCO+ and HCN trace several molecular outflows from a collection of protostars in the main core. We identify a range of kinematic complexity, with N2H+ velocity dispersions ranging from ~0.05 to 0.50 km s-1 across the field. Simultaneous continuum mapping at 3 mm reveals six compact object detections, three of which are new detections. A new, non-binary dendrogram algorithm is used to analyze dense gas structures in the N2H+ position-position-velocity (PPV) cube. The projected sizes of dendrogram-identified structures range from about 0.01 to 0.34 pc. Size-linewidth relations using those structures show that non-thermal line-of-sight velocity dispersion varies weakly with projected size, while rms variation in the centroid velocity rises steeply with projected size. Comparing these relations, we propose that all dense gas structures in Barnard 1 have comparable depths into the sky, around 0.1-0.2 pc this suggests that overdense, parsec-scale regions within molecular clouds are better described as flattened structures rather than spherical collections of gas. Science-ready PPV cubes for Barnard 1 molecular emission are available for download.

  18. Star Formation Histories of Nearby Dwarf Galaxies

    OpenAIRE

    Grebel, Eva K.

    2000-01-01

    Properties of nearby dwarf galaxies are briefly discussed. Dwarf galaxies vary widely in their star formation histories, the ages of their subpopulations, and in their enrichment history. Furthermore, many dwarf galaxies show evidence for spatial variations in their star formation history; often in the form of very extended old populations and radial gradients in age and metallicity. Determining factors in dwarf galaxy evolution appear to be both galaxy mass and environment. We may be observi...

  19. Star Formation in Dwarf Galaxies: Life in a Rough Neighborhood

    Energy Technology Data Exchange (ETDEWEB)

    Murray, S

    2003-10-16

    Star formation within dwarf galaxies is governed by several factors. Many of these factors are external, including ram-pressure stripping, tidal stripping, and heating by external UV radiation. The latter, in particular, may prevent star formation in the smallest systems. Internal factors include negative feedback in the form of UV radiation, winds and supernovae from massive stars. These act to reduce the star formation efficiency within dwarf systems, which may, in turn, solve several theoretical and observational problems associated with galaxy formation. In this contribution, we discuss our recent work being done to examine the importance of the many factors in the evolution of dwarf galaxies.

  20. Black hole formation from axion stars

    Energy Technology Data Exchange (ETDEWEB)

    Helfer, Thomas; Marsh, David J.E.; Clough, Katy; Fairbairn, Malcolm; Lim, Eugene A. [King' s College London, Strand, London, WC2R 2LS (United Kingdom); Becerril, Ricardo, E-mail: thomas.1.helfer@kcl.ac.uk, E-mail: david.marsh@kcl.ac.uk, E-mail: katy.clough@phys.uni-goettingen.de, E-mail: malcolm.fairbairn@kcl.ac.uk, E-mail: eugene.lim@kcl.ac.uk, E-mail: becerril@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58040 Morelia, Michoacán (Mexico)

    2017-03-01

    The classical equations of motion for an axion with potential V (φ)= m {sub a} {sup 2} f {sub a} {sup 2} [1−cos (φ/ f {sub a} )] possess quasi-stable, localized, oscillating solutions, which we refer to as ''axion stars''. We study, for the first time, collapse of axion stars numerically using the full non-linear Einstein equations of general relativity and the full non-perturbative cosine potential. We map regions on an ''axion star stability diagram', parameterized by the initial ADM mass, M {sub ADM}, and axion decay constant, f {sub a} . We identify three regions of the parameter space: i) long-lived oscillating axion star solutions, with a base frequency, m {sub a} , modulated by self-interactions, ii) collapse to a BH and iii) complete dispersal due to gravitational cooling and interactions. We locate the boundaries of these three regions and an approximate ''triple point' ( M {sub TP}, f {sub TP}) ∼ (2.4 M {sub pl}{sup 2}/ m {sub a} ,0.3 M {sub pl}). For f {sub a} below the triple point BH formation proceeds during winding (in the complex U(1) picture) of the axion field near the dispersal phase. This could prevent astrophysical BH formation from axion stars with f {sub a} || M {sub pl}. For larger f {sub a} ∼> f {sub TP}, BH formation occurs through the stable branch and we estimate the mass ratio of the BH to the stable state at the phase boundary to be O(1) within numerical uncertainty. We discuss the observational relevance of our findings for axion stars as BH seeds, which are supermassive in the case of ultralight axions. For the QCD axion, the typical BH mass formed from axion star collapse is M {sub BH} ∼ 3.4 ( f {sub a} /0.6 M {sub pl}){sup 1.2} M {sub ⊙}.

  1. Dissecting the assembly and star formation history of disks and bulges in nearby spirals using the VENGA IFU survey

    Science.gov (United States)

    Carrillo, Andreia Jessica; Jogee, Shardha; Kaplan, Kyle; Weinzirl, Tim; Blanc, Guillermo A.

    2017-06-01

    Integral field spectroscopy of nearby galaxies provides a powerful and unparalleled tool for studying how galaxies assemble the different components -- the bulge, bar, and disk-- that define the Hubble sequence. We explore the assembly and star formation history of these components using galaxies in the VIRUS-P Exploration of Nearby Galaxies (VENGA) survey of 30 nearby spiral galaxies. Compared to other integral field spectroscopy studies of spirals, our study benefits from high spatial sampling and resolution (typically a few 100 pc), large coverage from the bulge to the outer disk, broad wavelength range (3600-6800 A), and medium spectral resolution (120 km/s at 5000 A). In this poster, we present the methodology and data illustrating the exquisite, high-quality, spatially-resolved spectra out to large radii, and the distribution, kinematics, and metallicity of stars and ionized gas. We discuss the next steps in deriving the star formation history (SFH) of bulge, bar, and disk components, and elucidating their assembly pathway by comparing their SFH and structural properties to theoretical models of galaxy evolution. This project is supported by the NSF grants AST-1614798 and AST-1413652.

  2. Stellar signatures of AGN-jet-triggered star formation

    International Nuclear Information System (INIS)

    Dugan, Zachary; Silk, Joseph; Bryan, Sarah; Gaibler, Volker; Haas, Marcel

    2014-01-01

    To investigate feedback between relativistic jets emanating from active galactic nuclei and the stellar population of the host galaxy, we analyze the long-term evolution of the orbits of the stars formed in the galaxy-scale simulations by Gaibler et al. of jets in massive, gas-rich galaxies at z ∼ 2-3. We find strong, jet-induced differences in the resulting stellar populations of galaxies that host relativistic jets and galaxies that do not, including correlations in stellar locations, velocities, and ages. Jets are found to generate distributions of increased radial and vertical velocities that persist long enough to effectively augment the stellar structure of the host. The jets cause the formation of bow shocks that move out through the disk, generating rings of star formation within the disk. The bow shock often accelerates pockets of gas in which stars form, yielding populations of stars with significant radial and vertical velocities, some of which have large enough velocities to escape the galaxy. These stellar population signatures can serve to identify past jet activity as well as jet-induced star formation.

  3. Star Formation in Dwarf-Dwarf Mergers: Fueling Hierarchical Assembly

    Science.gov (United States)

    Stierwalt, Sabrina; Johnson, K. E.; Kallivayalil, N.; Patton, D. R.; Putman, M. E.; Besla, G.; Geha, M. C.

    2014-01-01

    We present early results from the first systematic study a sample of isolated interacting dwarf pairs and the mechanisms governing their star formation. Low mass dwarf galaxies are ubiquitous in the local universe, yet the efficiency of gas removal and the enhancement of star formation in dwarfs via pre-processing (i.e. dwarf-dwarf interactions occurring before the accretion by a massive host) are currently unconstrained. Studies of Local Group dwarfs credit stochastic internal processes for their complicated star formation histories, but a few intriguing examples suggest interactions among dwarfs may produce enhanced star formation. We combine archival UV imaging from GALEX with deep optical broad- and narrow-band (Halpha) imaging taken with the pre- One Degree Imager (pODI) on the WIYN 3.5-m telescope and with the 2.3-m Bok telescope at Steward Observatory to confirm the presence of stellar bridges and tidal tails and to determine whether dwarf-dwarf interactions alone can trigger significant levels of star formation. We investigate star formation rates and global galaxy colors as a function of dwarf pair separation (i.e. the dwarf merger sequence) and dwarf-dwarf mass ratio. This project is a precursor to an ongoing effort to obtain high spatial resolution HI imaging to assess the importance of sequential triggering caused by dwarf-dwarf interactions and the subsequent affect on the more massive hosts that later accrete the low mass systems.

  4. Ca II triplet spectroscopy of RGB stars in NGC 6822: kinematics and metallicities

    Science.gov (United States)

    Swan, J.; Cole, A. A.; Tolstoy, E.; Irwin, M. J.

    2016-03-01

    We present a detailed analysis of the chemistry and kinematics of red giants in the dwarf irregular galaxy NGC 6822. Spectroscopy at ≈8500 Å was acquired for 72 red giant stars across two fields using FORS2 at the VLT. Line-of-sight extinction was individually estimated for each target star to accommodate the variable reddening across NGC 6822. The mean radial velocity was found to be = -52.8 ± 2.2 km s-1 with dispersion σv = 24.1 km s-1, in agreement with other studies. Ca II triplet equivalent widths were converted into [Fe/H] metallicities using a V magnitude proxy for surface gravity. The average metallicity was = -0.84 ± 0.04 with dispersion σ = 0.31 dex and interquartile range 0.48. Our assignment of individual reddening values makes our analysis more sensitive to spatial variations in metallicity than previous studies. We divide our sample into metal-rich and metal-poor stars; the former were found to cluster towards small radii with the metal-poor stars more evenly distributed across the galaxy. The velocity dispersion of the metal-poor stars was found to be higher than that of the metal-rich stars (σ _{v_MP}=27.4 km s-1; σ _{v_MR}=21.1 km s-1); combined with the age-metallicity relation this indicates that the older populations have either been dynamically heated during their lifetimes or were born in a less disc-like distribution than the younger stars.. The low ratio vrot/σv suggests that within the inner 10 arcmin, NGC 6822's stars are dynamically decoupled from the H I gas, and possibly distributed in a thick disc or spheroid structure.

  5. Star-formation history of very young clusters

    International Nuclear Information System (INIS)

    Stahler, S.W.

    1985-01-01

    The popular idea that star formation has proceeded sequentially from lowest to highest mass members in open clusters is examined critically. For extremely young clusters, such as NGC 2264 and NGC 6530, this sequential hypothesis is a consequence of the assignment of pre-main-sequence contraction ages to all member stars. However, such ages yield a formation history which is implausible from a physical point of view, since the critical time for the onset of formation at any stellar mass is equal to the pre-main-sequence contraction time for that mass. Moreover, these ages are in conflict with the strong observational evidence that a substantial fraction of cluster members have already reached the main sequence. After reconsideration of the probable main-sequence members, the stellar ages in NGC 2264 and NGC 6530 are consistent with a variety of formation histories, and, in particular, with the view that all stellar masses form in approximately the same interval of time within a given cluster, i.e., that there is no mass-age correlation. A notion closely related to the sequential hypothesis, that the total star-formation rate increases exponentially with time, is subject to the same criticism

  6. The interstellar medium, expanding nebulae and triggered star formation theory and simulations

    CERN Document Server

    Bisbas, Thomas G

    2016-01-01

    This brief brings together the theoretical aspects of star formation and ionized regions with the most up-to-date simulations and observations. Beginning with the basic theory of star formation, the physics of expanding HII regions is reviewed in detail and a discussion on how a massive star can give birth to tens or hundreds of other stars follows. The theoretical description of star formation is shown in simplified and state-of-the-art numerical simulations, describing in a more clear way how feedback from massive stars can trigger star and planet formation. This is also combined with spectacular images of nebulae taken by talented amateur astronomers. The latter is very likely to stimulate the reader to observe the structure of nebulae from a different point of view, and better understand the associated star formation therein.

  7. EXTENDED STAR FORMATION IN THE INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 2209

    International Nuclear Information System (INIS)

    Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S.

    2012-01-01

    We present observations of the 1 Gyr old star cluster NGC 2209 in the Large Magellanic Cloud made with the GMOS imager on the Gemini South Telescope. These observations show that the cluster exhibits a main-sequence turnoff that spans a broader range in luminosity than can be explained by a single-aged stellar population. This places NGC 2209 amongst a growing list of intermediate-age (1-3 Gyr) clusters that show evidence for extended or multiple epochs of star formation of between 50 and 460 Myr in extent. The extended main-sequence turnoff observed in NGC 2209 is a confirmation of the prediction in Keller et al. made on the basis of the cluster's large core radius. We propose that secondary star formation is a defining feature of the evolution of massive star clusters. Dissolution of lower mass clusters through evaporation results in only clusters that have experienced secondary star formation surviving for a Hubble time, thus providing a natural connection between the extended main-sequence turnoff phenomenon and the ubiquitous light-element abundance ranges seen in the ancient Galactic globular clusters.

  8. Dissecting the intensely star-forming clumps in a z ~ 2 Einstein Ring

    Science.gov (United States)

    Rujopakarn, Wiphu

    2013-10-01

    Clumps of star formation spreading widely in galactic disks are common features of star-forming galaxies at 1 test cases to study the mechanism that drives intense star formation at z ~ 2. We propose WFC3 near-IR imaging and spatially-resolved spectroscopy of a gravitationally lensed, kinematically ordered, vigorously star-forming galaxy at z = 1.885 with physical resolutions up to 40 pc. This galaxy contains two luminous clumps that are forming stars at the rates of 100 solar mass/yr/clump. Spatially-resolved map of star formation from HST provides the most critical missing piece to interpret our existing observations of this galaxy in far-IR, CO emission lines, and radio continuum. We will probe the frontier research areas in z ~ 2 star formation, particularly the spatially-resolved star formation laws and dynamics of cold and ionized gases, which have never been probed at this spatial resolution. Our proposed observations will provide a benchmark against which to interpret the structures of vigorous star-forming clumps in general. This object can therefore have a unique impact on our understanding of the star-forming modes that dominate at z ~ 2.

  9. An uncertainty principle for star formation - II. A new method for characterising the cloud-scale physics of star formation and feedback across cosmic history

    Science.gov (United States)

    Kruijssen, J. M. Diederik; Schruba, Andreas; Hygate, Alexander P. S.; Hu, Chia-Yu; Haydon, Daniel T.; Longmore, Steven N.

    2018-05-01

    The cloud-scale physics of star formation and feedback represent the main uncertainty in galaxy formation studies. Progress is hampered by the limited empirical constraints outside the restricted environment of the Local Group. In particular, the poorly-quantified time evolution of the molecular cloud lifecycle, star formation, and feedback obstructs robust predictions on the scales smaller than the disc scale height that are resolved in modern galaxy formation simulations. We present a new statistical method to derive the evolutionary timeline of molecular clouds and star-forming regions. By quantifying the excess or deficit of the gas-to-stellar flux ratio around peaks of gas or star formation tracer emission, we directly measure the relative rarity of these peaks, which allows us to derive their lifetimes. We present a step-by-step, quantitative description of the method and demonstrate its practical application. The method's accuracy is tested in nearly 300 experiments using simulated galaxy maps, showing that it is capable of constraining the molecular cloud lifetime and feedback time-scale to <0.1 dex precision. Access to the evolutionary timeline provides a variety of additional physical quantities, such as the cloud-scale star formation efficiency, the feedback outflow velocity, the mass loading factor, and the feedback energy or momentum coupling efficiencies to the ambient medium. We show that the results are robust for a wide variety of gas and star formation tracers, spatial resolutions, galaxy inclinations, and galaxy sizes. Finally, we demonstrate that our method can be applied out to high redshift (z≲ 4) with a feasible time investment on current large-scale observatories. This is a major shift from previous studies that constrained the physics of star formation and feedback in the immediate vicinity of the Sun.

  10. Star Formation Quenching in Quasar Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carniani, Stefano, E-mail: sc888@mrao.cam.ac.uk [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Kavli Institute for Cosmology, University of Cambridge, Cambridge (United Kingdom)

    2017-10-16

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M{sub ⊙} yr{sup −1}, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  11. Star Formation Quenching in Quasar Host Galaxies

    International Nuclear Information System (INIS)

    Carniani, Stefano

    2017-01-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M ⊙ yr −1 , has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  12. Star Formation Quenching in Quasar Host Galaxies

    Directory of Open Access Journals (Sweden)

    Stefano Carniani

    2017-10-01

    Full Text Available Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN. In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s, which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M⊙ yr−1, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2 ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2 transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  13. Gas Kinematics in GRB Host Galaxies

    DEFF Research Database (Denmark)

    Arabsalmani, Maryam

    towards a relation between gas kinematics and mass. This also provides information on how the metallicities measured from absorption and emission methods differ from each other. Finally, in a direct study I show that gas velocity widths in both phases can be used as a proxy of stellar mass...... that their interstellar media imprint on the GRBs’ spectra. Hence they are invaluable tools to probe the star formation history of the Universe back to the earliest cosmic epochs. To this end, it is essential to achieve a comprehensive picture of the interplay between star formation and its fuel, neutral gas, in GRB...... simultaneously with a high velocity resolution. For the large GRB sample, I find the spatially averaged velocity to correlate with metallicity in both gas phases. This is an indicator of a mass-metallicity relation. Moreover, the velocity widths in the two gas phases correlate with each other which too points...

  14. Unveiling the Role of Galactic Rotation on Star Formation

    Science.gov (United States)

    Utreras, José; Becerra, Fernando; Escala, Andrés

    2016-12-01

    We study the star formation process at galactic scales and the role of rotation through numerical simulations of spiral and starburst galaxies using the adaptive mesh refinement code Enzo. We focus on the study of three integrated star formation laws found in the literature: the Kennicutt-Schmidt (KS) and Silk-Elmegreen (SE) laws, and the dimensionally homogeneous equation proposed by Escala {{{Σ }}}{SFR}\\propto \\sqrt{G/L}{{{Σ }}}{gas}1.5. We show that using the last we take into account the effects of the integration along the line of sight and find a unique regime of star formation for both types of galaxies, suppressing the observed bi-modality of the KS law. We find that the efficiencies displayed by our simulations are anti-correlated with the angular velocity of the disk Ω for the three laws studied in this work. Finally, we show that the dimensionless efficiency of star formation is well represented by an exponentially decreasing function of -1.9{{Ω }}{t}{ff}{ini}, where {t}{ff}{ini} is the initial free-fall time. This leads to a unique galactic star formation relation which reduces the scatter of the bi-modal KS, SE, and Escala relations by 43%, 43%, and 35%, respectively.

  15. Gravitational instability and star formation in NGC 628

    Science.gov (United States)

    Marchuk, A. A.

    2018-05-01

    The gas-stars instability criterion for infinitesimally thin disc was applied to the galaxy NGC 628. Instead of using the azimuthally averaged profiles of data, the maps of the gas surface densities (THINGS, HERACLES), of the velocity dispersions of stars (VENGA) and gas (THINGS), and of the surface brightness of the galaxy (S4G) were analysed. All these maps were collected for the same region with a noticeable star formation rate and were superimposed on each other. Using the data on the rotation, curve values of Qeff were calculated for each pixel in the image. The areas within the contours Qeff 0.007 M⊙ yr-1 kpc-2) and showed a good coincidence between them. The Romeo-Falstad disc instability diagnostics taking into account the thickness of the stellar and gas layers does not change the result. If the one-fluid instability criterion is used, the coincidence is worse. The analysis was carried out for the area r galaxies, the distribution of hydrogen and the regions of star formation is often patchy, the relationship between gravitational instability and star formation should be sought using data maps rather than azimuthally averaged data.

  16. Molecular diagnostics of Galactic star-formation regions

    Science.gov (United States)

    Loenen, Edo; Baan, Willem; Spaans, Marco

    2007-10-01

    We propose a sensitive spectral survey of Galactic star-formation regions. Using the broadband correlator at two different frequencies, we expect to detect the (1-0) transition of CO, CN, HNC, HCN, HCO+, and HCO and various of their isotopes lines, as well as the (12-11) and (10-9) transitions of HC3N. The purpose of these observations is to create a consistent (public) database of molecular emission from galactic star-formation regions. The data will be interpreted using extensive physical and chemical modeling of the whole ensemble of lines, in order to get an accurate description of the molecular environment of these regions. In particular, this diagnostic approach will describe the optical depths, the densities, and the radiation fields in the medium and will allow the establishment of dominant temperature gradients. These observations are part of a program to study molecular emission on all scales, going from individual Galactic star-formation regions, through resolved nearby galaxies, to unresolved extra-galactic emission.

  17. Spatially-resolved star formation histories of CALIFA galaxies. Implications for galaxy formation

    Science.gov (United States)

    González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; García-Benito, R.; López Fernández, R.; Vale Asari, N.; Cortijo-Ferrero, C.; de Amorim, A. L.; Lacerda, E. A. D.; Sánchez, S. F.; Lehnert, M. D.; Walcher, C. J.

    2017-11-01

    This paper presents the spatially resolved star formation history (SFH) of nearby galaxies with the aim of furthering our understanding of the different processes involved in the formation and evolution of galaxies. To this end, we apply the fossil record method of stellar population synthesis to a rich and diverse data set of 436 galaxies observed with integral field spectroscopy in the CALIFA survey. The sample covers a wide range of Hubble types, with stellar masses ranging from M⋆ 109 to 7 × 1011 M⊙. Spectral synthesis techniques are applied to the datacubes to retrieve the spatially resolved time evolution of the star formation rate (SFR), its intensity (ΣSFR), and other descriptors of the 2D SFH in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd) and five bins of stellar mass. Our main results are that (a) galaxies form very fast independently of their current stellar mass, with the peak of star formation at high redshift (z > 2). Subsequent star formation is driven by M⋆ and morphology, with less massive and later type spirals showing more prolonged periods of star formation. (b) At any epoch in the past, the SFR is proportional to M⋆, with most massive galaxies having the highest absolute (but lowest specific) SFRs. (c) While today, the ΣSFR is similar for all spirals and significantly lower in early-type galaxies (ETG), in the past, the ΣSFR scales well with morphology. The central regions of today's ETGs are where the ΣSFR reached the highest values (> 103 M⊙ Gyr-1 pc-2), similar to those measured in high-redshift star-forming galaxies. (d) The evolution of ΣSFR in Sbc systems matches that of models for Milky Way-like galaxies, suggesting that the formation of a thick disk may be a common phase in spirals at early epochs. (e) The SFR and ΣSFR in outer regions of E and S0 galaxies show that they have undergone an extended phase of growth in mass between z = 2 and 0.4. The mass assembled in this phase is in agreement with

  18. ON THE STAR FORMATION RATES IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Lada, Charles J.; Lombardi, Marco; Alves, Joao F.

    2010-01-01

    In this paper, we investigate the level of star formation activity within nearby molecular clouds. We employ a uniform set of infrared extinction maps to provide accurate assessments of cloud mass and structure and compare these with inventories of young stellar objects within the clouds. We present evidence indicating that both the yield and rate of star formation can vary considerably in local clouds, independent of their mass and size. We find that the surface density structure of such clouds appears to be important in controlling both these factors. In particular, we find that the star formation rate (SFR) in molecular clouds is linearly proportional to the cloud mass (M 0.8 ) above an extinction threshold of A K ∼ 0.8 mag, corresponding to a gas surface density threshold of Σ gas ∼ 116 M sun pc 2 . We argue that this surface density threshold corresponds to a gas volume density threshold which we estimate to be n(H 2 ) ∼ 10 4 cm -3 . Specifically, we find SFR (M sun yr -1 ) = 4.6 ± 2.6 x 10 -8 M 0.8 (M sun ) for the clouds in our sample. This relation between the rate of star formation and the amount of dense gas in molecular clouds appears to be in excellent agreement with previous observations of both galactic and extragalactic star-forming activity. It is likely the underlying physical relationship or empirical law that most directly connects star formation activity with interstellar gas over many spatial scales within and between individual galaxies. These results suggest that the key to obtaining a predictive understanding of the SFRs in molecular clouds and galaxies is to understand those physical factors which give rise to the dense components of these clouds.

  19. PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XVI. STAR CLUSTER FORMATION EFFICIENCY AND THE CLUSTERED FRACTION OF YOUNG STARS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L. Clifton; Sandstrom, Karin [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Seth, Anil C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Dalcanton, Julianne J.; Beerman, Lori C.; Lewis, Alexia R.; Weisz, Daniel R.; Williams, Benjamin F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Fouesneau, Morgan [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Bell, Eric F. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Larsen, Søren S. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Skillman, Evan D., E-mail: lcj@ucsd.edu [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2016-08-10

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color–magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ∼300 Myr. We measure Γ of 4%–8% for young, 10–100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studied galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (Σ{sub SFR}). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time ( τ {sub dep}) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H{sub 2}-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high Σ{sub SFR} starburst systems are well-explained by τ {sub dep}-dependent fiducial Γ models.

  20. Gas, dust, stars, star formation, and their evolution in M 33 at giant molecular cloud scales

    Science.gov (United States)

    Komugi, Shinya; Miura, Rie E.; Kuno, Nario; Tosaki, Tomoka

    2018-04-01

    We report on a multi-parameter analysis of giant molecular clouds (GMCs) in the nearby spiral galaxy M 33. A catalog of GMCs identifed in 12CO(J = 3-2) was used to compile associated 12CO(J = 1-0), dust, stellar mass, and star formation rate. Each of the 58 GMCs are categorized by their evolutionary stage. Applying the principal component analysis on these parameters, we construct two principal components, PC1 and PC2, which retain 75% of the information from the original data set. PC1 is interpreted as expressing the total interstellar matter content, and PC2 as the total activity of star formation. Young (activity compared to intermediate-age and older clouds. Comparison of average cloud properties in different evolutionary stages imply that GMCs may be heated or grow denser and more massive via aggregation of diffuse material in their first ˜ 10 Myr. The PCA also objectively identified a set of tight relations between ISM and star formation. The ratio of the two CO lines is nearly constant, but weakly modulated by massive star formation. Dust is more strongly correlated with the star formation rate than the CO lines, supporting recent findings that dust may trace molecular gas better than CO. Stellar mass contributes weakly to the star formation rate, reminiscent of an extended form of the Schmidt-Kennicutt relation with the molecular gas term substituted by dust.

  1. Formation and spatial distribution of hypervelocity stars in AGN outflows

    Science.gov (United States)

    Wang, Xiawei; Loeb, Abraham

    2018-05-01

    We study star formation within outflows driven by active galactic nuclei (AGN) as a new source of hypervelocity stars (HVSs). Recent observations revealed active star formation inside a galactic outflow at a rate of ∼ 15M⊙yr-1 . We verify that the shells swept up by an AGN outflow are capable of cooling and fragmentation into cold clumps embedded in a hot tenuous gas via thermal instabilities. We show that cold clumps of ∼ 103 M⊙ are formed within ∼ 105 yrs. As a result, stars are produced along outflow's path, endowed with the outflow speed at their formation site. These HVSs travel through the galactic halo and eventually escape into the intergalactic medium. The expected instantaneous rate of star formation inside the outflow is ∼ 4 - 5 orders of magnitude greater than the average rate associated with previously proposed mechanisms for producing HVSs, such as the Hills mechanism and three-body interaction between a star and a black hole binary. We predict the spatial distribution of HVSs formed in AGN outflows for future observational probe.

  2. The Role of Magnetic Fields in Star Formation

    Science.gov (United States)

    Pipher, Judith

    2018-06-01

    The SOFIA instrument complement makes available the capability to characterize the physical properties (turbulence, dynamics, magnetic field structure and strength, gas density) of the molecular cloud filaments in which stars form.HAWC+, the newest SOFIA instrument, provides a unique opportunity to probe the complex roles that magnetic fields play in the star formation process on spatial scales intermediate to those explored by Planck (5’ scale), to those of ALMA at the smallest spatial scales (powerful tools to further our understanding of the fundamental physics of both low mass and high mass star formation, including the role that magnetic fields play in each.

  3. Star & Planet Formation Studies and Opportunities with SOFIA

    Science.gov (United States)

    Smith, Kimberly Ennico

    2018-01-01

    Star formation, the most fundamental process in the universe, is linked to planet formation and thus to the origin and evolution of life. We have a general outline of how planets and stars form, yet unraveling the details of the physics and chemistry continues to challenge us. The infrared and submillimeter part of the spectrum hold the most promise for studying the beginnings of star formation. The observational landscape recently shaped by Spitzer, Herschel and ALMA, continues to challenge our current theories. SOFIA, the Stratospheric Observatory for Infrared Astronomy, equipped with state-of-the-art infrared instrumentation to a vantage point at 45,000 feet (13.7 kilometers) flight altitude that is above 99.9 percent of the Earth's water vapor, enables observations in the infrared through terahertz frequencies not possible from the ground. SOFIA is a community observatory, about to start its sixth annual observing cycle. My talk will focus on recent results in advancing star and planet formation processes using SOFIA's imaging and polarimetric capabilities, and the upcoming science enabled by the 3rd generation instrument High-Resolution Mid-Infrared Spectrometer (HIRMES) to be commissioned in 2019. I will show how mid-infrared imaging is used to test massive star formation theories, how far-infrared polarimetry on sub-parsec scales is directly testing the role of magnetic fields in molecular clouds, and how velocity-resolved high-resolution spectroscopy will push forward our understanding of proto-planetary disk science. I will also summarize upcoming opportunities with the SOFIA observatory. For the latest news about your flying observatory, see https://sofia.usra.edu/.

  4. Unveiling hidden properties of young star clusters: differential reddening, star-formation spread, and binary fraction

    Science.gov (United States)

    Bonatto, C.; Lima, E. F.; Bica, E.

    2012-04-01

    Context. Usually, important parameters of young, low-mass star clusters are very difficult to obtain by means of photometry, especially when differential reddening and/or binaries occur in large amounts. Aims: We present a semi-analytical approach (ASAmin) that, when applied to the Hess diagram of a young star cluster, is able to retrieve the values of mass, age, star-formation spread, distance modulus, foreground and differential reddening, and binary fraction. Methods: The global optimisation method known as adaptive simulated annealing (ASA) is used to minimise the residuals between the observed and simulated Hess diagrams of a star cluster. The simulations are realistic and take the most relevant parameters of young clusters into account. Important features of the simulations are a normal (Gaussian) differential reddening distribution, a time-decreasing star-formation rate, the unresolved binaries, and the smearing effect produced by photometric uncertainties on Hess diagrams. Free parameters are cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and binary fraction. Results: Tests with model clusters built with parameters spanning a broad range of values show that ASAmin retrieves the input values with a high precision for cluster mass, distance modulus, and foreground reddening, but they are somewhat lower for the remaining parameters. Given the statistical nature of the simulations, several runs should be performed to obtain significant convergence patterns. Specifically, we find that the retrieved (absolute minimum) parameters converge to mean values with a low dispersion as the Hess residuals decrease. When applied to actual young clusters, the retrieved parameters follow convergence patterns similar to the models. We show how the stochasticity associated with the early phases may affect the results, especially in low-mass clusters. This effect can be minimised by averaging out several twin clusters in the

  5. Modeling jet and outflow feedback during star cluster formation

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, VIC 3800 (Australia); Schrön, Martin [Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, D-04318 Leipzig (Germany); Banerjee, Robi [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Klessen, Ralf S., E-mail: christoph.federrath@monash.edu [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany)

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ∼1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ∼1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ∼ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  6. Grain processes in massive star formation

    International Nuclear Information System (INIS)

    Wolfire, M.G.; Cassinelli, J.P.

    1986-01-01

    Observational evidence suggests that stars greater than 100 M(solar) exist in the Galaxy and Large Magellanic Cloud (LMC), however classical star formation theory predicts stellar mass limits of only approx. 60 M(solar). A protostellar accretion flow consists of inflowing gas and dust. Grains are destroyed as they are near the central protostar creating a dust shell or cocoon. Radiation pressure acting on the grain can halt the inflow of material thereby limiting the amount of mass accumulated by the protostar. We first consider rather general constraints on the initial grain to gas ratio and mass accretion rates that permit inflow. We further constrain these results by constructing a numerical model. Radiative deceleration of grains and grain destruction processes are explicitly accounted for in an iterative solution of the radiation-hydrodynamic equations. Findings seem to suggest that star formation by spherical accretion requires rather extreme preconditioning of the grain and gas environment

  7. The age distributions of clusters and field stars in the Small Magellanic Cloud — implications for star formation histories

    NARCIS (Netherlands)

    Kruijssen, J.M.D.|info:eu-repo/dai/nl/325799911; Lamers, H.J.G.L.M.|info:eu-repo/dai/nl/072834870

    2008-01-01

    Differences between the inferred star formation histories (SFHs) of star clusters and field stars seem to suggest distinct star formation processes for the two. The Small Magellanic Cloud (SMC) is an example of a galaxy where such a discrepancy is observed. We model the observed age distributions of

  8. ON THE STAR FORMATION LAW FOR SPIRAL AND IRREGULAR GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G., E-mail: bge@us.ibm.com [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2015-12-01

    A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical timescale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, there is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical timescale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and sustaining star formation for ∼100 Gyr or more in the outer regions with no qualitative change in gas stability or molecular cloud properties. The ULIRG track follows from high densities in galaxy collisions.

  9. Baseline metal enrichment from Population III star formation in cosmological volume simulations

    Science.gov (United States)

    Jaacks, Jason; Thompson, Robert; Finkelstein, Steven L.; Bromm, Volker

    2018-04-01

    We utilize the hydrodynamic and N-body code GIZMO coupled with our newly developed sub-grid Population III (Pop III) Legacy model, designed specifically for cosmological volume simulations, to study the baseline metal enrichment from Pop III star formation at z > 7. In this idealized numerical experiment, we only consider Pop III star formation. We find that our model Pop III star formation rate density (SFRD), which peaks at ˜ 10- 3 M⊙ yr- 1 Mpc- 1 near z ˜ 10, agrees well with previous numerical studies and is consistent with the observed estimates for Pop II SFRDs. The mean Pop III metallicity rises smoothly from z = 25 to 7, but does not reach the critical metallicity value, Zcrit = 10-4 Z⊙, required for the Pop III to Pop II transition in star formation mode until z ≃ 7. This suggests that, while individual haloes can suppress in situ Pop III star formation, the external enrichment is insufficient to globally terminate Pop III star formation. The maximum enrichment from Pop III star formation in star-forming dark matter haloes is Z ˜ 10-2 Z⊙, whereas the minimum found in externally enriched haloes is Z ≳ 10-7 Z⊙. Finally, mock observations of our simulated IGM enriched with Pop III metals produce equivalent widths similar to observations of an extremely metal-poor damped Lyman alpha system at z = 7.04, which is thought to be enriched by Pop III star formation only.

  10. SEQUENTIAL STAR FORMATION IN RCW 34: A SPECTROSCOPIC CENSUS OF THE STELLAR CONTENT OF HIGH-MASS STAR-FORMING REGIONS

    International Nuclear Information System (INIS)

    Bik, A.; Henning, Th.; Vasyunina, T.; Beuther, H.; Linz, H.; Puga, E.; Waters, L.B.F.M.; Waelkens, Ch.; Horrobin, M.; Kaper, L.; De Koter, A.; Van den Ancker, M.; Comeron, F.; Lenorzer, A.; Churchwell, E.; Kurtz, S.; Kouwenhoven, M. B. N.; Stolte, A.; Thi, W. F.

    2010-01-01

    In this paper, we present VLT/SINFONI integral field spectroscopy of RCW 34 along with Spitzer/IRAC photometry of the surroundings. RCW 34 consists of three different regions. A large bubble has been detected in the IRAC images in which a cluster of intermediate- and low-mass class II objects is found. At the northern edge of this bubble, an H II region is located, ionized by 3 OB stars, of which the most massive star has spectral type O8.5V. Intermediate-mass stars (2-3 M sun ) are detected of G- and K-spectral type. These stars are still in the pre-main-sequence (PMS) phase. North of the H II region, a photon-dominated region is present, marking the edge of a dense molecular cloud traced by H 2 emission. Several class 0/I objects are associated with this cloud, indicating that star formation is still taking place. The distance to RCW 34 is revised to 2.5 ± 0.2 kpc and an age estimate of 2 ± 1 Myr is derived from the properties of the PMS stars inside the H II region. Between the class II sources in the bubble and the PMS stars in the H II region, no age difference could be detected with the present data. The presence of the class 0/I sources in the molecular cloud, however, suggests that the objects inside the molecular cloud are significantly younger. The most likely scenario for the formation of the three regions is that star formation propagated from south to north. First the bubble is formed, produced by intermediate- and low-mass stars only, after that, the H II region is formed from a dense core at the edge of the molecular cloud, resulting in the expansion similar to a champagne flow. More recently, star formation occurred in the rest of the molecular cloud. Two different formation scenarios are possible. (1) The bubble with the cluster of low- and intermediate-mass stars triggered the formation of the O star at the edge of the molecular cloud, which in its turn induces the current star formation in the molecular cloud. (2) An external triggering is

  11. A ram-pressure threshold for star formation

    Science.gov (United States)

    Whitworth, A. P.

    2016-05-01

    In turbulent fragmentation, star formation occurs in condensations created by converging flows. The condensations must be sufficiently massive, dense and cool to be gravitationally unstable, so that they start to contract; and they must then radiate away thermal energy fast enough for self-gravity to remain dominant, so that they continue to contract. For the metallicities and temperatures in local star-forming clouds, this second requirement is only met robustly when the gas couples thermally to the dust, because this delivers the capacity to radiate across the full bandwidth of the continuum, rather than just in a few discrete spectral lines. This translates into a threshold for vigorous star formation, which can be written as a minimum ram pressure PCRIT ˜ 4 × 10-11 dyne. PCRIT is independent of temperature, and corresponds to flows with molecular hydrogen number density n_{{H_2.FLOW}} and velocity vFLOW satisfying n_{{H_2.FLOW}} v_{FLOW}^2≳ 800 cm^{-3} (km s^{-1})^2. This in turn corresponds to a minimum molecular hydrogen column density for vigorous star formation, N_{{H_2.CRIT}} ˜ 4 × 10^{21} cm^{-2} (ΣCRIT ˜ 100 M⊙ pc-2), and a minimum visual extinction AV, CRIT ˜ 9 mag. The characteristic diameter and line density for a star-forming filament when this threshold is just exceeded - a sweet spot for local star formation regions - are 2RFIL ˜ 0.1 pc and μFIL ˜ 13 M⊙ pc-2. The characteristic diameter and mass for a prestellar core condensing out of such a filament are 2RCORE ˜ 0.1 pc and MCORE ˜ 1 M⊙. We also show that fragmentation of a shock-compressed layer is likely to commence while the convergent flows creating the layer are still ongoing, and we stress that, under this circumstance, the phenomenology and characteristic scales for fragmentation of the layer are fundamentally different from those derived traditionally for pre-existing layers.

  12. Monitoring pulsating giant stars in M33: star formation history and chemical enrichment

    Science.gov (United States)

    Javadi, A.; van Loon, J. Th

    2017-06-01

    We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). A new method has been developed by us to use pulsating giant stars to reconstruct the star formation history of galaxies over cosmological time as well as using them to map the dust production across their host galaxies. In first Instance the central square kiloparsec of M33 was monitored and long period variable stars (LPVs) were identified. We give evidence of two epochs of a star formation rate enhanced by a factor of a few. These stars are also important dust factories, we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. Then the monitoring survey was expanded to cover a much larger part of M33 including spiral arms. Here we present our methodology and describe results for the central square kiloparsec of M33 [1-4] and disc of M33 [5-8].

  13. Monitoring pulsating giant stars in M33: star formation history and chemical enrichment

    International Nuclear Information System (INIS)

    Javadi, A; Van Loon, J Th

    2017-01-01

    We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). A new method has been developed by us to use pulsating giant stars to reconstruct the star formation history of galaxies over cosmological time as well as using them to map the dust production across their host galaxies. In first Instance the central square kiloparsec of M33 was monitored and long period variable stars (LPVs) were identified. We give evidence of two epochs of a star formation rate enhanced by a factor of a few. These stars are also important dust factories, we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. Then the monitoring survey was expanded to cover a much larger part of M33 including spiral arms. Here we present our methodology and describe results for the central square kiloparsec of M33 [1–4] and disc of M33 [5–8]. (paper)

  14. TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star Formation

    Science.gov (United States)

    Rigby, Jane; Vieira, Joaquin; Bayliss, M.; Fischer, T.; Florian, M.; Gladders, M.; Gonzalez, A.; Law, D.; Marrone, D.; Phadke, K.; Sharon, K.; Spilker, J.

    2017-11-01

    We propose high signal-to-noise NIRSpec and MIRI IFU spectroscopy, with accompanying imaging, for 4 gravitationally lensed galaxies at 1physical scales of star formation in distant galaxies, in an extinction-robust way; 3) measure specific star formation rates and compare the spatial distribution of the young and old stars; 4) and measure the physical conditions of star formation and their spatial variation. This program uses key instrument modes, heavily exercising the NIRSpec and MIRI IFUs. The resulting science-enabling data products will demonstrate JWST's capabilities and provide the extragalactic science community with rich datasets. In four deliveries, we will provide high-quality Level 3 data cubes and mosaics, empirical star formation diagnostics, maps of star formation, extinction, and physical properties, a tool for comparing NIRSpec and MIRI data cubes, and cookbooks on data reduction, analysis, and calibration strategy.

  15. Radiative Hydrodynamic Simulations of In Situ Star Formation in the Galactic Center

    Science.gov (United States)

    Frazer, Chris; Heitsch, Fabian

    2018-01-01

    Many stars observed in the Galactic Center (GC) orbit the supermassive black hole (SMBH), Sagittarius A*, in a region where the extreme gravitational field is expected to inhibit star formation. Yet, many of these stars are young which favors an in situ formation scenario. Previous numerical work on this topic has focused on two possible solutions. First, the tidal capture of a > 10^4 Msun infalling molecular cloud by an SMBH may result in the formation of a surrounding gas disk which then rapidly cools and forms stars. This process results in stellar populations that are consistent with the observed stellar disk in the GC. Second, dense gas clumps of approximately 100 Msun on highly eccentric orbits about an SMBH can experience sparks of star formation via orbital compressions occurring during pericenter passage. In my dissertation, I build upon these models using a series of grid-based radiative hydrodynamic simulations, including the effects of both ionizing ultraviolet light from existing stars as well as X-ray radiation emanating from the central black hole. Radiation is treated with an adaptive ray-tracing routine, including appropriate heating and cooling for both neutral and ionized gas. These models show that ultraviolet radiation is sufficiently strong to heat low mass gas clouds, thus suppressing star formation from clump compression. Gas disks that form from cloud capture become sufficiently dense to provide shielding from the radiation of existing central stars, thus allowing star formation to continue. Conversely, X-rays easily penetrate and heat the potentially star forming gas. For sufficiently high radiation fields, this provides a mechanism to disrupt star formation for both scenarios considered above.

  16. Star formation within OB subgroups: Implosion by multiple sources

    International Nuclear Information System (INIS)

    Klein, R.I.; Sanford, M.T. III; Whitaker, R.W.

    1983-01-01

    We present the results of new detailed two-dimensional radiation-hydrodynamical calculations of the effects of radiation-driven shock waves from two O stars on inhomogeneities embedded in molecular clouds. The calculations indicate the neutral primordial clumps of gas with 84 M/sub sun/ can be highly compressed in 3 x 10 4 yr with density enhancements greater than 170 over ambient densities and 40 M/sub sun/ remaining. Inhomogeneities that are compressed in this manner by stars in the range O7--B0 survive ionization evaporation and may rapidly form new stars. Low-mass objects would not survive, and there would be a natural cutoff of low-mass and high-mass stars. We present a scenario for hierarchical radiation-driven implosion as a potential, new highly efficient mechanismfor star formation that may explain aspects of recent observations of new star formation in ultracompact H II regions

  17. STAR Formation Histories Across the Interacting Galaxy NGC 6872, the Largest-Known Spiral

    Science.gov (United States)

    Eufrasio, Rafael T.; Dwek, E.; Arendt, RIchard G.; deMello, Duilia F.; Gadotti, DImitri A.; Urrutia-Viscarra, Fernanda; deOliveira, CLaudia Mendes; Benford, Dominic J.

    2014-01-01

    NGC6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 micrometer) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  18. A possible formation scenario for dwarf spheroidal galaxies - III. Adding star formation histories to the fiducial model

    Science.gov (United States)

    Alarcón Jara, A. G.; Fellhauer, M.; Matus Carrillo, D. R.; Assmann, P.; Urrutia Zapata, F.; Hazeldine, J.; Aravena, C. A.

    2018-02-01

    Dwarf spheroidal galaxies are regarded as the basic building blocks in the formation of larger galaxies and are the most dark matter dominated systems in the Universe, known so far. There are several models that attempt to explain their formation and evolution, but they have problems modelling the formation of isolated dwarf spheroidal galaxies. Here, we will explain a possible formation scenario in which star clusters form inside the dark matter halo of a dwarf spheroidal galaxy. These star clusters suffer from low star formation efficiency and dissolve while orbiting inside the dark matter halo. Thereby, they build the faint luminous components that we observe in dwarf spheroidal galaxies. In this paper, we study this model by adding different star formation histories to the simulations and compare the results with our previous work and observational data to show that we can explain the formation of dwarf spheroidal galaxies.

  19. Exploring the Dust Content, Metallicity, Star Formation and AGN Activity in Distant Dusty, Star-Forming Galaxies Using Cosmic Telescope

    Science.gov (United States)

    Walth, Gregory; Egami, Eiichi; Clément, Benjamin; Rujopakarn, Wiphu; Rawle, Tim; Richard, Johan; Dessauges, Miroslava; Perez-Gonzalez, Pablo; Ebeling, Harald; Vayner, Andrey; Wright, Shelley; Cosens, Maren; Herschel Lensing Survey

    2018-01-01

    We present our recent ALMA observations of Herschel-detected gravitationally lensed dusty, star-forming galaxies (DSFGs) and how they compliment our near-infrared spectroscopic observations of their rest-frame optical nebular emission. This provides the complete picture of star formation; from the molecular gas that fuels star formation, to the dust emission which are the sites of star formation, and the nebular emission which is the gas excited by the young stars. DSFGs undergo the largest starbursts in the Universe, contributing to the bulk of the cosmic star formation rate density between redshifts z = 1 - 4. Internal processes within high-redshift DSFGs remains largely unexplored; such as feedback from star formation, the role of turbulence, gas surface density of molecular gas, AGN activity, and the rates of metal production. Much that is known about DSFGs star formation properties comes from their CO and dust emission. In order to fully understand the star formation history of DSFGs, it is necessary to observe their optical nebular emission. Unfortunately, UV/optical emission is severely attenuated by dust, making it challenging to detect. With the Herschel Lensing Survey, a survey of the cores of almost 600 massive galaxy clusters, we are able to probe faint dust-attenuated nebular emission. We are currently conducting a new survey using Keck/OSIRIS to resolve a sample of gravitationally lensed DSFGs from the Herschel Lensing Survey (>100 mJy, with SFRs >100 Msun/yr) at redshifts z=1-4 with magnifications >10x all with previously detected nebular emission lines. We present the physical and resolved properties of gravitationally lensed DSFGs at unprecedented spatial scales; such as ionization, metallicity, AGN activity, and dust attenuation.

  20. New View of Distant Galaxy Reveals Furious Star Formation

    Science.gov (United States)

    2007-12-01

    A furious rate of star formation discovered in a distant galaxy shows that galaxies in the early Universe developed either much faster or in a different way from what astronomers have thought. "This galaxy is forming stars at an incredible rate," said Wei-Hao Wang, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The galaxy, Wang said, is forming the equivalent of 4,000 Suns a year. This is a thousand times more violent than our own Milky Way Galaxy. Location of Distant Galaxy Visible-light, left (from HST) and Infrared, right, (from Spitzer) Images: Circles indicate location of GOODS 850-5. CREDIT: Wang et al., STScI, Spitzer, NASA, NRAO/AUI/NSF Click on image for high-resolution file (1 MB) The galaxy, called GOODS 850-5, is 12 billion light-years from Earth, and thus is seen as it was only about 1.5 billion years after the Big Bang. Wang and his colleagues observed it using the Smithsonian Astrophysical Observatory's Submillimeter Array (SMA) on Mauna Kea in Hawaii. Young stars in the galaxy were enshrouded in dust that was heated by the stars and radiated infrared light strongly. Because of the galaxy's great distance from Earth, the infrared light waves have been stretched out to submillimeter-length radio waves, which are seen by the SMA. The waves were stretched or "redshifted," as astronomers say, by the ongoing expansion of the Universe. "This evidence for prolific star formation is hidden by the dust from visible-light telescopes," Wang explained. The dust, in turn, was formed from heavy elements that had to be built up in the cores of earlier stars. This indicates, Wang said, that significant numbers of stars already had formed, then spewed those heavy elements into interstellar space through supernova explosions and stellar winds. "Seeing the radiation from this heated dust revealed star formation we could have found in no other way," Wang said. Similar dusty galaxies in the early Universe may contain most of the

  1. A simple law of star formation

    DEFF Research Database (Denmark)

    Padoan, Paolo; Haugbølle, Troels; Nordlund, Åke

    2012-01-01

    We show that supersonic MHD turbulence yields a star formation rate (SFR) as low as observed in molecular clouds, for characteristic values of the free-fall time divided by the dynamical time, t ff/t dyn, the Alfvénic Mach number, {\\cal M}_a, and the sonic Mach number, {\\cal M}_s. Using a very...... values of t ff/t dyn and {\\cal M}_a. (2) Decreasing values of {\\cal M}_a (stronger magnetic fields) reduce epsilonff, but only to a point, beyond which epsilonff increases with a further decrease of {\\cal M}_a. (3) For values of {\\cal M}_a characteristic of star-forming regions, epsilonff varies...... with {\\cal M}_a by less than a factor of two. We propose a simple star formation law, based on the empirical fit to the minimum epsilonff, and depending only on t ff/t dyn: epsilonff ˜ epsilonwindexp (– 1.6 t ff/t dyn). Because it only depends on the mean gas density and rms velocity, this law...

  2. Highly efficient star formation in NGC 5253 possibly from stream-fed accretion.

    Science.gov (United States)

    Turner, J L; Beck, S C; Benford, D J; Consiglio, S M; Ho, P T P; Kovács, A; Meier, D S; Zhao, J-H

    2015-03-19

    Gas clouds in present-day galaxies are inefficient at forming stars. Low star-formation efficiency is a critical parameter in galaxy evolution: it is why stars are still forming nearly 14 billion years after the Big Bang and why star clusters generally do not survive their births, instead dispersing to form galactic disks or bulges. Yet the existence of ancient massive bound star clusters (globular clusters) in the Milky Way suggests that efficiencies were higher when they formed ten billion years ago. A local dwarf galaxy, NGC 5253, has a young star cluster that provides an example of highly efficient star formation. Here we report the detection of the J = 3→2 rotational transition of CO at the location of the massive cluster. The gas cloud is hot, dense, quiescent and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by the embedded star cluster. Its star-formation efficiency exceeds 50 per cent, tenfold that of clouds in the Milky Way. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy.

  3. X-ray sources in regions of star formation. I. The naked T Tauri stars

    International Nuclear Information System (INIS)

    Walter, F.M.

    1986-01-01

    Einstein X-ray observations of regions of active star formation in Taurus, Ophiuchus, and Corona Australis show a greatly enhanced surface density of stellar X-ray sources over that seen in other parts of the sky. Many of the X-ray sources are identified with low-mass, pre-main-sequence stars which are not classical T Tauri stars. The X-ray, photometric, and spectroscopic data for these stars are discussed. Seven early K stars in Oph and CrA are likely to be 1-solar-mass post-T Tauri stars with ages of 10-million yr. The late K stars in Taurus are not post-T Tauri, but naked T Tauri stars, which are coeval with the T Tauri stars, differing mainly in the lack of a circumstellar envelope. 72 references

  4. Formation of massive stars in OB associations and giant molecular clouds

    International Nuclear Information System (INIS)

    Lada, C.J.

    1980-01-01

    Certain interesting patterns are being perceived in the morphology of the regions which have recently produced massive OB stars. In particular, current evidence seems to favour the notion that the formation of massive stars takes place at the edges and not the centres of large molecular cloud complexes. It is this aspect of the observations that is discussed in the present paper. The phenomena described here will pertain to massive stars only. Specifically, stars with spectral types earlier than B3 will be considered since it is usually only these stars that produce sufficient havoc (e.g., maser sources, CO bright spots, H II regions) to noticeably affect their early environments. The corresponding phenomena for lower mass stars could be entirely different. A review is first presented of what has been learned about the OB star formation process from studies of the visible OB stars themselves. Then, newly derived information pertaining to the most recent episodes of OB star birth in galactic molecular clouds is discussed. Finally, a short discussion of the significance of the results and their implications for possible star formation mechanisms will be made. (U.K.)

  5. Star formation quenching in quasar host galaxies

    Science.gov (United States)

    Carniani, Stefano

    2017-10-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionised and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ˜2.4 obtained with SINFONI in the H- and K-band. All the quasars show [OIII]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM anti-correlated with star-formation powered emission, i.e. star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50 - 100 M⊙/yr, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  6. Stochastic star formation and the evolution of galaxies

    International Nuclear Information System (INIS)

    Seiden, P.E.; Schulman, L.S.; Gerola, H.

    1979-01-01

    The mechanism of stochastic self-propagating star formation has previously been invoked to explain the origin of spiral arms in galaxies. In this paper we extend the application of this mechanism to account for the diversity of morphological types and the evolution of galaxies. The new property that arises from consideration of this mechanism is that the rate of star formation exhibits the critical behavior of a phase transition. This is a general property of the system and is not strongly dependent on the details of the star--interstellar gas interaction. Examination of the properties of this phase transition provides a general scenario for the evolution of galaxies and the origin of the various morphological types

  7. Accretion Processes in Star Formation

    DEFF Research Database (Denmark)

    Küffmeier, Michael

    for short-lived radionuclides that enrich the cloud as a result of supernova explosions of the massive stars allows us to analyze the distribution of the short-lived radionuclides around young forming stars. In contradiction to results from highly-idealized models, we find that the discrepancy in 26 Al...... that the accretion process of stars is heterogeneous in space, time and among different protostars. In some cases, disks form a few thousand years after stellar birth, whereas in other cases disk formation is suppressed due to efficient removal of angular momentum. Angular momentum is mainly transported outward...... with potentially observable fluctuations in the luminosity profile that are induced by variations in the accretion rate. Considering that gas inside protoplanetary disks is not fully ionized, I implemented a solver that accounts for nonideal MHD effects into a newly developed code framework called dispatch...

  8. CARMA Large Area Star Formation Survey: project overview with analysis of dense gas structure and kinematics in Barnard 1

    Energy Technology Data Exchange (ETDEWEB)

    Storm, Shaye; Mundy, Lee G.; Lee, Katherine I.; Teuben, Peter; Pound, Marc W.; Salter, Demerese M.; Chen, Che-Yu; Gong, Hao [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Fernández-López, Manuel; Looney, Leslie W.; Segura-Cox, Dominique M. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Rosolowsky, Erik [Departments of Physics and Statistics, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna BC V1V 1V7 (Canada); Arce, Héctor G.; Plunkett, Adele L. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Ostriker, Eve C. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Volgenau, Nikolaus H. [Owens Valley Radio Observatory, MC 105-24 OVRO, Pasadena, CA 91125 (United States); Shirley, Yancy L. [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Kwon, Woojin [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen (Netherlands); Isella, Andrea, E-mail: sstorm@astro.umd.edu [Astronomy Department, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125 (United States); and others

    2014-10-20

    We present details of the CARMA Large Area Star Formation Survey (CLASSy), while focusing on observations of Barnard 1. CLASSy is a CARMA Key Project that spectrally imaged N{sub 2}H{sup +}, HCO{sup +}, and HCN (J = 1 → 0 transitions) across over 800 square arcminutes of the Perseus and Serpens Molecular Clouds. The observations have angular resolution near 7'' and spectral resolution near 0.16 km s{sup –1}. We imaged ∼150 square arcminutes of Barnard 1, focusing on the main core, and the B1 Ridge and clumps to its southwest. N{sub 2}H{sup +} shows the strongest emission, with morphology similar to cool dust in the region, while HCO{sup +} and HCN trace several molecular outflows from a collection of protostars in the main core. We identify a range of kinematic complexity, with N{sub 2}H{sup +} velocity dispersions ranging from ∼0.05 to 0.50 km s{sup –1} across the field. Simultaneous continuum mapping at 3 mm reveals six compact object detections, three of which are new detections. A new, non-binary dendrogram algorithm is used to analyze dense gas structures in the N{sub 2}H{sup +} position-position-velocity (PPV) cube. The projected sizes of dendrogram-identified structures range from about 0.01 to 0.34 pc. Size-linewidth relations using those structures show that non-thermal line-of-sight velocity dispersion varies weakly with projected size, while rms variation in the centroid velocity rises steeply with projected size. Comparing these relations, we propose that all dense gas structures in Barnard 1 have comparable depths into the sky, around 0.1-0.2 pc; this suggests that overdense, parsec-scale regions within molecular clouds are better described as flattened structures rather than spherical collections of gas. Science-ready PPV cubes for Barnard 1 molecular emission are available for download.

  9. Insights from Synthetic Star-forming Regions. III. Calibration of Measurement and Techniques of Star Formation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Koepferl, Christine M.; Robitaille, Thomas P. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dale, James E., E-mail: koepferl@usm.lmu.de [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany)

    2017-11-01

    Through an extensive set of realistic synthetic observations (produced in Paper I), we assess in this part of the paper series (Paper III) how the choice of observational techniques affects the measurement of star formation rates (SFRs) in star-forming regions. We test the accuracy of commonly used techniques and construct new methods to extract the SFR, so that these findings can be applied to measure the SFR in real regions throughout the Milky Way. We investigate diffuse infrared SFR tracers such as those using 24 μ m, 70 μ m and total infrared emission, which have been previously calibrated for global galaxy scales. We set up a toy model of a galaxy and show that the infrared emission is consistent with the intrinsic SFR using extra-galactic calibrated laws (although the consistency does not prove their reliability). For local scales, we show that these techniques produce completely unreliable results for single star-forming regions, which are governed by different characteristic timescales. We show how calibration of these techniques can be improved for single star-forming regions by adjusting the characteristic timescale and the scaling factor and give suggestions of new calibrations of the diffuse star formation tracers. We show that star-forming regions that are dominated by high-mass stellar feedback experience a rapid drop in infrared emission once high-mass stellar feedback is turned on, which implies different characteristic timescales. Moreover, we explore the measured SFRs calculated directly from the observed young stellar population. We find that the measured point sources follow the evolutionary pace of star formation more directly than diffuse star formation tracers.

  10. DRIVING TURBULENCE AND TRIGGERING STAR FORMATION BY IONIZING RADIATION

    International Nuclear Information System (INIS)

    Gritschneder, Matthias; Naab, Thorsten; Walch, Stefanie; Burkert, Andreas; Heitsch, Fabian

    2009-01-01

    We present high-resolution simulations on the impact of ionizing radiation of massive O stars on the surrounding turbulent interstellar medium (ISM). The simulations are performed with the newly developed software iVINE which combines ionization with smoothed particle hydrodynamics (SPH) and gravitational forces. We show that radiation from hot stars penetrates the ISM, efficiently heats cold low-density gas and amplifies overdensities seeded by the initial turbulence. The formation of observed pillar-like structures in star-forming regions (e.g. in M16) can be explained by this scenario. At the tip of the pillars gravitational collapse can be induced, eventually leading to the formation of low-mass stars. Detailed analysis of the evolution of the turbulence spectra shows that UV radiation of O stars indeed provides an excellent mechanism to sustain and even drive turbulence in the parental molecular cloud.

  11. The Origin of Scales and Scaling Laws in Star Formation

    Science.gov (United States)

    Guszejnov, David; Hopkins, Philip; Grudich, Michael

    2018-01-01

    Star formation is one of the key processes of cosmic evolution as it influences phenomena from the formation of galaxies to the formation of planets, and the development of life. Unfortunately, there is no comprehensive theory of star formation, despite intense effort on both the theoretical and observational sides, due to the large amount of complicated, non-linear physics involved (e.g. MHD, gravity, radiation). A possible approach is to formulate simple, easily testable models that allow us to draw a clear connection between phenomena and physical processes.In the first part of the talk I will focus on the origin of the IMF peak, the characteristic scale of stars. There is debate in the literature about whether the initial conditions of isothermal turbulence could set the IMF peak. Using detailed numerical simulations, I will demonstrate that not to be the case, the initial conditions are "forgotten" through the fragmentation cascade. Additional physics (e.g. feedback) is required to set the IMF peak.In the second part I will use simulated galaxies from the Feedback in Realistic Environments (FIRE) project to show that most star formation theories are unable to reproduce the near universal IMF peak of the Milky Way.Finally, I will present analytic arguments (supported by simulations) that a large number of observables (e.g. IMF slope) are the consequences of scale-free structure formation and are (to first order) unsuitable for differentiating between star formation theories.

  12. The Star Formation Histories of Disk Galaxies: The Live, the Dead, and the Undead

    Energy Technology Data Exchange (ETDEWEB)

    Oemler, Augustus Jr; Dressler, Alan [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101-1292 (United States); Abramson, Louis E. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Los Angeles CA 90095-1547 (United States); Gladders, Michael D. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Poggianti, Bianca M. [INAF-Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Vulcani, Benedetta [School of Physics, The University of Melbourne, VIC 3010 (Australia)

    2017-07-20

    We reexamine the properties of local galaxy populations using published surveys of star formation, structure, and gas content. After recalibrating star formation measures, we are able to reliably measure specific star formation rates well below that of the so-called “main sequence” of star formation versus mass. We find an unexpectedly large population of quiescent galaxies with star formation rates intermediate between the main sequence and passive populations and with disproportionately high star formation rates. We demonstrate that a tight main sequence is a natural outcome of most histories of star formation and has little astrophysical significance but that the quiescent population requires additional astrophysics to explain its properties. Using a simple model for disk evolution based on the observed dependence of star formation on gas content in local galaxies, and assuming simple histories of cold gas inflow, we show that the evolution of galaxies away from the main sequence can be attributed to the depletion of gas due to star formation after a cutoff of gas inflow. The quiescent population is composed of galaxies in which the density of disk gas has fallen below a threshold for star formation probably set by disk stability. The evolution of galaxies beyond the quiescent state to gas exhaustion and the end of star formation requires another process, probably wind-driven mass loss. The environmental dependence of the three galaxy populations is consistent with recent numerical modeling, which indicates that cold gas inflows into galaxies are truncated at earlier epochs in denser environments.

  13. The SAMI Galaxy Survey: spatially resolving the main sequence of star formation

    Science.gov (United States)

    Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus

    2018-04-01

    We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

  14. A KINEMATIC AND PHOTOMETRIC STUDY OF THE GALACTIC YOUNG STAR CLUSTER NGC 7380

    International Nuclear Information System (INIS)

    Chen, W. P.; Chen, C. W.; Pandey, A. K.; Sharma, Saurabh; Chen Li; Sperauskas, J.; Ogura, K.; Chuang, R. J.; Boyle, R. P.

    2011-01-01

    We present proper motions, radial velocities, and a photometric study of the Galactic open cluster NGC 7380, which is associated with prominent emission nebulosity and dark molecular clouds. On the basis of the sample of highly probable member stars, the star cluster is found to be at a distance of 2.6 ± 0.4 kpc, has an age of around 4 Myr, and a physical size of ∼6 pc across with a tidal structure. The binary O-type star DH Cep is a member of the cluster in its late stage of clearing the surrounding material, and may have triggered the ongoing star formation in neighboring molecular clouds which harbor young stars that are coeval and comoving with, but not gravitationally bound by, the star cluster.

  15. Spiral branches and star formation

    International Nuclear Information System (INIS)

    Zasov, A.V.

    1974-01-01

    Origin of spiral branches of galaxies and formation of stars in them are considered from the point of view of the theory of the gravitational gas condensation, one of comparatively young theories. Arguments are presented in favour of the stellar condensation theory. The concept of the star formation of gas is no longer a speculative hypothesis. This is a theory which assumes quantitative verification and explains qualitatively many facts observed. And still our knowledge on the nature of spiral branches is very poor. It still remains vague what processes give origin to spiral branches, why some galaxies have spirals and others have none. And shapes of spiral branches are diverse. Some cases are known when spiral branches spread outside boundaries of galaxies themselves. Such spirals arise exclusively in the region where there are two or some interacting galaxies. Only first steps have been made in the explanation of the galaxy spiral branches, and it is necessary to carry out new observations and new theoretical calculations

  16. ORIGIN OF THE GALAXY MASS-METALLICITY-STAR FORMATION RELATION

    International Nuclear Information System (INIS)

    Harwit, Martin; Brisbin, Drew

    2015-01-01

    We describe an equilibrium model that links the metallicity of low-redshift galaxies to stellar evolution models. It enables the testing of different stellar initial mass functions and metal yields against observed galaxy metallicities. We show that the metallicities of more than 80,000 Sloan Digital Sky Survey galaxies in the low-redshift range 0.07 ≤ z ≤ 0.3 considerably constrain stellar evolution models that simultaneously relate galaxy stellar mass, metallicity, and star formation rates to the infall rate of low-metallicity extragalactic gas and outflow of enriched matter. A feature of our model is that it encompasses both the active star forming phases of a galaxy and epochs during which the same galaxy may lie fallow. We show that the galaxy mass-metallicity-star formation relation can be traced to infall of extragalactic gas mixing with native gas from host galaxies to form stars of observed metallicities, the most massive of which eject oxygen into extragalactic space. Most consequential among our findings is that, on average, extragalactic infall accounts for one half of the gas required for star formation, a ratio that is remarkably constant across galaxies with stellar masses ranging at least from M* = 2 × 10 9 to 6 × 10 10 M ☉ . This leads us to propose that star formation is initiated when extragalactic infall roughly doubles the mass of marginally stable interstellar clouds. The processes described may also account quantitatively for the metallicity of extragalactic space, though to check this the fraction of extragalactic baryons will need to be more firmly established

  17. ORIGIN OF THE GALAXY MASS-METALLICITY-STAR FORMATION RELATION

    Energy Technology Data Exchange (ETDEWEB)

    Harwit, Martin; Brisbin, Drew, E-mail: harwit@verizon.net [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States)

    2015-02-20

    We describe an equilibrium model that links the metallicity of low-redshift galaxies to stellar evolution models. It enables the testing of different stellar initial mass functions and metal yields against observed galaxy metallicities. We show that the metallicities of more than 80,000 Sloan Digital Sky Survey galaxies in the low-redshift range 0.07 ≤ z ≤ 0.3 considerably constrain stellar evolution models that simultaneously relate galaxy stellar mass, metallicity, and star formation rates to the infall rate of low-metallicity extragalactic gas and outflow of enriched matter. A feature of our model is that it encompasses both the active star forming phases of a galaxy and epochs during which the same galaxy may lie fallow. We show that the galaxy mass-metallicity-star formation relation can be traced to infall of extragalactic gas mixing with native gas from host galaxies to form stars of observed metallicities, the most massive of which eject oxygen into extragalactic space. Most consequential among our findings is that, on average, extragalactic infall accounts for one half of the gas required for star formation, a ratio that is remarkably constant across galaxies with stellar masses ranging at least from M* = 2 × 10{sup 9} to 6 × 10{sup 10} M {sub ☉}. This leads us to propose that star formation is initiated when extragalactic infall roughly doubles the mass of marginally stable interstellar clouds. The processes described may also account quantitatively for the metallicity of extragalactic space, though to check this the fraction of extragalactic baryons will need to be more firmly established.

  18. Multi-wavelength investigations on feedback of massive star formation

    Science.gov (United States)

    Yuan, Jinghua

    2014-05-01

    In the course of massive star formation, outflows, ionizing radiation and intense stellar winds could heavily affect their adjacent environs and natal clouds. There are several outstanding open questions related to these processes: i) whether they can drive turbulence in molecular clouds; ii) whether they are able to trigger star formation; iii) whether they can destroy natal clouds to terminate star formation at low efficiencies. This thesis investigates feedback in different stages of massive star formation. Influence of such feedback to the ambient medium has been revealed. A new type of millimeter methanol maser is detected for the first time. An uncommon bipolar outflow prominent in the mid-infrared is discovered. And features of triggered star formation are found on the border of an infrared bubble and in the surroundings of a Herbig Be star. Extended green objects (EGOs) are massive outflow candidates showing prominent shocked features in the mid-infrared. We have carried out a high resolution study of the EGO G22.04+0.22 (hereafter, G22) based on archived SMA data. Continuum and molecular lines at 1.3 mm reveal that G22 is still at a hot molecular core stage. A very young multi-polar outflow system is detected, which is interacting with the adjacent dense gas. Anomalous emission features from CH3OH (8,-1,8 - 7,0,7) and CH3OH (4,2,2 - 3,1,2) are proven to be millimeter masers. It is the first time that maser emission of CH3OH (8,-1,8 - 7,0,7) at 218.440 GHz is detected in a massive star-forming region. Bipolar outflows have been revealed and investigated almost always in the microwave or radio domain. It's sort of rare that hourglass-shaped morphology be discovered in the mid-infrared. Based on GLIMPSE data, we have discovered a bipolar object resembling an hourglass at 8.0 um. It is found to be associated with IRAS 18114-1825. Analysis based on fitted SED, optical spectroscopy, and infrared color indices suggests IRAS 18114-1825 is an uncommon bipolar

  19. STAR FORMATION EFFICIENCY IN THE COOL CORES OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    McDonald, Michael; Veilleux, Sylvain; Mushotzky, Richard; Reynolds, Christopher; Rupke, David S. N.

    2011-01-01

    We have assembled a sample of high spatial resolution far-UV (Hubble Space Telescope Advanced Camera for Surveys/Solar Blind Channel) and Hα (Maryland-Magellan Tunable Filter) imaging for 15 cool core galaxy clusters. These data provide a detailed view of the thin, extended filaments in the cores of these clusters. Based on the ratio of the far-UV to Hα luminosity, the UV spectral energy distribution, and the far-UV and Hα morphology, we conclude that the warm, ionized gas in the cluster cores is photoionized by massive, young stars in all but a few (A1991, A2052, A2580) systems. We show that the extended filaments, when considered separately, appear to be star forming in the majority of cases, while the nuclei tend to have slightly lower far-UV luminosity for a given Hα luminosity, suggesting a harder ionization source or higher extinction. We observe a slight offset in the UV/Hα ratio from the expected value for continuous star formation which can be modeled by assuming intrinsic extinction by modest amounts of dust (E(B - V) ∼ 0.2) or a top-heavy initial mass function in the extended filaments. The measured star formation rates vary from ∼0.05 M sun yr -1 in the nuclei of non-cooling systems, consistent with passive, red ellipticals, to ∼5 M sun yr -1 in systems with complex, extended, optical filaments. Comparing the estimates of the star formation rate based on UV, Hα, and infrared luminosities to the spectroscopically determined X-ray cooling rate suggests a star formation efficiency of 14 +18 -8 %. This value represents the time-averaged fraction, by mass, of gas cooling out of the intracluster medium, which turns into stars and agrees well with the global fraction of baryons in stars required by simulations to reproduce the stellar mass function for galaxies. This result provides a new constraint on the efficiency of star formation in accreting systems.

  20. Star Formation in the Orion Nebula Cluster

    Science.gov (United States)

    Palla, Francesco; Stahler, Steven W.

    1999-11-01

    We study the record of star formation activity within the dense cluster associated with the Orion Nebula. The bolometric luminosity function of 900 visible members is well matched by a simplified theoretical model for cluster formation. This model assumes that stars are produced at a constant rate and distributed according to the field-star initial mass function. Our best-fit age for the system, within this framework, is 2×106 yr. To undertake a more detailed analysis, we present a new set of theoretical pre-main-sequence tracks. These cover all masses from 0.1 to 6.0 Msolar, and start from a realistic stellar birthline. The tracks end along a zero-age main-sequence that is in excellent agreement with the empirical one. As a further aid to cluster studies, we offer an heuristic procedure for the correction of pre-main-sequence luminosities and ages to account for the effects of unresolved binary companions. The Orion Nebula stars fall neatly between our birthline and zero-age main-sequence in the H-R diagram. All those more massive than about 8 Msolar lie close to the main sequence, as also predicted by theory. After accounting for the finite sensitivity of the underlying observations, we confirm that the population between 0.4 and 6.0 Msolar roughly follows a standard initial mass function. We see no evidence for a turnover at lower masses. We next use our tracks to compile stellar ages, also between 0.4 and 6.0 Msolar. Our age histogram reveals that star formation began at a low level some 107 yr ago and has gradually accelerated to the present epoch. The period of most active formation is indeed confined to a few×106 yr, and has recently ended with gas dispersal from the Trapezium. We argue that the acceleration in stellar births, which extends over a wide range in mass, reflects the gravitational contraction of the parent cloud spawning this cluster.

  1. STAR FORMATION IN DENSE CLUSTERS

    International Nuclear Information System (INIS)

    Myers, Philip C.

    2011-01-01

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dynamical ejection, gravitational competition, and gas dispersal by stellar feedback, independent of initial core structure. The model matches the field star initial mass function (IMF) from 0.01 to more than 10 solar masses. The core accretion rate and the mean accretion duration set the peak of the IMF, independent of the local Jeans mass. Massive protostars require the longest accretion durations, up to 0.5 Myr. The maximum protostar luminosity in a cluster indicates the mass and age of its oldest protostar. The distribution of protostar luminosities matches those in active star-forming regions if protostars have a constant birthrate but not if their births are coeval. For constant birthrate, the ratio of young stellar objects to protostars indicates the star-forming age of a cluster, typically ∼1 Myr. The protostar accretion luminosity is typically less than its steady spherical value by a factor of ∼2, consistent with models of episodic disk accretion.

  2. Star formation and gas flows in the centre of the NUGA galaxy NGC 1808 observed with SINFONI

    Science.gov (United States)

    Busch, Gerold; Eckart, Andreas; Valencia-S., Mónica; Fazeli, Nastaran; Scharwächter, Julia; Combes, Françoise; García-Burillo, Santiago

    2017-02-01

    NGC 1808 is a nearby barred spiral galaxy which hosts young stellar clusters in a patchy circumnuclear ring with a radius of 240 pc. In order to study the gaseous and stellar kinematics and the star formation properties of the clusters, we perform seeing-limited H + K-band near-infrared integral-field spectroscopy with SINFONI of the inner 600 pc. From the MBH-σ∗ relation, we find a black hole mass of a few 107M⊙. We estimate the age of the young stellar clusters in the circumnuclear ring to be ≲10 Myr. No age gradient along the ring is visible. However, the starburst age is comparable to the travel time along the ring, indicating that the clusters almost completed a full orbit along the ring during their lifetime. In the central 600 pc, we find a hot molecular gas mass of 730 M⊙ which, with standard conversion factors, corresponds to a large cold molecular gas reservoir of several 108M⊙, in agreement with CO measurements from the literature. The gaseous and stellar kinematics show several deviations from pure disc motion, including a circumnuclear disc and signs of a nuclear bar potential. In addition, we confirm streaming motions on the 200 pc scale that have recently been detected in CO(1-0) emission. Thanks to the enhanced angular resolution of <1″, we find further streaming motion within the inner arcsecond that had not been detected until now. Despite the flow of gas towards the centre, no signs of significant AGN activity are found. This raises the question: will the infalling gas fuel an AGN or star formation? Based on observations with ESO-VLT, STS-Cologne GTO proposal ID 094.B-0009(A) and ESO archival data, proposal nos 074.A-9011(A) and 075.B-0648(A).

  3. Predictions from star formation in the multiverse

    International Nuclear Information System (INIS)

    Bousso, Raphael; Leichenauer, Stefan

    2010-01-01

    We compute trivariate probability distributions in the landscape, scanning simultaneously over the cosmological constant, the primordial density contrast, and spatial curvature. We consider two different measures for regulating the divergences of eternal inflation, and three different models for observers. In one model, observers are assumed to arise in proportion to the entropy produced by stars; in the others, they arise at a fixed time (5 or 10x10 9 years) after star formation. The star formation rate, which underlies all our observer models, depends sensitively on the three scanning parameters. We employ a recently developed model of star formation in the multiverse, a considerable refinement over previous treatments of the astrophysical and cosmological properties of different pocket universes. For each combination of observer model and measure, we display all single and bivariate probability distributions, both with the remaining parameter(s) held fixed and marginalized. Our results depend only weakly on the observer model but more strongly on the measure. Using the causal diamond measure, the observed parameter values (or bounds) lie within the central 2σ of nearly all probability distributions we compute, and always within 3σ. This success is encouraging and rather nontrivial, considering the large size and dimension of the parameter space. The causal patch measure gives similar results as long as curvature is negligible. If curvature dominates, the causal patch leads to a novel runaway: it prefers a negative value of the cosmological constant, with the smallest magnitude available in the landscape.

  4. High-mass Star Formation and Its Initial Conditions

    Science.gov (United States)

    Zhang, C. P.

    2017-11-01

    In this thesis, we present four works on the infrared dark clouds, fragmentation and deuteration of compact and cold cores, hyper-compact (HC) HII regions, and infrared dust bubbles, respectively. They are not only the products of early high-mass star formation, but reflect different evolutionary sequences of high-mass star formation. (1) Using the IRAM (Institut de Radioastronomie Millimétrique) 30 m telescope, we obtained HCO^+, HNC, N_2^+, and C^{18}O emission in six IRDCs (infrared dark clouds), and study their dynamics, stability, temperature, and density. (2) Fragmentation at the earliest phases is an important process of massive star formation. Eight massive precluster clumps (G18.17, G18.21, G23.97N, G23.98, G23.44, G23.97S, G25.38, and G25.71) were selected from the SCUBA (submillimetre Common-User Bolometer Array) 850 μm and 450 μm data. The VLA (Very Large Array) at 1.3 cm, PbBI at 3.5 mm and 1.3 mm, APEX (Atacama Pathfinder Experiment telescope) at 870 μm observations were followed up, and archival infrared data at 4.5 μm, 8.0 μm, 24 μm, and 70 μm were combined to study the fragmentation and evolution of these clumps. We explored the habitats of the massive clumps at large scale, cores/condensations at small scale, and the fragmentation process at different wavelengths. Star formation in these eight clumps may have been triggered by the UC (ultra-compact) HII regions nearby. (3) The formation of hyper-compact (HC) HII regions is an important stage in massive star formation. We present high angular resolution observations carried out with the SMA (Submillimeter Array) and the VLA (Very Large Array) toward the HC HII region G35.58-0.03. With the 1.3 mm SMA and 1.3 cm VLA, we detected a total of about 25 transitions of 8 different species and their isotopologues (CO, CH_3CN, SO_2, CH_3CCH, OCS, CS, H30α/38β, and NH_{3}). G35.58-0.03 consists of an HC HII core with electron temperature Te* ≥ 5500 K, emission measure EM ≈ 1.9×10^{9} pc

  5. Interstellar clouds and the formation of stars

    International Nuclear Information System (INIS)

    Alfen, H.; Carlqvist, P.

    1977-12-01

    The 'pseudo-plasma formalism' which up to now has almost completely dominated theoretical astrophysics must be replaced by an experimentally based approach, involving the introduction of a number of neglected plasma phenomena, such as electric double layers, critical velocity, and pinch effect. The general belief that star light is the main ionizer is shown to be doubtful; hydromagnetic conversion of gravitational and kinetic energy may often be much more important. The revised plasma physics is applied to dark clouds and star formation. Magnetic fields do not necessarily counteract the contraction of a cloud, they may just as well 'pinch' the cloud. Magnetic compression may be the main mechanism for forming interstellar clouds and keeping them together. Star formation is due to an instability, but it is very unlikely that it has anything to do with the Jeans instablility. A reasonable mechanism is that the sedimentation of 'dust' (including solid bodies of different size) is triggering off a gravitationally assisted accretion. The study of the evolution of a dark cloud leads to a scenario of planet formation which is reconcilable with the results obtained from studies based on solar system data. This means that the new approach to cosmical plasma physics discussed logically leads to a consistent picture of the evolution of dark clouds and the formation of solar systems

  6. STAR CLUSTER FORMATION WITH STELLAR FEEDBACK AND LARGE-SCALE INFLOW

    International Nuclear Information System (INIS)

    Matzner, Christopher D.; Jumper, Peter H.

    2015-01-01

    During star cluster formation, ongoing mass accretion is resisted by stellar feedback in the form of protostellar outflows from the low-mass stars and photo-ionization and radiation pressure feedback from the massive stars. We model the evolution of cluster-forming regions during a phase in which both accretion and feedback are present and use these models to investigate how star cluster formation might terminate. Protostellar outflows are the strongest form of feedback in low-mass regions, but these cannot stop cluster formation if matter continues to flow in. In more massive clusters, radiation pressure and photo-ionization rapidly clear the cluster-forming gas when its column density is too small. We assess the rates of dynamical mass ejection and of evaporation, while accounting for the important effect of dust opacity on photo-ionization. Our models are consistent with the census of protostellar outflows in NGC 1333 and Serpens South and with the dust temperatures observed in regions of massive star formation. Comparing observations of massive cluster-forming regions against our model parameter space, and against our expectations for accretion-driven evolution, we infer that massive-star feedback is a likely cause of gas disruption in regions with velocity dispersions less than a few kilometers per second, but that more massive and more turbulent regions are too strongly bound for stellar feedback to be disruptive

  7. GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Huang Shan; Haynes, Martha P.; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Brinchmann, Jarle [Sterrewacht Leiden, Leiden University, NL-2300 RA Leiden (Netherlands); Stierwalt, Sabrina [Spitzer Science Center, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Neff, Susan G., E-mail: shan@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: jarle@strw.leidenuniv.nl, E-mail: sabrina@ipac.caltech.edu, E-mail: susan.g.neff@nasa.gov [NASA GSFC, Code 665, Observational Cosmology Lab, Greenbelt, MD 20771 (United States)

    2012-06-15

    We examine the global properties of the stellar and H I components of 229 low H I mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H I masses <10{sup 7.7} M{sub Sun} and H I line widths <80 km s{sup -1}. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M{sub *}) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M{sub *} obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M{sub *} {approx}< 10{sup 8} M{sub Sun} is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper H I mass limit yields the selection of a sample with lower gas fractions for their M{sub *} than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H I depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that H I disks are more extended than stellar ones.

  8. GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES

    International Nuclear Information System (INIS)

    Huang Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and H I components of 229 low H I mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H I masses 7.7 M ☉ and H I line widths –1 . Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M * ) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M * obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M * ∼ 8 M ☉ is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper H I mass limit yields the selection of a sample with lower gas fractions for their M * than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H I depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that H I disks are more extended than stellar ones.

  9. On the Spatially Resolved Star Formation History in M51. I. Hybrid UV+IR Star Formation Laws and IR Emission from Dust Heated by Old Stars

    Science.gov (United States)

    Eufrasio, R. T.; Lehmer, B. D.; Zezas, A.; Dwek, E.; Arendt, R. G.; Basu-Zych, A.; Wiklind, T.; Yukita, M.; Fragos, T.; Hornschemeier, A. E.; Markwardt, L.; Ptak, A.; Tzanavaris, P.

    2017-12-01

    We present LIGHTNING, a new spectral energy distribution fitting procedure, capable of quickly and reliably recovering star formation history (SFH) and extinction parameters. The SFH is modeled as discrete steps in time. In this work, we assumed lookback times of 0-10 Myr, 10-100 Myr, 0.1-1 Gyr, 1-5 Gyr, and 5-13.6 Gyr. LIGHTNING consists of a fully vectorized inversion algorithm to determine SFH step intensities and combines this with a grid-based approach to determine three extinction parameters. We apply our procedure to the extensive far-UV-to-far-IR photometric data of M51, convolved to a common spatial resolution and pixel scale, and make the resulting maps publicly available. We recover, for M51a, a peak star formation rate (SFR) between 0.1 and 5 Gyr ago, with much lower star formation activity over the past 100 Myr. For M51b, we find a declining SFR toward the present day. In the outskirt regions of M51a, which includes regions between M51a and M51b, we recover an SFR peak between 0.1 and 1 Gyr ago, which corresponds to the effects of the interaction between M51a and M51b. We utilize our results to (1) illustrate how UV+IR hybrid SFR laws vary across M51 and (2) provide first-order estimates for how the IR luminosity per unit stellar mass varies as a function of the stellar age. From the latter result, we find that IR emission from dust heated by stars is not always associated with young stars and that the IR emission from M51b is primarily powered by stars older than 5 Gyr.

  10. POPULATION III STAR FORMATION IN LARGE COSMOLOGICAL VOLUMES. I. HALO TEMPORAL AND PHYSICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Brian D.; O' Shea, Brian W.; Smith, Britton D. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Turk, Matthew J. [Department of Astronomy, Columbia University, New York, NY 10025 (United States); Hahn, Oliver, E-mail: crosbyb1@msu.edu [Institute for Astronomy, ETH Zurich, CH-8093 Zuerich (Switzerland)

    2013-08-20

    We present a semi-analytic, computationally inexpensive model to identify halos capable of forming a Population III star in cosmological simulations across a wide range of times and environments. This allows for a much more complete and representative set of Population III star forming halos to be constructed, which will lead to Population III star formation simulations that more accurately reflect the diversity of Population III stars, both in time and halo mass. This model shows that Population III and chemically enriched stars coexist beyond the formation of the first generation of stars in a cosmological simulation until at least z {approx} 10, and likely beyond, though Population III stars form at rates that are 4-6 orders of magnitude lower than chemically enriched stars by z = 10. A catalog of more than 40,000 candidate Population III forming halos were identified, with formation times temporally ranging from z = 30 to z = 10, and ranging in mass from 2.3 Multiplication-Sign 10{sup 5} M{sub Sun} to 1.2 Multiplication-Sign 10{sup 10} M{sub Sun }. At early times, the environment that Population III stars form in is very similar to that of halos hosting chemically enriched star formation. At later times Population III stars are found to form in low-density regions that are not yet chemically polluted due to a lack of previous star formation in the area. Population III star forming halos become increasingly spatially isolated from one another at later times, and are generally closer to halos hosting chemically enriched star formation than to another halo hosting Population III star formation by z {approx} 10.

  11. The role of turbulence in star formation laws and thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Kraljic, Katarina; Renaud, Florent; Bournaud, Frédéric [CEA, IRFU, SAp, F-91191 Gif-sur-Yvette Cedex (France); Combes, Françoise [Observatoire de Paris, LERMA et CNRS, 61 Av de l' Observatoire, F-75014 Paris (France); Elmegreen, Bruce [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Emsellem, Eric [European Southern Observatory, D-85748 Garching bei Muenchen (Germany); Teyssier, Romain [Institute for Theoretical Physics, University of Zürich, CH-8057 Zürich (Switzerland)

    2014-04-01

    The Schmidt-Kennicutt relation links the surface densities of gas to the star formation rate in galaxies. The physical origin of this relation, and in particular its break, i.e., the transition between an inefficient regime at low gas surface densities and a main regime at higher densities, remains debated. Here, we study the physical origin of the star formation relations and breaks in several low-redshift galaxies, from dwarf irregulars to massive spirals. We use numerical simulations representative of the Milky Way and the Large and Small Magellanic Clouds with parsec up to subparsec resolution, and which reproduce the observed star formation relations and the relative variations of the star formation thresholds. We analyze the role of interstellar turbulence, gas cooling, and geometry in drawing these relations at 100 pc scale. We suggest in particular that the existence of a break in the Schmidt-Kennicutt relation could be linked to the transition from subsonic to supersonic turbulence and is independent of self-shielding effects. With this transition being connected to the gas thermal properties and thus to the metallicity, the break is shifted toward high surface densities in metal-poor galaxies, as observed in dwarf galaxies. Our results suggest that together with the collapse of clouds under self-gravity, turbulence (injected at galactic scale) can induce the compression of gas and regulate star formation.

  12. The role of turbulence in star formation laws and thresholds

    International Nuclear Information System (INIS)

    Kraljic, Katarina; Renaud, Florent; Bournaud, Frédéric; Combes, Françoise; Elmegreen, Bruce; Emsellem, Eric; Teyssier, Romain

    2014-01-01

    The Schmidt-Kennicutt relation links the surface densities of gas to the star formation rate in galaxies. The physical origin of this relation, and in particular its break, i.e., the transition between an inefficient regime at low gas surface densities and a main regime at higher densities, remains debated. Here, we study the physical origin of the star formation relations and breaks in several low-redshift galaxies, from dwarf irregulars to massive spirals. We use numerical simulations representative of the Milky Way and the Large and Small Magellanic Clouds with parsec up to subparsec resolution, and which reproduce the observed star formation relations and the relative variations of the star formation thresholds. We analyze the role of interstellar turbulence, gas cooling, and geometry in drawing these relations at 100 pc scale. We suggest in particular that the existence of a break in the Schmidt-Kennicutt relation could be linked to the transition from subsonic to supersonic turbulence and is independent of self-shielding effects. With this transition being connected to the gas thermal properties and thus to the metallicity, the break is shifted toward high surface densities in metal-poor galaxies, as observed in dwarf galaxies. Our results suggest that together with the collapse of clouds under self-gravity, turbulence (injected at galactic scale) can induce the compression of gas and regulate star formation.

  13. Star-formation rates in the nuclei of violently interacting galaxies

    International Nuclear Information System (INIS)

    Bushouse, H.A.

    1986-01-01

    Spectrophotometry has been obtained of the nuclear regions of a large sample of violently interacting spiral galaxies. The sample galaxies were chosen to include only those systems having tails, plumes, or other morphological features consistent with strong tidal interactions involving disk galaxies. The interacting galaxies are found to exhibit a wide range of nuclear optical emission-line strengths, but show a significantly higher overall level in both Hα emission-line equivalent width and luminosity than samples of field spirals observed in a similar fashion. While galaxy-galaxy interactions can lead to large nuclear star-formation bursts, this is not a ubiquitous phenomenon. A large fraction (approx.30%) of the nuclei show only weak or no detectable optical emission lines and are characterized by stellar absorption spectra of old, elliptical galaxy-like stellar populations, thus indicating little recent or continuing star-formation activity. These circumstances can occur even in instances where the nucleus of the other component has a large population of young stars. While exhaustion of a galaxy's gas supply during the later phases of interaction can account for post-burst systems, it cannot explain systems that have experienced no significant star-formation activity throughout the entire interaction process. Seyfert and low-ionization nuclei also are rare in violently interacting systems which, coupled with the large number of nuclei found to have little star-formation activity, suggests either an initial lack of near-nuclear gas or that gas is present but in inappropriate forms to support star formation or fuel nuclear activity

  14. The ionisation parameter of star-forming galaxies evolves with the specific star formation rate

    Science.gov (United States)

    Kaasinen, Melanie; Kewley, Lisa; Bian, Fuyan; Groves, Brent; Kashino, Daichi; Silverman, John; Kartaltepe, Jeyhan

    2018-04-01

    We investigate the evolution of the ionisation parameter of star-forming galaxies using a high-redshift (z ˜ 1.5) sample from the FMOS-COSMOS survey and matched low-redshift samples from the Sloan Digital Sky Survey. By constructing samples of low-redshift galaxies for which the stellar mass (M*), star formation rate (SFR) and specific star formation rate (sSFR) are matched to the high-redshift sample we remove the effects of an evolution in these properties. We also account for the effect of metallicity by jointly constraining the metallicity and ionisation parameter of each sample. We find an evolution in the ionisation parameter for main-sequence, star-forming galaxies and show that this evolution is driven by the evolution of sSFR. By analysing the matched samples as well as a larger sample of z physically consistent with the definition of the ionisation parameter, a measure of the hydrogen ionising photon flux relative to the number density of hydrogen atoms.

  15. Bimodal star formation - constraints from galaxy colors at high redshift

    International Nuclear Information System (INIS)

    Wyse, R.F.G.; Silk, J.

    1987-01-01

    The possibility that at early epochs the light from elliptical galaxies is dominated by stars with an initial mass function (IMF) which is deficient in low-mass stars, relative to the solar neighborhood is investigated. V-R colors for the optical counterparts of 3CR radio sources offer the most severe constraints on the models. Reasonable fits are obtained to both the blue, high-redshift colors and the redder, low-redshift colors with a model galaxy which forms with initially equal star formation rates in each of two IMF modes: one lacking low-mass stars, and one with stars of all masses. The net effect is that the time-integrated IMF has twice as many high-mass stars as the solar neighborhood IMF, relative to low mass stars. A conventional solar neighborhood IMF does not simultaneously account for both the range in colors at high redshift and the redness of nearby ellipticals, with any single star formation epoch. Models with a standard IMF require half the stellar population to be formed in a burst at low redshift z of about 1. 38 references

  16. Calibration of Star Formation Rates Across the Electromagnetic Spectrum

    Science.gov (United States)

    Cardiff, Ann H.

    2011-01-01

    Measuring and mapping star-forming activity in galaxies is a key element for our understanding of their broad- band spectra, and their structure and evolution in our local, as well as the high-redshift Universe. The main tool we use for these measurements is the observed luminosity in various spectral lines and/or continuum bands. However, the available star-formation rate (SFR) indicators are often discrepant and subject to physical biases and calibration uncertainties. We are organizing a special session at the 2012 IAU General Assembly in Beijing, China (August 20-31, 2012) in order to bring together theoreticians and observers working in different contexts of star-formation to discuss the status of current SFR indicators, to identify open issues and to define a strategic framework for their resolution. The is an ideal time to synthesize information from the current golden era of space astrophysics and still have influence on the upcoming missions that will broaden our view of star-formation. We will be including high-energy constraints on SFR in the program and encourage participation from the high energy astrophysics community.

  17. A new model of spiral galaxies based on propagating star formation

    Science.gov (United States)

    Sleath, John

    1996-01-01

    Many models exist in the literature of either star formation or galactic structure, but the former concentrate on small-scale details, whilst the latter, if they include star formation at all, adopt a very simple approach, for example by assuming a power law relationship between the rate of star formation and the gas density (a Schmidt Law). The new model described in this dissertation bridges the gap between these two extremes by adopting a simple, but not simplistic, approach to the detailed physics, allowing the effects of star formation on the broader scale to be investigated. 'Propagating star formation' considers the collapse of molecular clouds (and subsequent creation of new stars) to be triggered by the passage of a shock wave resulting from the supernovae explosions of members of the previous generation of stars. The approach taken is a stochastic one, i.e. we determine from the mass of a cloud the probability of star formation occurring, given that it has been shocked. Models using a similar approach have been described before, but the new model is unique in that it uses a particulate representation of the gas clouds and stellar associations. This permits us to simulate collisions between the particles as they orbit in a realistic galactic gravitational potential and more importantly, to impose a spiral density wave perturbation in a natural way. Such waves arise naturally in N-body simulations where the collective forces between particles are considered explicitly, but we are more interested in its effect on the star formation rate, and hence to make the code more manageable, impose the perturbation by hand. The model has been extremely successful; for example, predicting accurately, with no free parameters, the cluster formation rate for the Milky Way. A Schmidt Law arises as a natural consequence and with a power law index which is consistent with observational constraints. A wide range of galactic morphologies can be produced, including long

  18. PROVIDING STRINGENT STAR FORMATION RATE LIMITS OF z ∼ 2 QSO HOST GALAXIES AT HIGH ANGULAR RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Vayner, Andrey; Wright, Shelley A. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Do, Tuan [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Larkin, James E. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Armus, Lee [Spitzer Science Center, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Gallagher, S. C. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2016-04-10

    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z ∼ 2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini North Observatories, using OSIRIS and NIFS coupled with the LGS-AO systems, respectively. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z = 2.2. We demonstrate that the combination of AO and IFSs provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a point-spread function (PSF) from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy emission at a separation of ∼0.″2 (∼1.4 kpc). We detect Hα narrow-line emission for two sources, SDSS J1029+6510 (z{sub Hα} = 2.182) and SDSS J0925+0655 (z{sub Hα} = 2.197), that have evidence for both star formation and extended narrow-line emission. Assuming that the majority of narrow-line Hα emission is from star formation, we infer a star formation rate (SFR) for SDSS J1029+6510 of 78.4 M{sub ⊙} yr{sup −1} originating from a compact region that is kinematically offset by 290–350 km s{sup −1}. For SDSS J0925+0655 we infer a SFR of 29 M{sub ⊙} yr{sup −1} distributed over three clumps that are spatially offset by ∼7 kpc. The null detections on three of the QSOs are used to infer surface brightness limits and we find that at 1.4 kpc from the QSO the un-reddened star formation limit is ≲0.3 M{sub ⊙} yr{sup −1} kpc{sup −2}. If we assume typical extinction values for z = 2 type-1 QSOs, the dereddened SFR for our null detections would be ≲0.6 M{sub ⊙} yr{sup −1} kpc{sup −2}. These IFS observations indicate that while the central black hole is accreting mass at 10%–40% of the Eddington rate, if

  19. A Variation of the Present Star Formation Activity of Spiral Galaxies

    OpenAIRE

    Tomita, Akihiko; Tomita, Yoshio; Saito, Mamoru

    1996-01-01

    The star formation rate in spiral galaxies is considered to be decreasing continuously with time in a time scale of $10^{9}$ yr. The present star formation activity, on the other hand, shows various degrees among galaxies. We make a new data set of 1681 nearby spiral galaxies from available databases and study the statistics of the present star formation activity. We analyze far-infrared and optical B-band surface brightnesses of the H II regions and the non-H II regions in M~31 and show that...

  20. Infrared Astronomy and Star Formation

    International Nuclear Information System (INIS)

    Evans, N.J.

    1985-01-01

    Infrared astronomy is a natural tool to use in studying star formation because infrared light penetrates the surrounding dust and because protostars are expected to emit infrared light. Infrared mapping and photometry have revealed many compact sources, often embedded in more extensive warm dust associated with a molecular cloud core. More detailed study of these objects is now beginning, and traditional interpretations are being questioned. Some compact sources are now thought to be density enhancements which are not self-luminous. Infrared excesses around young stars may not always be caused by circumstellar dust; speckle measurements have shown that at least some of the excess toward T Tauri is caused by an infrared companion. Spectroscopic studies of the dense, star-forming cores and of the compact objects themselves have uncovered a wealth of new phenomena, including the widespread occurence of energetic outflows. New discoveries with IRAS and with other planned infrared telescopes will continue to advance this field. (author)

  1. Formation of new stellar populations from gas accreted by massive young star clusters.

    Science.gov (United States)

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-28

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.

  2. Resolved star formation on sub-galactic scales in a merger at z = 1.7

    International Nuclear Information System (INIS)

    Whitaker, Katherine E.; Rigby, Jane R.; Teng, Stacy H.; Brammer, Gabriel B.; Gladders, Michael D.; Sharon, Keren; Wuyts, Eva

    2014-01-01

    We present a detailed analysis of Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) G141 grism spectroscopy for seven star-forming regions of the highly magnified lensed starburst galaxy RCSGA 032727-132609 at z = 1.704. We measure the spatial variations of the extinction in RCS0327 through the observed Hγ/Hβ emission line ratios, finding a constant average extinction of E(B – V) gas = 0.40 ± 0.07. We infer that the star formation is enhanced as a result of an ongoing interaction, with measured star formation rates derived from demagnified, extinction-corrected Hβ line fluxes for the individual star-forming clumps falling >1-2 dex above the star formation sequence. When combining the HST/WFC3 [O III] λ5007/Hβ emission line ratio measurements with [N II]/Hα line ratios from Wuyts et al., we find that the majority of the individual star-forming regions fall along the local 'normal' abundance sequence. With the first detections of the He I λ5876 and He II λ4686 recombination lines in a distant galaxy, we probe the massive-star content of the star-forming regions in RCS0327. The majority of the star-forming regions have a He I λ5876 to Hβ ratio consistent with the saturated maximum value, which is only possible if they still contain hot O-stars. Two regions have lower ratios, implying that their last burst of new star formation ended ∼5 Myr ago. Together, the He I λ5876 and He II λ4686 to Hβ line ratios provide indirect evidence for the order in which star formation is stopping in individual star-forming knots of this high-redshift merger. We place the spatial variations of the extinction, star formation rate and ionization conditions in the context of the star formation history of RCS0327.

  3. Profiles of the stochastic star formation process in spiral galaxies

    International Nuclear Information System (INIS)

    Comins, N.

    1981-01-01

    The formation of spiral arms in disc galaxies is generally attributed to the effects of spiral density waves. These relatively small (i.e. 5 per cent) non-axisymmetric perturbations of the interstellar medium cause spiral arms highlighted by O and B type stars to be created. In this paper another mechanism for spiral arm formation, the stochastic self-propagating star formation (SSPSF) process is examined. The SSPSF process combines the theory that shock waves from supernovae will compress the interstellar medium to create new stars, some of which will be massive enough to also supernova, with a disc galaxy's differential rotation to create spiral arms. The present work extends this process to the case where the probability of star formation from supernova shocks decreases with galactic radius. Where this work and previous investigations overlap (namely the uniform probability case), the agreement is very good, pretty spirals with various numbers of arms are generated. The decreasing probability cases, taken to vary as rsup(-j), still form spiral arms for 0 1.5 the spiral structure is essentially non-existent. (author)

  4. Star formation and galactic evolution. I. General expressions and applications to our galaxy

    International Nuclear Information System (INIS)

    Kaufman, M.

    1979-01-01

    The study of galactic evolution involves three mechanisms for triggering star formation in interstellar clouds: (i) star formation triggered by a galactic spiral density wave, (ii) star formation triggered by shock waves from supernovae, and (iii) star formation triggered by an expanding H II region. Useful analytic approximations to the birthrate per unit mass are obtained by treating the efficiencies of these various mechanisms as time independent. In situations where shock waves from high-mass stars (either expanding H II regions or supernova explosions) are the only important star-forming mechanisms, the birthrate is exponential in time. This case is appropriate for the past evolution of an elliptical galaxy, nuclear bulge, or galactic halo. In the disk of a spiral galaxy where all three mechanisms operate, the birthrate consists of an exponential term plus a time-independent term. In both situations, the value of the time constant T in the exponential term is directly related to the efficiency of the shock waves from massive stars in initiating star formation.For our Galaxy, this simplified model is used to compute the radial distributions of young objects and low-mass stars in the disk, and the past and present birthrates in the solar-neighborhood shell

  5. Formation of the Small Magellanic Cloud: ancient major merger as a solution to the kinematical differences between old stars and HI gas

    OpenAIRE

    Bekki, Kenji; Chiba, Masashi

    2008-01-01

    Recent observations of the Small Magellanic Cloud (SMC) have revealed that the HI gas shows a significant amount of rotation (V_c 60 km/s), while no or little rotation is evident for the old stellar populations. We suggest that this unique kinematical difference between these components in the SMC can be caused by a major merger event which occurred in the early stage of the SMC formation. Our simulations show that dissipative dwarf-dwarf merging can transform two gas-rich dwarf irregulars in...

  6. Radio continuum, far infrared and star formation

    International Nuclear Information System (INIS)

    Wielebinski, R.; Wunderlich, E.; Klein, U.; Hummel, E.

    1987-01-01

    A very tight correlation was found between the radio emission and the far infrared emission from galaxies. This has been found for various samples of galaxies and is explained in terms of recent star formation. The tight correlation would imply that the total radio emission is a good tracer of star formation. The correlation between the radio power at 5 GHz and the far infrared luminosity is shown. The galaxies are of various morphological types and were selected from the various IRAS circulars, hence the sample is an infrared selected sample. The far infrared luminosities were corrected for the dust temperature. This is significant because it decreases the dispersion in the correlation

  7. VARIABILITY AND STAR FORMATION IN LEO T, THE LOWEST LUMINOSITY STAR-FORMING GALAXY KNOWN TODAY

    Energy Technology Data Exchange (ETDEWEB)

    Clementini, Gisella; Cignoni, Michele; Ramos, Rodrigo Contreras; Federici, Luciana; Tosi, Monica [INAF, Osservatorio Astronomico di Bologna, I-40127 Bologna (Italy); Ripepi, Vincenzo; Marconi, Marcella; Musella, Ilaria, E-mail: gisella.clementini@oabo.inaf.it, E-mail: rodrigo.contreras@oabo.inaf.it, E-mail: luciana.federici@oabo.inaf.it, E-mail: monica.tosi@oabo.inaf.it, E-mail: michele.cignoni@unibo.it, E-mail: ripepi@na.astro.it, E-mail: marcella@na.astro.it, E-mail: ilaria@na.astro.it [INAF, Osservatorio Astronomico di Capodimonte, I-80131 Napoli (Italy)

    2012-09-10

    We present results from the first combined study of variable stars and star formation history (SFH) of the Milky Way 'ultra-faint' dwarf (UFD) galaxy Leo T, based on F606W and F814W multi-epoch archive observations obtained with the Wide Field Planetary Camera 2 on board the Hubble Space Telescope. We have detected 14 variable stars in the galaxy. They include one fundamental-mode RR Lyrae star and 11 Anomalous Cepheids with periods shorter than 1 day, thus suggesting the occurrence of multiple star formation episodes in this UFD, of which one about 10 Gyr ago produced the RR Lyrae star. A new estimate of the distance to Leo T of 409{sup +29}{sub -27} kpc (distance modulus of 23.06 {+-} 0.15 mag) was derived from the galaxy's RR Lyrae star. Our V, V - I color-magnitude diagram (CMD) of Leo T reaches V {approx} 29 mag and shows features typical of a galaxy in transition between dwarf irregular and dwarf spheroidal types. A quantitative analysis of the SFH, based on the comparison of the observed V, V - I CMD with the expected distribution of stars for different evolutionary scenarios, confirms that Leo T has a complex SFH dominated by two enhanced periods about 1.5 and 9 Gyr ago, respectively. The distribution of stars and gas shows that the galaxy has a fairly asymmetric structure.

  8. Star formation history of the galaxy merger Mrk848 with SDSS-IV MaNGA

    Science.gov (United States)

    Yuan, Fang-Ting; Shen, Shiyin; Hao, Lei; Fernandez, Maria Argudo

    2017-03-01

    With the 3D data of SDSS-IV MaNGA (Bundy et al. 2015) spectra and multi-wavelength SED modeling, we expect to have a better understanding of the distribution of dust, gas and star formation of galaxy mergers. For a case study of the merging galaxy Mrk848, we use both UV-to-IR broadband SED and the MaNGA integral field spectroscopy to obtain its star formation histories at the tail and core regions. From the SED fitting and full spectral fitting, we find that the star formation in the tail regions are affected by the interaction earlier than the core regions. The core regions show apparently two times of star formation and a strong burst within 500Myr, indicating the recent star formation is triggered by the interaction. The star formation histories derived from these two methods are basically consistent.

  9. How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke-Jung [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Whalen, Daniel J. [Institute of Cosmology and Gravitation, Portsmouth University, Portsmouth (United Kingdom); Wollenberg, Katharina M. J.; Glover, Simon C. O.; Klessen, Ralf S., E-mail: ken.chen@nao.ac.jp [Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg (Germany)

    2017-08-01

    Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.

  10. Low-mass stars with mass loss and low-luminosity carbon star formation

    International Nuclear Information System (INIS)

    Boothroyd, A.I.

    1987-01-01

    The effects of large carbon enrichments in static stellar envelopes were investigated, using new Los Alamos opacities (including low-temperature carbon and molecular opacities) and including carbon ionizations. To search for the production of low-mass,low-luminosity carbon stars, detailed stellar evolutionary computations were carried out for a grid of low-mass stars of two different metallicities. The stars were evolved from the main sequence through all intermediate stages and through helium-shell flashes on the asymptotic giant branch. The effects of the latest nuclear reaction rates, the new Los Alamos opacities, Reimers-type wind mass loss, and detailed treatment of convection and semi-convection were investigated. Two low-luminosity carbon stars were achieved, in excellent agreement with observations. Conditions favoring dredge-up (and thus carbon-star production) include a reasonably large convective mixing length, low metallicity, relatively large envelope mass, and high flash strength. Mass loss was of major importance, tending to oppose dredge-up; the total mass-loss amounts inferred from observations suffice to prevent formation of high-mass, high-luminosity carbon stars

  11. Evidence for halo kinematics among cool carbon-rich dwarfs

    Science.gov (United States)

    Farihi, J.; Arendt, A. R.; Machado, H. S.; Whitehouse, L. J.

    2018-04-01

    This paper reports preliminary yet compelling kinematical inferences for N ≳ 600 carbon-rich dwarf stars that demonstrate around 30% to 60% are members of the Galactic halo. The study uses a spectroscopically and non-kinematically selected sample of stars from the SDSS, and cross-correlates these data with three proper motion catalogs based on Gaia DR1 astrometry to generate estimates of their 3-D space velocities. The fraction of stars with halo-like kinematics is roughly 30% for distances based on a limited number of parallax measurements, with the remainder dominated by the thick disk, but close to 60% of the sample lie below an old, metal-poor disk isochrone in reduced proper motion. An ancient population is consistent with an extrinsic origin for C/O >1 in cool dwarfs, where a fixed mass of carbon pollution more readily surmounts lower oxygen abundances, and with a lack of detectable ultraviolet-blue flux from younger white dwarf companions. For an initial stellar mass function that favors low-mass stars as in the Galactic disk, the dC stars are likely to be the dominant source of carbon-enhanced, metal-poor stars in the Galaxy.

  12. The History and Rate of Star Formation within the G305 Complex

    Science.gov (United States)

    Faimali, Alessandro Daniele

    2013-07-01

    Within this thesis, we present an extended multiwavelength analysis of the rich massive Galactic star-forming complex G305. We have focused our attention on studying the both the embedded massive star-forming population within G305, while also identifying the intermediate-, to lowmass content of the region also. Though massive stars play an important role in the shaping and evolution of their host galaxies, the physics of their formation still remains unclear. We have therefore set out to studying the nature of star formation within this complex, and also identify the impact that such a population has on the evolution of G305. We firstly present a Herschel far-infrared study towards G305, utilising PACS 70, 160 micron and SPIRE 250, 350, and 500 micron observations from the Hi-GAL survey of the Galactic plane. The focus of this study is to identify the embedded massive star-forming population within G305, by combining far-infrared data with radio continuum, H2O maser, methanol maser, MIPS, and Red MSX Source survey data available from previous studies. From this sample we identify some 16 candidate associations are identified as embedded massive star-forming regions, and derive a two-selection colour criterion from this sample of log(F70/F500) >= 1 and log(F160/F350) >= 1.6 to identify an additional 31 embedded massive star candidates with no associated star-formation tracers. Using this result, we are able to derive a star formation rate (SFR) of 0.01 - 0.02 Msun/yr. Comparing this resolved star formation rate, to extragalactic star formation rate tracers (based on the Kennicutt-Schmidt relation), we find the star formation activity is underestimated by a factor of >=2 in comparison to the SFR derived from the YSO population. By next combining data available from 2MASS and VVV, Spitzer GLIMPSE and MIPSGAL, MSX, and Herschel Hi-GAL, we are able to identify the low-, to intermediate-mass YSOs present within the complex. Employing a series of stringent colour

  13. Variations of comoving volume and their effects on the star formation rate density

    Science.gov (United States)

    Kim, Sungeun; Physics and Astronomy, Sejong University, Seoul, Korea (the Republic of).

    2018-01-01

    To build a comprehensive picture of star formation in the universe, we havedeveloped an application to calculate the comoving volume at a specific redshift and visualize the changes of spaceand time. The application is based on the star formation rates of about a few thousands of galaxies and their redshiftvalues. Three dimensional modeling of these galaxies using the redshift, comoving volume, and star formation ratesas input data allows calculation of the star formation rate density corresponding to the redshift. This work issupported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP)(no. 2017037333).

  14. NGVLA Observations of Dense Gas Filaments in Star-Forming Regions

    Science.gov (United States)

    Di Francesco, James; Chen, Mike; Keown, Jared; GAS Team, KEYSTONE Team

    2018-01-01

    Recent observations of continuum emission from nearby star-forming regions with Herschel and JCMT have revealed that filaments are ubiquitous structures within molecular clouds. Such filaments appear to be intimately connected to star formation, with those having column densities of AV > 8 hosting the majority of prestellar cores and young protostars in clouds. Indeed, this “threshold” can be explained simply as the result of supercritical cylinder fragmentation. How specifically star-forming filaments form in molecular clouds, however, remains unclear, though gravity and turbulence are likely involved. Observations of their kinematics are needed to understand how mass flows both onto and through these filaments. We show here results from two recent surveys, the Green Bank Ammonia Survey (GAS) and the K-band Examinations of Young Stellar Object Natal Environments (KEYSTONE) that have used the Green Bank Telescope’s K-band Focal Plane Array instrument to map NH3 (1,1) emission from dense gas in nearby star-forming regions. Data from both surveys show that NH3 emission traces extremely well the high column density gas across these star-forming regions. In particular, the GAS results for NGC 1333 show NH3-based velocity gradients either predominantly parallel or perpendicular to the filament spines. Though the GAS and KEYSTONE data are vital for probing filaments, higher resolutions than possible with the GBT alone are needed to examine the kinematic patterns on the 0.1-pc scales of star-forming cores within filaments. We describe how the Next Generation Very Large Array (NGVLA) will uniquely provide the key wide-field data of high sensitivity needed to explore how ambient gas in molecular clouds forms filaments that evolve toward star formation.

  15. When feedback fails: the scaling and saturation of star formation efficiency

    Science.gov (United States)

    Grudić, Michael Y.; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Quataert, Eliot; Murray, Norman; Kereš, Dušan

    2018-04-01

    We present a suite of 3D multiphysics MHD simulations following star formation in isolated turbulent molecular gas discs ranging from 5 to 500 parsecs in radius. These simulations are designed to survey the range of surface densities between those typical of Milky Way giant molecular clouds (GMCs) ({˜ } 10^2 {M_{\\odot } pc^{-2}}) and extreme ultraluminous infrared galaxy environments ({˜ } 10^4 {M_{\\odot } pc^{-2}}) so as to map out the scaling of the cloud-scale star formation efficiency (SFE) between these two regimes. The simulations include prescriptions for supernova, stellar wind, and radiative feedback, which we find to be essential in determining both the instantaneous per-freefall (ɛff) and integrated (ɛint) star formation efficiencies. In all simulations, the gas discs form stars until a critical stellar surface density has been reached and the remaining gas is blown out by stellar feedback. We find that surface density is a good predictor of ɛint, as suggested by analytic force balance arguments from previous works. SFE eventually saturates to ˜1 at high surface density. We also find a proportional relationship between ɛff and ɛint, implying that star formation is feedback-moderated even over very short time-scales in isolated clouds. These results have implications for star formation in galactic discs, the nature and fate of nuclear starbursts, and the formation of bound star clusters. The scaling of ɛff with surface density is not consistent with the notion that ɛff is always ˜ 1 per cent on the scale of GMCs, but our predictions recover the ˜ 1 per cent value for GMC parameters similar to those found in spiral galaxies, including our own.

  16. Galaxies interactions and induced star formation

    CERN Document Server

    Kennicutt Jr, Robert C; Barnes, JE

    1998-01-01

    The papers that make up this volume present a comprehensive review of the field of galaxy interaction. Galaxies are dynamic forces that evolve, interact, merge, blaze and reshape. This book offers a historical perspective and studies such topics as induced star formation.

  17. The HST Large Programme on ω Centauri. II. Internal Kinematics

    Science.gov (United States)

    Bellini, Andrea; Libralato, Mattia; Bedin, Luigi R.; Milone, Antonino P.; van der Marel, Roeland P.; Anderson, Jay; Apai, Dániel; Burgasser, Adam J.; Marino, Anna F.; Rees, Jon M.

    2018-01-01

    In this second installment of the series, we look at the internal kinematics of the multiple stellar populations of the globular cluster ω Centauri in one of the parallel Hubble Space Telescope (HST) fields, located at about 3.5 half-light radii from the center of the cluster. Thanks to the over 15 yr long baseline and the exquisite astrometric precision of the HST cameras, well-measured stars in our proper-motion catalog have errors as low as ∼10 μas yr‑1, and the catalog itself extends to near the hydrogen-burning limit of the cluster. We show that second-generation (2G) stars are significantly more radially anisotropic than first-generation (1G) stars. The latter are instead consistent with an isotropic velocity distribution. In addition, 1G stars have excess systemic rotation in the plane of the sky with respect to 2G stars. We show that the six populations below the main-sequence (MS) knee identified in our first paper are associated with the five main population groups recently isolated on the upper MS in the core of cluster. Furthermore, we find both 1G and 2G stars in the field to be far from being in energy equipartition, with {η }1{{G}}=-0.007+/- 0.026 for the former and {η }2{{G}}=0.074+/- 0.029 for the latter, where η is defined so that the velocity dispersion {σ }μ scales with stellar mass as {σ }μ \\propto {m}-η . The kinematical differences reported here can help constrain the formation mechanisms for the multiple stellar populations in ω Centauri and other globular clusters. We make our astro-photometric catalog publicly available.

  18. Kinematic and spatial distributions of barium stars - are the barium stars and Am stars related?

    International Nuclear Information System (INIS)

    Hakkila, J.

    1989-01-01

    The possibility of an evolutionary link between Am stars and barium stars is considered, and an examination of previous data suggests that barium star precursors are main-sequence stars of intermediate mass, are most likely A and/or F dwarfs, and are intermediate-mass binaries with close to intermediate orbital separations. The possible role of mass transfer in the later development of Am systems is explored. Mass transfer and loss from systems with a range of masses and orbital separations may explain such statistical peculiarities of barium stars as the large dispersion in absolute magnitude, the large range of elemental abundances from star to star, and the small number of stars with large peculiar velocities. 93 refs

  19. STAR FORMATION ACROSS THE W3 COMPLEX

    Energy Technology Data Exchange (ETDEWEB)

    Román-Zúñiga, Carlos G.; Ybarra, Jason E.; Tapia, Mauricio [Instituto de Astronomía, Universidad Nacional Autónoma de México, Unidad Académica en Ensenada, Km 103 Carr. Tijuana–Ensenada, Ensenada 22860 (Mexico); Megías, Guillermo D. [Facultad de Física. Universidad de Sevilla. Dpto. Física Atómica, Molecular y Nuclear, Sevilla, E-41080 (Spain); Lada, Elizabeth A. [Astronomy Department, University of Florida, 211 Bryant Space Sciences Center, FL 32611 (United States); Alves, Joáo F. [Institute of Astronomy, University of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria)

    2015-09-15

    We present a multi-wavelength analysis of the history of star formation in the W3 complex. Using deep, near-infrared ground-based images combined with images obtained with Spitzer and Chandra observatories, we identified and classified young embedded sources. We identified the principal clusters in the complex and determined their structure and extension. We constructed extinction-limited samples for five principal clusters and constructed K-band luminosity functions that we compare with those of artificial clusters with varying ages. This analysis provided mean ages and possible age spreads for the clusters. We found that IC 1795, the centermost cluster of the complex, still hosts a large fraction of young sources with circumstellar disks. This indicates that star formation was active in IC 1795 as recently as 2 Myr ago, simultaneous to the star-forming activity in the flanking embedded clusters, W3-Main and W3(OH). A comparison with carbon monoxide emission maps indicates strong velocity gradients in the gas clumps hosting W3-Main and W3(OH) and shows small receding clumps of gas at IC 1795, suggestive of rapid gas removal (faster than the T Tauri timescale) in the cluster-forming regions. We discuss one possible scenario for the progression of cluster formation in the W3 complex. We propose that early processes of gas collapse in the main structure of the complex could have defined the progression of cluster formation across the complex with relatively small age differences from one group to another. However, triggering effects could act as catalysts for enhanced efficiency of formation at a local level, in agreement with previous studies.

  20. Star Formation in M 33 (HerM33es)

    Science.gov (United States)

    Kramer, C.; Boquien, M.; Braine, J.; Buchbender, C.; Calzetti, D.; Gratier, P.; Mookerjea, B.; Relaño, M.; Verley, S.

    2011-11-01

    Within the key project "Herschel M 33 extended survey" (HerM33es), we are studying the physical and chemical processes driving star formation and galactic evolution in the nearby galaxy M 33, combining the study of local conditions affecting individual star formation with properties only becoming apparent on global scales. Here, we present recent results obtained by the HerM33es team. Combining Spitzer and Herschel data ranging from 3.6 μm to 500μm, along with H i, Hα, and GALEX UV data, we have studied the dust at high spatial resolutions of 150 pc, providing estimators of the total infrared (TIR) brightness and of the star formation rate. While the temperature of the warm dust at high brightness is driven by young massive stars, evolved stellar populations appear to drive the temperature of the cold dust. Plane-parallel models of photon dominated regions (PDRs) fail to reproduce fully the [C ii], [O i], and CO maps obtained in a first spectroscopic study of one 2' × 2' subregion of M 33, located on the inner, northern spiral arm and encompassing the H ii region BCLMP 302.

  1. Magnetic fields and massive star formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Girart, Josep M.; Juárez, Carmen [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Frau, Pau [Observatorio Astronómico Nacional, Alfonso XII, 3 E-28014 Madrid (Spain); Li, Hua-Bai [Department of Physics, The Chinese University of Hong Kong, Hong Kong (China); Padovani, Marco [Laboratoire de Radioastronomie Millimétrique, UMR 8112 du CNRS, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Bontemps, Sylvain [OASU/LAB-UMR5804, CNRS, Université Bordeaux 1, F-33270 Floirac (France); Csengeri, Timea, E-mail: qzhang@cfa.harvard.edu [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  2. Prospects of the "WSO-UV" Project for Star Formation Study in Nearby Dwarf Galaxies

    Science.gov (United States)

    Makarova, L. N.; Makarov, D. I.

    2017-12-01

    In the present work we consider the questions of star formation and evolution of nearby dwarf galaxies. We describe the method of star formation history determination based on multicolor photometry of resolved stars and models of color-magnitude diagrams of the galaxies. We present the results of star formation rate determination and its dependence on age and metallicity for dwarf irregular and dwarf spheroidal galaxies in the two nearby galaxy groups M81 and Cen A. Similar age of the last episode of star formation in the central part of the M81 group and also unusually high level of metal enrichment in the several galaxies of the Cen A group are mentioned. We pay special attention to the consideration of perspectives of star formation study in nearby dwarf galaxies with he new WSO-UV observatory.

  3. Formation and evolution of star clusters and their host galaxies

    NARCIS (Netherlands)

    Kruijssen, J.M.D.

    2011-01-01

    The vast majority of galaxies contains large populations of stellar clusters, which are bound groups of a few tens to millions of stars. A cluster is formed from a single giant molecular cloud and therefore its stars share the same age and chemical composition. The formation and evolution of star

  4. Submm Observations of Massive Star Formation in the Giant Molecular Cloud NGC 6334 : Gas Kinematics with Radiative Transfer Models

    Science.gov (United States)

    Zernickel, A.

    2015-05-01

    Context. How massive stars (M>8 Ms) form and how they accrete gas is still an open research field, but it is known that their influence on the interstellar medium (ISM) is immense. Star formation involves the gravitational collapse of gas from scales of giant molecular clouds (GMCs) down to dense hot molecular cores (HMCs). Thus, it is important to understand the mass flows and kinematics in the ISM. Aims. This dissertation focuses on the detailed study of the region NGC 6334, located in the Galaxy at a distance of 1.7 kpc. It is aimed to trace the gas velocities in the filamentary, massive star-forming region NGC 6334 at several scales and to explain its dynamics. For that purpose, different scales are examined from 0.01-10 pc to collect information about the density, molecular abundance, temperature and velocity, and consequently to gain insights about the physio-chemical conditions of molecular clouds. The two embedded massive protostellar clusters NGC 6334I and I(N), which are at different stages of development, were selected to determine their infall velocities and mass accretion rates. Methods. This astronomical source was surveyed by a combination of different observatories, namely with the Submillimeter Array (SMA), the single-dish telescope Atacama Pathfinder Experiment (APEX), and the Herschel Space Observatory (HSO). It was mapped with APEX in carbon monoxide (13CO and C18O, J=2-1) at 220.4 GHz to study the filamentary structure and turbulent kinematics on the largest scales of 10 pc. The spectral line profiles are decomposed by Gaussian fitting and a dendrogram algorithm is applied to distinguish velocity-coherent structures and to derive statistical properties. The velocity gradient method is used to derive mass flow rates. The main filament was mapped with APEX in hydrogen cyanide (HCN) and oxomethylium (HCO+, J=3-2) at 267.6 GHz to trace the dense gas. To reproduce the position- velocity diagram (PVD), a cylindrical model with the radiative transfer

  5. The different star formation histories of blue and red spiral and elliptical galaxies

    Science.gov (United States)

    Tojeiro, Rita; Masters, Karen L.; Richards, Joshua; Percival, Will J.; Bamford, Steven P.; Maraston, Claudia; Nichol, Robert C.; Skibba, Ramin; Thomas, Daniel

    2013-06-01

    We study the spectral properties of intermediate mass galaxies (M* ˜ 1010.7 M⊙) as a function of colour and morphology. We use Galaxy Zoo to define three morphological classes of galaxies, namely early types (ellipticals), late-type (disc-dominated) face-on spirals and early-type (bulge-dominated) face-on spirals. We classify these galaxies as blue or red according to their Sloan Digital Sky Survey (SDSS) g - r colour and use the spectral fitting code Versatile Spectral Analyses to calculate time-resolved star formation histories, metallicity and total starlight dust extinction from their SDSS fibre spectra. We find that red late-type spirals show less star formation in the last 500 Myr than blue late-type spirals by up to a factor of 3, but share similar star formation histories at earlier times. This decline in recent star formation explains their redder colour: their chemical and dust content are the same. We postulate that red late-type spirals are recent descendants of blue late-type spirals, with their star formation curtailed in the last 500 Myr. The red late-type spirals are however still forming stars ≃17 times faster than red ellipticals over the same period. Red early-type spirals lie between red late-type spirals and red ellipticals in terms of recent-to-intermediate star formation and dust content. Therefore, it is plausible that these galaxies represent an evolutionary link between these two populations. They are more likely to evolve directly into red ellipticals than red late-type spirals, which show star formation histories and dust content closer to blue late-type spirals. Blue ellipticals show similar star formation histories as blue spirals (regardless of type), except that they have formed less stars in the last 100 Myr. However, blue ellipticals have different dust content, which peaks at lower extinction values than all spiral galaxies. Therefore, many blue ellipticals are unlikely to be descendants of blue spirals, suggesting there may

  6. The Insignificance of Major Mergers in Driving Star Formation at z approximately equal to 2

    Science.gov (United States)

    Kaviraj, S.; Cohen, S.; Windhorst, R. A.; Silk, J.; O'Connell, R. W.; Dopita, M. A.; Dekel, A.; Hathi, N. P.; Straughn, A.; Rutkowski, M.

    2012-01-01

    We study the significance of major mergers in driving star formation in the early Universe, by quantifying the contribution of this process to the total star formation budget in 80 massive (M(*) > 10(exp 10) Solar M) galaxies at z approx = 2. Employing visually-classified morphologies from rest-frame V-band HST imaging, we find that 55(exp +/-14)% of the star formation budget is hosted by non-interacting late-types, with 27(exp +/-18% in major mergers and 18(exp +/- 6)% in spheroids. Given that a system undergoing a major merger continues to experience star formation driven by other processes at this epoch (e.g. cold accretion, minor mergers), approx 27% is a likely upper limit for the major-merger contribution to star formation activity at this epoch. The ratio of the average specific star formation rate in major mergers to that in the non-interacting late-types is approx 2.2:1, suggesting that the typical enhancement of star formation due to major merging is modest and that just under half the star formation in systems experiencing major mergers is unrelated to the merger itself. Taking this into account, we estimate that the actual major-merger contribution to the star formation budget may be as low as approx 15%. While our study does not preclude a major-merger-dominated. era in the very early Universe, if the major-merger contribution to star formation does not evolve significantly into larger look-back times, then this process has a relatively insignificant role in driving stellar mass assembly over cosmic time.

  7. Chemistry and Star Formation: A Love-Hate Relationship

    Science.gov (United States)

    Jiménez-Serra, Izaskun; Zhang, Qizhou; Patel, Nimesh; Lu, Xing; Wang, Ke; Testi, Leonardo; Caselli, Paola; Martin-Pintado, Jesus

    2014-06-01

    The development of the broad bandwidth receivers at the Submillimeter Array (SMA) a decade ago opened up the possibility to observe tens of molecular lines at high angular resolution simultaneously. The unprecedented wealth of molecular line data provided by the SMA allowed for the first time detailed studies of the chemistry in star-forming regions. These studies have revealed that chemistry is a useful tool to pin down the internal physical structure and the physical processes involved in the process of low-mass and high-mass star formation. In this talk, I will review the most important advances in our understanding of the star-formation process through chemistry thanks to the SMA, and I will present the challenges that will be faced in the next decade in this field of research thanks to the advent of new instrumentation such as the Atacama Large Millimeter/Submillimeter Array and the Square Kilometer Array.

  8. Modelling the gas kinematics of an atypical Ly α emitting compact dwarf galaxy

    Science.gov (United States)

    Forero-Romero, Jaime E.; Gronke, Max; Remolina-Gutiérrez, Maria Camila; Garavito-Camargo, Nicolás; Dijkstra, Mark

    2018-02-01

    Star-forming compact dwarf galaxies (CDGs) resemble the expected pristine conditions of the first galaxies in the Universe and are the best systems to test models on primordial galaxy formation and evolution. Here, we report on one of such CDGs, Tololo 1214-277, which presents a broad, single peaked, highly symmetric Ly α emission line that had evaded theoretical interpretation so far. In this paper, we reproduce for the first time these line features with two different physically motivated kinematic models: an interstellar medium composed by outflowing clumps with random motions and an homogeneous gaseous sphere undergoing solid body rotation. The multiphase model requires a clump velocity dispersion of 54.3 ± 0.6 km s-1 with outflows of 54.3 ± 5.1 km s-1 , while the bulk rotation velocity is constrained to be 348^{+75}_{-48} km s-1. We argue that the results from the multiphase model provide a correct interpretation of the data. In that case, the clump velocity dispersion implies a dynamical mass of 2 × 109 M⊙, 10 times its baryonic mass. If future kinematic maps of Tololo 1214-277 confirm the velocities suggested by the multiphase model, it would provide additional support to expect such kinematic state in primordial galaxies, opening the opportunity to use the models and methods presented in this paper to constrain the physics of star formation and feedback in the early generation of Ly α -emitting galaxies.

  9. Modelling the star formation histories of nearby elliptical galaxies

    Science.gov (United States)

    Bird, Katy

    Since Lick indices were introduced in 1994, they have been used as a source of observational data against which computer models of galaxy evolution have been compared. However, as this thesis demonstrates, observed Lick indices lead to mathematical ill-conditioning: small variations in observations can lead to very large differences in population synthesis models attempting to recreate the observed values. As such, limited reliance should be placed on any results currently or historically in the literature purporting to give the star formation history of a galaxy, or group of galaxies, where this is deduced from Lick observations taken from a single instrument, without separate verification from at least one other source. Within these limitations, this thesis also constrains the star formation histories of 21 nearby elliptical galaxies, finding that they formed 13.26 +0.09 -0.06 Gyrs ago, that all mergers are dry, and that galactic winds are formed from AGN activity (rather than being supernovae-driven). This thesis also finds evidence to support the established galaxy-formation theory of "downsizing". An existing galactic model from the literature is examined and evaluated, and the reasons for it being unable to establish star formation histories of individual galaxies are ascertained. A brand-new model is designed, developed, tested and used with two separate data sets, corroborated for 10 galaxies by data from a third source, and compared to results from a Single Stellar Population model from the literature, to model the star formation histories of nearby elliptical galaxies.

  10. FORMATION RATES OF POPULATION III STARS AND CHEMICAL ENRICHMENT OF HALOS DURING THE REIONIZATION ERA

    International Nuclear Information System (INIS)

    Trenti, Michele; Stiavelli, Massimo

    2009-01-01

    The first stars in the universe formed out of pristine primordial gas clouds that were radiatively cooled to a few hundreds of degrees kelvin either via molecular or atomic (Lyman-α) hydrogen lines. This primordial mode of star formation was eventually quenched once radiative and/or chemical (metal enrichment) feedbacks marked the transition to Population II stars. In this paper, we present a model for the formation rate of Population III stars based on Press-Schechter modeling coupled with analytical recipes for gas cooling and radiative feedback. Our model also includes a novel treatment for metal pollution based on self-enrichment due to a previous episode of Population III star formation in progenitor halos. With this model, we derive the star formation history of Population III stars, their contribution to the reionization of the universe and the time of the transition from Population III star formation in minihalos (M ∼ 10 6 M sun , cooled via molecular hydrogen) to that in more massive halos (M ∼> 2 x 10 7 M sun , where atomic hydrogen cooling is also possible). We consider a grid of models highlighting the impact of varying the values for the free parameters used, such as star formation and feedback efficiency. The most critical factor is the assumption that only one Population III star is formed in a halo. In this scenario, metal-free stars contribute only to a minor fraction of the total number of photons required to reionize the universe. In addition, metal-free star formation is primarily located in minihalos, and chemically enriched halos become the dominant locus of star formation very early in the life of the universe-at redshift z ∼ 25-even assuming a modest fraction (0.5%) of enriched gas converted in stars. If instead multiple metal-free stars are allowed to form out of a single halo, then there is an overall boost of Population III star formation, with a consequent significant contribution to the reionizing radiation budget. In addition

  11. Recent star formation in interacting galaxies

    International Nuclear Information System (INIS)

    Joseph, R.D.; Wright, G.S.

    1985-01-01

    The subset of galaxy-galaxy interactions which have resulted in a merger are, as a class, ultraluminous IR galaxies. Their IR luminosities span a narrow range which overlaps with the most luminous Seyfert galaxies. However, in contrast with Seyfert galaxies, the available optical, IR, and radio properties of mergers show no evidence for a compact non-thermal central source, and are easily understood in terms of a burst of star formation of extraordinary intensity and spatial extent; they are 'super starbursts'. We argue that super starbursts occur in the evolution of most mergers, and discuss the implications of super starbursts for the suggestion that mergers evolve into elliptical galaxies. Finally, we note that merger-induced shocks are likely to leave the gas from both galaxies in dense molecular form which will rapidly cool, collapse, and fragment. Thus a merger might in fact be expected to result in a burst of star formation of exceptional intensity and spatial extent, i.e. a super starburst. (author)

  12. Large-Scale Star Formation-Driven Outflows at 13D-HST Survey

    Science.gov (United States)

    Lundgren, Britt; Brammer, G.; Van Dokkum, P. G.; Bezanson, R.; Franx, M.; Fumagalli, M.; Momcheva, I. G.; Nelson, E.; Skelton, R.; Wake, D.; Whitaker, K. E.; da Cunha, E.; Erb, D.; Fan, X.; Kriek, M.; Labbe, I.; Marchesini, D.; Patel, S.; Rix, H.; Schmidt, K.; van der Wel, A.

    2013-01-01

    We present evidence of large-scale outflows from three low-mass star-forming galaxies observed at z=1.24, z=1.35 and z=1.75 in the 3D-HST Survey. Each of these galaxies is located within a projected physical distance of 60 kpc around the sight line to the quasar SDSS J123622.93+621526.6, which exhibits well-separated strong (W>0.8A) MgII absorption systems matching precisely to the redshifts of the three galaxies. We derive the star formation surface densities from the H-alpha emission in the WFC3 G141 grism observations for the galaxies and find that in each case the star formation surface density well-exceeds 0.1 solar mass / yr / kpc^2, the typical threshold for starburst galaxies in the local Universe. From a small but complete parallel census of the 0.650.8A MgII covering fraction of star-forming galaxies at 10.4A MgII absorbing gas around star-forming galaxies may evolve from 2 to the present, consistent with recent observations of an increasing collimation of star formation-driven outflows with time from 3.

  13. The star formation history of the universe as viewed in the infrared

    International Nuclear Information System (INIS)

    Magnelli, Benjamin

    2009-01-01

    This thesis is devoted to the estimation of the cosmic star formation history of the Universe through the study of spectral properties of galaxies observed by the Spitzer satellite in the mid-and-far- infrared. My work begins with the extraction of sources contained in the Spitzer images and with the creation of multi- wavelengths catalogs. Using those catalogs I study the spectral properties of infrared galaxies and their evolution with redshift. From the comparison of these properties with the predictions of standard spectral libraries, I show that galaxies situated beyond z∼1.3 present significant evolutions in their spectral properties. Based on these spectral properties, I estimate the cosmic star formation history of the Universe from z∼0 to z∼2.3. This history is characterized by a sharp increase of the star formation density of the Universe form z∼0 and z∼1, followed by a stabilisation phase up to z∼2. This star formation density is dominated between z∼0.8 and z∼2 by luminous infrared galaxies with high star formation rate. Finally, I study the presence of the 3.3 um PAH signature in the spectrum of distant galaxies (0.5 3. (author) [fr

  14. Conversion of gas into stars in the Galactic center

    Science.gov (United States)

    Longmore, S. N.

    2014-05-01

    The star formation rate in the central 500 pc of the Milky Way is lower by a factor of > 10 than expected for the substantial amount of dense gas it contains, which challenges current star formation theories. I discuss which physical mechanisms could be causing this observation and put forward a self-consistent cycle of star formation in the Galactic center, in which the plausible star formation inhibitors are combined. Their ubiquity suggests that the perception of a lowered central SFR should be a common phenomenon in other galaxies with direct implications for galactic star formation and also potentially supermassive black hole growth. I then describe a scenario to explain the presence of super star clusters in the Galactic center environment, in which their formation is triggered by gas streams passing close to the minimum of the global Galactic gravitational potential at the location of the central supermassive black hole, Sgr A*. If this triggering mechanism can be verified, we can use the known time interval since closest approach to Sgr A* to study the physics of stellar mass assembly in an extreme environment as a function of absolute time. I outline the first results from detailed numerical simulations testing this scenario. Finally, I describe a study showing that in terms of the baryonic composition, kinematics, and densities, the gas in the Galactic center is indistinguishable from high-redshift clouds and galaxies. As such, the Galactic center clouds may be used as a template to understand the evolution (and possibly the life cycle) of high-redshift clouds and galaxies.

  15. The effect of photoionizing feedback on star formation in isolated and colliding clouds

    Science.gov (United States)

    Shima, Kazuhiro; Tasker, Elizabeth J.; Federrath, Christoph; Habe, Asao

    2018-05-01

    We investigate star formation occurring in idealized giant molecular clouds, comparing structures that evolve in isolation versus those undergoing a collision. Two different collision speeds are investigated and the impact of photoionizing radiation from the stars is determined. We find that a colliding system leads to more massive star formation both with and without the addition of feedback, raising overall star formation efficiencies (SFE) by a factor of 10 and steepening the high-mass end of the stellar mass function. This rise in SFE is due to increased turbulent compression during the cloud collision. While feedback can both promote and hinder star formation in an isolated system, it increases the SFE by approximately 1.5 times in the colliding case when the thermal speed of the resulting H II regions matches the shock propagation speed in the collision.

  16. A New Method for Obtaining the Star Formation Law in Galaxies

    NARCIS (Netherlands)

    Heiner, Jonathan S.; Allen, Ronald J.; van der Kruit, Pieter C.

    2010-01-01

    We present a new observational method to evaluate the exponent of the star formation law as initially formulated by Schmidt, i.e., the power-law expression assumed to relate the rate of star formation in a volume of space to the local total gas volume density present there. Total volume densities in

  17. STAR FORMATION IN ULTRA-FAINT DWARFS: CONTINUOUS OR SINGLE-AGE BURSTS?

    International Nuclear Information System (INIS)

    Webster, David; Bland-Hawthorn, Joss; Sutherland, Ralph

    2015-01-01

    We model the chemical evolution of six ultra-faint dwarfs (UFDs): Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I based on their recently determined star formation histories. We show that two single-age bursts cannot explain the observed [α/Fe] versus [Fe/H] distribution in these galaxies and that some self-enrichment is required within the first burst. An alternative scenario is modeled, in which star formation is continuous except for short interruptions when one or more supernovae temporarily blow the dense gas out from the center of the system. This model allows for self-enrichment and can reproduce the chemical abundances of the UFDs in which the second burst is only a trace population. We conclude that the most likely star formation history is one or two extended periods of star formation, with the first burst lasting for at least 100 Myr. As found in earlier work, the observed properties of UFDs can be explained by formation at a low mass (M vir ∼10 7 M ⊙ ), rather than being stripped remnants of much larger systems

  18. STAR FORMATION IN ULTRA-FAINT DWARFS: CONTINUOUS OR SINGLE-AGE BURSTS?

    Energy Technology Data Exchange (ETDEWEB)

    Webster, David; Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Sutherland, Ralph, E-mail: d.webster@physics.usyd.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd, Weston, ACT 2611 (Australia)

    2015-01-30

    We model the chemical evolution of six ultra-faint dwarfs (UFDs): Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I based on their recently determined star formation histories. We show that two single-age bursts cannot explain the observed [α/Fe] versus [Fe/H] distribution in these galaxies and that some self-enrichment is required within the first burst. An alternative scenario is modeled, in which star formation is continuous except for short interruptions when one or more supernovae temporarily blow the dense gas out from the center of the system. This model allows for self-enrichment and can reproduce the chemical abundances of the UFDs in which the second burst is only a trace population. We conclude that the most likely star formation history is one or two extended periods of star formation, with the first burst lasting for at least 100 Myr. As found in earlier work, the observed properties of UFDs can be explained by formation at a low mass (M{sub vir}∼10{sup 7} M{sub ⊙}), rather than being stripped remnants of much larger systems.

  19. DENSITY WAVE KINEMATICS AND GIANT MOLECULAR ASSOCIATION FORMATION IN M51

    NARCIS (Netherlands)

    RAND, RJ

    1993-01-01

    New spectroscopic observations of the ionized gas (Halpha and [N II] lines) in M51 are combined with existing CO, H I, and Halpha data to look for kinematic evidence that the gas is responding to a spiral density wave. Possible mechanisms for the formation of the approximately 3 x 10(7) M. giant

  20. Wolf-Rayet stars and O-star runaways with HIPPARCOS - I. Kinematics

    NARCIS (Netherlands)

    Moffat, AFJ; Marchenko, SV; Seggewiss, W; van der Hucht, KA; Schrijver, H; Stenholm, B; Lundstrom, [No Value; Gunawan, DYAS; Sutantyo, W; van den Heuvel, EPJ; De Cuyper, JP; Gomez, AE

    Reliable systemic radial velocities are almost impossible to secure for Wolf-Rayet stars, difficult for O stars. Therefore, to study the motions - both systematic in the Galaxy and peculiar - of these two related types of hot, luminous star, we have examined the Hipparcos proper motions of some 70

  1. STAR FORMATION HISTORY AND CHEMICAL EVOLUTION OF THE SEXTANS DWARF SPHEROIDAL GALAXY

    International Nuclear Information System (INIS)

    Lee, Myung Gyoon; Yuk, In-Soo; Park, Hong Soo; Harris, Jason; Zaritsky, Dennis

    2009-01-01

    We present the star formation history (SFH) and chemical evolution of the Sextans dSph galaxy as a function of a galactocentric distance. We derive these from the VI photometry of stars in the 42' x 28' field using the SMART model developed by Yuk and Lee and adopting a closed-box model for chemical evolution. For the adopted age of Sextans 15 Gyr, we find that >84% of the stars formed prior to 11 Gyr ago, significant star formation extends from 15 to 11 Gyr ago (∼ 65% of the stars formed 13-15 Gyr ago, while ∼ 25% formed 11-13 Gyr ago), detectable star formation continued to at least 8 Gyr ago, the SFH is more extended in the central regions than the outskirts, and the difference in star formation rates between the central and outer regions is most marked 11-13 Gyr ago. Whether blue straggler stars are interpreted as intermediate-age main-sequence stars affects conclusions regarding the SFH for times 4-8 Gyr ago, but this is at most only a trace population. We find that the metallicity of the stars increased rapidly up to [Fe/H] = -1.6 in the central region and to [Fe/H] = -1.8 in the outer region within the first Gyr, and has varied slowly since then. The abundance ratios of several elements derived in this study are in good agreement with the observational data based on the high-resolution spectroscopy in the literature. We conclude that the primary driver for the radial gradient of the stellar population in this galaxy is the SFH, which self-consistently drives the chemical enrichment history.

  2. A GMOS-N IFU study of the central H II region in the blue compact dwarf galaxy NGC 4449: kinematics, nebular metallicity and star formation

    Science.gov (United States)

    Kumari, Nimisha; James, Bethan L.; Irwin, Mike J.

    2017-10-01

    We use integral field spectroscopic (IFS) observations from the Gemini Multi-Object Spectrograph North (GMOS-N) to study the central H II region in a nearby blue compact dwarf (BCD) galaxy NGC 4449. The IFS data enable us to explore the variation of physical and chemical conditions of the star-forming region and the surrounding gas on spatial scales as small as 5.5 pc. Our kinematical analysis shows possible signatures of shock ionization and shell structures in the surroundings of the star-forming region. The metallicity maps of the region, created using direct Te and indirect strong line methods (R23, O3N2 and N2), do not show any chemical variation. From the integrated spectrum of the central H II region, we find a metallicity of 12 + log(O/H) = 7.88 ± 0.14 ({˜ }0.15^{+0.06}_{-0.04} Z⊙) using the direct method. Comparing the central H II region metallicity derived here with those of H II regions throughout this galaxy from previous studies, we find evidence of increasing metallicity with distance from the central nucleus. Such chemical inhomogeneities can be due to several mechanisms, including gas loss via supernova blowout, galactic winds or metal-poor gas accretion. However, we find that the localized area of decreased metallicity aligns spatially with the peak of star-forming activity in the galaxy, suggesting that gas accretion may be at play here. Spatially resolved IFS data for the entire galaxy are required to confirm the metallicity inhomogeneity found in this study and determine its possible cause.

  3. FEEDBACK EFFECTS ON LOW-MASS STAR FORMATION

    International Nuclear Information System (INIS)

    Hansen, Charles E.; Klein, Richard I.; McKee, Christopher F.; Fisher, Robert T.

    2012-01-01

    Protostellar feedback, both radiation and bipolar outflows, dramatically affects the fragmentation and mass accretion from star-forming cores. We use ORION, an adaptive mesh refinement gravito-radiation-hydrodynamics code, to simulate low-mass star formation in a turbulent molecular cloud in the presence of protostellar feedback. We present results of the first simulations of a star-forming cluster that include both radiative transfer and protostellar outflows. We run four simulations to isolate the individual effects of radiation feedback and outflow feedback as well as the combination of the two. We find that outflows reduce protostellar masses and accretion rates each by a factor of three and therefore reduce protostellar luminosities by an order of magnitude. This means that, while radiation feedback suppresses fragmentation, outflows render protostellar radiation largely irrelevant for low-mass star formation above a mass scale of 0.05 M ☉ . We find initial fragmentation of our cloud at half the global Jeans length, around 0.1 pc. With insufficient protostellar radiation to stop it, these 0.1 pc cores fragment repeatedly, forming typically 10 stars each. The accretion rate in these stars scales with mass as predicted from core accretion models that include both thermal and turbulent motions; the accretion rate does not appear to be consistent with either competitive accretion or accretion from an isothermal sphere. We find that protostellar outflows do not significantly affect the overall cloud dynamics, in the absence of magnetic fields, due to their small opening angles and poor coupling to the dense gas. The outflows reduce the mass from the cores by 2/3, giving a core to star efficiency, ε core ≅ 1/3. The simulations are also able to reproduce many observation of local star-forming regions. Our simulation with radiation and outflows reproduces the observed protostellar luminosity function. All of the simulations can reproduce observed core mass

  4. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    Energy Technology Data Exchange (ETDEWEB)

    Jabran Zahid, H. [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kudritzki, Rolf-Peter; Ho, I-Ting [University of Hawaii at Manoa, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Conroy, Charlie [Department of Astronomy, Harvard University, Cambridge, MA, 02138 (United States); Andrews, Brett, E-mail: zahid@cfa.harvard.edu [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States)

    2017-09-20

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  5. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    International Nuclear Information System (INIS)

    Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting; Conroy, Charlie; Andrews, Brett

    2017-01-01

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  6. Approximations to galaxy star formation rate histories: properties and uses of two examples

    Science.gov (United States)

    Cohn, J. D.

    2018-05-01

    Galaxies evolve via a complex interaction of numerous different physical processes, scales and components. In spite of this, overall trends often appear. Simplified models for galaxy histories can be used to search for and capture such emergent trends, and thus to interpret and compare results of galaxy formation models to each other and to nature. Here, two approximations are applied to galaxy integrated star formation rate histories, drawn from a semi-analytic model grafted onto a dark matter simulation. Both a lognormal functional form and principal component analysis (PCA) approximate the integrated star formation rate histories fairly well. Machine learning, based upon simplified galaxy halo histories, is somewhat successful at recovering both fits. The fits to the histories give fixed time star formation rates which have notable scatter from their true final time rates, especially for quiescent and "green valley" galaxies, and more so for the PCA fit. For classifying galaxies into subfamilies sharing similar integrated histories, both approximations are better than using final stellar mass or specific star formation rate. Several subsamples from the simulation illustrate how these simple parameterizations provide points of contact for comparisons between different galaxy formation samples, or more generally, models. As a side result, the halo masses of simulated galaxies with early peak star formation rate (according to the lognormal fit) are bimodal. The galaxies with a lower halo mass at peak star formation rate appear to stall in their halo growth, even though they are central in their host halos.

  7. Stochastic self-propagating star formation in three-dimensional disk galaxy simulations

    International Nuclear Information System (INIS)

    Statler, T.; Comins, N.; Smith, B.F.

    1983-01-01

    Stochastic self-propagating star formation (SSPSF) is a process of forming new stars through the compression of the interstellar medium by supernova shock waves. Coupling this activity with galactic differential rotation produces spiral structure in two-dimensional disk galaxy simulations. In this paper the first results of a three-dimensional SSPSF simulation of disk galaxies are reported. Our model generates less impressive spirals than do the two-dimensional simulations. Although some spirals do appear in equilibrium, more frequently we observe spirals as non-equilibrium states of the models: as the spiral arms evolve, they widen until the spiral structure is no longer discernible. The two free parameters that we vary in this study are the probability of star formation due to a recent, nearby explosion, and the relaxation time for the interstellar medium to return to a condition of maximum star formation after it has been cleared out by an explosion and subsequent star formation. We find that equilibrium spiral structure is formed over a much smaller range of these parameters in our three-dimensional SSPSF models than in similar two-dimensional models. We discuss possible reasons for these results as well as improvements on the model which are being explored

  8. THE ESTIMATION OF STAR FORMATION RATES AND STELLAR POPULATION AGES OF HIGH-REDSHIFT GALAXIES FROM BROADBAND PHOTOMETRY

    International Nuclear Information System (INIS)

    Lee, Seong-Kook; Ferguson, Henry C.; Somerville, Rachel S.; Wiklind, Tommy; Giavalisco, Mauro

    2010-01-01

    We explore methods to improve the estimates of star formation rates and mean stellar population ages from broadband photometry of high-redshift star-forming galaxies. We use synthetic spectral templates with a variety of simple parametric star formation histories to fit broadband spectral energy distributions. These parametric models are used to infer ages, star formation rates, and stellar masses for a mock data set drawn from a hierarchical semi-analytic model of galaxy evolution. Traditional parametric models generally assume an exponentially declining rate of star formation after an initial instantaneous rise. Our results show that star formation histories with a much more gradual rise in the star formation rate are likely to be better templates, and are likely to give better overall estimates of the age distribution and star formation rate distribution of Lyman break galaxies (LBGs). For B- and V-dropouts, we find the best simple parametric model to be one where the star formation rate increases linearly with time. The exponentially declining model overpredicts the age by 100% and 120% for B- and V-dropouts, on average, while for a linearly increasing model, the age is overpredicted by 9% and 16%, respectively. Similarly, the exponential model underpredicts star formation rates by 56% and 60%, while the linearly increasing model underpredicts by 15% and 22%, respectively. For U-dropouts, the models where the star formation rate has a peak (near z ∼ 3) provide the best match for age-overprediction is reduced from 110% to 26%-and star formation rate-underprediction is reduced from 58% to 22%. We classify different types of star formation histories in the semi-analytic models and show how the biases behave for the different classes. We also provide two-band calibration formulae for stellar mass and star formation rate estimations.

  9. Star-formation functions and the genetics of pulsar origin

    International Nuclear Information System (INIS)

    Guseinov, O.K.; Kasumov, F.K.; Yusifov, I.M.

    1982-01-01

    The star-formation function and the genetics of pulsar origin are discussed. It is shown that the progenitors of pulsars are main-sequence stars with masses of >5M/sub sun/ for almost all the kinds of initial mass functions discussed in the literature. Pulsars are genetically connected with supernova outbursts (mainly of type II). The probability of pulsar formation as a result of ''quiet collapse'' is extremely low. Thus, the hypothesis that pulsars are formed from objects of the extreme planar component of the Galaxy is confirmed on more complete and statistically uniform material

  10. CHARACTERIZING SPIRAL ARM AND INTERARM STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Kreckel, K.; Schinnerer, E.; Meidt, S. [Max Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Blanc, G. A. [Departamento de Astronomía, Universidad de Chile, Camino del Observatorio 1515, Las Condes, Santiago (Chile); Groves, B. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Adamo, A. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Hughes, A., E-mail: kreckel@mpia.de [CNRS, IRAP, 9 Av. du Colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France)

    2016-08-20

    Interarm star formation contributes significantly to a galaxy’s star formation budget and provides an opportunity to study stellar birthplaces unperturbed by spiral arm dynamics. Using optical integral field spectroscopy of the nearby galaxy NGC 628 with VLT/MUSE, we construct H α maps including detailed corrections for dust extinction and stellar absorption to identify 391 H ii regions at 35 pc resolution over 12 kpc{sup 2}. Using tracers sensitive to the underlying gravitational potential, we associate H ii regions with either arm (271) or interarm (120) environments. Using our full spectral coverage of each region, we find that most physical properties (luminosity, size, metallicity, ionization parameter) of H ii regions are independent of environment. We calculate the fraction of H α luminosity due to the background of diffuse ionized gas (DIG) contaminating each H ii region, and find the DIG surface brightness to be higher within H ii regions than in the surroundings, and slightly higher within arm H ii regions. Use of the temperature-sensitive [S ii]/H α line ratio instead of the H α surface brightness to identify the boundaries of H ii regions does not change this result. Using the dust attenuation as a tracer of the gas, we find depletion times consistent with previous work (2 × 10{sup 9} yr) with no differences between the arm and interarm, but this is very sensitive to the DIG correction. Unlike molecular clouds, which can be dynamically affected by the galactic environment, we see fairly consistent properties of H ii regions in both arm and interarm environments. This suggests either a difference in star formation and feedback in arms or a decoupling of dense star-forming clumps from the more extended surrounding molecular gas.

  11. THE STAR FORMATION HISTORY AND CHEMICAL EVOLUTION OF STAR-FORMING GALAXIES IN THE NEARBY UNIVERSE

    International Nuclear Information System (INIS)

    Torres-Papaqui, J. P.; Coziol, R.; Ortega-Minakata, R. A.; Neri-Larios, D. M.

    2012-01-01

    We have determined the metallicity (O/H) and nitrogen abundance (N/O) of a sample of 122,751 star-forming galaxies (SFGs) from the Data Release 7 of the Sloan Digital Sky Survey. For all these galaxies we have also determined their morphology and obtained a comprehensive picture of their star formation history (SFH) using the spectral synthesis code STARLIGHT. The comparison of the chemical abundance with the SFH allows us to describe the chemical evolution of the SFGs in the nearby universe (z ≤ 0.25) in a manner consistent with the formation of their stellar populations and morphologies. A high fraction (45%) of the SFGs in our sample show an excess abundance of nitrogen relative to their metallicity. We also find this excess to be accompanied by a deficiency of oxygen, which suggests that this could be the result of effective starburst winds. However, we find no difference in the mode of star formation of the nitrogen-rich and nitrogen-poor SFGs. Our analysis suggests that they all form their stars through a succession of bursts of star formation extended over a period of few Gyr. What produces the chemical differences between these galaxies seems therefore to be the intensity of the bursts: the galaxies with an excess of nitrogen are those that are presently experiencing more intense bursts or have experienced more intense bursts in their past. We also find evidence relating the chemical evolution process to the formation of the galaxies: the galaxies with an excess of nitrogen are more massive, and have more massive bulges and earlier morphologies than those showing no excess. Contrary to expectation, we find no evidence that the starburst wind efficiency decreases with the mass of the galaxies. As a possible explanation we propose that the loss of metals consistent with starburst winds took place during the formation of the galaxies, when their potential wells were still building up, and consequently were weaker than today, making starburst winds more

  12. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D. Christopher; Darvish, Behnam; Seibert, Mark [California Institute of Technology, MC 405-47, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Gonçalves, Thiago S. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira Pedro Antonio, 43, Saude, Rio de Janeiro-RJ 20080-090 (Brazil); Schiminovich, David [Department of Astronomy, Columbia University, New York, NY 10027 (United States)

    2017-06-10

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  13. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    Science.gov (United States)

    Martin, D. Christopher; Gonçalves, Thiago S.; Darvish, Behnam; Seibert, Mark; Schiminovich, David

    2017-06-01

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  14. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    International Nuclear Information System (INIS)

    Martin, D. Christopher; Darvish, Behnam; Seibert, Mark; Gonçalves, Thiago S.; Schiminovich, David

    2017-01-01

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  15. Molecular cloud-scale star formation in NGC 300

    Energy Technology Data Exchange (ETDEWEB)

    Faesi, Christopher M.; Lada, Charles J.; Forbrich, Jan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Menten, Karl M. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Bouy, Hervé [Centro de Astrobiología, (INTA-CSIC), Departamento de Astrofísica, POB 78, ESAC Campus, 28691 Villanueva dela Cañada (Spain)

    2014-07-01

    We present the results of a galaxy-wide study of molecular gas and star formation in a sample of 76 H II regions in the nearby spiral galaxy NGC 300. We have measured the molecular gas at 250 pc scales using pointed CO(J = 2-1) observations with the Atacama Pathfinder Experiment telescope. We detect CO in 42 of our targets, deriving molecular gas masses ranging from our sensitivity limit of ∼10{sup 5} M {sub ☉} to 7 × 10{sup 5} M {sub ☉}. We find a clear decline in the CO detection rate with galactocentric distance, which we attribute primarily to the decreasing radial metallicity gradient in NGC 300. We combine Galaxy Evolution Explorer far-ultraviolet, Spitzer 24 μm, and Hα narrowband imaging to measure the star formation activity in our sample. We have developed a new direct modeling approach for computing star formation rates (SFRs) that utilizes these data and population synthesis models to derive the masses and ages of the young stellar clusters associated with each of our H II region targets. We find a characteristic gas depletion time of 230 Myr at 250 pc scales in NGC 300, more similar to the results obtained for Milky Way giant molecular clouds than the longer (>2 Gyr) global depletion times derived for entire galaxies and kiloparsec-sized regions within them. This difference is partially due to the fact that our study accounts for only the gas and stars within the youngest star-forming regions. We also note a large scatter in the NGC 300 SFR-molecular gas mass scaling relation that is furthermore consistent with the Milky Way cloud results. This scatter likely represents real differences in giant molecular cloud physical properties such as the dense gas fraction.

  16. PHASE COHERENT STAR FORMATION PROCESSES IN THE DISKS OF GRAND DESIGN SPIRALS

    NARCIS (Netherlands)

    BECKMAN, JE; CEPA, J; KNAPEN, JH

    1991-01-01

    We show examples of a new technique we have devised to compare star formation efficiencies in the arms and discs of spirals. First results show striking evidence of the presence and influence of density wave systems of star formation in grand design galaxies.

  17. RING STAR FORMATION RATES IN BARRED AND NONBARRED GALAXIES

    International Nuclear Information System (INIS)

    Grouchy, R. D.; Buta, R. J.; Salo, H.; Laurikainen, E.

    2010-01-01

    Nonbarred ringed galaxies are relatively normal galaxies showing bright rings of star formation in spite of lacking a strong bar. This morphology is interesting because it is generally accepted that a typical galactic disk ring forms when material collects near a resonance, set up by the pattern speed of a bar or bar-like perturbation. Our goal in this paper is to examine whether the star formation properties of rings are related to the strength of a bar or, in the absence of a bar, to the non-axisymmetric gravity potential in general. For this purpose, we obtained Hα emission line images and calculated the line fluxes and star formation rates (SFRs) for 16 nonbarred SA galaxies and four weakly barred SAB galaxies with rings. For comparison, we combine our new observations with a re-analysis of previously published data on five SA, seven SAB, and 15 SB galaxies with rings, three of which are duplicates from our sample. With these data, we examine what role a bar may play in the star formation process in rings. Compared to barred ringed galaxies, we find that the inner ring SFRs and Hα+[N II] equivalent widths in nonbarred ringed galaxies show a similar range and trend with absolute blue magnitude, revised Hubble type, and other parameters. On the whole, the star formation properties of inner rings, excluding the distribution of H II regions, are independent of the ring shapes and the bar strength in our small samples. We confirm that the deprojected axis ratios of inner rings correlate with maximum relative gravitational force Q g ; however, if we consider all rings, a better correlation is found when a local bar forcing at the radius of the ring, Q r , is used. Individual cases are described and other correlations are discussed. By studying the physical properties of these galaxies, we hope to gain a better understanding of their placement in the scheme of the Hubble sequence and how they formed rings without the driving force of a bar.

  18. Star cluster formation in a turbulent molecular cloud self-regulated by photoionization feedback

    Science.gov (United States)

    Gavagnin, Elena; Bleuler, Andreas; Rosdahl, Joakim; Teyssier, Romain

    2017-12-01

    Most stars in the Galaxy are believed to be formed within star clusters from collapsing molecular clouds. However, the complete process of star formation, from the parent cloud to a gas-free star cluster, is still poorly understood. We perform radiation-hydrodynamical simulations of the collapse of a turbulent molecular cloud using the RAMSES-RT code. Stars are modelled using sink particles, from which we self-consistently follow the propagation of the ionizing radiation. We study how different feedback models affect the gas expulsion from the cloud and how they shape the final properties of the emerging star cluster. We find that the star formation efficiency is lower for stronger feedback models. Feedback also changes the high-mass end of the stellar mass function. Stronger feedback also allows the establishment of a lower density star cluster, which can maintain a virial or sub-virial state. In the absence of feedback, the star formation efficiency is very high, as well as the final stellar density. As a result, high-energy close encounters make the cluster evaporate quickly. Other indicators, such as mass segregation, statistics of multiple systems and escaping stars confirm this picture. Observations of young star clusters are in best agreement with our strong feedback simulation.

  19. A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSHIFT DISKS, AND STARBURSTS

    International Nuclear Information System (INIS)

    Krumholz, Mark R.; Dekel, Avishai; McKee, Christopher F.

    2012-01-01

    Star formation laws are rules that relate the rate of star formation in a particular region, either an entire galaxy or some portion of it, to the properties of the gas, or other galactic properties, in that region. While observations of Local Group galaxies show a very simple, local star formation law in which the star formation rate per unit area in each patch of a galaxy scales linearly with the molecular gas surface density in that patch, recent observations of both Milky Way molecular clouds and high-redshift galaxies apparently show a more complicated relationship in which regions of equal molecular gas surface density can form stars at quite different rates. These data have been interpreted as implying either that different star formation laws may apply in different circumstances, that the star formation law is sensitive to large-scale galaxy properties rather than local properties, or that there are high-density thresholds for star formation. Here we collate observations of the relationship between gas and star formation rate from resolved observations of Milky Way molecular clouds, from kpc-scale observations of Local Group galaxies, and from unresolved observations of both disk and starburst galaxies in the local universe and at high redshift. We show that all of these data are in fact consistent with a simple, local, volumetric star formation law. The apparent variations stem from the fact that the observed objects have a wide variety of three-dimensional size scales and degrees of internal clumping, so even at fixed gas column density the regions being observed can have wildly varying volume densities. We provide a simple theoretical framework to remove this projection effect, and we use it to show that all the data, from small solar neighborhood clouds with masses ∼10 3 M ☉ to submillimeter galaxies with masses ∼10 11 M ☉ , fall on a single star formation law in which the star formation rate is simply ∼1% of the molecular gas mass per local

  20. SPH simulations of star/planet formation triggered by cloud-cloud collisions

    OpenAIRE

    Kitsionas, Spyridon; Whitworth, Anthony Peter; Klessen, Ralf S.

    2007-01-01

    We present results of hydrodynamic simulations of star formation triggered by cloud-cloud collisions. During the early stages of star formation, low-mass objects form by gravitational instabilities in protostellar discs. A number of these low-mass objects are in the sub-stellar mass range, including a few objects of planetary mass. The disc instabilities that lead to the formation of low-mass objects in our simulations are the product of disc-disc interactions and/or interactions between the ...

  1. MSU Contributes to New Research on Star Formation

    Science.gov (United States)

    2010-01-01

    EAST LANSING, Mich. - "Crazy" and "cool" are two of the words Michigan State University astronomer Megan Donahue uses to describe the two distinct "tails" found on a long tail of gas that is believed to be forming stars where few stars have been formed before. Donahue was part of an international team of astronomers that viewed the gas tail with a very long, new observation made by the Chandra X-ray Observatory and detailed it in a paper published this month in the publication Astrophysical Journal. "The double tail is very cool - that is, interesting - and ridiculously hard to explain," said Donahue, a professor in MSU's Department of Physics and Astronomy. "It could be two different sources of gas or something to do with magnetic fields. We just don't know." What is also unusual is the gas tail, which is more than 200,000 light years in length, extends well outside any galaxy. It is within objects such as this that new stars are formed, but usually within the confines of a galaxy. "This system is really crazy because where we're seeing the star formation is well away from any galaxy," Donahue said. "Star formation happens primarily in the disks of galaxies. What we're seeing here is very unexpected." This gas tail was originally spotted by astronomers three years ago using a multitude of telescopes, including NASA's Chandra X-ray Observatory and the SOuthern Astrophysical Research telescope, a Chilean-based observatory in which MSU is one of the partners. The new observations show a second tail, and a fellow galaxy, ESO 137-002, that also has a tail of hot X-ray-emitting gas. How these newly formed stars came to be in this particular place remains a mystery as well. Astronomers theorize this gas tail might have "pulled" star-making material from nearby gases, creating what some have called "orphan stars." "This system continues to surprise us as we get better observations of it," Donahue said. The gas tail is located in the southern hemisphere near a

  2. Gas dynamics in the inner few AU around the Herbig B[e] star MWC297. Indications of a disk wind from kinematic modeling and velocity-resolved interferometric imaging

    Science.gov (United States)

    Hone, Edward; Kraus, Stefan; Kreplin, Alexander; Hofmann, Karl-Heinz; Weigelt, Gerd; Harries, Tim; Kluska, Jacques

    2017-10-01

    Aims: Circumstellar accretion disks and outflows play an important role in star formation. By studying the continuum and Brγ-emitting region of the Herbig B[e] star MWC297 with high-spectral and high-spatial resolution we aim to gain insight into the wind-launching mechanisms in young stars. Methods: We present near-infrared AMBER (R = 12 000) and CRIRES (R = 100 000) observations of the Herbig B[e] star MWC297 in the hydrogen Brγ-line. Using the VLTI unit telescopes, we obtained a uv-coverage suitable for aperture synthesis imaging. We interpret our velocity-resolved images as well as the derived two-dimensional photocenter displacement vectors, and fit kinematic models to our visibility and phase data in order to constrain the gas velocity field on sub-AU scales. Results: The measured continuum visibilities constrain the orientation of the near-infrared-emitting dust disk, where we determine that the disk major axis is oriented along a position angle of 99.6 ± 4.8°. The near-infrared continuum emission is 3.6 × more compact than the expected dust-sublimation radius, possibly indicating the presence of highly refractory dust grains or optically thick gas emission in the inner disk. Our velocity-resolved channel maps and moment maps reveal the motion of the Brγ-emitting gas in six velocity channels, marking the first time that kinematic effects in the sub-AU inner regions of a protoplanetary disk could be directly imaged. We find a rotation-dominated velocity field, where the blue- and red-shifted emissions are displaced along a position angle of 24° ± 3° and the approaching part of the disk is offset west of the star. The visibility drop in the line as well as the strong non-zero phase signals can be modeled reasonably well assuming a Keplerian velocity field, although this model is not able to explain the 3σ difference that we measure between the position angle of the line photocenters and the position angle of the dust disk. We find that the fit can be

  3. The three phases of galaxy formation

    Science.gov (United States)

    Clauwens, Bart; Schaye, Joop; Franx, Marijn; Bower, Richard G.

    2018-05-01

    We investigate the origin of the Hubble sequence by analysing the evolution of the kinematic morphologies of central galaxies in the EAGLE cosmological simulation. By separating each galaxy into disc and spheroidal stellar components and tracing their evolution along the merger tree, we find that the morphology of galaxies follows a common evolutionary trend. We distinguish three phases of galaxy formation. These phases are determined primarily by mass, rather than redshift. For M* ≲ 109.5M⊙ galaxies grow in a disorganised way, resulting in a morphology that is dominated by random stellar motions. This phase is dominated by in-situ star formation, partly triggered by mergers. In the mass range 109.5M⊙ ≲ M* ≲ 1010.5M⊙ galaxies evolve towards a disc-dominated morphology, driven by in-situ star formation. The central spheroid (i.e. the bulge) at z = 0 consists mostly of stars that formed in-situ, yet the formation of the bulge is to a large degree associated with mergers. Finally, at M* ≳ 1010.5M⊙ growth through in-situ star formation slows down considerably and galaxies transform towards a more spheroidal morphology. This transformation is driven more by the buildup of spheroids than by the destruction of discs. Spheroid formation in these galaxies happens mostly by accretion at large radii of stars formed ex-situ (i.e. the halo rather than the bulge).

  4. Asymmetric Star Formation Efficiency Due to Ram Pressure Stripping

    Directory of Open Access Journals (Sweden)

    Paulina Troncoso Iribarren

    2016-12-01

    Full Text Available Previous works have shown that a dense cluster environment affects satellite galaxy properties and accelerates or truncates their evolutionary processes. In this work, we use the EAGLE simulation to study this effect, dissecting the galaxies in two halves: the one that is falling directly to the cluster (leading half and the one behind (trailing half. Considering all galaxies within the virial radius of the most massive groups and clusters of the simulation ( M h a l o > 10 13 . 8 [ M ⊙ ] , we find that on average the leading half presents an enhancement of the star formation rate with respect to the trailing half. We conclude that galaxies falling into the intra-cluster medium experience a boost in star-formation in their leading half due to ram pressure. Sparse observations of jellyfish galaxies have revealed visually the enhancement of the star formation in the leading half. In order to confirm this effect statistically using observations, different cases must be investigated using the simulation as a test dataset.

  5. The episodic star formation history of the Carina dwarf spheroidal galaxy

    Science.gov (United States)

    de Boer, T. J. L.; Tolstoy, E.; Lemasle, B.; Saha, A.; Olszewski, E. W.; Mateo, M.; Irwin, M. J.; Battaglia, G.

    2014-12-01

    We present deep photometry of the Carina dwarf spheroidal galaxy in the B and V filters from CTIO/MOSAIC out to and beyond the tidal radius of rell ≈ 0.48 degrees. The accurately calibrated photometry is combined with spectroscopic metallicity distributions of red giant branch (RGB) stars to determine the detailed star formation and chemical evolution history of Carina. The star formation history (SFH) confirms the episodic formation history of Carina and quantifies the duration and strength of each episode in great detail as a function of radius from the centre. Two main episodes of star formation occurred at old (>8 Gyr) and intermediate (2-8 Gyr) ages, both enriching stars starting from low metallicities ([Fe/H] < - 2 dex). By dividing the SFH into two components, we determine that 60 ± 9 percent of the total number of stars formed within the intermediate-age episode. Furthermore, within the tidal radius (0.48 degrees or 888 pc) a total mass in stars of 1.07 ± 0.08 × 106 M⊙ was formed, giving Carina a stellar mass-to-light ratio of 1.8 ± 0.8. By combining the detailed SFH with spectroscopic observations of RGB stars, we determined the detailed age-metallicity relation of each episode and the timescale of α-element evolution of Carina from individual stars. The oldest episode displays a tight age-metallicity relation during ≈6 Gyr with steadily declining α-element abundances and a possible α-element "knee" visible at [Fe/H] ≈ - 2.5 dex. The intermediate-age sequence displays a more complex age-metallicity relation starting from low metallicity and a sequence in α-element abundances with a slope much steeper than observed in the old episode, starting from [Fe/H] = -1.8 dex and [Mg/Fe] ≈ 0.4 dex and declining to Mg-poor values ([Mg/Fe] ≤ - 0.5 dex). This clearly indicates that the two episodes of star formation formed from gas with different abundance patterns, which is inconsistent with simple evolution in an isolated system. Tables 1-3 are

  6. Star formation history: Modeling of visual binaries

    Science.gov (United States)

    Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.

    2018-05-01

    Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.

  7. Star formation and mass assembly in high redshift galaxies

    Science.gov (United States)

    Santini, P.; Fontana, A.; Grazian, A.; Salimbeni, S.; Fiore, F.; Fontanot, F.; Boutsia, K.; Castellano, M.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Giallongo, E.; Menci, N.; Nonino, M.; Paris, D.; Pentericci, L.; Vanzella, E.

    2009-09-01

    Aims: The goal of this work is to infer the star formation properties and the mass assembly process of high redshift (0.3 ≤ z MUSIC catalog, which has multiwavelength coverage from 0.3 to 24 μm and either spectroscopic or accurate photometric redshifts. We describe how the catalog has been extended by the addition of mid-IR fluxes derived from the MIPS 24 μm image. We compared two different estimators of the star formation rate (SFR hereafter). One is the total infrared emission derived from 24 μm, estimated using both synthetic and empirical IR templates. The other one is a multiwavelength fit to the full galaxy SED, which automatically accounts for dust reddening and age-star formation activity degeneracies. For both estimates, we computed the SFR density and the specific SFR. Results: We show that the two SFR indicators are roughly consistent, once the uncertainties involved are taken into account. However, they show a systematic trend, IR-based estimates exceeding the fit-based ones as the star formation rate increases. With this new catalog, we show that: a) at z>0.3, the star formation rate is correlated well with stellar mass, and this relationship seems to steepen with redshift if one relies on IR-based estimates of the SFR; b) the contribution to the global SFRD by massive galaxies increases with redshift up to ≃ 2.5, more rapidly than for galaxies of lower mass, but appears to flatten at higher z; c) despite this increase, the most important contributors to the SFRD at any z are galaxies of about, or immediately lower than, the characteristic stellar mass; d) at z≃ 2, massive galaxies are actively star-forming, with a median {SFR} ≃ 300 M_⊙ yr-1. During this epoch, our targeted galaxies assemble a substantial part of their final stellar mass; e) the specific SFR (SSFR) shows a clear bimodal distribution. Conclusions: The analysis of the SFR density and the SSFR seems to support the downsizing scenario, according to which high mass galaxies

  8. The Gaia-ESO Survey and CSI 2264: Substructures, disks, and sequential star formation in the young open cluster NGC 2264

    Science.gov (United States)

    Venuti, L.; Prisinzano, L.; Sacco, G. G.; Flaccomio, E.; Bonito, R.; Damiani, F.; Micela, G.; Guarcello, M. G.; Randich, S.; Stauffer, J. R.; Cody, A. M.; Jeffries, R. D.; Alencar, S. H. P.; Alfaro, E. J.; Lanzafame, A. C.; Pancino, E.; Bayo, A.; Carraro, G.; Costado, M. T.; Frasca, A.; Jofré, P.; Morbidelli, L.; Sousa, S. G.; Zaggia, S.

    2018-01-01

    . Star formation is likely still ongoing in the most embedded regions of the cluster, while the outer regions host a widespread population of more evolved objects; these may be the result of an earlier star formation episode followed by outward migration on timescales of a few Myr. We find a detectable lag between the typical age of disk-bearing objects and that of accreting objects in the inner regions of NGC 2264: the first tend to be older than the second, but younger than disk-free sources at similar locations within the cluster. This supports earlier findings that the characteristic timescales of disk accretion are shorter than those of disk dispersal, and smaller than the average age of NGC 2264 (i.e., ≲3 Myr). At the same time, we note that disks in the north of the cluster tend to be shorter-lived ( 2.5 Myr) than elsewhere; this may reflect the impact of massive stars within the region (notably S Mon), that trigger rapid disk dispersal. Conclusions: Our results, consistent with earlier studies on NGC 2264 and other young clusters, support the idea of a star formation process that takes place sequentially over a prolonged span in a given region. A complete understanding of the dynamics of formation and evolution of star clusters requires accurate astrometric and kinematic characterization of its population; significant advance in this field is foreseen in the upcoming years thanks to the ongoing Gaia mission, coupled with extensive ground-based surveys like GES. Full Table B.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A10

  9. The Effects of Galaxy Interactions on Star Formation

    Science.gov (United States)

    Beverage, Aliza; Weiner, Aaron; Ramos Padilla, Andres; Ashby, Matthew; Smith, Howard A.

    2018-01-01

    Galaxy interactions are key events in galaxy evolution, and are widely thought to trigger significant increases in star formation. However, the mechanisms and timescales for these increases are still not well understood. In order to probe the effects of mergers, we undertook an investigation based on the Spitzer Interacting Galaxies Survey (SIGS), a sample of 102 nearby galaxies in 48 systems ranging from weakly interacting to near coalescence. Our study is unique in that we use both broadband photometry and a large sample of objects chosen to be statistically meaningful. Our data come from 32 broad bands ranging from the UV to far-IR, and we model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) to estimate physical characteristics for each galaxy. We find marginal statistical correlations between galaxy interaction strength and dust luminosity and the distribution of dust mass as a function of heating intensity. The specific star formation rates, however, do not show any enhancement across the interaction stages. This result challenges conventional wisdom that mergers induce star formation throughout galaxy interaction.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  10. A COMPARATIVE STUDY OF KNOTS OF STAR FORMATION IN INTERACTING VERSUS SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Beverly J.; Olmsted, Susan; Jones, Keith [Department of Physics and Astronomy, East Tennessee State University, Johnson City TN 37614 (United States); Zaragoza-Cardiel, Javier [Instituto de Astrofisica de Canarias, La Laguna, Tenerife (Spain); Struck, Curtis, E-mail: smithbj@etsu.edu [Department of Physics and Astronomy, Iowa State University, Ames IA 50011 (United States)

    2016-03-15

    Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published Hα images, we have compared the star formation rates (SFRs) of ∼700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high SFRs than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger star formation. Published Hubble Space Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The SFRs of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest SFRs, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to Hα, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in Hα. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus either star formation in interacting galaxies is “clumpier” on average, or the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.

  11. Star formation suppression in compact group galaxies

    DEFF Research Database (Denmark)

    Alatalo, K.; Appleton, P. N.; Lisenfeld, U.

    2015-01-01

    , bars, rings, tidal tails, and possibly nuclear outflows, though the molecular gas morphologies are more consistent with spirals and earlytype galaxies than mergers and interacting systems. Our CO-imaged HCG galaxies, when plotted on the Kennicutt-Schmidt relation, shows star formation (SF) suppression...... color space. This supports the idea that at least some galaxies in HCGs are transitioning objects, where a disruption of the existing molecular gas in the system suppresses SF by inhibiting the molecular gas from collapsing and forming stars efficiently. These observations, combined with recent work...

  12. CHARACTERIZING THE STAR FORMATION OF THE LOW-MASS SHIELD GALAXIES FROM HUBBLE SPACE TELESCOPE IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Simones, Jacob E. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, S.E., Minneapolis, MN 55455 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Haynes, Martha P.; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Adams, Elizabeth A. K. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7900 AA Dwingeloo (Netherlands); Elson, Ed C. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Ott, Jürgen, E-mail: kmcquinn@astro.umn.edu [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States)

    2015-03-20

    The Survey of Hi in Extremely Low-mass Dwarfs is an on-going multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies that populate the faint end of the galaxy luminosity function. The galaxies were selected from the first ∼10% of the Hi Arecibo Legacy Fast ALFA survey based on their low Hi mass and low baryonic mass. Here, we measure the star formation properties from optically resolved stellar populations for 12 galaxies using a color–magnitude diagram fitting technique. We derive lifetime average star formation rates (SFRs), recent SFRs, stellar masses, and gas fractions. Overall, the recent SFRs are comparable to the lifetime SFRs with mean birthrate parameter of 1.4, with a surprisingly narrow standard deviation of 0.7. Two galaxies are classified as dwarf transition galaxies (dTrans). These dTrans systems have star formation and gas properties consistent with the rest of the sample, in agreement with previous results that some dTrans galaxies may simply be low-luminosity dwarf irregulars. We do not find a correlation between the recent star formation activity and the distance to the nearest neighboring galaxy, suggesting that the star formation process is not driven by gravitational interactions, but regulated internally. Further, we find a broadening in the star formation and gas properties (i.e., specific SFRs, stellar masses, and gas fractions) compared to the generally tight correlation found in more massive galaxies. Overall, the star formation and gas properties indicate these very low-mass galaxies host a fluctuating, non-deterministic, and inefficient star formation process.

  13. STAR FORMATION IN THE TAURUS FILAMENT L 1495: FROM DENSE CORES TO STARS

    International Nuclear Information System (INIS)

    Schmalzl, Markus; Kainulainen, Jouni; Henning, Thomas; Launhardt, Ralf; Quanz, Sascha P.; Alves, Joao; Goodman, Alyssa A.; Pineda, Jaime E.; Roman-Zuniga, Carlos G.

    2010-01-01

    We present a study of dense structures in the L 1495 filament in the Taurus Molecular Cloud and examine its star-forming properties. In particular, we construct a dust extinction map of the filament using deep near-infrared observations, exposing its small-scale structure in unprecedented detail. The filament shows highly fragmented substructures and a high mass-per-length value of M line = 17 M sun pc -1 , reflecting star-forming potential in all parts of it. However, a part of the filament, namely B 211, is remarkably devoid of young stellar objects. We argue that in this region the initial filament collapse and fragmentation is still taking place and star formation is yet to occur. In the star-forming part of the filament, we identify 39 cores with masses from 0.4 to 10 M sun and preferred separations in agreement with the local Jeans length. Most of these cores exceed the Bonnor-Ebert critical mass, and are therefore likely to collapse and form stars. The dense core mass function follows a power law with exponent Γ = 1.2 ± 0.2, a form commonly observed in star-forming regions.

  14. ULTRA-FAINT DWARF GALAXIES AS A TEST OF EARLY ENRICHMENT AND METALLICITY-DEPENDENT STAR FORMATION

    International Nuclear Information System (INIS)

    Tassis, Konstantinos; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-01-01

    The close relation of star formation with molecular gas indicated by observations and assumed in recent models implies that the efficiency with which galaxies convert their gas into stars depends on gas metallicity. This is because abundance of molecular hydrogen is sensitive to abundance of dust, which catalyzes formation of H 2 and helps to shield it from dissociating radiation. In this study, we point out that in the absence of significant pre-enrichment by Population III stars forming out of zero metallicity gas, such H 2 -based star formation is expected to leave an imprint in the form of bi-modality in the metallicity distribution among dwarf galaxies and in the metallicity distribution of stars within individual galaxies. The bi-modality arises because when gas metallicity (and dust abundance) is low, formation of molecular gas is inefficient, the gas consumption timescale is long, and star formation and metal enrichment proceed slowly. When metallicity reaches a critical threshold value star formation and enrichment accelerate, which leads to rapid increase in both stellar mass and metallicity of galaxies. We demonstrate this process both using a simple analytical model and full cosmological simulations. In contrast, the observed metallicity distributions of dwarf galaxies or stars within them are not bi-modal. We argue that this discrepancy points to substantial early stochastic pre-enrichment by Population III stars to levels Z ∼ 10 –2 Z ☉ in dense, star-forming regions of early galaxies.

  15. Ultraviolet interstellar absorption toward stars in the small Magellanic Cloud. III. THe structure and kinematics of Small Magellanic Cloud

    International Nuclear Information System (INIS)

    Fitzpatrick, A.L.

    1985-01-01

    The structure and kinematical properties of the Small Magellanic Cloud (SMC) are investigated by combining ultraviolet data obtained from the International Ultraviolet Explorer (IUE) satellite with existing optical and radio data. The SMC structure is complicated, undoubtedly a result of gravitational interaction with the Milky Way and the Large Magellanic Cloud, and is poorly understood. It has been known for some time that most of the H I in the SMC is concentrated in two complexes at velocities of approximately 134 and 167 km s -1 (heliocentric). Recent 21 cm emission surveys have revealed two additional, widespread H I components at approx.100 and approx.200 km s -1 . With the radio data alone, however, the relative line-of-sight locations of those complexes cannot be determined, nor can the associations of stars with the complexes be deduced. By using the ultraviolet interstellar absorption-line data in conjunction with radio and optical data, the stellar-interstellar kinematical and morphological relationships can be established. We find that in the southwest region of the SMC, most of the stars observed by IUE, including a group with only low-dispersion IUE spectra, are associated with the 134 km s -1 H I complex

  16. Star formation rates and abundance gradients in disk galaxies

    International Nuclear Information System (INIS)

    Wyse, R.F.G.; Silk, J.

    1989-01-01

    Analytic models for the evolution of disk galaxies are presented, placing special emphasis on the radial properties. These models are straightforward extensions of the original Schmidt (1959, 1963) models, with a dependence of star formation rate on gas density. The models provide successful descriptions of several measures of galactic disk evolution, including solar neighborhood chemical evolution, the presence and amplitude of metallicity and color gradients in disk galaxies, and the global rates of star formation in disk galaxies, and aid in the understanding of the apparent connection between young and old stellar populations in spiral galaxies. 67 refs

  17. The influence of airfoil kinematics on the formation of leading-edge vortices in bio-inspired flight

    Energy Technology Data Exchange (ETDEWEB)

    Rival, David; Prangemeier, Tim; Tropea, Cameron [Technische Universitaet Darmstadt (Germany). Institute of Fluid Mechanics and Aerodynamics

    2009-05-15

    The formation process of leading-edge vortices has been investigated experimentally using Particle Image Velocimetry. Various airfoil kinematics have been tested, including asymmetric and peak-shifted plunging motions, and are evaluated for Re = 30,000 and a reduced frequency range of 0.2{<=}k{<=}0.33. By measuring the growth in the leading-edge vortex during the dynamic-stall process, the vortex pinch-off process is examined based on the concept of an optimal vortex formation time. The various kinematics are then evaluated with respect to their associated vortex strength, timing and convection into the wake. (orig.)

  18. SUPPRESSION OF STAR FORMATION IN NGC 1266

    Energy Technology Data Exchange (ETDEWEB)

    Alatalo, Katherine; Lanz, Lauranne; Bitsakis, Theodoros; Appleton, Philip N.; Ogle, Patrick M. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Lacy, Mark; Lonsdale, Carol J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Nyland, Kristina; Meier, David S. [Physics Department, New Mexico Tech, Socorro, NM 87801 (United States); Cales, Sabrina L. [Department of Astronomy, Faculty of Physical and Mathematical Sciences, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Chang, Philip [Department of Physics, University of Wisconsin—Milwaukee, Milwaukee, WI 53201 (United States); Davis, Timothy A.; De Zeeuw, P. T. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Martín, Sergio, E-mail: kalatalo@ipac.caltech.edu [Institut de Radioastronomie Millimétrique, 300 Rue de la Piscine, Domaine Universitaire, F-38406 Saint Martin d' Hères (France)

    2015-01-01

    NGC 1266 is a nearby lenticular galaxy that harbors a massive outflow of molecular gas powered by the mechanical energy of an active galactic nucleus (AGN). It has been speculated that such outflows hinder star formation (SF) in their host galaxies, providing a form of feedback to the process of galaxy formation. Previous studies, however, indicated that only jets from extremely rare, high-power quasars or radio galaxies could impart significant feedback on their hosts. Here we present detailed observations of the gas and dust continuum of NGC 1266 at millimeter wavelengths. Our observations show that molecular gas is being driven out of the nuclear region at M-dot {sub out}≈110 M{sub ⊙} yr{sup –1}, of which the vast majority cannot escape the nucleus. Only 2 M {sub ☉} yr{sup –1} is actually capable of escaping the galaxy. Most of the molecular gas that remains is very inefficient at forming stars. The far-infrared emission is dominated by an ultra-compact (≲ 50 pc) source that could either be powered by an AGN or by an ultra-compact starburst. The ratio of the SF surface density (Σ{sub SFR}) to the gas surface density (Σ{sub H{sub 2}}) indicates that SF is suppressed by a factor of ≈50 compared to normal star-forming galaxies if all gas is forming stars, and ≈150 for the outskirt (98%) dense molecular gas if the central region is powered by an ultra-compact starburst. The AGN-driven bulk outflow could account for this extreme suppression by hindering the fragmentation and gravitational collapse necessary to form stars through a process of turbulent injection. This result suggests that even relatively common, low-power AGNs are able to alter the evolution of their host galaxies as their black holes grow onto the M-σ relation.

  19. Star formation in globular clusters and dwarf galaxies and implications for the early evolution of galaxies

    Science.gov (United States)

    Lin, Douglas N. C.; Murray, Stephen D.

    1991-01-01

    Based upon the observed properties of globular clusters and dwarf galaxies in the Local Group, we present important theoretical constraints on star formation in these systems. These constraints indicate that protoglobular cluster clouds had long dormant periods and a brief epoch of violent star formation. Collisions between protocluster clouds triggered fragmentation into individual stars. Most protocluster clouds dispersed into the Galactic halo during the star formation epoch. In contrast, the large spread in stellar metallicity in dwarf galaxies suggests that star formation in their pregenitors was self-regulated: we propose the protocluster clouds formed from thermal instability in the protogalactic clouds and show that a population of massive stars is needed to provide sufficient UV flux to prevent the collapsing protogalactic clouds from fragmenting into individual stars. Based upon these constraints, we propose a unified scenario to describe the early epochs of star formation in the Galactic halo as well as the thick and thin components of the Galactic disk.

  20. The formation and evolution of M33 as revealed by its star clusters

    Science.gov (United States)

    San Roman, Izaskun

    2012-03-01

    Numerical simulations based on the Lambda-Cold Dark Matter (Λ-CDM) model predict a scenario consistent with observational evidence in terms of the build-up of Milky Way-like halos. Under this scenario, large disk galaxies derive from the merger and accretion of many smaller subsystems. However, it is less clear how low-mass spiral galaxies fit into this picture. The best way to answer this question is to study the nearest example of a dwarf spiral galaxy, M33. We will use star clusters to understand the structure, kinematics and stellar populations of this galaxy. Star clusters provide a unique and powerful tool for studying the star formation histories of galaxies. In particular, the ages and metallicities of star clusters bear the imprint of the galaxy formation process. We have made use of the star clusters to uncover the formation and evolution of M33. In this dissertation, we have carried out a comprehensive study of the M33 star cluster system, including deep photometry as well as high signal-to-noise spectroscopy. In order to mitigate the significant incompleteness presents in previous catalogs, we have conducted ground-based and space-based photometric surveys of M33 star clusters. Using archival images, we have analyzed 12 fields using the Advanced Camera for Surveys Wide Field Channel onboard the Hubble Space Telescope (ACS/HST) along the major axis of the galaxy. We present integrated photometry and color-magnitude diagrams for 161 star clusters in M33, of which 115 were previously uncataloged. This survey extends the depth of the existing M33 cluster catalogs by ˜ 1 mag. We have expanded our search through a photometric survey in a 1° x 1° area centered on M33 using the MegaCam camera on the 3.6m Canada-France-Hawaii Telescope (CFHT). In this work we discuss the photometric properties of the sample, including color-color diagrams of 599 new candidate stellar clusters, and 204 confirmed clusters. Comparisons with models of simple stellar populations

  1. Low-Metallicity Blue Compact Dwarfs as Templates for Primordial Star Formation

    OpenAIRE

    Hunt, L. K.; Hirashita, H.; Thuan, T. X.; Izotov, Y. I.; Vanzi, L.

    2003-01-01

    Understanding how galaxies formed their first stars is a vital cosmological question, but the study of high-redshift objects, caught in the act of forming their first stars, is difficult. Here we argue that two extremely low-metallicity Blue Compact Dwarf galaxies (BCDs), IZw18 and SBS0335-052, could be local templates for primordial star formation, since both lack evolved ($> $1 Gyr) stellar populations; but they form stars differently.

  2. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)

    2015-03-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear.

  3. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph

    2015-01-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear

  4. Effect of Population III Multiplicity on Dark Star Formation

    Science.gov (United States)

    Stacy, Athena; Pawlik, Andreas H.; Bromm, Volker; Loeb, Abraham

    2012-01-01

    We numerically study the mutual interaction between dark matter (DM) and Population III (Pop III) stellar systems in order to explore the possibility of Pop III dark stars within this physical scenario. We perform a cosmological simulation, initialized at z approx. 100, which follows the evolution of gas and DM. We analyze the formation of the first mini halo at z approx. 20 and the subsequent collapse of the gas to densities of 10(exp 12)/cu cm. We then use this simulation to initialize a set of smaller-scale 'cut-out' simulations in which we further refine the DM to have spatial resolution similar to that of the gas. We test multiple DM density profiles, and we employ the sink particle method to represent the accreting star-forming region. We find that, for a range of DM configurations, the motion of the Pop III star-disk system serves to separate the positions of the protostars with respect to the DM density peak, such that there is insufficient DM to influence the formation and evolution of the protostars for more than approx. 5000 years. In addition, the star-disk system causes gravitational scattering of the central DM to lower densities, further decreasing the influence of DM over time. Any DM-powered phase of Pop III stars will thus be very short-lived for the typical multiple system, and DM will not serve to significantly prolong the life of Pop III stars.

  5. Formation of the First Stars and Blackholes

    Science.gov (United States)

    Yoshida, Naoki

    2018-05-01

    Cosmic reionization is thought to be initiated by the first generation of stars and blackholes. We review recent progress in theoretical studies of early structure formation. Cosmic structure formation is driven by gravitational instability of primeval density fluctuations left over from Big Bang. At early epochs, there are baryonic streaming motions with significant relative velocity with respect to dark matter. The formation of primordial gas clouds is typically delayed by the streaming motions, but then physical conditions for the so-called direct collapse blackhole formation are realized in proto-galactic halos. We present a promising model in which intermediate mass blackholes are formed as early as z = 30.

  6. Star formation induced by cloud-cloud collisions and galactic giant molecular cloud evolution

    Science.gov (United States)

    Kobayashi, Masato I. N.; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro; Fukui, Yasuo

    2018-05-01

    Recent millimeter/submillimeter observations towards nearby galaxies have started to map the whole disk and to identify giant molecular clouds (GMCs) even in the regions between galactic spiral structures. Observed variations of GMC mass functions in different galactic environments indicates that massive GMCs preferentially reside along galactic spiral structures whereas inter-arm regions have many small GMCs. Based on the phase transition dynamics from magnetized warm neutral medium to molecular clouds, Kobayashi et al. (2017, ApJ, 836, 175) proposes a semi-analytical evolutionary description for GMC mass functions including a cloud-cloud collision (CCC) process. Their results show that CCC is less dominant in shaping the mass function of GMCs than the accretion of dense H I gas driven by the propagation of supersonic shock waves. However, their formulation does not take into account the possible enhancement of star formation by CCC. Millimeter/submillimeter observations within the Milky Way indicate the importance of CCC in the formation of star clusters and massive stars. In this article, we reformulate the time-evolution equation largely modified from Kobayashi et al. (2017, ApJ, 836, 175) so that we additionally compute star formation subsequently taking place in CCC clouds. Our results suggest that, although CCC events between smaller clouds are more frequent than the ones between massive GMCs, CCC-driven star formation is mostly driven by massive GMCs ≳ 10^{5.5} M_{⊙} (where M⊙ is the solar mass). The resultant cumulative CCC-driven star formation may amount to a few 10 percent of the total star formation in the Milky Way and nearby galaxies.

  7. The AGN-Star Formation Connection: Future Prospects with JWST

    Science.gov (United States)

    Kirkpatrick, Allison; Alberts, Stacey; Pope, Alexandra; Barro, Guillermo; Bonato, Matteo; Kocevski, Dale D.; Pérez-González, Pablo; Rieke, George H.; Rodríguez-Muñoz, Lucia; Sajina, Anna; Grogin, Norman A.; Mantha, Kameswara Bharadwaj; Pandya, Viraj; Pforr, Janine; Salvato, Mara; Santini, Paola

    2017-11-01

    The bulk of the stellar growth over cosmic time is dominated by IR-luminous galaxies at cosmic noon (z=1{--}2), many of which harbor a hidden active galactic nucleus (AGN). We use state-of-the-art infrared color diagnostics, combining Spitzer and Herschel observations, to separate dust-obscured AGNs from dusty star-forming galaxies (SFGs) in the CANDELS and COSMOS surveys. We calculate 24 μm counts of SFGs, AGN/star-forming “Composites,” and AGNs. AGNs and Composites dominate the counts above 0.8 mJy at 24 μm, and Composites form at least 25% of an IR sample even to faint detection limits. We develop methods to use the Mid-Infrared Instrument (MIRI) on JWST to identify dust-obscured AGNs and Composite galaxies from z˜ 1{--}2. With the sensitivity and spacing of MIRI filters, we will detect >4 times as many AGN hosts as with Spitzer/IRAC criteria. Any star formation rates based on the 7.7 μm PAH feature (likely to be applied to MIRI photometry) must be corrected for the contribution of the AGN, or the star formation rate will be overestimated by ˜35% for cases where the AGN provides half the IR luminosity and ˜50% when the AGN accounts for 90% of the luminosity. Finally, we demonstrate that our MIRI color technique can select AGNs with an Eddington ratio of {λ }{Edd}˜ 0.01 and will identify AGN hosts with a higher specific star formation rate than X-ray techniques alone. JWST/MIRI will enable critical steps forward in identifying and understanding dust-obscured AGNs and the link to their host galaxies.

  8. STAR FORMATION LAWS: THE EFFECTS OF GAS CLOUD SAMPLING

    International Nuclear Information System (INIS)

    Calzetti, D.; Liu, G.; Koda, J.

    2012-01-01

    Recent observational results indicate that the functional shape of the spatially resolved star formation-molecular gas density relation depends on the spatial scale considered. These results may indicate a fundamental role of sampling effects on scales that are typically only a few times larger than those of the largest molecular clouds. To investigate the impact of this effect, we construct simple models for the distribution of molecular clouds in a typical star-forming spiral galaxy and, assuming a power-law relation between star formation rate (SFR) and cloud mass, explore a range of input parameters. We confirm that the slope and the scatter of the simulated SFR-molecular gas surface density relation depend on the size of the sub-galactic region considered, due to stochastic sampling of the molecular cloud mass function, and the effect is larger for steeper relations between SFR and molecular gas. There is a general trend for all slope values to tend to ∼unity for region sizes larger than 1-2 kpc, irrespective of the input SFR-cloud relation. The region size of 1-2 kpc corresponds to the area where the cloud mass function becomes fully sampled. We quantify the effects of selection biases in data tracing the SFR, either as thresholds (i.e., clouds smaller than a given mass value do not form stars) or as backgrounds (e.g., diffuse emission unrelated to current star formation is counted toward the SFR). Apparently discordant observational results are brought into agreement via this simple model, and the comparison of our simulations with data for a few galaxies supports a steep (>1) power-law index between SFR and molecular gas.

  9. The Galactic Distribution of Massive Star Formation from the Red MSX Source Survey

    Science.gov (United States)

    Figura, Charles C.; Urquhart, J. S.

    2013-01-01

    Massive stars inject enormous amounts of energy into their environments in the form of UV radiation and molecular outflows, creating HII regions and enriching local chemistry. These effects provide feedback mechanisms that aid in regulating star formation in the region, and may trigger the formation of subsequent generations of stars. Understanding the mechanics of massive star formation presents an important key to understanding this process and its role in shaping the dynamics of galactic structure. The Red MSX Source (RMS) survey is a multi-wavelength investigation of ~1200 massive young stellar objects (MYSO) and ultra-compact HII (UCHII) regions identified from a sample of colour-selected sources from the Midcourse Space Experiment (MSX) point source catalog and Two Micron All Sky Survey. We present a study of over 900 MYSO and UCHII regions investigated by the RMS survey. We review the methods used to determine distances, and investigate the radial galactocentric distribution of these sources in context with the observed structure of the galaxy. The distribution of MYSO and UCHII regions is found to be spatially correlated with the spiral arms and galactic bar. We examine the radial distribution of MYSOs and UCHII regions and find variations in the star formation rate between the inner and outer Galaxy and discuss the implications for star formation throughout the galactic disc.

  10. Surveying Low-Mass Star Formation with the Submillimeter Array

    Science.gov (United States)

    Dunham, Michael

    2018-01-01

    Large astronomical surveys yield important statistical information that can’t be derived from single-object and small-number surveys. In this talk I will review two recent surveys in low-mass star formation undertaken by the Submillimeter Array (SMA): a millimeter continuum survey of disks surrounding variably accreting young stars, and a complete continuum and molecular line survey of all protostars in the nearby Perseus Molecular Cloud. I will highlight several new insights into the processes by which low-mass stars gain their mass that have resulted from the statistical power of these surveys.

  11. Dwarf galaxies with ionizing radiation feedback. II. Spatially resolved star formation relation

    International Nuclear Information System (INIS)

    Kim, Ji-hoon; Krumholz, Mark R.; Goldbaum, Nathan J.; Wise, John H.; Turk, Matthew J.; Abel, Tom

    2013-01-01

    We investigate the spatially resolved star formation relation using a galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation. Our new implementation of stellar feedback includes ionizing radiation as well as supernova explosions, and we handle ionizing radiation by solving the radiative transfer equation rather than by a subgrid model. Photoheating by stellar radiation stabilizes gas against Jeans fragmentation, reducing the star formation rate (SFR). Because we have self-consistently calculated the location of ionized gas, we are able to make simulated, spatially resolved observations of star formation tracers, such as Hα emission. We can also observe how stellar feedback manifests itself in the correlation between ionized and molecular gas. Applying our techniques to the disk in a galactic halo of 2.3 × 10 11 M ☉ , we find that the correlation between SFR density (estimated from mock Hα emission) and H 2 density shows large scatter, especially at high resolutions of ≲75 pc that are comparable to the size of giant molecular clouds (GMCs). This is because an aperture of GMC size captures only particular stages of GMC evolution and because Hα traces hot gas around star-forming regions and is displaced from the H 2 peaks themselves. By examining the evolving environment around star clusters, we speculate that the breakdown of the traditional star formation laws of the Kennicutt-Schmidt type at small scales is further aided by a combination of stars drifting from their birthplaces and molecular clouds being dispersed via stellar feedback.

  12. Dwarf galaxies with ionizing radiation feedback. II. Spatially resolved star formation relation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-hoon; Krumholz, Mark R.; Wise, John H.; Turk, Matthew J.; Goldbaum, Nathan J.; Abel, Tom

    2013-11-15

    AWe investigate the spatially resolved star formation relation using a galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation. Our new implementation of stellar feedback includes ionizing radiation as well as supernova explosions, and we handle ionizing radiation by solving the radiative transfer equation rather than by a subgrid model. Photoheating by stellar radiation stabilizes gas against Jeans fragmentation, reducing the star formation rate (SFR). Because we have self-consistently calculated the location of ionized gas, we are able to make simulated, spatially resolved observations of star formation tracers, such as Hα emission. We can also observe how stellar feedback manifests itself in the correlation between ionized and molecular gas. Applying our techniques to the disk in a galactic halo of 2.3 × 1011 M , we find that the correlation between SFR density (estimated from mock Hα emission) and H2 density shows large scatter, especially at high resolutions of ≲ 75 pc that are comparable to the size of giant molecular clouds (GMCs). This is because an aperture of GMC size captures only particular stages of GMC evolution and because Hα traces hot gas around star-forming regions and is displaced from the H2 peaks themselves. By examining the evolving environment around star clusters, we speculate that the breakdown of the traditional star formation laws of the Kennicutt-Schmidt type at small scales is further aided by a combination of stars drifting from their birthplaces and molecular clouds being dispersed via stellar feedback.

  13. STAR FORMATION LAWS AND THRESHOLDS FROM INTERSTELLAR MEDIUM STRUCTURE AND TURBULENCE

    International Nuclear Information System (INIS)

    Renaud, Florent; Kraljic, Katarina; Bournaud, Frédéric

    2012-01-01

    We present an analytical model of the relation between the surface density of gas and star formation rate in galaxies and clouds, as a function of the presence of supersonic turbulence and the associated structure of the interstellar medium (ISM). The model predicts a power-law relation of index 3/2, flattened under the effects of stellar feedback at high densities or in very turbulent media, and a break at low surface densities when ISM turbulence becomes too weak to induce strong compression. This model explains the diversity of star formation laws and thresholds observed in nearby spirals and their resolved regions, the Small Magellanic Cloud, high-redshift disks and starbursting mergers, as well as Galactic molecular clouds. While other models have proposed interstellar dust content and molecule formation to be key ingredients to the observed variations of the star formation efficiency, we demonstrate instead that these variations can be explained by ISM turbulence and structure in various types of galaxies.

  14. X-ray sources in regions of star formation. II. The pre-main-sequence G star HDE 283572

    International Nuclear Information System (INIS)

    Walter, F.M.; Brown, A.; Linsky, J.L.; Rydgren, A.E.; Vrba, F.; Joint Institute for Laboratory Astrophysics, Boulder, CO; Computer Sciences Corp., El Segundo, CA; Naval Observatory, Flagstaff, AZ)

    1987-01-01

    This paper reports the detection of HDE 283572, a ninth-magnitude G star 8 arcmin south of RY Tau, as a bright X-ray source. The observations reveal this object to be a fairly massive (about 2 solar masses) pre-main-sequence star associated with the Taurus-Auriga star formation complex. It exhibits few of the characteristics of the classical T Tauri stars and is a good example of a naked T Tauri star. The star is a mid-G subgiant, of about three solar radii and rotates with a period of 1.5 d. The coronal and chromospheric surface fluxes are similar to those of the most active late type stars (excluding T Tauri stars). The X-ray and UV lines most likely arise in different atmospheric structures. Radiative losses are some 1000 times the quiet solar value and compare favorably with those of T Tauri stars. 49 references

  15. Unveiling the inner morphology and gas kinematics of NGC 5135 with ALMA

    Science.gov (United States)

    Sabatini, G.; Gruppioni, C.; Massardi, M.; Giannetti, A.; Burkutean, S.; Cimatti, A.; Pozzi, F.; Talia, M.

    2018-06-01

    The local Seyfert 2 galaxy NGC 5135, thanks to its almost face-on appearance, a bulge overdensity of stars, the presence of a large-scale bar, an active galactic nucleus (AGN) and a supernova remnant, is an excellent target to investigate the dynamics of inflows, outflows, star formation, and AGN feedback. Here, we present a reconstruction of the gas morphology and kinematics in the inner regions of this galaxy, based on the analysis of Atacama Large Millimeter Array (ALMA) archival data. For this purpose, we combine the available ˜100 pc resolution ALMA 1.3 and 0.45 mm observations of dust continuum emission, the spectroscopic maps of two transitions of the CO molecule (tracer of molecular gas mass in star-forming and nuclear regions), and of the CS molecule (tracer of the dense star-forming regions) with the outcome of the spectral energy distribution decomposition. By applying the 3DBAROLO software (3D-Based Analysis of Rotating Objects from Line Observations), we have been able to fit the galaxy rotation curve using a 3D tilted-ring model of the disc. Most of the observed emitting features are described by our kinematic model. We also attempt an interpretation for the emission in a few regions that the axisymmetric model fails to reproduce. The most relevant of these is a region at the northern edge of the inner bar, where multiple velocity components overlap, as a possible consequence of the expansion of a superbubble.

  16. MEASURING GALAXY STAR FORMATION RATES FROM INTEGRATED PHOTOMETRY: INSIGHTS FROM COLOR-MAGNITUDE DIAGRAMS OF RESOLVED STARS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Benjamin D. [Institute d' Astrophysique de Paris, CNRS, UPMC, 98bis Bd Arago, F-75014 Paris (France); Weisz, Daniel R.; Dalcanton, Julianne J.; Johnson, L. C.; Williams, Benjamin F. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Dale, Daniel A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Dolphin, Andrew E. [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Gil de Paz, Armando [CEI Campus Moncloa, UCM-UPM, Departamento de Astrofisica y CC. de la Atmosfera, Facultad de CC. Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain); Kennicutt, Robert C. Jr. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Lee, Janice C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Skillman, Evan D. [Department of Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Boquien, Mederic [Marseille Universite, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France)

    2013-07-20

    We use empirical star formation histories (SFHs), measured from Hubble-Space-Telescope-based resolved star color-magnitude diagrams, as input into population synthesis codes to model the broadband spectral energy distributions (SEDs) of 50 nearby dwarf galaxies (6.5 < log M{sub *}/M{sub Sun} < 8.5, with metallicities {approx}10% solar). In the presence of realistic SFHs, we compare the modeled and observed SEDs from the ultraviolet (UV) through near-infrared and assess the reliability of widely used UV-based star formation rate (SFR) indicators. In the FUV through i bands, we find that the observed and modeled SEDs are in excellent agreement. In the Spitzer 3.6 {mu}m and 4.5 {mu}m bands, we find that modeled SEDs systematically overpredict observed luminosities by up to {approx}0.2 dex, depending on treatment of the TP-AGB stars in the synthesis models. We assess the reliability of UV luminosity as a SFR indicator, in light of independently constrained SFHs. We find that fluctuations in the SFHs alone can cause factor of {approx}2 variations in the UV luminosities relative to the assumption of a constant SFH over the past 100 Myr. These variations are not strongly correlated with UV-optical colors, implying that correcting UV-based SFRs for the effects of realistic SFHs is difficult using only the broadband SED. Additionally, for this diverse sample of galaxies, we find that stars older than 100 Myr can contribute from <5%-100% of the present day UV luminosity, highlighting the challenges in defining a characteristic star formation timescale associated with UV emission. We do find a relationship between UV emission timescale and broadband UV-optical color, though it is different than predictions based on exponentially declining SFH models. Our findings have significant implications for the comparison of UV-based SFRs across low-metallicity populations with diverse SFHs.

  17. Constraining the Nature of Dark Matter with the Star-formation History of the Faintest Local Group Dwarf Galaxy Satellites

    International Nuclear Information System (INIS)

    Chau, Alice; Mayer, Lucio; Governato, Fabio

    2017-01-01

    Λ warm dark matter (ΛWDM), realized by collisionless particles of 1–3 keV, has been proposed as an alternative scenario to Λ-Cold-Dark Matter (ΛCDM) for the dwarf galaxy scale discrepancies. We present an approach to test the viability of such WDM models using star-formation histories (SFHs) of the dwarf spheroidal galaxies (dSphs) in the Local Group. We compare their high-time-resolution SFHs with the collapse redshift of their dark halos in CDM and WDM. Collapse redshift is inferred after determining the subhalo infall mass. This is based on the dwarf current mass inferred from stellar kinematics, combined with cosmological simulation results on subhalo evolution. WDM subhalos close to the filtering mass scale, forming significantly later than CDM, are the most difficult to reconcile with early truncation of star formation ( z ≥ 3). The ultra-faint dwarfs (UFDs) provide the most stringent constraints. Using six UFDs and eight classical dSphs, we show that a 1 keV particle is strongly disfavored, consistently with other reported methods. Excluding other models is only hinted for a few UFDs. Other UFDs for which the lack of robust constraints on halo mass prevents us from carrying out our analysis rigorously, show a very early onset of star formation that will strengthen the constraints delivered by our method in the future. We discuss the various caveats, notably the low number of dwarfs with accurately determined SFHs and the uncertainties when determining the subhalo infall mass, most notably the baryonic physics. Our preliminary analysis may serve as a pathfinder for future investigations that will combine accurate SFHs for local dwarfs with direct analysis of WDM simulations with baryons.

  18. Constraining the Nature of Dark Matter with the Star-formation History of the Faintest Local Group Dwarf Galaxy Satellites

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Alice; Mayer, Lucio [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Governato, Fabio [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States)

    2017-08-10

    Λ warm dark matter (ΛWDM), realized by collisionless particles of 1–3 keV, has been proposed as an alternative scenario to Λ-Cold-Dark Matter (ΛCDM) for the dwarf galaxy scale discrepancies. We present an approach to test the viability of such WDM models using star-formation histories (SFHs) of the dwarf spheroidal galaxies (dSphs) in the Local Group. We compare their high-time-resolution SFHs with the collapse redshift of their dark halos in CDM and WDM. Collapse redshift is inferred after determining the subhalo infall mass. This is based on the dwarf current mass inferred from stellar kinematics, combined with cosmological simulation results on subhalo evolution. WDM subhalos close to the filtering mass scale, forming significantly later than CDM, are the most difficult to reconcile with early truncation of star formation ( z ≥ 3). The ultra-faint dwarfs (UFDs) provide the most stringent constraints. Using six UFDs and eight classical dSphs, we show that a 1 keV particle is strongly disfavored, consistently with other reported methods. Excluding other models is only hinted for a few UFDs. Other UFDs for which the lack of robust constraints on halo mass prevents us from carrying out our analysis rigorously, show a very early onset of star formation that will strengthen the constraints delivered by our method in the future. We discuss the various caveats, notably the low number of dwarfs with accurately determined SFHs and the uncertainties when determining the subhalo infall mass, most notably the baryonic physics. Our preliminary analysis may serve as a pathfinder for future investigations that will combine accurate SFHs for local dwarfs with direct analysis of WDM simulations with baryons.

  19. EARLY-STAGE MASSIVE STAR FORMATION NEAR THE GALACTIC CENTER: Sgr C

    Energy Technology Data Exchange (ETDEWEB)

    Kendrew, S.; Johnston, K.; Beuther, H. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Ginsburg, A.; Bally, J.; Battersby, C. [CASA, University of Colorado at Boulder, UCB 389, Boulder, CO 80309 (United States); Cyganowski, C. J., E-mail: kendrew@mpia.de [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2013-10-01

    We present near-infrared spectroscopy and 1 mm line and continuum observations of a recently identified site of high mass star formation likely to be located in the Central Molecular Zone (CMZ) near Sgr C. Located on the outskirts of the massive evolved H II region associated with Sgr C, the area is characterized by an Extended Green Object (EGO) measuring ∼10'' in size (0.4 pc), whose observational characteristics suggest the presence of an embedded massive protostar driving an outflow. Our data confirm that early-stage star formation is taking place on the periphery of the Sgr C H II region, with detections of two protostellar cores and several knots of H{sub 2} and Brackett γ emission alongside a previously detected compact radio source. We calculate the cores' joint mass to be ∼10{sup 3} M {sub ☉}, with column densities of 1-2 × 10{sup 24} cm{sup –2}. We show the host molecular cloud to hold ∼10{sup 5} M {sub ☉} of gas and dust with temperatures and column densities favorable for massive star formation to occur, however, there is no evidence of star formation outside of the EGO, indicating that the cloud is predominantly quiescent. Given its mass, density, and temperature, the cloud is comparable to other remarkable non-star-forming clouds such as G0.253 in the eastern CMZ.

  20. Search for molecular outflows associated with peculiar nebulosities and regions of star formation

    Energy Technology Data Exchange (ETDEWEB)

    Torrelles, J M; Rodriguez, L F; Canto, J; Marcaide, J; Gyulbudaghian, A L

    1983-01-01

    We surveyed an extensive list of peculiar nebulosities and regions of star formation searching for conspicuous cases of high-velocity carbon monoxide emission. We detected an apparently isotropic outflow associated with the star-forming region GL 2591. Among the other sources surveyed, the cometary nebula GM 24 is of interest since it is located in a very hot molecular spot where formation of massive stars took place recently.

  1. THE STAR FORMATION HISTORY OF ISOLATED DWARF UGC 4879

    International Nuclear Information System (INIS)

    Jacobs, Bradley A.; Tully, R. Brent; Rizzi, Luca; Karachentsev, Igor D.; Chiboucas, Kristin; Held, Enrico V.

    2011-01-01

    Recent observations of UGC 4879 with the Advanced Camera for Surveys on the Hubble Space Telescope confirm that it is a nearby isolated dwarf irregular galaxy. We measure a distance of 1.36 ± 0.03 Mpc using the tip of the red giant branch method. This distance puts UGC 4879 beyond the radius of first turnaround of the Local Group and ∼700 kpc from its nearest neighbor Leo A. This isolation makes this galaxy an ideal laboratory for studying pristine star formation uncomplicated by interactions with other galaxies. We present the star formation history of UGC 4879 derived from simulated color-magnitude diagrams.

  2. STAR FORMATION IN 30 DORADUS

    International Nuclear Information System (INIS)

    De Marchi, Guido; Spezzi, Loredana; Sirianni, Marco; Andersen, Morten; Paresce, Francesco; Panagia, Nino; Mutchler, Max; Whitmore, Bradley C.; Bond, Howard; Beccari, Giacomo; Balick, Bruce; Dopita, Michael A.; Frogel, Jay A.; Calzetti, Daniela; Marcella Carollo, C.; Disney, Michael J.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.

    2011-01-01

    Using observations obtained with the Wide-Field Camera 3 on board the Hubble Space Telescope, we have studied the properties of the stellar populations in the central regions of 30 Dor in the Large Magellanic Cloud. The observations clearly reveal the presence of considerable differential extinction across the field. We characterize and quantify this effect using young massive main-sequence stars to derive a statistical reddening correction for most objects in the field. We then search for pre-main-sequence (PMS) stars by looking for objects with a strong (>4σ) Hα excess emission and find about 1150 of them over the entire field. Comparison of their location in the Hertzsprung-Russell diagram with theoretical PMS evolutionary tracks for the appropriate metallicity reveals that about one-third of these objects are younger than ∼4 Myr, compatible with the age of the massive stars in the central ionizing cluster R 136, whereas the rest have ages up to ∼30 Myr, with a median age of ∼12 Myr. This indicates that star formation has proceeded over an extended period of time, although we cannot discriminate between an extended episode and a series of short and frequent bursts that are not resolved in time. While the younger PMS population preferentially occupies the central regions of the cluster, older PMS objects are more uniformly distributed across the field and are remarkably few at the very center of the cluster. We attribute this latter effect to photo-evaporation of the older circumstellar disks caused by the massive ionizing members of R 136.

  3. The PdBI Arcsecond Whirlpool Survey (PAWS): The Role of Spiral Arms in Cloud and Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Schinnerer, Eva; Meidt, Sharon E.; Querejeta, Miguel [MPI for Astronomy, Königstuhl 17, D-69117, Heidelberg (Germany); Colombo, Dario [MPI for Radioastronomy, Auf dem Hgel, Bonn (Germany); Chandar, Rupali [Department of Physics and Astronomy, The University of Toledo, RO 106, Toledo, OH 43606 (United States); Dobbs, Clare L. [School of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); García-Burillo, Santiago [Observatorio Astronómico Nacional—OAN, Observatorio de Madrid Alfonso XII, 3, E-28014, Madrid (Spain); Hughes, Annie [IRAP, 9, avenue du Colonel Roche, BP 44346-31028 Toulouse cedex 4 (France); Leroy, Adam K. [Department of Astronomy, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Pety, Jérôme [Institut de Radioastronomie Millimétrique, 300 Rue de la Piscine, F-38406, Saint Martin d’Hères (France); Kramer, Carsten [Instituto Radioastronomía Milimétrica, Av. Divina Pastora 7, Nucleo Central, E-18012, Granada (Spain); Schuster, Karl F. [Observatoire de Paris, 61 Avenue de l’Observatoire, F-75014, Paris (France)

    2017-02-10

    The process that leads to the formation of the bright star-forming sites observed along prominent spiral arms remains elusive. We present results of a multi-wavelength study of a spiral arm segment in the nearby grand-design spiral galaxy M51 that belongs to a spiral density wave and exhibits nine gas spurs. The combined observations of the (ionized, atomic, molecular, dusty) interstellar medium with star formation tracers (H ii regions, young <10 Myr stellar clusters) suggest (1) no variation in giant molecular cloud (GMC) properties between arm and gas spurs, (2) gas spurs and extinction feathers arising from the same structure with a close spatial relation between gas spurs and ongoing/recent star formation (despite higher gas surface densities in the spiral arm), (3) no trend in star formation age either along the arm or along a spur, (4) evidence for strong star formation feedback in gas spurs, (5) tentative evidence for star formation triggered by stellar feedback for one spur, and (6) GMC associations being not special entities but the result of blending of gas arm/spur cross sections in lower resolution observations. We conclude that there is no evidence for a coherent star formation onset mechanism that can be solely associated with the presence of the spiral density wave. This suggests that other (more localized) mechanisms are important to delay star formation such that it occurs in spurs. The evidence of star formation proceeding over several million years within individual spurs implies that the mechanism that leads to star formation acts or is sustained over a longer timescale.

  4. Star Formation Activity in CLASH Brightest Cluster Galaxies

    Science.gov (United States)

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-01

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M⊙ yr-1. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ˜350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ˜0.5-1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel

  5. Dynamical and photometric models of star formation in tidal tails

    International Nuclear Information System (INIS)

    Wallin, J.F.

    1990-01-01

    An investigation into the causes of star formation in tidal tails has been conducted using a restricted three-body dynamical model in conjunction with a broadband photometric evolutionary code. Test particles are initially placed in circular orbits around a softened point mass and then perturbed by a companion passing in a parabotic orbit. During the passage, the density evolution of the galaxy is examined both in regions within the disk and in selected comoving regions in the tidal features. Even without the inclusion of self-gravity and hydrodynamics, regions of compression form inside the disk, along the tidal tail, and in the tidal bridge causing local density increases of up to 500 percent. By assuming that the density changes relate to the star-formation rate via a Schmidt (1959) law, limits on the density changes needed to make detectable changes in the colors are calculated. A spiral galaxy population is synthesized and the effects of modest changes in the star-formation rate are explored using a broadband photometric evolutionary code. Density changes similar to those found in the dynamical models will cause detectable changes in the colors of a stellar population. From these models, it is determined that the blue colors and knotty features observed in the tidal features of some galaxies result from increased rates of star formation induced by tidally produced density increases. Limitations of this model are discussed along with photometric evolutionary models based on the density evolution in the tails. 52 refs

  6. The spatial extent and distribution of star formation in 3D-HST mergers at z ˜ 1.5

    Science.gov (United States)

    Schmidt, Kasper B.; Rix, Hans-Walter; da Cunha, Elisabete; Brammer, Gabriel B.; Cox, Thomas J.; van Dokkum, Pieter; Förster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Jonsson, Patrik; Lundgren, Britt; Maseda, Michael V.; Momcheva, Ivelina; Nelson, Erica J.; Skelton, Rosalind E.; van der Wel, Arjen; Whitaker, Katherine E.

    2013-06-01

    We present an analysis of the spatial distribution of star formation in a sample of 60 visually identified galaxy merger candidates at z > 1. Our sample, drawn from the 3D-HST survey, is flux limited and was selected to have high star formation rates based on fits of their broad-band, low spatial resolution spectral energy distributions. It includes plausible pre-merger (close pairs) and post-merger (single objects with tidal features) systems, with total stellar masses and star formation rates derived from multiwavelength photometry. Here we use near-infrared slitless spectra from 3D-HST which produce Hα or [O III] emission line maps as proxies for star formation maps. This provides a first comprehensive high-resolution, empirical picture of where star formation occurred in galaxy mergers at the epoch of peak cosmic star formation rate. We find that detectable star formation can occur in one or both galaxy centres, or in tidal tails. The most common case (58 per cent) is that star formation is largely concentrated in a single, compact region, coincident with the centre of (one of) the merger components. No correlations between star formation morphology and redshift, total stellar mass or star formation rate are found. A restricted set of hydrodynamical merger simulations between similarly massive and gas-rich objects implies that star formation should be detectable in both merger components, when the gas fractions of the individual components are the same. This suggests that z ˜ 1.5 mergers typically occur between galaxies whose gas fractions, masses and/or star formation rates are distinctly different from one another.

  7. A SPITZER CENSUS OF STAR FORMATION ACTIVITY IN THE PIPE NEBULA

    International Nuclear Information System (INIS)

    Forbrich, Jan; Lada, Charles J.; Muench, August A.; Alves, Joao; Lombardi, Marco

    2009-01-01

    The Pipe Nebula, a large nearby molecular cloud, lacks obvious signposts of star formation in all but one of more than 130 dust extinction cores that have been identified within it. In order to quantitatively determine the current level of star formation activity in the Pipe Nebula, we analyzed 13 deg 2 of sensitive mid-infrared maps of the entire cloud, obtained with the Multiband Imaging Photometer for Spitzer at wavelengths of 24 μm and 70 μm, to search for candidate young stellar objects (YSOs) in the high-extinction regions. We argue that our search is complete for class I and typical class II YSOs with luminosities of L bol ∼ 0.2 L sun and greater. We find only 18 candidate YSOs in the high-extinction regions of the entire Pipe cloud. Twelve of these sources are previously known members of a small cluster associated with Barnard 59, the largest and most massive dense core in the cloud. With only six candidate class I and class II YSOs detected toward extinction cores outside of this cluster, our findings emphatically confirm the notion of an extremely low level of star formation activity in the Pipe Nebula. The resulting star formation efficiency for the entire cloud mass is only ∼0.06%.

  8. A Herschel view of IC 1396 A: Unveiling the different sequences of star formation

    NARCIS (Netherlands)

    Sicilia-Aguilar, Aurora; Roccatagliata, Veronica; Getman, Konstantin; Henning, Thomas; Merín, Bruno; Eiroa, Carlos; Rivière-Marichalar, Pablo; Currie, Thayne

    Context. The IC 1396 A globule, located to the west of the young cluster Tr 37, is known to host many very young stars and protostars, and is also assumed to be a site of triggered star formation. Aims: Our aim is to test the triggering mechanisms and sequences leading to star formation in Tr 37 and

  9. THE STELLAR AND GAS KINEMATICS OF THE LITTLE THINGS DWARF IRREGULAR GALAXY NGC 1569

    International Nuclear Information System (INIS)

    Johnson, Megan; Hunter, Deidre A.; Zhang, Hong-Xin; Herrmann, Kimberly; Oh, Se-Heon; Elmegreen, Bruce; Brinks, Elias; Tollerud, Erik

    2012-01-01

    In order to understand the formation and evolution of Magellanic-type dwarf irregular (dIm) galaxies, one needs to understand their three-dimensional structure. We present measurements of the stellar velocity dispersion in NGC 1569, a nearby post-starburst dIm galaxy. The stellar vertical velocity dispersion, σ z , coupled with the maximum rotational velocity derived from H I observations, V max , gives a measure of how kinematically hot the galaxy is, and, therefore, indicates its structure. We conclude that the stars in NGC 1569 are in a thick disk with a V max /σ z = 2.4 ± 0.7. In addition to the structure, we analyze the ionized gas kinematics from O III observations along the morphological major axis. These data show evidence for outflow from the inner starburst region and a potential expanding shell near supermassive star cluster (SSC) A. When compared to the stellar kinematics, the velocity dispersion of the stars increases in the region of SSC A supporting the hypothesis of an expanding shell. The stellar kinematics closely follow the motion of the gas. Analysis of high-resolution H I data clearly reveals the presence of an H I cloud that appears to be impacting the eastern edge of NGC 1569. Also, an ultra-dense H I cloud can be seen extending to the west of the impacting H I cloud. This dense cloud is likely the remains of a dense H I bridge that extended through what is now the central starburst area. The impacting H I cloud was the catalyst for the starburst, thus turning the dense gas into stars over a short timescale, ∼1 Gyr. We performed a careful study of the spectral energy distribution using infrared, optical, and ultraviolet photometry, producing a state-of-the-art mass model for the stellar disk. This mass modeling shows that stars dominate the gravitational potential in the inner 1 kpc. The dynamical mass of NGC 1569, derived from V max , shows that the disk may be dark matter deficient in the inner region, although, when compared to the

  10. The Star Formation History in the M31 Bulge

    Science.gov (United States)

    Dong, Hui; Olsen, Knut; Lauer, Tod; Saha, Abhijit; Li, Zhiyuan; García-Benito, Ruben; Schödel, Rainer

    2018-05-01

    We present the study of stellar populations in the central 5.5' (˜1.2 kpc) of the M31 bulge by using the optical color magnitude diagram derived from HST ACS WFC/HRC observations. In order to enhance image quality and then obtain deeper photometry, we construct Nyquist-sampled images and use a deconvolution method to detect sources and measure their photometry. We demonstrate that our method performs better than DOLPHOT in the extremely crowded region. The resolved stars in the M31 bulge have been divided into nine annuli and the color magnitude diagram fitting is performed for each of them. We confirm that the majority of stars (>70%) in the M31 bulge are indeed very old (> 5 Gyr) and metal-rich ([Fe/H]˜0.3). At later times, the star formation rate decreased and then experienced a significant rise around 1 Gyr ago, which pervaded the entire M31 bulge. After that, stars formed at less than 500 Myr ago in the central 130" . Through simulation, we find that these intermediate-age stars cannot be the artifacts introduced by the blending effect. Our results suggest that although the majority of the M31 bulge are very old, the secular evolutionary process still continuously builds up the M31 bulge slowly. We compare our star formation history with an older analysis derived from the spectral energy distribution fitting, which suggests that the latter one is still a reasonable tool for the study of stellar populations in remote galaxies.

  11. The Pleiades apex and its kinematical structure

    Science.gov (United States)

    Elsanhoury, W. H.; Postnikova, E. S.; Chupina, N. V.; Vereshchagin, S. V.; Sariya, Devesh P.; Yadav, R. K. S.; Jiang, Ing-Guey

    2018-03-01

    A study of cluster characteristics and internal kinematical structure of the middle-aged Pleiades open star cluster is presented. The individual star apexes and various cluster kinematical parameters including the velocity ellipsoid parameters are determined using both Hipparcos and Gaia data. Modern astrometric parameters were taken from the Gaia Data Release 1 (DR1) in combination with the Radial Velocity Experiment Fifth Data Release (DR5). The necessary set of parameters including parallaxes, proper motions and radial velocities are used for n=17 stars from Gaia DR1+RAVE DR5 and for n=19 stars from the Hipparcos catalog using SIMBAD data base. Single stars are used to improve accuracy by eliminating orbital movements. RAVE DR5 measurements were taken only for the stars with the radial velocity errors not exceeding 2 km/s. For the Pleiades stars taken from Gaia, we found mean heliocentric distance as 136.8 ± 6.4 pc, and the apex position is calculated as: A_{CP}=92°.52± 1°.72, D_{CP}=-42°.28± 2°.56 by the convergent point method and A0=95°.59± 2°.30 and D0=-50°.90± 2°.04 using AD-diagram method (n=17 in both cases). The results are compared with those obtained historically before the Gaia mission era.

  12. Large-scale Star-formation-driven Outflows at 1 3D-HST Survey

    Science.gov (United States)

    Lundgren, Britt F.; Brammer, Gabriel; van Dokkum, Pieter; Bezanson, Rachel; Franx, Marijn; Fumagalli, Mattia; Momcheva, Ivelina; Nelson, Erica; Skelton, Rosalind E.; Wake, David; Whitaker, Katherine; da Cunha, Elizabete; Erb, Dawn K.; Fan, Xiaohui; Kriek, Mariska; Labbé, Ivo; Marchesini, Danilo; Patel, Shannon; Rix, Hans Walter; Schmidt, Kasper; van der Wel, Arjen

    2012-11-01

    We present evidence of large-scale outflows from three low-mass (log(M */M ⊙) ~ 9.75) star-forming (SFR > 4 M ⊙ yr-1) galaxies observed at z = 1.24, z = 1.35, and z = 1.75 in the 3D-HST Survey. Each of these galaxies is located within a projected physical distance of 60 kpc around the sight line to the quasar SDSS J123622.93+621526.6, which exhibits well-separated strong (W λ2796 r >~ 0.8 Å) Mg II absorption systems matching precisely to the redshifts of the three galaxies. We derive the star formation surface densities from the Hα emission in the WFC3 G141 grism observations for the galaxies and find that in each case the star formation surface density well exceeds 0.1 M ⊙ yr-1 kpc-2, the typical threshold for starburst galaxies in the local universe. From a small but complete parallel census of the 0.65 0.8 Å Mg II covering fraction of star-forming galaxies at 1 0.4 Å Mg II absorbing gas around star-forming galaxies may evolve from z ~ 2 to the present, consistent with recent observations of an increasing collimation of star-formation-driven outflows with time from z ~ 3.

  13. Star formation at high redshift and the importance of dust obscuration

    DEFF Research Database (Denmark)

    Michalowski, Michal

    One of the aspects of the understanding of the Universe evolution is its star formation history. In order to gain a complete picture of the Universe evolution it is important to know when the stars we see today were formed. One of the method to study this problem is to use far-infrared and radio...... emission of galaxies. In this way it is possible to investigate the sites of star formation that are totally obscured by dust and therefore invisible at the optical wavelengths. It is because the energy absorbed by dust in the optical is re-emitted in the infrared, whereas radio emission is unaffected...... and/or radio, namely their enhanced submillimeter / radio emission combined with optical faintness and blue colors. I find that these four galaxies are young, highly star-forming, low-mass and dusty....

  14. The Next Generation of Numerical Modeling in Mergers- Constraining the Star Formation Law

    Science.gov (United States)

    Chien, Li-Hsin

    2010-09-01

    Spectacular images of colliding galaxies like the "Antennae", taken with the Hubble Space Telescope, have revealed that a burst of star/cluster formation occurs whenever gas-rich galaxies interact. A?The ages and locations of these clusters reveal the interaction history and provide crucial clues to the process of star formation in galaxies. A?We propose to carry out state-of-the-art numerical simulations to model six nearby galaxy mergers {Arp 256, NGC 7469, NGC 4038/39, NGC 520, NGC 2623, NGC 3256}, hence increasing the number with this level of sophistication by a factor of 3. These simulations provide specific predictions for the age and spatial distributions of young star clusters. The comparison between these simulation results and the observations will allow us to answer a number of fundamental questions including: 1} is shock-induced or density-dependent star formation the dominant mechanism; 2} are the demographics {i.e. mass and age distributions} of the clusters in different mergers similar, i.e. "universal", or very different; and 3} will it be necessary to include other mechanisms, e.g., locally triggered star formation, in the models to better match the observations?

  15. Gas, Stars, and Star Formation in Alfalfa Dwarf Galaxies

    Science.gov (United States)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and Hi components of 229 low H i mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H i masses ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M* approximately less than10(exp 8)M(sub 0) is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper Hi mass limit yields the selection of a sample with lower gas fractions for their M* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H i depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that Hi disks are more extended than stellar ones.

  16. RECONCILING AGN-STAR FORMATION, THE SOLTAN ARGUMENT, AND MEIER’S PARADOX

    Energy Technology Data Exchange (ETDEWEB)

    Garofalo, David [Department of Physics, Kennesaw State University, Marietta GA, 30060 (United States); Kim, Matthew I.; Christian, Damian J. [Department of Physics and Astronomy, California State University, Northridge CA, 91330 (United States); Hollingworth, Emily [Department of Aerospace Engineering, Georgia Institute of Technology, Atlanta GA, 30332 (United States); Lowery, Aaron [Department of Geosciences, Mississippi State University, MS, 39762 (United States); Harmon, Matthew [Department of Physics, Southern Polytechnic State University, Marietta GA, 30060 (United States)

    2016-02-01

    We provide a theoretical context for understanding the recent work of Kalfountzou et al. showing that star formation is enhanced at lower optical luminosity in radio-loud quasars. Our proposal for coupling the assumption of collimated FRII quasar-jet-induced star formation with lower accretion optical luminosity also explains the observed jet power peak in active galaxies at higher redshift compared to the peak in accretion power, doing so in a way that predicts the existence of a family of radio-quiet active galactic nuclei associated with rapidly spinning supermassive black holes at low redshift, as mounting observations suggest. The relevance of this work lies in its promise to explain the observed cosmological evolution of accretion power, jet power, and star formation in a way that is both compatible with the Soltan argument and resolves the so-called “Meier Paradox.”.

  17. What FIREs Up Star Formation: the Emergence of the Kennicutt-Schmidt Law from Feedback

    Science.gov (United States)

    Orr, Matthew E.; Hayward, Christopher C.; Hopkins, Philip F.; Chan, T. K.; Faucher-Giguère, Claude-André; Feldmann, Robert; Kereš, Dušan; Murray, Norman; Quataert, Eliot

    2018-05-01

    We present an analysis of the global and spatially-resolved Kennicutt-Schmidt (KS) star formation relation in the FIRE (Feedback In Realistic Environments) suite of cosmological simulations, including halos with z = 0 masses ranging from 1010 - 1013 M⊙. We show that the KS relation emerges and is robustly maintained due to the effects of feedback on local scales regulating star-forming gas, independent of the particular small-scale star formation prescriptions employed. We demonstrate that the time-averaged KS relation is relatively independent of redshift and spatial averaging scale, and that the star formation rate surface density is weakly dependent on metallicity and inversely dependent on orbital dynamical time. At constant star formation rate surface density, the `Cold & Dense' gas surface density (gas with T 10 cm-3, used as a proxy for the molecular gas surface density) of the simulated galaxies is ˜0.5 dex less than observed at ˜kpc scales. This discrepancy may arise from underestimates of the local column density at the particle-scale for the purposes of shielding in the simulations. Finally, we show that on scales larger than individual giant molecular clouds, the primary condition that determines whether star formation occurs is whether a patch of the galactic disk is thermally Toomre-unstable (not whether it is self-shielding): once a patch can no longer be thermally stabilized against fragmentation, it collapses, becomes self-shielding, cools, and forms stars, regardless of epoch or environment.

  18. Ultrafaint dwarfs—star formation and chemical evolution in the smallest galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Webster, David; Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Sutherland, Ralph, E-mail: d.webster@physics.usyd.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia)

    2014-11-20

    In earlier work, we showed that a dark matter halo with a virial mass of 10{sup 7} M {sub ☉} can retain a major part of its baryons in the face of the pre-ionization phase and supernova (SN) explosion from a 25 M {sub ☉} star. Here, we expand on the results of that work, investigating the star formation and chemical evolution of the system beyond the first SN. In a galaxy with a mass M {sub vir} = 10{sup 7} M {sub ☉}, sufficient gas is retained by the potential for a second period of star formation to occur. The impact of a central explosion is found to be much stronger than that of an off-center explosion both in blowing out the gas and in enriching it, as in the off-center case most of the SN energy and metals escape into the intergalactic medium. We model the star formation and metallicity, given the assumption that stars form for 100, 200, 400, and 600 Myr, and discuss the results in the context of recent observations of very low-mass galaxies. We show that we can account for most features of the observed relationship between [α/Fe] and [Fe/H] in ultra-faint dwarf galaxies with the assumption that the systems formed at a low mass, rather than being remnants of much larger systems.

  19. Measuring the Star Formation History Of Omega Centauri

    Science.gov (United States)

    Weisz, Daniel

    2011-10-01

    We propopse to apply the technique of color-magnitude diagram {CMD} fitting to archival HST/ACS and WFC3 imaging of Omega Centauri in order to measure its star formation history {SFH}. As the remnant of a captured satellite galaxy, the SFH of Omega Cen will provide key insights into its formation and evolution before and after its incorporation into the Milky Way. The derivation of SFHs from CMD analysis has been well-established in the Local Group and nearby galaxies, but has never been applied within our Galaxy. Archival HST imaging of Omega Cen provides for exquisitely deep CMDs with broad wavelength coverage {near-UV through I-band}, which allows for clear separation of age-sensitive CMD features, and can be leveraged to highly constrain its star formation rate as a function of time. In addition, the CMD fitting technique also allows us to test for consistency in recovered SFHs using different stellar models, and quantitatively tie the UV characteristics of ancient stellar populations to a SFH.

  20. Star Formation in the Central Regions of Galaxies

    Science.gov (United States)

    Tsai, Mengchun

    2015-08-01

    The galactic central region connects the galactic nucleus to the host galaxy. If the central black hole co-evolved with the host galaxies, there should be some evidence left in the central region. We use the environmental properties in the central regions such as star-forming activity, stellar population and molecular abundance to figure out a possible scenario of the evolution of galaxies. In this thesis at first we investigated the properties of the central regions in the host galaxies of active and normal galaxies. We used radio emission around the nuclei of the host galaxies to represent activity of active galactic nuclei (AGNs), and used infrared ray (IR) emission to represent the star-forming activity and stellar population of the host galaxies. We determined that active galaxies have higher stellar masses (SMs) within the central kiloparsec radius than normal galaxies do independent of the Hubble types of the host galaxies; but both active and normal galaxies exhibit similar specific star formation rates (SSFRs). We also discovered that certain AGNs exhibit substantial inner stellar structures in the IR images; most of the AGNs with inner structures are Seyferts, whereas only a few LINERs exhibit inner structures. We note that the AGNs with inner structures show a positive correlation between the radio activity of the AGNs and the SFRs of the host galaxies, but the sources without inner structures show a negative correlation between the radio power and the SFRs. These results might be explained with a scenario of starburst-AGN evolution. In this scenario, AGN activities are triggered following a nuclear starburst; during the evolution, AGN activities are accompanied by SF activity in the inner regions of the host galaxies; at the final stage of the evolution, the AGNs might transform into LINERs, exhibiting weak SF activity in the central regions of the host galaxies. For further investigation about the inner structure, we choose the most nearby and luminous

  1. SHIELD: The Star Formation Law in Extremely Low-mass Galaxies

    Science.gov (United States)

    Teich, Yaron; McNichols, Andrew; Cannon, John M.; SHIELD Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs" (SHIELD) is a multiwavelength, legacy-class observational study of 12 low-mass dwarf galaxies discovered in Arecibo Legacy Fast ALFA (ALFALFA) survey data products. Here we analyze the relationships between HI and star formation in these systems using multi-configuration, high spatial (~300 pc) and spectral (0.82 - 2.46 km s-1 ch-1) resolution HI observations from the Karl G. Jansky Very Large Array, Hα imaging from the WIYN 3.5m telescope, and archival GALEX far-ultraviolet imaging. We compare the locations and intensities of star formation with the properties of the neutral ISM. We quantify the degree of local co-spatiality between star forming regions and regions of high HI column densities using the Kennicutt-Schmidt (K-S) relation. The values of the K-S index N vary considerably from system to system; because no single galaxy is representative of the sample, we instead focus on the narratives of the individual galaxies and their complex distribution of gaseous and stellar components. At the extremely faint end of the HI mass function, these systems are dominated by stochastic fluctuations in their interstellar media, which governs whether or not they show signs of recent star formation.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College.

  2. Exploring the Connection Between Star Formation and AGN Activity in the Local Universe

    Science.gov (United States)

    LaMassa, Stephanie M.; Heckman. T. M.; Ptak, Andrew; Schiminovich, D.; O'Dowd, M.; Bertincourt, B.

    2012-01-01

    We study a combined sample of 264 star-forming, 51 composite, and 73 active galaxies using optical spectra from SDSS and mid-infrared (mid-IR) spectra from the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic diagnostics that probe the amount of star formation and relative energetic con- tributions from star formation and an active galactic nucleus (AGN). Overall we find good agreement between optical and mid-IR diagnostics. Misclassifications of galaxies based on the SDSS spectra are rare despite the presence of dust obscuration. The luminosity of the [NeII] 12.8 micron emission-line is well correlated with the star formation rate (SFR) measured from the SDSS spectra, and this holds for the star forming, composite, and AGN-dominated systems. AGN show a clear excess of [NeIII] 15.6 micron emission relative to star forming and composite systems. We find good qualitative agreement between various parameters that probe the relative contributions of the AGN and star formation, including: the mid-IR spectral slope, the ratio of the [NeV] 14.3 micron to [NeII] micron 12.8 fluxes, the equivalent widths of the 7.7, 11.3, and 17 micron PAH features, and the optical "D" parameter which measures the distance a source lies from the locus of star forming galaxies in the optical BPT emission-line diagnostic diagram. We also consider the behavior of the three individual PAH features by examining how their flux ratios depend upon the degree of AGN-dominance. We find that the PAH 11.3 micron feature is significantly suppressed in the most AGN-dominated systems.

  3. Theory of ring formation around Be stars

    International Nuclear Information System (INIS)

    Huang, S.S.

    1976-01-01

    A quantitative theory has been developed for the formation of the gaseous rings around Be stars based on the ideas, first discussed by Gerasimovic, later developed by Huang, and independently suggested by Massa. The theory has been derived from the laws of conservation of energy and angular momentum without any other assumptions

  4. FORMALDEHYDE MASERS: EXCLUSIVE TRACERS OF HIGH-MASS STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Araya, E. D.; Brown, J. E. [Western Illinois University, Physics Department, 1 University Circle, Macomb, IL 61455 (United States); Olmi, L. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Ortiz, J. Morales [University of Puerto Rico, Río Piedras Campus, Physical Sciences Department, P.O. Box 23323, San Juan, PR 00931 (United States); Hofner, P.; Creech-Eakman, M. J. [New Mexico Institute of Mining and Technology, Physics Department, 801 Leroy Place, Socorro, NM 87801 (United States); Kurtz, S. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, 58089 Morelia, Michoacán (Mexico); Linz, H. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2015-11-15

    The detection of four formaldehyde (H{sub 2}CO) maser regions toward young high-mass stellar objects in the last decade, in addition to the three previously known regions, calls for an investigation of whether H{sub 2}CO masers are an exclusive tracer of young high-mass stellar objects. We report the first survey specifically focused on the search for 6 cm H{sub 2}CO masers toward non high-mass star-forming regions (non HMSFRs). The observations were conducted with the 305 m Arecibo Telescope toward 25 low-mass star-forming regions, 15 planetary nebulae and post-AGB stars, and 31 late-type stars. We detected no H{sub 2}CO emission in our sample of non HMSFRs. To check for the association between high-mass star formation and H{sub 2}CO masers, we also conducted a survey toward 22 high-mass star-forming regions from a Hi-GAL (Herschel infrared Galactic Plane Survey) sample known to harbor 6.7 GHz CH{sub 3}OH masers. We detected a new 6 cm H{sub 2}CO emission line in G32.74−0.07. This work provides further evidence that supports an exclusive association between H{sub 2}CO masers and young regions of high-mass star formation. Furthermore, we detected H{sub 2}CO absorption toward all Hi-GAL sources, and toward 24 low-mass star-forming regions. We also conducted a simultaneous survey for OH (4660, 4750, 4765 MHz), H110α (4874 MHz), HCOOH (4916 MHz), CH{sub 3}OH (5005 MHz), and CH{sub 2}NH (5289 MHz) toward 68 of the sources in our sample of non HMSFRs. With the exception of the detection of a 4765 MHz OH line toward a pre-planetary nebula (IRAS 04395+3601), we detected no other spectral line to an upper limit of 15 mJy for most sources.

  5. Starless Clumps and the Earliest Phases of High-mass Star Formation in the Milky Way

    Science.gov (United States)

    Svoboda, Brian

    2018-01-01

    High-mass stars are key to regulating the interstellar medium, star formation activity, and overall evolution of galaxies, but their formation remains an open problem in astrophysics. In order to understand the physical conditions during the earliest phases of high-mass star formation, I report on observational studies of dense starless clump candidates (SCCs) that show no signatures of star formation activity. I identify 2223 SCCs from the 1.1 mm Bolocam Galactic Plane Survey, systematically analyze their physical properties, and show that the starless phase is not represented by a single timescale, but evolves more rapidly with increasing clump mass. To investigate the sub-structure in SCCs at high spatial resolution, I study the 12 most high-mass SCCs within 5 kpc using ALMA. I report previously undetected low-luminosity protostars in 11 out of 12 SCCs, fragmentation equal to the thermal Jeans length of the clump, and no starless cores exceeding 30 solar masses. While uncertainties remain concerning the star formation effeciency in this sample, these observational facts are consistent with models where high-mass stars form from intially low- to intermediate-mass protostars that accrete most of their mass from the surrounding clump.

  6. HIERARCHICAL FORMATION OF THE GALACTIC HALO AND THE ORIGIN OF HYPER METAL-POOR STARS

    International Nuclear Information System (INIS)

    Komiya, Yutaka; Habe, Asao; Suda, Takuma; Fujimoto, Masayuki Y.

    2009-01-01

    Extremely metal-poor (EMP) stars in the Galactic halo are unique probes into the early universe and the first stars. We construct a new program to calculate the formation history of EMP stars in the early universe with the chemical evolution, based on the merging history of the Galaxy. We show that the hierarchical structure formation model reproduces the observed metallicity distribution function and also the total number of observed EMP stars, when we take into account the high-mass initial mass function and the contribution of binaries, as proposed by Komiya et al. The low-mass survivors divide into two groups of those born before and after the mini-halos are polluted by their own first supernovae. The former has observational counterparts in the hyper metal-poor (HMP) stars below [Fe/H] - 4. In this Letter, we focus on the origin of the extremely small iron abundances of HMP stars. We compute the change in the surface abundances of individual stars through the accretion of the metal-enriched interstellar gas along with the dynamical and chemical evolution of the Galaxy, to demonstrate that after-birth pollution of Population III stars is sufficiently effective to explain the observed abundances of HMP stars. Metal pre-enrichment by possible pair instability supernovae is also discussed, to derive constraints on their roles and on the formation of the first low-mass stars.

  7. Luminous Infrared Galaxies. III. Multiple Merger, Extended Massive Star Formation, Galactic Wind, and Nuclear Inflow in NGC 3256

    Science.gov (United States)

    Lípari, S.; Díaz, R.; Taniguchi, Y.; Terlevich, R.; Dottori, H.; Carranza, G.

    2000-08-01

    We report detailed evidence for multiple merger, extended massive star formation, galactic wind, and circular/noncircular motions in the luminous infrared galaxy NGC 3256, based on observations of high-resolution imaging (Hubble Space Telescope, ESO NTT), and extensive spectroscopic data (more than 1000 spectra, collected at Estación Astrofísica de Bosque Alegre, Complejo Astronómico el Leoncito, Cerro Tololo InterAmerican Observatory, and IUE observatories). We find in a detailed morphological study (resolution ~15 pc) that the extended massive star formation process detected previously in NGC 3256 shows extended triple asymmetrical spiral arms (r~5 kpc), emanating from three different nuclei. The main optical nucleus shows a small spiral disk (r~500 pc), which is a continuation of the external one and reaches the very nucleus. The core shows blue elongated structure (50 pc×25 pc) and harbors a blue stellar cluster candidate (r~8 pc). We discuss this complex morphology in the framework of an extended massive star formation driven by a multiple merger process (models of Hernquist et al. and Taniguchi et al.). We study the kinematics of this system and present a detailed Hα velocity field for the central region (40''×40'' rmax~30''~5 kpc), with a spatial resolution of 1" and errors of +/-15 km s-1. The color and isovelocity maps show mainly (1) a kinematic center of circular motion with ``spider'' shape, located between the main optical nucleus and the close (5") mid-IR nucleus and (2) noncircular motions in the external parts. We obtained three ``sinusoidal rotation curves'' (from the Hα velocity field) around position angle (P.A.) ~55°, ~90°, and ~130°. In the main optical nucleus we found a clear ``outflow component'' associated with galactic winds plus an ``inflow radial motion.'' The outflow component was also detected in the central and external regions (rstandard models of photoionization, shocks, and starbursts). We present four detailed emission

  8. The Spatial Extent and Distribution of Star Formation in 3D-HST Mergers at z is approximately 1.5

    Science.gov (United States)

    Schmidt, Kasper B.; Rix, Hans-Walter; da Cunha, Elisabete; Brammer, Gabriel B.; Cox, Thomas J.; Van Dokkum, Pieter; Foerster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Jonsson, Patrik; hide

    2013-01-01

    We present an analysis of the spatial distribution of star formation in a sample of 60 visually identified galaxy merger candidates at z greater than 1. Our sample, drawn from the 3D-HST survey, is flux-limited and was selected to have high star formation rates based on fits of their broad-band, low spatial resolution spectral energy distributions. It includes plausible pre-merger (close pairs) and post-merger (single objects with tidal features) systems,with total stellar masses and star formation rates derived from multi-wavelength photometry. Here we use near-infrared slitless spectra from 3D-HST which produce H or [OIII] emission line maps as proxies for star-formation maps. This provides a first comprehensive high-resolution, empirical picture of where star formation occurred in galaxy mergers at the epoch of peak cosmic star formation rate. We find that detectable star formation can occur in one or both galaxy centres, or in tidal tails. The most common case (58%) is that star formation is largely concentrated in a single, compact region, coincident with the centre of (one of) the merger components. No correlations between star formation morphology and redshift, total stellar mass, or star formation rate are found. A restricted set of hydrodynamical merger simulationsbetween similarly massive and gas-rich objects implies that star formation should be detectable in both merger components, when the gas fractions of the individual components are the same. This suggests that z is approximately 1.5 mergers typically occur between galaxies whose gas fractions, masses, andor star formation rates are distinctly different from one another.

  9. KINEMATICS OF EXTREMELY METAL-POOR GALAXIES: EVIDENCE FOR STELLAR FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Olmo-García, A.; Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Elmegreen, B. G. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Elmegreen, D. M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Pérez-Montero, E. [Instituto de Astrofísica de Andalucía, CSIC, Granada (Spain); Méndez-Abreu, J., E-mail: jos@iac.es [School of Physics and Astronomy, University of St Andrews, St Andrews (United Kingdom)

    2017-01-10

    The extremely metal-poor (XMP) galaxies analyzed in a previous paper have large star-forming regions with a metallicity lower than the rest of the galaxy. Such a chemical inhomogeneity reveals the external origin of the metal-poor gas fueling star formation, possibly indicating accretion from the cosmic web. This paper studies the kinematic properties of the ionized gas in these galaxies. Most XMPs have a rotation velocity around a few tens of km s{sup −1}. The star-forming regions appear to move coherently. The velocity is constant within each region, and the velocity dispersion sometimes increases within the star-forming clump toward the galaxy midpoint, suggesting inspiral motion toward the galaxy center. Other regions present a local maximum in velocity dispersion at their center, suggesting a moderate global expansion. The H α line wings show a number of faint emission features with amplitudes around a few per cent of the main H α component, and wavelength shifts between 100 and 400 km s{sup −1}. The components are often paired, so that red and blue emission features with similar amplitudes and shifts appear simultaneously. Assuming the faint emission to be produced by expanding shell-like structures, the inferred mass loading factor (mass loss rate divided by star formation rate) exceeds 10. Since the expansion velocity far exceeds the rotational and turbulent velocities, the gas may eventually escape from the galaxy disk. The observed motions involve energies consistent with the kinetic energy released by individual core-collapse supernovae. Alternative explanations for the faint emission have been considered and discarded.

  10. Equilibrium star formation in a constant Q disc: model optimization and initial tests

    Science.gov (United States)

    Zheng, Zheng; Meurer, Gerhardt R.; Heckman, Timothy M.; Thilker, David A.; Zwaan, Martin A.

    2013-10-01

    We develop a model for the distribution of the interstellar medium (ISM) and star formation in galaxies based on recent studies that indicate that galactic discs stabilize to a constant stability parameter, which we combine with prescriptions of how the phases of the ISM are determined and for the star formation law (SFL). The model predicts the gas surface mass density and star formation intensity of a galaxy given its rotation curve, stellar surface mass density and the gas velocity dispersion. This model is tested on radial profiles of neutral and molecular ISM surface mass density and star formation intensity of 12 galaxies selected from the H I Nearby Galaxy Survey sample. Our tests focus on intermediate radii (0.3 to 1 times the optical radius) because there are insufficient data to test the outer discs and the fits are less accurate in detail in the centre. Nevertheless, the model produces reasonable agreement with the ISM mass and star formation rate integrated over the central region in all but one case. To optimize the model, we evaluate four recipes for the stability parameter, three recipes for apportioning the ISM into molecular and neutral components, and eight versions of the SFL. We find no clear-cut best prescription for the two-fluid (gas and stars) stability parameter Q2f and therefore for simplicity, we use the Wang and Silk approximation (QWS). We found that an empirical scaling between the molecular-to-neutral ISM ratio (Rmol) and the stellar surface mass density proposed by Leroy et al. works marginally better than the other two prescriptions for this ratio in predicting the ISM profiles, and noticeably better in predicting the star formation intensity from the ISM profiles produced by our model with the SFLs we tested. Thus, in the context of our modelled ISM profiles, the linear molecular SFL and the two-component SFL work better than the other prescriptions we tested. We incorporate these relations into our `constant Q disc' model.

  11. SDSS-IV MaNGA: Spatially Resolved Star Formation Main Sequence and LI(N)ER Sequence

    Science.gov (United States)

    Hsieh, B. C.; Lin, Lihwai; Lin, J. H.; Pan, H. A.; Hsu, C. H.; Sánchez, S. F.; Cano-Díaz, M.; Zhang, K.; Yan, R.; Barrera-Ballesteros, J. K.; Boquien, M.; Riffel, R.; Brownstein, J.; Cruz-González, I.; Hagen, A.; Ibarra, H.; Pan, K.; Bizyaev, D.; Oravetz, D.; Simmons, A.

    2017-12-01

    We present our study on the spatially resolved Hα and M * relation for 536 star-forming and 424 quiescent galaxies taken from the MaNGA survey. We show that the star formation rate surface density ({{{Σ }}}{SFR}), derived based on the Hα emissions, is strongly correlated with the M * surface density ({{{Σ }}}* ) on kiloparsec scales for star-forming galaxies and can be directly connected to the global star-forming sequence. This suggests that the global main sequence may be a consequence of a more fundamental relation on small scales. On the other hand, our result suggests that ∼20% of quiescent galaxies in our sample still have star formation activities in the outer region with lower specific star formation rate (SSFR) than typical star-forming galaxies. Meanwhile, we also find a tight correlation between {{{Σ }}}{{H}α } and {{{Σ }}}* for LI(N)ER regions, named the resolved “LI(N)ER” sequence, in quiescent galaxies, which is consistent with the scenario that LI(N)ER emissions are primarily powered by the hot, evolved stars as suggested in the literature.

  12. Global and radial variations in the efficiency of massive star formation among galaxies

    International Nuclear Information System (INIS)

    Allen, L.E.; Young, J.S.

    1990-01-01

    In order to determine the regions within galaxies which give rise to the most efficient star formation and to test the hypothesis that galaxies with high infrared luminosities per unit molecular mass are efficiently producing high mass stars, researchers have undertaken an H alpha imaging survey in galaxies whose CO distributions have been measured as part of the Five College Radio Astronomy Observatory (FCRAO) Extragalactic CO Survey. From these images researchers have derived global H alpha fluxes and distributions for comparison with far infrared radiation (FIR) fluxes and CO fluxes and distributions. Here, researchers present results on the global massive star formation efficiency (SFE = L sub H sub alpha/M(H2)) as a function of morphological type and environment, and on the radial distribution of the SFE within both peculiar and isolated galaxies. On the basis of comparison of the global L sub H sub alpha/M(H2) and L sub FIR/M(H2) for 111 galaxies, researchers conclude that environment rather than morphological type has the strongest effect on the global efficiency of massive star formation. Based on their study of a small sample, they find that the largest radial gradients are observed in the interacting/peculiar galaxies, indicating that environment affects the star formation efficiency within galaxies as well

  13. COSMIC EVOLUTION OF STAR FORMATION ENHANCEMENT IN CLOSE MAJOR-MERGER GALAXY PAIRS SINCE z = 1

    International Nuclear Information System (INIS)

    Xu, C. K.; Shupe, D. L.; Bock, J.; Bridge, C.; Cooray, A.; Lu, N.; Schulz, B.; Béthermin, M.; Aussel, H.; Elbaz, D.; Le Floc'h, E.; Riguccini, L.; Berta, S.; Lutz, D.; Magnelli, B.; Conley, A.; Franceschini, A.; Marsden, G.; Oliver, S. J.; Pozzi, F.

    2012-01-01

    The infrared (IR) emission of 'M * galaxies' (10 10.4 ≤ M star ≤ 10 11.0 M ☉ ) in galaxy pairs, derived using data obtained in Herschel (PEP/HerMES) and Spitzer (S-COSMOS) surveys, is compared to that of single-disk galaxies in well-matched control samples to study the cosmic evolution of the star formation enhancement induced by galaxy-galaxy interaction. Both the mean IR spectral energy distribution and mean IR luminosity of star-forming galaxies (SFGs) in SFG+SFG (S+S) pairs in the redshift bin of 0.6 < z < 1 are consistent with no star formation enhancement. SFGs in S+S pairs in a lower redshift bin of 0.2 < z < 0.6 show marginal evidence for a weak star formation enhancement. Together with the significant and strong sSFR enhancement shown by SFGs in a local sample of S+S pairs (obtained using previously published Spitzer observations), our results reveal a trend for the star formation enhancement in S+S pairs to decrease with increasing redshift. Between z = 0 and z = 1, this decline of interaction-induced star formation enhancement occurs in parallel with the dramatic increase (by a factor of ∼10) of the sSFR of single SFGs, both of which can be explained by the higher gas fraction in higher-z disks. SFGs in mixed pairs (S+E pairs) do not show any significant star formation enhancement at any redshift. The difference between SFGs in S+S pairs and in S+E pairs suggests a modulation of the sSFR by the intergalactic medium (IGM) in the dark matter halos hosting these pairs.

  14. The kinematic footprints of five stellar streams in Andromeda's halo

    Science.gov (United States)

    Chapman, S. C.; Ibata, R.; Irwin, M.; Koch, A.; Letarte, B.; Martin, N.; Collins, M.; Lewis, G. F.; McConnachie, A.; Peñarrubia, J.; Rich, R. M.; Trethewey, D.; Ferguson, A.; Huxor, A.; Tanvir, N.

    2008-11-01

    We present a spectroscopic analysis of five stellar streams (`A', `B', `Cr', `Cp' and `D') as well as the extended star cluster, EC4, which lies within Stream`C', all discovered in the halo of M31 from our Canada-France-Hawaii Telescope/MegaCam survey. These spectroscopic results were initially serendipitous, making use of our existing observations from the DEep Imaging Multi-Object Spectrograph mounted on the Keck II telescope, and thereby emphasizing the ubiquity of tidal streams that account for ~70 per cent of the M31 halo stars in the targeted fields. Subsequent spectroscopy was then procured in Stream`C' and Stream`D' to trace the velocity gradient along the streams. Nine metal-rich ([Fe/H] ~ -0.7) stars at vhel = -349.5kms-1,σv,corr ~ 5.1 +/- 2.5km s-1 are proposed as a serendipitous detection of Stream`Cr', with follow-up kinematic identification at a further point along the stream. Seven metal-poor ([Fe/H] ~-1.3) stars confined to a narrow, 15 km s-1 velocity bin centred at vhel = -285.6, σv,corr = 4.3+1.7-1.4 km s-1 represent a kinematic detection of Stream`Cp', again with follow-up kinematic identification further along the stream. For the cluster EC4, candidate member stars with average [Fe/H] ~-1.4, are found at vhel = -282 suggesting it could be related to Stream`Cp'. No similarly obvious cold kinematic candidate is found for Stream`D', although candidates are proposed in both of two spectroscopic pointings along the stream (both at ~ -400km s-1). Spectroscopy near the edge of Stream`B' suggests a likely kinematic detection at vhel ~ -330, σv,corr ~ 6.9km s-1, while a candidate kinematic detection of Stream`A' is found (plausibly associated to M33 rather than M31) with vhel ~ -170, σv,corr = 12.5km s-1. The low dispersion of the streams in kinematics, physical thickness and metallicity makes it hard to reconcile with a scenario whereby these stream structures as an ensemble are related to the giant southern stream. We conclude that the M31 stellar

  15. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Jeon, Yiseul; Kim, Ji Hoon [CEOU-Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Trichas, Markos [Airbus Defence and Space, Gunnels Wood Road, Stevenage SG1 2AS (United Kingdom); Goto, Tomo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Malkan, Matt [Division of Astronomy and Astrophysics, 3-714 UCLA, CA 90095-1547 (United States); Ruiz, Angel [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, 411 007 Pune (India); Lee, Hyung Mok; Kim, Seong Jin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, K.; Wada, Takehiko; Wada, Kensuke [Institute of Space and Astronautical Science, JAXA, Yoshino-dai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Shim, Hyunjin [Department of Earth Science Education, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hanami, Hitoshi [Physics Section, Faculty of Humanities, Iwate University, Ueda 3 chome, 18-34 Morioka, Morioka, Iwate 020-8550 (Japan); Serjeant, Stephen; White, Glenn J., E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes (United Kingdom); and others

    2014-04-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (star formation in the host galaxy, independent of the radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  16. Cosmic web and star formation activity in galaxies at z ∼ 1

    Energy Technology Data Exchange (ETDEWEB)

    Darvish, B.; Mobasher, B.; Sales, L. V. [University of California, Riverside, 900 University Avenue, Riverside, CA 92521 (United States); Sobral, D. [Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, OAL, Tapada da Ajuda, PT 1349-018 Lisboa (Portugal); Scoville, N. Z. [California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Best, P. [SUPA, Institute for Astronomy, Royal Observatory of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Smail, I., E-mail: bdarv001@ucr.edu [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2014-11-20

    We investigate the role of the delineated cosmic web/filaments on star formation activity by exploring a sample of 425 narrow-band selected Hα emitters, as well as 2846 color-color selected underlying star-forming galaxies for a large-scale structure at z = 0.84 in the COSMOS field from the HiZELS survey. Using the scale-independent Multi-scale Morphology Filter algorithm, we are able to quantitatively describe the density field and disentangle it into its major components: fields, filaments, and clusters. We show that the observed median star formation rate (SFR), stellar mass, specific SFR, the mean SFR-mass relation, and its scatter for both Hα emitters and underlying star-forming galaxies do not strongly depend on different classes of environment, in agreement with previous studies. However, the fraction of Hα emitters varies with environment and is enhanced in filamentary structures at z ∼ 1. We propose mild galaxy-galaxy interactions as the possible physical agent for the elevation of the fraction of Hα star-forming galaxies in filaments. Our results show that filaments are the likely physical environments that are often classed as the 'intermediate' densities and that the cosmic web likely plays a major role in galaxy formation and evolution which has so far been poorly investigated.

  17. Characterizing star formation activity in infrared dark cloud MSXDC G048.65-00.29

    NARCIS (Netherlands)

    van der Wiel, M. H. D.; Shipman, R. F.

    2008-01-01

    Context. Infrared dark clouds (IRDCs), condensed regions of the ISM with high column densities, low temperatures and high masses, are suspected sites of star formation. Thousands of IRDCs have already been identified. To date, it has not been resolved whether IRDCs always show star formation

  18. HOW THE FIRST STARS SHAPED THE FAINTEST GAS-DOMINATED DWARF GALAXIES

    International Nuclear Information System (INIS)

    Verbeke, R.; Vandenbroucke, B.; Rijcke, S. De

    2015-01-01

    Low-mass dwarf galaxies are very sensitive test-beds for theories of cosmic structure formation since their weak gravitational fields allow the effects of the relevant physical processes to clearly stand out. Up to now, no unified account has existed of the sometimes seemingly conflicting properties of the faintest isolated dwarfs in and around the Local Group, such as Leo T and the recently discovered Leo P and Pisces A systems. Using new numerical simulations, we show that this serious challenge to our understanding of galaxy formation can be effectively resolved by taking into account the regulating influence of the ultraviolet radiation of the first population of stars on a dwarf’s star formation rate while otherwise staying within the standard cosmological paradigm for structure formation. These simulations produce faint, gas-dominated, star-forming dwarf galaxies that lie on the baryonic Tully–Fisher relation and that successfully reproduce a broad range of chemical, kinematical, and structural observables of real late-type dwarf galaxies. Furthermore, we stress the importance of obtaining properties of simulated galaxies in a manner as close as possible to the typically employed observational techniques

  19. HOW THE FIRST STARS SHAPED THE FAINTEST GAS-DOMINATED DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, R.; Vandenbroucke, B.; Rijcke, S. De, E-mail: robbert.verbeke@UGent.be [Sterrenkundig Observatorium, Ghent University, Krijgslaan 281, S9, 9000 Gent (Belgium)

    2015-12-20

    Low-mass dwarf galaxies are very sensitive test-beds for theories of cosmic structure formation since their weak gravitational fields allow the effects of the relevant physical processes to clearly stand out. Up to now, no unified account has existed of the sometimes seemingly conflicting properties of the faintest isolated dwarfs in and around the Local Group, such as Leo T and the recently discovered Leo P and Pisces A systems. Using new numerical simulations, we show that this serious challenge to our understanding of galaxy formation can be effectively resolved by taking into account the regulating influence of the ultraviolet radiation of the first population of stars on a dwarf’s star formation rate while otherwise staying within the standard cosmological paradigm for structure formation. These simulations produce faint, gas-dominated, star-forming dwarf galaxies that lie on the baryonic Tully–Fisher relation and that successfully reproduce a broad range of chemical, kinematical, and structural observables of real late-type dwarf galaxies. Furthermore, we stress the importance of obtaining properties of simulated galaxies in a manner as close as possible to the typically employed observational techniques.

  20. THE EFFECTS OF EPISODIC STAR FORMATION ON THE FUV-NUV COLORS OF STAR FORMING REGIONS IN OUTER DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Kate L.; Van Zee, Liese [Department of Astronomy, Indiana University, Bloomington, IN 47405 (United States); Dowell, Jayce D., E-mail: barneskl@astro.indiana.edu, E-mail: vanzee@astro.indiana.edu, E-mail: jdowell@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2013-09-20

    We run stellar population synthesis models to examine the effects of a recently episodic star formation history (SFH) on UV and Hα colors of star forming regions. Specifically, the SFHs we use are an episodic sampling of an exponentially declining star formation rate (SFR; τ model) and are intended to simulate the SFHs in the outer disks of spiral galaxies. To enable comparison between our models and observational studies of star forming regions in outer disks, we include in our models sensitivity limits that are based on recent deep UV and Hα observations in the literature. We find significant dispersion in the FUV-NUV colors of simulated star forming regions with frequencies of star formation episodes of 1 × 10{sup –8} to 4 × 10{sup –9} yr{sup –1}. The dispersion in UV colors is similar to that found in the outer disk of nearby spiral galaxies. As expected, we also find large variations in L{sub H{sub α}}/L{sub FUV}. We interpret our models within the context of inside-out disk growth, and find that a radially increasing τ and decreasing metallicity with an increasing radius will only produce modest FUV-NUV color gradients, which are significantly smaller than what is found for some nearby spiral galaxies. However, including moderate extinction gradients with our models can better match the observations with steeper UV color gradients. We estimate that the SFR at which the number of stars emitting FUV light becomes stochastic is ∼2 × 10{sup –6} M{sub ☉} yr{sup –1}, which is substantially lower than the SFR of many star forming regions in outer disks. Therefore, we conclude that stochasticity in the upper end of the initial mass function is not likely to be the dominant cause of dispersion in the FUV-NUV colors of star forming regions in outer disks. Finally, we note that if outer disks have had an episodic SFH similar to that used in this study, this should be taken into account when estimating gas depletion timescales and modeling chemical

  1. The mass-metallicity-star formation rate relation under the STARLIGHT microscope

    Science.gov (United States)

    Schlickmann, M.; Vale Asari, N.; Cid Fernandes, R.; Stasińska, G.

    2014-10-01

    The correlation between stellar mass and gas-phase oxygen abundance (M-Z relation) has been known for decades. The slope and scatter of this trend is strongly dependent on galaxy evolution: Chemical enrichment in a galaxy is driven by its star formation history, which in turn depends on its secular evolution and interaction with other galaxies and intergalactic gas. In last couple of years, the M-Z relation has been studied as a function of a third parameter: the recent star formation rate (SFR) as calibrated by the Hα luminosity, which traces stars formed in the last 10 Myr. This mass-metallicity-SFR relation has been reported to be very tight. This result puts strong constraints on galaxy evolution models in low and high redshifts, informing which models of infall and outflow of gas are acceptable. We explore the mass-metallicity-SFR relation in light of the SDSS-STARLIGHT database put together by our group. We find that we recover similar results as the ones reported by authors who use the MPA/JHU catalogue. We also present some preliminary results exploring the mass-metallicity-SFR relation in a more detailed fashion: starlight recovers a galaxy's full star formation history, and not only its recent SFR.

  2. Star Formation Histories of the LEGUS Dwarf Galaxies. II. Spatially Resolved Star Formation History of the Magellanic Irregular NGC 4449

    Science.gov (United States)

    Sacchi, E.; Cignoni, M.; Aloisi, A.; Tosi, M.; Calzetti, D.; Lee, J. C.; Adamo, A.; Annibali, F.; Dale, D. A.; Elmegreen, B. G.; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Hunter, D. A.; Sabbi, E.; Smith, L. J.; Thilker, D. A.; Ubeda, L.; Whitmore, B. C.

    2018-04-01

    We present a detailed study of the Magellanic irregular galaxy NGC 4449 based on both archival and new photometric data from the Legacy Extragalactic UV Survey, obtained with the Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camera 3. Thanks to its proximity (D = 3.82 ± 0.27 Mpc), we reach stars 3 mag fainter than the tip of the red giant branch in the F814W filter. The recovered star formation history (SFH) spans the whole Hubble time, but due to the age–metallicity degeneracy of the red giant branch stars, it is robust only over the lookback time reached by our photometry, i.e., ∼3 Gyr. The most recent peak of star formation (SF) is around 10 Myr ago. The average surface density SF rate over the whole galaxy lifetime is 0.01 M ⊙ yr‑1 kpc‑2. From our study, it emerges that NGC 4449 has experienced a fairly continuous SF regime in the last 1 Gyr, with peaks and dips whose SF rates differ only by a factor of a few. The very complex and disturbed morphology of NGC 4449 makes it an interesting galaxy for studies of the relationship between interactions and starbursts, and our detailed and spatially resolved analysis of its SFH does indeed provide some hints on the connection between these two phenomena in this peculiar dwarf galaxy. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA contract NAS 5-26555.

  3. MORPHOLOGICAL QUENCHING OF STAR FORMATION: MAKING EARLY-TYPE GALAXIES RED

    International Nuclear Information System (INIS)

    Martig, Marie; Bournaud, Frederic; Teyssier, Romain; Dekel, Avishai

    2009-01-01

    We point out a natural mechanism for quenching of star formation in early-type galaxies (ETGs). It automatically links the color of a galaxy with its morphology and does not require gas consumption, removal or termination of gas supply. Given that star formation takes place in gravitationally unstable gas disks, it can be quenched when a disk becomes stable against fragmentation to bound clumps. This can result from the growth of a stellar spheroid, for instance by mergers. We present the concept of morphological quenching (MQ) using standard disk instability analysis, and demonstrate its natural occurrence in a cosmological simulation using an efficient zoom-in technique. We show that the transition from a stellar disk to a spheroid can be sufficient to stabilize the gas disk, quench star formation, and turn an ETG red and dead while gas accretion continues. The turbulence necessary for disk stability can be stirred up by sheared perturbations within the disk in the absence of bound star-forming clumps. While other quenching mechanisms, such as gas stripping, active galactic nucleus feedback, virial shock heating, and gravitational heating are limited to massive halos, MQ can explain the appearance of red ETGs also in halos less massive than ∼10 12 M sun . The dense gas disks observed in some of today's red ellipticals may be the relics of this mechanism, whereas red galaxies with quenched gas disks could be more frequent at high redshift.

  4. FAKE STAR FORMATION BURSTS: BLUE HORIZONTAL BRANCH STARS MASQUERADE AS YOUNG MASSIVE STARS IN OPTICAL INTEGRATED LIGHT SPECTROSCOPY

    International Nuclear Information System (INIS)

    Ocvirk, P.

    2010-01-01

    Model color-magnitude diagrams of low-metallicity globular clusters (GCs) usually show a deficit of hot evolved stars with respect to observations. We investigate quantitatively the impact of such modeling inaccuracies on the significance of star formation history reconstructions obtained from optical integrated spectra. To do so, we analyze the sample of spectra of galactic globular clusters of Schiavon et al. with STECKMAP (Ocvirk et al.), and the stellar population models of Vazdekis et al. and Bruzual and Charlot, and focus on the reconstructed stellar age distributions. First, we show that background/foreground contamination correlates with E(B - V), which allows us to define a clean subsample of uncontaminated GCs, on the basis of an E(B - V) filtering. We then identify a 'confusion zone' where fake young bursts of star formation pop up in the star formation history although the observed population is genuinely old. These artifacts appear for 70%-100% of cases depending on the population model used, and contribute up to 12% of the light in the optical. Their correlation with the horizontal branch (HB) ratio indicates that the confusion is driven by HB morphology: red HB clusters are well fitted by old stellar population models while those with a blue HB require an additional hot component. The confusion zone extends over [Fe/H] = [ - 2, - 1.2], although we lack the data to probe extreme high and low metallicity regimes. As a consequence, any young starburst superimposed on an old stellar population in this metallicity range could be regarded as a modeling artifact, if it weighs less than 12% of the optical light, and if no emission lines typical of an H II region are present. This work also provides a practical method for constraining HB morphology from high signal to noise integrated light spectroscopy in the optical. This will allow post-asymptotic giant branch evolution studies in a range of environments and at distances where resolving stellar populations

  5. Revolution evolution: tracing angular momentum during star and planetary system formation

    Science.gov (United States)

    Davies, Claire Louise

    2015-04-01

    Stars form via the gravitational collapse of molecular clouds during which time the protostellar object contracts by over seven orders of magnitude. If all the angular momentum present in the natal cloud was conserved during collapse, stars would approach rotational velocities rapid enough to tear themselves apart within just a few Myr. In contrast to this, observations of pre-main sequence rotation rates are relatively slow (∼ 1 - 15 days) indicating that significant quantities of angular momentum must be removed from the star. I use observations of fully convective pre-main sequence stars in two well-studied, nearby regions of star formation (namely the Orion Nebula Cluster and Taurus-Auriga) to determine the removal rate of stellar angular momentum. I find the accretion disc-hosting stars to be rotating at a slower rate and contain less specific angular momentum than the disc-less stars. I interpret this as indicating a period of accretion disc-regulated angular momentum evolution followed by near-constant rotational evolution following disc dispersal. Furthermore, assuming that the age spread inferred from the Hertzsprung-Russell diagram constructed for the star forming region is real, I find that the removal rate of angular momentum during the accretion-disc hosting phase to be more rapid than that expected from simple disc-locking theory whereby contraction occurs at a fixed rotation period. This indicates a more efficient process of angular momentum removal must operate, most likely in the form of an accretion-driven stellar wind or outflow emanating from the star-disc interaction. The initial circumstellar envelope that surrounds a protostellar object during the earliest stages of star formation is rotationally flattened into a disc as the star contracts. An effective viscosity, present within the disc, enables the disc to evolve: mass accretes inwards through the disc and onto the star while momentum migrates outwards, forcing the outer regions of the

  6. The formation of Dwarf Spheroidal galaxies by the dissolving star cluster model.

    Science.gov (United States)

    Alarcon, Alex; Theory and Star Formation Group

    2018-01-01

    Dwarf spheroidal (dSph) galaxies are regarded as key object in the formation of larger galaxies and are believed to be the most dark matter dominated systems known. There are several model that attempt to explain their formation, but they have problems to model the formation of isolated dSph. Here we will explain a possible formation scenario in which star clusters form in the dark matter halo of a dSph. these cluster suffer from low star formation efficiency and dissolve while orbiting inside the halo. Thereby they build the faint luminous components that we observe in dSph galaxies. Here we will show the main results of this simulations and how they would be corroborated using observational data.

  7. The SINS/zC-SINF survey of z ∼ 2 galaxy kinematics: Evidence for powerful active galactic nucleus-driven nuclear outflows in massive star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Förster Schreiber, N. M.; Genzel, R.; Kurk, J. D.; Lutz, D.; Tacconi, L. J.; Wuyts, S.; Bandara, K.; Buschkamp, P.; Davies, R.; Eisenhauer, F.; Lang, P. [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Newman, S. F. [Department of Astronomy, Hearst Field Annex, University of California, Berkeley, CA 94720 (United States); Burkert, A. [Universitäts-Sternwarte, Ludwig-Maximilians-Universität, Scheinerstrasse 1, D-81679 München (Germany); Carollo, C. M.; Lilly, S. J. [Institute for Astronomy, Department of Physics, Eidgenössische Technische Hochschule, 8093-CH Zürich (Switzerland); Cresci, G. [Istituto Nazionale di Astrofisica—Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Daddi, E. [CEA Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Hicks, E. K. S. [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195-1580 (United States); Mainieri, V. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Mancini, C. [Istituto Nazionale di Astrofisica—Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); and others

    2014-05-20

    We report the detection of ubiquitous powerful nuclear outflows in massive (≥10{sup 11} M {sub ☉}) z ∼ 2 star-forming galaxies (SFGs), which are plausibly driven by an active galactic nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics-assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Hα and forbidden [N II] and [S II] line emission, with typical velocity FWHM ∼ 1500 km s{sup –1}, [N II]/Hα ratio ≈ 0.6, and intrinsic extent of 2-3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ∼60 M {sub ☉} yr{sup –1} and mass loading of ∼3. At larger radii, a weaker broad component is detected but with lower FWHM ∼485 km s{sup –1} and [N II]/Hα ≈ 0.35, characteristic for star formation-driven outflows as found in the lower-mass SINS/zC-SINF galaxies. The high inferred mass outflow rates and frequent occurrence suggest that the nuclear outflows efficiently expel gas out of the centers of the galaxies with high duty cycles and may thus contribute to the process of star formation quenching in massive galaxies. Larger samples at high masses will be crucial in confirming the importance and energetics of the nuclear outflow phenomenon and its connection to AGN activity and bulge growth.

  8. The fate of NGC602, an intense region of star-formation in the Wing of the SMC

    Science.gov (United States)

    Sabbi, Elena

    2017-08-01

    This is a small 2 orbit proposal designed to measure the internal dynamics of NGC602, a small region of intense star formation in the Wing of the SMC, with a low gas and dust density that has been often considered an unfavorable place for star formation. Small regions of massive star formation are important to study for our understanding of the process of star and cluster formation, the ionization of the interstellar medium, and the injection of energy and momentum into their host galaxy. By combining our new observations with archival ACS/WFC data acquired in July 2004, we will be able to measure the relative proper motions of the NGC602 sub-structures better than 2.3 km/s and investigate the nature of the apparently isolated massive stars found around NGC602. This study will provide unique observational data to characterize the early phase of cluster evolution and test cluster formation theories. It will also address significant open issues in star formation, cluster dynamics and the origin of isolated supernovae and GRBs.

  9. TIDAL TAILS OF MINOR MERGERS. II. COMPARING STAR FORMATION IN THE TIDAL TAILS OF NGC 2782

    Energy Technology Data Exchange (ETDEWEB)

    Knierman, Karen A.; Scowen, Paul; Veach, Todd; Groppi, Christopher [School of Earth and Space Exploration, Arizona State University, 550 E. Tyler Mall, Room PSF-686 (P.O. Box 871404), Tempe, AZ 85287-1404 (United States); Mullan, Brendan; Charlton, Jane [Department of Astronomy and Astrophysics, Penn State University, 525 Davey Lab, University Park, PA (United States); Konstantopoulos, Iraklis [Australian Astronomical Observatory, P.O. Box 915, North Ryde NSW 1670 (Australia); Knezek, Patricia M., E-mail: karen.knierman@asu.edu, E-mail: paul.scowen@asu.edu, E-mail: tveach@asu.edu, E-mail: cgroppi@asu.edu, E-mail: mullan@astro.psu.edu, E-mail: iraklis@aao.gov.au, E-mail: pknezek@noao.edu [WIYN Consortium, Inc., 950 N. Cherry Avenue, Tucson, AZ 85719 (United States)

    2013-09-10

    The peculiar spiral NGC 2782 is the result of a minor merger with a mass ratio {approx}4: 1 occurring {approx}200 Myr ago. This merger produced a molecular and H I-rich, optically bright eastern tail and an H I-rich, optically faint western tail. Non-detection of CO in the western tail by Braine et al. suggested that star formation had not yet begun. However, deep UBVR and H{alpha} narrowband images show evidence of recent star formation in the western tail, though it lacks massive star clusters and cluster complexes. Using Herschel PACS spectroscopy, we discover 158 {mu}m [C II] emission at the location of the three most luminous H{alpha} sources in the eastern tail, but not at the location of the even brighter H{alpha} source in the western tail. The western tail is found to have a normal star formation efficiency (SFE), but the eastern tail has a low SFE. The lack of CO and [C II] emission suggests that the western tail H II region may have a low carbon abundance and be undergoing its first star formation. The western tail is more efficient at forming stars, but lacks massive clusters. We propose that the low SFE in the eastern tail may be due to its formation as a splash region where gas heating is important even though it has sufficient molecular and neutral gas to make massive star clusters. The western tail, which has lower gas surface density and does not form high-mass star clusters, is a tidally formed region where gravitational compression likely enhances star formation.

  10. TIDAL TAILS OF MINOR MERGERS. II. COMPARING STAR FORMATION IN THE TIDAL TAILS OF NGC 2782

    International Nuclear Information System (INIS)

    Knierman, Karen A.; Scowen, Paul; Veach, Todd; Groppi, Christopher; Mullan, Brendan; Charlton, Jane; Konstantopoulos, Iraklis; Knezek, Patricia M.

    2013-01-01

    The peculiar spiral NGC 2782 is the result of a minor merger with a mass ratio ∼4: 1 occurring ∼200 Myr ago. This merger produced a molecular and H I-rich, optically bright eastern tail and an H I-rich, optically faint western tail. Non-detection of CO in the western tail by Braine et al. suggested that star formation had not yet begun. However, deep UBVR and Hα narrowband images show evidence of recent star formation in the western tail, though it lacks massive star clusters and cluster complexes. Using Herschel PACS spectroscopy, we discover 158 μm [C II] emission at the location of the three most luminous Hα sources in the eastern tail, but not at the location of the even brighter Hα source in the western tail. The western tail is found to have a normal star formation efficiency (SFE), but the eastern tail has a low SFE. The lack of CO and [C II] emission suggests that the western tail H II region may have a low carbon abundance and be undergoing its first star formation. The western tail is more efficient at forming stars, but lacks massive clusters. We propose that the low SFE in the eastern tail may be due to its formation as a splash region where gas heating is important even though it has sufficient molecular and neutral gas to make massive star clusters. The western tail, which has lower gas surface density and does not form high-mass star clusters, is a tidally formed region where gravitational compression likely enhances star formation

  11. Star-Formation in Free-Floating Evaporating Gaseous Globules

    Science.gov (United States)

    Sahai, Raghvendra

    2017-08-01

    We propose to study the stellar embryos in select members of a newly recognized class of Free-floating Evaporating Gaseous Globules (frEGGS) embedded in HII regions and having head-tail shapes. We discovered two of these in the Cygnus massive star-forming region (MSFR) with HST, including one of the most prominent members of this class (IRAS20324). Subsequent archival searches of Spitzer imaging of MSFRs has allowed us to build a statistical sample of frEGGs. Our molecular-line observations show the presence of dense molecular cores with total gas masses of (0.5-few) Msun in these objects, and our radio continuum images and Halpha images (from the IPHAS survey) reveal bright photo-ionized peripheries around these objects. We hypothesize that frEGGs are density concentrations originating in giant molecular clouds, that, when subject to the sculpting and compression by strong winds and UV radiation from massive stars, become active star-forming cores. For the 4 frEGGs with HST or near-IR AO images showing young stars and bipolar cavities produced by their jets or collimated outflows, the symmetry axis points roughly toward the external ionizing star or star cluster - exciting new evidence for our overpressure-induced star formation hypothesis. We propose to test this hypothesis by imaging 24 frEGGs in two nearby MSFRs that represent different radiation-dominated environments. Using ACS imaging with filters F606W, F814W, & F658N (Ha+[NII]), we will search for jets and outflow-excavated cavities, investigate the stellar nurseries inside frEGGs, and determine whether the globules are generally forming multiple star systems or small clusters, as in IRAS20324.

  12. Constraining the Stellar Populations and Star Formation Histories of Blue Compact Dwarf Galaxies with SED Fits

    Energy Technology Data Exchange (ETDEWEB)

    Janowiecki, Steven [International Center for Radio Astronomy Research, M468, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 (Australia); Salzer, John J.; Zee, Liese van [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Rosenberg, Jessica L. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Skillman, Evan, E-mail: steven.janowiecki@uwa.edu.au [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street, SE Minneapolis, MN, 55455 (United States)

    2017-02-10

    We discuss and test possible evolutionary connections between blue compact dwarf galaxies (BCDs) and other types of dwarf galaxies. BCDs provide ideal laboratories to study intense star formation episodes in low-mass dwarf galaxies, and have sometimes been considered a short-lived evolutionary stage between types of dwarf galaxies. To test these connections, we consider a sample of BCDs as well as a comparison sample of nearby galaxies from the Local Volume Legacy (LVL) survey for context. We fit the multi-wavelength spectral energy distributions (SED, far-ultra-violet to far-infrared) of each galaxy with a grid of theoretical models to determine their stellar masses and star formation properties. We compare our results for BCDs with the LVL galaxies to put BCDs in the context of normal galaxy evolution. The SED fits demonstrate that the star formation events currently underway in BCDs are at the extreme of the continuum of normal dwarf galaxies, both in terms of the relative mass involved and in the relative increase over previous star formation rates. Today’s BCDs are distinctive objects in a state of extreme star formation that is rapidly transforming them. This study also suggests ways to identify former BCDs whose star formation episodes have since faded.

  13. Young stellar population and star formation history ofW4 HII region/Cluster Complex

    Science.gov (United States)

    Panwar, Neelam

    2018-04-01

    The HII region/cluster complex has been a subject of numerous investigations to study the feedback effect of massive stars on their surroundings. Massive stars not only alter the morphology of the parental molecular clouds, but also influence star formation, circumstellar disks and the mass function of low-mass stars in their vicinity. However, most of the studies of low-mass stellar content of the HII regions are limited only to the nearby regions. We study the star formation in the W4 HII region using deep optical observations obtained with the archival data from Canada - France - Hawaii Telescope, Two-Micron All Sky Survey, Spitzer, Herschel and Chandra. We investigate the spatial distribution of young stellar objects in the region, their association with the remnant molecular clouds, and search for the clustering to establish the sites of recent star formation. Our analysis suggests that the influence of massive stars on circumstellar disks is significant only to thei! r immediate neighborhood. The spatial correlation of the young stars with the distribution of gas and dust of the complex indicate that the clusters would have formed in a large filamentary cloud. The observing facilities at the 3.6-m Devasthal Optical Telescope (DOT), providing high-resolution spectral and imaging capabilities, will fulfill the major objectives in the study of HII regions.

  14. Outflows in the star-formation region near R CrA

    Science.gov (United States)

    Hartigan, Patrick; Graham, J. A.

    1987-01-01

    Photographs, spectra, and velocities are presented for the Herbig-Haro objects and visible stars associated with the star-formation region near R CrA. The new data are used to discuss the gas outflows in the area. At least two flows are present; one is linked with the bright variable star R CrA, and the second with the IR source near HH 100. Special attention is given to HH 101. The velocity and spatial structures HH 101 are complex, but are consistent with condensations inside an expanding shell of material ejected from HH 100IR.

  15. COLLISIONAL DEBRIS AS LABORATORIES TO STUDY STAR FORMATION

    International Nuclear Information System (INIS)

    Boquien, M.; Duc, P.-A.; Wu, Y.; Charmandaris, V.; Lisenfeld, U.; Braine, J.; Brinks, E.; Iglesias-Paramo, J.; Xu, C. K.

    2009-01-01

    In this paper we address the question of whether star formation (SF) is driven by local processes or the large-scale environment. To do so, we investigate SF in collisional debris where the gravitational potential well and velocity gradients are shallower and compare our results with previous work on SF in noninteracting spiral and dwarf galaxies. We have performed multiwavelength spectroscopic and imaging observations (from the far-ultraviolet to the mid-infrared) of six interacting systems, identifying a total of 60 star-forming regions in their collision debris. Our analysis indicates that in these regions (1) the emission of the dust is at the expected level for their luminosity and metallicity, (2) the usual tracers of SFR display the typical trend and scatter found in classical star-forming regions, and (3) the extinction and metallicity are not the main parameters governing the scatter in the properties of intergalactic star-forming regions; age effects and variations in the number of stellar populations seem to play an important role. Our work suggests that local properties such as column density and dust content, rather than the large-scale environment seem to drive SF. This means that intergalactic star-forming regions can be used as a reliable tool to study SF.

  16. THE MASSIVE STAR-FORMING REGION CYGNUS OB2. II. INTEGRATED STELLAR PROPERTIES AND THE STAR FORMATION HISTORY

    International Nuclear Information System (INIS)

    Wright, N. J.; Drake, J. J.; Drew, J. E.; Vink, J. S.

    2010-01-01

    Cygnus OB2 is the nearest example of a massive star-forming region (SFR), containing over 50 O-type stars and hundreds of B-type stars. We have analyzed the properties of young stars in two fields in Cyg OB2 using the recently published deep catalog of Chandra X-ray point sources with complementary optical and near-IR photometry. Our sample is complete to ∼1 M sun (excluding A- and B-type stars that do not emit X-rays), making this the deepest study of the stellar properties and star formation history in Cyg OB2 to date. From Siess et al. isochrone fits to the near-IR color-magnitude diagram, we derive ages of 3.5 +0.75 -1.0 and 5.25 +1.5 -1.0 Myr for sources in the two fields, both with considerable spreads around the pre-main-sequence isochrones. The presence of a stellar population somewhat older than the present-day O-type stars, also fits in with the low fraction of sources with inner circumstellar disks (as traced by the K-band excess) that we find to be very low, but appropriate for a population of age ∼5 Myr. We also find that the region lacks a population of highly embedded sources that is often observed in young SFRs, suggesting star formation in the vicinity has declined. We measure the stellar mass functions (MFs) in this limit and find a power-law slope of Γ = -1.09 ± 0.13, in good agreement with the global mean value estimated by Kroupa. A steepening of the slope at higher masses is observed and suggested as due to the presence of the previous generation of stars that have lost their most massive members. Finally, combining our MF and an estimate of the radial density profile of the association suggests a total mass of Cyg OB2 of ∼3 x 10 4 M sun , similar to that of many of our Galaxy's most massive SFRs.

  17. Cloud fluid models of gas dynamics and star formation in galaxies

    Science.gov (United States)

    Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.

    1987-01-01

    The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.

  18. Correlations between age, kinematics, and chemistry as seen by the RAVE survey

    Science.gov (United States)

    Wojno, Jennifer; Kordopatis, Georges; Steinmetz, Matthias; McMillan, Paul; Binney, James; Famaey, Benoit; Monari, Giacomo; Minchev, Ivan; Wyse, Rosemary F. G.; Antoja, Teresa; Siebert, Arnaud; Carrillo, Ismael; Bland-Hawthorn, Joss; K Grebel, Eva; Zwitter, Tomaž; Bienaymé, Olivier; Gibson, Brad; Kunder, Andrea; Munari, Ulisse; Navarro, Julio; Parker, Quentin; Reid, Warren; Seabroke, George

    2018-04-01

    We explore the connections between stellar age, chemistry, and kinematics across a Galactocentric distance of 7.5 ages for RAVE stars are determined using a Bayesian method, taking TGAS parallaxes as a prior. We divide our sample into young (0 age groups. We find significant differences in kinematic trends of young and old, metal-poor and metal-rich, stellar populations. In particular, we find a strong metallicity dependence in the mean Galactocentric radial velocity as a function of radius (∂VR/∂R) for young stars, with metal-rich stars having a much steeper gradient than metal-poor stars. For ∂Vϕ/∂R, young, metal-rich stars significantly lag the LSR with a slightly positive gradient, while metal-poor stars show a negative gradient above the LSR. We interpret these findings as correlations between metallicity and the relative contributions of the non-axisymmetries in the Galactic gravitational potential (the spiral arms and the bar) to perturb stellar orbits.

  19. THE MASS-INDEPENDENCE OF SPECIFIC STAR FORMATION RATES IN GALACTIC DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Abramson, Louis E.; Gladders, Michael D. [Department of Astronomy and Astrophysics and Kavli Institute for Cosmological Physics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Kelson, Daniel D.; Dressler, Alan; Oemler, Augustus Jr. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Poggianti, Bianca [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Vulcani, Benedetta, E-mail: labramson@uchicago.edu [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8582 (Japan)

    2014-04-20

    The slope of the star formation rate/stellar mass relation (the SFR {sup M}ain Sequence{sup ;} SFR-M {sub *}) is not quite unity: specific star formation rates (SFR/M {sub *}) are weakly but significantly anti-correlated with M {sub *}. Here we demonstrate that this trend may simply reflect the well-known increase in bulge mass-fractions—portions of a galaxy not forming stars—with M {sub *}. Using a large set of bulge/disk decompositions and SFR estimates derived from the Sloan Digital Sky Survey, we show that re-normalizing SFR by disk stellar mass (sSFR{sub disk} ≡ SFR/M {sub *,} {sub disk}) reduces the M {sub *} dependence of SF efficiency by ∼0.25 dex per dex, erasing it entirely in some subsamples. Quantitatively, we find log sSFR{sub disk}-log M {sub *} to have a slope β{sub disk} in [ – 0.20, 0.00] ± 0.02 (depending on the SFR estimator and Main Sequence definition) for star-forming galaxies with M {sub *} ≥ 10{sup 10} M {sub ☉} and bulge mass-fractions B/T ≲ 0.6, generally consistent with a pure-disk control sample (β{sub control} = –0.05 ± 0.04). That (SFR/M {sub *,} {sub disk}) is (largely) independent of host mass for star-forming disks has strong implications for aspects of galaxy evolution inferred from any SFR-M {sub *} relation, including manifestations of ''mass quenching'' (bulge growth), factors shaping the star-forming stellar mass function (uniform dlog M {sub *}/dt for low-mass, disk-dominated galaxies), and diversity in star formation histories (dispersion in SFR(M {sub *}, t)). Our results emphasize the need to treat galaxies as composite systems—not integrated masses—in observational and theoretical work.

  20. THE STELLAR AND GAS KINEMATICS OF THE LITTLE THINGS DWARF IRREGULAR GALAXY NGC 1569

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Megan [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Hunter, Deidre A.; Zhang, Hong-Xin; Herrmann, Kimberly [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Oh, Se-Heon [International Centre for Radio Astronomy Research (ICRAR), University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Elmegreen, Bruce [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Hts., NY 10598 (United States); Brinks, Elias [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom); Tollerud, Erik, E-mail: mjohnson@nrao.edu, E-mail: dah@lowell.edu, E-mail: hxzhang@lowell.edu, E-mail: herrmann@lowell.edu, E-mail: se-heon.oh@uwa.edu.au, E-mail: bge@us.ibm.com, E-mail: E.Brinks@herts.ac.uk, E-mail: etolleru@uci.edu [Center For Cosmology, Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697 (United States)

    2012-11-01

    In order to understand the formation and evolution of Magellanic-type dwarf irregular (dIm) galaxies, one needs to understand their three-dimensional structure. We present measurements of the stellar velocity dispersion in NGC 1569, a nearby post-starburst dIm galaxy. The stellar vertical velocity dispersion, {sigma}{sub z}, coupled with the maximum rotational velocity derived from H I observations, V{sub max}, gives a measure of how kinematically hot the galaxy is, and, therefore, indicates its structure. We conclude that the stars in NGC 1569 are in a thick disk with a V{sub max}/{sigma}{sub z} = 2.4 {+-} 0.7. In addition to the structure, we analyze the ionized gas kinematics from O III observations along the morphological major axis. These data show evidence for outflow from the inner starburst region and a potential expanding shell near supermassive star cluster (SSC) A. When compared to the stellar kinematics, the velocity dispersion of the stars increases in the region of SSC A supporting the hypothesis of an expanding shell. The stellar kinematics closely follow the motion of the gas. Analysis of high-resolution H I data clearly reveals the presence of an H I cloud that appears to be impacting the eastern edge of NGC 1569. Also, an ultra-dense H I cloud can be seen extending to the west of the impacting H I cloud. This dense cloud is likely the remains of a dense H I bridge that extended through what is now the central starburst area. The impacting H I cloud was the catalyst for the starburst, thus turning the dense gas into stars over a short timescale, {approx}1 Gyr. We performed a careful study of the spectral energy distribution using infrared, optical, and ultraviolet photometry, producing a state-of-the-art mass model for the stellar disk. This mass modeling shows that stars dominate the gravitational potential in the inner 1 kpc. The dynamical mass of NGC 1569, derived from V{sub max}, shows that the disk may be dark matter deficient in the inner

  1. The pillars of creation giant molecular clouds, star formation, and cosmic recycling

    CERN Document Server

    Beech, Martin

    2017-01-01

    This book explores the mechanics of star formation, the process by which matter pulls together and creates new structures. Written for science enthusiasts, the author presents an accessible explanation of how stars are born from the interstellar medium and giant molecular clouds. Stars produce the chemicals that lead to life, and it is they that have enabled the conditions for planets to form and life to emerge. Although the Big Bang provided the spark of initiation, the primordial universe that it sired was born hopelessly sterile. It is only through the continued recycling of the interstellar medium, star formation, and stellar evolution that the universe has been animated beyond a chaotic mess of elementary atomic particles, radiation, dark matter, dark energy, and expanding spacetime. Using the Milky Way and the Eagle Nebula in particular as case studies, Beech follows every step of this amazing process. .

  2. The Green Bank Ammonia Survey: Unveiling the Dynamics of the Barnard 59 Star-forming Clump

    Science.gov (United States)

    Redaelli, E.; Alves, F. O.; Caselli, P.; Pineda, J. E.; Friesen, R. K.; Chacón-Tanarro, A.; Matzner, C. D.; Ginsburg, A.; Rosolowsky, E.; Keown, J.; Offner, S. S. R.; Di Francesco, J.; Kirk, H.; Myers, P. C.; Hacar, A.; Cimatti, A.; Chen, H. H.; Chen, M. C.; Lee, K. I.; Seo, Y. M.

    2017-12-01

    Understanding the early stages of star formation is a research field of ongoing development, both theoretically and observationally. In this context, molecular data have been continuously providing observational constraints on the gas dynamics at different excitation conditions and depths in the sources. We have investigated the Barnard 59 core, the only active site of star formation in the Pipe Nebula, to achieve a comprehensive view of the kinematic properties of the source. This information was derived by simultaneously fitting ammonia inversion transition lines (1, 1) and (2, 2). Our analysis unveils the imprint of protostellar feedback, such as increasing line widths, temperature, and turbulent motions in our molecular data. Combined with complementary observations of dust thermal emission, we estimate that the core is gravitationally bound following a virial analysis. If the core is not contracting, another source of internal pressure, most likely the magnetic field, is supporting it against gravitational collapse and limits its star formation efficiency.

  3. Star formation: study of the collapse of pre-stellar dense cores

    International Nuclear Information System (INIS)

    Commercon, Benoit

    2009-01-01

    One of the priorities of contemporary astrophysics remains to understand the mechanisms which lead to star formation. In the dense cores where star formation occurs, temperature, pressure, etc... are such that it is impossible to reproduce them in the laboratory. Numerical calculations remain the only mean to study physical phenomena that are involved in the star formation process. The focus of this thesis has been on the numerical methods that are used in the star formation context to describe highly non-linear and multi-scale phenomena. In particular, I have concentrated my work on the first stages of the pre-stellar dense cores collapse. This work is divided in 4 linked part. In a first study, I use a 1D Lagrangian code in spherical symmetry (Audit et al. 2002) to compare three models that incorporate radiative transfer and matter-radiation interactions. This comparison was based on simple gravitational collapse calculations which lead to the first Larson core formation. It was found that the Flux Limited Diffusion model is appropriate for star formation calculations. I also took benefit from this first work to study the properties of the accretion shock on the first Larson core. We developed a semi-analytic model based on well-known assumptions, which reproduces the jump properties at the shock. The second study consisted in implementing the Flux Limited Diffusion model with the radiation-hydrodynamics equations in the RAMSES code (Teyssier 2002). After a first step of numerical tests that validate the scheme, we used RAMSES to perform the first multidimensional collapse calculations that combine magnetic field and radiative transfer effects at small scales with a high numerical resolution. Our results show that the radiative transfer has a significant impact on the fragmentation in the collapse of pre-stellar dense cores. I also present a comparison we made between the RAMSES code (Eulerian approach) and the SPH code DRAGON (Goodwin 2004, Lagrangian approach

  4. The RRc Stars: Chemical Abundances and Envelope Kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Sneden, Christopher; Adamów, Monika [Department of Astronomy and McDonald Observatory, The University of Texas, Austin, TX 78712 (United States); Preston, George W. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Chadid, Merieme, E-mail: chris@verdi.as.utexas.edu, E-mail: astromysz@gmail.com, E-mail: gwp@obs.carnegiescience.edu, E-mail: chadid@unice.fr [Université Nice Sophia–Antipolis, Observatoire de la Côte dAzur, UMR 7293, Parc Valrose, F-06108, Nice Cedex 02 (France)

    2017-10-10

    We analyzed series of spectra obtained for 12 stable RRc stars observed with the echelle spectrograph of the du Pont telescope at Las Campanas Observatory and we analyzed the spectra of RRc Blazhko stars discussed by Govea et al. We derived model atmosphere parameters, [Fe/H] metallicities, and [X/Fe] abundance ratios for 12 species of 9 elements. We co-added all spectra obtained during the pulsation cycles to increase signal to noise and demonstrate that these spectra give results superior to those obtained by co-addition in small phase intervals. The RRc abundances are in good agreement with those derived for the RRab stars of Chadid et al. We used radial velocity (RV) measurements of metal lines and H α to construct variations of velocity with phase, and center-of-mass velocities. We used these to construct RV templates for use in low- to medium-resolution RV surveys of RRc stars. Additionally, we calculated primary accelerations, radius variations, and metal and H α velocity amplitudes, which we display as regressions against primary acceleration. We employ these results to compare the atmosphere structures of metal-poor RRc stars with their RRab counterparts. Finally, we use the RV data for our Blazhko stars and the Blazhko periods of Szczygieł and Fabrycky to falsify the Blazhko oblique rotator hypothesis.

  5. THE GALACTIC POTENTIAL AND THE ASYMMETRIC DISTRIBUTION OF HYPERVELOCITY STARS

    International Nuclear Information System (INIS)

    Perets, Hagai B.; Alexander, Tal; Wu Xufen; Zhao Hongsheng; Famaey, Benoit; Gentile, Gianfranco

    2009-01-01

    In recent years several hypervelocity stars (HVSs) have been observed in the halo of our Galaxy. Such HVSs have possibly been ejected from the Galactic center and then propagated in the Galactic potential up to their current position. The recent survey for candidate HVSs show an asymmetry in the kinematics of candidate HVSs (position and velocity vectors), where more outgoing stars than ingoing stars (i.e., positive Galactocentric velocities versus negative ones) are observed. We show that such kinematic asymmetry, which is likely due to the finite lifetime of the stars and Galactic potential structure, could be used in a novel method to probe and constrain the Galactic potential, identify the stellar type of the stars in the survey and estimate the number of HVSs. Kinematics-independent identification of the stellar types of the stars in such surveys (e.g., spectroscopic identification) could further improve these results. We find that the observed asymmetry between ingoing and outgoing stars favors specific Galactic potential models. It also implies a lower limit of ∼54 ± 8 main-sequence HVSs in the survey sample (∼>648 ± 96 in the Galaxy), assuming that all of the MS stars in the survey originate from the GC. The other stars in the survey are likely to be hot blue horizontal branch stars born in the halo rather than stars ejected from the GC.

  6. PROPERTIES OF BULGELESS DISK GALAXIES. II. STAR FORMATION AS A FUNCTION OF CIRCULAR VELOCITY

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Linda C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Martini, Paul; Wong, Man-Hong [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Lisenfeld, Ute [Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, 18071 Granada (Spain); Boeker, Torsten [European Space Agency, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Schinnerer, Eva, E-mail: lwatson@cfa.harvard.edu [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-06-01

    We study the relation between the surface density of gas and star formation rate in 20 moderately inclined, bulgeless disk galaxies (Sd-Sdm Hubble types) using CO(1-0) data from the IRAM 30 m telescope, H I emission line data from the VLA/EVLA, H{alpha} data from the MDM Observatory, and polycyclic aromatic hydrocarbon emission data derived from Spitzer IRAC observations. We specifically investigate the efficiency of star formation as a function of circular velocity (v{sub circ}). Previous work found that the vertical dust structure and disk stability of edge-on, bulgeless disk galaxies transition from diffuse dust lanes with large scale heights and gravitationally stable disks at v{sub circ} < 120 km s{sup -1} (M{sub *} {approx}< 10{sup 10} M{sub Sun }) to narrow dust lanes with small scale heights and gravitationally unstable disks at v{sub circ} > 120 km s{sup -1}. We find no transition in star formation efficiency ({Sigma}{sub SFR}/{Sigma}{sub Hi+H{sub 2}}) at v{sub circ} = 120 km s{sup -1} or at any other circular velocity probed by our sample (v{sub circ} = 46-190 km s{sup -1}). Contrary to previous work, we find no transition in disk stability at any circular velocity in our sample. Assuming our sample has the same dust structure transition as the edge-on sample, our results demonstrate that scale height differences in the cold interstellar medium of bulgeless disk galaxies do not significantly affect the molecular fraction or star formation efficiency. This may indicate that star formation is primarily affected by physical processes that act on smaller scales than the dust scale height, which lends support to local star formation models.

  7. Ionizing feedback from massive stars in massive clusters: fake bubbles and untriggered star formation

    Czech Academy of Sciences Publication Activity Database

    Dale, James E.; Bonnell, Ian A.

    2011-01-01

    Roč. 414, č. 1 (2011), s. 321-328 ISSN 0035-8711 R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars formation * H II regions Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.900, year: 2011

  8. A CENSUS OF OXYGEN IN STAR-FORMING GALAXIES: AN EMPIRICAL MODEL LINKING METALLICITIES, STAR FORMATION RATES, AND OUTFLOWS

    International Nuclear Information System (INIS)

    Zahid, H. J.; Dima, G. I.; Kewley, L. J.; Erb, D. K.; Davé, R.

    2012-01-01

    In this contribution, we present the first census of oxygen in star-forming galaxies in the local universe. We examine three samples of galaxies with metallicities and star formation rates (SFRs) at z = 0.07, 0.8, and 2.26, including the Sloan Digital Sky Survey (SDSS) and DEEP2 survey. We infer the total mass of oxygen produced and mass of oxygen found in the gas-phase from our local SDSS sample. The star formation history is determined by requiring that galaxies evolve along the relation between stellar mass and SFR observed in our three samples. We show that the observed relation between stellar mass and SFR for our three samples is consistent with other samples in the literature. The mass-metallicity relation is well established for our three samples, and from this we empirically determine the chemical evolution of star-forming galaxies. Thus, we are able to simultaneously constrain the SFRs and metallicities of galaxies over cosmic time, allowing us to estimate the mass of oxygen locked up in stars. Combining this work with independent measurements reported in the literature, we conclude that the loss of oxygen from the interstellar medium of local star-forming galaxies is likely to be a ubiquitous process with the oxygen mass loss scaling (almost) linearly with stellar mass. We estimate the total baryonic mass loss and argue that only a small fraction of the baryons inferred from cosmological observations accrete onto galaxies.

  9. THE 100 Myr STAR FORMATION HISTORY OF NGC 5471 FROM CLUSTER AND RESOLVED STELLAR PHOTOMETRY

    International Nuclear Information System (INIS)

    Garcia-Benito, Ruben; Perez, Enrique; Maiz Apellaniz, Jesus; Cervino, Miguel; Diaz, Angeles I.

    2011-01-01

    We show that star formation in the giant H II region NGC 5471 has been ongoing during the past 100 Myr. Using Hubble Space Telescope/Wide-Field Planetary Camera 2 F547M and F675W, ground-based JHK s , and GALEX FUV and NUV images, we have conducted a photometric study of the star formation history (SFH) in the massive giant extragalactic H II region NGC 5471 in M101. We perform a photometric study of the color-magnitude diagram (CMD) of the resolved stars and an integrated analysis of the main individual star-forming clusters and of NGC 5471 as a whole. The integrated UV-optical-NIR photometry for the whole region provides two different reference ages, 8 Myr and 60 Myr, revealing a complex SFH, clearly confirmed by the CMD-resolved stellar photometry analysis. The spatial distribution of the stars shows that the star formation in NGC 5471 has proceeded along the whole region during, at least, the last 100 Myr. The current ionizing clusters are enclosed within a large bubble, which is likely to have been produced by the stars that formed in a major event ∼20 Myr ago.

  10. A MID-INFRARED CENSUS OF STAR FORMATION ACTIVITY IN BOLOCAM GALACTIC PLANE SURVEY SOURCES

    International Nuclear Information System (INIS)

    Dunham, Miranda K.; Robitaille, Thomas P.; Evans, Neal J. II; Schlingman, Wayne M.; Cyganowski, Claudia J.; Urquhart, James

    2011-01-01

    We present the results of a search for mid-infrared signs of star formation activity in the 1.1 mm sources in the Bolocam Galactic Plane Survey (BGPS). We have correlated the BGPS catalog with available mid-IR Galactic plane catalogs based on the Spitzer Space Telescope GLIMPSE legacy survey and the Midcourse Space Experiment (MSX) Galactic plane survey. We find that 44% (3712 of 8358) of the BGPS sources contain at least one mid-IR source, including 2457 of 5067 (49%) within the area where all surveys overlap (10 deg. s tarlessBGPS sources which were not matched to any mid-IR sources. The mean 1.1 mm flux of each group increases with increasing probability of active star formation. We also find that the 'starless' BGPS sources are the most compact, while the sources with the highest probability of star formation activity are on average more extended with large skirts of emission. A subsample of 280 BGPS sources with known distances demonstrates that mass and mean H 2 column density also increase with probability of star formation activity.

  11. Synthesis of molecules in interstellar clouds and star formation

    International Nuclear Information System (INIS)

    Ghosh, K.K.; Ghosh, S.N.

    1981-01-01

    Study of the formation and destruction processes of interstellar molecules may throw certain light on interstellar medium. Formation and destruction processes of some interstellar molecules are proposed on the basis of laboratory data. The abundances of these molecules are calculated under steady-state condition. The calculated values are then compared with the observed values, obtained by different investigators. It appears that gas phase ion-neutral reactions are capable of synthesizing most interstellar molecules. The role of ion-neutral reactions to star formation has also been discussed. (author)

  12. TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star formation

    Science.gov (United States)

    Spilker, Justin; Rigby, Jane R.; Vieira, Joaquin D.; TEMPLATES Team

    2018-06-01

    TEMPLATES is a JWST Early Release Science program designed to produce high signal-to-noise imaging and IFU spectroscopic data cubes for four gravitationally lensed galaxies at high redshift. The program will spatially resolve the star formation in galaxies across the peak of cosmic star formation in an extinction-robust manner. Lensing magnification pushes JWST to the highest spatial resolutions possible at these redshifts, to map the key spectral diagnostics of star formation and dust extinction: H-alpha, Pa-alpha, and 3.3um PAH emission within individual distant galaxies. Our targets are among the brightest, best-characterized lensed systems known, and include both UV-bright 'normal' galaxies and heavily dust-obscured submillimeter galaxies, at a range of stellar masses and luminosities. I will describe the scientific motivation for this program, detail the targeted galaxies, and describe the planned data products to be delivered to the community in advance of JWST Cycle 2.

  13. Abundances as Tracers of the Formation and Evolution of (Dwarf) Galaxies

    OpenAIRE

    Tolstoy, Eline

    2004-01-01

    This aims to be an overview of what detailed observations of individual stars in nearby dwarf galaxies may teach us about galaxy evolution. This includes some early results from the DART (Dwarf Abundances and Radial velocity Team) Large Programme at ESO. This project has used 2.2m/WFI and VLT/FLAMES to obtain spectra of large samples of individual stars in nearby dwarf spheroidal galaxies and determine accurate abundances and kinematics. These results can be used to trace the formation and ev...

  14. X-ray sources in stars formation areas: T Tauri stars and proto-stars in the rho Ophiuchi dark cloud

    International Nuclear Information System (INIS)

    Grosso, Nicolas

    1999-01-01

    This thesis studies from large to small scales, X-ray sources in the rho Ophiuchi dark cloud. After some background on the formation of the low-mass young stars (Chapter 1), Chapter 2 takes an interest in the T Tauri star population. Chapter 3 tackles the search of the magnetic activity at the younger stage of protostar, presenting a powerful X-ray emission from an IR protostar, called YLW15, during a flare, and a quasi-periodic flare of the same source; as well as a new detection of another IR protostar in the ROSAT archives. It ends with a review of protostar detections. Some IR protostar flares show a very long increasing phase. Chapter 4 links this behaviour with a modulation by the central star rotation. The standard model of jet emission assumes that the central star rotates at the same speed that the inner edge of its accretion disk. This chapter shows that the observation of the YLW15 quasi-periodic flare suggests rather that the forming star rotates faster than its accretion disk, at the break up limit. The synchronism with the accretion disk, observed on T Tauri stars, must be reach progressively by magnetic breaking during the IR protostar stage, and more or less rapidly depending on the forming star mass. Recent studies have shown that T Tauri star X-ray emission could ionize the circumstellar disk, and play a role in the instability development, as well as stimulate the accretion. The protostar X-ray emission might be higher than the T Tauri star one, Chapter 5 presents a millimetric interferometric observation dedicated to measure this effect on YLW15. Finally, Chapter 6 reassembles conclusions and perspectives of this work. (author) [fr

  15. LOFAR/H-ATLAS: the low-frequency radio luminosity-star formation rate relation

    Science.gov (United States)

    Gürkan, G.; Hardcastle, M. J.; Smith, D. J. B.; Best, P. N.; Bourne, N.; Calistro-Rivera, G.; Heald, G.; Jarvis, M. J.; Prandoni, I.; Röttgering, H. J. A.; Sabater, J.; Shimwell, T.; Tasse, C.; Williams, W. L.

    2018-04-01

    Radio emission is a key indicator of star formation activity in galaxies, but the radio luminosity-star formation relation has to date been studied almost exclusively at frequencies of 1.4 GHz or above. At lower radio frequencies, the effects of thermal radio emission are greatly reduced, and so we would expect the radio emission observed to be completely dominated by synchrotron radiation from supernova-generated cosmic rays. As part of the LOFAR Surveys Key Science project, the Herschel-ATLAS NGP field has been surveyed with LOFAR at an effective frequency of 150 MHz. We select a sample from the MPA-JHU catalogue of Sloan Digital Sky Survey galaxies in this area: the combination of Herschel, optical and mid-infrared data enable us to derive star formation rates (SFRs) for our sources using spectral energy distribution fitting, allowing a detailed study of the low-frequency radio luminosity-star formation relation in the nearby Universe. For those objects selected as star-forming galaxies (SFGs) using optical emission line diagnostics, we find a tight relationship between the 150 MHz radio luminosity (L150) and SFR. Interestingly, we find that a single power-law relationship between L150 and SFR is not a good description of all SFGs: a broken power-law model provides a better fit. This may indicate an additional mechanism for the generation of radio-emitting cosmic rays. Also, at given SFR, the radio luminosity depends on the stellar mass of the galaxy. Objects that were not classified as SFGs have higher 150-MHz radio luminosity than would be expected given their SFR, implying an important role for low-level active galactic nucleus activity.

  16. GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY-MASS-STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Lilly, Simon J.; Carollo, C. Marcella; Pipino, Antonio; Peng Yingjie [Institute for Astronomy, Department of Physics, ETH Zurich, CH-8093 Zurich (Switzerland); Renzini, Alvio [Department of Physics and Astronomy Galileo Galilei, Universita degli Studi di Padova, via Marzolo 8, I-35131 Padova (Italy)

    2013-08-01

    A very simple physical model of galaxies is one in which the formation of stars is instantaneously regulated by the mass of gas in a reservoir with mass loss scaling with the star-formation rate (SFR). This model links together three different aspects of the evolving galaxy population: (1) the cosmic time evolution of the specific star-formation rate (sSFR) relative to the growth of halos, (2) the gas-phase metallicities across the galaxy population and over cosmic time, and (3) the ratio of the stellar to dark matter mass of halos. The gas regulator is defined by the gas consumption timescale ({epsilon}{sup -1}) and the mass loading {lambda} of the wind outflow {lambda}{center_dot}SFR. The simplest regulator, in which {epsilon} and {lambda} are constant, sets the sSFR equal to exactly the specific accretion rate of the galaxy; more realistic situations lead to an sSFR that is perturbed from this precise relation. Because the gas consumption timescale is shorter than the timescale on which the system evolves, the metallicity Z is set primarily by the instantaneous operation of the regulator system rather than by the past history of the system. The metallicity of the gas reservoir depends on {epsilon}, {lambda}, and sSFR, and the regulator system therefore naturally produces a Z(m{sub star}, SFR) relation if {epsilon} and {lambda} depend on the stellar mass m{sub star}. Furthermore, this relation will be the same at all epochs unless the parameters {epsilon} and {lambda} themselves change with time. A so-called fundamental metallicity relation is naturally produced by these conditions. The overall mass-metallicity relation Z(m{sub star}) directly provides the fraction f{sub star}(m{sub star}) of incoming baryons that are being transformed into stars. The observed Z(m{sub star}) relation of Sloan Digital Sky Survey (SDSS) galaxies implies a strong dependence of stellar mass on halo mass that reconciles the different faint-end slopes of the stellar and halo mass

  17. VLA AND ALMA IMAGING OF INTENSE GALAXY-WIDE STAR FORMATION IN z ∼ 2 GALAXIES

    International Nuclear Information System (INIS)

    Rujopakarn, W.; Silverman, J. D.; Dunlop, J. S.; Ivison, R. J.; McLure, R. J.; Michałowski, M. J.; Rieke, G. H.; Cibinel, A.; Nyland, K.; Jagannathan, P.; Bhatnagar, S.; Alexander, D. M.; Biggs, A. D.; Ballantyne, D. R.; Dickinson, M.; Elbaz, D.; Geach, J. E.; Hayward, C. C.; Kirkpatrick, A.

    2016-01-01

    We present ≃0.″4 resolution extinction-independent distributions of star formation and dust in 11 star-forming galaxies (SFGs) at z  = 1.3–3.0. These galaxies are selected from sensitive blank-field surveys of the 2′ × 2′ Hubble Ultra-Deep Field at λ  = 5 cm and 1.3 mm using the Karl G. Jansky Very Large Array and Atacama Large Millimeter/submillimeter Array. They have star formation rates (SFRs), stellar masses, and dust properties representative of massive main-sequence SFGs at z  ∼ 2. Morphological classification performed on spatially resolved stellar mass maps indicates a mixture of disk and morphologically disturbed systems; half of the sample harbor X-ray active galactic nuclei (AGNs), thereby representing a diversity of z  ∼ 2 SFGs undergoing vigorous mass assembly. We find that their intense star formation most frequently occurs at the location of stellar-mass concentration and extends over an area comparable to their stellar-mass distribution, with a median diameter of 4.2 ± 1.8 kpc. This provides direct evidence of galaxy-wide star formation in distant blank-field-selected main-sequence SFGs. The typical galactic-average SFR surface density is 2.5 M ⊙ yr −1 kpc −2 , sufficiently high to drive outflows. In X-ray-selected AGN where radio emission is enhanced over the level associated with star formation, the radio excess pinpoints the AGNs, which are found to be cospatial with star formation. The median extinction-independent size of main-sequence SFGs is two times larger than those of bright submillimeter galaxies, whose SFRs are 3–8 times larger, providing a constraint on the characteristic SFR (∼300 M ⊙ yr −1 ) above which a significant population of more compact SFGs appears to emerge.

  18. Star Formation Histories of Local Group Dwarf Galaxies. (Ludwig Biermann Award Lecture 1996)

    Science.gov (United States)

    Grebel, E. K.

    The star formation histories of dwarf galaxies in the Local Group are reviewed. First the question of Local Group membership is considered based on various criteria. The properties of 31 (36) galaxies are consistent with likely (potential) Local Group membership. To study the star formation histories of these galaxies, a multi-parameter problem needs to be solved: Ages, metallicities, population fractions, and spatial variations must be determined, which depend crucially on the knowledge of reddening and distance. The basic methods for studying resolvable stellar populations are summarized. One method is demonstrated using the Fornax dwarf spheroidal galaxy. A comprehensive compilation of the star formation histories of dwarf irregulars, dwarf ellipticals, and dwarf spheroidals in the Local Group is presented and visualized through Hodge's population boxes. All galaxies appear to have differing fractions of old and intermediate-age populations, and those sufficiently massive and undisturbed to retain and recycle their gas are still forming stars today. Star formation has occurred either in distinct episodes or continuously over long periods of time. Metallicities and enrichment vary widely. Constraints on merger and remnant scenarios are discussed, and a unified picture based on the current knowledge is presented. Primary goals for future observations are: accurate age determinations based on turnoff photometry, detection of subpopulations distinct in age, metallicity, and/or spatial distribution; improved distances; and astrometric studies to derive orbits and constrain past and future interactions.

  19. The formation of stellar black holes

    Science.gov (United States)

    Mirabel, Félix

    2017-08-01

    It is believed that stellar black holes (BHs) can be formed in two different ways: Either a massive star collapses directly into a BH without a supernova (SN) explosion, or an explosion occurs in a proto-neutron star, but the energy is too low to completely unbind the stellar envelope, and a large fraction of it falls back onto the short-lived neutron star (NS), leading to the delayed formation of a BH. Theoretical models set progenitor masses for BH formation by implosion, namely, by complete or almost complete collapse, but observational evidences have been elusive. Here are reviewed the observational insights on BHs formed by implosion without large natal kicks from: (1) the kinematics in three dimensions of space of five Galactic BH X-ray binaries (BH-XRBs), (2) the diversity of optical and infrared observations of massive stars that collapse in the dark, with no luminous SN explosions, possibly leading to the formation of BHs, and (3) the sources of gravitational waves (GWs) produced by mergers of stellar BHs so far detected with LIGO. Multiple indications of BH formation without ejection of a significant amount of matter and with no natal kicks obtained from these different areas of observational astrophysics, and the recent observational confirmation of the expected dependence of BH formation on metallicity and redshift, are qualitatively consistent with the high merger rates of binary black holes (BBHs) inferred from the first detections with LIGO.

  20. The ACS LCID project. X. the star formation history of IC 1613: Revisiting the over-cooling problem

    Energy Technology Data Exchange (ETDEWEB)

    Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Hidalgo, Sebastian L.; Monelli, Matteo; Gallart, Carme; Aparicio, Antonio, E-mail: skillman@astro.umn.edu, E-mail: shidalgo@iac.es, E-mail: monelli@iac.es, E-mail: carme@iac.es, E-mail: aparicio@iac.es [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38200 La Laguna, Tenerife, Canary Islands (Spain); and others

    2014-05-01

    We present an analysis of the star formation history (SFH) of a field near the half-light radius in the Local Group dwarf irregular galaxy IC 1613 based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. Our observations reach the oldest main sequence turn-off, allowing a time resolution at the oldest ages of ∼1 Gyr. Our analysis shows that the SFH of the observed field in IC 1613 is consistent with being constant over the entire lifetime of the galaxy. These observations rule out an early dominant episode of star formation in IC 1613. We compare the SFH of IC 1613 with expectations from cosmological models. Since most of the mass is in place at early times for low-mass halos, a naive expectation is that most of the star formation should have taken place at early times. Models in which star formation follows mass accretion result in too many stars formed early and gas mass fractions that are too low today (the 'over-cooling problem'). The depth of the present photometry of IC 1613 shows that, at a resolution of ∼1 Gyr, the star formation rate is consistent with being constant, at even the earliest times, which is difficult to achieve in models where star formation follows mass assembly.

  1. Formation of the First Star Clusters and Massive Star Binaries by Fragmentation of Filamentary Primordial Gas Clouds

    Science.gov (United States)

    Hirano, Shingo; Yoshida, Naoki; Sakurai, Yuya; Fujii, Michiko S.

    2018-03-01

    We perform a set of cosmological simulations of early structure formation incorporating baryonic streaming motions. We present a case where a significantly elongated gas cloud with ∼104 solar mass (M ⊙) is formed in a pre-galactic (∼107 M ⊙) dark halo. The gas streaming into the halo compresses and heats the massive filamentary cloud to a temperature of ∼10,000 Kelvin. The gas cloud cools rapidly by atomic hydrogen cooling, and then by molecular hydrogen cooling down to ∼400 Kelvin. The rapid decrease of the temperature and hence of the Jeans mass triggers fragmentation of the filament to yield multiple gas clumps with a few hundred solar masses. We estimate the mass of the primordial star formed in each fragment by adopting an analytic model based on a large set of radiation hydrodynamics simulations of protostellar evolution. The resulting stellar masses are in the range of ∼50–120 M ⊙. The massive stars gravitationally attract each other and form a compact star cluster. We follow the dynamics of the star cluster using a hybrid N-body simulation. We show that massive star binaries are formed in a few million years through multi-body interactions at the cluster center. The eventual formation of the remnant black holes will leave a massive black hole binary, which can be a progenitor of strong gravitational wave sources similar to those recently detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).

  2. The Constant Average Relationship Between Dust-obscured Star Formation and Stellar Mass from z=0 to z=2.5

    Science.gov (United States)

    Whitaker, Katherine E.; Pope, Alexandra; Cybulski, Ryan; Casey, Caitlin M.; Popping, Gergo; Yun, Min; 3D-HST Collaboration

    2018-01-01

    The total star formation budget of galaxies consists of the sum of the unobscured star formation, as observed in the rest-frame ultraviolet (UV), together with the obscured component that is absorbed and re-radiated by dust grains in the infrared. We explore how the fraction of obscured star formation depends (SFR) and stellar mass for mass-complete samples of galaxies at 0 MIPS 24μm photometry in the well-studied 5 extragalactic CANDELS fields. We find a strong dependence of the fraction of obscured star formation (f_obscured=SFR_IR/SFR_UV+IR) on stellar mass, with remarkably little evolution in this fraction with redshift out to z=2.5. 50% of star formation is obscured for galaxies with log(M/M⊙)=9.4 although unobscured star formation dominates the budget at lower masses, there exists a tail of low mass extremely obscured star-forming galaxies at z > 1. For log(M/M⊙)>10.5, >90% of star formation is obscured at all redshifts. We also show that at fixed total SFR, f_obscured is lower at higher redshift. At fixed mass, high-redshift galaxies are observed to have more compact sizes and much higher star formation rates, gas fractions and hence surface densities (implying higher dust obscuration), yet we observe no redshift evolution in f_obscured with stellar mass. This poses a challenge to theoretical models to reproduce, where the observed compact sizes at high redshift seem in tension with lower dust obscuration.

  3. THE RUNAWAYS AND ISOLATED O-TYPE STAR SPECTROSCOPIC SURVEY OF THE SMC (RIOTS4)

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, J. B.; Oey, M. S.; Segura-Cox, D. M.; Graus, A. S.; Golden-Marx, J. B. [Astronomy Department, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109-1107 (United States); Kiminki, D. C. [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Parker, J. Wm., E-mail: joellamb@umich.edu [Southwest Research Institute, Department of Space Studies, Suite 300, 1050 Walnut Street, Boulder, CO 80302-5150 (United States)

    2016-02-01

    We present the Runaways and Isolated O-Type Star Spectroscopic Survey of the SMC (RIOTS4), a spatially complete survey of uniformly selected field OB stars that covers the entire star-forming body of the Small Magellanic Cloud (SMC). Using the IMACS (Inamori-Magellan Areal Camera and Spectrograph) multislit spectrograph and MIKE (Magellan Inamori Kyocera Echelle) echelle spectrograph on the Magellan telescopes, we obtained spectra of 374 early-type field stars that are at least 28 pc from any other OB candidates. We also obtained spectra of an additional 23 field stars in the SMC bar identified from slightly different photometric criteria. Here, we present the observational catalog of stars in the RIOTS4 survey, including spectral classifications and radial velocities. For three multi-slit fields covering 8% of our sample, we carried out monitoring observations over 9–16 epochs to study binarity, finding a spectroscopic, massive binary frequency of at least ∼60% in this subsample. Classical Oe/Be stars represent a large fraction of RIOTS4 (42%), occurring at much higher frequency than in the Galaxy, consistent with expectation at low metallicity. RIOTS4 confirmed a steep upper initial mass function in the field, apparently caused by the inability of the most massive stars to form in the smallest clusters. Our survey also yields evidence for in situ field OB star formation, and properties of field emission-line star populations, including sgB[e] stars and classical Oe/Be stars. We also discuss the radial velocity distribution and its relation to SMC kinematics and runaway stars. RIOTS4 presents a first quantitative characterization of field OB stars in an external galaxy, including the contributions of sparse, but normal, star formation; runaway stars; and candidate isolated star formation.

  4. Simulating the formation and evolution of galaxies: multi-phase description of the interstellar medium, star formation, and energy feedback

    Science.gov (United States)

    Merlin, E.; Chiosi, C.

    2007-10-01

    Context: Modelling the gaseous component of the interstellar medium (ISM) by Smoothed Particles Hydrodynamics in N-Body simulations (NB-TSPH) is still very crude when compared to the complex real situation. In the real ISM, many different and almost physically decoupled components (phases) coexist for long periods of time, and since they spread over wide ranges of density and temperature, they cannot be correctly represented by a unique continuous fluid. This would influence star formation which is thought to take place in clumps of cold, dense, molecular clouds, embedded in a warmer, neutral medium, that are almost freely moving throughout the tenuous hot ISM. Therefore, assuming that star formation is simply related to the gas content without specifying the component in which this is both observed and expected to occur may not be physically sound. Aims: We consider a multi-phase representation of the ISM in NB-TSPH simulations of galaxy formation and evolution with particular attention to the case of early-type galaxies. Methods: Cold gas clouds are described by the so-called sticky particles algorithm. They can freely move throughout the hot ISM medium; stars form within these clouds and the mass exchange among the three baryonic phases (hot gas, cold clouds, stars) is governed by radiative and Compton cooling and energy feedback by supernova (SN) explosions, stellar winds, and UV radiation. We also consider thermal conduction, cloud-cloud collisions, and chemical enrichment. Results: Our model agrees with and improves upon previous studies on the same subject. The results for the star formation rate agree with recent observational data on early-type galaxies. Conclusions: These models lend further support to the revised monolithic scheme of galaxy formation, which has recently been strengthened by high redshift data leading to the so-called downsizing and top-down scenarios.

  5. A method to estimate stellar ages from kinematical data

    Science.gov (United States)

    Almeida-Fernandes, F.; Rocha-Pinto, H. J.

    2018-05-01

    We present a method to build a probability density function (PDF) for the age of a star based on its peculiar velocities U, V, and W and its orbital eccentricity. The sample used in this work comes from the Geneva-Copenhagen Survey (GCS) that contains the spatial velocities, orbital eccentricities, and isochronal ages for about 14 000 stars. Using the GCS stars, we fitted the parameters that describe the relations between the distributions of kinematical properties and age. This parametrization allows us to obtain an age probability from the kinematical data. From this age PDF, we estimate an individual average age for the star using the most likely age and the expected age. We have obtained the stellar age PDF for the age of 9102 stars from the GCS and have shown that the distribution of individual ages derived from our method is in good agreement with the distribution of isochronal ages. We also observe a decline in the mean metallicity with our ages for stars younger than 7 Gyr, similar to the one observed for isochronal ages. This method can be useful for the estimation of rough stellar ages for those stars that fall in areas of the Hertzsprung-Russell diagram where isochrones are tightly crowded. As an example of this method, we estimate the age of Trappist-1, which is a M8V star, obtaining the age of t(UVW) = 12.50(+0.29 - 6.23) Gyr.

  6. Galaxy formation hydrodynamics: From cosmic flows to star-forming clouds

    International Nuclear Information System (INIS)

    Bournaud, F.

    2011-01-01

    Major progress has been made over the last few years in understanding hydrodynamical processes on cosmological scales, in particular how galaxies get their baryons. There is increasing recognition that a large part of the baryons accrete smoothly onto galaxies, and that internal evolution processes play a major role in shaping galaxies mergers are not necessarily the dominant process. However, predictions from the various assembly mechanisms are still in large disagreement with the observed properties of galaxies in the nearby Universe. Small-scale processes have a major impact on the global evolution of galaxies over a Hubble time and the usual sub-grid models account for them in a far too uncertain way. Understanding when, where and at which rate galaxies formed their stars becomes crucial to understand the formation of galaxy populations. I discuss recent improvements and current limitations in 'resolved' modeling of star formation, aiming at explicitly capturing star-foul-ling instabilities, in cosmological and galaxy-sized simulations. Such models need to develop three-dimensional turbulence in the ISM, which requires parsec-scale resolution at redshift zero. (authors)

  7. Formation and pre-MS Evolution of Massive Stars with Growing Accretion

    Science.gov (United States)

    Maeder, A.; Behrend, R.

    2002-10-01

    We briefly describe the three existing scenarios for forming massive stars and emphasize that the arguments often used to reject the accretion scenario for massive stars are misleading. It is usually not accounted for the fact that the turbulent pressure associated to large turbulent velocities in clouds necessarily imply relatively high accretion rates for massive stars. We show the basic difference between the formation of low and high mass stars based on the values of the free fall time and of the Kelvin-Helmholtz timescale, and define the concept of birthline for massive stars. Due to D-burning, the radius and location of the birthline in the HR diagram, as well as the lifetimes are very sensitive to the accretion rate dM/dt(accr). If a form dM/dt(accr) propto A(M/Msun)phi is adopted, the observations in the HR diagram and the lifetimes support a value of A approx 10-5 Msun/yr and a value of phi > 1. Remarkably, such a law is consistent with the relation found by Churchwell and Henning et al. between the outflow rates and the luminosities of ultracompact HII regions, if we assume that a fraction 0.15 to 0.3 of the global inflow is accreted. The above relation implies high dM/dt(accr) approx 10-3 Msun/yr for the most massive stars. The physical possibility of such high dM/dt(accr) is supported by current numerical models. Finally, we give simple analytical arguments in favour of the growth of dM/dt(accr) with the already accreted mass. We also suggest that due to Bondi-Hoyle accretion, the formation of binary stars is largely favoured among massive stars in the accretion scenario.

  8. Tracing early evolutionary stages of high-mass star formation with molecular lines

    NARCIS (Netherlands)

    Marseille, M. G.; van der Tak, F. F. S.; Herpin, F.; Jacq, T.

    2010-01-01

    Context. Despite its major role in the evolution of the interstellar medium, the formation of high-mass stars (M >= 10 M(circle dot)) remains poorly understood. Two types of massive star cluster precursors, the so-called massive dense cores (MDCs), have been observed, which differ in terms of their

  9. STAR FORMATION ASSOCIATED WITH THE SUPERNOVA REMNANT IC443

    International Nuclear Information System (INIS)

    Xu Jinlong; Wang Junjie; Miller, Martin

    2011-01-01

    We have performed submillimeter and millimeter observations in CO lines toward supernova remnant (SNR) IC443. The CO molecular shell coincides well with the partial shell of the SNR detected in radio continuum observations. Broad emission lines and three 1720 MHz OH masers were detected in the CO molecular shell. The present observations have provided further evidence in support of the interaction between the SNR and the adjoining molecular clouds (MCs). The total mass of the MCs is 9.26 x 10 3 M sun . The integrated CO line intensity ratio (R I CO(3-2) /I CO(2-1) ) for the whole MC is between 0.79 and 3.40. The average value is 1.58, which is much higher than previous measurements of individual Galactic MCs. Higher line ratios imply that shocks have driven into the MCs. We conclude that high R I CO(3-2) /I CO(2-1) is identified as a good signature of the SNR-MC interacting system. Based on the IRAS Point Source Catalog and the Two Micron All Sky Survey near-infrared database, 12 protostellar object and 1666 young stellar object (YSO) candidates (including 154 classical T Tauri stars and 419 Herbig Ae/Be stars) are selected. In the interacting regions, the significant enhancement of the number of protostellar objects and YSOs indicates the presence of some recently formed stars. After comparing the characteristic timescales of star formation with the age of IC443, we conclude that the protostellar objects and YSO candidates are not triggered by IC443. For the age of the stellar winds shell, we have performed our calculation on the basis of a stellar wind shell expansion model. The results and analysis suggest that the formation of these stars may be triggered by the stellar winds of the IC443 progenitor.

  10. TIDAL TAILS OF MINOR MERGERS: STAR FORMATION EFFICIENCY IN THE WESTERN TAIL OF NGC 2782

    Energy Technology Data Exchange (ETDEWEB)

    Knierman, Karen; Scowen, Paul; Jansen, Rolf A. [School of Earth and Space Exploration, Arizona State University, 550 East Tyler Mall, Room PSF-686 (P.O. Box 871404), Tempe, AZ 85287-1404 (United States); Knezek, Patricia M. [WIYN Consortium, Inc., 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Wehner, Elizabeth, E-mail: karen.knierman@asu.edu, E-mail: paul.scowen@asu.edu, E-mail: rolf.jansen@asu.edu, E-mail: pknezek@noao.edu, E-mail: ewehner@haverford.edu [Department of Astronomy, Haverford College, Haverford, PA 19041 (United States)

    2012-04-10

    While major mergers and their tidal debris are well studied, they are less common than minor mergers (mass ratios {approx}< 0.3). The peculiar spiral NGC 2782 is the result of a merger between two disk galaxies with a mass ratio of {approx}4: 1 occurring {approx}200 Myr ago. This merger produced a molecular and H I-rich, optically bright eastern tail and an H I-rich, optically faint western tail. Non-detection of CO in the western tail by Braine et al. suggested that star formation had not yet begun to occur in that tidal tail. However, deep H{alpha} narrowband images show evidence of recent star formation in the western tail. Across the entire western tail, we find the global star formation rate per unit area ({Sigma}{sub SFR}) to be several orders of magnitude less than expected from the total gas density. Together with extended FUV+NUV emission from Galaxy Evolution Explorer along the tail, this indicates a low global star formation efficiency in the tidal tail producing lower mass star clusters. The H II region that we observed has a local (few-kiloparsec scale) {Sigma}{sub SFR} from H{alpha} that is less than that expected from the total gas density, which is consistent with other observations of tidal debris. The star formation efficiency of this H II region inferred from the total gas density is low, but normal when inferred from the molecular gas density. These results suggest the presence of a very small, locally dense region in the western tail of NGC 2782 or of a low-metallicity and/or low-pressure star-forming region.

  11. Supermassive Black Holes as the Regulators of Star Formation in Central Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Terrazas, Bryan A.; Bell, Eric F. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Woo, Joanna; Henriques, Bruno M. B. [Department of Physics, Institute for Astronomy, ETH Zurich, 8093 Zurich (Switzerland)

    2017-08-01

    We present the relationship between the black hole mass, stellar mass, and star formation rate (SFR) of a diverse group of 91 galaxies with dynamically measured black hole masses. For our sample of galaxies with a variety of morphologies and other galactic properties, we find that the specific SFR is a smoothly decreasing function of the ratio between black hole mass and stellar mass, or what we call the specific black hole mass. In order to explain this relation, we propose a physical framework where the gradual suppression of a galaxy’s star formation activity results from the adjustment to an increase in specific black hole mass, and accordingly, an increase in the amount of heating. From this framework, it follows that at least some galaxies with intermediate specific black hole masses are in a steady state of partial quiescence with intermediate specific SFRs, implying that both transitioning and steady-state galaxies live within this region that is known as the “green valley.” With respect to galaxy formation models, our results present an important diagnostic with which to test various prescriptions of black hole feedback and its effects on star formation activity.

  12. Supermassive Black Holes as the Regulators of Star Formation in Central Galaxies

    International Nuclear Information System (INIS)

    Terrazas, Bryan A.; Bell, Eric F.; Woo, Joanna; Henriques, Bruno M. B.

    2017-01-01

    We present the relationship between the black hole mass, stellar mass, and star formation rate (SFR) of a diverse group of 91 galaxies with dynamically measured black hole masses. For our sample of galaxies with a variety of morphologies and other galactic properties, we find that the specific SFR is a smoothly decreasing function of the ratio between black hole mass and stellar mass, or what we call the specific black hole mass. In order to explain this relation, we propose a physical framework where the gradual suppression of a galaxy’s star formation activity results from the adjustment to an increase in specific black hole mass, and accordingly, an increase in the amount of heating. From this framework, it follows that at least some galaxies with intermediate specific black hole masses are in a steady state of partial quiescence with intermediate specific SFRs, implying that both transitioning and steady-state galaxies live within this region that is known as the “green valley.” With respect to galaxy formation models, our results present an important diagnostic with which to test various prescriptions of black hole feedback and its effects on star formation activity.

  13. An origin for short gamma-ray bursts unassociated with current star formation.

    Science.gov (United States)

    Barthelmy, S D; Chincarini, G; Burrows, D N; Gehrels, N; Covino, S; Moretti, A; Romano, P; O'Brien, P T; Sarazin, C L; Kouveliotou, C; Goad, M; Vaughan, S; Tagliaferri, G; Zhang, B; Antonelli, L A; Campana, S; Cummings, J R; D'Avanzo, P; Davies, M B; Giommi, P; Grupe, D; Kaneko, Y; Kennea, J A; King, A; Kobayashi, S; Melandri, A; Meszaros, P; Nousek, J A; Patel, S; Sakamoto, T; Wijers, R A M J

    2005-12-15

    Two short (gamma-ray bursts (GRBs) have recently been localized and fading afterglow counterparts detected. The combination of these two results left unclear the nature of the host galaxies of the bursts, because one was a star-forming dwarf, while the other was probably an elliptical galaxy. Here we report the X-ray localization of a short burst (GRB 050724) with unusual gamma-ray and X-ray properties. The X-ray afterglow lies off the centre of an elliptical galaxy at a redshift of z = 0.258 (ref. 5), coincident with the position determined by ground-based optical and radio observations. The low level of star formation typical for elliptical galaxies makes it unlikely that the burst originated in a supernova explosion. A supernova origin was also ruled out for GRB 050709 (refs 3, 31), even though that burst took place in a galaxy with current star formation. The isotropic energy for the short bursts is 2-3 orders of magnitude lower than that for the long bursts. Our results therefore suggest that an alternative source of bursts--the coalescence of binary systems of neutron stars or a neutron star-black hole pair--are the progenitors of short bursts.

  14. Star formation in mergers with comologically motivated initial conditions

    NARCIS (Netherlands)

    Karman, Wouter; Macciò, Andrea V.; Kannan, Rahul; Moster, Benjamin P.; Somerville, Rachel S.

    2015-01-01

    We use semi-analytic models and cosmological merger trees to provide the initial conditions for multimerger numerical hydrodynamic simulations, and exploit these simulations to explore the effect of galaxy interaction and merging on star formation (SF). We compute numerical realizations of 12 merger

  15. MASS TRANSPORT AND TURBULENCE IN GRAVITATIONALLY UNSTABLE DISK GALAXIES. II. THE EFFECTS OF STAR FORMATION FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Goldbaum, Nathan J. [National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 W. Clark St., Urbana, IL 61801 (United States); Krumholz, Mark R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2601 (Australia); Forbes, John C., E-mail: ngoldbau@illinois.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-08-10

    Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ∼1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ∼5 and leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ∼ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.

  16. Black hole variability and the star formation-active galactic nucleus connection: Do all star-forming galaxies host an active galactic nucleus?

    International Nuclear Information System (INIS)

    Hickox, Ryan C.; Chen, Chien-Ting J.; Civano, Francesca M.; Hainline, Kevin N.; Mullaney, James R.; Alexander, David M.; Goulding, Andy D.

    2014-01-01

    We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (≳100 Myr). This variability can have important consequences for observed correlations. We present a simple model in which all star-forming galaxies host an AGN when averaged over ∼100 Myr timescales, with long-term average AGN accretion rates that are perfectly correlated with the star formation rate (SFR). We show that reasonable prescriptions for AGN variability reproduce the observed weak correlations between SFR and L AGN in typical AGN host galaxies, as well as the general trends in the observed AGN luminosity functions, merger fractions, and measurements of the average AGN luminosity as a function of SFR. These results imply that there may be a tight connection between AGN activity and SFR over galaxy evolution timescales, and that the apparent similarities in rest-frame colors, merger rates, and clustering of AGNs compared to 'inactive' galaxies may be due primarily to AGN variability. The results provide motivation for future deep, wide extragalactic surveys that can measure the distribution of AGN accretion rates as a function of SFR.

  17. Neutron star formation and the weak interaction

    International Nuclear Information System (INIS)

    Burrows, A.

    1986-01-01

    The only known direct diagnostic of the central event is its neutrino emission. The imprint of the entire internal evolution is stamped on the spectrum, mix of flavors, luminosities, and features of the accompanying neutrino burst. Detection and scrutiny of this neutrino signal will test theories concerning stellar collapse, type II supernovae, and the formation of neutron stars in ways impossible by other means. Despite the fact that an incredible 3x10 53 ergs may be emitted in neutrinos after the initiation of collapse, the very weakness of the neutrino/matter interaction that allows them to penetrate the stellar envelope and escape makes their detection at the Earth very difficult. Though neutrino astronomy is not yet a mature discipline, the physical theories of collapse have progressed to a sufficient degree that specific and detailed predictions can be made about the neutrino emissions that with future detector technology might be tested. The time seems propitious to summarize and review what is known and suspected about the neutrino signature of collapse, the potential for its detection, and how it can be used to test our ideas about the death of massive stars and the birth of neutrino stars. (orig./BBOE)

  18. Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Philip F. [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Conroy, Charlie, E-mail: phopkins@caltech.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-02-01

    Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances of these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier populations.

  19. Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?

    International Nuclear Information System (INIS)

    Hopkins, Philip F.; Conroy, Charlie

    2017-01-01

    Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances of these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier populations.

  20. Induced massive star formation in the trifid nebula?

    Science.gov (United States)

    Cernicharo; Lefloch; Cox; Cesarsky; Esteban; Yusef-Zadeh; Mendez; Acosta-Pulido; Garcia Lopez RJ; Heras

    1998-10-16

    The Trifid nebula is a young (10(5) years) galactic HII region where several protostellar sources have been detected with the infrared space observatory. The sources are massive (17 to 60 solar masses) and are associated with molecular gas condensations at the edges or inside the nebula. They appear to be in an early evolutionary stage and may represent the most recent generation of stars in the Trifid. These sources range from dense, apparently still inactive cores to more evolved sources, undergoing violent mass ejection episodes, including a source that powers an optical jet. These observations suggest that the protostellar sources may have evolved by induced star formation in the Trifid nebula.

  1. Polarization and infrared imaging of regions of star formation

    International Nuclear Information System (INIS)

    Moneti, A.

    1985-01-01

    Observational studies of two regions of star formation, the Taurus cloud and the BN-KL region of Orion, are presented. The magnetic field structure in the Taurus cloud was studied in order to investigate its possible role in the evolution of the cloud. It was found that the magnetic field is generally perpendicular to the elongated structures that make up the cloud, and it is deduced that the observed structure could be due to the effects of the magnetic field during the early stages of collapse. In addition, it was found that the magnetic field may have prevented the formation of massive stars by inhibiting the collapse of large cores, while not affecting the collapse of the small ones. Using a new near-infrared array camera, high resolution (1'') images of several young stars embedded in the cloud were obtained. Most of these sources have extended, spatially resolved circumstellar shells. High resolution images of the BN-KL region of Orion at four wavelengths between 1.65 and 4.7 μm were also obtained. At 1.65 μm a large trough is seen in the overall nebulosity; it is suggested that the observed trough is due to the doughnut of material around IRc2 as it obscures the background nebulosity

  2. Lithium abundances in high- and low-alpha halo stars

    DEFF Research Database (Denmark)

    Nissen, P. E.; Schuster, W. J.

    2012-01-01

    A previous study of F and G main-sequence stars in the solar neighborhood has revealed the existence of two distinct halo populations with a clear separation in [alpha /Fe] for the metallicity range -1.4 < [Fe/H] < -0.7. The kinematics of the stars and models of galaxy formation suggest that the ......A previous study of F and G main-sequence stars in the solar neighborhood has revealed the existence of two distinct halo populations with a clear separation in [alpha /Fe] for the metallicity range -1.4 ... that the ``high-alpha '' stars were formed in situ in the inner parts of the Galaxy, whereas the ``low-alpha '' ones have been accreted from satellite galaxies. In order to see if there is any systematic difference in the lithium abundances of high- and low-alpha stars, equivalent widths of the iLi 6707.8 Å line...... have been measured from VLT/UVES and NOT/FIES spectra and used to derive Li abundances. Furthermore, stellar masses are determined from evolutionary tracks in the log T_eff - log g diagram. For stars with masses 0.7 lithium abundance...

  3. The UK Infrared Telescope M 33 monitoring project - V. The star formation history across the galactic disc

    Science.gov (United States)

    Javadi, Atefeh; van Loon, Jacco Th.; Khosroshahi, Habib G.; Tabatabaei, Fatemeh; Hamedani Golshan, Roya; Rashidi, Maryam

    2017-01-01

    We have conducted a near-infrared monitoring campaign at the UK Infrared Telescope of the Local Group spiral galaxy M 33 (Triangulum). On the basis of their variability, we have identified stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. In this fifth paper of the series, we construct the birth mass function and hence derive the star formation history across the galactic disc of M 33. The star formation rate has varied between ˜0.010 ± 0.001 (˜0.012 ± 0.007) and 0.060±0.005 (0.052±0.009) M⊙ yr-1 kpc-2 statistically (systematically) in the central square kiloparsec of M 33, comparable with the values derived previously with another camera. The total star formation rate in M 33 within a galactocentric radius of 14 kpc has varied between ˜0.110 ± 0.005 (˜0.174 ± 0.060) and ˜0.560 ± 0.028 (˜0.503 ± 0.100) M⊙ yr-1 statistically (systematically). We find evidence of two epochs during which the star formation rate was enhanced by a factor of a few - one that started ˜6 Gyr ago and lasted ˜3 Gyr and produced ≥71 per cent of the total mass in stars, and one ˜250 Myr ago that lasted ˜200 Myr and formed ≤13 per cent of the mass in stars. Radial star formation history profiles suggest that the inner disc of M 33 was formed in an inside-out formation scenario. The outskirts of the disc are dominated by the old population, which may be the result of dynamical effects over many Gyr. We find correspondence to spiral structure for all stars, but enhanced only for stars younger than ˜100 Myr; this suggests that the spiral arms are transient features and not a part of a global density wave potential.

  4. Galactic Archaeology with TESS: Prospects for Testing the Star Formation History in the Solar Neighbourhood

    Science.gov (United States)

    Thomas, Alexandra; Stevenson, Emma; Gittins, Fabian W. R.; Miglio, Andrea; Davies, Guy; Girardi, Léo; Campante, Tiago L.; Schofield, Mathew

    2017-10-01

    A period of quenching between the formation of the thick and thin disks of the Milky Way has been recently proposed to explain the observed age-[α/Fe] distribution of stars in the solar neighbourhood. However, robust constraints on stellar ages are currently available for only a limited number of stars. The all-sky survey TESS (Transiting Exoplanet Survey Satellite) will observe the brightest stars in the sky and thus can be used to investigate the age distributions of stars in these components of the Galaxy via asteroseismology, where previously this has been diffcult using other techniques. The aim of this preliminary study was to determine whether TESS will be able to provide evidence for quenching periods during the star formation history of the Milky Way. Using a population synthesis code, we produced populations based on various stellar formation history models and limited the analysis to red-giant-branch stars. We investigated the mass-Galactic-disk-height distributions, where stellar mass was used as an age proxy, to test for whether periods of quenching can be observed by TESS. We found that even with the addition of 15% noise to the inferred masses, it will be possible for TESS to find evidence for/against quenching periods suggested in the literature (e.g. between 7 and 9 Gyr ago), therefore providing stringent constraints on the formation and evolution of the Milky Way.

  5. Star formation and its relation to free-free emission from ionized gas and far-infrared emission from dust

    International Nuclear Information System (INIS)

    Mezger, P.G.

    1985-01-01

    The author reviews the physical state of the galactic disk and especially of the thin layer of interstellar matter (ISM) out of which stars form today. The characteristics of OB stars and the HII regions which these stars form are summarized. Dust emission characteristics are also summarized. The author shows how the Lyc photon production rate of all O stars, and the total IR luminosity of all dust grains in the galactic disk can be estimated from radio and FIR surveys of the galactic plane. Star formation rates are derived for a constant initial mass function. The concept of bimodal star formation, where about equal fractions of O stars form in spiral arms and interarm region but low mass stars form only in the interarm region, is introduced. The relation between the 2.4 μm emission from M giants and supergiants is discussed qualitatively, lending support to the process of bimodal star formation. (Auth.)

  6. Chemical Compositions of Stars in the Globular Cluster NGC 3201: Tracers of Multi-Epoch Star Formation

    Science.gov (United States)

    Simmerer, Jennifer A.; Ivans, I. I.; Filler, D.

    2012-01-01

    The retrograde halo globular cluster NGC 3201 contains stars of substantially different iron abundance ([Fe/H]), a property that puts it at odds with the vast majority of the Galactic cluster system. Though its unusual orbit prompted speculation that NGC 3201 was the remnant of a captured object, much like the multi-metallicity globular cluster Omega Centauri, NGC 3201 is much less massive than Omega Centauri and all of the other halo globular clusters that have internal metallicity variations. We present the abundances of 21 elements in 24 red giant branch stars in NGC 3201 based on high-resolution (R 40,000), high signal-to-noise (S/N 70) spectra. We find that the detailed abundance pattern of NGC 3201 is unique amongst multi-metallicity halo clusters. Unlike M22, Omega Centauri, and NGC 1851, neither metal-poor nor metal-rich stars show any evidence of s-process enrichment (a product of the advanced evolution of low- and intermediate-mass stars). We find that while Na, O, and Al vary from star to star as is typical in globular clusters, there is no systematic difference between the abundance pattern in the metal-poor cluster stars and that of the metal-rich cluster stars. Furthermore, we find that the metallicity variations in NGC 3201 are independent of the well-known Na-O anticorrelation, which separates it from every other multi-metallicity cluster. In the context of a multi-episode star formation model, this implies that NGC 3201 began life with the [Fe/H] variations we measure now.

  7. STAR FORMATION ACTIVITY OF CORES WITHIN INFRARED DARK CLOUDS

    International Nuclear Information System (INIS)

    Chambers, E. T.; Jackson, J. M.; Rathborne, J. M.; Simon, R.

    2009-01-01

    Infrared Dark Clouds (IRDCs) contain compact cores which probably host the early stages of high-mass star formation. Many of these cores contain regions of extended, enhanced 4.5 μm emission, the so-called 'green fuzzies', which indicate shocked gas. Many cores also contain 24 μm emission, presumably from heated dust which indicates embedded protostars. Because 'green fuzzies' and 24 μm point sources both indicate star formation, we have developed an algorithm to identify star-forming cores within IRDCs by searching for the simultaneous presence of these two distinct indicators. We employ this algorithm on a sample of 190 cores found toward IRDCs, and classify the cores as 'active' if they contain a green fuzzy coincident with an embedded 24 μm source, and as 'quiescent' if they contain neither IR signature. We hypothesize that the 'quiescent' cores represent the earliest 'preprotostellar' (starless) core phase, before the development of a warm protostar, and that the 'active' cores represent a later phase, after the development of a protostar. We test this idea by comparing the sizes, densities, and maser activity of the 'active' and 'quiescent' cores. We find that, on average, 'active' cores have smaller sizes, higher densities, and more pronounced water and methanol maser activity than the 'quiescent' cores. This is expected if the 'quiescent' cores are in an earlier evolutionary state than the 'active' cores. The masses of 'active' cores suggest that they may be forming high-mass stars. The highest mass 'quiescent' cores are excellent candidates for the elusive high-mass starless cores.

  8. THE SIZE-STAR FORMATION RELATION OF MASSIVE GALAXIES AT 1.5 < z < 2.5

    International Nuclear Information System (INIS)

    Toft, S.; Franx, M.; Van Dokkum, P.; Foerster Schreiber, N. M.; Labbe, I.; Wuyts, S.; Marchesini, D.

    2009-01-01

    We study the relation between size and star formation activity in a complete sample of 225 massive (M * > 5 x 10 10 M sun ) galaxies at 1.5 PSF ∼ 0.''45) ground-based ISAAC data, we confirm and improve the significance of the relation between star formation activity and compactness found in previous studies, using a large, complete mass-limited sample. At z ∼ 2, massive quiescent galaxies are significantly smaller than massive star-forming galaxies, and a median factor of 0.34 ± 0.02 smaller than galaxies of similar mass in the local universe. Thirteen percent of the quiescent galaxies are unresolved in the ISAAC data, corresponding to sizes <1 kpc, more than five times smaller than galaxies of similar mass locally. The quiescent galaxies span a Kormendy relation which, compared to the relation for local early types, is shifted to smaller sizes and brighter surface brightnesses and is incompatible with passive evolution. The progenitors of the quiescent galaxies were likely dominated by highly concentrated, intense nuclear starbursts at z ∼ 3-4, in contrast to star-forming galaxies at z ∼ 2 which are extended and dominated by distributed star formation.

  9. Clumps and triggered star formation in ionized molecular clouds

    Czech Academy of Sciences Publication Activity Database

    Walch, S.; Whitworth, A.; Bisbas, T.; Wünsch, Richard; Hubber, D.A.

    2013-01-01

    Roč. 435, č. 2 (2013), s. 917-927 ISSN 0035-8711 R&D Projects: GA ČR GAP209/12/1795 Institutional support: RVO:67985815 Keywords : hydrodynamics * stars formation * ISM bubbles Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.226, year: 2013

  10. HALOGAS Observations of NGC 4559: Anomalous and Extraplanar H i and its Relation to Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Carlos J.; Walterbos, René A. M. [Department of Astronomy, New Mexico State University, Las Cruces, NM 88001 (United States); Heald, George [CSIRO Astronomy and Space Science, 26 Dick Perry Ave, Kensington, WA 6151 (Australia); Fraternali, Filippo [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands); Patterson, Maria T. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Rand, Richard J. [Department of Physics and Astronomy, University of New Mexico, 1919 Lomas Blvd. NE, Albuquerque, NM 87131 (United States); Józsa, Gyula I. G. [SKA South Africa Radio Astronomy Research Group, 3rd Floor, The Park, Park Rd., Pinelands 7405 (South Africa); Gentile, Gianfranco [Department of Physics and Astrophysics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); Serra, Paolo [INAF-Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (Italy)

    2017-04-20

    We use new deep 21 cm H i observations of the moderately inclined galaxy NGC 4559 in the HALOGAS survey to investigate the properties of extraplanar gas. We use TiRiFiC to construct simulated data cubes to match the H i observations. We find that a thick-disk component of scale height ∼2 kpc, characterized by a negative vertical gradient in its rotation velocity (lag) of ∼13 ± 5 km s{sup −1} kpc{sup −1} is an adequate fit to extraplanar gas features. The tilted ring models also present evidence for a decrease in the magnitude of the lag outside R {sub 25}, and a radial inflow of ∼10 km s{sup −1}. We extracted lagging extraplanar gas through Gaussian velocity profile fitting. From both the 3D models and extraction analyses we conclude that ∼10%–20% of the total H i mass is extraplanar. Most of the extraplanar gas is spatially coincident with regions of star formation in spiral arms, as traced by H α and GALEX FUV images, so it is likely due to star formation processes driving a galactic fountain. We also find the signature of a filament of a kinematically “forbidden” H i feature, containing ∼1.4 × 10{sup 6} M {sub ⊙} of H i, and discuss its potential relationship to a nearby H i hole. We discover a previously undetected dwarf galaxy in H i located ∼0.°4 (∼58 kpc) from the center of NGC 4559, containing ∼4 × 10{sup 5} M {sub ⊙}. This dwarf has counterpart sources in SDSS with spectra typical of H ii regions, and we conclude that it is two merging blue compact dwarf galaxies.

  11. The distribution of star formation and metals in the low surface brightness galaxy UGC 628

    Science.gov (United States)

    Young, J. E.; Kuzio de Naray, Rachel; Wang, Sharon X.

    2015-09-01

    We introduce the MUSCEL Programme (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies), a project aimed at determining the star-formation histories of low surface brightness galaxies. MUSCEL utilizes ground-based optical spectra and space-based UV and IR photometry to fully constrain the star-formation histories of our targets with the aim of shedding light on the processes that led low surface brightness galaxies down a different evolutionary path from that followed by high surface brightness galaxies, such as our Milky Way. Here we present the spatially resolved optical spectra of UGC 628, observed with the VIRUS-P IFU at the 2.7-m Harlen J. Smith Telescope at the McDonald Observatory, and utilize emission-line diagnostics to determine the rate and distribution of star formation as well as the gas-phase metallicity and metallicity gradient. We find highly clustered star formation throughout UGC 628, excluding the core regions, and a log(O/H) metallicity around -4.2, with more metal-rich regions near the edges of the galactic disc. Based on the emission-line diagnostics alone, the current mode of star formation, slow and concentrated in the outer disc, appears to have dominated for quite some time, although there are clear signs of a much older stellar population formed in a more standard inside-out fashion.

  12. New Discoveries in Planetary Systems and Star Formation through Advances in Laboratory Astrophysics

    OpenAIRE

    WGLA, AAS; Brickhouse, Nancy; Cowan, John; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Herbst, Eric; Olive, Keith; Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    As the panel on Planetary Systems and Star Formation (PSF) is fully aware, the next decade will see major advances in our understanding of these areas of research. To quote from their charge, these advances will occur in studies of solar system bodies (other than the Sun) and extrasolar planets, debris disks, exobiology, the formation of individual stars, protostellar and protoplanetary disks, molecular clouds and the cold ISM, dust, and astrochemistry. Central to the progress in these areas ...

  13. The Structure of the Young Star Cluster NGC 6231. II. Structure, Formation, and Fate

    Science.gov (United States)

    Kuhn, Michael A.; Getman, Konstantin V.; Feigelson, Eric D.; Sills, Alison; Gromadzki, Mariusz; Medina, Nicolás; Borissova, Jordanka; Kurtev, Radostin

    2017-12-01

    The young cluster NGC 6231 (stellar ages ˜2-7 Myr) is observed shortly after star formation activity has ceased. Using the catalog of 2148 probable cluster members obtained from Chandra, VVV, and optical surveys (Paper I), we examine the cluster’s spatial structure and dynamical state. The spatial distribution of stars is remarkably well fit by an isothermal sphere with moderate elongation, while other commonly used models like Plummer spheres, multivariate normal distributions, or power-law models are poor fits. The cluster has a core radius of 1.2 ± 0.1 pc and a central density of ˜200 stars pc-3. The distribution of stars is mildly mass segregated. However, there is no radial stratification of the stars by age. Although most of the stars belong to a single cluster, a small subcluster of stars is found superimposed on the main cluster, and there are clumpy non-isotropic distributions of stars outside ˜4 core radii. When the size, mass, and age of NGC 6231 are compared to other young star clusters and subclusters in nearby active star-forming regions, it lies at the high-mass end of the distribution but along the same trend line. This could result from similar formation processes, possibly hierarchical cluster assembly. We argue that NGC 6231 has expanded from its initial size but that it remains gravitationally bound.

  14. SECOND-GENERATION STELLAR DISKS IN DENSE STAR CLUSTERS AND CLUSTER ELLIPTICITIES

    International Nuclear Information System (INIS)

    Mastrobuono-Battisti, Alessandra; Perets, Hagai B.

    2016-01-01

    Globular clusters (GCs) and nuclear star clusters (NSCs) are typically composed of several stellar populations, characterized by different chemical compositions. Different populations show different ages in NSCs, but not necessarily in GCs. The youngest populations in NSCs appear to reside in disk-like structures as observed in our Galaxy and in M31. Gas infall followed by formation of second-generation (SG) stars in GCs may similarly form disk-like structures in the clusters nuclei. Here we explore this possibility and follow the long-term evolution of stellar disks embedded in GCs, and study their effects on the evolution of the clusters. We study disks with different masses by means of detailed N-body simulations and explore their morphological and kinematic signatures on the GC structures. We find that as a SG disk relaxes, the old, first-generation stellar population flattens and becomes more radially anisotropic, making the GC structure become more elliptical. The SG stellar population is characterized by a lower velocity dispersion and a higher rotational velocity compared with the primordial older population. The strength of these kinematic signatures depends both on the relaxation time of the system and on the fractional mass of the SG disk. We therefore conclude that SG populations formed in flattened configurations will give rise to two systematic trends: (1) a positive correlation between GC ellipticity and fraction of SG population and (2) a positive correlation between GC relaxation time and ellipticity. Therefore, GC ellipticities and rotation could be related to the formation of SG stars and their initial configuration.

  15. The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies

    Science.gov (United States)

    Lapi, A.; Pantoni, L.; Zanisi, L.; Shi, J.; Mancuso, C.; Massardi, M.; Shankar, F.; Bressan, A.; Danese, L.

    2018-04-01

    We aim to provide a holistic view on the typical size and kinematic evolution of massive early-type galaxies (ETGs) that encompasses their high-z star-forming progenitors, their high-z quiescent counterparts, and their configurations in the local Universe. Our investigation covers the main processes playing a relevant role in the cosmic evolution of ETGs. Specifically, their early fast evolution comprises biased collapse of the low angular momentum gaseous baryons located in the inner regions of the host dark matter halo; cooling, fragmentation, and infall of the gas down to the radius set by the centrifugal barrier; further rapid compaction via clump/gas migration toward the galaxy center, where strong heavily dust-enshrouded star formation takes place and most of the stellar mass is accumulated; and ejection of substantial gas amount from the inner regions by feedback processes, which causes a dramatic puffing-up of the stellar component. In the late slow evolution, passive aging of stellar populations and mass additions by dry merger events occur. We describe these processes relying on prescriptions inspired by basic physical arguments and by numerical simulations to derive new analytical estimates of the relevant sizes, timescales, and kinematic properties for individual galaxies along their evolution. Then we obtain quantitative results as a function of galaxy mass and redshift, and compare them to recent observational constraints on half-light size R e , on the ratio v/σ between rotation velocity and velocity dispersion (for gas and stars) and on the specific angular momentum j ⋆ of the stellar component; we find good consistency with the available multiband data in average values and dispersion, both for local ETGs and for their z ∼ 1–2 star-forming and quiescent progenitors. The outcomes of our analysis can provide hints to gauge sub-grid recipes implemented in simulations, to tune numerical experiments focused on specific processes, and to plan

  16. An Integrated Picture of Star Formation, Metallicity Evolution, and Galactic Stellar Mass Assembly

    Science.gov (United States)

    Cowie, L. L.; Barger, A. J.

    2008-10-01

    We present an integrated study of star formation and galactic stellar mass assembly from z = 0.05 to 1.5 and galactic metallicity evolution from z = 0.05 to 0.9 using a very large and highly spectroscopically complete sample selected by rest-frame NIR bolometric flux in the GOODS-N. We assume a Salpeter IMF and fit Bruzual & Charlot models to compute the galactic stellar masses and extinctions. We determine the expected formed stellar mass density growth rates produced by star formation and compare them with the growth rates measured from the formed stellar mass functions by mass interval. We show that the growth rates match if the IMF is slightly increased from the Salpeter IMF at intermediate masses (~10 M⊙). We investigate the evolution of galaxy color, spectral type, and morphology with mass and redshift and the evolution of mass with environment. We find that applying extinction corrections is critical when analyzing galaxy colors; e.g., nearly all of the galaxies in the green valley are 24 μm sources, but after correcting for extinction, the bulk of the 24 μm sources lie in the blue cloud. We find an evolution of the metallicity-mass relation corresponding to a decrease of 0.21 +/- 0.03 dex between the local value and the value at z = 0.77 in the 1010-1011 M⊙ range. We use the metallicity evolution to estimate the gas mass of the galaxies, which we compare with the galactic stellar mass assembly and star formation histories. Overall, our measurements are consistent with a galaxy evolution process dominated by episodic bursts of star formation and where star formation in the most massive galaxies (gtrsim1011 M⊙) ceases at z Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.

  17. THE IMACS CLUSTER BUILDING SURVEY. III. THE STAR FORMATION HISTORIES OF FIELD GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Oemler, Augustus Jr.; Dressler, Alan [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101-1292 (United States); Gladders, Michael G.; Abramson, Louis [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Fritz, Jacopo [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Poggianti, Bianca M.; Vulcani, Benedetta [INAF-Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy)

    2013-06-10

    Using data from the IMACS Cluster Building Survey and from nearby galaxy surveys, we examine the evolution of the rate of star formation in field galaxies from z = 0.60 to the present. Fitting the luminosity function to a standard Schechter form, we find a rapid evolution of M{sub B}{sup *} consistent with that found in other deep surveys; at the present epoch M{sub B}{sup *} is evolving at the rate of 0.38 Gyr{sup -1}, several times faster than the predictions of simple models for the evolution of old, coeval galaxies. The evolution of the distribution of specific star formation rates (SSFRs) is also too rapid to explain by such models. We demonstrate that starbursts cannot, even in principle, explain the evolution of the SSFR distribution. However, the rapid evolution of both M{sub B}{sup *} and the SSFR distribution can be explained if some fraction of galaxies have star formation rates characterized by both short rise and fall times and by an epoch of peak star formation more recent than the majority of galaxies. Although galaxies of every stellar mass up to 1.4 Multiplication-Sign 10{sup 11} M{sub Sun} show a range of epochs of peak star formation, the fraction of ''younger'' galaxies falls from about 40% at a mass of 4 Multiplication-Sign 10{sup 10} M{sub Sun} to zero at a mass of 1.4 Multiplication-Sign 10{sup 11} M{sub Sun }. The incidence of younger galaxies appears to be insensitive to the density of the local environment; but does depend on group membership: relatively isolated galaxies are much more likely to be young than are group members.

  18. MERGER SIGNATURES IN THE DYNAMICS OF STAR-FORMING GAS

    International Nuclear Information System (INIS)

    Hung, Chao-Ling; Sanders, D. B.; Hayward, Christopher C.; Smith, Howard A.; Ashby, Matthew L. N.; Martínez-Galarza, Juan R.; Zezas, Andreas; Lanz, Lauranne

    2016-01-01

    The recent advent of integral field spectrographs and millimeter interferometers has revealed the internal dynamics of many hundreds of star-forming galaxies. Spatially resolved kinematics have been used to determine the dynamical status of star-forming galaxies with ambiguous morphologies, and constrain the importance of galaxy interactions during the assembly of galaxies. However, measuring the importance of interactions or galaxy merger rates requires knowledge of the systematics in kinematic diagnostics and the visible time with merger indicators. We analyze the dynamics of star-forming gas in a set of binary merger hydrodynamic simulations with stellar mass ratios of 1:1 and 1:4. We find that the evolution of kinematic asymmetries traced by star-forming gas mirrors morphological asymmetries derived from mock optical images, in which both merger indicators show the largest deviation from isolated disks during strong interaction phases. Based on a series of simulations with various initial disk orientations, orbital parameters, gas fractions, and mass ratios, we find that the merger signatures are visible for ∼0.2–0.4 Gyr with kinematic merger indicators but can be approximately twice as long for equal-mass mergers of massive gas-rich disk galaxies designed to be analogs of z ∼ 2–3 submillimeter galaxies. Merger signatures are most apparent after the second passage and before the black holes coalescence, but in some cases they persist up to several hundred Myr after coalescence. About 20%–60% of the simulated galaxies are not identified as mergers during the strong interaction phase, implying that galaxies undergoing violent merging process do not necessarily exhibit highly asymmetric kinematics in their star-forming gas. The lack of identifiable merger signatures in this population can lead to an underestimation of merger abundances in star-forming galaxies, and including them in samples of star-forming disks may bias the measurements of disk

  19. Star formation in a high-pressure environment: an SMA view of the Galactic Centre dust ridge

    Science.gov (United States)

    Walker, D. L.; Longmore, S. N.; Zhang, Q.; Battersby, C.; Keto, E.; Kruijssen, J. M. D.; Ginsburg, A.; Lu, X.; Henshaw, J. D.; Kauffmann, J.; Pillai, T.; Mills, E. A. C.; Walsh, A. J.; Bally, J.; Ho, L. C.; Immer, K.; Johnston, K. G.

    2018-02-01

    The star formation rate in the Central Molecular Zone (CMZ) is an order of magnitude lower than predicted according to star formation relations that have been calibrated in the disc of our own and nearby galaxies. Understanding how and why star formation appears to be different in this region is crucial if we are to understand the environmental dependence of the star formation process. Here, we present the detection of a sample of high-mass cores in the CMZ's `dust ridge' that have been discovered with the Submillimeter Array. These cores range in mass from ˜50-2150 M⊙ within radii of 0.1-0.25 pc. All appear to be young (pre-UCHII), meaning that they are prime candidates for representing the initial conditions of high-mass stars and sub-clusters. We report that at least two of these cores (`c1' and `e1') contain young, high-mass protostars. We compare all of the detected cores with high-mass cores and clouds in the Galactic disc and find that they are broadly similar in terms of their masses and sizes, despite being subjected to external pressures that are several orders of magnitude greater, ˜108 K cm-3, as opposed to ˜105 K cm-3. The fact that >80 per cent of these cores do not show any signs of star-forming activity in such a high-pressure environment leads us to conclude that this is further evidence for an increased critical density threshold for star formation in the CMZ due to turbulence.

  20. Population I Cepheids and understanding star formation history of the Small Magellanic Cloud

    International Nuclear Information System (INIS)

    Joshi, Yogesh Chandra; Joshi, Santosh; Mohanty, Auro Prasad

    2016-01-01

    In this paper, we study the age and spatial distributions of Cepheids in the Small Magellanic Cloud (SMC) as a function of their ages using data from the OGLE III photometric catalogue. A period - age relation derived for Classical Cepheids in the Large Magellanic Cloud (LMC) has been used to find the ages of Cepheids. The age distribution of the SMC Classical Cepheids is found to have a peak at log(Age) = 8.40 ± 0.10 which suggests that a major star formation event might have occurred in the SMC about 250 ± 50 Myr ago. It is believed that this star forming burst had been triggered by close interactions of the SMC with the LMC and/or the Milky Way. A comparison of the observed spatial distributions of the Cepheids and open star clusters has also been carried out to study the star formation scenario in the SMC. (paper)

  1. Direct Measurements of Dust Attenuation in z ~ 1.5 Star-forming Galaxies from 3D-HST: Implications for Dust Geometry and Star Formation Rates

    Science.gov (United States)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B.; Conroy, Charlie; Förster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Skelton, Rosalind E.; van Dokkum, Pieter G.; Whitaker, Katherine E.; Wuyts, Stijn

    2014-06-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust around star-forming regions (A V, H II ) and the integrated dust content (A V, star). We select a sample of 163 galaxies between 1.36 =5 and measure Balmer decrements from stacked spectra to calculate A V, H II . First, we stack spectra in bins of A V, star, and find that A V, H II = 1.86 A V, star, with a significance of σ = 1.7. Our result is consistent with the two-component dust model, in which galaxies contain both diffuse and stellar birth cloud dust. Next, we stack spectra in bins of specific star formation rate (log SSFR), star formation rate (log SFR), and stellar mass (log M *). We find that on average A V, H II increases with SFR and mass, but decreases with increasing SSFR. Interestingly, the data hint that the amount of extra attenuation decreases with increasing SSFR. This trend is expected from the two-component model, as the extra attenuation will increase once older stars outside the star-forming regions become more dominant in the galaxy spectrum. Finally, using Balmer decrements we derive dust-corrected Hα SFRs, and find that stellar population modeling produces incorrect SFRs if rapidly declining star formation histories are included in the explored parameter space.

  2. THE HCN/HNC ABUNDANCE RATIO TOWARD DIFFERENT EVOLUTIONARY PHASES OF MASSIVE STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Mihwa; Lee, Jeong-Eun [School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Kim, Kee-Tae, E-mail: mihwajin.sf@gmail.com, E-mail: jeongeun.lee@khu.ac.kr, E-mail: ktkim@kasi.re.kr [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-07-20

    Using the H{sup 13}CN and HN{sup 13}C J = 1–0 line observations, the abundance ratio of HCN/HNC has been estimated for different evolutionary stages of massive star formation: infrared dark clouds (IRDCs), high-mass protostellar objects (HMPOs), and ultracompact H ii regions (UCH iis). IRDCs were divided into “quiescent IRDC cores (qIRDCc)” and “active IRDC cores (aIRDCc),” depending on star formation activity. The HCN/HNC ratio is known to be higher at active and high temperature regions related to ongoing star formation, compared to cold and quiescent regions. Our observations toward 8 qIRDCc, 16 aIRDCc, 23 HMPOs, and 31 UCH iis show consistent results; the ratio is 0.97 (±0.10), 2.65 (±0.88), 4.17 (±1.03), and 8.96 (±3.32) in these respective evolutionary stages, increasing from qIRDCc to UCH iis. The change of the HCN/HNC abundance ratio, therefore, seems directly associated with the evolutionary stages of star formation, which have different temperatures. One suggested explanation for this trend is the conversion of HNC to HCN, which occurs effectively at higher temperatures. To test the explanation, we performed a simple chemical model calculation. In order to fit the observed results, the energy barrier of the conversion must be much lower than the value provided by theoretical calculations.

  3. The globular cluster system of NGC 1316. IV. Nature of the star cluster complex SH2

    Science.gov (United States)

    Richtler, T.; Husemann, B.; Hilker, M.; Puzia, T. H.; Bresolin, F.; Gómez, M.

    2017-05-01

    Context. The light of the merger remnant NGC 1316 (Fornax A) is dominated by old and intermediate-age stars. The only sign of current star formation in this big galaxy is the Hii region SH2, an isolated star cluster complex with a ring-like morphology and an estimated age of 0.1 Gyr at a galactocentric distance of about 35 kpc. A nearby intermediate-age globular cluster, surrounded by weak line emission and a few more young star clusters, is kinematically associated. The origin of this complex is enigmatic. Aims: We want to investigate the nature of this star cluster complex. The nebular emission lines permit a metallicity determination which can discriminate between a dwarf galaxy or other possible precursors. Methods: We used the Integral Field Unit (IFU) of the VIMOS instrument at the Very Large Telescope of the European Southern Observatory in high dispersion mode to study the morphology, kinematics, and metallicity employing line maps, velocity maps, and line diagnostics of a few characteristic spectra. Results: The line ratios of different spectra vary, indicating highly structured Hii regions, but define a locus of uniform metallicity. The strong-line diagnostic diagrams and empirical calibrations point to a nearly solar or even super-solar oxygen abundance. The velocity dispersion of the gas is highest in the region offset from the bright clusters. Star formation may be active on a low level. There is evidence for a large-scale disk-like structure in the region of SH2, which would make the similar radial velocity of the nearby globular cluster easier to understand. Conclusions: The high metallicity does not fit to a dwarf galaxy as progenitor. We favour the scenario of a free-floating gaseous complex having its origin in the merger 2 Gyr ago. Over a long period the densities increased secularly until finally the threshold for star formation was reached. SH2 illustrates how massive star clusters can form outside starbursts and without a considerable field

  4. VLA AND ALMA IMAGING OF INTENSE GALAXY-WIDE STAR FORMATION IN z ∼ 2 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rujopakarn, W.; Silverman, J. D. [Kavli Institute for the Physics and Mathematics of the universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Dunlop, J. S.; Ivison, R. J.; McLure, R. J.; Michałowski, M. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Rieke, G. H. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Cibinel, A. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH (United Kingdom); Nyland, K. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Jagannathan, P.; Bhatnagar, S. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Alexander, D. M. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Biggs, A. D. [European Southern Observatory, Karl-Schwarzschild-Straße 2, Garching (Germany); Ballantyne, D. R. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Elbaz, D. [CEA Saclay, DSM/Irfu/Service d’Astrophysique, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Geach, J. E. [Center for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Hayward, C. C. [Center for Computational Astrophysics, 160 Fifth Avenue, New York, NY 10010 (United States); Kirkpatrick, A., E-mail: wiphu.rujopakarn@ipmu.jp [Yale Center for Astronomy and Astrophysics, Physics Department, P.O. Box 208120, New Haven, CT 06520 (United States); and others

    2016-12-10

    We present ≃0.″4 resolution extinction-independent distributions of star formation and dust in 11 star-forming galaxies (SFGs) at z  = 1.3–3.0. These galaxies are selected from sensitive blank-field surveys of the 2′ × 2′ Hubble Ultra-Deep Field at λ  = 5 cm and 1.3 mm using the Karl G. Jansky Very Large Array and Atacama Large Millimeter/submillimeter Array. They have star formation rates (SFRs), stellar masses, and dust properties representative of massive main-sequence SFGs at z  ∼ 2. Morphological classification performed on spatially resolved stellar mass maps indicates a mixture of disk and morphologically disturbed systems; half of the sample harbor X-ray active galactic nuclei (AGNs), thereby representing a diversity of z  ∼ 2 SFGs undergoing vigorous mass assembly. We find that their intense star formation most frequently occurs at the location of stellar-mass concentration and extends over an area comparable to their stellar-mass distribution, with a median diameter of 4.2 ± 1.8 kpc. This provides direct evidence of galaxy-wide star formation in distant blank-field-selected main-sequence SFGs. The typical galactic-average SFR surface density is 2.5 M {sub ⊙} yr{sup −1} kpc{sup −2}, sufficiently high to drive outflows. In X-ray-selected AGN where radio emission is enhanced over the level associated with star formation, the radio excess pinpoints the AGNs, which are found to be cospatial with star formation. The median extinction-independent size of main-sequence SFGs is two times larger than those of bright submillimeter galaxies, whose SFRs are 3–8 times larger, providing a constraint on the characteristic SFR (∼300 M {sub ⊙} yr{sup −1}) above which a significant population of more compact SFGs appears to emerge.

  5. The Gould's Belt Distances Survey (GOBELINS). IV. Distance, Depth, and Kinematics of the Taurus Star-forming Region

    Science.gov (United States)

    Galli, Phillip A. B.; Loinard, Laurent; Ortiz-Léon, Gisela N.; Kounkel, Marina; Dzib, Sergio A.; Mioduszewski, Amy J.; Rodríguez, Luis F.; Hartmann, Lee; Teixeira, Ramachrisna; Torres, Rosa M.; Rivera, Juana L.; Boden, Andrew F.; Evans, Neal J., II; Briceño, Cesar; Tobin, John J.; Heyer, Mark

    2018-05-01

    We present new trigonometric parallaxes and proper motions of young stellar objects in the Taurus molecular cloud complex from observations collected with the Very Long Baseline Array as part of the Gould’s Belt Distances Survey. We detected 26 young stellar objects and derived trigonometric parallaxes for 18 stars with an accuracy of 0.3% to a few percent. We modeled the orbits of six binaries and determined the dynamical masses of the individual components in four of these systems (V1023 Tau, T Tau S, V807 Tau, and V1000 Tau). Our results are consistent with the first trigonometric parallaxes delivered by the Gaia satellite and reveal the existence of significant depth effects. We find that the central portion of the dark cloud Lynds 1495 is located at d =129.5 ± 0.3 pc, while the B216 clump in the filamentary structure connected to it is at d = 158.1 ± 1.2 pc. The closest and remotest stars in our sample are located at d = 126.6 ± 1.7 pc and d = 162.7 ± 0.8 pc, yielding a distance difference of about 36 pc. We also provide a new distance estimate for HL Tau that was recently imaged. Finally, we compute the spatial velocity of the stars with published radial velocity and investigate the kinematic properties of the various clouds and gas structures in this region.

  6. Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?

    Science.gov (United States)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.

    2017-06-01

    Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.

  7. Astrochemical evolution along star formation: Overview of the IRAM Large Program ASAI

    Science.gov (United States)

    Lefloch, Bertrand; Bachiller, R.; Ceccarelli, C.; Cernicharo, J.; Codella, C.; Fuente, A.; Kahane, C.; López-Sepulcre, A.; Tafalla, M.; Vastel, C.; Caux, E.; González-García, M.; Bianchi, E.; Gómez-Ruiz, A.; Holdship, J.; Mendoza, E.; Ospina-Zamudio, J.; Podio, L.; Quénard, D.; Roueff, E.; Sakai, N.; Viti, S.; Yamamoto, S.; Yoshida, K.; Favre, C.; Monfredini, T.; Quitián-Lara, H. M.; Marcelino, N.; Roberty, H. Boechat; Cabrit, S.

    2018-04-01

    Evidence is mounting that the small bodies of our Solar System, such as comets and asteroids, have at least partially inherited their chemical composition from the first phases of the Solar System formation. It then appears that the molecular complexity of these small bodies is most likely related to the earliest stages of star formation. It is therefore important to characterize and to understand how the chemical evolution changes with solar-type protostellar evolution. We present here the Large Program "Astrochemical Surveys At IRAM" (ASAI). Its goal is to carry out unbiased millimeter line surveys between 80 and 272 GHz of a sample of ten template sources, which fully cover the first stages of the formation process of solar-type stars, from prestellar cores to the late protostellar phase. In this article, we present an overview of the surveys and results obtained from the analysis of the 3 mm band observations. The number of detected main isotopic species barely varies with the evolutionary stage and is found to be very similar to that of massive star-forming regions. The molecular content in O- and C- bearing species allows us to define two chemical classes of envelopes, whose composition is dominated by either a) a rich content in O-rich complex organic molecules, associated with hot corino sources, or b) a rich content in hydrocarbons, typical of Warm Carbon Chain Chemistry sources. Overall, a high chemical richness is found to be present already in the initial phases of solar-type star formation.

  8. On the Appearance of Thresholds in the Dynamical Model of Star Formation

    Science.gov (United States)

    Elmegreen, Bruce G.

    2018-02-01

    The Kennicutt–Schmidt (KS) relationship between the surface density of the star formation rate (SFR) and the gas surface density has three distinct power laws that may result from one model in which gas collapses at a fixed fraction of the dynamical rate. The power-law slope is 1 when the observed gas has a characteristic density for detection, 1.5 for total gas when the thickness is about constant as in the main disks of galaxies, and 2 for total gas when the thickness is regulated by self-gravity and the velocity dispersion is about constant, as in the outer parts of spirals, dwarf irregulars, and giant molecular clouds. The observed scaling of the star formation efficiency (SFR per unit CO) with the dense gas fraction (HCN/CO) is derived from the KS relationship when one tracer (HCN) is on the linear part and the other (CO) is on the 1.5 part. Observations of a threshold density or column density with a constant SFR per unit gas mass above the threshold are proposed to be selection effects, as are observations of star formation in only the dense parts of clouds. The model allows a derivation of all three KS relations using the probability distribution function of density with no thresholds for star formation. Failed galaxies and systems with sub-KS SFRs are predicted to have gas that is dominated by an equilibrium warm phase where the thermal Jeans length exceeds the Toomre length. A squared relation is predicted for molecular gas-dominated young galaxies.

  9. BANYAN. IV. Fundamental parameters of low-mass star candidates in nearby young stellar kinematic groups—isochronal age determination using magnetic evolutionary models

    Energy Technology Data Exchange (ETDEWEB)

    Malo, Lison; Doyon, René; Albert, Loïc; Lafrenière, David; Artigau, Étienne; Gagné, Jonathan [Département de physique and Observatoire du Mont-Mégantic, Université de Montréal, Montréal, QC H3C 3J7 (Canada); Feiden, Gregory A. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Riedel, Adric, E-mail: malo@cfht.hawaii.edu, E-mail: doyon@astro.umontreal.ca [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States)

    2014-09-01

    Based on high-resolution optical spectra obtained with ESPaDOnS at Canada-France-Hawaii Telescope, we determine fundamental parameters (T {sub eff}, R, L {sub bol}, log g, and metallicity) for 59 candidate members of nearby young kinematic groups. The candidates were identified through the BANYAN Bayesian inference method of Malo et al., which takes into account the position, proper motion, magnitude, color, radial velocity, and parallax (when available) to establish a membership probability. The derived parameters are compared to Dartmouth magnetic evolutionary models and field stars with the goal of constraining the age of our candidates. We find that, in general, low-mass stars in our sample are more luminous and have inflated radii compared to older stars, a trend expected for pre-main-sequence stars. The Dartmouth magnetic evolutionary models show a good fit to observations of field K and M stars, assuming a magnetic field strength of a few kG, as typically observed for cool stars. Using the low-mass members of the β Pictoris moving group, we have re-examined the age inconsistency problem between lithium depletion age and isochronal age (Hertzspring-Russell diagram). We find that the inclusion of the magnetic field in evolutionary models increases the isochronal age estimates for the K5V-M5V stars. Using these models and field strengths, we derive an average isochronal age between 15 and 28 Myr and we confirm a clear lithium depletion boundary from which an age of 26 ± 3 Myr is derived, consistent with previous age estimates based on this method.

  10. SDSS-IV MaNGA: the spatial distribution of star formation and its dependence on mass, structure, and environment

    Science.gov (United States)

    Spindler, Ashley; Wake, David; Belfiore, Francesco; Bershady, Matthew; Bundy, Kevin; Drory, Niv; Masters, Karen; Thomas, Daniel; Westfall, Kyle; Wild, Vivienne

    2018-05-01

    We study the spatially resolved star formation of 1494 galaxies in the SDSS-IV MaNGA Survey. Star formation rates (SFRs) are calculated using a two-step process, using H α in star-forming regions and Dn4000 in regions identified as active galactic nucleus/low-ionization (nuclear) emission region [AGN/LI(N)ER] or lineless. The roles of secular and environmental quenching processes are investigated by studying the dependence of the radial profiles of specific star formation rate on stellar mass, galaxy structure, and environment. We report on the existence of `centrally suppressed' galaxies, which have suppressed Specific Star Formation Rate (SSFR) in their cores compared to their discs. The profiles of centrally suppressed and unsuppressed galaxies are distributed in a bimodal way. Galaxies with high stellar mass and core velocity dispersion are found to be much more likely to be centrally suppressed than low-mass galaxies, and we show that this is related to morphology and the presence of AGN/LI(N)ER like emission. Centrally suppressed galaxies also display lower star formation at all radii compared to unsuppressed galaxies. The profiles of central and satellite galaxies are also compared, and we find that satellite galaxies experience lower specific star formation rates at all radii than central galaxies. This uniform suppression could be a signal of the stripping of hot halo gas in the process known as strangulation. We find that satellites are not more likely to be suppressed in their cores than centrals, indicating that the core suppression is an entirely internal process. We find no correlation between the local environment density and the profiles of star formation rate surface density.

  11. THE X-FACTOR IN GALAXIES. II. THE MOLECULAR-HYDROGEN-STAR-FORMATION RELATION

    Energy Technology Data Exchange (ETDEWEB)

    Feldmann, Robert; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-10-08

    There is ample observational evidence that the star formation rate (SFR) surface density, Sigma_SFR, is closely correlated with the surface density of molecular hydrogen, Sigma_H2. This empirical relation holds both for galaxy-wide averages and for individual >=kpc sized patches of the interstellar medium (ISM), but appears to degrade substantially at a sub-kpc scale. Identifying the physical mechanisms that determine the scale-dependent properties of the observed Sigma_H2-Sigma_SFR relation remains a challenge from a theoretical perspective. To address this question, we analyze the slope and scatter of the Sigma_H2-Sigma_SFR relation using a set of cosmological, galaxy formation simulations with a peak resolution of ~100 pc. These simulations include a chemical network for molecular hydrogen, a model for the CO emission, and a simple, stochastic prescription for star formation that operates on ~100 pc scales. Specifically, star formation is modeled as a Poisson process in which the average SFR is directly proportional to the present mass of H2. The predictions of our numerical model are in good agreement with the observed Kennicutt-Schmidt and Sigma_H2-Sigma_SFR relations. We show that observations based on CO emission are ill suited to reliably measure the slope of the latter relation at low (<20 M_sun pc^-2) H2 surface densities on sub-kpc scales. Our models also predict that the inferred Sigma_H2-Sigma_SFR relation steepens at high H2 surface densities as a result of the surface density dependence of the CO/H2 conversion factor. Finally, we show that on sub-kpc scales most of the scatter in the relation is a consequence of discreteness effects in the star formation process. In contrast, variations of the CO/H2 conversion factor are responsible for most of the scatter measured on super-kpc scales.

  12. Suppressing star formation in quiescent galaxies with supermassive black hole winds.

    Science.gov (United States)

    Cheung, Edmond; Bundy, Kevin; Cappellari, Michele; Peirani, Sébastien; Rujopakarn, Wiphu; Westfall, Kyle; Yan, Renbin; Bershady, Matthew; Greene, Jenny E; Heckman, Timothy M; Drory, Niv; Law, David R; Masters, Karen L; Thomas, Daniel; Wake, David A; Weijmans, Anne-Marie; Rubin, Kate; Belfiore, Francesco; Vulcani, Benedetta; Chen, Yan-mei; Zhang, Kai; Gelfand, Joseph D; Bizyaev, Dmitry; Roman-Lopes, A; Schneider, Donald P

    2016-05-26

    Quiescent galaxies with little or no ongoing star formation dominate the population of galaxies with masses above 2 × 10(10) times that of the Sun; the number of quiescent galaxies has increased by a factor of about 25 over the past ten billion years (refs 1-4). Once star formation has been shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat the gas that is subsequently accreted from either stellar mass loss or mergers and that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centres of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized-gas velocity gradients from which we infer the presence of centrally driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as ten per cent of the quiescent population with masses around 2 × 10(10) times that of the Sun. In a prototypical example, we calculate that the energy input from the galaxy's low-level active supermassive black hole is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.

  13. Interstellar Medium and Star Formation Studies with the Square

    Indian Academy of Sciences (India)

    2Indian Institute of Space Science and Technology, Valiamala,. Thiruvananthapuram ... which describes the details of the processes that drive formation of stars ..... This is primarily because, most of the commonly used direct observational ... tive spectral indices will allow us to infer the energy spectrum of the population of.

  14. Dwarf galaxies in the coma cluster: Star formation properties and evolution

    Science.gov (United States)

    Hammer, Derek M.

    The infall regions of galaxy clusters are unique laboratories for studying the impact of environment on galaxy evolution. This intermediate region links the low-density field environment and the dense core of the cluster, and is thought to host recently accreted galaxies whose star formation is being quenched by external processes associated with the cluster. In this dissertation, we measure the star formation properties of galaxies at the infall region of the nearby rich cluster of galaxies, Coma. We rely primarily on Ultraviolet (UV) data owing to its sensitivity to recent star formation and we place more emphasis on the properties of dwarf galaxies. Dwarf galaxies are good tracers of external processes in clusters but their evolution is poorly constrained as they are intrinsically faint and hence more challenging to detect. We make use of deep GALEX far-UV and near-UV observations at the infall region of the Coma cluster. This area of the cluster has supporting photometric coverage at optical and IR wavelengths in addition to optical spectroscopic data that includes deep redshift coverage of dwarf galaxies in Coma. Our GALEX observations were the deepest exposures taken for a local galaxy cluster. The depth of these images required alternative data analysis techniques to overcome systematic effects that limit the default GALEX pipeline analysis. Specifically, we used a deblending method that improved detection efficiency by a factor of ˜2 and allowed reliable photometry a few magnitudes deeper than the pipeline catalog. We performed deep measurements of the total UV galaxy counts in our field that were used to measure the source confusion limit for crowded GALEX fields. The star formation properties of Coma members were studied for galaxies that span from starbursts to passive galaxies. Star-forming galaxies in Coma tend to have lower specific star formation rates, on average, as compared to field galaxies. We show that the majority of these galaxies are likely

  15. Possible evidence for metal accretion onto the surfaces of metal-poor main-sequence stars

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Kohei; Yoshii, Yuzuru [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Beers, Timothy C. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Carollo, Daniela [Department of Physics and Astronomy, Macquarie University, Sydney, 2109 NSW (Australia); Lee, Young Sun, E-mail: khattori@ioa.s.u-tokyo.ac.jp [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States)

    2014-04-01

    The entire evolution of the Milky Way, including its mass-assembly and star-formation history, is imprinted onto the chemo-dynamical distribution function of its member stars, f(x, v, [X/H]), in the multi-dimensional phase space spanned by position, velocity, and elemental abundance ratios. In particular, the chemo-dynamical distribution functions for low-mass stars (e.g., G- or K-type dwarfs) are precious tracers of the earliest stages of the Milky Way's formation, since their main-sequence lifetimes approach or exceed the age of the universe. A basic tenet of essentially all previous analyses is that the stellar metallicity, usually parameterized as [Fe/H], is conserved over time for main-sequence stars (at least those that have not been polluted due to mass transfer from binary companions). If this holds true, any correlations between metallicity and kinematics for long-lived main-sequence stars of different masses, effective temperatures, or spectral types must strictly be the same, since they reflect the same mass-assembly and star-formation histories. By analyzing a sample of nearby metal-poor halo and thick-disk stars on the main sequence, taken from Data Release 8 of the Sloan Digital Sky Survey, we find that the median metallicity of G-type dwarfs is systematically higher (by about 0.2 dex) than that of K-type dwarfs having the same median rotational velocity about the Galactic center. If it can be confirmed, this finding may invalidate the long-accepted assumption that the atmospheric metallicities of long-lived stars are conserved over time.

  16. The Mass-dependent Star Formation Histories of Disk Galaxies: Infall Model Versus Observations

    Science.gov (United States)

    Chang, R. X.; Hou, J. L.; Shen, S. Y.; Shu, C. G.

    2010-10-01

    We introduce a simple model to explore the star formation histories of disk galaxies. We assume that the disk originate and grows by continuous gas infall. The gas infall rate is parameterized by the Gaussian formula with one free parameter: the infall-peak time tp . The Kennicutt star formation law is adopted to describe how much cold gas turns into stars. The gas outflow process is also considered in our model. We find that, at a given galactic stellar mass M *, the model adopting a late infall-peak time tp results in blue colors, low-metallicity, high specific star formation rate (SFR), and high gas fraction, while the gas outflow rate mainly influences the gas-phase metallicity and star formation efficiency mainly influences the gas fraction. Motivated by the local observed scaling relations, we "construct" a mass-dependent model by assuming that the low-mass galaxy has a later infall-peak time tp and a larger gas outflow rate than massive systems. It is shown that this model can be in agreement with not only the local observations, but also with the observed correlations between specific SFR and galactic stellar mass SFR/M * ~ M * at intermediate redshifts z < 1. Comparison between the Gaussian-infall model and the exponential-infall model is also presented. It shows that the exponential-infall model predicts a higher SFR at early stage and a lower SFR later than that of Gaussian infall. Our results suggest that the Gaussian infall rate may be more reasonable in describing the gas cooling process than the exponential infall rate, especially for low-mass systems.

  17. Topics in Galaxy Evolution: Early Star Formation and Quenching

    Science.gov (United States)

    Goncalves, Thiago Signorini

    In this thesis, we present three projects designed to shed light on yet unanswered questions on galaxy formation and evolution. The first two concern a sample of UV-bright starburst galaxies in the local universe (z ˜0.2). These objects are remarkably similar to star-forming galaxies that were abundant at high redshifts (2 manipulating our observations to mimic our objects at greater distances, we show how low resolution and signal-to-noise ratios can lead to erroneous conclusions, in particular when attempting to diagnose mergers as the origin of the starburst. Then, we present results from a pilot survey to study the cold, molecular gas reservoir in such objects. Again, we show that the observed properties are analogous to those observed at high redshift, in particular with respect to baryonic gas fractions in the galaxy, higher than normally found in low-extinction objects in the local universe. Furthermore, we show how gas surface density and star-formation surface density follow the same relation as local galaxies, albeit at much higher values. Finally, we discuss an observational project designed to measure the mass flux density from the blue sequence to the red sequence across the so-called green valley. We obtain the deepest spectra ever observed of green valley galaxies at intermediate redshifts (z˜0.8) in order to measure spectral features from which we can measure the star formation histories of individual galaxies. We measure a mass flux ratio that is higher than observed in the local universe, indicating the red sequence was growing faster when the universe was half its present age than today.

  18. Local anticorrelation between star formation rate and gas-phase metallicity in disc galaxies

    Science.gov (United States)

    Sánchez Almeida, J.; Caon, N.; Muñoz-Tuñón, C.; Filho, M.; Cerviño, M.

    2018-06-01

    Using a representative sample of 14 star-forming dwarf galaxies in the local Universe, we show the existence of a spaxel-to-spaxel anticorrelation between the index N2 ≡ log ([N II]λ 6583/H α ) and the H α flux. These two quantities are commonly employed as proxies for gas-phase metallicity and star formation rate (SFR), respectively. Thus, the observed N2 to H α relation may reflect the existence of an anticorrelation between the metallicity of the gas forming stars and the SFR it induces. Such an anticorrelation is to be expected if variable external metal-poor gas fuels the star-formation process. Alternatively, it can result from the contamination of the star-forming gas by stellar winds and SNe, provided that intense outflows drive most of the metals out of the star-forming regions. We also explore the possibility that the observed anticorrelation is due to variations in the physical conditions of the emitting gas, other than metallicity. Using alternative methods to compute metallicity, as well as previous observations of H II regions and photoionization models, we conclude that this possibility is unlikely. The radial gradient of metallicity characterizing disc galaxies does not produce the correlation either.

  19. Galactic Archaeology with TESS: Prospects for Testing the Star Formation History in the Solar Neighbourhood

    Directory of Open Access Journals (Sweden)

    Thomas Alexandra

    2017-01-01

    proposed to explain the observed age-[α/Fe] distribution of stars in the solar neighbourhood. However, robust constraints on stellar ages are currently available for only a limited number of stars. The all-sky survey TESS (Transiting Exoplanet Survey Satellite will observe the brightest stars in the sky and thus can be used to investigate the age distributions of stars in these components of the Galaxy via asteroseismology, where previously this has been diffcult using other techniques. The aim of this preliminary study was to determine whether TESS will be able to provide evidence for quenching periods during the star formation history of the Milky Way. Using a population synthesis code, we produced populations based on various stellar formation history models and limited the analysis to red-giant-branch stars. We investigated the mass-Galactic-disk-height distributions, where stellar mass was used as an age proxy, to test for whether periods of quenching can be observed by TESS. We found that even with the addition of 15% noise to the inferred masses, it will be possible for TESS to find evidence for/against quenching periods suggested in the literature (e.g. between 7 and 9 Gyr ago, therefore providing stringent constraints on the formation and evolution of the Milky Way.

  20. Evidence for non-axisymmetry in M 31 from wide-field kinematics of stars and gas

    Science.gov (United States)

    Opitsch, M.; Fabricius, M. H.; Saglia, R. P.; Bender, R.; Blaña, M.; Gerhard, O.

    2018-03-01

    Aim. As the nearest large spiral galaxy, M 31 provides a unique opportunity to study the structure and evolutionary history of this galaxy type in great detail. Among the many observing programs aimed at M 31 are microlensing studies, which require good three-dimensional models of the stellar mass distribution. Possible non-axisymmetric structures like a bar need to be taken into account. Due to M 31's high inclination, the bar is difficult to detect in photometry alone. Therefore, detailed kinematic measurements are needed to constrain the possible existence and position of a bar in M 31. Methods: We obtained ≈220 separate fields with the optical integral-field unit spectrograph VIRUS-W, covering the whole bulge region of M 31 and parts of the disk. We derived stellar line-of-sight velocity distributions from the stellar absorption lines, as well as velocity distributions and line fluxes of the emission lines Hβ, [O III] and [N I]. Our data supersede any previous study in terms of spatial coverage and spectral resolution. Results: We find several features that are indicative of a bar in the kinematics of the stars, we see intermediate plateaus in the velocity and the velocity dispersion, and correlation between the higher moment h3 and the velocity. The gas kinematics is highly irregular, but is consistent with non-triaxial streaming motions caused by a bar. The morphology of the gas shows a spiral pattern, with seemingly lower inclination than the stellar disk. We also look at the ionization mechanisms of the gas, which happens mostly through shocks and not through starbursts. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.This research was supported by the DFG cluster of excellence "Origin and Structure of the Universe".Full Tables B.4-B.7 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A38

  1. THE KILOPARSEC-SCALE STAR FORMATION LAW AT REDSHIFT 4: WIDESPREAD, HIGHLY EFFICIENT STAR FORMATION IN THE DUST-OBSCURED STARBURST GALAXY GN20

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, J. A. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Riechers, D. [Department of Astronomy, Cornell University, Ithaca, New York, NY 14853 (United States); Decarli, R.; Walter, F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Carilli, C. L. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801-0387 (United States); Daddi, E. [CEA, Laboratoire AIM-CNRS-Université Paris Diderot, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Dannerbauer, H., E-mail: jhodge@nrao.edu [Universität Wien, Institut für Astrophysik, Türkenschanzstraße 17, 1180 Wien (Austria)

    2015-01-01

    We present high-resolution observations of the 880 μm (rest-frame FIR) continuum emission in the z = 4.05 submillimeter galaxy GN20 from the IRAM Plateau de Bure Interferometer (PdBI). These data resolve the obscured star formation (SF) in this unlensed galaxy on scales of 0.''3 × 0.''2 (∼2.1 × 1.3 kpc). The observations reveal a bright (16 ± 1 mJy) dusty starburst centered on the cold molecular gas reservoir and showing a bar-like extension along the major axis. The striking anti-correlation with the Hubble Space Telescope/Wide Field Camera 3 imaging suggests that the copious dust surrounding the starburst heavily obscures the rest-frame UV/optical emission. A comparison with 1.2 mm PdBI continuum data reveals no evidence for variations in the dust properties across the source within the uncertainties, consistent with extended SF, and the peak star formation rate surface density (119 ± 8 M {sub ☉} yr{sup –1} kpc{sup –2}) implies that the SF in GN20 remains sub-Eddington on scales down to 3 kpc{sup 2}. We find that the SF efficiency (SFE) is highest in the central regions of GN20, leading to a resolved SF law with a power-law slope of Σ{sub SFR} ∼ Σ{sub H{sub 2}{sup 2.1±1.0}}, and that GN20 lies above the sequence of normal star-forming disks, implying that the dispersion in the SF law is not due solely to morphology or choice of conversion factor. These data extend previous evidence for a fixed SFE per free-fall time to include the star-forming medium on ∼kiloparsec scales in a galaxy 12 Gyr ago.

  2. Morphology and kinematics of filaments in Serpens and Perseus molecular clouds: a high resolution study

    Science.gov (United States)

    Dhabal, Arnab; Mundy, Lee; Rizzo, Maxime; Storm, Shaye; Teuben, Peter; CLASSy Collaboration

    2018-01-01

    Filamentary structures are prevalent in molecular clouds over a wide range of scales, and are often associated with active star formation. The study of filament morphology and kinematics provide insights into the physical processes leading to core formation in clustered environments. As part of the CARMA Large Area Star Formation Survey (CLASSy) follow-up, we observed five Herschel filaments in the Serpens Main, Serpens South and NGC1333 molecular clouds using the J=1-0 transitions of dense gas tracers H13CO+, HNC and H13CN. Of these, H13CO+ and H13CN are optically thin and serve as a test of the kinematics previously seen by the CLASSy in N2H+. The observations have an angular resolution of 7'' and a spectral resolution of 0.16 km/s. Although the large scale structure compares well with the CARMA N2H+ (J=1-0) maps and Herschel dust continuum maps, we resolve finer structure within the filaments identified by Herschel. Most regions are found to have multiple structures and filaments partially overlapping in the line-of-sight. In two regions overlapping structures have velocity differences as high as 1.4 km/s. We identify 8 individual filaments with typical widths of 0.03-0.06 pc in these tracers, which is significantly less than widths observed in the Herschel dust column density maps. At least 50% of the filaments have distinct velocity gradients perpendicular to their major axis with average values in the range 4-10 km s-1 pc-1. These findings are in support of the theoretical models of filament formation by 2-D inflow in the shock layer created by colliding turbulent cells. We also find evidence of velocity gradients along the length of two filaments; the gradients suggest that these filaments are inflowing towards the cloud core.

  3. A NEW STELLAR CHEMO-KINEMATIC RELATION REVEALS THE MERGER HISTORY OF THE MILKY WAY DISK

    International Nuclear Information System (INIS)

    Minchev, I.; Chiappini, C.; Steinmetz, M.; De Jong, R. S.; Scannapieco, C.; Martig, M.; Boeche, C.; Grebel, E. K.; Zwitter, T.; Wyse, R. F. G.; Binney, J. J.; Bland-Hawthorn, J.; Bienaymé, O.; Famaey, B.; Freeman, K. C.; Gibson, B. K.; Gilmore, G.; Kordopatis, G.; Helmi, A.; Lee, Y. S.

    2014-01-01

    The velocity dispersions of stars near the Sun are known to increase with stellar age, but age can be difficult to determine, so a proxy like the abundance of α elements (e.g., Mg) with respect to iron, [α/Fe], is used. Here we report an unexpected behavior found in the velocity dispersion of a sample of giant stars from the Radial Velocity Experiment survey with high-quality chemical and kinematic information, in that it decreases strongly for stars with [Mg/Fe] > 0.4 dex (i.e., those that formed in the first gigayear of the Galaxy's life). These findings can be explained by perturbations from massive mergers in the early universe, which have affected the outer parts of the disk more strongly, and the subsequent radial migration of stars with cooler kinematics from the inner disk. Similar reversed trends in velocity dispersion are also found for different metallicity subpopulations. Our results suggest that the Milky Way disk merger history can be recovered by relating the observed chemo-kinematic relations to the properties of past merger events

  4. A NEW STELLAR CHEMO-KINEMATIC RELATION REVEALS THE MERGER HISTORY OF THE MILKY WAY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Minchev, I.; Chiappini, C.; Steinmetz, M.; De Jong, R. S.; Scannapieco, C. [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Martig, M. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Boeche, C.; Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Zwitter, T. [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Wyse, R. F. G. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Binney, J. J. [Rudolf Peierls Centre for Theoretical Physics, Keble Road, Oxford OX1 3NP (United Kingdom); Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Bienaymé, O.; Famaey, B. [CNRS, Observatoire Astronomique, Université de Strasbourg, 11 rue de l' Université, F-67000 Strasbourg (France); Freeman, K. C. [Australian National University, Canberra, ACT 0200 (Australia); Gibson, B. K. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Gilmore, G.; Kordopatis, G. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Helmi, A. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700-AV Groningen (Netherlands); Lee, Y. S. [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); and others

    2014-01-20

    The velocity dispersions of stars near the Sun are known to increase with stellar age, but age can be difficult to determine, so a proxy like the abundance of α elements (e.g., Mg) with respect to iron, [α/Fe], is used. Here we report an unexpected behavior found in the velocity dispersion of a sample of giant stars from the Radial Velocity Experiment survey with high-quality chemical and kinematic information, in that it decreases strongly for stars with [Mg/Fe] > 0.4 dex (i.e., those that formed in the first gigayear of the Galaxy's life). These findings can be explained by perturbations from massive mergers in the early universe, which have affected the outer parts of the disk more strongly, and the subsequent radial migration of stars with cooler kinematics from the inner disk. Similar reversed trends in velocity dispersion are also found for different metallicity subpopulations. Our results suggest that the Milky Way disk merger history can be recovered by relating the observed chemo-kinematic relations to the properties of past merger events.

  5. Learning the Relationship between Galaxy Spectra and Star Formation Histories

    Science.gov (United States)

    Lovell, Christopher; Acquaviva, Viviana; Iyer, Kartheik; Gawiser, Eric

    2018-01-01

    We explore novel approaches to the problem of predicting a galaxy’s star formation history (SFH) from its Spectral Energy Distribution (SED). Traditional approaches to SED template fitting use constant or exponentially declining SFHs, and are known to incur significant bias in the inferred SFHs, which are typically skewed toward younger stellar populations. Machine learning approaches, including tree ensemble methods and convolutional neural networks, would not be affected by the same bias, and may work well in recovering unbiased and multi-episodic star formation histories. We use a supervised approach whereby models are trained using synthetic spectra, generated from three state of the art hydrodynamical simulations, including nebular emission. We explore how SED feature maps can be used to highlight areas of the spectrum with the highest predictive power and discuss the limitations of the approach when applied to real data.

  6. TIMESCALES ON WHICH STAR FORMATION AFFECTS THE NEUTRAL INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Stilp, Adrienne M.; Dalcanton, Julianne J.; Weisz, Daniel R.; Williams, Benjamin F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Warren, Steven R. [Department of Astronomy, University of Maryland, CSS Building, Room 1024, Stadium Drive, College Park, MD 20742-2421 (United States); Skillman, Evan [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Ott, Juergen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States)

    2013-08-01

    Turbulent neutral hydrogen (H I) line widths are often thought to be driven primarily by star formation (SF), but the timescale for converting SF energy to H I kinetic energy is unclear. As a complication, studies on the connection between H I line widths and SF in external galaxies often use broadband tracers for the SF rate, which must implicitly assume that SF histories (SFHs) have been constant over the timescale of the tracer. In this paper, we compare measures of H I energy to time-resolved SFHs in a number of nearby dwarf galaxies. We find that H I energy surface density is strongly correlated only with SF that occurred 30-40 Myr ago. This timescale corresponds to the approximate lifetime of the lowest mass supernova progenitors ({approx}8 M{sub Sun }). This analysis suggests that the coupling between SF and the neutral interstellar medium is strongest on this timescale, due either to an intrinsic delay between the release of the peak energy from SF or to the coherent effects of many supernova explosions during this interval. At {Sigma}{sub SFR} > 10{sup -3} M{sub Sun} yr{sup -1} kpc{sup -2}, we find a mean coupling efficiency between SF energy and H I energy of {epsilon} = 0.11 {+-} 0.04 using the 30-40 Myr timescale. However, unphysical efficiencies are required in lower {Sigma}{sub SFR} systems, implying that SF is not the primary driver of H I kinematics at {Sigma}{sub SFR} < 10{sup -3} M{sub Sun} yr{sup -1} kpc{sup -2}.

  7. Testing the Formation Scenarios of Binary Neutron Star Systems with Measurements of the Neutron Star Moment of Inertia

    Science.gov (United States)

    Newton, William G.; Steiner, Andrew W.; Yagi, Kent

    2018-03-01

    Two low-mass (M slope of the nuclear symmetry energy L. We find that, if either J0737-3039B or the J1756-2251 companion were formed in a US-SN, no more than 0.06 M ⊙ could have been lost from the progenitor core. Furthermore, a measurement of the moment of inertia of J0737-3039A to within 10% accuracy can discriminate between formation scenarios and, given current constraints on the predicted core mass loss, potentially rule them out. Advanced LIGO can potentially measure the neutron star tidal polarizability to equivalent accuracy which, using the I-Love-Q relations, would obtain similar constraints on the formation scenarios. Such information would help constrain important aspects of binary evolution used for population synthesis predictions of the rate of binary neutron star mergers and resulting electromagnetic and gravitational wave signals. Further progress needs to be made in modeling the core-collapse process that leads to low-mass neutron stars, particularly in making robust predictions for the mass loss from the progenitor core.

  8. THE SECOND SURVEY OF THE MOLECULAR CLOUDS IN THE LARGE MAGELLANIC CLOUD BY NANTEN. II. STAR FORMATION

    International Nuclear Information System (INIS)

    Kawamura, Akiko; Mizuno, Yoji; Minamidani, Tetsuhiro; Mizuno, Norikazu; Onishi, Toshikazu; Fukui, Yasuo; Fillipovic, Miroslav D.; Staveley-Smith, Lister; Kim, Sungeun; Mizuno, Akira

    2009-01-01

    We studied star formation activities in the molecular clouds in the Large Magellanic Cloud. We have utilized the second catalog of 272 molecular clouds obtained by NANTEN to compare the cloud distribution with signatures of massive star formation including stellar clusters, and optical and radio H II regions. We find that the molecular clouds are classified into three types according to the activities of massive star formation: Type I shows no signature of massive star formation; Type II is associated with relatively small H II region(s); and Type III with both H II region(s) and young stellar cluster(s). The radio continuum sources were used to confirm that Type I giant molecular clouds (GMCs) do not host optically hidden H II regions. These signatures of massive star formation show a good spatial correlation with the molecular clouds in the sense that they are located within ∼100 pc of the molecular clouds. Among possible ideas to explain the GMC types, we favor that the types indicate an evolutionary sequence; i.e., the youngest phase is Type I, followed by Type II, and the last phase is Type III, where the most active star formation takes place leading to cloud dispersal. The number of the three types of GMCs should be proportional to the timescale of each evolutionary stage if a steady state of massive star and cluster formation is a good approximation. By adopting the timescale of the youngest stellar clusters, 10 Myr, we roughly estimate the timescales of Types I, II, and III to be 6 Myr, 13 Myr, and 7 Myr, respectively, corresponding to a lifetime of 20-30 Myr for the GMCs with a mass above the completeness limit, 5 x 10 4 M sun .

  9. STAR FORMATION IN PARTIALLY GAS-DEPLETED SPIRAL GALAXIES

    International Nuclear Information System (INIS)

    Rose, James A.; Miner, Jesse; Levy, Lorenza; Robertson, Paul

    2010-01-01

    Broadband B and R and Hα images have been obtained with the 4.1 m SOAR telescope atop Cerro Pachon, Chile, for 29 spiral galaxies in the Pegasus I galaxy cluster and for 18 spirals in non-cluster environments. Pegasus I is a spiral-rich cluster with a low-density intracluster medium and a low galaxy velocity dispersion. When combined with neutral hydrogen (H I) data obtained with the Arecibo 305 m radio telescope, acquired by Levy et al. (2007) and by Springob et al. (2005b), we study the star formation rates in disk galaxies as a function of their H I deficiency. To quantify H I deficiency, we use the usual logarithmic deficiency parameter, DEF. The specific star formation rate (SSFR) is quantified by the logarithmic flux ratio of Hα flux to R-band flux, and thus roughly characterizes the logarithmic SFR per unit stellar mass. We find a clear correlation between the global SFR per unit stellar mass and DEF, such that the SFR is lower in more H I-deficient galaxies. This correlation appears to extend from the most gas-rich to the most gas-poor galaxies. We also find a correlation between the central SFR per unit mass relative to the global values, in the sense that the more H I-deficient galaxies have a higher central SFR per unit mass relative to their global SFR values than do gas-rich galaxies. In fact, approximately half of the H I-depleted galaxies have highly elevated SSFRs in their central regions, indicative of a transient evolutionary state. In addition, we find a correlation between gas depletion and the size of the Hα disk (relative to the R-band disk); H I-poor galaxies have truncated disks. Moreover, aside from the elevated central SSFR in many gas-poor spirals, the SSFR is otherwise lower in the Hα disks of gas-poor galaxies than in gas-rich spirals. Thus, both disk truncation and lowered SSFR levels within the star-forming part of the disks (aside from the enhanced nuclear SSFR) correlate with H I deficiency, and both phenomena are found to

  10. Star formation in the outskirts of DDO 154: A top-light IMF in a nearly dormant disc

    Science.gov (United States)

    Watts, Adam B.; Meurer, Gerhardt R.; Lagos, Claudia D. P.; Bruzzese, Sarah M.; Kroupa, Pavel; Jerabkova, Tereza

    2018-04-01

    We present optical photometry of Hubble Space Telescope (HST) ACS/WFC data of the resolved stellar populations in the outer disc of the dwarf irregular galaxy DDO 154. The photometry reveals that young main sequence stars are almost absent from the outermost HI disc. Instead, most are clustered near the main stellar component of the galaxy. We constrain the stellar initial mass function (IMF) by comparing the luminosity function of the main sequence stars to simulated stellar populations assuming a constant star formation rate over the dynamical timescale. The best-fitting IMF is deficient in high mass stars compared to a canonical Kroupa IMF, with a best-fit slope α = -2.45 and upper mass limit MU = 16 M⊙. This top-light IMF is consistent with predictions of the Integrated Galaxy-wide IMF theory. Combining the HST images with HI data from The HI Nearby Galaxy Survey Treasury (THINGS) we determine the star formation law (SFL) in the outer disc. The fit has a power law exponent N = 2.92 ± 0.22 and zero point A = 4.47 ± 0.65 × 10-7 M⊙ yr-1 kpc-2. This is depressed compared to the Kennicutt-Schmidt Star Formation Law, but consistent with weak star formation observed in diffuse HI environments. Extrapolating the SFL over the outer disc implies that there could be significant star formation occurring that is not detectable in Hα. Last, we determine the Toomre stability parameter Q of the outer disc of DDO 154 using the THINGS HI rotation curve and velocity dispersion map. 72% of the HI in our field has Q ≤ 4 and this incorporates 96% of the observed MS stars. Hence 28% of the HI in the field is largely dormant.

  11. On why we need a good theory of star formation

    International Nuclear Information System (INIS)

    Lynden-Bell, D.

    1977-01-01

    The author discusses the relevance of the other papers in the symposium to astronomy. He considers three great areas of astronomy to which a theory of star formation is vital: I. The formation and evolution of galaxies. II. The understanding of the properties and evolution of all those fascinating objects that can be classed as nebular variables or nebular objects. III. The origin of the solar system. (Auth.)

  12. Exploring simulated early star formation in the context of the ultrafaint dwarf galaxies

    Science.gov (United States)

    Corlies, Lauren; Johnston, Kathryn V.; Wise, John H.

    2018-04-01

    Ultrafaint dwarf galaxies (UFDs) are typically assumed to have simple, stellar populations with star formation ending at reionization. Yet as the observations of these galaxies continue to improve, their star formation histories (SFHs) are revealed to be more complicated than previously thought. In this paper, we study how star formation, chemical enrichment, and mixing proceed in small, dark matter haloes at early times using a high-resolution, cosmological, hydrodynamical simulation. The goals are to inform the future use of analytic models and to explore observable properties of the simulated haloes in the context of UFD data. Specifically, we look at analytic approaches that might inform metal enrichment within and beyond small galaxies in the early Universe. We find that simple assumptions for modelling the extent of supernova-driven winds agree with the simulation on average, whereas inhomogeneous mixing and gas flows have a large effect on the spread in simulated stellar metallicities. In the context of the UFDs, this work demonstrates that simulations can form haloes with a complex SFH and a large spread in the metallicity distribution function within a few hundred Myr in the early Universe. In particular, bursty and continuous star formation are seen in the simulation and both scenarios have been argued from the data. Spreads in the simulated metallicities, however, remain too narrow and too metal-rich when compared to the UFDs. Future work is needed to help reduce these discrepancies and advance our interpretation of the data.

  13. The resolved star formation history of M51a through successive Bayesian marginalization

    Science.gov (United States)

    Martínez-García, Eric E.; Bruzual, Gustavo; Magris C., Gladis; González-Lópezlira, Rosa A.

    2018-02-01

    We have obtained the time and space-resolved star formation history (SFH) of M51a (NGC 5194) by fitting Galaxy Evolution Explorer (GALEX), Sloan Digital Sky Survey and near-infrared pixel-by-pixel photometry to a comprehensive library of stellar population synthesis models drawn from the Synthetic Spectral Atlas of Galaxies (SSAG). We fit for each space-resolved element (pixel) an independent model where the SFH is averaged in 137 age bins, each one 100 Myr wide. We used the Bayesian Successive Priors (BSP) algorithm to mitigate the bias in the present-day spatial mass distribution. We test BSP with different prior probability distribution functions (PDFs); this exercise suggests that the best prior PDF is the one concordant with the spatial distribution of the stellar mass as inferred from the near-infrared images. We also demonstrate that varying the implicit prior PDF of the SFH in SSAG does not affect the results. By summing the contributions to the global star formation rate of each pixel, at each age bin, we have assembled the resolved SFH of the whole galaxy. According to these results, the star formation rate of M51a was exponentially increasing for the first 10 Gyr after the big bang, and then turned into an exponentially decreasing function until the present day. Superimposed, we find a main burst of star formation at t ≈ 11.9 Gyr after the big bang.

  14. Direct measurements of dust attenuation in z ∼ 1.5 star-forming galaxies from 3D-HST: Implications for dust geometry and star formation rates

    International Nuclear Information System (INIS)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B.; Conroy, Charlie; Schreiber, Natascha M. Förster; Wuyts, Stijn; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Whitaker, Katherine E.

    2014-01-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust around star-forming regions (A V, H II ) and the integrated dust content (A V, star ). We select a sample of 163 galaxies between 1.36 ≤ z ≤ 1.5 with Hα signal-to-noise ratio ≥5 and measure Balmer decrements from stacked spectra to calculate A V, H II . First, we stack spectra in bins of A V, star , and find that A V, H II = 1.86 A V, star , with a significance of σ = 1.7. Our result is consistent with the two-component dust model, in which galaxies contain both diffuse and stellar birth cloud dust. Next, we stack spectra in bins of specific star formation rate (log SSFR), star formation rate (log SFR), and stellar mass (log M * ). We find that on average A V, H II increases with SFR and mass, but decreases with increasing SSFR. Interestingly, the data hint that the amount of extra attenuation decreases with increasing SSFR. This trend is expected from the two-component model, as the extra attenuation will increase once older stars outside the star-forming regions become more dominant in the galaxy spectrum. Finally, using Balmer decrements we derive dust-corrected Hα SFRs, and find that stellar population modeling produces incorrect SFRs if rapidly declining star formation histories are included in the explored parameter space.

  15. The structure, dynamics, and star formation rate of the Orion nebula cluster

    International Nuclear Information System (INIS)

    Da Rio, Nicola; Tan, Jonathan C.; Jaehnig, Karl

    2014-01-01

    The spatial morphology and dynamical status of a young, still-forming stellar cluster provide valuable clues to the conditions during the star formation event and the processes that regulated it. We analyze the Orion Nebula Cluster (ONC), utilizing the latest censuses of its stellar content and membership estimates over a large wavelength range. We determine the center of mass of the ONC and study the radial dependence of angular substructure. The core appears rounder and smoother than the outskirts, which is consistent with a higher degree of dynamical processing. At larger distances, the departure from circular symmetry is mostly driven by the elongation of the system, with very little additional substructure, indicating a somewhat evolved spatial morphology or an expanding halo. We determine the mass density profile of the cluster, which is well fitted by a power law that is slightly steeper than a singular isothermal sphere. Together with the interstellar medium density, which is estimated from average stellar extinction, the mass content of the ONC is insufficient by a factor ∼1.8 to reproduce the observed velocity dispersion from virialized motions, in agreement with previous assessments that the ONC is moderately supervirial. This may indicate recent gas dispersal. Based on the latest estimates for the age spread in the system and our density profiles, we find that at the half-mass radius, 90% of the stellar population formed within ∼5-8 free-fall times (t ff ). This implies a star formation efficiency per t ff of ε ff ∼ 0.04-0.07 (i.e., relatively slow and inefficient star formation rates during star cluster formation).

  16. Measuring Star-Formation Rates of AGNs and QSOs using a new calibration from Polycyclic Aromatic Hydrocarbon Emission

    Science.gov (United States)

    Papovich, Casey

    Understanding the coevolution of star-formation and supermassive black hole accretion is one of the key questions in galaxy formation theory. This relation is important for understanding why at present the mass in galaxy bulges (on scales of kpc) correlates so tightly with the mass of galaxy central supermassive blackholes (on scales of AU). Feedback from supermassive black hole accretion may also be responsible for heating or expelling cold gas from galaxies, shutting off the fuel for star-formation and additional black hole growth. Did bulges proceed the formation of black holes, or vice versa, or are they contemporaneous? Therefore, understanding the exact rates of star-formation and supermassive black hole growth, and how they evolve with time and galaxy mass has deep implications for how galaxies form. It has previously been nearly impossible to study simultaneously both star-formation and accretion onto supermassive black holes in galaxies because the emission from black hole accretion contaminates nearly all diagnostics of star-formation. The "standard" diagnostics for the star-formation rate (the emission from hydrogen, UV emission, midIR emission, far-IR emission, etc) are not suitable for measuring star-formation rates in galaxies with actively accreting supermassive blackholes. In this proposal, the researchers request NASA/ADP funding for an archival study using spectroscopy with the Spitzer Space Telescope to measure simultaneously the star-formation rate (SFR) and bolometric emission from accreting supermassive blackholes to understand the complex relation between both processes. The key to this study is that they will develop a new calibrator for SFRs in galaxies with active supermassive black holes based on the molecular emission from polycyclic aromatic hydrocarbons (PAHs), which emit strongly in the mid-IR (3 - 20 micron) and are very strong in spectra from the Spitzer Space Telescope. The PAH molecules exist near photo-dissociation regions, and

  17. Formation of Compact Ellipticals in the merging star cluster scenario

    Science.gov (United States)

    Urrutia Zapata, Fernanda Cecilia; Theory and star formation group

    2018-01-01

    In the last years, extended old stellar clusters have been observed. They are like globular clusters (GCs) but with larger sizes(a limit of Re=10 pc is currently seen as reasonable). These extended objects (EOs) cover a huge range of mass. Objects at the low mass end with masses comparable to normal globular clusters are called extended clusters or faint fuzzies Larsen & Brodie (2000) and objects at the high-mass end are called ultra compact dwarf galaxies (UCDs). Ultra compact dwarf galaxies are compact object with luminositys above the brigtest known GCs. UCDs are more compact than typical dwarf galaxies but with comparable luminosities. Usually, a lower mass limit of 2 × 10^6 Solar masses is applied.Fellhauer & Kroupa (2002a,b) demostrated that object like ECs, FFs and UCDs can be the remnants of the merger of star clusters complexes, this scenario is called the Merging Star Cluster Scenario. Amore concise study was performed by Bruens et al. (2009, 2011).Our work tries to explain the formation of compact elliptical(cE). These objects are a comparatively rare class of spheroidal galaxies, possessing very small Re and high central surface brightnesses (Faber 1973). cEs have the same parameters as extended objects but they are slightly larger than 100 pc and the luminosities are in the range of -11 to -12 Mag.The standard formation sceanrio of these systems proposes a galaxy origin. CEs are the result of tidal stripping and truncation of nucleated larger systems. Or they could be a natural extension of the class of elliptical galaxies to lower luminosities and smaller sizes.We want to propose a completely new formation scenario for cEs. In our project we try to model cEs in a similar way that UCDs using the merging star cluster scenario extended to much higher masses and sizes. We think that in the early Universe we might have produced sufficiently strong star bursts to form cluster complexes which merge into cEs. So far it is observationally unknown if cEs are

  18. On a simple model for self-regulating star formation in the galactic disk

    International Nuclear Information System (INIS)

    Meusinger, H.

    1989-01-01

    Star formation in galaxies is a process with feedback to the interstellar medium (ISM) and possibly it is part of a self-regulating cycle. Dopita (1985) proposed a model in which star formation in spiral and irregular galaxies is self-regulated by the pressure in the ISM. In the present paper it is shown that available data for radial distributions of gas, total mass and the flux of Lyman continuum photons in the disk of our galaxy do not support such a simple model. Several possible causes are discussed. (author)

  19. The brown dwarf kinematics project

    Science.gov (United States)

    Faherty, Jackie K.

    2010-10-01

    Brown dwarfs are a recent addition to the plethora of objects studied in Astronomy. With theoretical masses between 13 and 75 MJupiter , they lack sustained stable Hydrogen burning so they never join the stellar main sequence. They have physical properties similar to both planets and low-mass stars so studies of their population inform on both. The distances and kinematics of brown dwarfs provide key statistical constraints on their ages, moving group membership, absolute brightnesses, evolutionary trends, and multiplicity. Yet, until my thesis, fundamental measurements of parallax and proper motion were made for only a relatively small fraction of the known population. To address this deficiency, I initiated the Brown Dwarf Kinematics (BDKP). Over the past four years I have re-imaged the majority of spectroscopically confirmed field brown dwarfs (or ultracool dwarfs---UCDs) and created the largest proper motion catalog for ultracool dwarfs to date. Using new astrometric information I examined population characteristics such as ages calculated from velocity dispersions and correlations between kinematics and colors. Using proper motions, I identified several new wide co-moving companions and investigated binding energy (and hence formation) limitations as well as the frequency of hierarchical companions. Concurrently over the past four years I have been conducting a parallax survey of 84 UCDs including those showing spectral signatures of youth, metal-poor brown dwarfs, and those within 20 pc of the Sun. Using absolute magnitude relations in J,H, and K, I identified overluminous binary candidates and investigated known flux-reversal binaries. Using current evolutionary models, I compared the MK vs J-K color magnitude diagram to model predictions and found that the low-surface gravity dwarfs are significantly red-ward and underluminous of predictions and a handful of late-type T dwarfs may require thicker clouds to account for their scatter.

  20. Local Stellar Kinematics from RAVE data - V. Kinematic Investigation of the Galaxy with Red Clump Stars

    Science.gov (United States)

    Karaali, S.; Bilir, S.; Ak, S.; Gökçe, E. Yaz; Önal, Ö.; Ak, T.

    2014-02-01

    We investigated the space velocity components of 6 610 red clump (RC) stars in terms of vertical distance, Galactocentric radial distance and Galactic longitude. Stellar velocity vectors are corrected for differential rotation of the Galaxy which is taken into account using photometric distances of RC stars. The space velocity components estimated for the sample stars above and below the Galactic plane are compatible only for the space velocity component in the direction to the Galactic rotation of the thin disc stars. The space velocity component in the direction to the Galactic rotation (V lsr) shows a smooth variation relative to the mean Galactocentric radial distance (Rm ), while it attains its maximum at the Galactic plane. The space velocity components in the direction to the Galactic centre (U lsr) and in the vertical direction (W lsr) show almost flat distributions relative to Rm , with small changes in their trends at Rm ~ 7.5 kpc. U lsr values estimated for the RC stars in quadrant 180° RC stars above the Galactic plane move towards the North Galactic Pole, whereas those below the Galactic plane move in the opposite direction. In the case of quadrant 180° RC stars above and below the Galactic plane move towards the Galactic plane. We stated that the Galactic long bar is the probable origin of many, but not all, of the detected features.