WorldWideScience

Sample records for kilometric radiation mechanisms

  1. Coherent radiation mechanism for cometary kilometric radiation

    International Nuclear Information System (INIS)

    Lakhina, G.S.; Buti, B.

    1988-01-01

    A mechanism involving nonlinear interaction of Alfven solitons and Langmuir waves is proposed to explain the cometary kilometric radiation (CKR) observed in the vicinity of comet Halley. According to this model, the frequency of the radiation emitted depends on the position of the interaction (or emission) region relative to the comet; higher frequencies being emitted when this region is closer to the comet. The CKR source is shown to lie at a distance ranging between 10 to the 5th and 2 x 10 to the 6th km from the comet nucleus. Several observed features of CKR, type D, S, and C emissions, can be explained nicely by this model. 24 references

  2. Generation of auroral kilometric radiation

    International Nuclear Information System (INIS)

    Green, J.L.

    1979-01-01

    Simultaneous observations between the Hawkeye spacecraft in the AKR emission cone and the low altitude polar orbiting spacecraft Triad and AE-D reveal that auroral kilometric radiation (AKR) is correlated with a variety of auroral particle precipitation in the evening to midnight local time sector. It is found that as the AKR intensity increases so does the integrated current sheet intensity of auroral zone field aligned currents observed by Triad of 257 simultaneous observations. Statistically, the linear correlation coefficient between the log of the AKR power flux and the log of the current sheet intensity is 0.57. Auroral kilometric radiation observations from Hawkeye during low altitude (2.0 to 2.5 R/sub E/) auroral zone passes reveal that intense AKR has a low frequency cutoff near the local electron gyrofrequency (f/sub g/ - ) with maximum electric field strengths as large as 12 mV/m. The large electric fields observed near f/sub g/ - are consistent with high altitude observations of AKR using a simple 1/R 2 scaling indicating that the kilometric radiation in or near the average source region is almost completely electromagnetic. The results presented in this study indicate that kilometric radiation is generated by inverted-V electron distribution functions in a direct coupling mechanism between particle energy and R-X mode electromagnetic waves in the region of the auroral zone where f/sub g/ - >> f/sub p/ -

  3. 3D PiC code investigations of Auroral Kilometric Radiation mechanisms

    International Nuclear Information System (INIS)

    Gillespie, K M; McConville, S L; Speirs, D C; Ronald, K; Phelps, A D R; Bingham, R; Cross, A W; Robertson, C W; Whyte, C G; He, W; Vorgul, I; Cairns, R A; Kellett, B J

    2014-01-01

    Efficient (∼1%) electron cyclotron radio emissions are known to originate in the X mode from regions of locally depleted plasma in the Earths polar magnetosphere. These emissions are commonly referred to as the Auroral Kilometric Radiation (AKR). AKR occurs naturally in these polar regions where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. Initial studies were conducted in the form of 2D PiC code simulations [1] and a scaled laboratory experiment that was constructed to reproduce the mechanism of AKR. As studies progressed, 3D PiC code simulations were conducted to enable complete investigation of the complex interaction dimensions. A maximum efficiency of 1.25% is predicted from these simulations in the same mode and frequency as measured in the experiment. This is also consistent with geophysical observations and the predictions of theory.

  4. Generation of auroral kilometric and Z mode radiation by the cyclotron maser mechanism

    Science.gov (United States)

    Omidi, N.; Gurnett, D. A.; Wu, C. S.

    1984-01-01

    The relativistic Doppler-shifted cyclotron resonance condition for EM wave interactions with a plasma defines an ellipse in velocity space when the product of the index of refraction and cosine of the wave normal angle is less than or equal to unity, and defines a partial ellipse when the product is greater than unity. It is also noted that waves with frequencies greater than the gyrofrequency can only resonate with particles moving in the same direction along the magnetic field, while waves with lower frequencies than these resonate with particles moving in both directions along the magnetic field. It is found, in the case of auroral kilometric radiation, that both the upgoing and the downgoing electrons are unstable and can give rise to this radiation's growth. The magnitudes of the growth rates for both the upgoing and downgoing auroral kilometric radiation are comparable, and indicate that the path lengths needed to account for the observed intensities of this radiation are of the order of a few hundred km, which is probably too large. Growth rate calculations for the Z mode radiation show that, for wave frequencies just below the gyrofrequency and wave normal angles at or near 90 deg, the electron distribution is unstable and the growth rates are large enough to account for the observed intensities.

  5. Source of broadband Jovian Kilometric radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.; Leblanc, Y.

    1987-02-01

    Broadband Jovian Kilometric radiation was observed by Voyagers 1 and 2 to be beamed away from the zenomagnetic equatorial plane. Two theories were proposed for the equatorial shadow zone. One suggested that Io plasma torus forms an obstacle to radiation produced on auroral field lines. The other theory proposed that the source is located on the outer flanks of the torus, the beaming being inherent to the emission mechanism. Results are presented which indicate that the latter is consistent with the observations and it would appear that the emission is produced by linear mode conversion of electrostatic upper hybrid to electromagnetic waves in plasma density gradients.

  6. Source of broadband Jovian Kilometric radiation

    International Nuclear Information System (INIS)

    Jones, D.; Leblanc, Y.

    1987-01-01

    Broadband Jovian Kilometric radiation was observed by Voyagers 1 and 2 to be beamed away from the zenomagnetic equatorial plane. Two theories were proposed for the equatorial shadow zone. One suggested that Io plasma torus forms an obstacle to radiation produced on auroral field lines. The other theory proposed that the source is located on the outer flanks of the torus, the beaming being inherent to the emission mechanism. Results are presented which indicate that the latter is consistent with the observations and it would appear that the emission is produced by linear mode conversion of electrostatic upper hybrid to electromagnetic waves in plasma density gradients

  7. Earth as a radio source: terrestrial kilometric radiation. Progress report

    International Nuclear Information System (INIS)

    Gurnett, D.A.

    1974-02-01

    Radio wave experiments on the IMP-6 and 8 satellites have shown that the earth emits very intense electromagnetic radiation in the frequency range from about 50 kHz to 500 kHz. A peak intensity the total power emitted in this frequency range is about 1 billion watts. The earth is, therefore, a very intense planetary radio source, with a total power output comparable to the decametric radio emission from Jupiter. This radio emission from the earth is referred to as terrestrial kilometric radiation. Terrestrial kilometric radiation appears to originate from low altitudes (less than 3.0 Re) in the auroral region. Possible mechanisms which can explain the generation and propagation of the terrestrial kilometric radiation are discussed. (U.S.)

  8. Computer simulation of auroral kilometric radiation

    International Nuclear Information System (INIS)

    Wagner, J.S.; Tajima, T.; Lee, L.C.; Wu, C.S.

    1983-01-01

    We study the generation of auroral kilometric radiation (AKR) using relativistic, electromagnetic, particle simulations. The AKR source region is modeled by two electron populations in the simulation: a cold (200 eV) Maxwellian component and a hot (5-20 keV) population possessing a loss-cone feature. The loss cone distribution is found to be unstable to the cyclotron maser instability. The fast extraordinary (X-mode) waves dominate the radiation and saturate when resonant particles diffuse into the loss-cone via turbulent scattering of the particles by the amplified X-mode radiation

  9. Auroral kilometric radiation from transpolar arcs

    International Nuclear Information System (INIS)

    Pederson, B.M.; Pottelette, R.; Eliasson, L.; Murphree, J.S.; Elphinstone, R.D.; Bahnsen, A.; Jespersen, M.

    1992-01-01

    Observations from the Swedish satellite Viking allow the authors to study the relationship between auroral kilometric radiation (AKR) and discrete auroral features. Previous work has shown that AKR generation is most often associated with nightside aurora. They present wave data which show that under certain circumstances the source regions may also occur on discrete features, identified as transpolar arcs. The wave spectrograms detected during crossings or closest approaches to such sources exhibit structures similar to those observed during nightside AKR source crossings. Also, the associated ion beams and trapped conical electron populations with enhanced upward directed loss cones peak at comparable energies (∼1 keV)

  10. Maximum power flux of auroral kilometric radiation

    International Nuclear Information System (INIS)

    Benson, R.F.; Fainberg, J.

    1991-01-01

    The maximum auroral kilometric radiation (AKR) power flux observed by distant satellites has been increased by more than a factor of 10 from previously reported values. This increase has been achieved by a new data selection criterion and a new analysis of antenna spin modulated signals received by the radio astronomy instrument on ISEE 3. The method relies on selecting AKR events containing signals in the highest-frequency channel (1980, kHz), followed by a careful analysis that effectively increased the instrumental dynamic range by more than 20 dB by making use of the spacecraft antenna gain diagram during a spacecraft rotation. This analysis has allowed the separation of real signals from those created in the receiver by overloading. Many signals having the appearance of AKR harmonic signals were shown to be of spurious origin. During one event, however, real second harmonic AKR signals were detected even though the spacecraft was at a great distance (17 R E ) from Earth. During another event, when the spacecraft was at the orbital distance of the Moon and on the morning side of Earth, the power flux of fundamental AKR was greater than 3 x 10 -13 W m -2 Hz -1 at 360 kHz normalized to a radial distance r of 25 R E assuming the power falls off as r -2 . A comparison of these intense signal levels with the most intense source region values (obtained by ISIS 1 and Viking) suggests that multiple sources were observed by ISEE 3

  11. Auroral kilometric radiation and magnetospheric substorm

    International Nuclear Information System (INIS)

    Morioka, Akira; Oya, Hiroshi

    1980-01-01

    The auroral kilometric radiation (AKR) and its relation to the development of the magnetospheric substorm have been studied based on the data obtained by JIKIKEN (EXOS-B) satellite. The occurrence of AKR is closely correlated to the intense UHR emission outside the plasmapause at the satellite position; the evidence clearly suggests that the development of the field aligned current system is associated with AKR generated at the upward current region and with the UHR emission at the downward current region. The drifting plasma due to the electric field that is generated in the magnetosphere at the moment of the magnetospheric substorm is derived from the frequency change of the plasma waves. The enhancement of the westward electric field in the duskside magnetosphere is detected simultaneously with the appearence of AKR. The altitude of the center of the AKR source region varies with intimate relation to the substorm activity suggesting that the generation of AKR is taking place in the region where the polar ionosphere and the magnetosphere are predominantly coupling through the precipitating or up going particles. From the fine structure of the dynamic spectra of AKR, it is suggested that the source of AKR might be closely related to the double layer type electric field along the magnetic field. (author)

  12. Source region of aurora kilometric radiation

    International Nuclear Information System (INIS)

    Morioka, Akira; Oya, Hiroshi; Tokumaru, Munetoshi

    1981-01-01

    This paper discusses the source region of aurora kilometric radiation (AKR), and the relation between the particle acceleration region and the polar ionosphere. The observation was made by the satellite 'Jikiken'. The AKR can be transferred to Jikiken without any interception, when the magnetic latitude of the apogee of the satellite is low. The spectra taken in June, 1980, were analyzed. The observed spectra showed the source regions of the AKR were in the aurora bands of the north and south poles. One example showed that the 200 kHz component of AKR from both poles showed the similar behavior, and another example showed that the AKR spectra from both poles showed different behavior. The altitude distribution of source regions was able to be obtained. The altitude of AKR-A was in the range between 6200 and 12000 km, and that of AKR-B was in the range of 3500 and 5200 km. The source of AKR-A was identified as that in the south hemisphere, and that of AKR-B in the north hemisphere. The asymmetric spectra of AKR-A and B showed that the spread and intensity of the electric field along magnetic lines generated above the polar ionosphere were related with the conditions of the ionosphere. (Kato, T.)

  13. Correlation between Auroral kilometric radiation and field-aligned currents

    International Nuclear Information System (INIS)

    Green, J.L.; Saflekos, N.A.; Gurnett, D.A.; Potemra, T.A.

    1982-01-01

    Simultaneous observations of field-aligned currents (FAC) and auroral kilometric radiation (AKR) are compared from the polar-orbiting satellites Triad and Hawkeye. The Triad observations were restricted to the evening-to-midnight local time sector (1900 to 0100 hours magnetic local time) in the northern hemisphere. This is the region in which the most intense storms of AKR are believed to originate. The Hawkeye observations were restricted to when the satellite was in the AKR emission cone in the northern hemisphere and at radial distances > or =7R/sub E/ (earth radii) to avoid local propagation cutoff effects. A(R/7R/sub E/) 2 normalization to the power flux measurements of the kilometric radiation from Hawkeye is used to take into account the radial dependence of this radiation and to scale all intensity measurements so that they are independent of Hawkeye's position in the emission cone. Integrated field-aligned current intensities from Triad are determined from the observed transverse magnetic field disturbances. There appears to be a weak correlation between AKR intensity and the integrated current sheet intensity of field-aligned currents. In general, as the intensity of auroral kilometric radiation increases so does the integrated auroral zone current sheet intensity increase. Statistically, the linear correlation coefficient between the log of the AKR power flux and the log of the current sheet intensity is 0.57. During weak AKR bursts ( - 18 W m - 2 Hz - 1 ), Triad always observed weak FAC'S ( - 1 ), and when Triad observed large FAC's (> or =0.6 A m - 1 ), the AKR intensity from Hawkeye was moderately intense (10 - 5 to 10 - 14 W m - 2 Hz - 1 ) to intense (>10 - 14 W m - 2 Hz - 1 ). It is not clear from these preliminary results what the exact role is that auroral zone field-aligned currents play in the generation or amplification of auroral kilometric radiation

  14. Observations pertaining to the generation of auroral kilometric radiation

    International Nuclear Information System (INIS)

    Green, J.L.

    1981-01-01

    Auroral kilometric radiation (AKR) observations that have determined the propagation mode or polarization of the radiation and the detailed intensity distribution of the AKR emission cone are discussed. Attention is also given to correlations between AKR with discrete field-aligned currents. It is noted that these observations have helped to identify the auroral particle population most likely responsible for the generation of AKR and the possible sources of the free energy that drives the instability. Thus far, AKR has not been observed simultaneously with large electrostatic waves. Auroral zone current systems are thought to be intimately involved in the generation of AKR. In particular, the most probable source of energy for AKR is the precipitating inverted-V auroral electron distribution

  15. Correlation between auroral kilometric radiation and inverted v electron precipitation

    International Nuclear Information System (INIS)

    Green, J.L.; Gurnfti, D.A.; Hoffmans, R.A.

    1979-01-01

    Simultaneous observations of energetic electron precipitations and auroral kilometric radiation (AKR) were obtained from the polar orbiting satellites AE-D and Hawkeye. The Hawkeye observations were restricted to periods when the satellite was in the AKR emission cone in the northern hemisphere an at radial distances > or approx. =7 R/sub E/ to avoid local propagation cutoff effects. In addition, the AE-D measurements were restricted to complete passes across the auroral oval in the evening to midnight local time sector (from 20 to 01 hours magnetic local time). This is the local time region where the most intense bursts of AKR are believed to originate. A qualitative survey of AKR and electron precipitation than with plasma sheet precipitation. Quantitatively, a good correlation is found between the AKR intensity and the peak energy of inverted V events. In addition, in the tail of the most field-aligned portion (approx.O 0 pitch angle) of the distribution functions of the inverted V events,systematic changes are indicated as the associated AKR intensity increases. When the AKR power flux is weak ( -17 W/(m 2 Hz)). From a determination of the simultaneous power in the inverted V events and the AKR bursts, the efficiency of converting the charge particle energy into EM radiation increases to a maximum of about 1% for the most intense AKR bursts. However, conversion efficiencies as low as 10 -5 % are also found. There is some evidence which suggests that the tail temperature, T in F (V) of the inverted V events, may play an important role in the efficient generation or amplification of auroral kilometric radiation

  16. Polarization measurements of auroral kilometric radiation by Dynamics Explorer-1

    International Nuclear Information System (INIS)

    Shawhan, S.D.; Gurnett, D.A.

    1982-01-01

    The plasma wave instrument (PWI) on the Dynamics Explorer-1 has been used to measure polarization of auroral kilometric radiation (AKR) at frequencies of 50 to 400 kHz in both the northern and the southern nightside auroral regions at altitudes of 1 to 3 R/sub E/ above the AKR source regions. The AKR polarization sense is found to be the same as the right hand polarized auroral hiss found in the frequency range of 0.8 to 6.4 kHz. Consequently, these unambiguous direct polarization measurements of AKR lead to the conclusion that AKR escapes the magnetosphere in the R-X mode. Since DE-1 is close to the source region, it can be inferred that AKR is generated predominately in the R-X mode

  17. Mapping of auroral kilometric radiation sources to the aurora

    International Nuclear Information System (INIS)

    Huff, R.L.; Calvert, W.; Craven, J.D.; Frank, L.A.; Gurnett, D.A.

    1988-01-01

    Auroral kilometric radiation (AKR) and optical auroral emissions are observed simultaneously using plasma wave instrumentation and auroral imaging photometers acrried on the DE 1 spacecraft. The DE 1 plasma wave instrument measures the relative phase of signals from orthogonal electric dipole antennas, and from these measurements, apparent source directions can be determined with a high degree of precision. Wave data are analyzed for several strong AKR events, and source directions are determined for several emission frequencies. By assuming that the AKR originates at cyclotron resonant altitudes, a condidate source field line is identified. When the selected source field line is traced down to auroral altitudes on the concurrent DE 1 auroral image, a striking correspondence between the AKR source field line and localized auroral features is produced. The magnetic mapping study provides strong evidence that AKR sources occur on field lines associated with discrete auroral arcs, and it provides confirmation that AKR is generated near the electron cyclotron frequency

  18. Auroral kilometric radiation source region observations from ISIS 1

    International Nuclear Information System (INIS)

    Benson, R.F.

    1981-01-01

    The ISIS 1 observations of the high-frequency portion of the auroral kilometric radiation (AKR) spectrum are considered, that is, from the minimum frequency encountered for the extraordinary mode cut-off (approximately 450 kHz) to the upper frequency cut-off (approximately 800 kHz). AKR is found to be generated in the extraordinary mode just above the local cutoff frequency and to emanate in a direction that is nearly perpendicular to the magnetic field. It occurs within local depletions of electron density, where the ratio of plasma frequency to cyclotron frequency is below 0.2. The density depletion is restricted to altitudes above approximately 2,000 km, and the upper AKR frequency limit corresponds to the extraordinary cutoff frequency at this altitude

  19. Correlations of auroral kilometric radiation with Birkeland currents

    International Nuclear Information System (INIS)

    Saflekos, N.A.; Carovillano, R.L.; Sheehan, R.E.

    1983-01-01

    This chapter examines auroral kilometric radiation (AKR) in relation to the strength of field-aligned currents (FAC), which represent an energy source stored in the form of magnetic field energy density in the neighborhood of the earth. An attempt is made to find a direct relationship between AKR power flux and optical auroral emissions. Topics considered include correlated Hawkeye and Triad satellite observations and correlated AKR and optical emissions. It is indicated that AKR is electromagnetic radiation in the frequency range of 50 to 500 kHz; AKR is generated at frequencies above the electron plasma frequency and below the electron gyrofrequency; AKR propagates in the Right Hand Extraordinary mode; and AKR may show fine structure in frequency. The principal findings include: distributions of AKR intensity with increasing auroral activity show that although quiet and disturbed auroras are generally accompanied by weak and intense AKR, the moderate auroras are associated with a broad range of AKR power; distributions of AKR intensity with increasing auroral electrojet (AE) index during the expansion phase of a polar magnetic substorm show near maximum levels of AKR power emission; and the maximum AKR power increases with increasing auroral activity and with increasing Birkeland current strength

  20. Viking observations at the source region of auroral kilometric radiation

    International Nuclear Information System (INIS)

    Bahnsen, A.; Jespersen, M.; Ungstrup, E.; Pedersen, B.M.; Eliasson, L.; Murphree, J.S.; Elphinstone, R.D.; Blomberg, L.; Holmgren, G.; Zanetti, L.J.

    1989-01-01

    The orbit of the Swedish satellite Viking was optimized for in situ observations of auroral particle acceleration and related phenomena. In a large number of the orbits, auroral kilometric radiation (AKR) was observed, and in approximately 35 orbits the satellite passed through AKR source regions as evidenced by very strong signals at the local electron cyclotron frequency f ce . These sources were found at the poleward edge of the auroral oval at altitudes, from 5,000 to 8,000 km, predominantly in the evening sector. The strong AKR signal has a sharp low-frequency cutoff at or very close to f ce in the source. In addition to AKR, strong broadband electrostatic noise is measured during the source crossings. Energetic (1-15 keV) electrons are always present at and around the AKR sources. Upward directed ion beams of several keV are closely correlated with the source as are strong and variable electric fields, indicating that a region of upward pointing electric field below the observation point is a necessary condition for AKR generation. The plasma density is measured by three independent experiments and it is generally found that the density is low across the whole auroral oval. For some source crossings the three methods agree and show a density depletion (but not always confined to the source region itself), but in many cases the three measurements do not yield consistent results. The magnetic projection of the satellite passes through auroral forms during the source crossings, and the strongest AKR events seem to be connected with kinks in an arc or more complicated structures

  1. Generation of auroral kilometric radiation and the structure of auroral acceleration region

    International Nuclear Information System (INIS)

    Lee, L.C.; Kan, J.R.; Wu, C.S.

    1980-01-01

    Generation of auroral kilometric radiation (AKR) in the auroral acceleration region is studied. It is shown that auroral kilometric radiation can be generated by the backscattered electrons trapped in the acceleration region via a cyclotron maser process. The parallel electric field in the acceleration region is required to be distributed over 1-2 Rsub(E). The observed AKR frequency spectrum can be used to estimate the altitude range of the auroral acceleration region. The altitudes of the lower and upper boundaries of the acceleration region determined from the AKR data are respectively approximately 2000 and approximately 9000 km. (author)

  2. Quasilinear simulation of auroral kilometric radiation by a relativistic Fokker-Planck code

    International Nuclear Information System (INIS)

    Matsuda, Y.

    1991-01-01

    An intense terrestrial radiation called the auroral kilometric radiation (AKR) is believed to be generated by cyclotron maser instability. We study a quasilinear evolution of this instability by means of a two-dimensional relativistic Fokker-Planck code which treats waves and distributions self-consistently, including radiation loss and electron source and sink. We compare the distributions and wave amplitude with spacecraft observations to elucidate physical processes involved. 3 refs., 1 fig

  3. An interpretation of Jupiter's decametric radiation and the terrestrial kilometric radiation as direct amplified gyroemission

    International Nuclear Information System (INIS)

    Melrose, D.B.

    1976-01-01

    Electron streams precipitating from a planetary magnetosphere can cause gyroemission in the x-mode to be amplified provided the following conditions are satisfied: (a) β/sub perpendicular/ 0 2 > approx. β/sub parallel/ 0 and, (b) abs. value β/sub s/ > f/sub p/ 2 /f/sub b/ 2 , where β/sub s/c, β/sub perpendicular/ 0 , and β/sub parallel/ 0 2 c 2 are the mean parallel velocity and the mean square perpendicular and parallel velocity spreads, respectively, and where f/sub p/ and f/sub B/ are the plasma frequency and the electron cyclotron frequency, respectively. The required anisotropy β/sub perpendicular/ 0 2 approx. > β/sub parallel/ 0 is assumed to be set up through the betatron effect, i.e., due to the stream propagating in the direction of increasing magnetic induction B. The back-reaction of the amplified emission on the stream causes β/sub perpendicular/ 0 2 to decrease. A steady state is set up with the anisotropy maintained near the threshold value β/sub perpendicular/ 0 2 approx. =β/sub parallel/ 0 , and with the excess perpendicular energy, which is gained through the betatron effect, transferred to the escaping radiation.This mechanism can account for the gross features of Jupiter's decametric emission (DAM) and for its terrestrial counterpart, the auroral kilometric radiation (AKR). The required number density in the precipitating electrons is n 1 > approx. 20 cm -3 for DAM and n 1 > approx. 2 cm -3 for AKR. Most of the power in DAM at higher frequencies ( > approx. 20MHz) is directed to higher latitudes and is not seen from the Earth. The polarization of DAM and the ray paths in the Jovian magnetosphere are discussed. The observed characteristics of ''inverted V'' auroral electron precipitation events, which correlate with AKR, appear to satisfy all the requirements of the theory. AKR should contain fine structure on a time scale approx.1μs

  4. Stimulation of auroral kilometric radiation by type III solar radio bursts

    International Nuclear Information System (INIS)

    Calvert, W.

    1981-01-01

    It has been found that the onset of auroral kilometric radiation (AKR) frequently coincides with the arrival of type III solar radio bursts. Although the AKR onsets are usually abrupt and appear to be spontaneous, they sometimes develop from a discrete frequency near the leading edge of a type III burst or sometimes occur at progressively lower frequencies following that edge. From this, and the absence of the related solar electrons in specific cases, it was concluded that the incoming type III waves were sometimes responsible for stimulating auroral kilometric radiation. It was estimated that intense, isolated type III bursts were capable of stimulating AKR roughly one third of the time, and that at least ten percent of the observed AKR onsets could be attributed to these and weaker bursts, including some barely detectable by the ISEE plasma wave receivers

  5. Ordinary mode auroral kilometric radiation fine structure observed by DE 1

    International Nuclear Information System (INIS)

    Benson, R.F.; Mellott, M.M.; Huff, R.L.; Gurnett, D.A.

    1988-01-01

    The fine structure observed with intense right-hand extraordinary (R-X) mode auroral kilometric radiation (AKR) has received major theoretical attention. Data from the Dynamics Explorer 1 plasma wave instrument indicate that left-hand ordinary (L-O) mode AKR posses similar fine structure. Several theories have been proposed to explain the fine structure of the R-X mode AKR. In order to account for the L-O mode fine structure, these theories will have to be modified to produce the L-O mode directly or will have to rely on mode conversion processes from the R-X to the L-O mode

  6. Recent Advances in Observations of Ground-level Auroral Kilometric Radiation

    Science.gov (United States)

    Labelle, J. W.; Ritter, J.; Pasternak, S.; Anderson, R. R.; Kojima, H.; Frey, H. U.

    2011-12-01

    events observed coincidentally at ground level and on the Geotail spacecraft, including several events detected at multiple ground stations, will provide a measurements of the ratio of the ground level intensity to that observed on the satellite, with the latter adjusted for distance. This ratio of intensities, not well-determined from the original three events [LaBelle and Anderson, 2011], places an important constraint on the generation mechanism. Reference: LaBelle, J., and R.R. Anderson (2011), Ground-level detection of Auroral Kilometric Radiation, Geophys. Res. Lett., 38, L04104, doi:10.1029/2010GL046411.

  7. Properties of auroral kilometric radiation from an interferometer analysis of the ISEE-1 and -2 plasma wave data

    International Nuclear Information System (INIS)

    Baumback, M.M.

    1986-01-01

    The first satellite-satellite interferometery measurements of the auroral kilometric radiation (AKR) source region diameter are presented. By correlating the analog waveforms detected by ISEE-1 and ISEE-2, the size of the AKR source region is determined. Correlations have been measured at 125 and 250 kHz for projected baselines ranging from 20 to 3868 km. High correlations are found at all projected baselines, with little or no tendency to decrease at long baselines. The correlation is lower for events with wide bandwidths than for events with narrow bandwidths. The magnitude of the correlation as a function of signal delay and the spectra of the individual bursts show that sometimes the bandwidth of AKR bursts varies rapidly and can be narrower than 20 Hz. The spectra observed by both spacecraft are nearly identical. Correlation results are interpreted differently for incoherent radiation than for coherent radiation. If the radiation is incoherent, the visibility of the source region is the Fourier transform of the brightness distribution. Assuming incoherent radiation the average source region diameter for all analyzed bursts is less than 9.27 km. Source region diameters measured for individual bursts range from 1 to 16 km. Generation mechanisms that only amplify incoming radiation cannot produce high correlations unless the source region diameter is smaller than 25 km

  8. Auroral kilometric radiation - An example of relativistic wave-particle interaction in geoplasma

    International Nuclear Information System (INIS)

    Pritchett, P.L.

    1990-01-01

    The earth's auroral kilometric radiation (AKR) is believed to be produced by the electron-cyclotron maser instability. This instability is the result of a wave-particle interaction in which relativistic effects are crucial. An explanation is given as to how these relativistic effects alter the shape of the resonance curve in velocity space and modify the R - X mode wave dispersion near the electron cyclotron frequency compared to the results obtained in the nonrelativistic limit and from cold-plasma theory. The properties of the cyclotron maser instability in a driven system are illustrated using two-dimensional electromagnetic particle simulations which incorporate a continual flow of primary energetic electrons along the magnetic field. 31 refs

  9. Generation of auroral kilometric radiation in upper hybrid wave-lower hybrid soliton interaction

    International Nuclear Information System (INIS)

    Pottelette, R.; Dubouloz, N.; Treumann, R.A.

    1992-01-01

    Sporadic bursts of auroral kilometric radiation (AKR) associated with strong bursty electrostatic turbulence in the vicinity of the lower hybrid frequency have been frequently recorded in the AKR source region by the Viking satellite. The variation time scale of these emissions is typically 1 s, long enough for lower hybrid waves to grow to amplitudes of several hundred millivolts per meter and to evolve nonlinearly into solitons. On the basis on these observations it is suggested that formation of lower hybrid solitons may play a role in the generation of AKR. A theoretical model is proposed which is based on the direct acceleration of electrons in the combined lower hybrid soliton and upper hybrid wave fields. The solitons act as sporadic, localized antennas allowing for efficient conversions of the electrostatic energy stored in upper hybrid waves into electromagnetic radiation at a frequency above the X mode cutoff. Excitation of lower hybrid waves is due to the presence of energetic electron beams in the auroral zone found to be associated with steep plasma density gradients. Upper hybrid waves can be excited by a population of energetic electrons with loss cone distributions. The power of the electromagnetic radiation obtained is only noticeable in regions where the plasma frequency is less than the electron gyrofrequency. The theory predicts spectral power densities of the order of 10 -11 to 10 -9 W m -2 Hz -1 in the source region, in good agreement with the Viking observations. The sporadic nature of the radiation derives from lower hybrid soliton collapses which occur on ∼1-s time scales

  10. Terrestrial kilometric radiation. III - Average spectral properties. [observations by IMP-6 and RAE-2 satellites

    Science.gov (United States)

    Kaiser, M. L.; Alexander, J. K.

    1977-01-01

    The spectral properties of terrestrial kilometric radiation (TKR) derived from observations made during radio-astronomy experiments on board the Imp 6 and Radio Astronomy Explorer 2 spacecraft are studied. As viewed from near the equatorial plane, TKR is most intense and most often observed in the 2100-2400 LT zone and is rarely seen in the 0900-1200 LT zone. The absolute flux levels in the 100- to 600-kHz TKR band increase significantly with increasing substorm activity as inferred from the auroral electrojet index (AE). In the late-evening sector the median power increases by about 3 orders of magnitude between quiet periods (AE less than 75 gammas) and disturbed periods (AE above 200 gammas). The peak flux density usually occurs near 250 kHz, although the frequency of the peak in the flux spectrum appears to vary inversely with AE from a maximum near 300 kHz during very quiet times to a minimum below 200 kHz during very disturbed times. The half-power bandwidth is typically 100% of the peak frequency. The variation of TKR flux density with apparent source altitude indicates that source strength decreases more rapidly than the inverse square of distance.

  11. Trapped electrons as a free energy source for the auroral kilometric radiation

    International Nuclear Information System (INIS)

    Louarn, P.; Roux, A.; de Feraudy, H.; Le Queau, D.; Andre, M.; Matson, L.

    1990-01-01

    Simultaneous measurements of electromagnetic fields and particle distributions, measured during the crossing by the Swedish spacecraft Viking of an auroral kilometric radiation (AKR) source, are presented. It is shown that AKR is generated within an acceleration region characterized by an upward directed parallel electric field, as evidenced by its signature on the proton and electron distributions. From particle observations inside the AKR source it is clear that the potential drop below the spacecraft produces upward moving field-aligned ion beams and a depletion in the density of low energy electrons. The potential drop above the spacecraft produces downward accelerated electrons. A large fraction of these electrons have small parallel velocities; they mirror above the ionosphere. These trapped electrons lie in a region of velocity space which should be empty in a simple adiabatic theory. The authors suggest that these electrons get trapped when they experience a time-varying (or space-varying) parallel electric field. This conclusion is supported by the comparison between the observed electron distribution function and a model distribution function built by applying Liouville theorem. Since trapped electrons can cause positive gradients (∂f e /∂V perpendicular > 0) over a broad range of parallel velocities, around v parallel ∼ 0, it is suggested that they are the free energy source for the AKR. This conclusion is substantiated by an evaluation of the convective growth rate, where the various input parameters have been determined by fitting particle data

  12. Analytical study of the relativistic dispersion: Application to the generation of the auroral kilometric radiation

    International Nuclear Information System (INIS)

    Le Queau, D.; Louarn, P.

    1989-01-01

    The measurements recently performed by the Viking spacecraft have shown that, in addition to being cold plasma depleted, the source regions of the Auroral Kilometric Radiation (A.K.R.) are characterized by a relatively denser, more energetic electron component. In order to properly study the Cyclotron Maser Instability (C.M.I.) which is thought to be responsible for the A.K.R. generation, it is thus necessary to include relativistic corrections in both the hermitian and the antihermitian parts of the dielectric tensor characterizing the linear properties of the plasma. Here one presents an analytical study of the corresponding dispersion equation which aims to describe stable and unstable waves having frequencies lying very close to the electronic gyrofrequency and propagating across the geomagnetic field with a perpendicular refractive index less than a few units (n perpendicular 1 and χ small), the growth rate could maximize at the cut-off frequency of the relativistic X mode. Moreover, for small χ, the relativistic X mode is connected to freely propagating modes which guarantees an easy access of the electromagnetic energy to free space

  13. Generation of auroral kilometric radiation by a finite-size source in a dipole magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Burinskaya, T. M., E-mail: tburinsk@iki.rssi.ru; Shevelev, M. M. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2016-10-15

    Generation, amplification, and propagation of auroral kilometric radiation in a narrow three-dimensional plasma cavity in which a weakly relativistic electron beam propagates is studied in the geometrical optics approximation. It is shown that the waves that start with a group velocity directed earthward and have optimal relation between the wave vector components determining the linear growth rate and the wave residence time inside the amplification region undergo the largest amplification. Taking into account the longitudinal velocity of fast electrons results in the shift of the instability domain toward wave vectors directed to the Earth and leads to a change in the dispersion relation, due to which favorable conditions are created for the generation of waves with frequencies above the cutoff frequency for the cold background plasma at the wave generation altitude. The amplification factor for these waves is lower than for waves that have the same wave vectors but are excited by the electron beams with lower velocities along the magnetic field. For waves excited at frequencies below the cutoff frequency of the background plasma at the generation altitude, the amplification factor increases with increasing longitudinal electron velocity, because these waves reside for a longer time in the amplification region.

  14. Measurements of entanglement over a kilometric distance to test superluminal models of Quantum Mechanics: preliminary results.

    Science.gov (United States)

    Cocciaro, B.; Faetti, S.; Fronzoni, L.

    2017-08-01

    As shown in the EPR paper (Einstein, Podolsky e Rosen, 1935), Quantum Mechanics is a non-local Theory. The Bell theorem and the successive experiments ruled out the possibility of explaining quantum correlations using only local hidden variables models. Some authors suggested that quantum correlations could be due to superluminal communications that propagate isotropically with velocity vt > c in a preferred reference frame. For finite values of vt and in some special cases, Quantum Mechanics and superluminal models lead to different predictions. So far, no deviations from the predictions of Quantum Mechanics have been detected and only lower bounds for the superluminal velocities vt have been established. Here we describe a new experiment that increases the maximum detectable superluminal velocities and we give some preliminary results.

  15. Electrostatic mode coupling at 2ω/sub UH/: a generation mechanism for auroral kilometric radiation

    International Nuclear Information System (INIS)

    Barbosa, D.D.

    1976-01-01

    The instability of a low density, electron beam drifting along a magnetic field to nearly perpendicular propagating electrostatic waves near the upper hybrid frequency is investigated for application to an auroral environment. It was found that 4 to 10 KeV beams can interact significantly with the background plasma through anomalous cyclotron resonances which extend the range of unstable parallel wave numbers over a large region of wave number space. This region can include a nonconvective hot spot where the group velocity of the unstable waves approaches zero. Positive slope in the total distribution function is not a necessary requirement for instability; the broken symmetry along the field can allow the transfer of beam drift energy to electrostatic wave turbulence. Using Gurnett's (1974) polar ionospheric model for a representative auroral field line modeled as dipolar (L = 8), one infers that certain heights favor generation of enhanced, beamdriven electrostatic turbulence. Those regions are in the vicinity of where ω/sub UH//Ω/sub c/ approx. 3/2 with an excursion from this value depending on beam parameters. We speculate that electrostatic turbulence will heat the background electrons to a limiting temperature such that the instability becomes marginally effective. This limiting temperature is estimated for auroral beam-plasma conditions as 1 to 6 eV. Quasi-linear beam moment equations are developed to compute an upper bound to electrostatic wave amplitudes that can be maintained by the beam. We find that energy densities approaching E 2 /8πnT approx. 1 over auroral scale lengths can result in effective energy transfer from the beam to the plasma

  16. Experimental research on the structural instability mechanism and the effect of multi-echelon support of deep roadways in a kilometre-deep well.

    Directory of Open Access Journals (Sweden)

    Rui Peng

    Full Text Available We study the structural instability mechanism and effect of a multi-echelon support in very-deep roadways. We conduct a scale model test for analysing the structural failure mechanism and the effect of multi-echelon support of roadways under high horizontal stress. Mechanical bearing structures are classified according to their secondary stress distribution and the strength degradation of the surrounding rock after roadway excavation. A new method is proposed by partitioning the mechanical bearing structure of the surrounding rock into weak, key and main coupling bearing stratums. In the surrounding rock, the main bearing stratum is the plastic reshaping and flowing area. The weak bearing stratum is the peeling layer or the caving part. And the key bearing stratum is the shearing and yielding area. The structural fracture mechanism of roadways is considered in analysing the bearing structure instability of the surrounding rock, and multi-echelon support that considers the structural characteristics of roadway bearings is proposed. Results of the experimental study indicate that horizontal pressure seriously influences the stability of the surrounding rock, as indicated by extension of the weak bearing area and the transfer of the main and key bearing zones. The falling roof, rib spalling, and floor heave indicate the decline of the bearing capacity of surrounding rock, thereby causing roadway structural instability. Multi-echelon support is proposed according to the mechanical bearing structure of the surrounding rock without support. The redesigned support can reduce the scope of the weak bearing area and limit the transfer of the main and key bearing areas. Consequently, kilometre-deep roadway disasters, such as wedge roof caving, floor heave, and rib spalling, can be avoided to a certain degree, and plastic flow in the surrounding rock is relieved. The adverse effect of horizontal stress on the vault, spandrel and arch foot decreases. The

  17. Radiation Bystander Effects Mechanism

    Directory of Open Access Journals (Sweden)

    Shokohzaman Soleymanifard

    2009-06-01

    Full Text Available Introduction: Radiation Induced Bystander Effect (RIBE which cause radiation effects in non-irradiated cells, has challenged the principle according to which radiation traversal through the nucleus of a cell is necessary for producing biological responses. What is the mechanism of this phenomenon? To have a better understanding of this rather ambiguous concept substantial number of original and reviewed article were carefully examined. Results: Irradiated cells release molecules which can propagate in cell environment and/or transmit through gap junction intercellular communication. These molecules can reach to non-irradiated cells and transmit bystander signals. In many investigations, it has been confirmed that these molecules are growth factors, cytokines, nitric oxide and free radicals like reactive oxygen species (ROS. Transmission of by stander signal to neighboring cells persuades them to produce secondary growth factors which in their turn cause further cell injuries. Some investigators suggest, organelles other than nucleus (mitochondria and cell membrane are the origin of these signals.  There is another opinion which suggests double strand breaks (DSB are not directly generated in bystander cells, rather they are due to smaller damage like single strand breaks which accumulate and end up to DSB. Although bystander mechanisms have not been exactly known, it can be confirmed that multiple mechanisms and various pathways are responsible for this effect. Cell type, radiation type, experimental conditions and end points identify the dominant mechanism. Conclusion: Molecules and pathways which are responsible for RIBE, also cause systemic responses to other non-irradiation stresses. So RIBE is a kind of systemic stress or innate immune responses, which are performed by cell microenvironment. Irradiated cells and their signals are components of microenvironment for creating bystander effects.

  18. Mechanisms of radiation carcinogenesis

    International Nuclear Information System (INIS)

    Bekkum, D.W. van

    1975-01-01

    This speculative review on radiation carcinogenesis deals mainly with its immunological aspects. It need not be emphasized that the role of immunology in carcinogenesis is not yet well understood. Immunological aspects of radiation carcinogenesis comprise a large number of different parameters on the part of the host as well as on the part of the tumor itself. Only two aspects, both related to radiation, will be discussed here. One is the way in which the carcinogenic exposure to ionizing radiation may affect the immune reactivity of the irradiated organism, thereby perhaps changing its responses against the malignant cells. The second aspect is the immunological properties of cells transformed by ionizing irradiation, which may provide the targets for a host-anti-tumor reaction

  19. Advancing Astrophysics with the Square Kilometre Array

    CERN Document Server

    Fender, Rob; Govoni, Federica; Green, Jimi; Hoare, Melvin; Jarvis, Matt; Johnston-Hollitt, Melanie; Keane, Evan; Koopmans, Leon; Kramer, Michael; Maartens, Roy; Macquart, Jean-Pierre; Mellema, Garrelt; Oosterloo, Tom; Prandoni, Isabella; Pritchard, Jonathan; Santos, Mario; Seymour, Nick; Stappers, Ben; Staveley-Smith, Lister; Tian, Wen Wu; Umana, Grazia; Wagg, Jeff; Bourke, Tyler L; AASKA14

    2015-01-01

    In 2014 it was 10 years since the publication of the comprehensive ‘Science with the Square Kilometre Array’ book and 15 years since the first such volume appeared in 1999. In that time numerous and unexpected advances have been made in the fields of astronomy and physics relevant to the capabilities of the Square Kilometre Array (SKA). The SKA itself progressed from an idea to a developing reality with a baselined Phase 1 design (SKA1) and construction planned from 2017. To facilitate the publication of a new, updated science book, which will be relevant to the current astrophysical context, the meeting "Advancing Astrophysics with the Square Kilometre Array" was held in Giardina Naxos, Sicily. Articles were solicited from the community for that meeting to document the scientific advances enabled by the first phase of the SKA and those pertaining to future SKA deployments, with expected gains of 5 times the Phase 1 sensitivity below 350 MHz, about 10 times the Phase 1 sensitivity above 350 MHz and with f...

  20. The Square Kilometre Array Epoch of Reionisation and Cosmic Dawn Experiment

    Science.gov (United States)

    Trott, Cathryn M.

    2018-05-01

    The Square Kilometre Array (SKA) Epoch of Reionisation and Cosmic Dawn (EoR/CD) experiments aim to explore the growth of structure and production of ionising radiation in the first billion years of the Universe. Here I describe the experiments planned for the future low-frequency components of the Observatory, and work underway to define, design and execute these programs.

  1. Epigenetic mechanism of radiation carcinogenesis

    International Nuclear Information System (INIS)

    Niwa, Ohtsura

    1995-01-01

    Carcinogenic action of radiations has long been thought to be due to its mutagenic activity. Since DNA damage is induced and distributes in a stochastic fashion, radiation induction of cancers was also assumed to follow a stochastic kinetics. However, recent progress in radiation research has revealed that some features of radiation carcinogenesis are not explainable by the simple action of radiation as a DNA damaging and mutagenic agent. Firstly, frequencies of radiation-induced transformation in vitro and radiation-induced mammary cancers in rats are too high to be accounted for by the frequency of radiation-induced mutation. Secondly, trans-generation carcinogenesis among F1 mice born to irradiated parents occurs also much more frequently than to be predicted by the frequency of radiation induced germline mutation. Thirdly, multistage carcinogenesis theory predicts that carcinogens give hits to the target cells so as to shorten the latency of cancers. However, latencies of radiation induced solid cancers among atomic bomb survivors are similar to those of the control population. Fourthly, although radiation elevates the frequency of cancers, the induced cancers seem to share the same spectrum of cancer types as in the unirradiated control populations. This suggests that radiation induces cancer by enhancement of the spontaneous carcinogenesis process. These data suggest that the first step of radiation carcinogenesis may not be the direct induction of mutation. Radiation may induce genetic instability which increases the spontaneous mutation rate in the cells to produce carcinogenic mutations. Growth stimulatory effect of radiation may also contribute to the process. Thus, epigenetic, but not genetic effect of radiation might better contribute in the process of carcinogenesis. (author)

  2. The Square Kilometre Array: An Engineering Perspective

    CERN Document Server

    Hall, Peter J

    2005-01-01

    This volume is an up-to-date and comprehensive overview of the engineering of the Square Kilometre Array (SKA), a revolutionary instrument which will be the world’s largest radio telescope. Expected to be completed by 2020, the SKA will be a pre-eminent tool in probing the Early Universe and in enhancing greatly the discovery potential of radio astronomy in many other fields. This book, containing 36 refereed papers written by leaders in SKA engineering, has been compiled by the International SKA Project Office and is the only contemporary compendium available. It features papers dealing with pivotal technologies such as antennas, RF systems and data transport. As well, overviews of important SKA demonstrator instruments and key system design issues are included. Practising professionals, and students interested in next-generation telescopes, will find this book an invaluable reference.

  3. Physiologic mechanisms in radiation resistance

    International Nuclear Information System (INIS)

    Reichard, S.M.

    1976-01-01

    Some topics discussed are as follows: role of the reticuloendothelial system in the regeneration of the hematopoietic system; uptake of colloidal agents by liver and spleen cells following graded doses of x radiation; effects of x radiation on peritoneal macrophages of rats; stimulation of phagocytic activity of the reticuloendothelial system by estrogens, serum albumin, and bacterial endotoxins; and sequestration of particulate material within the reticuloendothelial organs following x irradiation

  4. Hololujah; A One Kilometre Art Hologram

    Science.gov (United States)

    Warren, David

    2013-02-01

    This paper will outline the production of the white light transmission achromatic image art hologram titled Hololujah displaying forward projecting real imagery of text and measuring 100,000 × 3.5 cm. Materials and methods: The paper will cover the use of Slavich VRP-M film 33.3 × 1.05 metres that was exposed and processed as thirty-three and a third 100 × 105 cm frames. These thirty-three and a third frames were subsequently cut into one thousand 100 × 3.5 cm strips with their ends cold laminated together to form the kilometre length hologram. This paper will expand on the use of a Coherent Compass 315M, 532 nm, 150 mW DPSS laser diode in a lensless setup, using a single beam through diffuse glass, no isolation systems and a two minute exposure time with the film lying flat on the floor. Lastly, this paper will illustrate how the hologram was produced in a 220 × 200 × 300 cm confined area of a suburban bedroom. Theme: This artwork is a comment on the social networking site Twitter.

  5. [Mechanisms of electromagnetic radiation damaging male reproduction].

    Science.gov (United States)

    Xue, Lei; Chen, Hao-Yu; Wang, Shui-Ming

    2012-08-01

    More and more evidence from over 50 years of researches on the effects of electromagnetic radiation on male reproduction show that a certain dose of electromagnetic radiation obviously damages male reproduction, particularly the structure and function of spermatogenic cells. The mechanisms of the injury may be associated with energy dysmetabolism, lipid peroxidation, abnormal expressions of apoptosis-related genes and proteins, and DNA damage.

  6. Mechanisms for radiation damage in DNA

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1987-01-01

    Several mechanisms are proposed for radiation damage to DNA and its constituents, and a series of experiments utilizing electron spin resonance spectrometry have been used to test the proposed mechanisms. In the past we have concentrated chiefly on investigating irradiated systems of DNA constituents. In this year's effort we have concentrated on radiation effects on DNA itself. In addition studies of radiation effects on lipids and model compounds have been performed which shed light on the only other proposed site for cell kill, the membrane

  7. Generation of auroral kilometric radio emission at the cyclotron maser resonance

    International Nuclear Information System (INIS)

    Vlasov, V.G.

    1992-01-01

    A linear mechanism of auroral kilometric radiation (AKR) generation at the maser cyclotron resonance (MCR) in an inhomogeneous multidimensional plasma is developed. The model distribution functions introduced by the author for longitudinal and transverse electron beams allow one to obtain x- and O-mode growth rates in the form of elementary functions. The key idea of the study is the MCR time taking into account all processes leading to the emission of waves from the MCR. It is shown that the MCR time can be sufficient for AKR generation in isolated regions of the auroral plasma. For the X-mode these are the parts of the plasma where the longitudinal gradient of the geomagnetic field is compensated by the plasma density gradient. The O-mode is generated only in those local regions where there is an extremely small longitudinal plasma density gradient. The theoretical minimum width of the AKR spectral line obtained coincides with the minimal measured line width of 5 Hz. It is concluded that the discrete AKR spectrum is related to the inhomogeneous structure of the auroral plasma

  8. Mechanisms for radiation damage in DNA

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1993-12-01

    In this project the author has proposed several mechanisms for radiation damage to DNA and its constituents, and has detailed a series of experiments utilizing electron spin resonance spectroscopy, HPLC, GC-mass spectroscopy and ab initio molecular orbital calculations to test the proposed mechanisms. In this years work he has completed several experiments on the role of hydration water on DNA radiation damage, continued the investigation of the localization of the initial charges and their reactions on DNA, investigated protonation reactions in DNA base anions, and employed ab initio molecular orbital theory to gain insight into the initial events of radiation damage to DNA. Ab initio calculations have provided an understanding of the energetics evolved in anion and cation formation, ion radical transfer in DNA as well as proton transfer with DNA base pair radical ions. This has been extended in this years work to a consideration of ionization energies of various components of the DNA deoxyribose backbone and resulting neutral sugar radicals. This information has aided the formation of new radiation models for the effect of radiation on DNA. During this fiscal year four articles have been published, four are in press, one is submitted and several more are in preparation. Four papers have been presented at scientific meetings. This years effort will include another review article on the open-quotes Electron Spin Resonance of Radiation Damage to DNAclose quotes

  9. Mechanisms for radiation damage in DNA

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1985-07-01

    Radiation damage to DNA results from the direct interaction of radiation with DNA where positive ions, electrons and excited states are formed in the DNA, and the indirect effect where radical species formed in the surrounding medium by the radiation attack the DNA. The primary mechanism proposed for radiation damage, by the direct effect, is that positive and negative ions formed within the DNA strand migrate through the stacked DNA bases. The ions can then recombine, react with the DNA bases most likely to react by protonation of the anion and deprotonation or hydroxylation of the cation or transfer out of the DNA chain to the surrounding histone protein. This work as aimed at understanding the possible reactions of the DNA base ion radicals, as well as their initial distribution in the DNA strand. 31 refs

  10. Molecular mechanisms in radiation damage to DNA

    International Nuclear Information System (INIS)

    Osman, R.

    1991-01-01

    The objectives of this work are to elucidate the molecular mechanisms that are responsible for radiation-induced DNA damage. The overall goal is to understand the relationship between the chemical and structural changes produced by ionizing radiation in DNA and the resulting impairment of biological function expressed as carcinogenesis or cell death. The studies are based on theoretical explorations of possible mechanisms that link initial radiation damage in the form of base and sugar damage to conformational changes in DNA. These mechanistic explorations should lead to the formulation of testable hypothesis regarding the processes of impairment of regulation of gene expression, alternation in DNA repair, and damage to DNA structure involved in cell death or cancer

  11. Mechanisms of transient radiation-induced creep

    International Nuclear Information System (INIS)

    Pyatiletov, Yu.S.

    1981-01-01

    Radiation-induced creep at the transient stage is investigated for metals. The situation, when several possible creep mechanisms operate simultaneously is studied. Among them revealed are those which give the main contribution and determine thereby the creep behaviour. The time dependence of creep rate and its relation to the smelling rate is obtained. The results satisfactorily agree with the available experimental data [ru

  12. Progress in identification of radiation embrittlement mechanisms

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1988-01-01

    This report outlines recent advances in the isolation and understanding of mechanisms behind known composition influences on he radiation embrittlement sensitivity of reactor pressure vessel steels at 288 deg. C. The advances are largely the product of joint investigations by Materials Engineering Associates (MEA) and other laboratories in the U.S. and overseas under cooperative and subcontract arrangements. Specific objectives were: confirmation of the suspect Cu mechanism, identification of the process for the Cu:Ni synergism, and isolation of the P mechanism in radiation sensitivity development. The investigations proceeded with MEA-supplied steels and iron alloys from 4-way split laboratory melts; research tools included Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Field Ion Microscopy (FIM), Small Angle Neutron Scattering (SANS), Positron Annihilation (PA) and Auger Electron Spectroscopy (AES). Experimental results show that P and Cu enhance the radiation elevation of yield strength and that the associated mechanisms are a radiation-induced precipitation of P or Cu-rich clusters which impede dislocation motion. With high Cu alloys, a Cu phosphide is formed in preference to P precipitates and the P contribution is greatly reduced. Effects of postirradiation annealing and reirradiation are also reported. (author)

  13. Ultraviolet Radiations: Skin Defense-Damage Mechanism.

    Science.gov (United States)

    Mohania, Dheeraj; Chandel, Shikha; Kumar, Parveen; Verma, Vivek; Digvijay, Kumar; Tripathi, Deepika; Choudhury, Khushboo; Mitten, Sandeep Kumar; Shah, Dilip

    2017-01-01

    UV-radiations are the invisible part of light spectra having a wavelength between visible rays and X-rays. Based on wavelength, UV rays are subdivided into UV-A (320-400 nm), UV-B (280-320 nm) and UV-C (200-280 nm). Ultraviolet rays can have both harmful and beneficial effects. UV-C has the property of ionization thus acting as a strong mutagen, which can cause immune-mediated disease and cancer in adverse cases. Numbers of genetic factors have been identified in human involved in inducing skin cancer from UV-radiations. Certain heredity diseases have been found susceptible to UV-induced skin cancer. UV radiations activate the cutaneous immune system, which led to an inflammatory response by different mechanisms. The first line of defense mechanism against UV radiation is melanin (an epidermal pigment), and UV absorbing pigment of skin, which dissipate UV radiation as heat. Cell surface death receptor (e.g. Fas) of keratinocytes responds to UV-induced injury and elicits apoptosis to avoid malignant transformation. In addition to the formation of photo-dimers in the genome, UV also can induce mutation by generating ROS and nucleotides are highly susceptible to these free radical injuries. Melanocortin 1 receptor (MC1R) has been known to be implicated in different UV-induced damages such as pigmentation, adaptive tanning, and skin cancer. UV-B induces the formation of pre-vitamin D3 in the epidermal layer of skin. UV-induced tans act as a photoprotection by providing a sun protection factor (SPF) of 3-4 and epidermal hyperplasia. There is a need to prevent the harmful effects and harness the useful effects of UV radiations.

  14. Mechanisms of interaction of radiation with matter

    International Nuclear Information System (INIS)

    Geacintov, N.E.; Pope, M.

    1992-01-01

    This project is concerned with studies of biological activity-structure relationships in which the mechanisms of interaction of ionizing radiation and benzopyrene (PB) compounds with DNA are being investigated and compared. Emphasis is focused on effects of DNA conformation on its mechanisms of interaction with ionizing radiation, on the influence of structure and stereochemistry of BP metabolites on mechanisms of DNA damage, and on influence of DNA conformation on interactions between BP metabolites and DNA molecules, and the structures of the complexes and adducts which are formed. One basic theme of this project is the use of photoexcited states of BP and nucleic acids as probes of these interactions. In part I of this report, recent progress on elucidating the structures of selected BP-oligonucleotide model adducts by high resolution NMR and gel electrophoresis techniques is summarized. It is shown that the stereochemical properties of benzo[a]pyrene diol epoxide-DNA adducts play a crucial role in determining their interactions with certain exonucleases. These results provide useful models for deriving a better understanding of differences biological activities of BP compounds and the relationships between mutagenicities and the structure properties of BP-DNA adducts. In Part II of this report, a new time-resolved method based on picosecond laser pulse techniques for elucidating the electronic levels involved in electron photoemission and electron transfer in BP and nucleic acid solids is described

  15. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels.

    Science.gov (United States)

    Yin, Juan; Ren, Ji-Gang; Lu, He; Cao, Yuan; Yong, Hai-Lin; Wu, Yu-Ping; Liu, Chang; Liao, Sheng-Kai; Zhou, Fei; Jiang, Yan; Cai, Xin-Dong; Xu, Ping; Pan, Ge-Sheng; Jia, Jian-Jun; Huang, Yong-Mei; Yin, Hao; Wang, Jian-Yu; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2012-08-09

    Transferring an unknown quantum state over arbitrary distances is essential for large-scale quantum communication and distributed quantum networks. It can be achieved with the help of long-distance quantum teleportation and entanglement distribution. The latter is also important for fundamental tests of the laws of quantum mechanics. Although quantum teleportation and entanglement distribution over moderate distances have been realized using optical fibre links, the huge photon loss and decoherence in fibres necessitate the use of quantum repeaters for larger distances. However, the practical realization of quantum repeaters remains experimentally challenging. Free-space channels, first used for quantum key distribution, offer a more promising approach because photon loss and decoherence are almost negligible in the atmosphere. Furthermore, by using satellites, ultra-long-distance quantum communication and tests of quantum foundations could be achieved on a global scale. Previous experiments have achieved free-space distribution of entangled photon pairs over distances of 600 metres (ref. 14) and 13 kilometres (ref. 15), and transfer of triggered single photons over a 144-kilometre one-link free-space channel. Most recently, following a modified scheme, free-space quantum teleportation over 16 kilometres was demonstrated with a single pair of entangled photons. Here we report quantum teleportation of independent qubits over a 97-kilometre one-link free-space channel with multi-photon entanglement. An average fidelity of 80.4 ± 0.9 per cent is achieved for six distinct states. Furthermore, we demonstrate entanglement distribution over a two-link channel, in which the entangled photons are separated by 101.8 kilometres. Violation of the Clauser-Horne-Shimony-Holt inequality is observed without the locality loophole. Besides being of fundamental interest, our results represent an important step towards a global quantum network. Moreover, the high

  16. Mechanisms of interaction of radiation with matter

    International Nuclear Information System (INIS)

    Geacintov, N.E.; Pope, M.

    1991-01-01

    The combustion of fossil fuels gives rise to airborne particulates containing deposits of mutagenic and carcinogenic polynuclear aromatic (PNA) compounds. Part 1, results of detailed studies on the mechanisms of photoionization and photoemission of electrons from solid pyrene and nitropyrene derivatives, are described. A new time-resolved picosecond double-pulse laser technique is described for studying the mechanisms of photoemission in organic solids. Reactions of PNA radical cations at organic solid/aqueous electrolyte interfaces, are described in Part 2. The mechanisms of reactions of mutagenic metabolites of benzo[a]pyrene with nucleic acids is discussed in Part 3; it is shown that photoinduced electron transfer occurs from the nucleic acids to the PNA moieties giving rise to short-lived exciplexes with significant charge-transfer character. A new project on the effects of ionizing radiation (electrons, neutrons and gammas) on deoxyoligonucleotides of defined base sequence using high resolution gel electrophoresis is described in Part 4 of this report. 102 refs., 35 figs., 5 tabs

  17. Some resistance mechanisms to ultraviolet radiation

    International Nuclear Information System (INIS)

    Alcantara D, D.

    2002-12-01

    The cyclical exposure of bacterial cells to the ultraviolet light (UV) it has as consequence an increment in the resistance to the lethal effects of this type of radiation, increment that happens as a result of a selection process of favorable genetic mutations induced by the same UV light. With object to study the reproducibility of the genetic changes and the associate mechanisms to the resistance to UV in the bacteria Escherichia coli, was irradiated cyclically with UV light five different derived cultures of a single clone, being obtained five stumps with different resistance grades. The genetic mapping Hfr revealed that so much the mutation events like of selection that took place during the adaptation to the UV irradiation, happened of random manner, that is to say, each one of the resistant stumps it is the result of the unspecified selection of mutations arisen at random in different genes related with the repair and duplication of the DNA. (Author)

  18. Molecular mechanisms in radiation damage to DNA: Final report

    International Nuclear Information System (INIS)

    Osman, R.

    1996-01-01

    The objectives of this work were to elucidate the molecular mechanisms that were responsible for radiation-induced DNA damage. The studies were based on theoretical explorations of possible mechanisms that link initial radiation damage in the form of base and sugar damage to conformational changes in DNA

  19. Mechanisms of interaction of radiation with matter

    International Nuclear Information System (INIS)

    Geacintov, N.E.; Pope, M.

    1993-01-01

    This project is concerned with the mechanisms by which polynuclear aromatic (PNA) compounds on the one hand, and ionizing radiation on the other, cause damage to DNA. PNA compounds constitute an important class of environmental pollutants derived from energy-related sources which, upon metabolic activation to diolepoxide derivatives, produce bulky PNA-DNA lesions interfere with the normal DNA replication and transcription processes, and give rise to mutations and the initiation of tumors. Chiral and other stereochemical effects play a key role in determining the biological effects of a given PNA diol epoxide and the potentially mutagenic lesions which are formed. New and efficient methods for synthesizing stereochemically pure and precisely positioned PNA diol epoxide-DNA lesions in small DNA fragments are reported here. We have elucidated the structures of three stereoisomeric benzo[a]pyrene diol epoxide-DNA adducts. How these adducts affect on DNA polymerase fidelity, transcription, and DNA repair are currently being investigated with respect to detailed structure-biological activity correlations. Spectroscopic techniques such as circular dichroism, fluorescence, and photoionization play an important role in the characterizations of the PNA adducts. A new method was developed for measuring the lifetimes as well as the energies of picosecond duration electronically excited states. Using this technique, it is proposed that short-lived (15 ps) charge-transfer (CT) states in the PNA compound tetracene are activated by a 20 ps laser pulse; an unusual external photoemission echo do to the recombination of CT states is observed 85 ps after the pulse

  20. Mechanisms of hypertension in renal radiation

    International Nuclear Information System (INIS)

    Juncos, L.; Cornejo, J.C.; Cejas, H.; Broglia, C.

    1990-01-01

    This study was undertaken to investigate the role played by renal functional and structural changes in the development of radiation-induced hypertension. Four groups of rats were studied: (1) left kidney radiated, (2) sham procedure, (3) uninephrectomy followed 3 weeks later by radiation of the contralateral kidney, and (4) uninephrectomy followed by sham procedure 3 weeks later. All radiated rats became hypertensive at 12 weeks (p less than 0.05) and had higher protein excretion (p less than 0.05). In the presence of an intact contralateral kidney, radiation causes mild-to-moderate histological abnormalities, and therefore, creatinine clearance and water and sodium handling do not change. Plasma renin activity increased in this group (p less than 0.05). Radiated uninephrectomized rats showed decreased creatinine clearance (p less than 0.05), but renin activity remained unchanged. These rats developed severe histological abnormalities in glomeruli, interstitia, tubuli, and vessels resulting in increased sodium and water output. The average of individual tubular and interstitial scores correlated significantly with both water intake and output but not with sodium excretion. These studies suggest that in the presence of an intact kidney, renin is an important determinant in the development or maintenance of radiation hypertension, whereas in the absence of the contralateral kidney, severe histological changes and renal failure are prominent despite increased water intake and output. The more severe glomerular sclerosis and proteinuria in the latter model could be related to diminished renal mass

  1. Fast drift kilometric radio bursts and solar proton events

    Science.gov (United States)

    Cliver, E. W.; Kahler, S. W.; Cane, H. V.; Mcguire, R. E.; Vonrosenvinge, T. T.; Stone, R. G.

    1985-01-01

    Initial results of a comparative study of major fast drift kilometric bursts and solar proton events from Sep. 1978 to Feb. 1983 are presented. It was found that only about half of all intense, long duration ( 40 min above 500 sfu) 1 MHz bursts can be associated with F 20 MeV proton events. However, for the subset of such fast drift bursts accompanied by metric Type 2 and/or 4 activity (approximately 40% of the total), the degree of association with 20 MeV events is 80%. For the reverse association, it was found that proton events with J( 20 MeV) 0.01 1 pr cm(-2)s(-1)sr(-1)MeV(-1) were typically (approximately 80% of the time) preceded by intense 1 MHz bursts that exceeded the 500 sfu level for times 20 min (median duration approximately 35 min).

  2. Fast drift kilometric radio bursts and solar proton events

    International Nuclear Information System (INIS)

    Cliver, E.W.; Kahler, S.W.; Cane, H.V.; Mcguire, R.E.; Vonrosenvinge, T.T.; Stone, R.G.

    1985-01-01

    Initial results of a comparative study of major fast drift kilometric bursts and solar proton events from Sep. 1978 to Feb. 1983 are presented. It was found that only about half of all intense, long duration ( 40 min above 500 sfu) 1 MHz bursts can be associated with F 20 MeV proton events. However, for the subset of such fast drift bursts accompanied by metric Type 2 and/or 4 activity (approximately 40% of the total), the degree of association with 20 MeV events is 80%. For the reverse association, it was found that proton events with J( 20 MeV) 0.01 1 pr cm(-2)s(-1)sr(-1)MeV(-1) were typically (approximately 80% of the time) preceded by intense 1 MHz bursts that exceeded the 500 sfu level for times of approx. 20 min (median duration approximately 35 min)

  3. Nanocomposites - mechanical behavior and radiation effects

    International Nuclear Information System (INIS)

    Misra, A.; Hoagland, R.G.; Nastasi, M.; Demkowicz, M.J.; Zhang, X.

    2009-01-01

    The combination of high strength and high radiation damage tolerance in nanolaminate composites can be achieved when the individual layers in these composites are only a few nanometers thick and therefore these materials contain a large volume fraction associated with interfaces. These interfaces act both as obstacles to slip, as well as sinks for radiation-induced defects. The morphological and phase stabilities of these nano-composites under ion irradiation are explored as a function of layer thickness, temperature and interface structure. Using results on model systems such as Cu-Nb, we highlight the critical role of the atomic structure of the incoherent interfaces that exhibit multiple states with nearly degenerate energies in acting as sinks for radiation-induced point defects. Reduced radiation damage also leads to a reduction in the irradiation hardening, particularly at layer thickness of approximately 5 nm and below. The strategies for design of radiation-tolerant structural materials based on the knowledge gained from this work will be discussed. (au)

  4. Shutter mechanism for radiation-curing

    Energy Technology Data Exchange (ETDEWEB)

    Helding, N A

    1977-09-20

    In accordance with the invention, at least one lamp, and often a plurality of lamps and the reflector associated with each lamp are arrayed along the feed path of the web, so that solvent-free, curable material on the web can be cured. Each lamp has a shutter. When the shutters are closed, each shutter is in front of its respective lamp and the open side of its respective reflector. The shutters prevent impingement of radiation upon the web. When the shutters open, each unblocks its respective lamp and reflector by moving sideways and along the web feed path, thereby permitting radiation to impinge upon the web.

  5. Confinement mechanisms in the radiatively improved mode

    NARCIS (Netherlands)

    Tokar, M. Z.; R. Jaspers,; Koslowski, H. R.; Kramer-Flecken, A.; Messiaen, A. M.; Ongena, J.; Rogister, A. A.; Unterberg, B.; Weynants, R. R.

    1999-01-01

    The characteristics of the toroidal ion temperature gradient (ITG) instability, considered as the main source of anomalous transport in the low (L) confinement mode of tokamaks, are analysed for the conditions of the radiatively improved (RI) mode triggered by seeding of impurities. Based on

  6. Molecular mechanisms in radiation carcinogenesis: introduction

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1975-01-01

    Molecular studies of radiation carcinogenesis are discussed in relation to theories for extrapolating from cellular and animal models to man. Skin cancer is emphasized because of sunlight-induced photochemical damage to DNA. It is emphasized that cellular and animal models are needed as well as molecular theories for quantitative evaluation of hazardous environmental agents. (U.S.)

  7. Early mechanisms in radiation-induced biological damage

    International Nuclear Information System (INIS)

    Powers, E.L.

    1983-01-01

    An introduction to the mechanisms of radiation action in biological systems is presented. Several questions about the nature of the radiation damage process are discussed, including recognition of the oxygen effects, dose-response relationships, and the importance of the hydroxyl radical

  8. Mechanisms for radiation damadge in DNA

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1994-11-01

    A comprehensive report is provided of the author's research since 1986 on radiolysis of DNA as well as current state of knowledge in this area. In particular study areas such as the influence of hydration on the absolute yield of primary ionic free radicals in irradiated DNA at 77K, Ab Initio molecular orbital calculations of DNA base pairs and their radical ions, and radiation-induced DNA damage as a function of hydration are discussed

  9. Environmental Effects of a Kilometre Charge in Road Transport: an Investigation for the Netherlands

    NARCIS (Netherlands)

    Ubbels, B.J.; Rietveld, P.; Peeters, P.

    2002-01-01

    This study discusses the potential environmental effects of a kilometre charge for car traffic in the Netherlands. This kilometre charge would replace the existing taxes on new cars and on car ownership. It would lead to a substantial increase in the variable costs of car use. It may lead to a

  10. Mechanisms of radiation-induced conditioned taste aversion learning

    International Nuclear Information System (INIS)

    Rabin, B.M.; Hunt, W.A.

    1986-01-01

    The literature on taste aversion learning is reviewed and discussed, with particular emphasis on those studies that have used exposure to ionizing radiation as an unconditioned stimulus to produce a conditioned taste aversion. The primary aim of the review is to attempt to define the mechanisms that lead to the initiation of the taste aversion response following exposure to ionizing radiation. Studies using drug treatments to produce a taste aversion have been included to the extent that they are relevant to understanding the mechanisms by which exposure to ionizing radiation can affect the behavior of the organism. 141 references

  11. Basic mechanisms of radiation effects on electronic materials and devices

    International Nuclear Information System (INIS)

    Winokur, P.S.

    1989-01-01

    Many defense and nuclear reactor systems require complementary metal-oxide semiconductor integrated circuits that are tolerant to high levels of radiation. This radiation can result from space, hostile environments or nuclear reactor and accelerator beam environments. In addition, many techniques used to fabricate today's complex very-large-scale integration circuits expose the circuits to ionizing radiation during the process sequence. Whatever its origin, radiation can cause significant damage to integrated-circuit materials. This damage can lead to circuit performance degradation, logic upset, and even catastrophic circuit failure. This paper provides a brief overview of the basic mechanisms for radiation damage to silicon-based integrated circuits. Primary emphasis is on the effects of total-dose ionizing radiation on metal-oxide-semiconductor (MOS) structures

  12. Cellular mechanisms in drug - radiation interaction

    International Nuclear Information System (INIS)

    Trott, K.R.

    1979-01-01

    Some cytotoxic drugs, especially those belonging to the group of antibiotics and antimetabolites, sensitize the cells having survived drug treatment to the subsequent irradiation by either increasing the slope of the radiation dose response curves or by decreasing extrapolation number. Bleomycin was found to interact with radiation in L-cells and FM3A cells, but not in HeLa-cells. The data with EMT-6 cells suggest that the interaction depends on drug dose: no interaction occurred after the exposure to bleomycin which killed only 20 - 40% of the cells; yet the exposure to bleomycin which killed 90% of the cells in addition sensitized the surviving cells by the DMF of 1.3. The sensitization found 24 hr after the exposure of HeLa cells to methotrexate was due to cell synchronization. Other cytostatic drugs were found to synchronize proliferating cells even better. Therefore, the fluctuation of radiosensitivity has been commonly observed after the termination of exposure to these drugs. Preirradiation may lead to the change in drug dose response curves. The recruitment of resting cells into cycle occurs hours or days later, in some irradiated normal and malignant tissues. Since many cytostatic drugs are far more active in proliferating cells than in resting cells, the recruitment after irradiation may lead to the sudden increase in drug sensitivity, days after the irradiation. No single, simple theory seems to exist to classify and predict the cellular response to combined modality treatment. (Yamashita, S.)

  13. Mechanisms of interaction of radiation with matter

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This progress report is a summary and update of the research performed under DOE grant FG-02086-ER60405 from September 1, 1989 to August 31, 1990. Part I deals with mechanisms of photoemission from organic particulates, theoretical studied of the photoemission of electrons into atmospheres containing scavenger molecules, and theoretical studies of the possible existence of excitonic ions. Part II deals with the mechanisms of electrolytic reactions which occur at solid anthracene/aqueous electrolyte interfaces. Part III describes our most recent results on the physico-chemical interactions of mutagenic and carcinogenic polycyclic aromatic hydrocarbon (PAH) derivatives with nucleic acids. 3 refs., 14 figs., 2 tabs.

  14. Mechanisms of radiation induced creep and growth

    International Nuclear Information System (INIS)

    Bullough, R.; Wood, M.H.

    1980-01-01

    Irradiation creep occurs primarily because the applied stress causes the evolving microstructure to respond in an anisotropic fashion to the interstitial and vacancy fluxes. On the other hand, irradiation growth requires the response to be naturally anisotropic in the absence of applied stress. Four fundamental mechanisms of irradiation creep have been conjectured: stress induced preferred absorption (SIPA) of the point defects on the dislocations, stress induced preferred nucleation (SIPN) of point defects in planar aggregates (edge dislocation loops), stress induced climb and glide (SICG) of the dislocation network and stress induced gas driven interstitial deposition (SIGD). These mechanisms will be briefly outlined and commented upon. The contributions made by these mechanisms to the total strain are not, in general, mutually separable and also depend on the prevailing (and changing) microstructure during irradiation. The fundamental mechanism of irradiation growth will be discussed: it is believed to arise by the preferred condensation of point defects and climb of dislocation loops and network on certain crystallographic planes. The preferred absorption and nucleation is thus a consequence of natural crystallographic anisotropy and not due to any external stresses. Again the effectiveness of this mechanism depends on the prevailing microstructure in the material. In this connection will be particularly drawn to the significance of solute trapping, segregation at grain boundaries, dislocation bias for interstitials and transport parameters for an understanding of irradiation growth in materials like zirconium and its alloys; the relevance of recent simulation studies of growth in such materials using electrons to the growth under neutron irradiation will be discussed in detail and a consistent model of growth in these materials will be presented. (orig.)

  15. Observation management challenges of the Square Kilometre Array

    Science.gov (United States)

    Bridger, Alan; Williams, Stewart J.; Nicol, Mark; Klaassen, Pamela; Thompson, Roger S.; Knapic, Cristina; Jerse, Giovanna; Orlati, Andrea; Messina, Marco; Valame, Snehal

    2016-07-01

    The Square Kilometre Array (SKA) will be the world's most advanced radio telescope, designed to explore some of the biggest questions in astronomy today, such as the epoch of re-ionization, the nature of gravity and the origins of cosmic magnetism. SKA1, the first phase of SKA construction, is currently being designed by a large team of experts world-wide. SKA1 comprises two telescopes: a 200-element dish interferometer in South Africa and a 130000-element dipole antenna aperture array in Australia. To enable the ground-breaking science of the SKA an advanced Observation Management system is required to support both the needs of the astronomical community users and the SKA Observatory staff. This system will ensure that the SKA realises its scientiffc aims and achieves optimal scientific throughput. This paper provides an overview of the design of the system that will accept proposals from SKA users, and result in the execution of the scripts that will obtain science data, taking in the stages of detailed preparation, planning and scheduling of the observations and onwards tracking. It describes the unique challenges of the differing requirements of two telescopes, one of which is very much a software telescope, including the need to schedule the data processing as well as the acquisition, and to react to both internally and externally discovered transient events. The scheduling of multiple parallel sub-array use is covered, along with the need to handle commensal observing - using the same data stream to satisfy the science goals of more than one project simultaneously. An international team from academia and industry, drawing on expertise and experience from previous telescope projects, the virtual observatory and comparable problems in industry, has been assembled to design the solution to this challenging but exciting problem.

  16. Mechanisms of radiation-induced gene responses

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Paunesku, T.

    1996-01-01

    In the process of identifying genes differentially expressed in cells exposed ultraviolet radiation, we have identified a transcript having a 26-bp region that is highly conserved in a variety of species including Bacillus circulans, yeast, pumpkin, Drosophila, mouse, and man. When the 5' region (flanking region or UTR) of a gene, the sequence is predominantly in +/+ orientation with respect to the coding DNA strand; while in the coding region and the 3' region (UTR), the sequence is most frequently in the +/-orientation with respect to the coding DNA strand. In two genes, the element is split into two parts; however, in most cases, it is found only once but with a minimum of 11 consecutive nucleotides precisely depicting the original sequence. The element is found in a large number of different genes with diverse functions (from human ras p21 to B. circulans chitonase). Gel shift assays demonstrated the presence of a protein in HeLa cell extracts that binds to the sense and antisense single-stranded consensus oligomers, as well as to the double- stranded oligonucleotide. When double-stranded oligomer was used, the size shift demonstrated as additional protein-oligomer complex larger than the one bound to either sense or antisense single-stranded consensus oligomers alone. It is speculated either that this element binds to protein(s) important in maintaining DNA is a single-stranded orientation for transcription or, alternatively that this element is important in the transcription-coupled DNA repair process

  17. High LET radiation and mechanism of DNA damage repair

    International Nuclear Information System (INIS)

    Furusawa, Yoshiya

    2004-01-01

    Clarifying the mechanism of repair from radiation damage gives most important information on radiation effects on cells. Approximately 10% of biological experiments groups in Heavy Ion Medical Accelerator in Chiba (HIMAC) cooperative research group has performed the subject. They gave a lot of new findings on the mechanism, and solved some open questions. The reason to show the peak of relative biological effectiveness RBE at around 100-200 keV/μm causes miss-repair of DNA damage. Sub-lethal damage generated by high linear energy transfer (LET) radiation can be repaired fully. Potentially lethal damages by high-LET radiation also repaired, but the efficiency decreased with the LET, and so on. (author)

  18. Mechanisms of radiation-induced neoplastic cell transformation

    International Nuclear Information System (INIS)

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table

  19. Mechanisms of radiation-induced neoplastic cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  20. Single-hit mechanism of tumour cell killing by radiation.

    Science.gov (United States)

    Chapman, J D

    2003-02-01

    To review the relative importance of the single-hit mechanism of radiation killing for tumour response to 1.8-2.0 Gy day(-1) fractions and to low dose-rate brachytherapy. Tumour cell killing by ionizing radiation is well described by the linear-quadratic equation that contains two independent components distinguished by dose kinetics. Analyses of tumour cell survival curves that contain six or more dose points usually provide good estimates of the alpha- and beta-inactivation coefficients. Superior estimates of tumour cell intrinsic radiosensitivity are obtained when synchronized populations are employed. The characteristics of single-hit inactivation of tumour cells are reviewed and compared with the characteristics of beta-inactivation. Potential molecular targets associated with single-hit inactivation are discussed along with strategies for potentiating cell killing by this mechanism. The single-hit mechanism of tumour cell killing shows no dependence on dose-rate and, consequently, no evidence of sublethal damage repair. It is uniquely potentiated by high linear-energy-transfer radiation, exhibits a smaller oxygen enhancement ratio and exhibits a larger indirect effect by hydroxyl radicals than the beta-mechanism. alpha-inactivation coefficients vary slightly throughout interphase but mitotic cells exhibit extremely high alpha-coefficients in the range of those observed for lymphocytes and some repair-deficient cells. Evidence is accumulating to suggest that chromatin in compacted form could be a radiation-hypersensitive target associated with single-hit radiation killing. Analyses of tumour cell survival curves demonstrate that it is the single-hit mechanism (alpha) that determines the majority of cell killing after doses of 2Gy and that this mechanism is highly variable between tumour cell lines. The characteristics of single-hit inactivation are qualitatively and quantitatively distinct from those of beta-inactivation. Compacted chromatin in tumour cells

  1. Mechanisms of radiation interaction with DNA: Potential implications for radiation protection

    International Nuclear Information System (INIS)

    Sinclair, W.K.; Fry, R.J.M.

    1987-01-01

    An overview of presentations and discussions which took place at the US Department of Energy/Commission of European Communities (DOE/CEC) workshop on ''Mechanisms of Radiation Interaction with DNA: Potential Implications for Radiation Protection,'' held at San Diego, California, January 21-22, 1987, is provided. The Department has traditionally supported fundamental research on interactions of ionizing radiation with different biological systems and at all levels of biological organization. The aim of this workshop was to review the base of knowledge in the area of mechanisms of radiation action at the DNA level, and to explore ways in which this information can be applied to the development of scientifically sound concepts and procedures for use in the field of radiation protection

  2. Space radiation interaction mechanisms in materials

    International Nuclear Information System (INIS)

    Wilson, J.W.

    1983-01-01

    Models of charged-particle impact under conditions typical of the space environment are reported, with a focus on impact excitation and nuclear reactions, especially for heavy ions. Impact excitation is studied by using a global model for electronic excitation based on formal relations through the classical dielectric function to derive an approximation related to the local plasma (electron density distribution) within the atoms and molecules and corrections to the model resulting from the nonfluid nature of this plasma are discussed. Nuclear reactions are studied by reducing quantum-mechanical treatment of this general N-body problem to an equivalent two-body problem that is solvable, and by comparing the results with experimental data. The equations for heavy-charged-particle transport are derived and solution techniques demonstrated. Finally, these methods of analysis are applied to study the change in the electrical properties of a GaAs semiconductor for photovoltaic applications. Proton damage to GaAs crystals is found to arise from stable replacement defects and to be nonannealable, in contrast to electron-induced damage. 17 references

  3. Radiation-Induced Bystander Response: Mechanism and Clinical Implications

    Science.gov (United States)

    Suzuki, Keiji; Yamashita, Shunichi

    2014-01-01

    Significance: Absorption of energy from ionizing radiation (IR) to the genetic material in the cell gives rise to damage to DNA in a dose-dependent manner. There are two types of DNA damage; by a high dose (causing acute or deterministic effects) and by a low dose (related to chronic or stochastic effects), both of which induce different health effects. Among radiation effects, acute cutaneous radiation syndrome results from cell killing as a consequence of high-dose exposure. Recent advances: Recent advances in radiation biology and oncology have demonstrated that bystander effects, which are emerged in cells that have never been exposed, but neighboring irradiated cells, are also involved in radiation effects. Bystander effects are now recognized as an indispensable component of tissue response related to deleterious effects of IR. Critical issues: Evidence has indicated that nonapoptotic premature senescence is commonly observed in various tissues and organs. Senesced cells were found to secrete various proteins, including cytokines, chemokines, and growth factors, most of which are equivalent to those identified as bystander factors. Secreted factors could trigger cell proliferation, angiogenesis, cell migration, inflammatory response, etc., which provide a tissue microenvironment assisting tissue repair and remodeling. Future directions: Understandings of the mechanisms and physiological relevance of radiation-induced bystander effects are quite essential for the beneficial control of wound healing and care. Further studies should extend our knowledge of the mechanisms of bystander effects and mode of cell death in response to IR. PMID:24761341

  4. Radiation-induced-radioresistance: mechanisms and modification radioprotection

    International Nuclear Information System (INIS)

    Bala, Madhu

    2005-01-01

    Full text: The term radiation-induced-radioresistance (RIR) has been chosen to explain a particular class of resistance against lethal doses of radiation, which is transient and is induced by pre-exposure to low doses of radiation. This is a genetically governed phenomenon and is different from adaptation which in one of its several senses, refers to evolutionary transformation into new behavioural patterns. RIR is understood to be an evolutionarily conserved fundamental cellular defense mechanism. Small doses of radiation acting as stress stimuli evoke a concerted action of molecular pathways which help the organism to cope-up with the genotoxic effects of lethal doses of radiation given subsequently. Such molecular pathways are a complex interplay of genetic and biochemical entities and are increasingly becoming the focus of research world over. Most of our information on this subject has been gathered from prokaryotes, simpler eukaryotes, human cells and the epidemiological studies. A number of genes such as GADD 45, CDKN1A, PBP74, DIR1, DDR have been reported by to participate in RIR. However, till date, the mechanism of RIR remain poorly understood. In this deliberation some of our findings on mechanisms of RIR will be presented. Further, modification of RIR by a metabolic modifier, presently under clinical investigations for tumor radiotherapy, will also be presented

  5. Mechanical reliability assessment of optical fibres in Radiation environments

    International Nuclear Information System (INIS)

    Van Uffelen, M.

    2006-01-01

    After more than two decades of intensive research and even some pioneering applications in space, optical fibres are now finding their way in various radiation environments, including both fission and future fusion nuclear-power plants, and high-energy physics experiments. For example, next to distributed monitoring applications of large nuclear infrastructures, fibre-optics can also be used for data communications during maintenance operations in the reactor vessel of the future ITER (International Thermonuclear Experimental Reactor), or for plasma diagnostics applications during operation of the reactor. These maintenance and diagnostics tasks require the optical fibres to withstand extremely high doses of radiation, up to MGy dose levels and temperatures above 150 degrees Celsius. The reliability assessment of fibre-optic systems for their qualification in nuclear environments often requires to meet stringent radiation tolerance levels. The majority of (usually accelerated) radiation assessments have so far focused on optical properties, such as wavelength-dependent radiation induced attenuation and radio-luminescence. The relation of these radiation effects with the fabrication methods and other environmental parameters has been the subject of years of research. Only a few results are available on the long-term evolution of mechanical properties of irradiated optical fibres. As a first step towards understanding the long-term reliability of fibre-optic composite cables in hostile radiation environments, we therefore performed dynamic fatigue tests with different commercial-grade optical fibres, both multi-mode and single-mode types

  6. Molecular mechanisms in radiation damage to DNA. Progress report

    International Nuclear Information System (INIS)

    Osman, R.

    1994-01-01

    The objectives of this work are to elucidate the molecular mechanisms that are responsible for radiation-induced DNA damage. The overall goal is to understand the relationship between the chemical and structural changes produced by ionizing radiation in DNA and the resulting impairment of biological function expressed as carcinogenesis or cell death. The studies are based on theoretical explorations of possible mechanisms that link initial radiation damage in the form of base and sugar damage to conformational changes in DNA. These mechanistic explorations should lead to the formulation of testable hypotheses regarding the processes of impairment of regulation of gene expression, alteration in DNA repair, and damage to DNA structure involved in cell death or cancer

  7. Measurement of Gamma Radiation in an Automobile Mechanic ...

    African Journals Online (AJOL)

    Environmental radiation measurement was carried out in an automobile mechanic village, Apo, Abuja, Nigeria. An in-situ measurement approach was adopted using RDS-200 Universal Survey Meter and a handheld Global Positioning System (Garmin GPS 76S) equipment. It was observed that the dose equivalent varied ...

  8. Mechanism of SOA Formation Determines Magnitude of Radiative Effects

    Science.gov (United States)

    Zhu, J.; Penner, J.; Lin, G.; Zhou, C.

    2017-12-01

    Secondary organic aerosol (SOA) nearly always exists as an internal mixture and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing states based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66 % of SOA is internally mixed with sulfate, while 34 % is internally mixed with primary soot. When compared with using an external mixture, the direct effect of SOA is decreased, due to the decrease of total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced and this is responsible for a large decrease in the cloud albedo effect. In total, internal mixing suppresses the radiative effect of SOA by a factor of >4 compared to treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m-2. When the combined effects of changes in climate, anthropogenic emissions and land use are included, the SOA forcing is -0.07 W m-2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.

  9. Cerebrovascular Acute Radiation Syndrome : Radiation Neurotoxins, Mechanisms of Toxicity, Neuroimmune Interactions.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava

    Introduction: Cerebrovascular Acute Radiation Syndrome (CvARS) is an extremely severe in-jury of Central Nervous System (CNS) and Peripheral Nervous System (PNS). CvARS can be induced by the high doses of neutron, heavy ions, or gamma radiation. The Syndrome clinical picture depends on a type, timing, and the doses of radiation. Four grades of the CvARS were defined: mild, moderate, severe, and extremely severe. Also, four stages of CvARS were developed: prodromal, latent, manifest, outcome -death. Duration of stages depends on the types, doses, and time of radiation. The CvARS clinical symptoms are: respiratory distress, hypotension, cerebral edema, severe disorder of cerebral blood microcirculation, and acute motor weakness. The radiation toxins, Cerebro-Vascular Radiation Neurotoxins (SvARSn), determine development of the acute radiation syndrome. Mechanism of action of the toxins: Though pathogenesis of radiation injury of CNS remains unknown, our concept describes the Cv ARS as a result of Neurotoxicity and Excitotoxicity, cell death through apoptotic necrosis. Neurotoxicity occurs after the high doses radiation exposure, formation of radiation neuro-toxins, possible bioradicals, or group of specific enzymes. Intracerebral hemorrhage can be a consequence of the damage of endothelial cells caused by radiation and the radiation tox-ins. Disruption of blood-brain barrier (BBB)and blood-cerebrospinal fluid barrier (BCFB)is possibly the most significant effect of microcirculation disorder and metabolic insufficiency. NMDA-receptors excitotoxic injury mediated by cerebral ischemia and cerebral hypoxia. Dam-age of the pyramidal cells in layers 3 and 5 and Purkinje cell layer the cerebral cortex , damage of pyramidal cells in the hippocampus occur as a result of cerebral ischemia and intracerebral bleeding. Methods: Radiation Toxins of CV ARS are defined as glycoproteins with the molec-ular weight of RT toxins ranges from 200-250 kDa and with high enzymatic activity

  10. Radiation toxins: molecular mechanisms of action and radiomimetic properties .

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav

    Introduction: Acute Radiation Disease (ARD) or Acute Radiation Syndromes (ARS) were defined as a toxic poisonous with development of the acute pathological processes in irradi-ated animals: systemic inflammatory response syndrome(SIRS), toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMOD), toxic multiple organ failure (TMOF). However, the nature of radiation toxins, their mechanisms of formation, molecular structure, and mechanism of actions remain uncertain. Moderate and high doses of radiation induce apoptotic necrosis of radiosensitive cells with formation of Radiation Toxins and in-flammation development. Mild doses of radiation induce apoptosis or controlled programmed death of radiosensitive cells without Radiation Toxins formation and development of inflam-mation processes. Only radiation induced apoptotic necrosis initiates formation of Radiation Toxins(RT). Radiation Toxins are playing an important role as the trigger mechanisms for in-flammation development and cell lysis. The systemic inflammatory response syndrome after radiation involves an influence of various endogenous agents and mediators of inflammation such as bradykinin, histamine, serotonin and phospholipases activation, prostaglandins biosyn-thesis. Although, formation of non-specific toxins such as Reactive Oxygen Species (ROS) is an important pathological process at mild or high doses of radiation. Reactive Oxygen Species play an important role in molecules damage and development of peroxidation of lipids and pro-teins which are the structural parts of cell and mitochondrial membranes. ROS and bio-radicals induce damage of DNA and RNA and peroxidation of their molecules. But high doses of radia-tion, severe and extremely severe physiological stress, result in cells death by apoptotic necrosis and could be defined as the neuroimmune acute disease. Excitotoxicity is an important patho-logical mechanism which damages the central nervous system. We postulate that

  11. On the radiation mechanism of repeating fast radio bursts

    Science.gov (United States)

    Lu, Wenbin; Kumar, Pawan

    2018-06-01

    Recent observations show that fast radio bursts (FRBs) are energetic but probably non-catastrophic events occurring at cosmological distances. The properties of their progenitors are largely unknown in spite of many attempts to determine them using the event rate, duration, and energetics. Understanding the radiation mechanism for FRBs should provide the missing insights regarding their progenitors, which is investigated in this paper. The high brightness temperatures (≳1035 K) of FRBs mean that the emission process must be coherent. Two general classes of coherent radiation mechanisms are considered - maser and the antenna mechanism. We use the observed properties of the repeater FRB 121102 to constrain the plasma conditions needed for these two mechanisms. We have looked into a wide variety of maser mechanisms operating in either vacuum or plasma and find that none of them can explain the high luminosity of FRBs without invoking unrealistic or fine-tuned plasma conditions. The most favourable mechanism is antenna curvature emission by coherent charge bunches where the burst is powered by magnetic reconnection near the surface of a magnetar (B ≳ 1014 G). We show that the plasma in the twisted magnetosphere of a magnetar may be clumpy due to two-stream instability. When magnetic reconnection occurs, the pre-existing density clumps may provide charge bunches for the antenna mechanism to operate. This model should be applicable to all FRBs that have multiple outbursts like FRB 121102.

  12. Mechanism of radiation destruction of dyes in polymers

    International Nuclear Information System (INIS)

    Belichenko, A.S.; Dyumaev, K.M.; Maslyukov, A.P.; Matyushin, G.A.; Nechitailo, V.S.

    1991-01-01

    Considering the experimental results, it might be expected that the mechanism of radiation destruction of dyed polymers by UV-and γ-irradiation should also be associated with a chemical reaction between dye molecules and oxyradicals which appear either on destruction of polymer macromolecules or on oxidation of macroradicals by the oxygen dissolved in the matrix. Thus, the radiation stability of dyes should depend on the rate of formation of primary radicals in the polymer under the action of UV- and γ-irradiation. As has been demostrated, this rate can be influenced by 'resonant' low-molecular additives which perform oscillative cross-relaxation. (author) 8 refs.; 2 figs

  13. Biological mechanisms of radiation effects; Biologische Mechanismen der Strahlenwirkung

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, S.; Doerr, W. [Medizinische Universitaet Wien, ATRAB - Angewandte und Translationale Radiobiologie, Univ.-Klinik fuer Strahlentherapie, Wien (Austria)

    2017-07-15

    Exposure to ionizing radiation for diagnostic purposes is inevitable in modern medicine. The therapeutic application of irradiation is highly effective against cancer; however, this implies exposure of normal tissue structures to significant doses of radiation. Diagnostic or therapeutic exposure to ionizing radiation can result in tissue changes and tumor induction in the long term. Knowledge of the biological mechanisms underlying these effects is essential for individualization of the application. This article examines the biological mechanisms at the tissue and molecular level, the clinical manifestation of radiation effects, dose-dependence of the risk and the temporal progression as well as influencing factors. The time course of the reaction of tissues to radiation exposure extends over wide ranges up to many decades. The effects of radiation on tissues are classified into early and late and their pathobiology is significantly different. Various factors (R) influencing the clinical manifestation of radiation effects have been identified related to the exposure pattern. The radiation tolerance of normal tissue structures regarding the induction of functional deficits shows great variation but always has a threshold value, which is usually not exceeded in diagnostic procedures. The risk of a radiation-induced fatal malignancy (total body exposure 5%/Gy) for a medical administration of radiation must be considered as very low in comparison to the natural risks. Informed consent of patients must reflect this in a balanced way. (orig.) [German] Eine Exposition mit ionisierender Strahlung fuer diagnostische Zwecke ist in der modernen Medizin unumgaenglich. Bei einer Tumorerkrankung ist die therapeutische Anwendung dieser Strahlung hoch effektiv. Dies impliziert immer eine Exposition normaler Gewebestrukturen mit signifikanten Strahlendosen. Die diagnostische oder therapeutische Exposition mit ionisierender Strahlung kann langfristig zu Gewebeveraenderungen und

  14. Gamma radiation effect study in polycarbonate optical and mechanics properties

    International Nuclear Information System (INIS)

    Araujo, E.S. de.

    1991-02-01

    Polycarbonates (PC) are used in different industrial applications due to their excellent dielectric characteristics, impact resistance, and high temperature resistance. In some of these applications, the polycarbonates are exposed to gamma radiation which produces molecular scissions, causing changes in the polycarbonate properties. To estimate the radiation effects in the Durolon polycarbonate, samples were irradiated with 60 Co gamma rays with doses between 0,2 kGy and 300 kGy. The results obtained showed that the PC mechanical properties are not changed due to the gamma radiation. However the results showed an expressive variation in the yellowness index for doses above 1 kGy. The results showed that it is possible to use the gamma sterilization of PC in applications where the coloration of PC is not critical. (author). 21 refs, 25 figs, 3 tabs

  15. Investigation of damage mechanism by ionising radiation on biomolecules

    International Nuclear Information System (INIS)

    Lau How Mooi

    1996-01-01

    Occupational radiation hazard is a very controversial subject. Effects from high radiation doses are well known from past experiences. However, hazard from low doses is still a subject that is hotly debated upon until now. The occupational dosimetry used now is based on a macroscopic scale. Lately, microdosimetry is fast gaining recognition as a more superior way of measuring hazard. More importantly, scientists are researching the basic damage mechanism that leads to biological effects by ionising radiation. In this report, a simulation study of the basic damage mechanism is discussed . This simulation is based upon Monte Carlo calculations and using polyuridylic acid (Poly-U) as the DNA model This simulation tries to relate the physics and chemistry of interactions of ionising radiation with biomolecules. The computer codes used in this simulation, OREC and RADLYS were created by Hamm et al. (1983) in Oak Ridge National Laboratory. The biological endpoints in this simulation are the strand break and base release of the DNA, which is the precursor of all biological effects. These results are compared with model studies that had been done experimentally to check the validity of this simulation. The G-values of strand break and base release from this simulation were -2.35 and 2.75 and compared well with results from irradiation experiments by von Sonntag (I 98 7) from Max Plank's Institute, Germany

  16. Radiation-protective drugs and their reaction mechanisms

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1985-01-01

    The objective of this book is to provide the reader with a concise review of radioprotective drugs and their reaction mechanisms. The first chapter reviews the effect of radiation on biological systems at the atomic, molecular, and subcellular levels. The second chapter discusses endogenous factors that influence radioresistance. Chapter 3 presents the main theme of the book, chemical radioprotection and its mechanisms, and examines the basis of natural radioprotection and how it may be affected by exogenous chemicals. Chapter 4, the Therapy of Radiation Damage, is a very brief general discussion that only touches on some of the experimental approaches to therapy. Chapter 5 contains recommendations for future research. The two appendices list research in progress in the United States and some radioprotective compounds of possible investigational interest. Also included is a brief discussion of structure-activity relationships

  17. Mechanisms of radiation oncogenesis and their implications for radiological protection

    International Nuclear Information System (INIS)

    Cox, R.

    1992-01-01

    Studies on the genetics, cytogenetics, biochemistry and molecular biology of neoplasia are now beginning to provide us with an increasingly coherent picture of cancer induction and development. Some of the genes involved in this complex multi-step cellular process have been isolated and characterized and in a few instances it is possible to identify target genes for the initiation of specific neoplasms and how these genes are mutated by environmental carcinogens. Knowledge of molecular mechanisms of mammalian DNA repair and mutagenesis has similarly increased and, together with limited studies of molecular mechanisms of radiation oncogenesis in animal systems, allows specific comment on the molecular nature of radiation-induced initiating events for neoplasia. These data are discussed with an emphasis on their possible implications for radiological protection. (author)

  18. Electrostrictive Mechanism of Radiation Self-Action in Nanofluids

    Directory of Open Access Journals (Sweden)

    Albert Livashvili

    2013-01-01

    Full Text Available The electrostriction mechanism of beam self-focusing in nanofluids is theoretically investigated. An analytical solution of the diffusion equation, which describes the dynamics of particles in nanofluids, was obtained and studied. Explicit expressions for the nonlinear part of the refractive index and concentration lens focal length are presented. It is shown that there is a limit on the radiation intensity associated with the physical and hydrodynamic characteristics of the phenomena in these processes.

  19. Present status of the radiative neutron capture mechanisms -nonstatistical effects

    International Nuclear Information System (INIS)

    Brzosko, J.S.

    1976-01-01

    The present status of our knowledge about neutron radiative capture mechanisms is described. In the first section there are given a review on mathematical description of the neutron capture cross section and possible sources of correlation effects. The point of lecture is the explanation of connections between the intermediate structures and correlation effects. In one of the sections the explanation of the bump in γ-ray spectra is discussed. The typical experimental results are presented. (author)

  20. Radiation Improved Mechanical and Thermal Property of PP/HDPE

    International Nuclear Information System (INIS)

    Chaisupaditsin, M.; Thammit, C.; Techakiatkul, C.

    1998-01-01

    The mechanical properties, thermal properties and gel contents of PP-irradiated HDPE blends were studied. HDPE was gamma irradiated in the dose range of 10-30 kGy. The ratios of polymer blends of 30PP:70HDPE was mixed by a twin screw extruder at speed of 50 rpm. Irradiated HDPE with 30 kGy showed the highest gel contents. The blends ratio of 30PP:70HDPE (30 kGy) shows better heat resistance than the blends with non-irradiated HDPE. With increasing the radiation doses, the mechanical properties of the blends were improved

  1. On the mechanism of the biological effect of ionizing radiation

    International Nuclear Information System (INIS)

    Margulis, M.A.; Margulis, I.M.

    2005-01-01

    The mechanisms of the biological effects of ionizing radiation (IR) and ultrasound (US) were considered. The current views on the nature of toxicity of IR, which is usually assigned to the formation of radicals in living tissues and to the straight-line collision of an ionizing particle with the DNA molecule, were analyzed. It was established that the amount of radicals formed in biological tissues in conditions of ultrasonically induced cavitation can be as large as that for IR; however, the biological effect of US is much softer as compared to IR. It was shown that the contribution of the indirect mechanism to the total biological effect of IR can be estimated by comparing US and IR in their chemical action; the contribution of the indirect mechanism to the biological effect of IR was found to be negligibly small. An alternative mechanism was proposed to explain the biological effect of IR. In accordance with the proposed model, IR with a high linear energy transfer (LET) value breaks through cell walls and biological membranes and causes damage to them, such that the cell can lose its regenerative capacity. Moreover, high-energy heavy ionizing particles perforate cytoplasm to form channels. Ionizing radiation with a low LET value (γ- and X-rays) causes multiple damages to biological membranes. Ionizing particles can also cause damages to membranes of mitochondria thus affecting the mechanism of cellular respiration, which will cause neoplastic diseases. The straight-line collision of an ionizing particle with a DNA molecule was found to be 5-7 orders of magnitude less probable as compared to the collision with a wall or membrane. It was shown that multiple perforations of cell walls and damages to membranes are characteristic only of ionizing particles, which have sufficiently long tracks, and do not occur upon exposure to ultrasonic waves, microwaves, UV radiation, and magnetic fields [ru

  2. Hematopoietic Acute Radiation Syndrome (Bone marrow syndrome, Aplastic Anemia): Molecular Mechanisms of Radiation Toxicity.

    Science.gov (United States)

    Popov, Dmitri

    Key Words: Aplastic Anemia (AA), Pluripotential Stem Cells (PSC) Introduction: Aplastic Anemia (AA) is a disorder of the pluripotential stem cells involve a decrease in the number of cells of myeloid, erythroid and megakaryotic lineage [Segel et al. 2000 ]. The etiology of AA include idiopathic cases and secondary aplastic anemia after exposure to drugs, toxins, chemicals, viral infections, lympho-proliferative diseases, radiation, genetic causes, myelodisplastic syndromes and hypoplastic anemias, thymomas, lymphomas. [Brodskyet al. 2005.,Modan et al. 1975., Szklo et al. 1975]. Hematopoietic Acute Radiation Syndrome (or Bone marrow syndrome, or Radiation-Acquired Aplastic Anemia) is the acute toxic syndrome which usually occurs with a dose of irradiation between 0.7 and 10 Gy (70- 1000 rads), depending on the species irradiated. [Waselenko et al., 2004]. The etiology of bone morrow damage from high-level radiation exposure results depends on the radiosensitivity of certain bone marrow cell lines. [Waselenko et al. 2004] Aplastic anemia after radiation exposure is a clinical syndrome that results from a marked disorder of bone marrow blood cell production. [Waselenko et al. 2004] Radiation hematotoxicity is mediated via genotoxic and other specific toxic mechanisms, leading to aplasia, cell apoptosis or necrosis, initiation via genetic mechanisms of clonal disorders, in cases such as the acute radiation-acquired form of AA. AA results from radiation injury to pluripotential and multipotential stem cells in the bone marrow. The clinical signs displayed in reticulocytopenia, anemia, granulocytopenia, monocytopenia, and thrombocytopenia. The number of marrow CD34+ cells (multipotential hematopoietic progenitors) and their derivative colony-forming unit{granulocyte-macrophage (CFU-GM) and burst forming unit {erythroid (BFU{E) are reduced markedly in patients with AA. [Guinan 2011, Brodski et al. 2005, Beutler et al.,2000] Cells expressing CD34 (CD34+ cell) are normally

  3. Mechanisms of radiation interaction with DNA: Potential implications for radiation protection

    International Nuclear Information System (INIS)

    1988-01-01

    The Office of Health and Environmental Research (OHER) of the US Department of Energy conducts a broad multidisciplinary research program which includes basic biophysics, biophysical chemistry, molecular and cellular biology as well as experimental animal studies and opportunistic human studies. This research is directed at understanding how low levels of radiation of various qualities produce the spectrum of biological effects that are seen for such exposures. This workshop was entitled ''Mechanisms of Radiation Interaction with DNA: Potential Implications for Radiation Protection.'' It ws jointly sponsored by the Department of Energy and the Commission of European Communities. The aim of the workshop was to review the base of knowledge in the area of mechanisms of radiation action at the DNA level, and to explore ways in which this information can be applied to the development of scientifically sound concepts and procedures for use in the field of radiation protection. The overview of research provided by this multidisciplinary group will be helpful to the Office in program planning. This report includes a summary of the presentations, extended abstracts, the meeting agenda, research recommendations, and a list of participants. Individual papers are processed separately for the data base

  4. Mechanisms of radiation interaction with DNA: Potential implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    The Office of Health and Environmental Research (OHER) of the US Department of Energy conducts a broad multidisciplinary research program which includes basic biophysics, biophysical chemistry, molecular and cellular biology as well as experimental animal studies and opportunistic human studies. This research is directed at understanding how low levels of radiation of various qualities produce the spectrum of biological effects that are seen for such exposures. This workshop was entitled ''Mechanisms of Radiation Interaction with DNA: Potential Implications for Radiation Protection.'' It ws jointly sponsored by the Department of Energy and the Commission of European Communities. The aim of the workshop was to review the base of knowledge in the area of mechanisms of radiation action at the DNA level, and to explore ways in which this information can be applied to the development of scientifically sound concepts and procedures for use in the field of radiation protection. The overview of research provided by this multidisciplinary group will be helpful to the Office in program planning. This report includes a summary of the presentations, extended abstracts, the meeting agenda, research recommendations, and a list of participants. Individual papers are processed separately for the data base.

  5. Characteristics of shock-associated fast-drift kilometric radio bursts

    Science.gov (United States)

    Macdowall, R. J.; Kundu, M. R.; Stone, R. G.

    1987-01-01

    The existence of a class of fast-drift, shock-associated (SA), kilometric radio bursts which occur at the time of metric type II emission and which are not entirely the kilometric continuation of metric type III bursts has been reported previously (Cane et al., 1981). In this paper unambiguous SA event criteria are established for the purpose of statistically comparing SA events with conventional kilometric type III bursts. Applying these criteria to all long-duration, fast-drift bursts observed by the ISEE-3 spacecraft during a 28-month interval, it is found that more than 70 percent of the events satisfying the criteria are associated with the radio signatures of coronal shocks. If a given event is associated with a metric type II or type IV burst, it is 13 times more likely to satisfy the SA criteria than an event associated only with metric type III activity.

  6. Molecular mechanisms of responses to radiation through protein kinase C

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo

    2005-01-01

    Described are the activation and cascade of the protein kinase C (PKC) which mediating the control of radiation-induced apoptosis. PKC is a family of c-, n- and a-subtypes and plays a major role in responding to the radiation exposure for DNA repair, cell cycle arrest and apoptosis. The author has conducted studies of mouse thymic lymphoma cells which have a property to respond even to low dose radiation, and has showed that, in the highly radiosensitive cell strain, 3SBH5 where apoptosis occurs in 50 and 90% post 0.5 and 2 Gy exposure, respectively, cPKC works as a surviving signal without intracellular movement after irradiation. In contrast, PKC has been alternatively shown to participate in apoptosis induction, showing that different enzyme species in the subtypes work specifically depending on passing time. Comparison with the radio-resistant cell strain, XR223, has revealed that the difference in the localization controls of PKCδ in the cell determines the radiosensitivity, however, the control mechanism is found to be separate from Atm pathway by which PKCδ is usually regulated. Recent studies have revealed that PKC performs the intracellular cross-talk in various phosphorylation cascades. Studies of PKC can be toward their uses for radiation effect assessment, radiotherapy and medicare for urgent exposure. (S.I.)

  7. Power and Submarine Cable Systems for the KM3NeT kilometre cube Neutrino Telescope

    CERN Document Server

    Sedita, M; Hallewell, G

    2009-01-01

    The KM3NeT EU-funded consortium, pursuing a cubic kilometre scale neutrino telescope in the Mediterranean Sea, is developing technical solutions for the construction of this challenging project, to be realized several kilometres below the sea level. In this framework a proposed DC/DC power system has been designed, maximizing reliability and minimizing difficulties and expensive underwater activities. The power conversion, delivery, transmission and distribution network will be described with particular attention to: the main electro-optical cable, on shore and deep sea power conversion, the subsea distribution network and connection systems, together with installation and maintenance issues.

  8. Evanescent radiation, quantum mechanics and the Casimir effect

    Science.gov (United States)

    Schatten, Kenneth H.

    1989-01-01

    An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.

  9. Defense mechanisms against radiation induced teratogenic damage in mice

    International Nuclear Information System (INIS)

    Kato, F.; Ootsuyama, A.; Nomoto, S.; Norimura, T.

    2002-01-01

    Experimental studies with mice have established that fetuses at midgestational stage are highly susceptible to malformation at high, but not low, doses of radiation. When DNA damage is produced by a small amount of radiation, it is efficiently eliminated by DNA repair. However, DNA repair is not perfect. There must be defense mechanisms other than DNA repair. In order to elucidate the essential role of p53 gene in apoptotic tissue repair, we compared the incidence of radiation-induced malformations and deaths (deaths after day 10) in wild-type p53 (+/+) mice and null p53 (-/-) mice. For p53 (+/+) mice, an X-ray dose of 2 Gy given at a high dose-rate (450 mGy/min) to fetuses at 9.5 days of gestation was highly lethal and considerably teratogenic whereas it was only slightly lethal but highly teratogenic for p53 (-/-) fetuses. This reciprocal relationship of radiosensitivity to malformations and deaths supports the notion that fetal tissues have a p53 -dependent idguardianln of the tissue that aborts cells bearing radiation-induced teratogenic DNA damage. When an equal dose of 2 Gy given at a 400-fold lower dose-rate (1.2 mGy/min), this dose became not teratogenic for p53 (+/+) fetuses exhibiting p53 -dependent apoptosis, whereas this dose remained teratogenic for p53 (-/-) fetuses unable to carry out apoptosis. Furthermore, when the dose was divided into two equal dose fractions (1+1 Gy) at high dose rate, separated by 24 hours, the incidences of malformations were equal with control level for p53 (+/+), but higher for p53 (-/-) mice. Hence, complete elimination of teratogenic damage from irradiated tissues requires a concerted cooperation of two mechanisms; proficient DNA repair and p53-dependent apoptotic tissue repair

  10. The mechanism for the primary biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Byakov, Vsevolod M; Stepanov, Sergei V

    2006-01-01

    The primary biological response of living organisms to the passage of fast charged particles is traditionally believed to be dominated by the chemical reactions of the radical products from the radiolysis of cellular water (OH, H, e aq - , O 2 - , H 2 O 2 ) and by the bioradicals that they produce (and which can also result from the direct electronic activation of biomolecules). This understanding has provided insight into how ionizing radiations affect biological systems and, most importantly, what radioprotection and radiosensibilizing effects are produced by chemical compounds introduced into an organism. However, a number of key radiobiological facts remain unexplained by the current theory, stimulating a search for other biologically active factors that may be triggered by radiation. This review examines a fact that is usually ignored in discussing the biological impact of ionizing radiation: the local increase in acidity in the water solution along the track of a charged particle. The acidity in the track is very different from its value for cellular water in a living organism. Biological processes are well-known to be highly sensitive to changes in the environmental acidity. It seems that the biological impact of ionizing radiations is dominated not by the water radiolysis products (mostly radicals) listed above but particles of a different nature, hydroxonium ions H 3 O + , where the term hydroxonium refer to protonated water molecules. This modification of the mechanism of primary radiobiological effects is in good agreement with experimental data. In particular, the extremal dependence of the relative biological efficiency (RBE) of radiations on their ionizing energy losses is accounted for in quantitative terms, as is the increase in the RBE in the relativistic energy range. (reviews of topical problems)

  11. Mechanism of Interaction between Ionizing Radiation and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Lee, B H; Shin, H S [and others

    2008-03-15

    This research project has been carried out jointly with INP (Poland) to develop technologies for 'Mechanism of Interaction between ionizing radiation and chemicals{sup .} Several biological end-points were assessed in experimental organisms such as higher plants, rats, cell lines and yeast cells to establish proper bioassay techniques. The Tradescantia somatic cell mutation assay was carried out, and immunohistochemistry and hormone assays were done in Fisher 344 rats and cell lines to analyse the combined effect of ionizing radiation with mercury chloride. Using the common regularities of combined actions of two factors, a theoretical model was established, and applied to the thermo radiation action and synergism between two chemicals, as well. The model approach made it possible to predict the condition under which the maximum synergism could be attained. The research results were published in high standard journals and presented in the scientific conferences to verify KAERI's current technology level. The experience of collaboration can be used as a fundamental tool for multinational collaboration, and make the role of improving relationship between Korea and Poland.

  12. Mechanism of Interaction between Ionizing Radiation and Chemicals

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Lee, B. H.; Shin, H. S.

    2008-03-01

    This research project has been carried out jointly with INP (Poland) to develop technologies for 'Mechanism of Interaction between ionizing radiation and chemicals . Several biological end-points were assessed in experimental organisms such as higher plants, rats, cell lines and yeast cells to establish proper bioassay techniques. The Tradescantia somatic cell mutation assay was carried out, and immunohistochemistry and hormone assays were done in Fisher 344 rats and cell lines to analyse the combined effect of ionizing radiation with mercury chloride. Using the common regularities of combined actions of two factors, a theoretical model was established, and applied to the thermo radiation action and synergism between two chemicals, as well. The model approach made it possible to predict the condition under which the maximum synergism could be attained. The research results were published in high standard journals and presented in the scientific conferences to verify KAERI's current technology level. The experience of collaboration can be used as a fundamental tool for multinational collaboration, and make the role of improving relationship between Korea and Poland

  13. Mechanism of Interaction between Ionizing Radiation and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Lee, B. H.; Shin, H. S. (and others)

    2008-03-15

    This research project has been carried out jointly with INP (Poland) to develop technologies for 'Mechanism of Interaction between ionizing radiation and chemicals{sup .} Several biological end-points were assessed in experimental organisms such as higher plants, rats, cell lines and yeast cells to establish proper bioassay techniques. The Tradescantia somatic cell mutation assay was carried out, and immunohistochemistry and hormone assays were done in Fisher 344 rats and cell lines to analyse the combined effect of ionizing radiation with mercury chloride. Using the common regularities of combined actions of two factors, a theoretical model was established, and applied to the thermo radiation action and synergism between two chemicals, as well. The model approach made it possible to predict the condition under which the maximum synergism could be attained. The research results were published in high standard journals and presented in the scientific conferences to verify KAERI's current technology level. The experience of collaboration can be used as a fundamental tool for multinational collaboration, and make the role of improving relationship between Korea and Poland.

  14. An end-to-end computing model for the Square Kilometre Array

    NARCIS (Netherlands)

    Jongerius, R.; Wijnholds, S.; Nijboer, R.; Corporaal, H.

    2014-01-01

    For next-generation radio telescopes such as the Square Kilometre Array, seemingly minor changes in scientific constraints can easily push computing requirements into the exascale domain. The authors propose a model for engineers and astronomers to understand these relations and make tradeoffs in

  15. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    Science.gov (United States)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  16. The pathogenetic mechanisms of lesion and reconstruction of hematosis at critical radiation sickness

    International Nuclear Information System (INIS)

    Tukhtaev, T.M.

    1978-01-01

    In this chapter author made conclusion that for understanding pathogenetic mechanisms lead to critical radiation sickness after influence ionizing radiation it is necessary to take into account the consecution of all reactions beginning from physical and chemical processes of interaction radiation with matter till displaying final radiation effect on cell level and organism

  17. Explosive mechanism of metal destruction by intense electromagnetic radiation flux

    International Nuclear Information System (INIS)

    Martynyuk, M.M.

    1977-01-01

    The metal destruction by a powerful flux of electromagnetic radiation is considered on the basis of thermodynamics and kinetics of the transition of molten metal to vapour during its rapid heating. The possibility is discussed of obtaining a metastable liquid-metal phase and of its explosion transition to a stable two-phase state (phase explosion of metastable liquid). It has been shown that at densities of radiation beam ensuring the heating of the metal to the spinodal point Tsub(s) during a time tsub(s)=10 -5 -10 -7 s the vaporization of the matter from the surface of the liquid is negligible, and the main mechanism of the metal destruction is the phase explosion of the metastable liquid-metal phase which originates in the Tsub(s) vicinity. The experimental data on the electric explosion of conductors for tsub(s)=10 -6 -10 -5 s has served as a basis for calculating the excess enthalpy and the proportion of the vapour phase formed in the phase explosion of Cu, Ag, Au, Zn, Cd, Al, Pb, Zr, Nb, Mo, W, Pt and Re. The particularities of the phase explosion at flux densities corresponding to tsub(s)( -8 s are considered

  18. TGF Afterglows: A New Radiation Mechanism From Thunderstorms

    Science.gov (United States)

    Rutjes, C.; Diniz, G.; Ferreira, I. S.; Ebert, U.

    2017-10-01

    Thunderstorms are known to create terrestrial gamma ray flashes (TGFs) which are microsecond-long bursts created by runaway of thermal electrons from propagating lightning leaders, as well as gamma ray glows that possibly are created by relativistic runaway electron avalanches (RREA) that can last for minutes or more and are sometimes terminated by a discharge. In this work we predict a new intermediate thunderstorm radiation mechanism, which we call TGF afterglow, as it is caused by the capture of photonuclear neutrons produced by a TGF. TGF afterglows are milliseconds to seconds long; this duration is caused by the thermalization time of the intermediate neutrons. TGF afterglows indicate that the primary TGF has produced photons in the energy range of 10-30 MeV; they are nondirectional in contrast to the primary TGF. Gurevich et al. might have reported TGF afterglows in 2011.

  19. A Study on the Interaction Mechanism between Thermal Radiation and Materials

    Institute of Scientific and Technical Information of China (English)

    Dehong XIA; Tao YU; Chuangu WU; Qingqing CHANG; Honglei JIAO

    2005-01-01

    From the viewpoint of field synergy principle and dipole radiation theory, the interaction between the incident thermal radiation wave and materials is analyzed to reveal the mechanism of selective absorption of incident thermal radiation. It is shown that the frequency of the incident thermal radiation and the damping constant of damping oscillators in materials are of vital importance for the thermal radiation properties (reflectivity, absorptivity, transmissivity, etc.) of materials.

  20. Radiobiological mechanisms of stereotactic body radiation therapy and stereotactic radiation surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Sook; Kim, Won Woo; Park, In Hwan; Kim, Hee Jong; Lee, Eun Jin; Jung, Jae Hoon [Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Cho, Lawrence Chin Soo; Song, Chang W. [Dept. of Radiation Oncology, University of Minnesota Medical School, Minneapolis (United States)

    2015-12-15

    Despite the increasing use of stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS) in recent years, the biological base of these high-dose hypo-fractionated radiotherapy modalities has been elusive. Given that most human tumors contain radioresistant hypoxic tumor cells, the radiobiological principles for the conventional multiple-fractionated radiotherapy cannot account for the high efficacy of SBRT and SRS. Recent emerging evidence strongly indicates that SBRT and SRS not only directly kill tumor cells, but also destroy the tumor vascular beds, thereby deteriorating intratumor microenvironment leading to indirect tumor cell death. Furthermore, indications are that the massive release of tumor antigens from the tumor cells directly and indirectly killed by SBRT and SRS stimulate anti-tumor immunity, thereby suppressing recurrence and metastatic tumor growth. The reoxygenation, repair, repopulation, and redistribution, which are important components in the response of tumors to conventional fractionated radiotherapy, play relatively little role in SBRT and SRS. The linear-quadratic model, which accounts for only direct cell death has been suggested to overestimate the cell death by high dose per fraction irradiation. However, the model may in some clinical cases incidentally do not overestimate total cell death because high-dose irradiation causes additional cell death through indirect mechanisms. For the improvement of the efficacy of SBRT and SRS, further investigation is warranted to gain detailed insights into the mechanisms underlying the SBRT and SRS.

  1. Expected Science Performance of the Square Kilometre Array Phase 1 (SKA1)

    Science.gov (United States)

    Bourke, Tyler; Braun, Robert; Bonaldi, Anna; Garcia-Miro, Cristina; Keane, Evan; Wagg, Jeff; SKAO Science Team

    2018-01-01

    The Square Kilometre Array (SKA) will be the world’s largest radio telescope when Phase 1 (SKA1) is completed in the next decade. The past few years have seen great progress toward this goal, through extensive design activities, with construction to start before the end of this decade, and early operations anticipated to begin around 2026. This poster describes the SKA and presents the expected performance and capabilities of SKA1 based on the modelling and proto-typing to date.

  2. Spectral analysis of Jupiter kilometric radio emissions during the Ulysses flyby

    Science.gov (United States)

    Echer, M. P. D. S.; Echer, E.; Gonzalez, W.; Magalães, F. P.

    2016-12-01

    In this work we analyze Ulysses URAP kilometric radio data during Ulysses Jupiter flyby. The interval selected for analysis was from October 1991 to February 1992. URAP 10-min averages of auroral (bkom) and torus (nkom) radio data are used. The wavelet and iterative regression spectral analyses techniques are employed on both data set. The results obtained will enable us to determine the major frequencies present in the auroral and torus data and study their similar and different periodicities.

  3. Ray tracing of auroral Z mode radiation, AKR and auroral hiss

    International Nuclear Information System (INIS)

    Horne, R.B.; Jones, D.; Kimura, I.; Sawada, A.

    1990-01-01

    While observed frequency bandwidths of auroral Z mode radiation cannot be directly accounted for in terms of direct cyclotron maser instability generation, ray tracing in a hot plasma indicates that if the radiation near a plasma frequency lower than the gyrofrequency, the observed bandwidths are explainable in terms of upward propagation away from the earth. An auroral Z-mode generation mechanism is proposed involving mode conversion from O-mode auroral kilometric radiation (AKR) at the plasma frequency, as well as mode conversion from upgoing auroral hiss. Ray tracings in the O mode identify a possible AKR source region along L = 8.55. 11 refs

  4. Mechanisms of alteration of the immune system by ionizing radiations: a basis for radiation protection

    International Nuclear Information System (INIS)

    Bourguignon, M.; Perez, M.; Dubner, D.; Michelin, S.; Carosella, E.

    2006-01-01

    Full text of publication follows: Alterations of the immune system appear in relationship with exposure to ionizing radiation (IR) in different situations, e.g., accidents, radiation therapy of cancer, prenatal irradiation, some human diseases with hypersensitivity to IR and aging. Thus, the comprehension of the mechanisms of the alterations of the immune system by IR is necessary to elaborate strategies of protection and to pave the way for future possible therapies. At least 9 mechanisms of alterations can be identified: 1- Apoptosis. Apoptosis is a key mechanism of the natural regulation of the immune system and plays also a key role in the response to IR: lymphocytes die rapidly by apoptosis after exposure. Different pathways of induction of apoptosis have been identified, and include p53 dependent and mitochondria mediated pathways, as well as CD95 and ROS initiation; 2- TCR mutations. The T cell antigen receptor is responsible to discriminate between self and non self. Mutations of the TCR may result from exposure to IR; 3- Modification of the Th1-Th2 balance. T helper cells may express 2 distinct secretion patterns: Th1 cytokines promote cell-mediated immunity while Th2 cytokines favor humoral immunity. Although the effects of IR on the Th1/Th2 balance remains controversial, an imbalance towards a Th2 profile is likely and patients with cancer and systemic auto-immune disease often present a switch from Th1 to Th2; 4- Bystander effects and genetic instability. Stimulatory effect or genomic instability have been observed in haematopoietic cells exposed to IR and related to a bystander mechanism. 5- Shift toward an inflammatory profile. Ionizing radiation may induce a persistent inflammatory profile as a result of dis-regulation of cytokine production; such a status of persistent inflammation has been observed in Hiroshima and Nagasaki survivors. 6- Modification of antigen presentation. Antigen presentation by dendritic cells is an essential function preceding

  5. Mechanisms of alteration of the immune system by ionizing radiations: a basis for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Bourguignon, M. [Direction Generale de la Surete Nucleaire et de la Radioprotection, 75 - Paris (France); Perez, M.; Dubner, D.; Michelin, S. [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); Carosella, E. [CEA, Service de Recherches en Hemato -Immunologie, 75 - Paris (France)

    2006-07-01

    Full text of publication follows: Alterations of the immune system appear in relationship with exposure to ionizing radiation (IR) in different situations, e.g., accidents, radiation therapy of cancer, prenatal irradiation, some human diseases with hypersensitivity to IR and aging. Thus, the comprehension of the mechanisms of the alterations of the immune system by IR is necessary to elaborate strategies of protection and to pave the way for future possible therapies. At least 9 mechanisms of alterations can be identified: 1- Apoptosis. Apoptosis is a key mechanism of the natural regulation of the immune system and plays also a key role in the response to IR: lymphocytes die rapidly by apoptosis after exposure. Different pathways of induction of apoptosis have been identified, and include p53 dependent and mitochondria mediated pathways, as well as CD95 and ROS initiation; 2- TCR mutations. The T cell antigen receptor is responsible to discriminate between self and non self. Mutations of the TCR may result from exposure to IR; 3- Modification of the Th1-Th2 balance. T helper cells may express 2 distinct secretion patterns: Th1 cytokines promote cell-mediated immunity while Th2 cytokines favor humoral immunity. Although the effects of IR on the Th1/Th2 balance remains controversial, an imbalance towards a Th2 profile is likely and patients with cancer and systemic auto-immune disease often present a switch from Th1 to Th2; 4- Bystander effects and genetic instability. Stimulatory effect or genomic instability have been observed in haematopoietic cells exposed to IR and related to a bystander mechanism. 5- Shift toward an inflammatory profile. Ionizing radiation may induce a persistent inflammatory profile as a result of dis-regulation of cytokine production; such a status of persistent inflammation has been observed in Hiroshima and Nagasaki survivors. 6- Modification of antigen presentation. Antigen presentation by dendritic cells is an essential function preceding

  6. Natural Antioxidants: Multiple Mechanisms to Protect Skin From Solar Radiation

    Directory of Open Access Journals (Sweden)

    Spencer Dunaway

    2018-04-01

    Full Text Available Human skin exposed to solar ultraviolet radiation (UVR results in a dramatic increase in the production of reactive oxygen species (ROS. The sudden increase in ROS shifts the natural balance toward a pro-oxidative state, resulting in oxidative stress. The detrimental effects of oxidative stress occur through multiple mechanisms that involve alterations to proteins and lipids, induction of inflammation, immunosuppression, DNA damage, and activation of signaling pathways that affect gene transcription, cell cycle, proliferation, and apoptosis. All of these alterations promote carcinogenesis and therefore, regulation of ROS levels is critical to the maintenance of normal skin homeostasis. Several botanical products have been found to exhibit potent antioxidant capacity and the ability to counteract UV-induced insults to the skin. These natural products exert their beneficial effects through multiple pathways, including some known to be negatively affected by solar UVR. Aging of the skin is also accelerated by UVR exposure, in particular UVA rays that penetrate deep into the epidermis and the dermis where it causes the degradation of collagen and elastin fibers via oxidative stress and activation of matrix metalloproteinases (MMPs. Because natural compounds are capable of attenuating some of the UV-induced aging effects in the skin, increased attention has been generated in the area of cosmetic sciences. The focus of this review is to cover the most prominent phytoproducts with potential to mitigate the deleterious effects of solar UVR and suitability for use in topical application.

  7. Ultraviolet radiation-induced carcinogenesis: mechanisms and experimental models

    International Nuclear Information System (INIS)

    Ramasamy, Karthikeyan; Shanmugam, Mohana; Balupillai, Agilan; Govindhasamy, Kanimozhi; Gunaseelan, Srithar; Muthusamy, Ganesan; Robert, Beualah Mary; Nagarajan, Rajendra Prasad

    2017-01-01

    Ultraviolet radiation (UVR) is a very prominent environmental toxic agent. UVR has been implicated in the initiation and progression of photocarcinogenesis. UVR exposure elicits numerous cellular and molecular events which include the generation of inflammatory mediators, DNA damage, epigenetic modifications, and oxidative damages mediated activation of signaling pathways. UVR-initiated signal transduction pathways are believed to be responsible for tumor promotion effects. UVR-induced carcinogenic mechanism has been well studied using various animal and cellular models. Human skin-derived dermal fibroblasts, epidermal keratinocytes, and melanocytes served as excellent cellular model systems for the understanding of UVR-mediated carcinogenic events. Apart from this, scientists developed reconstituted three-dimensional normal human skin equivalent models for the study of UVR signaling pathways. Moreover, hairless mice such as SKH-1, devoid of Hr gene, served as a valuable model for experimental carcinogenesis. Scientists have also used transgenic mice and dorsal portion shaved Swiss albino mice for UVR carcinogenesis studies. In this review, we have discussed the current progress in the study on ultraviolet B (UVB)-mediated carcinogenesis and outlined appropriate experimental models for both ultraviolet A- and UVB-mediated carcinogenesis. (author)

  8. Immunologic mechanism of the suppressive effect of low dose radiation on thymic lymphoma induced by radiation

    International Nuclear Information System (INIS)

    Li Xiujuan; Yang Ying; Li Xiuyi; Liu Shuzheng

    1999-01-01

    To study immunologic mechanism of the suppressive effect of low dose radiation (LDR) on thymic lymphoma (TL) induced by high dose radiation (HDR). The authors adopted the model that C57BL/6J mice were administered whole body irradiation with 1.75 Gy X-rays one time every week for 4 weeks to induce TL. It was examined that splenic NK cytotoxic activity, IL-2 and γ-IFN secretion activity, peritoneal macrophage phagocytosis and its TNF-α secretion activity in mice with different dose 1 month after irradiation. The results showed that all the immunologic functions mentioned above in mice given 75 mGy 12 h before 1.75 Gy every time were higher than that in mice given only 1.75 Gy, and approached to the sham-irradiation mice. It suggested that the suppressive effect of LDR on TL induced by HDR may be related to the adaptive response induced by LDR and decreasing immunological functions damage caused by HDR

  9. Advanced in study of cellular and molecular mechanisms of radiation effects on central nervous system

    International Nuclear Information System (INIS)

    Zhang Wei; Tu Yu; Wang Lili

    2008-01-01

    Along with radiation treatment extensively applied, radiation injury also is valued gradually. The effect of radiation to the cellular and molecular of central nervous system (CNS) is a complicated and moderately advanced process and the mechanism is remains incompletely clear yet. Inquiring into the possible mechanism of the CNS including the injury and the restoration of neuron, neuroglia cells, endotheliocyte cell and blood-brain barrier and the molecular level of change induced by radiation, so as to provide beneficial thought for preventing and curing radiation injury clinically. Some neuroprotective strategies are also addressed in the review. (authors)

  10. Radiation field mapping using a mechanical-electronic detector

    Energy Technology Data Exchange (ETDEWEB)

    Czayka, M., E-mail: mczayka@kent.ed [College of Technology, Kent State University-Ashtabula 3300 Lake Road West, Ashtabula, OH 44004 (United States); Program on Electron Beam Technology, Kent State University, P.O. Box 1028, Middlefield, OH 44062 (United States); Fisch, M. [Program on Electron Beam Technology, Kent State University, P.O. Box 1028, Middlefield, OH 44062 (United States); College of Technology, Kent State University, P.O. Box 5190, Kent, OH 44242-0001 (United States)

    2010-04-15

    A method of radiation field mapping of a scanned electron beam using a Faraday-type detector and an electromechanical linear translator is presented. Utilizing this arrangement, fluence and fluence rate measurements can be made at different locations within the radiation field. The Faraday-type detector used in these experiments differs from most as it consists of a hollow stainless steel sphere. Results are presented in two- and three-dimensional views of the radiation field.

  11. Radiation-Induced Bystander Response: Mechanism and Clinical Implications

    OpenAIRE

    Suzuki, Keiji; Yamashita, Shunichi

    2014-01-01

    Significance: Absorption of energy from ionizing radiation (IR) to the genetic material in the cell gives rise to damage to DNA in a dose-dependent manner. There are two types of DNA damage; by a high dose (causing acute or deterministic effects) and by a low dose (related to chronic or stochastic effects), both of which induce different health effects. Among radiation effects, acute cutaneous radiation syndrome results from cell killing as a consequence of high-dose exposure.

  12. E.S.R. studies of mechanisms of radiation protection effect by cysteine and cystine

    International Nuclear Information System (INIS)

    Xue-Peng, L.; Tie-Cheng, T.; Nian-Yun, L.

    1981-01-01

    By means of E.S.R. the repair mechanism of radiation induced spin transfer from dTMP to cysteine in binary system dTMP-cysteine has been confirmed. Furthermore, a new marked radiation protection effect, exerted by cysteine or cystine on thymine irradiated and observed at low temperature, has been detected. Another sort of fast protection mechanism, including electron transfer and excitation transfer, has been proposed, based on recent advances of primary radiation process of pyrimidine bases and analysed by molecular orbital theory. This fast radiation protection mechanism provides the possibility to utilize electrophilic sulfhydryl protectors for realizing excellent protection effect. (author)

  13. Study of effect of gamma radiation on molecular weight and mechanical properties of PHB and PHNV

    International Nuclear Information System (INIS)

    Fechine, Guilhermino J.M.; Terence, Mauro C.; Rabello, M.S.; Willen, Renate M.R.

    2011-01-01

    The effect of gamma radiation on molecular weight and mechanical properties (tensile and flexural) of PHB and PHBV samples was investigated. The values of stress and strain at the break point for both mechanical properties indicated that scission molecular reactions were predominant in PHB and PHBV samples submitted to gamma radiation. These results were confirmed by Size Exclusion Chromatography (SEC) analysis. (author)

  14. Investigation of gamma-ray fingerprint identifying mechanism for the types of radiation sources

    CERN Document Server

    Liu Su Ping; Gu Dang Chang; Gong-Jian; Hao Fan Hua; Hu Guang Chun

    2002-01-01

    Radiation fingerprints sometimes can be used to label and identify the radiation resources. For instance, in a future nuclear reduction treaty that requires verification of irreversible dismantling of reduced nuclear warheads, the radiation fingerprints of nuclear warheads are expected to play a key role in labelling and identifying the reduced warheads. It would promote the development of nuclear warheads deep-cuts verification technologies if authors start right now some investigations on the issues related to the radiation fingerprints. The author dedicated to the investigation of gamma-ray fingerprint identifying mechanism for the types of radiation resources. The purpose of the identifying mechanism investigation is to find a credible way to tell whether any two gamma-ray spectral fingerprints that are under comparison are radiated from the same resource. The authors created the spectrum pattern comparison (SPC) to study the comparability of the two radiation fingerprints. Guided by the principle of SPC,...

  15. Mechanism of radiation-induced degradation in mechanical properties of polymer matrix composites

    International Nuclear Information System (INIS)

    Egusa, Shigenori

    1988-01-01

    Four kinds of polymer matrix composites (filler, E-glass or carbon fibre cloth; matrix, epoxy or polyimide resin) and pure epoxy and polyimide resins were irradiated with 60 Co γ-rays or 2 MeV electrons at room temperature. Mechanical tests were then carried out at 77K and at room temperature. Following irradiation, the Young's (tensile) modulus of these composites and pure resins remains practically unchanged even at 170 MGy for both test temperatures. The ultimate strength, however, decreases appreciably with increasing dose. The dose dependence of the composite strength depends not only on the combination of fibre and matrix in the composite but also on the test temperature. A relationship is found between the composite ultimate strain and the matrix ultimate strain, thus indicating that the dose dependence of the composite strength is virtually determined by a change in the matrix ultimate strain due to irradiation. Based on this finding, we propose a mechanism of radiation-induced degradation of a polymer matrix composite in order to explain the dose dependence of the composite strength measured at 77 K and at room temperature. (author)

  16. Effects of ionizing radiation and the molecular and cellular mechanisms

    International Nuclear Information System (INIS)

    1982-01-01

    This symposium with its 60 contributions presents a survey of the current state of the art in molecular radiation biophysics and radiobiology in the FRG. Many contributions show the trend of applying findings in these fields to cancer research. The various sessions have been devoted to: 1) Radiation chemistry of biomolecules; 2) DNA damage and repair; 3) Repair of DNA damage; 4) Cell proliferation and cell inactivation; 5) Cancerogenesis, mutation and chromosomal damage; 6) Effects of heavy ions. (AJ) [de

  17. Protective mechanisms and acclimation to solar ultraviolet-B radiation in Oenothera stricta

    Science.gov (United States)

    Robberecht, R.; Caldwell, M. M.

    1981-01-01

    Plant adaptations ameliorating or repairing the damaging effects of ultraviolet-B (UV-B) radiation on plant tissue were investigated. The degree of phenotype plasticity in UV protective mechanisms and acclimation in relation to the natural solar UV-B radiation flux and in an enhanced UV-B irradiance environment was also examined. Mechanisms by which plants avoid radiation, adaptations altering the path of radiation incident on the leaf, and repair processes were considered. Attenuation of UV-B by tissues, UV-B irradiation into the leaf, and the effects of UV-B on photosynthesis were investigated.

  18. Protective mechanisms and acclimation to solar ultraviolet-b radiation in oenothera stricta. Final report

    International Nuclear Information System (INIS)

    Robberecht, R.; Caldwell, M.M.

    1981-12-01

    Plant adaptations ameliorating or repairing the damaging effects of ultraviolet-B (UV-B) radiation on plant tissue were investigated. The degree of phenotype plasticity in UV protective mechanisms and acclimation in relation to the natural solar UV-B radiation flux and in an enhanced UV-B irradiance environment was also examined. Mechanisms by which plants avoid radiation, adaptations altering the path of radiation incident on the leaf, and repair processes were considered. Attenuation of UV-B by tissues, UV-B irradiation into the leaf, and the effects of UV-B on photosynthesis were investigated

  19. Radiation induced bystander effects: mechanisms and implication for low dose radiation risk assessment

    International Nuclear Information System (INIS)

    Hei, T.L.; Randers-Pehrson, G.; Zhou, H.

    2003-01-01

    Using a precision microbeam to target an exact fraction of cells in a population and irradiated their nuclei with exactly one alpha particle each, we found that the frequencies of induced mutations and chromosomal changes in populations where some known fractions of nuclei were hit are consistent with non-hit cells contributing significantly to the response. In fact, irradiation of 10% of a mammalian cell population with a single alpha particle per cell results in a mutant yield similar to that observed when all of the cells in the population are irradiated. Although the bystander observations have been well established, the underlying mechanism(s) remain largely unknown. There are indications that multiple pathways are involved in the bystander phenomenon and different cell types respond differently to the bystander signaling. In confluent monolayers, there is evident that gap junctional communication is crucial in mediating the bystander effect whereas reactive oxygen and reactive nitrogen species have been implicated as the mediating molecules in sub-confluent cultures. Although p53 is not necessary for the expression of bystander effect, there is evident that repair deficient cells may express a higher bystander response. Using cDNA microarrays, a number of cellular signaling genes have been shown to be differentially expressed among bystander cells. The functional roles of these genes in the bystander effect will be discussed. The bystander observations imply that the relevant target for various radiobiological endpoints is larger than an individual cell and suggest a need to reconsider the validity of the linear extrapolation in making risk estimate for low dose radiation exposure. (Work supported by NIH grants CA 49062 and CA-RR11623)

  20. A user interface framework for the Square Kilometre Array: concepts and responsibilities

    Science.gov (United States)

    Marassi, Alessandro; Brajnik, Giorgio; Nicol, Mark; Alberti, Valentina; Le Roux, Gerhard

    2016-07-01

    The Square Kilometre Array (SKA) project is responsible for developing the SKA Observatory, the world's largest radio telescope, with eventually over a square kilometre of collecting area and including a general headquarters as well as two radio telescopes: SKA1-Mid in South Africa and SKA1-Low in Australia. The SKA project consists of a number of subsystems (elements) among which the Telescope Manager (TM) is the one involved in controlling and monitoring the SKA telescopes. The TM element has three primary responsibilities: management of astronomical observations, management of telescope hardware and software subsystems, management of data to support system operations and all stakeholders (operators, maintainers, engineers and science users) in achieving operational, maintenance and engineering goals. Operators, maintainers, engineers and science users will interact with TM via appropriate user interfaces (UI). The TM UI framework envisaged is a complete set of general technical solutions (components, technologies and design information) for implementing a generic computing system (UI platform). Such a system will enable UI components to be instantiated to allow for human interaction via screens, keyboards, mouse and to implement the necessary logic for acquiring or deriving the information needed for interaction. It will provide libraries and specific Application Programming Interfaces (APIs) to implement operator and engineer interactive interfaces. This paper will provide a status update of the TM UI framework, UI platform and UI components design effort, including the technology choices, and discuss key challenges in the TM UI architecture, as well as our approaches to addressing them.

  1. DNA Protection Protein, a Novel Mechanism of Radiation Tolerance: Lessons from Tardigrades.

    Science.gov (United States)

    Hashimoto, Takuma; Kunieda, Takekazu

    2017-06-15

    Genomic DNA stores all genetic information and is indispensable for maintenance of normal cellular activity and propagation. Radiation causes severe DNA lesions, including double-strand breaks, and leads to genome instability and even lethality. Regardless of the toxicity of radiation, some organisms exhibit extraordinary tolerance against radiation. These organisms are supposed to possess special mechanisms to mitigate radiation-induced DNA damages. Extensive study using radiotolerant bacteria suggested that effective protection of proteins and enhanced DNA repair system play important roles in tolerability against high-dose radiation. Recent studies using an extremotolerant animal, the tardigrade, provides new evidence that a tardigrade-unique DNA-associating protein, termed Dsup, suppresses the occurrence of DNA breaks by radiation in human-cultured cells. In this review, we provide a brief summary of the current knowledge on extremely radiotolerant animals, and present novel insights from the tardigrade research, which expand our understanding on molecular mechanism of exceptional radio-tolerability.

  2. Gustatory tissue injury in man: radiation dose response relationships and mechanisms of taste loss

    International Nuclear Information System (INIS)

    Mossman, K.L.

    1986-01-01

    In this report dose response data for gustatory tissue damage in patients given total radiation doses ranging from 3000 to 6000 cGy are presented. In order to evaluate direct radiation injury to gustatory tissues as a mechanism of taste loss, measurements of damage to specific taste structures in bovine and murine systems following radiation exposure in the clinical range are correlated to taste impairment observed in radiotherapy patients. (author)

  3. Study on radiation discoloration of PE and its mechanisms

    International Nuclear Information System (INIS)

    Wang Huiliang; Wang Chun; Chen Wenxiu

    2001-01-01

    In order to find the major reason for the radiation discoloration of PE, the changes of yellow index (YI) of HDPE and LDPE under γ irradiation in air or N 2 and after irradiation are measured using colorimeter. The growth and decay of alkyl free radical formed in HDPE and LDPE, and the change of the absorbance of conjugated double bonds formed in PE are measured using ESR and UV-Visible spectrometer. The YI of HDPE is higher than that of LDPE at the same radiation dose. The YI of PE irradiated in air is higher than that of PE irradiated in N 2 at the same radiation dose. The YI of PE irradiated different dose decreases with post-irradiation storage time firstly, up to a certain time, it becomes stable. It is found that the formation and decay of free radicals is very similar to that of the change of YI, whereas, the change of the absorbance of conjugated double bonds formed in PE is different to the change of YI. The results are discussed, it is believed that the major reason for the radiation discoloration is the formation of trapped free radicals

  4. Measurement of Gamma Radiation in an Automobile Mechanic ...

    African Journals Online (AJOL)

    imeh james

    Nuclear Technology Centre, Nigeria Atomic Energy Commission, ... An in-situ measurement approach was adopted using RDS-200 Universal Survey Meter and a handheld ... the people living and working within the area are safe and are not exposed to high doses of radiation as a result .... battery works, panel beating e.t.c..

  5. Analysis and utilization of plant antioxidative mechanism by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haeng Soon; Kwak, Sang Soo; Kwon, Hye Gyung [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    1999-03-01

    The gamma radiation-induced changes of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in callus cultures of cassava (Manihot esculenta) and sweet potato (Ipomoea batatas) were investigated. Both cell lines irradiated with 50 and 70 Gy on 7 days after subculture inhibited significantly the cell growth by 50% and 80% at 14 days after treatment (DAT), respectively. In 70 Gy irradiated with cassava calli SOD and POD specific activities increased by 4 and 2.5 folds at 14 DAT, respectively, whereas CAT activity was not affected. When sweet potato calli were irradiated 10 Gy POD activity showed the highest at 14 DAT, whereas the CAT activity was not affected. In the transgenic tobacco plants that overexpress swpal encoding anionic POD cDNA or swpnl encoding neutral POD cDNA, POD and SOD activities were not significantly increased after {gamma}-radiation treatment, but swpal-plants showed a higher activity than that of swpnl-or non-transgenic plants. Plant growth was severely inhibited showing a well correlation with the dose of radiation. Specially, {gamma}-radiation affected growth of shoot apical meristem. (author). 32 refs., 7 figs.

  6. Comparison between the mechanical and radiative electron-capture processes at high energies

    International Nuclear Information System (INIS)

    Gonzalez, A.D.; Miraglia, J.E.

    1984-01-01

    The ground-state--ground-state mechanical and radiative electron-capture processes are studied at very high, but not relativistic, projectile velocities. Three-body calculations were carried out with use of the continuum distorted-wave theoretical method for both processes. Total cross sections and final-atom angular distributions were computed, and the importance of each mechanism examined. For total cross sections, the numerical results reaffirm that the radiative process is the predominant mechanism at very high projectile energies. For a given incident charge, the range of projectile energies in which the nonrelativistic radiative mechanism is the most important decreases as the target charge increases. It is found that the radiative mechanism produces a very sharp final-atom angular distribution in the forward direction. When both processes, the radiative and mechanical, give the same total cross section, the calculations show that the radiative differential cross section in the forward direction is almost 2 orders of magnitude larger than the mechanical one

  7. Confronting actual influence of radiation on human bodies and biological defense mechanism

    International Nuclear Information System (INIS)

    Matsubara, Junko

    2012-01-01

    After the accident at Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company, social, economical, psychological pressures on local residents and fears of radiation among the general public have not been resolved. Based on the assumption that the negligence of specialists to clearly explain the influence of radiation on human bodies to the general public is the factor for above mentioned pressures and fears, the influence of radiation from a realistic view was discussed. The topics covered are: (1) understanding the meaning of radiation regulation, (2) radiation and threshold values, (3) actual influence of low-dose radiation, (4) chemical and biological defense in defense mechanism against radiation, (5) problems raised by Fukushima Daiichi nuclear accident. Furthermore, the article explains the principles and the applications of biological defense function activation, and suggested that self-help efforts to fight against stress are from now on. (S.K.)

  8. Manifestations and mechanisms of non-targeted effects of ionizing radiation

    International Nuclear Information System (INIS)

    Wright, Eric G.

    2010-01-01

    A well-established radiobiological paradigm is that the biological effects of ionizing radiation occur in irradiated cells as a consequence of the DNA damage they incur. However, many observations of, so-called, non-targeted effects indicate that genetic alterations are not restricted to directly irradiated cells. Non-targeted effects are responses exhibited by non-irradiated cells that are the descendants of irradiated cells (radiation-induced genomic instability) or by cells that have communicated with irradiated cells (radiation-induced bystander effects). Radiation-induced genomic instability is characterized by chromosomal abnormalities, gene mutations and cell death. Similar effects, as well as responses that may be regarded as protective, have been attributed to bystander mechanisms. The majority of studies to date have used in vitro systems but some non-targeted effects have been demonstrated in vivo and there is also evidence for radiation-induced instability in the mammalian germ line. However, there may be situations where radiation-induced genomic instability in vivo may not necessarily identify genomically unstable somatic cells but the manifestation of responses to ongoing production of damaging signals generated by genotype-dependent mechanisms having properties in common with inflammatory processes. Non-targeted mechanisms have significant implications for understanding mechanisms of radiation action but the current state of knowledge does not permit definitive statements about whether these phenomena have implications for assessing radiation risk.

  9. Study on radiation damage of electron and γ-rays and mechanism of nuclear hardening

    International Nuclear Information System (INIS)

    Jing Tao

    2001-01-01

    Radiation damage effects of electrons and γ-rays are presented. The damage defects are studied by experimental methods. On the basis of these studies the damage mechanism and nuclear hardening techniques are studied

  10. Effects of radiation induced polymerisation on the mechanical properties of polymer impregnated concrete

    International Nuclear Information System (INIS)

    Ohgishi, S.; Ono, H.; Kasahara, Y.

    1980-01-01

    In this programme, effects of electron irradiation energy on mechanical properties of polymer impregnated concrete (PIC) were examined with regard to the density of the base cement mortar, the total exposure dose, the radiation source and other factors. (author)

  11. Neoplastic cell transformation by high-LET radiation - Molecular mechanisms

    Science.gov (United States)

    Yang, Tracy Chui-Hsu; Craise, Laurie M.; Tobias, Cornelius A.; Mei, Man-Tong

    1989-01-01

    Quantitative data were collected on dose-response curves of cultured mouse-embryo cells (C3H10T1/2) irradiated with heavy ions of various charges and energies. Results suggests that two breaks formed on DNA within 80 A may cause cell transformation and that two DNA breaks formed within 20 A may be lethal. From results of experiments with restriction enzymes which produce DNA damages at specific sites, it was found that DNA double strand breaks are important primary lesions for radiogenic cell transformation and that blunt-ended double-strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship for high-LET radiation is similar to that for HGPRT locus mutation, chromosomal deletion, and cell transformation, indicating that common lesions may be involved in these radiation effects.

  12. Controlling kilometre-scale interferometric detectors for gravitational wave astronomy: Active phase noise cancellation using EOMs

    International Nuclear Information System (INIS)

    Arnaud, N.; Balembois, L.; Bizouard, M.A.; Brisson, V.; Casanueva, J.; Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N.; Loriette, V.; Maksimovic, I.; Robinet, F.

    2017-01-01

    The second generation of Gravitational waves detectors are kilometric Michelson interferometers with additional recycling Fabry–Perot cavities on the arms and ​the addition of two more recycling cavities to enhance their sensitivity, with the particularity that all the mirrors are suspended. In order to control them a new technique, based on the use of auxiliary lasers, has been developed to bring the interferometer to its working point, with all the cavities on their resonance, in an adiabatic way. The implementation of this technique in Advanced Virgo is under preparation and the propagation of a stable laser through a 3-km optical fibre is one of the most problematic issues. A new technique of active phase noise cancellation based on the use of Electro Optical Modulators has been developed, and a first prototype has been successfully tested.

  13. The Square Kilometre Array Science Data Processor. Preliminary compute platform design

    International Nuclear Information System (INIS)

    Broekema, P.C.; Nieuwpoort, R.V. van; Bal, H.E.

    2015-01-01

    The Square Kilometre Array is a next-generation radio-telescope, to be built in South Africa and Western Australia. It is currently in its detailed design phase, with procurement and construction scheduled to start in 2017. The SKA Science Data Processor is the high-performance computing element of the instrument, responsible for producing science-ready data. This is a major IT project, with the Science Data Processor expected to challenge the computing state-of-the art even in 2020. In this paper we introduce the preliminary Science Data Processor design and the principles that guide the design process, as well as the constraints to the design. We introduce a highly scalable and flexible system architecture capable of handling the SDP workload

  14. Controlling kilometre-scale interferometric detectors for gravitational wave astronomy: Active phase noise cancellation using EOMs

    Energy Technology Data Exchange (ETDEWEB)

    Arnaud, N.; Balembois, L.; Bizouard, M.A.; Brisson, V. [LAL, Univ. Paris-Sud, IN2P3/CNRS, Univ. Paris-Saclay, Orsay (France); Casanueva, J., E-mail: casanuev@lal.in2p3.fr [LAL, Univ. Paris-Sud, IN2P3/CNRS, Univ. Paris-Saclay, Orsay (France); Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N. [LAL, Univ. Paris-Sud, IN2P3/CNRS, Univ. Paris-Saclay, Orsay (France); Loriette, V.; Maksimovic, I. [ESPCI, CNRS, F-75005 Paris (France); Robinet, F. [LAL, Univ. Paris-Sud, IN2P3/CNRS, Univ. Paris-Saclay, Orsay (France)

    2017-02-11

    The second generation of Gravitational waves detectors are kilometric Michelson interferometers with additional recycling Fabry–Perot cavities on the arms and ​the addition of two more recycling cavities to enhance their sensitivity, with the particularity that all the mirrors are suspended. In order to control them a new technique, based on the use of auxiliary lasers, has been developed to bring the interferometer to its working point, with all the cavities on their resonance, in an adiabatic way. The implementation of this technique in Advanced Virgo is under preparation and the propagation of a stable laser through a 3-km optical fibre is one of the most problematic issues. A new technique of active phase noise cancellation based on the use of Electro Optical Modulators has been developed, and a first prototype has been successfully tested.

  15. Controlling kilometre-scale interferometric detectors for gravitational wave astronomy: Active phase noise cancellation using EOMs

    Science.gov (United States)

    Arnaud, N.; Balembois, L.; Bizouard, M. A.; Brisson, V.; Casanueva, J.; Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N.; Loriette, V.; Maksimovic, I.; Robinet, F.

    2017-02-01

    The second generation of Gravitational waves detectors are kilometric Michelson interferometers with additional recycling Fabry-Perot cavities on the arms and ​the addition of two more recycling cavities to enhance their sensitivity, with the particularity that all the mirrors are suspended. In order to control them a new technique, based on the use of auxiliary lasers, has been developed to bring the interferometer to its working point, with all the cavities on their resonance, in an adiabatic way. The implementation of this technique in Advanced Virgo is under preparation and the propagation of a stable laser through a 3-km optical fibre is one of the most problematic issues. A new technique of active phase noise cancellation based on the use of Electro Optical Modulators has been developed, and a first prototype has been successfully tested.

  16. Chromosomal mechanisms in murine radiation acute myeloid leukemogenesis

    International Nuclear Information System (INIS)

    Bouffler, S.D.; Breckon, G.; Cox, R.

    1996-01-01

    Chromosome 2 abnormalities, particularly interstitial deletions, characterize murine radiation-induced acute myeloid leukaemias (AMLs). Here, G-band analyses in CBA/H mice of early (1-6 month) post 3 Gy X-radiation events in bone marrow cells in vivo and karyotype evolution in one unusual AML are presented. The early event analysis showed that all irradiated animals carry chromosome 2 abnormalities, that chromosome 2 abnormalities are more frequent than expected and that interstitial deletions are more common in chromosome 2 than in the remainder of the genome. On presentation AML case N122 carried a t(2; 11) terminal translocation which, with passaging, evolved into a del2(C3F3). Therefore two pathways in leukaemogenesis might exist, one deletion-driven, the other terminal tranlocation-driven involving interstitial genes and terminal genes respectively of chromosome 2. As all irradiated individuals carried chromosome 2 abnormalities, the formation of these aberrations does not determine individual leukaemogenic sensitivity as only 20-25% of animals would be expected to develop AML. Similar lines of argument suggest that chromosome 2 abnormalities are necessary but not sufficient for radiation leukaemogenesis in CBA/H nor are they rate limiting in leukaemogenesis. (Author)

  17. Radiation pneumonitis and fibrosis: Mechanisms underlying its pathogenesis and implications for future research

    International Nuclear Information System (INIS)

    Tsoutsou, Pelagia G.; Koukourakis, Michael I.

    2006-01-01

    Radiation pneumonitis and subsequent radiation pulmonary fibrosis are the two main dose-limiting factors when irradiating the thorax that can have severe implications for patients' quality of life. In this article, the current concepts about the pathogenetic mechanisms underlying radiation pneumonitis and fibrosis are presented. The clinical course of fibrosis, a postulated acute inflammatory stage, and a late fibrotic and irreversible stage are discussed. The interplay of cells and the wide variety of molecules orchestrating the immunologic response to radiation, their interactions with specific receptors, and the cascade of events they trigger are elucidated. Finally, the implications of this knowledge with respect to the therapeutic interventions are critically presented

  18. The utilize of gamma radiation on the examination of mechanical properties of polymeric materials

    Directory of Open Access Journals (Sweden)

    F. Greškovič

    2012-04-01

    Full Text Available The article deals about the application area of radiation crosslinking of plastics, which follows after the injection moulding. The main objective of the presented article is the research of influence irradiation dosage on mechanical properties of materials: PP filled by 15 % of mineral filler – talc. Mechanical properties - tensile strength and impact strength by Charpy were examined in dependence on absorbed dose of the gamma rays on various conditions and were compared with non-irradiated samples. Radiation processing involves mainly the use of either electron beams from electron accelerators or gamma radiation from Cobalt-60 sources.

  19. The mechanical properties of radiation-vulcanized NR/BR blending system

    Energy Technology Data Exchange (ETDEWEB)

    Yan Aoshuang E-mail: yanas@public3.bta.net.cn; Guo Zhengtao; Li Li; Zhai Ying; Zhou Peng

    2002-03-01

    The effect of radiation dose on the mechanical properties of NR/BR blending system is reported in this paper. A comparison was made between sulphur vulcanization and radiation vulcanization for an optimal nature rubber (NR)/ butyl rubber (BR) blending ratio (60/40) at dose range from 10 to 150 kGy. The result shows that the mechanical properties, especially, tensile strength, elongation at break, and tear strength have been improved significantly by radiation-vulcanization. This finding was also proved by thermal aging experiment on a selected NR/BR blend at 70 deg. C for up to 168 h.

  20. Eletromagnetic radiation and the mechanical reactions arising from it

    CERN Document Server

    Schott, G A

    1912-01-01

    Fundamental equations of the electron theory ; transformation of the potentials ; other types of solution ; physical interpretation of the solutions obtained ; illustrative examples ; remarks on the solutions obtained and on the methods of calculating the potentials in general ; periodic motions ; on the distant field due to a moving charge ; pseudo-periodic and aperiodic motions ; on the field near the orbit of a moving charge or group ; the mechanical forces acting on electric charges in motion ; the motion of groups of electric charges ; on the Doppler effect ; on the disturbed motion of a ring of electrons ; on the field close to a point charge in motion ; the mechanical force exterted by an electron on itself ; the mechanical explanation of the electron ; the mechanics of the Lorentz electron ; problems illustrative of the motion of the Lorentz electron.

  1. Effects and mechanism of UV-B radiation on rice growth

    International Nuclear Information System (INIS)

    Gao Xiaoxiao; Gao Zhaohua; Zu Yanqun

    2009-01-01

    The enhancement of UV-B radiation influences the growth of rice and physiology in different levels and this performances as changes in morphology destroyed photosynthetic system unstable anti-oxidation system changes of endogenous hormone content exacerbated rice diseases decreased biomass and developmental stage delay. Through the establishment of the response index we can evaluate the varietal differences in responses of the rice to UV-B radiation. Reasons for such varietal differences were differences in rice gene physiology and morphology developmental stage and environmental factors. The main mechanism in responses of the rice to UV-B radiation was induction of flavonoid compounds and accumulation of anthocyanins. Based on the analysis of the influence of enhanced UV-B radiation to rice and the varietal differences in responses to UV-B radiation and mechanism of rice the direction of the further research about the relationship between the rice and UV-B was put forward

  2. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Ho; Jenrow, Kenneth A.; Brown, Stephen L. [Dept.of Radiation Oncology, Henry Ford Health System, Detroit (United States)

    2014-09-15

    To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.

  3. Possible Mechanism of Infrared Radiation Reception: The Role of the Temperature Factor

    Science.gov (United States)

    Yachnev, I. L.; Penniyaynen, V. A.; Podzorova, S. A.; Rogachevskii, I. V.; Krylov, B. V.

    2018-02-01

    The role of the temperature factor in the mechanism of reception of the CO2 laser low-power infrared (IR) radiation (λ = 10.6 μm) by a sensory neuron membrane has been studied. Organotypic embryonic tissue culture has been used to measure and estimate the temperature of a sensory ganglia monolayer exposed to radiation at different energy densities. The effects of tissue exposure to low-power IR radiation have been investigated. It has been found that inhibition of tissue growth by radiation of low energy density (10-14-10-10 J/cm2) is replaced by tissue growth (10-7-10-4 J/cm2), and again followed by inhibition in the range of 0.1-6 J/cm2. A statistically significant specific reaction to nonthermal radiation has been detected at the radiation power density of 3 × 10-10 J/cm2, which is due to activation of the Na+,K+-ATPase transducer function. The mechanisms of interaction of IR radiation with embryonic nerve tissue have been considered. Low-power IR radiation with the wavelength of 10.6 μm has been demonstrated to specifically activate a novel signal transducer function of the sodium pump, which controls the reception of nonthermal IR radiation in the energy density range of 10-14 to 10-10 J/cm2.

  4. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

    International Nuclear Information System (INIS)

    Kim, Jae Ho; Jenrow, Kenneth A.; Brown, Stephen L.

    2014-01-01

    To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.

  5. Report of National Cancer Institute symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. I. Common molecular mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.C.

    1984-01-01

    Some aspects of molecular mechanisms common to radiation and chemical carcinogenesis are discussed, particularly the DNA damage done by these agents. Emphasis is placed on epidemiological considerations and on dose-response models used in risk assessment to extrapolate from experimental data obtained at high doses to the effects from long-term, low-level exposures. 3 references, 6 figures. (ACR)

  6. Report of National Cancer Institute symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. I. Common molecular mechanisms

    International Nuclear Information System (INIS)

    Borg, D.C.

    1984-01-01

    Some aspects of molecular mechanisms common to radiation and chemical carcinogenesis are discussed, particularly the DNA damage done by these agents. Emphasis is placed on epidemiological considerations and on dose-response models used in risk assessment to extrapolate from experimental data obtained at high doses to the effects from long-term, low-level exposures. 3 references, 6 figures

  7. Investigations of mechanism of laser radiation absorption at PALS

    Czech Academy of Sciences Publication Activity Database

    Kalinowska, Z.; Kasperczuk, A.; Pisarczyk, T.; Chodukowski, T.; Gus’kov, S.Yu.; Demchenko, N. N.; Ullschmied, Jiří; Krouský, Eduard; Pfeifer, Miroslav; Skála, Jiří

    2012-01-01

    Roč. 57, č. 2 (2012), s. 227-230 ISSN 0029-5922. [International Conference on Research and Applications of Plasmas (PLASMA)2011. Warsaw, 12.09.2011-16.09.2011] R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508 Keywords : collisional absorption * crater volume * electron density distribution * interferometry * iodine laser * resonance absorption * Laser radiation * inverse bremsstrahlung * laser interferometry * PALS laser Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.507, year: 2012 http://www.nukleonika.pl/www/back/full/vol57_2012/v57n2p227f.pdf

  8. Facilitated pronociceptive pain mechanisms in radiating back pain compared with localized back pain

    DEFF Research Database (Denmark)

    Vaegter, Henrik Bjarke; Palsson, Thorvaldur Skuli; Graven-Nielsen, Thomas

    2017-01-01

    Facilitated pain mechanisms and impaired pain inhibition are often found in chronic pain patients. This study compared clinical pain profiles, pain sensitivity, as well as pro-nociceptive and anti-nociceptive mechanisms in patients with localized low back pain (n=18), localized neck pain (n=17......), low back and radiating leg pain (n=18), or neck and radiating arm pain (n=17). It was hypothesized that patients with radiating pain had facilitated pain mechanisms and impaired pain inhibition compared with localized pain patients. Cuff algometry was performed on the non-painful lower leg to assess...... threshold (HPT) at the non-painful hand were also assessed. Clinical pain intensity, psychological distress, and disability were assessed with questionnaires. TSP was increased in patients with radiating back pain compared with localized back pain (Ppain or localized low...

  9. Mechanism on radiation degradation of Si space solar cells

    International Nuclear Information System (INIS)

    Yamaguchi, Masafumi; Taylor, S.J.; Hisamatsu, Tadashi; Matsuda, Sumio

    1998-01-01

    Radiation testing of Si n + -p-p + structure space solar cells has revealed an anomalous increase in short-circuit current Isc, followed by an abrupt decrease and cell failure, induced by high fluence electron and proton irradiations. A model to explain these phenomena by expressing the change in carrier concentration p of the base region is proposed in addition to the well-known model where Isc is decreased by minority-carrier lifetime reduction with irradiation. Change in carrier concentration causes broadening the depletion layer to contribute increase in the generated photocurrent and increase in recombination-generation current in the depletion layer, and increase in the resistivity of the base layer to result in the abrupt decrease of Isc and failure of the solar cell. Type conversion from p-type to n-type in base layer has been confirmed by EBIC (electron-beam induced current) and spectral response measurements. Moreover, origins of radiation-induced defects in heavily irradiated Si and generation of deep donor defects have also been examined by using DLTS (deep level transient spectroscopy) analysis. (author)

  10. Quantum-mechanical treatment of an electron undergoing synchrotron radiation.

    Science.gov (United States)

    White, D.

    1972-01-01

    The problem of an electron moving perpendicular to an intense magnetic field is approached from the framework of quantum mechanics. A numerical solution to the related rate equations describing the probabilities of occupation of the electron's energy states is put forth along with the expected errors involved. The quantum-mechanical approach is found to predict a significant amount of energy broadening with time for an initially monoenergetic electron beam entering a region of an intense magnetic field as long as the product of initial energy and magnetic field is of order 50 MG BeV or larger.

  11. Repair mechanisms in radiation-induced cell transformation

    International Nuclear Information System (INIS)

    Elkind, M.M.; Han, A.; Hill, C.K.; Buonaguro, F.

    1983-01-01

    Our data with both low- and high-LET radiations are qualitatively similar to results obtained in vivo. This is evident, for example, in the reductions in cell transformation for protracted exposures of γ-rays. The consistencies between our results with cells and the data of others with animals lend support to Gray's hypothesis that tumorigenesis is the net effect of a low probability inductive process, and a high probability killing process. An important prediction can be made when spontaneous frequency is appreciable (e.g., 43% in the case of reticulum cell sarcoma in RFM mice). For small doses, tumorigenesis would drop provided that: (a) the cells responsible for the spontaneous incidence are present at the time of exposure; and (b) the progenitor cells of the tumor are not resistant to cell killing

  12. Radiation induced defects and thermoluminescence mechanism in aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Atobe, K.; Kobayashi, T.; Awata, T. [Naruto Univ. of Education, Tokushima (Japan); Okada, M. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Nakagawa, M. [Kagawa Univ., Faculty of Education, Takamatsu, Kagawa (Japan)

    2001-01-01

    The thermoluminescence of the irradiated aluminum oxides were measured to study the radiation induced defects and their behaviors. Neutron and {gamma}-ray irradiation were performed for a shingle crystal of the high purity aluminum oxide. The thermoluminescence glow curve and its activation energy were measured. The spectroscopy measurement on the thermoluminescence and the absorption are also carried out. The observed 430 and 340 nm peaks are discussed relating to the F{sup +} and F centers, respectively. Activation state of the F center transits to 3P state through 1P state by emitting phonons. Trapped electron on 3P state emits phonon of 2.9 eV (430 nm) during transition to the ground state. The above reaction can be written by the equation. F{sup +} + e {yields} (F){sup *} {yields} F + h{nu}(2.9 eV, 470 nm). (Katsuta, H.)

  13. Active noise canceling system for mechanically cooled germanium radiation detectors

    Science.gov (United States)

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  14. In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury

    Science.gov (United States)

    Rannou, Emilie; François, Agnès; Toullec, Aurore; Guipaud, Olivier; Buard, Valérie; Tarlet, Georges; Mintet, Elodie; Jaillet, Cyprien; Iruela-Arispe, Maria Luisa; Benderitter, Marc; Sabourin, Jean-Christophe; Milliat, Fabien

    2015-01-01

    The pathophysiological mechanism involved in side effects of radiation therapy, and especially the role of the endothelium remains unclear. Previous results showed that plasminogen activator inhibitor-type 1 (PAI-1) contributes to radiation-induced intestinal injury and suggested that this role could be driven by an endothelium-dependent mechanism. We investigated whether endothelial-specific PAI-1 deletion could affect radiation-induced intestinal injury. We created a mouse model with a specific deletion of PAI-1 in the endothelium (PAI-1KOendo) by a Cre-LoxP system. In a model of radiation enteropathy, survival and intestinal radiation injury were followed as well as intestinal gene transcriptional profile and inflammatory cells intestinal infiltration. Irradiated PAI-1KOendo mice exhibited increased survival, reduced acute enteritis severity and attenuated late fibrosis compared with irradiated PAI-1flx/flx mice. Double E-cadherin/TUNEL labeling confirmed a reduced epithelial cell apoptosis in irradiated PAI-1KOendo. High-throughput gene expression combined with bioinformatic analyses revealed a putative involvement of macrophages. We observed a decrease in CD68+cells in irradiated intestinal tissues from PAI-1KOendo mice as well as modifications associated with M1/M2 polarization. This work shows that PAI-1 plays a role in radiation-induced intestinal injury by an endothelium-dependent mechanism and demonstrates in vivo that the endothelium is directly involved in the progression of radiation-induced enteritis. PMID:26510580

  15. Study on electromagnetic radiation and mechanical characteristics of coal during an SHPB test

    Science.gov (United States)

    Chengwu, Li; Qifei, Wang; Pingyang, Lyu

    2016-06-01

    Dynamic loads provided by a Split Hopkinson pressure bar are applied in the impact failure experiment on coal with an impact velocity of 4.174-17.652 m s-1. The mechanical property characteristics of coal and an electromagnetic radiation signal can be detected and measured during the experiment. The variation of coal stress, strain, incident energy, dissipated energy and other mechanical parameters are analyzed by the unidimensional stress wave theory. It suggests that with an increase of the impact velocity, the mechanical parameters and electromagnetic radiation increased significantly and the dissipated energy of the coal sample has a high discrete growing trend during the failure process of coal impact. Combined with the received energy of the electromagnetic radiation signal, the relationship between these mechanical parameters and electromagnetic radiation during the failure process of coal burst could be analyzed by the grey correlation model. The results show that the descending order of the gray correlation degree between the mechanical characteristics and electromagnetic radiation energy are impact velocity, maximum stress, the average stress, incident energy, the average strain, maximum strain, the average strain rate and dissipation energy. Due to the correlation degree, the impact velocity and incident energy are relatively large, and the main factor affecting the electromagnetic radiation energy of coal is the energy magnitude. While the relationship between extreme stress and the radiation energy change trend is closed, the stress state of coal has a greater impact on electromagnetic radiation than the strain and destruction which can deepen the research of the coal-rock dynamic disaster electromagnetic monitoring technique.

  16. Space radiation-induced bystander effect: kinetics of biologic responses, mechanisms, and significance of secondary radiations

    International Nuclear Information System (INIS)

    Gonon, Geraldine

    2011-01-01

    Widespread evidence indicates that exposure of cell cultures to a particles results in significant biological changes in both the irradiated and non-irradiated bystander cells in the population. The induction of non-targeted biological responses in cell cultures exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation and to radiotherapy. Here, we investigated the mechanisms underlying the induction of stressful effects in confluent normal human fibroblast cultures exposed to low fluences of 1000 MeV/u iron ions (linear energy transfer (LET) 151 keV/μm), 600 MeV/u silicon ions (LET 50 keV/μm) or 290 MeV/u carbon ions (LET 13 keV/μm). We compared the results with those obtained in cell cultures exposed, in parallel, to low fluences of 0.92 MeV/u a particles (LET 109 keV/μm). Induction of DNA damage, changes in gene expression, protein carbonylation and lipid peroxidation during 24 h after exposure of confluent cultures to mean doses as low as 0.2 cGy of iron or silicon ions strongly supported the propagation of stressful effects from irradiated to bystander cells. At a mean dose of 0.2 cGy, only 1 and 3 % of the cells would be targeted through the nucleus by an iron or silicon ion, respectively. Within 24 h post-irradiation, immunoblot analyses revealed significant increases in the levels of phospho-TP53 (serine 15), p21Waf1 (also known as CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation. The magnitude of the responses suggested participation of non-targeted cells in the response. Furthermore, when the irradiated cell populations were subcultured in fresh medium shortly after irradiation, greater than expected increases in the levels of these markers were also observed during 24 h. Together, the results imply a rapidly propagated and persistent bystander effect. In situ analyses in confluent cultures showed 53BP1 foci formation, a marker of DNA damage, in

  17. Quality control methods for linear accelerator radiation and mechanical axes alignment.

    Science.gov (United States)

    Létourneau, Daniel; Keller, Harald; Becker, Nathan; Amin, Md Nurul; Norrlinger, Bernhard; Jaffray, David A

    2018-06-01

    The delivery accuracy of highly conformal dose distributions generated using intensity modulation and collimator, gantry, and couch degrees of freedom is directly affected by the quality of the alignment between the radiation beam and the mechanical axes of a linear accelerator. For this purpose, quality control (QC) guidelines recommend a tolerance of ±1 mm for the coincidence of the radiation and mechanical isocenters. Traditional QC methods for assessment of radiation and mechanical axes alignment (based on pointer alignment) are time consuming and complex tasks that provide limited accuracy. In this work, an automated test suite based on an analytical model of the linear accelerator motions was developed to streamline the QC of radiation and mechanical axes alignment. The proposed method used the automated analysis of megavoltage images of two simple task-specific phantoms acquired at different linear accelerator settings to determine the coincidence of the radiation and mechanical isocenters. The sensitivity and accuracy of the test suite were validated by introducing actual misalignments on a linear accelerator between the radiation axis and the mechanical axes using both beam steering and mechanical adjustments of the gantry and couch. The validation demonstrated that the new QC method can detect sub-millimeter misalignment between the radiation axis and the three mechanical axes of rotation. A displacement of the radiation source of 0.2 mm using beam steering parameters was easily detectable with the proposed collimator rotation axis test. Mechanical misalignments of the gantry and couch rotation axes of the same magnitude (0.2 mm) were also detectable using the new gantry and couch rotation axis tests. For the couch rotation axis, the phantom and test design allow detection of both translational and tilt misalignments with the radiation beam axis. For the collimator rotation axis, the test can isolate the misalignment between the beam radiation axis

  18. Analysis and utilization of plant antioxidative mechanism by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haeng-Soon; Kwon, Seock-Yoon; Shin, Seung-Yung [Korea Research Institute of Bioscience and Biotechnology, Taejeon (Korea)

    2001-04-01

    In an attempt to analysis the POD isoenzymes (swpa1, swpa2, swpa3, and swpn1) expression in response to gamma-irradiation in sweet potato. In suspension cells POD isoenzymes was highly expressed at 6 h postirradiation, and the transcript levels increased at 0 and 6 h at 50 Gy in plants. POD isoenzymes expression in response to irradiation appears not to be regulated in a different manner in cultured cells and plants. The gamma radiation-induced changes of proteins in tobacco suspension cells were investigated by SDS-PAGE. In tobacco cultured cells gamma irradiation did not significantly change the protein patterns. This indicates that the gamma irradiation-induced protein was not highly expressed or might be overlap with others. In the tobacco transgenic plants simultaneously expressing SOD and/or APX in chloroplast, the specific activities of SOD and APX of gamma-irradiated plants increased according to the dose of gamma-irradiation. These results indicate that antioxidative genes depends on antioxidative isoenzymes differently respond to gamma irradiation in transgenic tobacco plant lines. 35 refs., 9 figs. (Author)

  19. Radiation Effects on Mechanical Properties of LDPE/EVA blend

    International Nuclear Information System (INIS)

    Lee, Chung; Kim, Ki Yup; Im, Don Sun; Ryu, Boo Hyung

    2005-01-01

    Restricted properties and a limited use of homopolymers alone, have given rise to an exploration of composites, copolymers, blends, etc. Copolymers such as poly(ethylene-co-vinyl acetate) (EVA), poly(ethylene-co-butyl acrylate), poly(ethylene-co-ethyl acrylate) (EEA) have wide usages in different industry. Among the numerous ethylene copolymers, due to its wide range of properties depending on its vinyl acetate content, EVA has become one of the most useful copolymers in the electrical industry as a cable insulator, and in many other industries as a hot melt adhesive, a coating, etc. Several works looked at the influence of gamma rays on polymers. Zhang et al have blended EVA with PE because crosslinked PE has a low flexibility for use as a cable insulation. It was reported that the blend showed have a better elongation, flexibility and heat aging effect than PE, but its hardness and softening point were lower. In this study, the radiation degradation of LDPE/EVA blends as a function of the vinyl acetate contents was investigated by using TGA, gelation and elongation

  20. Quality assurance procedure for assessing mechanical accuracy of a radiation field center in stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Tatsumi, Daisaku; Ienaga, Akinori; Nakada, Ryosei; Yomoda, Akane; Inoue, Makoto; Ichida, Takao; Hosono, Masako

    2012-01-01

    Stereotactic radiotherapy requires a quality assurance (QA) program that ensures the mechanical accuracy of a radiation field center. We have proposed a QA method for achieving the above requirement by conducting the Winston Lutz test using an electronic portal image device (EPID). An action limit was defined as three times the standard deviation. Then, the action limits for mean deviations of the radiation field center during collimator rotation, gantry rotation, and couch rotation in clockwise and counterclockwise resulted in 0.11 mm, 0.52 mm, 0.37 mm, and 0.41 mm respectively. Two years after the QA program was launched, the mean deviation of the radiation field center during gantry rotation exceeded the above action limit. Consequently, a mechanical adjustment for the gantry was performed, thereby restoring the accuracy of the radiation field center. A field center shift of 0.5 mm was also observed after a micro multi-leaf collimator was unmounted. (author)

  1. Evaluation of the electron beam radiation effects on the mechanical properties of the polypropylene

    International Nuclear Information System (INIS)

    Souza, Clecia M.; Moura, Esperidiana A.B.; Chinellato, Anne

    2009-01-01

    This paper studied the electron beam radiation effects on the mechanical properties of the polypropylene (PP) resin. The PP resin was submitted to 150-250 kGy radiation dose, at the dose rate of 14 kGy/s, room temperature and presence of air, using a 1.5 MeV electron accelerator. After the irradiation, the irradiated and non irradiated resin samples were submitted to the mechanical testes of traction resistance and impact Izod resistance. The results shown that the traction resistance at drainage of PP samples have not experienced significant modifications (p < 0.05) after the irradiation. However, the original PP rupture resistance (non irradiated samples) presented a gain up to 100 % as function of the applied radiation dose; the percentage of deformation in the rupture presented a reduction up to 65 % and the Izod impact resistance presented a reduction up to 70 % with the increase of the radiation dose (p < 0.05)

  2. Analyses of the mechanism of lymphocytic apoptosis by radiation and its preventive factors

    International Nuclear Information System (INIS)

    Yamamoto, Shigeki; Aeba, Naomi

    1998-01-01

    Aiming to elucidate the mechanism of lymphocytic apoptosis caused by radiation, CD4 + cell line MOLT-5, which is highly sensitive to radiation was exposed to radiation in vitro and the roles of intracellular protease were investigated by biochemical techniques. Apoptotic cell death increased with time after exposure to radiation at 5 Gy. It was also found that the activities of intracellular proteases which mediate in cell death due to extracellular stimuli had risen before the cell death. Especially, CPP32-like protease activity increased before the appearance of morphological changes leading to cell death. Meanwhile, the intracellular elastase level which might increased as an increase of cell death caused by UV exposure was not changed in MOLT-4 cells exposed to radiation, but it was increased with its proliferation. The present study suggests that CPP32-like protease might be involved in the apoptotic death of CD4 + cell and MOLT-4 cell. (M.N.)

  3. Investigation of gamma-ray fingerprint identifying mechanism for the types of radiation sources

    International Nuclear Information System (INIS)

    Liu Suping; Wu Huailong; Gu Dangchang; Gong Jian; Hao Fanhua; Hu Guangchun

    2002-01-01

    Radiation fingerprints sometimes can be used to label and identify the radiation resources. For instance, in a future nuclear reduction treaty that requires verification of irreversible dismantling of reduced nuclear warheads, the radiation fingerprints of nuclear warheads are expected to play a key role in labelling and identifying the reduced warheads. It would promote the development of nuclear warheads deep-cuts verification technologies if authors start right now some investigations on the issues related to the radiation fingerprints. The author dedicated to the investigation of gamma-ray fingerprint identifying mechanism for the types of radiation resources. The purpose of the identifying mechanism investigation is to find a credible way to tell whether any two gamma-ray spectral fingerprints that are under comparison are radiated from the same resource. The authors created the spectrum pattern comparison (SPC) to study the comparability of the two radiation fingerprints. Guided by the principle of SPC, the authors programmed a software dedicated to identify the types of radiation resources. The efficiency of the software was tested by a series of experiments with some laboratory gamma-ray resources. The experiments were designed to look into the relations between comparability and radioactive statistics, and the relations between comparability and some measurement conditions such as real time, resource activity and background etc. Two main results can be drawn from the investigation: 1) it is quite feasible to use the concept of spectral comparability to answer the question whether any two gamma-ray fingerprints are identity or not; 2) the identifying mechanism can only identify the types of radiation resources, and cannot identify the individuals with the same type and small differences

  4. Radiated-induced brain injury: advance of molecular mechanisms and neuroprotection strategies

    International Nuclear Information System (INIS)

    Gao Bo; Wang Xuejian

    2007-01-01

    The underlying mechanisms of radiated-induced brain injury (RBI) remain incompletely clear. Pathophysiological data indicate that the development of RBI involves complex and dynamic interactions between neurons, glia, and vascular endothelial cells within thecentral nervous system (CNS). Radiated-induced injury in the CNS can be modulated by the therapies directed at altering steps in the cascade of events leading to the clinical expression of normal tissue injury. Some neuroprotective strategies are also addressed in the review. (authors)

  5. New approaches to chemical reaction mechanisms by means of radiation chemistry

    International Nuclear Information System (INIS)

    Fujitsuka, Mamoru; Majima, Tetsuro

    2009-01-01

    Since active species generated during radiolysis can be used as oxidative or reductive regents of various organic and inorganic compounds, radiation chemistry has been applied to wide range of research fields. We have studied charge-delocalization process in molecular systems, properties of intermediates in the excited states, mechanism of light emitting device, photo-catalyst for degradation of toxic compounds and so on by means of radiation chemistry. In the present paper, we summarize our recent research results. (author)

  6. Nano mechanical properties of carbon films modified by ion radiation

    International Nuclear Information System (INIS)

    Foerster, C.E.; Serbena, F.C.; Lepienski, C.M.; Odo, G.Y.; Zawislak, F.C.; Lopes, J.M.J.; Baptista, D.L.; Garcia, I.T.S.

    2000-01-01

    In present work it is measured hardness, Young modulus and friction coefficient values for different types of carbon films. These films were submitted to different ion bombardment conditions (energy and fluencies). The mechanical behavior was obtained by nano indentation technique and analyzed by the Oliver/Pharr method. For friction coefficient determination the nano scratch procedure is used. Pristine C 60 films (fullerenes) has a hardness of 0.33 GPa. After irradiation with different ions (He, N and Bi), the hardness raise to about 14 GPa and the Young modulus change from 20 to about 200 GPa. For photoresist film AZ-1350J irradiation with Ar and He change the hardness from 0.4 to about 14 GPa and the Young modulus raise from 4 to 80 GPa. In a-C-H the hardness change from 3.5 to 11 GPa when submitted to N irradiation. In PPA films the hardness value raise from 0.5 to 11 GPa after irradiation with Ar. These mechanical and tribological results were analyzed in terms of deposited energy by the ion irradiation and compared with those presented in the literature. (author)

  7. Radiation degradation in the mechanical properties of Polyetheretherketone–alumina composites

    International Nuclear Information System (INIS)

    Lawrence, Falix; Mallika, C.; Kamachi Mudali, U.; Natarajan, R.; Ponraju, D.; Seshadri, S.K.; Sampath Kumar, T.S.

    2012-01-01

    Polyetheretherketone (PEEK) is extensively employed in corrosive and radiation environments. To improve the radiation tolerance of PEEK in the presence of high energetic radiation, PEEK was reinforced with micron sized alumina powder (5–25% by weight) and PEEK–alumina composite sheets fabricated were irradiated to 10 MGy. Mechanical properties of the irradiated composites revealed significant reduction in the degradation of PEEK with addition of alumina as the polymer reinforced with ceramic additives is expected to increase the interface area of the constituents in the system resulting in an improvement in the performance of the reinforced material.

  8. Mechanical properties of polyamide 6,6/low density polyethylene blend by ionizing radiation

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Feitosa, Marcos A.F.

    2007-01-01

    Polymer blending is a growing scientific and commercial development activity. In most of the cases, polymeric blends are formed by thermodynamically immiscible components. Such blends require the use of compatibilizers that, often, are copolymers, graft copolymers or any mean that improves the dispersion and adhesion of the blend phases. Compatibility of a polymer blend plays an important role in determining the blend properties for its end use. In this work, the improvement of mechanical properties of PA 6,6/LDPE 75/25% wt/wt composition blend, using electron radiation, was studied. Samples for mechanical test were melt-mixed in an extruder and then injection-molded. These samples were electron irradiated to overall doses of 50, 100, 150, 200 and 250 kGy. Tensile measurements have shown that the strength at break increases with an increase of radiation dose. Hardness Shore D measurements show that this property also increases as a function of radiation dose. On the other hand, Impact Izod tests show that the resistance to impact decreases with the increase of radiation dose. The behavior of these bulk and surface properties implies that ionizing radiation produces changes in the mechanical performance of the irradiated blend due to a combined radiation inducing effects, cross-linking and the compatibility of blend components. (author)

  9. Detector design studies for a cubic kilometre Deep Sea neutrino telescope - KM3NeT

    International Nuclear Information System (INIS)

    Carr, J; Dornic, D; Cohen, F; Jouvenot, F; Maurin, G; Naumann, C

    2008-01-01

    The KM3NeT consortium is currently preparing the construction of a cubic-kilometre sized neutrino telescope in the Mediterranean Sea as a continuation of the previous efforts by the three Mediterranean projects ANTARES, NEMO and NESTOR and as a counterpart to the South-Pole based IceCube detector. The main physics goals of KM3NeT include the detection of neutrinos from astrophysical sources such as active galactic nuclei, supernova remnants and gamma-ray bursts as well as the search for new physics, such as neutrino signals from neutralino annihilation. A key point during the early phases of this experiment is the determination of the ideal detector layout as well as of important design criteria such as required spatial and temporal resolution of the sensor elements, to optimise the sensitivity in the energy range of interest. For this purpose, several independent Monte-Carlo studies using a range of possible detector configurations are being performed. In this presentation, one of these studies, using the fast and flexible Mathematica-based simulation and reconstruction package NESSY, is described in more detail together with expected results for some exemplary detector configurations.

  10. A pilot survey for transients and variables with the Australian Square Kilometre Array Pathfinder

    Science.gov (United States)

    Bhandari, S.; Bannister, K. W.; Murphy, T.; Bell, M.; Raja, W.; Marvil, J.; Hancock, P. J.; Whiting, M.; Flynn, C. M.; Collier, J. D.; Kaplan, D. L.; Allison, J. R.; Anderson, C.; Heywood, I.; Hotan, A.; Hunstead, R.; Lee-Waddell, K.; Madrid, J. P.; McConnell, D.; Popping, A.; Rhee, J.; Sadler, E.; Voronkov, M. A.

    2018-05-01

    We present a pilot search for variable and transient sources at 1.4 GHz with the Australian Square Kilometre Array Pathfinder (ASKAP). The search was performed in a 30 deg2 area centred on the NGC 7232 galaxy group over 8 epochs and observed with a near-daily cadence. The search yielded nine potential variable sources, rejecting the null hypothesis that the flux densities of these sources do not change with 99.9% confidence. These nine sources displayed flux density variations with modulation indices m ≥ 0.1 above our flux density limit of ˜1.5 mJy. They are identified to be compact AGN/quasars or galaxies hosting an AGN, whose variability is consistent with refractive interstellar scintillation. We also detect a highly variable source with modulation index m > 0.5 over a time interval of a decade between the Sydney University Molonglo Sky Survey (SUMSS) and our latest ASKAP observations. We find the source to be consistent with the properties of long-term variability of a quasar. No transients were detected on timescales of days and we place an upper limit ρt pilot survey, but better sensitivity, and will detect and monitor rarer brighter events.

  11. The prospects of pulsar timing with new-generation radio telescopes and the Square Kilometre Array

    Science.gov (United States)

    Stappers, B. W.; Keane, E. F.; Kramer, M.; Possenti, A.; Stairs, I. H.

    2018-05-01

    Pulsars are highly magnetized and rapidly rotating neutron stars. As they spin, the lighthouse-like beam of radio emission from their magnetic poles sweeps across the Earth with a regularity approaching that of the most precise clocks known. This precision combined with the extreme environments in which they are found, often in compact orbits with other neutron stars and white dwarfs, makes them excellent tools for studying gravity. Present and near-future pulsar surveys, especially those using the new generation of telescopes, will find more extreme binary systems and pulsars that are more precise `clocks'. These telescopes will also greatly improve the precision to which we can measure the arrival times of the pulses. The Square Kilometre Array will revolutionize pulsar searches and timing precision. The increased number of sources will reveal rare sources, including possibly a pulsar-black hole binary, which can provide the most stringent tests of strong-field gravity. The improved timing precision will reveal new phenomena and also allow us to make a detection of gravitational waves in the nanohertz frequency regime. It is here where we expect to see the signature of the binary black holes that are formed as galaxies merge throughout cosmological history. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  12. A reduced estimate of the number of kilometre-sized near-Earth asteroids.

    Science.gov (United States)

    Rabinowitz, D; Helin, E; Lawrence, K; Pravdo, S

    2000-01-13

    Near-Earth asteroids are small (diameters Earth (they come within 1.3 AU of the Sun). Most have a chance of approximately 0.5% of colliding with the Earth in the next million years. The total number of such bodies with diameters > 1 km has been estimated to be in the range 1,000-2,000, which translates to an approximately 1% chance of a catastrophic collision with the Earth in the next millennium. These numbers are, however, poorly constrained because of the limitations of previous searches using photographic plates. (One kilometre is below the size of a body whose impact on the Earth would produce global effects.) Here we report an analysis of our survey for near-Earth asteroids that uses improved detection technologies. We find that the total number of asteroids with diameters > 1 km is about half the earlier estimates. At the current rate of discovery of near-Earth asteroids, 90% will probably have been detected within the next 20 years.

  13. Mechanisms of cardiac transplantation tolerance in syngeneic rat radiation chimeras

    International Nuclear Information System (INIS)

    Moran, T.M.

    1981-01-01

    Seventy-five percent of adult LEW rats, lethally irradiated (860 R), transplanted with an RT-1 incompatible Wistar Furth (WF) heart or kidney and repopulated on day 2 with a 4:1 mixture of syngeneic thymus and bone marrow cells accept these grafts. In order to look at the ability of animals tolerating WF organ grafts to respond against WF spleen cells in vitro we developed a rat mixed lymphocyte culture. Tolerant animals were tested for the ability to respond to donor antigens and approximately half of the 50 animals tested, were responsive. We attempted to demonstrate suppressor cells which might be responsible for maintaining tolerance in the nonresponders. Neither mixtures at the sensitization or the effector level suggested that tolerance was being maintained by a suppressor cell. An in vivo assay which tested the ability of various cell populations to affect the survival of allogeneic hearts transplanted into sublethally irradiated recipients was then employed. Tolerance is induced using this protocol in a manner similar or identical to tolerance produced by neonatal injection of antigen. This tolerance might be maintained in part by suppressor cells which prevents the generation of clones of cells reactive against the heart donor. The mechanism of tolerance in rats with demonstrable clones of reactive cells remains to be determined

  14. Effect of Ionizing Beta Radiation on the Mechanical Properties of Poly(ethylene under Thermal Stress

    Directory of Open Access Journals (Sweden)

    Bednarik Martin

    2016-01-01

    Full Text Available It was found in this study, that ionizing beta radiation has a positive effect on the mechanical properties of poly(ethylene. In recent years, there have been increasing requirements for quality and cost effectiveness of manufactured products in all areas of industrial production. These requirements are best met with the polymeric materials, which have many advantages in comparison to traditional materials. The main advantages of polymer materials are especially in their ease of processability, availability, and price of the raw materials. Radiation crosslinking is one of the ways to give the conventional plastics mechanical, thermal, and chemical properties of expensive and highly resistant construction polymers. Several types of ionizing radiation are used for crosslinking of polymers. Each of them has special characteristics. Electron beta and photon gamma radiation are used the most frequently. The great advantage is that the crosslinking occurs after the manufacturing process at normal temperature and pressure. The main purpose of this paper has been to determine the effect of ionizing beta radiation on the tensile modulus, strength and elongation of low and high density polyethylene (LDPE and HDPE. These properties were examined in dependence on the dosage of the ionizing beta radiation (non-irradiated samples and those irradiated by dosage 99 kGy were compared and on the test temperature. Radiation cross-linking of LDPE and HDPE results in increased tensile strength and modulus, and decreased of elongation. The measured results indicate that ionizing beta radiation treatment is effective tool for improvement of mechanical properties of LDPE and HDPE under thermal stress.

  15. Radiation hormesis in plant - Analysis and utilization of plant antioxidative mechanism by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haeng Soon; Kwon, Seok Yoon; Shin, Seung Yung [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    2000-04-01

    In the tobacco transgenic plants simultaneously expressing SOD and APX in chloroplast, the specific activities of SOD and APX (CA, AM, C/A, A/C) were much higher than in the transgenic plants expressing SOD (CuZnSOD, MnSOD) or APX alone, respectively. Plant growth was severely inhibited showing a well correlation with the dose of gamma-irradiation. In 70 Gy-irradiation, C/A plants showed a slight resistance to gamma radiation. The stAPX gene in tobacco was not as strongly affected by gamma irradiation. After irradiation, the stAPX transcript level decreased at 2 h, then slightly increased at 6 h and the level was maintained until 48 h. Catalase transcripts level decreased at the early time point but at the late time points the level slightly increased. The gamma radiation-induced changes of proteins in tobacco suspension cells were investigated by two-dimensional gel electrophoresis. In the gamma-irradiated cells, a few polypeptides of were newly synthesized, increased, and decreased by comparing total proteins from gamma-irradiated and non-irradiated tobacco suspension cells. With the isolation and analysis of these polypeptides, irradiation-induced proteins could be developed. 35 refs., 5 figs. (Author)

  16. Radiation health consequences for astronauts: mechanisms, monitoring and prevention

    Science.gov (United States)

    Neyfakh, E.

    During space flights crews are exposed chronically to uneven irradiation of enhanced bioefficiency following with significant elevation for chromosomal aberrations as minimum. To protect in space rationally monitoring and preventing of health radiogenic individual primary consequences for astronauts are of high importance. Majority of Chernobyl-touched population has some common etiologic radiogenic mechanisms and radioloads with astronauts ones during long-term missions and former is able to be used well as the close ground-level model. Primary radiogenic deviations. Two radiogenic pathologies as lipoperoxic ( LP ) stress with coupled deficits for essential bioantioxidants ( BAO ) were typical for chronic low-dose Chernobyl-touched contingents. When BAO expenditure had led to their subnormal levels, radiogenic free radical chain -b ranched LP processes occurred in vivo hyperbolically. Catabolites and their free radicals of the abnormal LP cascade are known to be toxic, mutagenic / carcinogenic and teratogenic factors as such, as they are for retinol and tocopherol deficiencies. Both coupled pathogenic factors interrelated synergistically. Simultaneous dysbalances for LP and / or BAO systems were evaluated as the cause and markers for metabolic disregulations. Human LP stress was proved to be the most radiosensible known marker to mo nitor least invasively of blood microsamples in a ground lab via the developed PC Program. But for capsule conditions the best approach is assumed to be LP monitoring via skin ultraweak green-blue chemiluminescence ( CL ) caused by recombination of peroxyl radicals. CL from surfaces of organs was embedded first ( E. Neyfakh, 1964 - 71 ) to reflect their internal LP velocities in vivo and it is the non-invasive on-line simple method of the highest sensitivity, supplying with data transmissible to the ground directly. Related deviations. a) Radiogenic hypermutagenesis: LP catabolites and their free radicals are responsible for direct DNA

  17. Radiation-thermal degradation of PE and PVC: Mechanism of synergism and dose rate effects

    Science.gov (United States)

    Clough, Roger L.; Gillen, Kenneth T.

    Polyethylene insulation and polyvinyl chloride jacketing materials that had been in use in a nuclear application were recently found to be substantially deteriorated. The damage had occurred under conditions where both the total estimated dose (about 2.5 Mrad) and the operating temperatures (about 43°C average) seemed relatively moderate. These results prompted us to initiate a program to study polyvinyl chloride and polyethylene degradation under conditions of combined γ-radiation and elevated temperature environments. A number of interesting aging effects were observed, including 1) a striking synergism between radiation and temperature and 2) strong dose-rate dependent effects which occur over a wide range of dose rates. The aging effects are explained in terms of a chain branching degradation mechanism involving thermally induced breakdown of peroxides which are formed in reactions initiated by the radiation. Evidence for this mechanism is derived from infrared spectra, from sequential radiation-elevated temperature experiments including experiments under inert atmosphere, from activation energy estimates and from a new technique involving treatment of intact samples with PH 3 for chemical reduction of peroxides. The results of our studies raise significant doubts about the utility of earlier compilations which purportedly serve as radiation life expectancy guides by indicating "tolerable radiation doses" for a variety of polymers.

  18. Infusion of donor lymphocytes into stable canine radiation chimeras: implications for mechanism of transplantation tolerance

    International Nuclear Information System (INIS)

    Weiden, P.L.; Storb, R.; Tsoi, M.S.; Graham, T.C.; Lerner, K.G.; Thomas, E.D.

    1976-01-01

    Canine radiation chimeras were used to investigate further mechanism(s) responsible for maintaining the stable chimeric state. In an attempt to elucidate the nature of this postulated active mechanism, the cytotoxicity of donor lymphocytes for fibroblasts of the chimera and the presence or absence of serum-blocking factors were assessed in vitro by using a cellular inhibition (CI) assay. The presence of serum-blocking factors did not protect against the development of significant GVHD in two chimeras (fatal in one). GVHD did not occur in four other chimeras after infusion of cytotoxic donor lymphocytes despite the absence of serum-blocking factors. These and previous results suggest that serum-blocking factors are not the mechanism suppressing the development of GVHD in canine radiation chimeras, and raise the possibility that a suppressor cell population may be responsible for preventing GVHD

  19. Radiation-induced genomic instability: Are epigenetic mechanisms the missing link?

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Purpose: This review examines the evidence for the hypothesis that epigenetics are involved in the initiation and perpetuation of radiation-induced genomic instability (RIGI). Conclusion: In addition to the extensively studied targeted effects of radiation, it is now apparent that non-targeted delayed effects such as RIGI are also important post-irradiation outcomes. In RIGI, unirradiated progeny cells display phenotypic changes at delayed times after radiation of the parental cell. RIGI is thought to be important in the process of carcinogenesis, however, the mechanism by which this occurs remains to be elucidated. In the genomically unstable clones developed by Morgan and colleagues, radiation-induced mutations, double-strand breaks, or changes in mRNA levels alone could not account for the initiation or perpetuation of RIGI. Since changes in the DNA sequence could not fully explain the mechanism of RIGI, inherited epigenetic changes may be involved. Epigenetics are known to play an important role in many cellular processes and epigenetic aberrations can lead to carcinogenesis. Recent studies in the field of radiation biology suggest that the changes in methylation patterns may be involved in RIGI. Together these clues have led us to hypothesize that epigenetics may be the missing link in understanding the mechanism behind RIGI.

  20. Effect of chronic forced swimming stress on whole brain radiation induced cognitive dysfunction and related mechanism

    International Nuclear Information System (INIS)

    Zhang Yuan; Sun Rui; Zhu Yaqun; Zhang Liyuan; Ji Jianfeng; Li Kun; Tian Ye

    2014-01-01

    Objective: To explore whether chronic forced swimming stress could improve whole brain radiation induced cognitive dysfunction and possible mechanism. Methods: Thirty-nine one month old male Sprague-Dawley rats were randomized into sham control group(C), swimming group(C-S), radiation group(R), and radiation plus swimming group(R-S). Radiation groups were given a single dose of 20 Gy on whole-brain. Rats in the swimming groups were trained with swimming of 15 min/d, 5 d/w. Rat behavior was performed 3 months after radiation in an order of free activity in an open field and the Morris water maze test including the place navigation and spatial probe tests. Then, the protein expressions of BDNF, P-ERK, T-ERK, P-CREB and T-CREB in the rat hippocampus tissue were assayed by Western blot. Results: On the day 2, in the place navigation test of Morris water maze, the latency of swimming group was significantly shorter than that of sham group, the latency of sham group was significantly shorter than that of radiation group, and the latency of radiation swimming group was significantly shorter than that of radiation group(P 0.05). Western blot assay showed that the expressions of BDNF and its downstream signals including P-ERK and P-CREB were markedly reduced by radiation (P < 0.05), but this reduction was attenuated by the chronic forced swimming stress. Conclusion: The chronic forced swimming stress could improve whole brain radiation induced cognitive dysfunction by up-regulating the expressions of BDNF and its downstream signal molecules of P-ERK and P-CREB in hippocampus. (authors)

  1. Effect of Flyash Addition on Mechanical and Gamma Radiation Shielding Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Kanwaldeep Singh

    2014-01-01

    Full Text Available Six concrete mixtures were prepared with 0%, 20%, 30%, 40%, 50%, and 60% of flyash replacing the cement content and having constant water to cement ratio. The testing specimens were casted and their mechanical parameters were tested experimentally in accordance with the Indian standards. Results of mechanical parameters show their improvement with age of the specimens and results of radiation parameters show no significant effect of flyash substitution on mass attenuation coefficient.

  2. Microwave radiation mechanism in a pulse-laser-irradiated Cu foil target revisited

    International Nuclear Information System (INIS)

    Chen Ziyu; Li Jianfeng; Li Jun; Peng Qixian

    2011-01-01

    The microwave radiation mechanism in a Cu-based foil target irradiated by an intense laser pulse has been investigated. Microwave emission in the frequency range 0.5-4 GHz has been observed from a 200 ps laser pulse of intensity about 10 12 W cm -2 normally incident on the target surface. The total microwave power and energy emitted from the interaction were found to be about 0.4 W and 2 nJ, respectively, corresponding to an efficiency of coupling laser energy to microwave energy of 2x10 -8 . The result agrees well with quadrupole radiation calculated based on a circuit model of a laser plasma, which indicates that the radiative process can be explained by magnetic dipole or electric quadrupole radiation from the laser-produced symmetric poloidal current distribution at the plasma-target interface.

  3. Microwave radiation mechanism in a pulse-laser-irradiated Cu foil target revisited

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ziyu; Li Jianfeng; Li Jun; Peng Qixian, E-mail: ziyuch@gmail.com [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2011-05-01

    The microwave radiation mechanism in a Cu-based foil target irradiated by an intense laser pulse has been investigated. Microwave emission in the frequency range 0.5-4 GHz has been observed from a 200 ps laser pulse of intensity about 10{sup 12} W cm{sup -2} normally incident on the target surface. The total microwave power and energy emitted from the interaction were found to be about 0.4 W and 2 nJ, respectively, corresponding to an efficiency of coupling laser energy to microwave energy of 2x10{sup -8}. The result agrees well with quadrupole radiation calculated based on a circuit model of a laser plasma, which indicates that the radiative process can be explained by magnetic dipole or electric quadrupole radiation from the laser-produced symmetric poloidal current distribution at the plasma-target interface.

  4. Cellular and molecular mechanisms in malignant transformation of diploid rodent and human cells by radiation

    International Nuclear Information System (INIS)

    Borek, C.

    1985-01-01

    The development of cell culture systems has made it possible to probe into the effects of radiation at a cellular and molecular level, under defined conditions where homeostatic mechanisms do not prevail. Using in vitro systems free of host-medicated influences, one can assess qualitatively and quantitatively dose-related and time-dependent interactions of radiation with single cells and to evaluate the influences of agents that may enhance or inhibit the oncogenic potential of radiation. These systems are useful in pragmatic studies where dose response relationships and cancer risk estimates are assessed with particular focus on the low dose range of radiation where epidemiological and animal studies are limiting. The in vitro systems serve well also in mechanistic studies where cellular and molecular processes underlying transformation can be elucidated and where the role of modulating factors which determine the frequency and quality of these events can be investigated

  5. Late radiation-induced heart disease after radiotherapy. Clinical importance, radiobiological mechanisms and strategies of prevention

    International Nuclear Information System (INIS)

    Andratschke, Nicolaus; Maurer, Jean; Molls, Michael; Trott, Klaus-Ruediger

    2011-01-01

    The clinical importance of radiation-induced heart disease, in particular in post-operative radiotherapy of breast cancer patients, has been recognised only recently. There is general agreement, that a co-ordinated research effort would be needed to explore all the potential strategies of how to reduce the late risk of radiation-induced heart disease in radiotherapy. This approach would be based, on one hand, on a comprehensive understanding of the radiobiological mechanisms of radiation-induced heart disease after radiotherapy which would require large-scale long-term animal experiments with high precision local heart irradiation. On the other hand - in close co-operation with mechanistic in vivo research studies - clinical studies in patients need to determine the influence of dose distribution in the heart on the risk of radiation-induced heart disease. The aim of these clinical studies would be to identify the critical structures within the organ which need to be spared and their radiation sensitivity as well as a potential volume and dose effect. The results of the mechanistic studies might also provide concepts of how to modify the gradual progression of radiation damage in the heart by drugs or biological molecules. The results of the studies in patients would need to also incorporate detailed dosimetric and imaging studies in order to develop early indicators of impending radiation-induced heart disease which would be a pre-condition to develop sound criteria for treatment plan optimisation.

  6. Radiation damage studies on the optical and mechanical properties of plastic scintillators

    International Nuclear Information System (INIS)

    Mizue Hamada, Margarida; Roberto Rela, Paulo; Eduardo da Costa, Fabio; Henrique de Mesquita, Carlos

    1999-01-01

    This paper describes the radiation damage studies on a large volume plastic scintillator based in polystyrene doped with PPO and POPOP. The consequences on their mechanical and scintillation properties were evaluated before and after irradiation with different dose rates of 60 Co gamma radiation, in several doses. The optical results show a significant difference in the radiation susceptibility, when the plastic scintillator is irradiated at low rate (0.1 kGy/h) with that irradiated at high dose rate (85 kGy/h). The losses in the optical and mechanical properties increase as the irradiation dose is increased. The damage evaluated by the transmittance, emission intensity, pulse height and tensile strength was normalized as a damage fraction and fitted by a bi-exponential function. It was observed that the damage for irradiation is not permanent and it obeys a bi-exponential function

  7. Influence of ionizing radiation on the mechanical properties of BisGMA/TEGDMA based experimental resin

    International Nuclear Information System (INIS)

    LMP, Campos; Boaro, LC; LKG, Santos; Parra, DF; Lugão, AB

    2015-01-01

    Dental restorative composites are activated by visible light and the polymerization process, known as direct technique, is initiated by absorbing light in a specific wavelength range (450–500 nm). However this technique presented some disadvantages. If light is not inserted correctly, layers uncured can cause countless damage to restoration, especially with regard to mechanical properties. A clinical alternative used to reduce the shortcomings of direct application is the use of composite resins for indirect application. These composites are adaptations of resins prepared for direct use, with differences mainly in the healing process. Besides the traditional photoactivation, indirect application composites may be submitted to particular curing conditions, such as a slow curing rate, heating, vacuum, and inert-gas pressure leading to an oxygen-free environment. However few studies have been conducted on the process of post-curing by ionizing radiation at low doses. On this sense the purpose of this study was to evaluate possible interactions of ionizing radiation in the post-curing process of the experimental composites based on BisGMA/TEGDMA filled with silica Aerosil OX-50 silanized. Characterization of the experimental composites was performed by thermogravimetry analysis, infrared spectroscopy, elastic modulus and flexural strength. Statistical analysis of results was calculated by one-way ANOVA/Tukey's test. Cross-linking of the polymeric matrix caused by ionizing radiation, influenced the thermal stability of irradiated specimens. FTIR analysis showed that the ionizing radiation induced a post-cure reaction in the specimens. The irradiation dose influenced directly the mechanical properties that showed a strong positive correlation between flexural strength and irradiation and between modulus strength and irradiation. - Highlights: • Interactions of ionizing radiation in BisGMA/TEGDMA experimental dental composites filled with sylanized silica.

  8. Low dose rate radiation favors apoptosis as a mechanism of cell death

    International Nuclear Information System (INIS)

    Murtha, Albert D.; Rupnow, Brent; Knox, Susan J.

    1997-01-01

    Purpose/Objective: Radioimmunotherapy (RIT) has demonstrated promising results in the treatment of chemotherapy refractory non-Hodgkin's lymphoma. The radiation associated with this therapy is emitted in a continuous fashion at low dose rates (LDR). Results from studies comparing the relative efficacy of LDR radiation and high dose rate (HDR) radiation on malignant cell killing have been variable. This variability may be due in part to the relative contribution of different mechanisms of cell killing (apoptosis or necrosis) at different dose rates. Materials and Methods: In order to test this hypothesis, the relative efficacy of LDR (16.7 cGy/hr) and HDR radiation (422 cGy/min) were compared using a human B cell lymphoma cell line (PW) and a PW clone (c26) stably transfected to overexpress the anti-apoptotic gene Bcl-2. The endpoints evaluated included the relative amount of cell killing, the fraction of cell killing attributable to apoptosis versus necrosis, and the impact of Bcl-2 overexpression on both overall cell killing and the fraction of killing attributable to apoptosis. Results: HDR and LDR radiation resulted in similar overall cell killing in the PW wild type cell line. In contrast, killing of clone c26 cells was dose rate dependent. One third less killing was seen following LDR irradiation of c26 cells compared with equivalent doses of HDR radiation. Analysis of the relative mechanisms of killing following LDR irradiation revealed a relative increase in the proportion of killing attributable to apoptosis. Conclusion: These findings support the hypothesis that in PW cells, LDR radiation appears to be highly dependent on apoptosis as a mechanism of cell death. These findings may have implications for the selection of patients for RIT, and for the treatment of tumors that overexpress Bcl-2. They may also help form the basis for future rational design of effective combined modality therapies utilizing RIT

  9. Scientific conception on mechanisms of calcium homeostasis disorders under low dose effect of ionizing radiation

    International Nuclear Information System (INIS)

    Abylaev, Zh.A.; Dospolova, Zh.G.

    1997-01-01

    Scientific conception of probable consequences of calcium homeostasis disorders in personals, exposed to low dose effect of ionizing radiation has been developed. Principle positions of the conception is that pathologic processes development have different ways of conducting. During predominance of low doses of external gamma-radiation there is leading pathologic mechanism (mechanism 1) of disorder neuroendocrine regulation of both the calcium and the phosphor. In this case sicks have disorders of both the vegetative tonus and the endocrine status. Under internal irradiation (mechanism 2) there is disfunction of organs and systems (bore changes and disorders of hormone status). These changes are considered as consequence of negative action on organism of incorporated long-living radionuclides. Radio-toxic factors action (mechanism 3) provokes the excess of hormones, which acting on bone tissue and could be cause of steroid osteoporosis. Influence of chronic stress factor (mechanism 4) enlarges and burden action on organism of low radiation doses. It is emphasized, that decisive role in development of pathologic processes has mechanism of disturbance of neuroendocrine regulation of calcium exchange

  10. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

    Science.gov (United States)

    Hensen, B.; Bernien, H.; Dréau, A. E.; Reiserer, A.; Kalb, N.; Blok, M. S.; Ruitenberg, J.; Vermeulen, R. F. L.; Schouten, R. N.; Abellán, C.; Amaya, W.; Pruneri, V.; Mitchell, M. W.; Markham, M.; Twitchen, D. J.; Elkouss, D.; Wehner, S.; Taminiau, T. H.; Hanson, R.

    2015-10-01

    More than 50 years ago, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory: in any local-realist theory, the correlations between outcomes of measurements on distant particles satisfy an inequality that can be violated if the particles are entangled. Numerous Bell inequality tests have been reported; however, all experiments reported so far required additional assumptions to obtain a contradiction with local realism, resulting in `loopholes'. Here we report a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We use an event-ready scheme that enables the generation of robust entanglement between distant electron spins (estimated state fidelity of 0.92 +/- 0.03). Efficient spin read-out avoids the fair-sampling assumption (detection loophole), while the use of fast random-basis selection and spin read-out combined with a spatial separation of 1.3 kilometres ensure the required locality conditions. We performed 245 trials that tested the CHSH-Bell inequality S memory in the devices. Our data hence imply statistically significant rejection of the local-realist null hypothesis. This conclusion may be further consolidated in future experiments; for instance, reaching a value of P = 0.001 would require approximately 700 trials for an observed S = 2.4. With improvements, our experiment could be used for testing less-conventional theories, and for implementing device-independent quantum-secure communication and randomness certification.

  11. Molecular mechanism of apoptosis and characterization of apoptosis induced by radiation

    International Nuclear Information System (INIS)

    Li Yumin; Zhang Yuguang; Li Yukun

    1999-01-01

    The major discoveries of apoptosis research in recent years were reviewed briefly. The mechanisms of caspases/ICE gene family and bcl-2 gene family on apoptosis were analyzed. And the signal transduction pathway of apoptosis found currently has been summarized. The characterizations of apoptosis induced by radiation such as time-effects, dose-effects and the radiosensibility were summed up

  12. X-ray Radiation Mechanisms and the Beaming Effect of Hot Spots ...

    Indian Academy of Sciences (India)

    Astr. (2011) 32, 193–196 c Indian Academy of Sciences. X-ray Radiation Mechanisms and the Beaming Effect of Hot Spots and Knots in AGN Jets. Jin Zhang1,∗. , Jin-Ming Bai2, Liang Chen2 & Enwei Liang3. 1College of Physics and Electronic Engineering, Guangxi Teachers Education University,. Nanning 530001, China.

  13. Adaptation of the black yeast Wangiella dermatitidis to ionizing radiation: molecular and cellular mechanisms.

    Directory of Open Access Journals (Sweden)

    Kelly L Robertson

    Full Text Available Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS, increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and

  14. Applications of Laminar Weak-Link Mechanisms for Ultraprecision Synchrotron Radiation Instruments

    International Nuclear Information System (INIS)

    Shu, D.; Toellner, T. S.; Alp, E. E.; Maser, J.; Ilavsky, J.; Shastri, S. D.; Lee, P. L.; Narayanan, S.; Long, G. G.

    2007-01-01

    Unlike traditional kinematic flexure mechanisms, laminar overconstrained weak-link mechanisms provide much higher structure stiffness and stability. Using a laminar structure configured and manufactured by chemical etching and lithography techniques, we are able to design and build linear and rotary weak-link mechanisms with ultrahigh positioning sensitivity and stability for synchrotron radiation applications. Applications of laminar rotary weak-link mechanism include: high-energy-resolution monochromators for inelastic x-ray scattering and x-ray analyzers for ultra-small-angle scattering and powder-diffraction experiments. Applications of laminar linear weak-link mechanism include high-stiffness piezo-driven stages with subnanometer resolution for an x-ray microscope. In this paper, we summarize the recent designs and applications of the laminar weak-link mechanisms at the Advanced Photon Source

  15. Radiation and the lung: a reevaluation of the mechanisms mediating pulmonary injury

    International Nuclear Information System (INIS)

    Morgan, Graeme W.; Breit, Samuel N.

    1995-01-01

    Recent data from several investigators, including our unit, have provided additional information on the etiology of radiation-induced lung damage. These data suggest that there are two quite separate and distinct mechanisms involved: (a) classical radiation pneumonitis, which ultimately leads to pulmonary fibrosis is primarily due to radiation-induced local cytokine production confined to the field of irradiation; and (b) sporadic radiation pneumonitis, which is an immunologically mediated process resulting in a bilateral lymphocytic alveolitis that results in an 'out-of-field' response to localized pulmonary irradiation. Both animal experiments and human studies show that classical radiation pneumonitis has a threshold dose and a narrow sigmoid dose-response curve with increasing morbidity and mortality over a very small dose range. Clinical pneumonitis rarely causes death, whereas in the animal and human studies of classical radiation pneumonitis, all subjects will eventually suffer irreversible pulmonary damage and death. The description of classical radiation pneumonitis is that of an acute inflammatory response to lung irradiation, which is confined to the area of irradiation. Recent studies have also shown that irradiation induces gene transcription and results in the induction and release of proinflammatory cytokines and fibroblast mitogens in a similar fashion to other chronic inflammatory states, and which ultimately results in pulmonary fibrosis. The description of classical radiation pneumonitis does not adequately explain the following observed clinical characteristics: (a) the unpredictable and sporadic onset; (b) the occurrence in only a minority of patients; (c) the dyspnoea experienced, which is out of proportion to the volume of lung irradiated; and (d) the resolution of symptoms without sequelae in the majority of patients. We have demonstrated a bilateral lymphocytic alveolitis of activated T lymphocytes and a diffuse increase in gallium lung

  16. The analysis on the basic technology and radiation induced voltaic mechanism for nuclear battery

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, B. O.; Min, B. T.; Kang, H. Y.; Kim, B. H.; Park, J. H.; Seo, H. S.

    2000-12-01

    Present study is for nuclear battery technology directly converting radiation energy to electricity among various nuclear energy, and it is anticipated that an interest in direct conversion of nuclear energy into electricity shall be increased as the conversion efficiency enhances. The battery should promise cheap, reliable power from a package small and light enough to be mobile, and with energy density great enough for use as a space based power supply. Various radiation-electricity conversion mechanism so far have been reported since G.J. Moseley reported the operation of a high-voltage nuclear battery using radium. The most important conversion mechanisms are RTG (Radioisotope Thermoelectric Generator) converting the heat produced from radioisotope to electricity using the temperature difference, and NRG (Nuclear Resonance Generator) using free electrons from the collision between α, βrays and copper coil. It is well known that RTG and NRG mechanisms are most practical way because their efficiencies high. The basic technology on radiation-electricity conversion mechanism, interaction mechanism between β ray and material, shielding for β ray, and technical backgrounds and a state of the art for RTG and NRG technologies, are analyzed in this report. Basic data on the conceptual design for the prototype of nuclear battery are prepared

  17. The analysis on the basic technology and radiation induced voltaic mechanism for nuclear battery

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Lee, B. O.; Min, B. T.; Kang, H. Y.; Kim, B. H.; Park, J. H.; Seo, H. S

    2000-12-01

    Present study is for nuclear battery technology directly converting radiation energy to electricity among various nuclear energy, and it is anticipated that an interest in direct conversion of nuclear energy into electricity shall be increased as the conversion efficiency enhances. The battery should promise cheap, reliable power from a package small and light enough to be mobile, and with energy density great enough for use as a space based power supply. Various radiation-electricity conversion mechanism so far have been reported since G.J. Moseley reported the operation of a high-voltage nuclear battery using radium. The most important conversion mechanisms are RTG (Radioisotope Thermoelectric Generator) converting the heat produced from radioisotope to electricity using the temperature difference, and NRG (Nuclear Resonance Generator) using free electrons from the collision between {alpha}, {beta}rays and copper coil. It is well known that RTG and NRG mechanisms are most practical way because their efficiencies high. The basic technology on radiation-electricity conversion mechanism, interaction mechanism between {beta} ray and material, shielding for {beta} ray, and technical backgrounds and a state of the art for RTG and NRG technologies, are analyzed in this report. Basic data on the conceptual design for the prototype of nuclear battery are prepared.

  18. Radiation mechanisms

    International Nuclear Information System (INIS)

    Symons, M.C.R.; Rao, K.V.S.

    1977-01-01

    Exposure of t-butyl alcohol to 60 Co γ-rays at 77 K gave Me 3 C; Me. and H 2 CC(Me) 2 0H radicals. The same radicals in variable proportions were obtained from a wide range of aqueous solutions, together with .0H and Hsub(t). No esub(t) - centres were detected. The way in which the relative concentrations of these radicals varied with the concentration of t-butyl alcohol is discussed, together with trends in line-widths. The effect of deuteration is also presented and discussed. It is suggested that Me 3 C. radicals are formed from t-butyl alcohol and dry electrons by dissociative electron capture, which seems to be an efficient process in the solid state. This makes an interesting contrast with liquid-phase studies, which have shown that t-butyl alcohol does not react significantly with esub(aq) - . The Me 3 C. radicals rotate relatively freely for alcohol mole-fractions less than ca. 0.05, but become rigidly held in the region 0.1 to 0.4. This is discussed in terms of the effect of t-butyl alcohol on water structure. The spectrum for H 2 C - C(Me) 2 0H radicals is an asymmetric triplet, but the central narrow component often displays an extra 6.5 G splitting. This is explained in terms of a hyperfine coupling to the six γ-protons of 1.1 G together with a range of fixed conformations or slow libratory motions about preferred conformations that leads to broadening of all but the outermost lines. This extra rigidity was absent in the 0 to 0.05 M.F. region. (author)

  19. Radiation mechanisms

    International Nuclear Information System (INIS)

    Mishra, S.P.; Symons, M.C.R.

    1977-01-01

    Temperature resolved e.s.r. spectroscopy has been used to study the effect of 60 Co γ-rays on hydroxylamine, N,N-diethylhydroxylamine, N-methyl N-oxo hydroxylamine, and some of their salts. Electron addition results in dissociative electron capture to give hydroxide ion and .NR 2 or .NR 3 + radicals for the first two compounds, but probably CH 3 O. and NR 3 for the last. Electron loss, or attack by other radicals, gave the corresponding nitroxide radicals except for MeHNOMe, which gave H 2 CONHMe. (author)

  20. Analyzing the mechanisms of cell killing by ionizing radiation in monolayer, spheroids and xenografted tumours

    International Nuclear Information System (INIS)

    Horas, J.A.; Olguín, O.R.; Rizzotto, M.G.

    2017-01-01

    A relationship between oxygen enhancement ratio (OER) and parameters of Linear Quadratic (LQ) model in hypoxic and aerobic conditions in several cell lines grown as monolayer, spheroids and transplanted tumors (xenograft) is tested. By considering this relationship, the two mechanisms of cell death by radiation appear. Surviving Fraction (SF) fits are compared in both oxygenation conditions by using the LQ. The data are obtained from literature. The existence of such mechanisms and their implications in the different systems studied is shown. The validity of one or other mechanism in each case is determined and the OER dependence with dose. (authors) [es

  1. Low dose radiation induced hormesis and its mechanism of free radicals

    International Nuclear Information System (INIS)

    Zhang Liyuan; Huo Hongmei; Zhang Yusong; Zhao Peifeng; Li Wei; Jiang Jiagui

    2008-01-01

    Objective: To investigate whether the supernatant (the stimulating fluid) centrifuged from myeloid cells suspension after low dose radiation in vitro can produce hormesis on the normal or radiation damage cells. The mechanism of free radical was probed. Methods: Mouse myeloid cell suspension was irradiated respectively by 0, 2 and 5 Gy, and cultured in vitro. MTT method was used to measure the reproductive activity of cells. Meanwhile, Cytochrome C reduction method was used to determine the concentration of O 2 - . Lastly, the concentration of O 2 - was decreased or increased by adding DPI or PMA, and the effect of such changes on 'the stimulating fluid' was observed. Results: Co-cultured with 'the stimulating fluid', the reproductive activity of the myeloid cells after large dose radiation or the normal myeloid cells were enhanced. Decreasing the concentration of O 2 - ; may degrade the proliferation of the cells after radiation damage; while increasing it may lead to the opposite result. Conclusions: The stimulating fluid can enhance the proliferation of the myeloid cells after radiation damage and also the normal ones. The mechanism of above-mentioned phenomena might be related with the changes of O 2 - concentration. (authors)

  2. Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage.

    Directory of Open Access Journals (Sweden)

    Kyeung Min Joo

    Full Text Available Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases.

  3. Multilevel mechanisms of stimulatory effect of low dose radiation on immunity

    International Nuclear Information System (INIS)

    Shu-Zeng Liu

    1992-01-01

    Attention is paid to the effects of low level ionizing radiation on humans. The conference is devoted to low dose radiation and defense mechanisms of the body. Due to the importance of the immune system in body resistance, special attention has been given to host defense mechanisms following exposure to different doses of ionizing radiation. The immune system has long been known to be highly sensitive to moderate to high doses of ionizing radiation with immuno-depression as one of the most important causes of death in acute radiation syndrome. However, the dose-effect relationship of immune functions has been found to be quite different in the low dose range, especially with doses within 0.1 Gy. With doses above 0.5 Gy most immunologic parameters show a dose dependent depression. With doses between 0.1-0.5 Gy there may be no definite changes in immune functions. Doses within 0.1 Gy, given in single or chronic exposures, have been found to stimulate many immune responses. (author). 16 refs., 2 figs., 7 tabs

  4. Mechanical analysis of bone rulers sterilized by gamma radiation for use in tissue banks

    International Nuclear Information System (INIS)

    Kosmiskas, Luis Otavio Carvalho

    2007-01-01

    In the production process of health care products, contamination must be considered as one of the principal hazards to be avoided. Among the developed methods for sterilization, ionizing radiation has largely been used by many sectors in health care area as it is efficient in eliminating biological contaminants of several origins. The difficulty of deploying ionizing radiation in materials of human origin, though, includes which possible alterations it might cause in human tissue. In the present work, the extension of the bio mechanical alteration generated by radiation in bone tissue was evaluated by bio mechanical methods. More specifically, we evaluated alterations to the elastic modulus, rupture tension and percentage of deformation that are thought to be a consequence of the sterilization process. As a research model, bovine femur struts obtained from the diaphysis were used. The struts were frozen in a temperature of -70 deg C and irradiated with crescent doses of gamma radiation (0, 12.5, 25 e 50 kGy). During this work, a cutting system to obtain precision samples to use in such essays was developed. As results show that there is a significant different between the analyzed characteristics in the different doses of radiation. (author)

  5. Radiation-induced secretory protein, clusterin. Its inductive mechanism and biological significance

    International Nuclear Information System (INIS)

    Suzuki, Masatoshi; Boothman, D.A.

    2007-01-01

    This paper describes biochemistry of secretory clusterin (C), its radiation-inductive mechanism and biological significance. C is a glycoprotein found to be secreted from cells given various stresses like radiation and ultraviolet (UV)-ray, and participates to red cell clustering. Human C gene locates on the chromosome 8p21-p12, C has MW of 60 kDa, its precursor undergoes the degrading processing to α- and β-chains to form their heterodimer before glycosylation, and the C is finally secreted. So many other names have been given to C due to its numerous functions which have been discovered in other fields, such as apolipoprotein J. C is abundant in plasma, milk, urine, cerebrospinal fluid, semen, etc. Within 24 hr after X-ray irradiation, extracellular insulin-like growth factor-1 (IGF-1) level is elevated, and through its binding to the receptor, Src/MAPK signaling participates to C expression. Nuclear C, also induced by radiation, is a splicing variant of C and not secreted from cells. C is induced by radiation with as low dose as 2 cGy, which is different from induction of nuclear C. Secreted C is incorporated in cells by endocytosis and promotes the intracellular survival reaction through IGF-1 receptor/MAPK/Egr-1 pathway, whereas nuclear C induces cell apoptosis via unknown mechanism. Further studies are required for elucidation of the roles of secretory and nuclear C in cellular radiation responses. (R.T.)

  6. Mechanism of antioxidant interaction on polymer oxidation by thermal and radiation ageing

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Shimada, Akihiko; Sugimoto, Masaki; Kudoh, Hisaaki

    2012-01-01

    The mechanism of polymer oxidation by radiation and thermal ageing was investigated for the life evaluation of cables installed in radiation environments. The antioxidant as a stabilizer was very effective for thermal oxidation with a small content in polymers, but was not effective for radiation oxidation. The ionizing radiation induced the oxidation to result in chain scission even at low temperature, because the free radicals were produced and the antioxidant could not stop the oxidation of radicals with the chain scission. A new mechanism of antioxidant effect for polymer oxidation was proposed. The effect of antioxidant was not the termination of free radicals in polymer chains such as peroxy radicals, but was the depression of initial radical formation in polymer chains by thermal activation. The antioxidant molecule was assumed to delocalize the activated energy in polymer chains by the Boltzmann statics (distribution) to result in decrease in the probability of radical formation at a given temperature. The interaction distance (delocalization volume) by one antioxidant molecule was estimated to be 5–10 nm by the radius of sphere in polymer matrix, though the value would depend on the chemical structure of antioxidant. - Highlights: ► Interaction of antioxidant on polymer oxidation is discussed for thermal and radiation ageings. ► Antioxidant is very effective for thermal oxidation, but not for radiation induced oxidation. ► Interaction of antioxidant is not the termination reaction of radicals on polymers. ► Antioxidant is supposed to reduce the provability of polymer radical formation by thermal activation. ► Mechanism of polymer oxidation may not be chain reaction via peroxy radical and hydro-peroxide.

  7. Mechanical properties of human bone-tendon-bone grafts preserved by different methods and radiation sterilised

    International Nuclear Information System (INIS)

    Kaminski, A.; Gut, G.

    2008-01-01

    Full text: Patellar tendon auto and allografts are commonly used in orthopaedic surgery for reconstruction of the anterior crucial ligaments (ACL). Autografts are mainly used for primary reconstruction, while allografts are useful for revision surgery. To avoid the risk of infection diseases transmission allografts should be radiation-sterilised. As radiation-sterilisation is supposed to decrease the mechanical strength of tendon tissue, it is important to establish methods of allografts preservation and sterilisation resulting in their best quality and safety. Therefore, the purpose of the study was to compare the tensile strength of the central one third of human patellar tendon (as used for ACL reconstruction), preserved by different methods (deep fresh freezing, lyophilisation) and subsequently radiation-sterilised with doses of 0 (control), 25, 50 or 100 kGy. Bone-tendon-bone grafts were prepared from cadaveric human patella tendon with both patellar and tibial attachments. BTB grafts were preserved by deep freezing, glicerolisation or lyophilisation and radiation-sterilised with doses of 0 (control), 25, 50 or 100 kGy. To estimate mechanical properties all samples were subjected to tensile tests to failure using Instron system. Before these tests all lyophilised grafts were rehydrated. We found decrease of tensile strength of irradiated grafts compared to non-irradiated controls. Obtained results of the mechanical testing of studied grafts indicate their potential usefulness for clinical applications.(Author)

  8. Mechanism of Cuticle Hole Development in Human Hair Due to UV-Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kazuhisa Maeda

    2018-03-01

    Full Text Available Hair is easily damaged by ultraviolet (UV radiation, bleaching agents or permanent wave treatments, and as damage progresses, hair loses its gloss, develops split ends and breaks. However, the causes of hair damage due to UV radiation have not yet been clarified. We discovered that in one mechanism facilitating damage to wet hair by UV radiation, the unsaturated fatty acids in wet hair produce hydroxy radicals upon exposure to UV radiation, and these radicals produce cuticle holes between the cuticle layers. In wet hair exposed to UV radiation, cuticle holes were produced only between the cuticle layers, whereas when human hair was immersed in a solution containing hydroxy radicals produced by Fenton’s reaction, a random production of cuticle holes was noted. It is thought that hydroxy radicals are produced only between the cuticle layers by exposure to UV radiation, and cuticle holes are formed only in this region because one of the polyunsaturated fatty acids, linoleic acid, with a bis-allyl hydrogen, is found between the cuticle layers.

  9. Effects of gamma radiation in mechanical and optical properties of polycarbonate

    International Nuclear Information System (INIS)

    Araujo, E.S.; Khoury, H.J.; Silveira, S.V. da; Dallolio, A.

    1990-01-01

    The polycarbonates are used in different industrial applications due to their excellent dielectric proprieties, impact resistance and high temperature resistance. For some of this applications, the polycarbonates are exposed to gamma radiation which produces a molecular scission, occasioning changes in the polycarbonate proprieties. To estimate the radiation effects in the DUROLON polycarbonate, samples were irradiated with sup(60)Co gamma beam with doses between 0,2kGy and 50kGy. The results obtained shown variations in the yellowness index above 1kGy dose. Their mechanical proprieties are not changed in the above dose interval. (author)

  10. Phase Synchronization for the Mid-Frequency Square Kilometre Array Telescope

    Science.gov (United States)

    Schediwy, Sascha; Gozzard, David; Stobie, Simon; Gravestock, Charles; Whitaker, Richard; Alachkar, Bassem; Malan, Sias; Boven, Paul; Grainge, Keith

    2018-01-01

    The Square Kilometre Array (SKA) project is an international effort to build the world’s most sensitive radio telescope operating in the 50 MHz to 14 GHz frequency range. Construction of the SKA has been divided into phases, with the first phase (SKA1) accounting for the first 10% of the telescope's receiving capacity. During SKA1, a low-frequency aperture array comprising over a hundred thousand individual dipole antenna elements will be constructed in Western Australia (SKA1-low), while an array of 197 parabolic-dish antennas, incorporating the 64 dishes of MeerKAT, will be constructed in South Africa (SKA1-mid).Radio telescope arrays such as the SKA require phase-coherent reference signals to be transmitted to each antenna site in the array. In the case of the SKA1-mid, these reference signals will be generated at a central site and transmitted to the antenna sites via fiber-optic cables up to 175 km in length. Environmental perturbations affect the optical path length of the fiber and act to degrade the phase stability of the reference signals received at the antennas, which has the ultimate effect of reducing the fidelity and dynamic range of the data.Since 2011, researchers at the University of Western Australia (UWA) have led the development of an actively-stabilized phase-synchronization system designed specifically to meet the scientific needs and technical challenges of the SKA telescope. Recently this system has been select as the official phase synchronization system for the SKA1-mid telescope. The system is an evolution of Atacama Large Millimeter Array’s distributed ‘photonic local oscillator system’, incorporating key advances made by the international frequency metrology community over the last decade, as well as novel innovations developed by UWA researchers.In this presentation I will describe the technical details of the system; outline how the system's performance was tested using metrology techniques in a laboratory setting, on 186 km

  11. Evaluation of ionizing radiation effects in bone tissue by FTIR spectroscopy and dynamic mechanical analysis

    International Nuclear Information System (INIS)

    Veloso, Marcelo N.; Santin, Stefany P.; Benetti, Carolina; Pereira, Thiago M.; Mattor, Monica B.; Politano, Rodolfo; Zezell, Denise M.

    2013-01-01

    In many medical practices the bone tissue exposure to ionizing radiation is necessary. However, this radiation can interact with bone tissue in a molecular level, causing chemical and mechanical changes related with the dose used. The aim of this study was verify the changes promoted by different doses of ionizing radiation in bone tissue using spectroscopy technique of Attenuate Total Reflectance - Fourier Transforms Infrared (ATR-FTIR) and dynamic mechanical analysis. Samples of bovine bone were irradiated using irradiator of Cobalt-60 with five different doses between 0.01 kGy, 0.1 kGy,1 kGy, 15 kGy and 75 kGy. To study the effects of ionizing irradiation on bone chemical structure the sub-bands of amide I and the crystallinity index were studied. The mechanical changes were evaluated using the elastic modulus and the damping value. To verify if the chemical changes and the bone mechanic characteristics were related, it was made one study about the correlation between the crystallinity index and the elastic modulus, between the sub-bands ratio and the damping value and between the sub-bands ratio and the elastic modulus. It was possible to evaluate the effects of different dose of ionizing radiation in bone tissue. With ATR-FTIR spectroscopy analysis, it was possible observe changes in the organic components and in the hydroxyapatite crystals organization. Changes were also observed in the mechanical properties. A good correlation between the techniques was found, however, it was not possible to establish a linear or exponential dependence between dose and effect. (author)

  12. Radiation

    International Nuclear Information System (INIS)

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  13. ASSESSING RADIATION PRESSURE AS A FEEDBACK MECHANISM IN STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Andrews, Brett H.; Thompson, Todd A.

    2011-01-01

    Radiation pressure from the absorption and scattering of starlight by dust grains may be an important feedback mechanism in regulating star-forming galaxies. We compile data from the literature on star clusters, star-forming subregions, normal star-forming galaxies, and starbursts to assess the importance of radiation pressure on dust as a feedback mechanism, by comparing the luminosity and flux of these systems to their dust Eddington limit. This exercise motivates a novel interpretation of the Schmidt law, the L IR -L' CO correlation, and the L IR -L' HCN correlation. In particular, the linear L IR -L' HCN correlation is a natural prediction of radiation pressure regulated star formation. Overall, we find that the Eddington limit sets a hard upper bound to the luminosity of any star-forming region. Importantly, however, many normal star-forming galaxies have luminosities significantly below the Eddington limit. We explore several explanations for this discrepancy, especially the role of 'intermittency' in normal spirals-the tendency for only a small number of subregions within a galaxy to be actively forming stars at any moment because of the time dependence of the feedback process and the luminosity evolution of the stellar population. If radiation pressure regulates star formation in dense gas, then the gas depletion timescale is 6 Myr, in good agreement with observations of the densest starbursts. Finally, we highlight the importance of observational uncertainties, namely, the dust-to-gas ratio and the CO-to-H 2 and HCN-to-H 2 conversion factors, that must be understood before a definitive assessment of radiation pressure as a feedback mechanism in star-forming galaxies.

  14. Mechanisms for radiation damage in DNA. Progress report, June 1, 1994--May 31, 1995

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1994-11-01

    In this project we have proposed several mechanisms for radiation damage to DNA and its constituents, and have detailed a series of experiments utilizing electron spin resonance spectroscopy, HPLC, GC-mass spectroscopy and ab initio molecular orbital calculations to test the proposed mechanisms. The results from these various techniques have resulted in an understanding of consequences of radiation damage to DNA from the early ionization event to the production of non-radical lesions (discussed in detail in Comprehensive Report). In this year's work we have found the hydroxyl radical in DNA's hydration layer. This is an important result which impacts the hole transfer hypothesis and the understanding of the direct vs. indirect effect in DNA. Further we have found the first ESR evidence for sugar radicals as a result of direct radiation damage to DNA nucleotides in an aqueous environment. This is significant as it impacts the biological endpoint of radiation damage to DNA and suggests future work in DNA. Work with DNA-polypeptides show clear evidence for electron transfer to DNA from the polypeptide which we believe is a radioprotective mechanism. Our work with ab initio molecular orbital theory has gain insight into the initial events of radiation damage to DNA. Ab initio calculations have provided an understanding of the energetics involved in anion and cation formation, ion radical transfer in DNA as well as proton transfer with DNA base pair radical ions. This has been extended in this year's work to new, more accurate values for the electron affinities of the DNA bases, understanding of the relative stability of all possible sugar radicals formed by hydrogen abstraction on the deoxyribose group, hydration effects on, thiol radioprotectors, and an ongoing study of radical intermediates formed from initial DNA ion radicals. During this fiscal year five articles have been published, three are in press, two are submitted and several more are in preparation

  15. Effect of radiation on disinfection and mechanical properties of Korean traditional paper, Hanji

    International Nuclear Information System (INIS)

    Choi, Jong-il; Chung, Yong Jae; Kang, Dai Ill; Lee, Kyu Shik; Lee, Ju-Woon

    2012-01-01

    Fumigants, including methyl bromide and ethylene oxide, are generally used for the preservation of the Korean cultural heritage, especially paper products like letters and books. However, the use of fumigants is banned because of their harmful effects on humans and the environment. Gamma irradiation is being considered as an alternative for the sterilization of insects and fungi in organic products. Therefore, the purpose of this study was to investigate the sterilization effects of radiation and its effect on the mechanical properties of the Korean traditional paper—Hanji. Treatment doses of 9 kGy and 8 kGy of gamma irradiation inactivated 5 log units of Aspergillus niger and Bacillus cereus spores inoculated on Hanji, respectively. The gamma irradiations up to an absorbed dose of 50 kGy resulted in no significant changes in the tensile strength, bursting strength, and appearance of Hanji. These results confirmed that radiation treatment disinfects the Korean traditional paper efficiently without changing its properties and that this treatment could be used to prevent the damage of Korean ancient archives by molds and fungi. - Highlights: ► Radiation sensitivity of mold was tested on Korean traditional paper, Hanji. ► Mechanical properties of Hanji were measured to investigate the effect of irradiation. ► This result is useful to conserve the Korean cultural heritages made by Hanji with the radiation technology.

  16. Mechanisms for radiation damage in DNA. Progress report, January 1, 1980-December 31, 1980

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1980-09-01

    In this project several mechanisms are proposed for radiation damage to DNA constituents and DNA, and a series of experiments detailed utilizing electron spin resonance spectrometry to test the proposed mechanisms. Under current investigation are irradiated systems of DNA constituents which may shed light on indirect effects. In addition, studies of radiation effects on lipids have been undertaken which will shed light on the only other proposed site for cell kill, the membrane. Studies completed during the past year are: (1) π cations produced in DNA bases by attack of oxidizing radicals; (2) INDO studies of radicals produced in peptides and carboxylic acid model compounds; (3) electron reactions with carboxylic acids, ketones and aldehydes; and (4) γ-irradiation of esters and triglycerides. Progress has been made this year in a study of radicals generated in model compounds for the sugar-phosphate backbone

  17. Mechanisms for radiation damage in DNA, Progress report, November 1, 1977--October 31, 1978

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1978-06-01

    In this project we have proposed several mechanisms for radiation damage to DNA constituents and DNA, and have detailed a series of experiments utilizing electron spin resonance spectrometry to test the proposed mechanisms. In the past we have concentrated chiefly on the direct affect of radiation on DNA. We are currently investigating systems of DNA constituents and peptides which may shed light on indirect effects. Studies which we have completed during the past year are: π-cation radicals in DNA and dinucleoside phosphates, and conformational effects on the ESR Spectra of amino acids and peptides. Studies of γ-Irradiated Peptide Solutions at 77 0 K, and studies of spin transfer in γ-irradiated nucleoside--peptide solutions were also conducted

  18. Mechanism of effect of ionizing radiation on bcl-2 protein expression and apoptosis in mouse thymus

    International Nuclear Information System (INIS)

    Liu Jiamei; Chen Aijun; Chen Dong; Liu Shuzheng

    2002-01-01

    Objective: To study the mechanism of effect of ionizing radiation in varied doses of X-rays on bcl-2 express and apoptosis in mouse thymus. Methods: Immunohistochemistry, image analysis and transmission electron microscope were used in the study. Results: The expression of bcl-2 protein was limited within thymic medulla, decreased with 2 Gy, however, increased with 0.075 Gy after whole-body irradiation. Some typical apoptotic cells were found in thymic cortex after 2 Gy irradiation. The apoptotic cells decreased and mitotic metaphase increased after 0.075 Gy irradiation. Conclusion: The mechanism of effect of ionizing radiation on apoptosis of thymus was related with the expression of bcl-2 proteins

  19. The mechanisms of protection of antioxidants on Nostoc sphaeroides against UV-B radiation

    Science.gov (United States)

    Wang, G. H.

    UV radiation is one of space harmful factor for earth organisms in space exploration In the present work we studied on the role of antioxidant system in Nostoc sphaeroides K u tz Cyanobacteria and the effects of exogenous antioxidant molecules on its photosynthetic rate under UV-B radiation It was found that UV-B radiation decreased the photosynthetic activity of cyanobacterium but promoted the activity of antioxidant system to protect photosystem II PSII and exogenous antioxidant sodium nitroprusside SNP N-acetylcysteine NAC had an obvious protection on PSII activity under UV-B radiation The activity of SOD Superoxide Dismutase EC 1 15 1 1 CAT Catalase EC 1 11 1 6 POD Peroxidase EC 1 11 1 7 and content of MDA and ASC were improved by 0 5mM and 1mM SNP but 0 1mM SNP decreased the activity of antioxide system Exogenous NAC addition decreased the activity of SOD POD CAT and the content MDA and ASC but exogenous NAC addition increased the content of GSH The results suggested that exogenous SNP and NAC may protect algae by different mechanisms in which SNP maybe play double roles as sources of reactive free radicals or ROS scavengers in formation of algae s protection of PSII under UV-B radiation while NAC does function as antioxidant reagent or precursor of glutathione which could protect PSII directly from UV-B radiation Keyword antioxidant system exogenous or endogenous antioxidant Nostoc sphaeroides photosynthesis UV-B radiation

  20. The importance of DNA superstructure units for the understanding of the radiation action mechanism

    International Nuclear Information System (INIS)

    Regel, K.

    1985-04-01

    A molecular radiation action model is presented. It relates the physical parameters of the radiation interaction in tissue and of the DNA structure in mammalian cells to their dose survival curves. Using this model it is possible to explain many of the radiation effects in cells, including such ones which were not clearly understood as yet. Both the kind of the basic parameters and the 'efficiency' of the model suggest that it describes real properties of mammalian cells. However, in finding out the radiation action mechanism we had to fill up two gaps in our knowledge concerning the radiation action in organisms. The first gap is characterized by the question: Are there any DNA structures (sites) in mammalian cells on the basis of which a radiation action model can be established which is valid in all the cell cycle stages. This question is answered by comparisons of the magnitude of DNA parameters measured in suitable experiments with those calculated from a hypothetical model of DNA organization in mammalian cells. The second gap in knowledge is filled up by testing the hypothesis that certain patterns of double-strand breaks (DSBs) in the membrane attached superstructure units (MASSUs) of a cell cause its inactivation. The dependence of the dose survival curves on the cell cycle can be explained in the following way: Dose survival curves of G1, G2 and mitotic cells are changed because of the cyclically altering volume of the MASSU compartments. Its change during the S stage is mainly determined by the growing fraction of replicated MASSUs. The high radiation resistance of late S cells probably results from the ability of mammalian cells to establish one intact sister genome from both sister genomes containing heavily damaged MASSUs joint in the attachment points. This ability is explained by the interference of DSB repair, sister chromatid exchange and DNA degradation. (author)

  1. Genome hypermethylation in Pinus silvestris of Chernobyl--a mechanism for radiation adaptation?

    Science.gov (United States)

    Kovalchuk, Olga; Burke, Paula; Arkhipov, Andrey; Kuchma, Nikolaj; James, S Jill; Kovalchuk, Igor; Pogribny, Igor

    2003-08-28

    Adaptation is a complex process by which populations of organisms respond to long-term environmental stresses by permanent genetic change. Here we present data from the natural "open-field" radiation adaptation experiment after the Chernobyl accident and provide the first evidence of the involvement of epigenetic changes in adaptation of a eukaryote-Scots pine (Pinus silvestris), to chronic radiation exposure. We have evaluated global genome methylation of control and radiation-exposed pine trees using a method based on cleavage by a methylation-sensitive HpaII restriction endonuclease that leaves a 5' guanine overhang and subsequent single nucleotide extension with labeled [3H] dCTP. We have found that genomic DNA of exposed pine trees was considerably hypermethylated. Moreover, hypermethylation appeared to be dependent upon the radiation dose absorbed by the trees. Such hypermethylation may be viewed as a defense strategy of plants that prevents genome instability and reshuffling of the hereditary material, allowing survival in an extreme environment. Further studies are clearly needed to analyze in detail the involvement of DNA methylation and other epigenetic mechanisms in the complex process of radiation stress and adaptive response.

  2. Genome hypermethylation in Pinus silvestris of Chernobyl - a mechanism for radiation adaptation?

    International Nuclear Information System (INIS)

    Kovalchuk, Olga; Burke, Paula; Arkhipov, Andrey; Kuchma, Nikolaj; James, S. Jill; Kovalchuk, Igor; Pogribny, Igor

    2003-01-01

    Adaptation is a complex process by which populations of organisms respond to long-term environmental stresses by permanent genetic change. Here we present data from the natural 'open-field' radiation adaptation experiment after the Chernobyl accident and provide the first evidence of the involvement of epigenetic changes in adaptation of a eukaryote-Scots pine (Pinus silvestris), to chronic radiation exposure. We have evaluated global genome methylation of control and radiation-exposed pine trees using a method based on cleavage by a methylation-sensitive HpaII restriction endonuclease that leaves a 5' guanine overhang and subsequent single nucleotide extension with labeled [ 3 H] dCTP. We have found that genomic DNA of exposed pine trees was considerably hypermethylated. Moreover, hypermethylation appeared to be dependent upon the radiation dose absorbed by the trees. Such hypermethylation may be viewed as a defense strategy of plants that prevents genome instability and reshuffling of the hereditary material, allowing survival in an extreme environment. Further studies are clearly needed to analyze in detail the involvement of DNA methylation and other epigenetic mechanisms in the complex process of radiation stress and adaptive response

  3. Influence of radiative irradiation on structure and physical-mechanical properties of polyolefins

    International Nuclear Information System (INIS)

    Kakhramanov, N.T.; Mamedova, N.A.; Gasanova, A.A.

    2014-01-01

    Full text : Today in the world it is synthesized a large number of polymer materials, which in one or another way satisfy the requirements for plastic construction products used in the various branches of industry and agriculture. In this work the main attention is paid to investigation of influence of radiative irradiation dose on structural peculiarities and basic physical-mechanical characteristics of cross-linked polyolefins

  4. Data integration reveals key homeostatic mechanisms following low dose radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Matzke, Melissa M. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Sowa, Marianne B.; Stenoien, David L.; Weber, Thomas J. [Health Impacts and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Morgan, William F. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Waters, Katrina M., E-mail: katrina.waters@pnnl.gov [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99338 (United States)

    2015-05-15

    The goal of this study was to define pathways regulated by low dose radiation to understand how biological systems respond to subtle perturbations in their environment and prioritize pathways for human health assessment. Using an in vitro 3-D human full thickness skin model, we have examined the temporal response of dermal and epidermal layers to 10 cGy X-ray using transcriptomic, proteomic, phosphoproteomic and metabolomic platforms. Bioinformatics analysis of each dataset independently revealed potential signaling mechanisms affected by low dose radiation, and integrating data shed additional insight into the mechanisms regulating low dose responses in human tissue. We examined direct interactions among datasets (top down approach) and defined several hubs as significant regulators, including transcription factors (YY1, MYC and CREB1), kinases (CDK2, PLK1) and a protease (MMP2). These data indicate a shift in response across time — with an increase in DNA repair, tissue remodeling and repression of cell proliferation acutely (24–72 h). Pathway-based integration (bottom up approach) identified common molecular and pathway responses to low dose radiation, including oxidative stress, nitric oxide signaling and transcriptional regulation through the SP1 factor that would not have been identified by the individual data sets. Significant regulation of key downstream metabolites of nitrative stress was measured within these pathways. Among the features identified in our study, the regulation of MMP2 and SP1 was experimentally validated. Our results demonstrate the advantage of data integration to broadly define the pathways and networks that represent the mechanisms by which complex biological systems respond to perturbation. - Highlights: • Low dose ionizing radiation altered homeostasis in 3D skin tissue model. • Global gene/protein/metabolite data integrated using complementary statistical approaches • Time and location-specific change in matrix regulation

  5. Analysis of the selected mechanical parameters of coating of filters protecting against hazardous infrared radiation.

    Science.gov (United States)

    Gralewicz, Grzegorz; Owczarek, Grzegorz; Kubrak, Janusz

    2017-03-01

    This article presents a comparison of the test results of selected mechanical parameters (hardness, Young's modulus, critical force for delamination) for protective filters intended for eye protection against harmful infrared radiation. Filters with reflective metallic films were studied, as well as interference filters developed at the Central Institute for Labour Protection - National Research Institute (CIOP-PIB). The test results of the selected mechanical parameters were compared with the test results, conducted in accordance with a standardised method, of simulating filter surface destruction that occurs during use.

  6. Mechanical properties in polypropylene-polyethylene blends modified by gamma radiation

    International Nuclear Information System (INIS)

    Ruiz, F.C.; Terence, M.C.

    2008-01-01

    One of the way to obtain a better mechanical property of polypropylene and polyethylene is related to increase the number polymer chains cross-linked by gamma radiation. After irradiation a network is formed which is the result of various chemical reactions occurred during this process, where the radicals formed are concentrated in the amorphous phase. With the objective to increase the mechanical properties of PP, blends with PE were prepared and irradiated in doses up to 100kGy, in atmospheric ambient. The tests showed increase in rigidity and a particular behaviour in Izod impact resistance. (author)

  7. Quantum Corrected Non-Thermal Radiation Spectrum from the Tunnelling Mechanism

    Directory of Open Access Journals (Sweden)

    Subenoy Chakraborty

    2015-06-01

    Full Text Available The tunnelling mechanism is today considered a popular and widely used method in describing Hawking radiation. However, in relation to black hole (BH emission, this mechanism is mostly used to obtain the Hawking temperature by comparing the probability of emission of an outgoing particle with the Boltzmann factor. On the other hand, Banerjee and Majhi reformulated the tunnelling framework deriving a black body spectrum through the density matrix for the outgoing modes for both the Bose-Einstein distribution and the Fermi-Dirac distribution. In contrast, Parikh and Wilczek introduced a correction term performing an exact calculation of the action for a tunnelling spherically symmetric particle and, as a result, the probability of emission of an outgoing particle corresponds to a non-strictly thermal radiation spectrum. Recently, one of us (C. Corda introduced a BH effective state and was able to obtain a non-strictly black body spectrum from the tunnelling mechanism corresponding to the probability of emission of an outgoing particle found by Parikh and Wilczek. The present work introduces the quantum corrected effective temperature and the corresponding quantum corrected effective metric is written using Hawking’s periodicity arguments. Thus, we obtain further corrections to the non-strictly thermal BH radiation spectrum as the final distributions take into account both the BH dynamical geometry during the emission of the particle and the quantum corrections to the semiclassical Hawking temperature.

  8. Influence of mechanical, thermal and radiation impacts on structure and properties of poly-L-lactide

    International Nuclear Information System (INIS)

    Marchenko, L.A.; Butovskaya, G.V.; Tapal'skij, D.V.; Krul', L.P.

    2014-01-01

    Poly-L-lactide both in the form of granules and plates obtained by injection molding has been revealed using differential scanning calorimetry and dynamic mechanical (relaxation) spectroscopy to be in the amorphous-crystalline phase state, the crystal phase being in two forms which differ in a degree of ordering. The radiation dose increase has been shown to facilitate the transition of disordered crystal phase into ordered one. Two types of amorphous phase of poly-L-lactide, mobile and rigid, differing in temperatures of the relaxation transitions have been revealed. A symbate change of the mobile amorphous phase content and antibate change of that of the rigid one with the radiation dose has been found. High strength properties and low deformability of the polymer under mechanical stretching at room temperature as well as the resistance to mechanical impact at a temperature of liquid nitrogen has been pointed out. It has been shown that chain degradation of the poly-L-lactide under conditions of vapor sterilization and radiation are negligible, so these methods may be used for disinfecting of medical devices based on this polymer. (authors)

  9. Study of the ionizing radiation effect on the polyamide 6,6 mechanical properties

    International Nuclear Information System (INIS)

    Colombo, Maria Aparecida da Silva

    2004-01-01

    Polyamide 6,6 due to its excellent mechanical, thermal and electrical properties and its great performance in multiple industrial applications is considered one of the most important engineering polymers. However, in specific applications, some of its properties need to be improved by means additives or fillers to reach the required properties increasing its final cost. By these considerations, the aim of this work was to apply the ionizing radiation to improve the natural mechanical properties of polyamide 6,6. Also, to evaluate the irradiation parameters, and the mechanical performance of the irradiated polymer in order to use the cross-linking, induced by ionizing radiation, as substitute of additives and fillers. Row polyamide 6,6 samples, for mechanical tests, were prepared by injection molded and then irradiated with high energetic electrons to reach doses of 70, 100, 150, and 200 kGy. The mechanical performance, of non-irradiated and irradiated samples, was evaluated by tensile strength, impact, hardness and wear measurements. Furthermore, hardness and wear tests were carried out with samples, which were immersed in petroleum and sea water for 6 months. The experimental results have shown that, in the studied dose range, the tensile strength increases 25%, the hardness Shore D 15%, the impact values diminished by 80% and the wear values decreased 20 times between 0 and 200 kGy. The effect of the petroleum and sea water were shown mainly in the nonirradiated samples. (author)

  10. Action spectrum and mechanisms of UV radiation-induced injury in lupus erythematosus

    International Nuclear Information System (INIS)

    Kochevar, I.E.

    1985-01-01

    Photosensitivity associated with lupus erythematosus (LE) is well established. The photobiologic basis for this abnormal response to ultraviolet radiation, however, has not been determined. This paper summarizes the criteria for elucidating possible photobiologic mechanisms and reviews the literature relevant to the mechanism of photosensitivity in LE. In patients with LE, photosensitivity to wavelengths shorter than 320 nm has been demonstrated; wavelengths longer than 320 nm have not been adequately evaluated. DNA is a possible chromophore for photosensitivity below 320 nm. UV irradiation of skin produces thymine photodimers in DNA. UV-irradiated DNA is more antigenic than native DNA and the antigenicity of UV-irradiated DNA has been proposed, but not proven, to be involved in the development of clinical lesions. UV irradiation of mice previously injected with anti-UV-DNA antibodies produces Ig deposition and complement fixation that appears to be similar to the changes seen in lupus lesions. Antibodies to UV-irradiated DNA occur in the serum of LE patients although a correlation between antibody titers and photosensitivity was not observed. Defective repair of UV-induced DNA damage does not appear to be a mechanism for the photosensitivity in LE. Other mechanisms must also be considered. The chromophore for photosensitivity induced by wavelengths longer than 320 nm has not been investigated in vivo. In vitro studies indicate that 360-400 nm radiation activates a photosensitizing compound in the lymphocytes and serum of LE patients and causes chromosomal aberrations and cell death. The mechanism appears to involve superoxide anion

  11. Study characteristics of new concrete mixes and their mechanical, physical, and gamma radiation attenuation features

    Energy Technology Data Exchange (ETDEWEB)

    El-Samrah, Moamen G.; Abdel-Rahman, Mohamed A.E. [Nuclear Engineering Department, Military Technical College Kobry El-kobbah, Cairo (Egypt); Kany, Amr M.I. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt)

    2018-02-01

    Ordinary concrete and those of different compositions are regarded as suitable material in many applications concerning with gamma and neutron radiation shielding purposes. They are widely used in nuclear power plant, medical facilities, nuclear shelters, and for radioactive materials transportation as well as storage of radioactive wastes. In this study four different concrete mixes were prepared with the following different types of coarse aggregates: dolomite, barite, goethite, and steel slag. The effect of changes in the fine aggregates, selected to be 50 % local sand and 50 % limonite with addition of 10 % silica fume (SF) and 10 % fly ash (FA) by replacement of the total cement weight, on the performance of the samples was also investigated. To examine the performance of such samples for radiation shielding applications, a set of physical, mechanical, and radiation attenuation properties was studied and compared with those of ordinary concrete. This investigation includes compressive strength, slump test, bulk density, ultrasonic pulse velocity test, and gamma rays attenuation measurements for the different samples. A verification of the experimental results concerning the radiation attenuation measurements was performed using WinXcom program (Version 3.1). The experimental results revealed that all concrete mixes; goethite-limonite concrete (G.L), barite-limonite concrete (B.L), steel slag-limonite concrete (S.L) and dolomite concrete (D.C) have good physical and mechanical properties that successfully satisfying them as high performance concretes. In addition the barite-limonite and the steel slag-limonite have the higher γ-ray attenuation coefficients at low and high energy range and hence have a better radiation shielding. The obtained results from WinXcom program calculations showed a good agreement with the experimental results concerning γ-ray attenuation measurements for the studied concrete mixes. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGa

  12. Identification of molecular mechanisms of radiation-induced vascular damage in normal tissues using microarray analyses

    International Nuclear Information System (INIS)

    Kruse, J.J.C.M.; Te Poele, J.A.M.; Russell, N.S.; Boersma, L.J.; Stewart, F.A.

    2003-01-01

    Radiation-induced telangiectasia, characterized by thin-walled dilated blood vessels, can be a serious late complication in patients that have been previously treated for cancer. It might cause cosmetic problems when occurring in the skin, and excessive bleeding requiring surgery when occurring in rectal mucosa. The mechanisms underlying the development of radiation-induced telangiectasia are unclear. The aim of the present study is to determine whether microarrays are useful for studying mechanisms of radiation-induced telangiectasia. The second aim is to test the hypotheses that telangiectasia is characterized by a final common pathway in different tissues. Microarray experiments were performed using amplified RNA from (sham)irradiated mouse tissues (kidney, rectum) at different intervals (1-30 weeks) after irradiation. After normalization procedures, the differentially expressed genes were identified. Control/repeat experiments were done to confirm that the observations were not artifacts of the array procedure. The mouse kidney experiments showed significant upregulation of 31 and 42 genes and downregulation of 9 and 4 genes at 10 and 20 weeks after irradiation, respectively. Irradiated mouse rectum has 278 upregulated and 537 downregulated genes at 10 weeks and 86 upregulated and 29 downregulated genes at 20 weeks. During the development of telangiectasia, 19 upregulated genes and 5 downregulated genes were common to both tissues. Upregulation of Jagged-1, known to play a role in angiogenesis, is particularly interesting in the context of radiation-induced telangiectasia. Microarrays are affective discovery tools to identify novel genes of interest, which may be involved in radiation-induced normal tissue injury. Using information from control arrays (particularly straight color, color reverse and self-self experiments) allowed for a more accurate and reproducible identification of differentially expressed genes than the selection of an arbitrary 2-fold change

  13. Searching African skies the square kilometre array and South Africa's quest to hear the songs of the stars

    CERN Document Server

    Wild, Sarah

    2012-01-01

    An ambitious scientific project is unfolding in the desert of South Africa, with a multi-decade timeline that will eventually see expansion into Western Australia-a project that is detailed and celebrated in this book on the Square Kilometre Array (SKA). The SKA will be the largest and most sensitive radio telescope, expanding the capabilities of scientific probing and addressing significant unanswered questions about the universe, such as on the formation of galaxies and the nature of gravity. Keen technology correspondent Sarah Wild covers the important development with this exploration of i

  14. Surface-structure dependence of healing radiation-damage mechanism in nanoporous tungsten

    Science.gov (United States)

    Duan, Guohua; Li, Xiangyan; Sun, Jingjing; Hao, Congyu; Xu, Yichun; Zhang, Yange; Liu, Wei; Liu, C. S.

    2018-01-01

    Under nuclear fusion environments, displacement damage in tungsten (W) is usually caused by neutrons irradiation through producing large quantities of vacancies (Vs) and self-interstitial atoms (SIAs). These defects not only affect the mechanical properties of W, but also act as the trap sites for implanted hydrogen isotopes and helium. Nano-porous (NP) W with a high fraction of free surfaces has been developed to mitigate the radiation damage. However, the mechanism of the surface reducing defects accumulation is not well understood. By using multi-scale simulation methods, we investigated the interaction of the SIA and V with different surfaces on across length and time scales. We found that, at a typical operation temperature of 1000 K, surface (1 1 0) preferentially heals radiation damage of W compared with surface (1 0 0) and boundary (3 1 0). On surface (1 1 0), the diffusion barrier for the SIA is only 0.68 eV. The annihilation of the SIA-V happens via the coupled motion of the V segregation towards the surface from the bulk and the two-dimensional diffusion of the SIA on the surface. Such mechanism makes the surface (1 1 0) owe better healing capability. On surface (1 0 0), the diffusion energy barrier for the SIA is 2.48 eV, higher than the diffusion energy barrier of the V in bulk. The annihilation of the SIA-V occurs via the V segregation and recombination. The SIA was found to migrate one-dimensionally along a boundary (3 1 0) with a barrier of 0.21 eV, leading to a lower healing efficiency in the boundary. This study suggested that the on-surface process plays an important role in healing radiation damage of NP W in addition to surface-enhanced diffusion and annihilation near the surface. A certain surface structure renders nano-structured W more radiation-tolerant.

  15. Mechanisms for radiation damage in DNA. Final report, June 1, 1986--August 31, 1996

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1996-08-01

    Over the last 10 years significant advances have been made impacting the understanding of radiation damage to DNA. The principal objective of this work was the elucidation of the fundamental mechanisms of radiation damage to DNA through the direct and indirect effects. Recently the work concentrated on the direct effect of radiation damage on DNA. The objective was to elucidate the ultimate radiation chemical damage to DNA arising from the direct effect. In this effort the focus was on the application of three techniques. ESR spectroscopic measurement of initial radicals formed in DNA and its hydration layer at low temperatures. Ab initio molecular orbital calculations were employed to give highly accurate theoretical predictions of early events such as electron and hole localization sites which serve to test and to clarify the experimental observations. HPLC and GC-mass spectroscopic assays of DNA base products formation provide the ultimate chemical outcome of the initial radiation events. The bridge between the early ion radical species and the non-radical products is made in ESR studies which follow the chemistry of the early species as they react with water and or other DNA bases. The use of these techniques has resulted in a new and fundamental understanding of the radiation damage to DNA on a molecular scale. From this work, a working model for DNA damage from the initial ionization event to the eventual formation of molecular base damage products and strand breaks has been formulated. Results over the past several years which have led to the formulation of this model are described

  16. Impaired swallowing mechanics of post radiation therapy head and neck cancer patients: A retrospective videofluoroscopic study.

    Science.gov (United States)

    Pearson, William G; Davidoff, Alisa A; Smith, Zachary M; Adams, Dorothy E; Langmore, Susan E

    2016-02-28

    To determine swallowing outcomes and hyolaryngeal mechanics associated with post radiation therapy head and neck cancer (rtHNC) patients using videofluoroscopic swallow studies. In this retrospective cohort study, videofluoroscopic images of rtHNC patients (n = 21) were compared with age and gender matched controls (n = 21). Penetration-aspiration of the bolus and bolus residue were measured as swallowing outcome variables. Timing and displacement measurements of the anterior and posterior muscular slings elevating the hyolaryngeal complex were acquired. Coordinate data of anatomical landmarks mapping the action of the anterior muscles (suprahyoid muscles) and posterior muscles (long pharyngeal muscles) were used to calculate the distance measurements, and slice numbers were used to calculate time intervals. Canonical variate analysis with post-hoc discriminant function analysis was performed on coordinate data to determine multivariate mechanics of swallowing associated with treatment. Pharyngeal constriction ratio (PCR) was also measured to determine if weak pharyngeal constriction is associated with post radiation therapy. The rtHNC group was characterized by poor swallowing outcomes compared to the control group in regards to: Penetration-aspiration scale (P time of displacement was abbreviated (P = 0.002) and distance of excursion was reduced (P = 0.02) in the rtHNC group. A canonical variate analysis shows a significant reduction in pharyngeal mechanics in the rtHNC group (P clearance. Using videofluoroscopy, this study shows rtHNC patients have worse swallowing outcomes associated with reduced hyolaryngeal mechanics and pharyngeal constriction compared with controls.

  17. High energy radiation effects on mechanical properties of butyl rubber compounds

    International Nuclear Information System (INIS)

    Pozenato, Cristina A.; Scagliusi, Sandra R.; Cardoso, Elisabeth C.L.; Lugao, Ademar B.

    2013-01-01

    The high energy radiation on butyl rubber compounds causes a number of chemical reactions that occur after initial ionization and excitation events. These reactions lead to changes in molecular mass of the polymer through scission and crosslinking of the molecules, being able to affect the physical and mechanical properties. Butyl rubber has excellent mechanical properties and oxidation resistance as well as low gas and water vapor permeability. Due to all these properties butyl rubber is widely used industrially and particularly in tires manufacturing. In accordance with various authors, the major effect of high energy, such as gamma rays in butyl rubber, is the yielding of free-radicals along with changes in mechanical properties. There were evaluated effects imparted from high energy radiation on mechanical properties of butyl rubber compounds, non-irradiated and irradiated with 25 kGy, 50 kGy, 150 kGy and 200 kGy. It was also observed a sharp reducing in stress rupture and elongation at break for doses higher than 50 kGy, pointing toward changes in polymeric chain along build-up of free radicals and consequent degradation. (author)

  18. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    International Nuclear Information System (INIS)

    Yamaoka, K.; Nomura, T.; Kojima, S.

    2000-01-01

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted α-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O 2 - to H 2 O 2 , the question as to whether the resultant H 2 O 2 is further detoxicated into H 2 O and O 2 or not must still be evaluated. Hence, we studied

  19. Mechanisms and secondary factors involved in the induction of radiation transformation in vitro

    International Nuclear Information System (INIS)

    Little, J.B.

    1983-01-01

    The long term of this research program was to gain information concerning the mechanisms that determine the carcinogenic effects of ionizing radiation, particularly high LET radiation exposure. The experimental approach involves parallel studies of the induction of malignant transformation in BALB/3T3 cells and of specific gene mutations in human lymphoblastoid cells. Emphasis was on the biologic effects of internally incorporated Auger electron emitting radionuclides and the initiation of studies to determine the effects of low dose-rate neutron exposure. Auger electron irradiation sever as a model for high LET-type radiation effects and as an experimental tool for studying the effects of radiation at specific sites within the cell. Auger-emitting radiosotopes are commonly used in clinical nuclear medicine, rendering them a potential hazard to human populations. We examined the influence of cellular localization of Auger-emitting radionuclides and the spectrum of energy distribution in DNA on their mutagenic, cytogenetic, and transformational effects. The effects of 125 I (an energetic beta emitter) were compared. We studied the induction of cytogenetic changes by 125 I exposure of the cell membrane, as well as its potential to promote (enhance) transformation initiated by low dose external x-ray exposure. We will investigate the Relative Biological Effectiveness for mutagenesis and transformation of low doses of fast neutrons delivered continuously at variable low dose-rates. 34 refs., 1 tab

  20. Induction of radiation resistance and radio-protective mechanism. On the reactive oxygen and free radical

    International Nuclear Information System (INIS)

    Yukawa, Osami

    2003-01-01

    Radical scavenging system for reactive oxygen species (ROS) leading to radio-protection is reviewed on findings in animals, tissues and cells. Protection against oxygen toxicity in evolution can be seen in anaerobes' superoxide dismutase (SOD) over 3500 million years ago. ROS is generated endogenously and also by radiation. However, the intracellular sites of the generated ROS are different depending on its cause. The protection is done through enzymes like SOD, peroxidase, catalase, glutathione-related enzymes and through substances like GSH, α-tocopherol, ascorbic acid etc. Induction of ROS scavenging substances related with radio-resistance includes the responses to the low dose radiation (5-50 cGy) in those enzymes described above; to middle to high dose radiation (1-30 Gy) in a similar and in other unknown mechanisms; to exposure of ROS like H 2 O 2 at low concentration; and to antioxidant treatment. The cross-resistance between radiation and drugs suggests necessity of this induction. (N.I.)

  1. Bone marrow transplantation rescues intestinal mucosa after whole body radiation via paracrine mechanisms

    International Nuclear Information System (INIS)

    Chang, Ya Hui; Lin, Li-Mei; Lou, Chi-Wen; Chou, Chuan-Kai; Ch’ang, Hui-Ju

    2012-01-01

    Purpose: Our previous study reveals bone marrow transplantation (BMT) recruits host marrow-derived myelomonocytic cells to radiation-injured intestine, enhancing stromal proliferation, leading secondarily to epithelial regeneration. In this study, we propose BMT ameliorates intestinal damage via paracrine mechanisms. Materials and methods: Angiogenic cytokines within the intestinal mucosa of mice after whole body irradiation (WBI) with or without BMT were measured by cytokine array and ELISA. BM conditioned medium (BMCM) with or without treatment with neutralizing antibodies to angiogenic cytokines were continuously infused into mice for three days after radiation. Carrageenan was used to deplete myelomonocytic cells of mice. Results: BMT increased VEGF, bFGF and other angiogenic and chemotactic cytokines in the intestinal mucosa within 24 h after WBI. Infusion of BMCM ameliorated radiation-induced intestinal damage with improved stromal activity and prolonged survival of mice. Neutralization of bFGF, PDGF and other angiogenic cytokines within BMCM abolished the mitigating effect to the intestine. Pretreatment of carrageenan to recipient mice reversed some of the cytokine levels, including VEGF, bFGF and IGF within the intestinal mucosa after BMT. Conclusions: Our result suggests BMT recruits host myelomonocytic cells and enhances intestinal stroma proliferation after radiation by secreting cytokines enhancing angiogenesis and chemotaxis. Host myelomonocytic cells further uplift the paracrine effect to enhance intestinal mucosal recovery.

  2. Mechanisms of Enhanced Cell Killing at Low Doses: Implications for Radiation Risk

    International Nuclear Information System (INIS)

    Johnston, Peter J.; Wilson, George D.

    2003-01-01

    We have shown that cell lethality actually measured after exposure to low-doses of low-LET radiation, is markedly enhanced relative to the cell lethality previously expected by extrapolation of the high-dose cell-killing response. Net cancer risk is a balance between cell transformation and cell kill and such enhanced lethality may more than compensate for transformation at low radiation doses over a least the first 10 cGy of low-LET exposure. This would lead to a non-linear, threshold, dose-risk relationship. Therefore our data imply the possibility that the adverse effects of small radiation doses (<10 cGy) could be overestimated in specific cases. It is now important to research the mechanisms underlying the phenomenon of low-dose hypersensitivity to cell killing, in order to determine whether this can be generalized to safely allow an increase in radiation exposure limits. This would have major cost-reduction implications for the whole EM program

  3. Explanation of the law on radiation injury prevention for mechanical engineers

    International Nuclear Information System (INIS)

    Fukuyama, Hiroyuki

    1991-01-01

    Generally to the facilities in which radioisotopes are treated, the Law on Radiation Injury Prevention is applied, but this law was revised in May, 1988, and enforced on April 1, 1989. As to the retroaction to existing facilities, the delay till March 31, 1991 is granted. In this report, by rearranging the system of contents so as to suit to mechanical engineers, the procedure of application and the standard for exhaust facilities and drainage facilities, which seem to be necessary matters, are described. In addition, the standard for facilities related to architecture which seems useful for design and construction if it is known as the basic matter and the standard for the control of the exposure of human bodies, surface contamination and measurement, related to the RI contamination in the air are referred to. The main points of revision in terms, unit and the law are shown. The Law on Radiation Injury Prevention is composed of the Law on Prevention of Radiation Injuries Due to Radioisotopes and Others, the enforcement ordinance, the enforcement regulation and the notice on determining the quantity of isotopes emitting radiation. (K.I.)

  4. Study on radiation protective effect of resveratrol and its molecular mechanism

    International Nuclear Information System (INIS)

    Lv Qiujun; Wen Liqing; Zhang Min; Guo Shaoming; Chen Yuanyuan; Wu Zuze

    2004-01-01

    Objective: To investigate radiation-protective effect of resveratrol and its molecular mechanism. Methods: Kunming mice were administered with resveratrol before 60 Co γ-irradiation. Thirty-day survival rate and the average life span of dead mice post-irradiation were observed. The apoptosis of spleen from irradiated mice was detected by FACS and in situ terminal labeling method. The effect of resveratrol on the activities of Caspase-3 and Caspase-8, and the expression levels of Bcl-2 and Fas were examined. Results: Administration with resveratrol resulted in increases of 30-day survival rate and prolongation of average life span of the dead mice. Apoptotic rate of spleen cells decreased, expression level of bcl-2 increased, the expression of Fas did not change, and the activities of Caspase-3 and Caspase-8 increased in spleen cells of irradiation groups. Conclusion: The results indicate that resveratrol has radiation-protective effect and its mechanism might be related with its suppression of apoptosis of radiation-sensitive cells

  5. Recent progress of the study of p53 control mechanism by ionizing radiation

    International Nuclear Information System (INIS)

    Kawai, Hidehiko

    2004-01-01

    Reviewed are the recent findings on the control mechanism of function and activity of p53 as a response factor to stress of ionizing radiation. The p53 protein is controlled to be essentially inactive in cells under normal conditions and is activated by various stresses. The role of p53 as a stress-responding and tumor-suppressing factor in cells with damaged DNA is discussed in relation with its participation in G1/S and G2/M checkpoints, DNA repair, and apoptosis. The stress like radiation affects the control mechanisms of stability and function of p53 through modification of its N-terminal region (the activation domain of transcription), DNA binding region (core domain) and C-terminal region (domains of the nuclear export signaling, tetramer formation and its own regulation). MDM2 (mouse double minute 2) family, the most important regulatory factor of p53, forms a negative feedback cycle since the family is the target factor of p53 transcription and also suppressor of p53. MDM2 is regulated by phosphorylation and by interaction with itself or other factors like p300/CBP. Further studies on p53 are thus important in various fields as well as in radiation biology. (N.I.)

  6. Microdosimetric constraints on specific adaptation mechanisms to reduce DNA damage caused by ionising radiation

    International Nuclear Information System (INIS)

    Burkart, W.; Heusser, P.; Vijayalaxmi

    1990-01-01

    The protective effect of pre-exposure of lymphocytes to ionising radiation indicates the presence of 'adaptive repair' in mammalian cells. Microdosimetric considerations, however, raise some doubts on the advantage of such a cellular mechanism for specifically reducing the radiation damage caused by environmental exposures. Contrary to most chemicals which endanger the integrity of the mammalian genome, the local dose and dose rate from ionising radiation at the cellular level remain quite high, even at lowest exposures. A single electron or alpha particle passing through a cell nucleus already yields nuclear doses of up to about 3 mGy and 400 mGy, respectively. Macroscopic doses below these nuclear doses from a single event will only reduce the fraction of cell nuclei encountering the passage of a particle but not the dose or dose rate in the affected volume. At environmental doses in the range of 1 to 5 mGy per annum, the time between two consecutive hits in a specific cell nucleus is in the range of months to years. Very low concentrations of bleomycin, a drug with high affinity to DNA, also triggers an adaptive response. This points to a more general stress response mechanism which may benefit the cell even at environmental levels of radioactivity, e.g. by protecting the integrity of DNA from attacks by chemicals, by endogenous radicals, by acids from anoxia, etc. (author)

  7. Investigation and exploitation of the radiation in peaceful uses and its juridical protection mechanism

    International Nuclear Information System (INIS)

    Solorzano R, S.A.

    1991-10-01

    In is included in a brief way the radioisotopes and ionizing radiations application in Guatemala; the risk an the radioactive damage from the juridical point of view; the nuclear energy's juridical nature, without any doubt, has its place in the law's world causing several effects which we have to determine the civil responsabilities; we expose the Guatemala's civil order the objective responsability of the nuclear law and its foundation. We had to mention the different international organisms that have relationship between each other in this area, for example: International Atomic Energy Agency (IAEA): Its objetives and functions; its services and attendance; juridical activities, etc. and as a national institution the general Directorate for the Nuclear Energy that belong to the energy and Mines Ministry, it is the charge of the sutdy, promotion, control, supervision, thechnical vigilance and investigate the use of the nuclear energy In the juridical mechanisms of the radiation applications, we find in Guatemala the ''protection an environment improvement law'' decree 68-86 of the Republic Congress; ''the control, use and application of radioisotopes and ionizing radiation law (nuclear law) law decree 11-86 which is transcribed because it is related with the nuclear energy subject. The rules also emphasize because of the technical aspects requirement concurrence that develop the law's precepts. As a viable juridical mechanism to guarantee the nuclear damage indemnity it is considered in others contracts determined the necessary constitution of the civil responsability insurance of the nuclear damages to guarantee the right indemnity of it. (Author)

  8. Mechanisms of chemical modification of neoplastic cell transformation by ionizing radiation

    International Nuclear Information System (INIS)

    Yang, T.C.; Tobias, C.A.

    1985-01-01

    During space travel, astronauts will be continuously exposed to ionizing radiation; therefore, it is necessary to minimize the radiation damage by all possible means. The authors' studies show that DMSO (when present during irradiation) can protect cells from being killed and transformed by X rays and that low concentration of DMSO can reduce the transformation frequency significantly when it is applied to cells, even many days after irradiation. The process of neoplastic cell transformation is a complicated one and includes at least two different stages: induction and expression. DMSO apparently can modify the radiation damage during both stages. There are several possible mechanisms for the DMSO effect: (1) changing the cell membrane structure and properties; (2) inducing cell differentiation by acting on DNA; and (3) scavanging free radicals in the cell. Recent studies with various chemical agents, e.g., 5-azacytidine, dexamethane, rhodamin-123, etc., indicate that the induction of cell differentiation by acting on DNA may be an important mechanism for the suppression of expression of neoplastic cell transformation by DMSO

  9. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation

    International Nuclear Information System (INIS)

    Akter, Nousin; Khan, Ruhul A.; Salmieri, Stephane; Sharmin, Nusrat; Dussault, Dominic; Lacroix, Monique

    2012-01-01

    Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20–80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5–25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties. - Highlights: ► Chitosan and starch-based biodegradable films were prepared by casting. ► With the increase of chitosan in starch, the strength of the films improved significantly. ► Monomer, 2-Butane diol-diacrylate was grafted with the films by gamma radiation. ► Mechanical properties of synthetic polymeric films improved by gamma radiation. ► The irradiated polymer films showed better water vapor barrier properties.

  10. Effect of 60Co radiation-induced grafting of methyl methacrylate on mechanical properties of bamboo

    International Nuclear Information System (INIS)

    Zhang Hao; Zhou Liang; Liu Shengquan; Qian Liangcun; Fei Benhua; Jiang Zehui

    2011-01-01

    In order to investigate the effect of radiation grafting on mechanical properties of bamboo, the original and carbonized bamboo soaked with monomer MMA were radiation grafted by 60 Co γ rays with the doses of 60-220 kGy. The results showed that compared with original blanks, treated with MMA and irradiated with the dose of 180 kGy the specific gravity, bending strength modulus of elasticity of original bamboo increased by 6.7%, 4.4%, and 28%, meanwhile its oven-dried radial, tangential and volumetric shrinkage decreased by 38.9%, 47.4%, and 32.9%, respectively. What is more, treated with MMA and irradiated with the doses of 140 kGy the specific gravity and modulus of elasticity of carbonized bamboo increased by 6.8% and 20%, while its oven-dried radial, tangential, volumetric shrinkage decreased by 11%, 4.6% and 12%, respectively. The study reveals that mechanical properties of original and carbonized bamboo can be enhanced by radiation grafting copolymerization with suitable absorbed doses, which may be valuable for the further research of developing new bamboo plastic composites. (authors)

  11. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    Science.gov (United States)

    Govey, Peter M.; Zhang, Yue; Donahue, Henry J.

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both pbones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104

  12. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low dose/low LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Munira A Kadhim

    2010-03-05

    To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e., less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these “non-targeted” responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate radiation-induced genomic instability and bystander responses in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/H and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition on two non-targeted radiation responses in these models; the bystander effect and genomic instability, which we believe are closely related. We will specifically focus on the effects of low doses of low LET radiation, down to doses approaching a single electron traversal. Using conventional X-ray and γ-ray sources, novel dish separation and targeted irradiation approaches, we will be able to assess the role of genetic variation under various bystander conditions at doses down to a few electron tracks. Irradiations will be carried out using facilities in routine operation for bystander targeted studies. Mechanistic studies of instability and the bystander response in different cell lineages will focus initially on the role of cytokines which have been shown to be involved in bystander signaling and the initiation of instability. These studies also aim

  13. The relationships between organizational and individual variables to on-the-job driver accidents and accident-free kilometres.

    Science.gov (United States)

    Caird, J K; Kline, T J

    2004-12-01

    Highway fatalities are the leading cause of fatal work injuries in the US, accounting for approximately 1 in 4 of the 5900 job-related deaths during 2001. The present study focused on the contribution of organizational factors and driver behaviours to on-the-job driving accidents in a large Western Canadian corporation. A structural equation modelling (SEM) approach was used which allows researchers to test a complex set of relationships within a global theoretical framework. A number of scales were used to assess organizational support, driver errors, and driver behaviours. The sample of professional drivers that participated allowed the recording of on-the-job accidents and accident-free kilometres from their personnel files. The pattern of relationships in the fitted model, after controlling for exposure and social desirability, provides insight into the role of organizational support, planning, environment adaptations, fatigue, speed, errors and moving citations to on-the-job accidents and accident-free kilometres. For example, organizational support affected the capacity to plan. Time to plan work-related driving was found to predict accidents, fatigue and adaptations to the environment. Other interesting model paths, SEM limitations, future research and recommendations are elaborated.

  14. Characterizing the zenithal night sky brightness in large territories: how many samples per square kilometre are needed?

    Science.gov (United States)

    Bará, Salvador

    2018-01-01

    A recurring question arises when trying to characterize, by means of measurements or theoretical calculations, the zenithal night sky brightness throughout a large territory: how many samples per square kilometre are needed? The optimum sampling distance should allow reconstructing, with sufficient accuracy, the continuous zenithal brightness map across the whole region, whilst at the same time avoiding unnecessary and redundant oversampling. This paper attempts to provide some tentative answers to this issue, using two complementary tools: the luminance structure function and the Nyquist-Shannon spatial sampling theorem. The analysis of several regions of the world, based on the data from the New world atlas of artificial night sky brightness, suggests that, as a rule of thumb, about one measurement per square kilometre could be sufficient for determining the zenithal night sky brightness of artificial origin at any point in a region to within ±0.1 magV arcsec-2 (in the root-mean-square sense) of its true value in the Johnson-Cousins V band. The exact reconstruction of the zenithal night sky brightness maps from samples taken at the Nyquist rate seems to be considerably more demanding.

  15. Numerical modeling in real-time assessment of dispersal of radionuclides beyond ten to twenty kilometres from an accidental release

    International Nuclear Information System (INIS)

    ApSimon, H.M.; Wilson, J.J.N.

    1990-01-01

    The Chernobyl accident has demonstrated the need for capabilities to assess transport and contamination out to considerable distances and across national frontiers in the event of a nuclear accident. For real-time assessment close to the source, the transport, dilution and deposition of material are usually based on simple Gaussian plume or puff techniques. At greater distances, usually beyond 10 or 20 km., changing meteorological conditions and topographical features become increasingly important and may require rather different modelling techniques. At yet longer distances synoptic scale weather patterns and their evolution govern where material will travel, and regions where precipitation may potentially yield higher deposition of critical nuclides such as I-131 and Cs-137. This paper will consider the questions to be addressed by numerical models during a nuclear emergency, and how such models may be incorporated in an overall assessment system for emergency procedures, extending to span the European Continent. The appropriate modelling techniques available for simulating transport over mesoscale distances (out to a few hundred kilometres), and for the synoptic scale (out to a few thousand kilometres) will be reviewed. The radiological measurements which would be of the greatest use for checking and revising model calculations in an emergency situation will also be discussed, and the importance of international exchange of such information emphasized

  16. Quantum mechanical theory of collisional ionization in the presence of intense laser radiation

    Science.gov (United States)

    Bellum, J. C.; George, T. F.

    1978-01-01

    The paper presents a quantum mechanical formalism for treating ionizing collisions occurring in the presence of an intense laser field. Both the intense laser radiation and the internal electronic continuum states associated with the emitted electrons are rigorously taken into account by combining discretization techniques with expansions in terms of electronic-field representations for the quasi-molecule-plus-photon system. The procedure leads to a coupled-channel description of the heavy-particle dynamics which involves effective electronic-field potential surfaces and continua. It is suggested that laser-influenced ionizing collisions can be studied to verify the effects of intense laser radiation on inelastic collisional processes. Calculation procedures for electronic transition dipole matrix elements between discrete and continuum electronic states are outlined.

  17. On the common mechanism for initiation of different effects of low doses of ionizing radiations

    International Nuclear Information System (INIS)

    Ehjdus, L.Kh.

    1996-01-01

    Main regularities of different endpoints of ionizing radiation low dose effects (adaptive response, stimulation of proliferation, special radiosensitivity of lymphoid cells, and others) have been examined. It has been shown that these endpoints have a commonness for the dose interval, the shape of the dose-response curve, the reverse effect of dose rate, non-specificity toward initiating agents, and others. An explanation is suggested for the common mechanism of the initiation of all the studied low dose effects, basing on the theory of the non-specific reaction of cell to external influences. It is concluded that initiation of the low dose effects is conditioned by radiation induced damage of functions of plasmic and internal membranes

  18. Mechanism of radiation-induced degradation of poly(methyl methacrylate)

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki; Oyama, Ken-ichi; Yoshida, Hiroshi

    1995-01-01

    ESR and gel permeation chromatographic measurements of poly(methyl methacrylate) γ-irradiated between 77 K and 300 K have been carried out to elucidate the mechanism of radiation-induced degradation of the polymer. It is revealed that the scission of the main chain is not taken place immediately after the absorption of radiation energy but is induced by the intramolecular radical conversion of the side-chain -COOCH 2 radical to the tertiary -CH 2 -C(CH 3 )- radical followed by the main-chain β-scission of the latter radical. The degradation is not taken place below 190 K, because the side-chain radical starts to convert only above 190 K. The residual monomer in the polymer reacts with the side-chain radical below 190 K to generate the stable propagating-type radical, so that the degradation is suppressed even after warming the polymer to the ambient temperature. (author)

  19. Investigating mechanical behavior and radiation resistant of fuel rods clad in nuclear power plant

    International Nuclear Information System (INIS)

    Sedgh Kerdar, A.

    1999-01-01

    The important factors for selection of material for use in nuclear reactors is similar to those for other engineering applications. There are however other parameters which are of importance when materials are going to be used in high radiation environments. These parameters are compatibility in intense nuclear radiation field, high resistance against corrosion and other characteristics such as thermal conductivity, machinability and suitable welding properties. This factors discussed in chapter one. In additions to the materials used as fuel, moderator, controls, etc., which have clear and stringent nuclear requirements, other materials may be necessary in a reactor to provide structural strength and other desired properties. For a materials used in a reactor core, the single most important property is its capacity for neutron absorption. Other properties, such as temperature and radiation stability, mechanical strength, corrosion resistance, etc., also receive much attention in selecting material for a specific application. Obviously, far more can be said about each of the potential metals than is possible in chapter two. We shall limit our attention to those metals of current nuclear interest, i.e., aluminium, beryllium magnesium, zirconium, austenitic stainless steels, nickel base alloys, and in factory metals (Nb and Mo). Interactions between matter and different radiations like Neutrons, protons, Gamma , Beta and Alpha rays in nuclear reactors induced important changes in properties of materials.There are five mechanism responsible for radiation induced changes in solids: ionization, vacancy formation, interstitial formation, creation of impurities caused by nuclear reactions and displacements spikes under the local thermal environment. Due to presence of many electrons in metals ionization does not play a major role in metals only the other four mechanisms are relevant to metals and their alloys. Generally speaking formation of many vacancies and

  20. Analysis of mechanism of complex chemical reaction taking radiation chemical purification of gases from impurities as an example

    International Nuclear Information System (INIS)

    Gerasimov, G.Ya.; Makarov, V.N.

    1997-01-01

    Algorithm of selecting optimal mechanism of complex chemical reaction, enabling to reduce the number of its stages, is suggested. Main steps of constructing the kinetic model of the medium are considered, taking the radiation chemical purification (using fast electron radiation) of gases (N 2 , CO 2 , O 2 and others) from impurities as an example. 17 refs., 3 figs., 2 tabs

  1. On the mechanism of radiation-induced emesis: The role of serotonin

    International Nuclear Information System (INIS)

    Scarantino, C.W.; Ornitz, R.D.; Hoffman, L.G.

    1994-01-01

    The aim of this study was to determine the mechanism of action of radiation-induced emesis by determining the incidence of radiation-induced emesis following hemibody irradiation; the effects of specific antiemetics especially ondansetron, a 5-hydroxytryptamine receptor antagonist, and to determine the relationship between radiation-induced emesis and serotonin (5-hydroxytryptamine) through its active metabolite, 5-hydroxyindoleacetic acid (5-HIAA). Forty-one patients received 53 hemibody treatments of 5-8 Gy following intravenous hydration. The patients were divided into three groups according to prehemibody irradiation treatment: Group A: no pretreatment antiemetics, 30 patients; Group B: nonondansetron antiemetics (metoclopramide, dexamethasone, prochlorperazine), ten patients; and Group C: ondansetron, 13 patient. The incidence of radiation-induced emesis was determined prehemibody irradiation or baseline and at 1 h posthemibody irradiation in 38 patients and the results expressed as the percent change in 5-HIAA (ng/ug creatinine). The incidence of radiation-induced emesis was 82% (14/17) following upper/mid hemibody irradiation and 15% (2/11) following lower hemibody irradiation in Group A; 50% (3/6) and 25% (1/4) following upper/mid and lower hemibody irradiation respectively, in Group B/; and 0% (p/13) after upper/mid hemibody irradiation in Group C. The incidence of emesis was significantly different (p<0.001) between the patients of Group A and C who received upper/mid hemibody irradiation. The percent change in 5-HIAA excretion following upper/mid hemibody irradiation were greatest in Group A and smallest in Group C (p<0.002). The degree of change following lower hemibody irradiation (15% incidence of emesis) in Group A was lower than upper/mid hemibody irradiation of the same group. 17 refs., 3 figs., 2 tabs

  2. Effects of Ionizing Radiation on Biological Molecules—Mechanisms of Damage and Emerging Methods of Detection

    Science.gov (United States)

    Reisz, Julie A.; Bansal, Nidhi; Qian, Jiang; Zhao, Weiling

    2014-01-01

    Abstract Significance: The detrimental effects of ionizing radiation (IR) involve a highly orchestrated series of events that are amplified by endogenous signaling and culminating in oxidative damage to DNA, lipids, proteins, and many metabolites. Despite the global impact of IR, the molecular mechanisms underlying tissue damage reveal that many biomolecules are chemoselectively modified by IR. Recent Advances: The development of high-throughput “omics” technologies for mapping DNA and protein modifications have revolutionized the study of IR effects on biological systems. Studies in cells, tissues, and biological fluids are used to identify molecular features or biomarkers of IR exposure and response and the molecular mechanisms that regulate their expression or synthesis. Critical Issues: In this review, chemical mechanisms are described for IR-induced modifications of biomolecules along with methods for their detection. Included with the detection methods are crucial experimental considerations and caveats for their use. Additional factors critical to the cellular response to radiation, including alterations in protein expression, metabolomics, and epigenetic factors, are also discussed. Future Directions: Throughout the review, the synergy of combined “omics” technologies such as genomics and epigenomics, proteomics, and metabolomics is highlighted. These are anticipated to lead to new hypotheses to understand IR effects on biological systems and improve IR-based therapies. Antioxid. Redox Signal. 21: 260–292. PMID:24382094

  3. High precision mirror alignment mechanism for use in synchrotron radiation beamlines

    International Nuclear Information System (INIS)

    Verma, Adu; Srivastava, P.K.; Das, Suraj; Nookaraju, Mogali

    2009-01-01

    The performance of a synchrotron radiation beamline is highly depends on parameters, crucially on the manufacturing accuracies of the optical elements and very good alignment of optical elements in the beam path. To develop a synchrotron beamline the misalignment effects have to be estimated and the mechanical components that hold optical elements have to be designed and developed within the specified tolerance limits. The translational inaccuracies result in shifting the image spot, which affect the flux throughput. The misorientation errors i.e. the rotation of optical elements about their mean position affects the image quality. The horizontal misorientation i.e. the rotation of an optical element about an axis passing through its centre and perpendicular to the plane containing the mirror has the most sever effect on the spectral resolution of the beamline, because of an increase in the dispersive spot size at the image plane. The design development and testing of a high precision mirror alignment mechanism is reported in this abstract. Though this mirror alignment mechanism is developed for the X-ray diffraction beamline on synchrotron radiation source Indus-2, 2.5 GeV, 300 mA, the design is general purpose and can be adapted for any other synchrotron facility or a similar ultra high vacuum environment. The mirror alignment mechanism is based on a constrained kinematic chain which provides the angular motions about three co-ordinate axes in the range of 0 to ±1° with the backlash free resolution of 1 arc second. The linear motions in three orthogonal directions are performed by other kinematic mounts in the range of 0 to ± 10 mm with a fine adjustment of 10 μm. The motions are transferred from air to ultra high vacuum through bellows. The ultra high vacuum chamber has been designed, fabricated and tested as per the ASME code. The rotational motions of the mirror alignment mechanism has been tested using a laser interferometer. (author)

  4. Preparation of highly absorbing polymeric hydrogels by radiation processing: mechanical and physical properties

    International Nuclear Information System (INIS)

    Dragusin, M.

    1994-01-01

    Some highly absorbing polymeric hydrogels such as acrylic polymers were produced by radiation processing with gamma sources Co-60 of 10,000 Ci, 3 kGy/h and an electron beam accelerator of 3 - 6 MeV, 0.3 - 3 kGy/s. For practical purposes, such as different applications in agriculture, etc, we studied the physical properties of residual monomers by refractometric and polarographic methods and the mechanical properties (gel strength) with devices made in our laboratory. (Author)

  5. Estimation of mechanical properties of gelatin using a microbubble under acoustic radiation force

    International Nuclear Information System (INIS)

    Shirota, Eriko; Ando, Keita

    2015-01-01

    This paper is concerned with observations of the translation of a microbubble (80 μm or 137 μm in radius) in a viscoelastic medium (3 w% gelatin), which is induced by acoustic radiation force originating from 1 MHz focused ultrasound. An optical system using a high-speed camera was designed to visualize the bubble translation and deformation. If the bubble remains its spherical shape under the sonication, the bubble translation we observed can be described by theory based on the Voigt model for linear viscoelastic solids; mechanical properties of the gelatin are calculated from measurements of the terminal displacement under the sonication. (paper)

  6. Radiative seesaw-type mechanism of fermion masses and non-trivial quark mixing

    Energy Technology Data Exchange (ETDEWEB)

    Arbelaez, Carolina; Hernandez, A.E.C.; Kovalenko, Sergey; Schmidt, Ivan [Universidad Tecnica Federico Santa Maria, Centro Cientifico-Tecnologico de Valparaiso-CCTVal, Valparaiso (Chile)

    2017-06-15

    We propose a predictive inert two-Higgs doublet model, where the standard model (SM) symmetry is extended by S{sub 3} x Z{sub 2} x Z{sub 12} and the field content is enlarged by extra scalar fields, charged exotic fermions and two heavy right-handed Majorana neutrinos. The charged exotic fermions generate a non-trivial quark mixing and provide one-loop-level masses for the first- and second-generation charged fermions. The masses of the light active neutrinos are generated from a one-loop-level radiative seesaw mechanism. Our model successfully explains the observed SM fermion mass and mixing pattern. (orig.)

  7. Fission fragment simulation of fusion neutron radiation effects on bulk mechanical properties

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Mitchell, J.B.; Guinan, M.W.; Stuart, R.N.; Borg, R.J.

    1976-01-01

    This research demonstrates the feasibility of using homogeneously-generated fission fragments to simulate high-fluence fusion neutron damage in niobium tensile specimens. This technique makes it possible to measure radiation effects on bulk mechanical properties at high damage states, using conveniently short irradiation times. The primary knock-on spectrum for a fusion reactor is very similar to that produced by fission fragments, and nearly the same ratio of gas atoms to displaced atoms is produced in niobium. The damage from fission fragments is compared to that from fusion neutrons and fission reactor neutrons in terms of experimentally measured yield strength increase, transmission electron microscopy (TEM) observations, and calculated damage energies

  8. Cavitation erosion mechanism of titanium alloy radiation rods in aluminum melt.

    Science.gov (United States)

    Dong, Fang; Li, Xiaoqian; Zhang, Lihua; Ma, Liyong; Li, Ruiqing

    2016-07-01

    Ultrasound radiation rods play a key role in introducing ultrasonic to the grain refinement of large-size cast aluminum ingots (with diameter over 800 mm), but the severe cavitation corrosion of radiation rods limit the wide application of ultrasonic in the metallurgy field. In this paper, the cavitation erosion of Ti alloy radiation rod (TARR) in the semi-continuous direct-chill casting of 7050 Al alloy was investigated using a 20 kHz ultrasonic vibrator. The macro/micro characterization of Ti alloy was performed using an optical digital microscopy and a scanning electron microscopy, respectively. The results indicated that the cavitation erosion and the chemical reaction play different roles throughout different corrosion periods. Meanwhile, the relationship between mass-loss and time during cavitation erosion was measured and analyzed. According to the rate of mass-loss to time, the whole cavitation erosion process was divided into four individual periods and the mechanism in each period was studied accordingly. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of gamma radiation and endodontic treatment on mechanical properties of human and bovine root dentin

    International Nuclear Information System (INIS)

    Novais, Veridiana Resende; Soares, Priscilla Barbosa Ferreira; Guimaraes, Carlla Martins; Schliebe, Lais Rani Sales Oliveira; Braga, Stella Sueli Lourenco; Soares, Carlos Jose

    2016-01-01

    This study evaluated the effect of gamma radiation and endodontic treatment on the microhardness and flexural strength of human and bovine root dentin. Forty single rooted human teeth and forty bovine incisor teeth were collected, cleaned and stored in distilled water at 4 °C. The human and bovine teeth were divided into 4 groups (n=10) resulting from the combination of two study factors: first, regarding the endodontic treatment in 2 levels: with or without endodontic treatment; and second, radiotherapy in two levels: with or without radiotherapy by 60 Gy of Co-60 gamma radiation fractioned into 2 Gy daily doses five days per week. Each tooth was longitudinally sectioned in two parts; one-half was used for the three-point bending test and the other for the Knoop hardness test (KHN). Data were analyzed by 3-way ANOVA and Tukey HSD test (α=0.05). No significant difference was found for flexural strength values. The human dentin had significantly higher KHN than the bovine. The endodontic treatment and radiotherapy resulted in significantly lower KHN irrespective of tooth origin. The results indicated that the radiotherapy had deleterious effects on the microhardness of human and bovine dentin and this effect is increased by the interaction with endodontic therapy. The endodontic treatment adds additional negative effect on the mechanical properties of radiated tooth dentin; the restorative protocols should be designed taking into account this effect. (author)

  10. Radiation-induced bystander effects. Mechanisms, biological implications, and current investigations at the Leipzig LIPSION facility

    International Nuclear Information System (INIS)

    Oesterreicher, J.; Prise, K.M.; Michael, B.D.; Vogt, J.; Butz, T.; Tanner, J.M.

    2003-01-01

    Background: The bystander effect is a relatively new area of radiobiological research, which is aimed at studying post-radiation changes in neighboring non-hit cells or tissues. The bystander effect of ionizing irradiation is important after low-dose irradiation in the range of up to 0.2 Gy, where a higher incidence of stochastic damage was observed than was expected from a linear-quadratic model. It is also important when the irradiation of a cell population is highly non-uniform. Objective: This review summarizes most of the important results and proposed bystander effect mechanisms as well as their impact on theory and clinical practice. The literature, in parts contradictory, is collected, the main topics are outlined, and some basic papers are described in more detail. In order to illustrate the microbeam technique, which is considered relevant for the bystander effect research, the state of the Leipzig LIPSION nanoprobe facility is described. Results: The existence of a radiation-induced bystander effect is now generally accepted. The current state of knowledge on it is summarized here. Several groups worldwide are working on understanding its different aspects and its impact on radiobiology and radiation protection. Conclusion: The observation of a bystander effect has posed many questions, and answering them is a challenging topic for radiobiology in the future. (orig.)

  11. Radiation-induced bystander effects. Mechanisms, biological implications, and current investigations at the Leipzig LIPSION facility

    Energy Technology Data Exchange (ETDEWEB)

    Oesterreicher, J. [Dept. of Nuclear Solid State Physics, Univ. of Leipzig (Germany); Dept. of Radiobiology and Immunology, Purkyne Military Medical Academy, Hradec Kralove (Czech Republic); Prise, K.M.; Michael, B.D. [Gray Cancer Inst., Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Vogt, J.; Butz, T. [Dept. of Nuclear Solid State Physics, Univ. of Leipzig (Germany); Tanner, J.M. [Clinic and Polyclinic of Radiation Oncology, Martin Luther Univ. Halle-Wittenberg (Germany)

    2003-02-01

    Background: The bystander effect is a relatively new area of radiobiological research, which is aimed at studying post-radiation changes in neighboring non-hit cells or tissues. The bystander effect of ionizing irradiation is important after low-dose irradiation in the range of up to 0.2 Gy, where a higher incidence of stochastic damage was observed than was expected from a linear-quadratic model. It is also important when the irradiation of a cell population is highly non-uniform. Objective: This review summarizes most of the important results and proposed bystander effect mechanisms as well as their impact on theory and clinical practice. The literature, in parts contradictory, is collected, the main topics are outlined, and some basic papers are described in more detail. In order to illustrate the microbeam technique, which is considered relevant for the bystander effect research, the state of the Leipzig LIPSION nanoprobe facility is described. Results: The existence of a radiation-induced bystander effect is now generally accepted. The current state of knowledge on it is summarized here. Several groups worldwide are working on understanding its different aspects and its impact on radiobiology and radiation protection. Conclusion: The observation of a bystander effect has posed many questions, and answering them is a challenging topic for radiobiology in the future. (orig.)

  12. A new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    Science.gov (United States)

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-10-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) annihilation photon pair coincidence time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit of around 100 ps. On the other hand, modulation mechanisms of a material's optical properties as exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to study whether ionizing radiation can also produce fast modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5x10-6 is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the radiation source flux rate and average photon energy.

  13. A promising new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    Science.gov (United States)

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-11-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit for the coincidence time resolution of around 100 ps. On the other hand, modulation mechanisms of the optical properties of a material exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to for the first time study whether ionizing radiation can produce modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5× {{10}-6} is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the detected event rate and average photon energy of the radiation source.

  14. Effect of gamma radiation and endodontic treatment on mechanical properties of human and bovine root dentin

    Energy Technology Data Exchange (ETDEWEB)

    Novais, Veridiana Resende; Soares, Priscilla Barbosa Ferreira; Guimaraes, Carlla Martins; Schliebe, Lais Rani Sales Oliveira; Braga, Stella Sueli Lourenco; Soares, Carlos Jose, E-mail: carlosjsoares@ufu.br [Universidade Federal de Uberlandia (UFU), MG (Brazil)

    2016-11-15

    This study evaluated the effect of gamma radiation and endodontic treatment on the microhardness and flexural strength of human and bovine root dentin. Forty single rooted human teeth and forty bovine incisor teeth were collected, cleaned and stored in distilled water at 4 °C. The human and bovine teeth were divided into 4 groups (n=10) resulting from the combination of two study factors: first, regarding the endodontic treatment in 2 levels: with or without endodontic treatment; and second, radiotherapy in two levels: with or without radiotherapy by 60 Gy of Co-60 gamma radiation fractioned into 2 Gy daily doses five days per week. Each tooth was longitudinally sectioned in two parts; one-half was used for the three-point bending test and the other for the Knoop hardness test (KHN). Data were analyzed by 3-way ANOVA and Tukey HSD test (α=0.05). No significant difference was found for flexural strength values. The human dentin had significantly higher KHN than the bovine. The endodontic treatment and radiotherapy resulted in significantly lower KHN irrespective of tooth origin. The results indicated that the radiotherapy had deleterious effects on the microhardness of human and bovine dentin and this effect is increased by the interaction with endodontic therapy. The endodontic treatment adds additional negative effect on the mechanical properties of radiated tooth dentin; the restorative protocols should be designed taking into account this effect. (author)

  15. Spectral radiation dependent photoprotective mechanism in the diatom Pseudo-nitzschia multistriata.

    Directory of Open Access Journals (Sweden)

    Christophe Brunet

    Full Text Available Phytoplankton, such as diatoms, experience great variations of photon flux density (PFD and light spectrum along the marine water column. Diatoms have developed some rapidly-regulated photoprotective mechanisms, such as the xanthophyll cycle activation (XC and the non-photochemical chlorophyll fluorescence quenching (NPQ, to protect themselves from photooxidative damages caused by excess PFD. In this study, we investigate the role of blue fluence rate in combination with red radiation in shaping photoacclimative and protective responses in the coastal diatom Pseudo-nitzschia multistriata. This diatom was acclimated to four spectral light conditions (blue, red, blue-red, blue-red-green, each of them provided with low and high PFD. Our results reveal that the increase in the XC pool size and the amplitude of NPQ is determined by the blue fluence rate experienced by cells, while cells require sensing red radiation to allow the development of these processes. Variations in the light spectrum and in the blue versus red radiation modulate either the photoprotective capacity, such as the activation of the diadinoxanthin-diatoxanthin xanthophyll cycle, the diadinoxanthin de-epoxidation rate and the capacity of non-photochemical quenching, or the pigment composition of this diatom. We propose that spectral composition of light has a key role on the ability of diatoms to finely balance light harvesting and photoprotective capacity.

  16. Mechanisms of the induction of apoptosis mediated by radiation-induced cytokine release

    International Nuclear Information System (INIS)

    Babini, G.; Bellinzona, V.E.; Baiocco, G.; Ottolenghi, A.; Morini, J.; Mariotti, L.; Unger, K.

    2015-01-01

    The aim of the present work was to investigate the mechanisms of radiation-induced bystander signalling leading to apoptosis in non-irradiated co-cultured cells. Cultured non-transformed cells were irradiated, and the effect on the apoptosis rate on co-cultured non-irradiated malignant cells was determined. For this, two different levels of the investigation are presented, i.e. release of signalling proteins and transcriptomic profiling of the irradiated and non-irradiated co-cultured cells. Concerning the signalling proteins, in this study, the attention was focussed on the release of the active and latent forms of the transforming growth factor-β1 protein. Moreover, global gene expression profiles of non-transformed and transformed cells in untreated co-cultures were compared with those of 0.5-Gy-irradiated non-transformed cells co-cultured with the transformed cells. The results show an effect of radiation on the release of signalling proteins in the medium, although no significant differences in release rates were detectable when varying the doses in the range from 0.25 to 1 Gy. Moreover, gene expression results suggest an effect of radiation on both cell populations, pointing out specific signalling pathways that might be involved in the enhanced induction of apoptosis. (authors)

  17. Features of Puberty Onset in Children Born to Fathers with Burdened Radiation Anamnesis. Neurohormonal Mechanisms

    Directory of Open Access Journals (Sweden)

    O.I. Plekhova

    2014-04-01

    Full Text Available The study was conducted to determine the neurohormonal mechanisms that underlie the clinical features of puberty onset in children born to parents exposed to low-dose irradiation. Hormonal homeostasis is assessed according to the data of immune-enzyme, radioimmune, and fluorometric methods. Statistical analysis of the data was carried out by means of the application package Excel and Statgrafics-5, SPSS 17.0. It has been established that the earlier puberty onset is caused by accelerated stimulation of pituitary-gonadal system due to activation of central mechanisms of pituitary gonadotrophic function regulation and eary reversal of melatonin blockage of this system. Reasonable basis has been suggested for careful clinical supervision over development of the reproductive system of the children from families with burdened radiation history.

  18. Mechanical and thermal properties of polypropylene composites with curaua fibre irradiated with gamma radiation

    International Nuclear Information System (INIS)

    Egute, Nayara S.; Forster, Pedro L.; Parra, Duclerc F.; Fermino, Danilo M.; Santana, Sebastiao; Lugao, Ademar B.

    2009-01-01

    Thermal and mechanical behavior of polypropylene with curaua fibre composites were investigated. The treatment of the curaua fibres was processed in alkaline solution (10% wt NaOH). A coupling agent was used (maleic anhydride) to increase the adhesion of the fibre/matrix interface. This composite was irradiated with gamma source in the doses of 5, 15 and 30 kGy and the adhesion between the fibres and the polymeric matrix was monitored to observe probable changes. The thermal behavior was evaluated using differential scanning calorimetry (DSC) and Thermogravimetry (TGA). The mechanical behavior was evaluated using tensile strength in comparison with non-reinforced polypropylene resin. The morphology of the composite fracture surface was observed using scanning electron microscopy (SEM). There were no significant changes in the thermal properties neither in the adhesion of irradiated fibres at doses of 5, 15 and 30 kGy of gamma radiation. (author)

  19. Effects of gamma radiation on mechanical behavior of fluoropolymers/carbon nanotubes nanocomposites

    International Nuclear Information System (INIS)

    Pozenato, Cristina A.; Scagliusi, Sandra R.; Lugao, Ademar B.

    2015-01-01

    Fluoroelastomers are a elastomers group, which have excellent thermal and mechanical properties and high chemical resistance. They are used in environments to degrade most another polymers. Multiple polymers/carbon nanotubes nanocomposites are related in literature. The aim of this study was process and evaluates the changes in the mechanical properties due to the incorporation of functionalized carbon nanotubes in fluorinated rubbers. The nanocomposite was prepared from an open mill (Cope), with two rolls, with addition of carbon nanotubes of 1%, and Viton® from Dupont. The samples were subjected to gamma radiation using a 60 Co source with doses 5 kGy, 10 kGy, 20 kGy at room temperature and air atmosphere. The effects of incorporation were compared and evaluated. The characterization was made by tensile strength and elongation at break. (author)

  20. Radiation Oxidation Mechanisms in Polyolefins Studied by C-13 Isotopic Labeling

    International Nuclear Information System (INIS)

    Clough, R.L.

    2006-01-01

    Control of oxidative degradation is a critical consideration in most applications involving polymers and radiation. In radiation crosslinking or sterilization, or in the use of polymers in radiation environments (such as nuclear plants), the objective is to minimize degradation as much as possible. In other applications, a controlled, partial degradation is desired to alter processing properties, or to enhance adhesion or solubility. To gain more understanding of the complex processes of radiation oxidation, samples of one important commercial polyolefin, polypropylene, were synthesized in which the three different carbon atoms along the chain were selectively labeled with carbon-13. These samples were subjected to radiation under inert and air atmospheres, and to post-irradiation thermal exposure in air at various temperatures. Analysis of macromolecular radiation-oxidation products was carried out using 13 C NMR and FTIR. Time-dependent plots of oxidation products have been obtained from the NMR measurements, including the post-irradiation oxidation of a sample held at room temperature in air that has been monitored for 2 years. Analysis of volatile oxidation products (CO, CO 2 , and small organic molecules) was accomplished with gas chromatography / mass spectroscopy. The position of the 13 C labels in the degradation products, have been traced back to their positions of origin on the macromolecule, providing insights into the chemical reaction mechanisms through which the products were formed. The major solid-phase products include peroxides and alcohols, both formed at tertiary carbon sites along the chain. Other products include methyl ketones, acids, esters, peresters, and hemiketals formed from reaction at the tertiary carbon, together with in-chain ketones and esters from reaction at the secondary chain carbon. No evidence is found of macromolecular products arising from reactions at the methyl side chain. Significant temperature-dependent differences are

  1. Mechanisms of Saharan Dust Radiative Effects Coupled to Eddy Energy and Wave Activity

    Science.gov (United States)

    Hosseinpour, F.; Wilcox, E. M.; Colarco, P. R.

    2017-12-01

    We explore mechanisms addressing the relationships between the net radiative forcing of Saharan Air Layer (SAL) and eddy energetics of the African Easterly jet-African easterly wave (AEJ-AEWs) system across the tropical Atlantic storm track. This study indicates that radiatively interactive dust aerosols have the capability to modify the exchange of kinetic energy between the AEWs and AEJ. We find that while dust can have both constructive and destructive effects on eddy activity of the waves, depending on the behavior and structure of waves exhibiting different characteristic time-scales, the local heating by dust tends to change the quadruple pattern of eddy momentum fluxes of the AEWs which can yield feedbacks onto the mean-flow. These results arise from applying an ensemble of large NASA satellite observational data sets, such as MODIS, SeaWiFS and TRMM, as well as the GOCART aerosol model and MERRA reanalysis. Sensitivity studies indicate that the results are consistent when the analysis is performed with multiple different aerosol datasets. While the mechanisms proposed here require further evaluation with numerical model experiments, this study presents a novel approach and new insights into Saharan dust effects on large-scale climate dynamics.

  2. Effect of radiation sickness on the progress and treatment of mechanical and thermal injuries. [In German

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, K

    1964-04-01

    It has been estimated that 70 or 75% of persons exposed to atomic weapons would suffer mechanical and thermal injuries, and that 30% receive radiation injuries. Of the total persons injured, 75% would suffer combinations of these injuries. As a result the various injurious agents, complexes of injury conditions, would be observed. These include leukopenia and impaired resistance to infection, shortened delay in appearance o irradiation symptoms, intensified evidence of shock, and an increased tendency toward hemorrhage, with increased sensitivity to blood loss. The author discusses a wide range of general and specific medical procedures and drugs that can be used to treat and support recovery of persons with combined radiation and mechanical or thermal injuries. Some general treatment procedures include absolute isolation and rest, special dietetic supplementation, strict medical supervision to prevent acute hemorrhage or circulatory failure, and parenteral administration of fluids. Other special measures include treatment of the primary reactions to injury by antihistamines, sedatives, antibiotics, hormones, support of circulation, blood transfusions, etc.

  3. Effect of penetrating ionising radiation on the mechanical properties of pericardium

    Energy Technology Data Exchange (ETDEWEB)

    Daar, Eman, E-mail: e.daar@surrey.ac.u [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Woods, E. [Royal Free Hampstead NHS Trust, Pond Street, Hampstead, London NW3 2QG (United Kingdom); Keddie, J.L. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Nisbet, A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Royal Surrey County Hospital, Guildford (United Kingdom); Bradley, D.A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2010-07-21

    The pericardium is an anistropic composite material made up of collagen and elastin fibres embedded in an amorphous matrix mainly composed of proteoglycan and hyaluronan. The collagen fibres are arranged in layers, with different directions of alignment in each layer, giving rise to interesting mechanical properties of pericardium, including the ability to undergo large deformation during performance of regular physiological functions. The present study aims to investigate the effect of penetrating photon ionising radiation on bovine pericardium tissue, being part of a study of the effect of cardiac doses received in breast radiotherapy and the possibility that this can give rise to cardiovascular complications. Irradiation doses in the range 5-80 Gy were used. To characterise the various mechanical properties [elastic modulus, stress relaxation, ultimate tensile strength (UTS) and fracture] a uniaxial tensile test method was applied. The preliminary results reflect the wide inter-sample variations that are expected in dealing with tissues, with only a weak indication of increase in the UTS of the pericardium tissue with increase in radiation dose. Such an effect has also been observed by others, with reduction in UTS at doses of 80 Gy.

  4. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea.

    Science.gov (United States)

    Jones, Daniel L; Baxter, Bonnie K

    2017-01-01

    Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV) radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a "first line of defense," and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms.

  5. Mechanisms for radiation damage in DNA. Progress report, November 1, 1978-October 31, 1979

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1979-07-01

    Several mechanisms for radiation damage to DNA constituents and DNA are proposed, and a series of experiments utilizing electron spin resonance spectrometry to test the proposed mechanisms are detailed. In the past we have concentrated chiefly on the direct affect of radiation on DNA. We are currently investigating systems of DNA constituents and peptides which may shed light on indirect effects. Studies which have been completed during the past year include: (1) studies of γ-irradiated N-acetyl amino acids and peptide solutions at 77 0 K; and (2) studies of barriers to hindered rotation in peptide radicals. Studies in which progress has been made in this past year include: (1) π cations produced in DNA bases by hydroxyl radical attack; and (2) studies of spin transfer in γ-Irradiated nucleoside-peptide solutions. These studies have shown that: (1) frozen aqueous solutions provide a suitable matrix for γ irradiation studies; (2) γ-irradiated peptides in frozen aqueous solutions follow chemistry expected from previous studies; and (3) π cations of DNA base can be produced by hydroxyl radical attack

  6. Explanation of enhanced mechanical degradation rate for radiation- aged polyolefins as the aging temperature is decreased

    International Nuclear Information System (INIS)

    Gillen, K.T.; Clough, R.L.; Wise, J.; Malone, M.G.

    1994-01-01

    Degradation rates are normally increased by increasing the responsible environmental stresses. We describe results for a semi-crystalline, crosslinked polyolefin material that contradicts this assumption. In particular, under combined radiation plus thermal environments, this material mechanically degrades much faster at room temperature than it does at elevated temperatures. The probable explanation for this phenomenon relates to the importance on mechanical properties of the tie molecules connecting crystalline and amorphous regions. Partial melting and reforming/ reorganization of crystallites occurs throughout the crystalline melting region (at least room temperature up to 126 C), with the rate of such processes increasing with an increase in temperature. At low temperatures, this process is sufficiently slow such that a large percentage of the radiation-damaged tie molecules will still connect the amorphous and crystalline regions at the end of aging, leading to rapid reductions in tensile properties. At higher temperatures, the enhanced annealing rate will lead, during the aging, to the establishment of new, undamaged tie molecules connecting crystalline and amorphous regions. This healing process will reduce the degradation rate. Evidence in support of this model is presented

  7. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea

    Directory of Open Access Journals (Sweden)

    Daniel L. Jones

    2017-09-01

    Full Text Available Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a “first line of defense,” and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms.

  8. Waste Tire Particles and Gamma Radiation as Modifiers of the Mechanical Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Eduardo Sadot Herrera-Sosa

    2014-01-01

    Full Text Available In polymer reinforced concrete, the Young’s modulus of both polymers and cement matrix is responsible for the detrimental properties of the concrete, including compressive and tensile strength, as well as stiffness. A novel methodology for solving such problems is based on use of ionizing radiation, which has proven to be a good tool for improvement on physical and chemical properties of several materials including polymers, ceramics, and composites. In this work, particles of 0.85 mm and 2.80 mm obtained from waste tire were submitted at 250 kGy of gamma radiation in order to modify their physicochemical properties and then used as reinforcement in Portland cement concrete for improving mechanical properties. The results show diminution on mechanical properties in both kinds of concrete without (or with irradiated tire particles with respect to plain concrete. Nevertheless such diminutions (from 2 to 16% are compensated with the use of high concentration of waste tire particles (30%, which ensures that the concrete will not significantly increase the cost.

  9. Mechanism (s) of Gamma Radiation-Induced Synthesis of Metalothioneins in Rat Liver

    International Nuclear Information System (INIS)

    Soliman, M.S.; El-Shamy, EL.

    2004-01-01

    The mechanism (s) of metallothioneins (MT) induction by irradiation are still unknown. The present study was undertaken to investigate mechanism (s) of radiation induction of MT whether directly through mediation of radiation-induced reactive oxygen species, indirectly through mediation of a variety of agents or mediators (lipid peroxidation, metal accumulation and cytokines) or both directly and indirectly through mediation of reactive oxygen species in conjunction with these mediators. Seventy-two albino rats were divided into two groups each of 36 animals: Control group and irradiated group. Animals in each group were sacrificed 1,6,12,18,24 and 48 hours after irradiation, 6 rats at each time point. Samples of liver tissues were subjected to the following investigations: measurement of zinc (Zn), metallothioneins (MT), lipid peroxidation(MDA), Interleukin-6 (IL-6) and Tumor Necrosis Factor alpha (TNF-alpha). Post-irradiation, at 1 hr, the MT levels started to increase with mean value of up to 9.9 times of the control level at 48 hr

  10. Studies on the control mechanism and the degenerative immune function of dendritic cells using radiation

    International Nuclear Information System (INIS)

    Yee, Sung Tae; Kim, Jong Jin; Choi, Ji Na; Park, Jung Eun; Jeong, Young Ran

    2010-05-01

    Dendritic cells are actively used as cellular adjuvant in cancer immunotherapy. However, although DC immunotherapies primarily target the elderly population, little is known about the effect of aging on DC functions. Here, we compared the T-cell stimulation, cytokine production, and costimulatory molecule expression of spleen or bone marrow-derived CD11c + DCs of C57BL/6 mice. In the first year, we compared various function of dendritic cells isolated from young and gamma-irradiated 57BL/6 mice(5 weeks after γ-radiation) for the development of aging models using radiation. In the second year, we also compared the function of spleen- and bone marrow-derived dendritic cells of young(2-3 months) and old(23-24 months) 57BL/6 mice. And we studied the differences of spleen- and bone marrow-derived dendritic cells of young and gamma-irradiated 57BL/6 mice(2, 4, 6 months after γ-radiation) for the development of aging models in third year. And we obtained various differences between spleen- and bone marrow-derived dendritic cells of normal and old(23-24 months) or γ-irradiated 57BL/6 mice. It is possible to use our results as age-associated model for modulation of the declined immunity and hematopoiesis for treatment of cancer, adult diseases and stress in aging. Such studies on the mechanism of aging model would further lead to new avenues for the development of functional foods which effect such as pathogenesis, inflammatory and autoimmune disorders. It will contributed to activation of related industry conforming quality and diversity of radiation industry. The techniques developed in our research may provide novel therapeutic modalities for age-associated immune dysfunctions

  11. Radiation-induced DNA-protein cross-links: Mechanisms and biological significance.

    Science.gov (United States)

    Nakano, Toshiaki; Xu, Xu; Salem, Amir M H; Shoulkamy, Mahmoud I; Ide, Hiroshi

    2017-06-01

    Ionizing radiation produces various DNA lesions such as base damage, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-protein cross-links (DPCs). Of these, the biological significance of DPCs remains elusive. In this article, we focus on radiation-induced DPCs and review the current understanding of their induction, properties, repair, and biological consequences. When cells are irradiated, the formation of base damage, SSBs, and DSBs are promoted in the presence of oxygen. Conversely, that of DPCs is promoted in the absence of oxygen, suggesting their importance in hypoxic cells, such as those present in tumors. DNA and protein radicals generated by hydroxyl radicals (i.e., indirect effect) are responsible for DPC formation. In addition, DPCs can also be formed from guanine radical cations generated by the direct effect. Actin, histones, and other proteins have been identified as cross-linked proteins. Also, covalent linkages between DNA and protein constituents such as thymine-lysine and guanine-lysine have been identified and their structures are proposed. In irradiated cells and tissues, DPCs are repaired in a biphasic manner, consisting of fast and slow components. The half-time for the fast component is 20min-2h and that for the slow component is 2-70h. Notably, radiation-induced DPCs are repaired more slowly than DSBs. Homologous recombination plays a pivotal role in the repair of radiation-induced DPCs as well as DSBs. Recently, a novel mechanism of DPC repair mediated by a DPC protease was reported, wherein the resulting DNA-peptide cross-links were bypassed by translesion synthesis. The replication and transcription of DPC-bearing reporter plasmids are inhibited in cells, suggesting that DPCs are potentially lethal lesions. However, whether DPCs are mutagenic and induce gross chromosomal alterations remains to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Studies on the control mechanism and the degenerative immune function of dendritic cells using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Sung Tae; Kim, Jong Jin; Choi, Ji Na; Park, Jung Eun; Jeong, Young Ran [Sunchon National University, Sunchon (Korea, Republic of)

    2010-05-15

    Dendritic cells are actively used as cellular adjuvant in cancer immunotherapy. However, although DC immunotherapies primarily target the elderly population, little is known about the effect of aging on DC functions. Here, we compared the T-cell stimulation, cytokine production, and costimulatory molecule expression of spleen or bone marrow-derived CD11c{sup +} DCs of C57BL/6 mice. In the first year, we compared various function of dendritic cells isolated from young and gamma-irradiated 57BL/6 mice(5 weeks after {gamma}-radiation) for the development of aging models using radiation. In the second year, we also compared the function of spleen- and bone marrow-derived dendritic cells of young(2-3 months) and old(23-24 months) 57BL/6 mice. And we studied the differences of spleen- and bone marrow-derived dendritic cells of young and gamma-irradiated 57BL/6 mice(2, 4, 6 months after {gamma}-radiation) for the development of aging models in third year. And we obtained various differences between spleen- and bone marrow-derived dendritic cells of normal and old(23-24 months) or {gamma}-irradiated 57BL/6 mice. It is possible to use our results as age-associated model for modulation of the declined immunity and hematopoiesis for treatment of cancer, adult diseases and stress in aging. Such studies on the mechanism of aging model would further lead to new avenues for the development of functional foods which effect such as pathogenesis, inflammatory and autoimmune disorders. It will contributed to activation of related industry conforming quality and diversity of radiation industry. The techniques developed in our research may provide novel therapeutic modalities for age-associated immune dysfunctions

  13. Mechanism for radiation-induced damage via TLR3 on the intestinal epithelium

    International Nuclear Information System (INIS)

    Takemura, Naoki; Uematsu, Satoshi

    2014-01-01

    When the small-intestinal epithelium is injured due to high-dose radiation exposure, radiation-induced gastrointestinal syndrome (GIS) such as absorption inhibition and intestinal bacterial infection occurs, and lead to subacute death. The authors immunologically analyzed the disease onset mechanism of GIS. In the small-intestinal mucosal epithelium, the intestinal epithelial stem cells of crypt structure and their daughter cells are renewed through proliferation and differentiation in the cycle of 3 or 4 days. When DNA is damaged by radiation, although p53 gene stops cell cycle and repairs DNA, cell death is induced if the repair is impossible. When stem cells perish, cell supply stops resulting in epithelial breakdown and fatal GIS. The authors analyzed the involvement in GIS of toll-like receptor (TLR) with the function of natural immunity, based on lethal γ-ray irradiation on KO mice and other methods. The authors found the mechanism, in which RNA that was leaked due to cell death caused by p53 gene elicits inflammation by activating TLR3, and leads to GIS through a wide range of cell death induction and stem cell extinction. The administration of a TLR3/RNA binding inhibitor before the irradiation of mice decreased crypt cell death and greatly improved survival rate. The administration one hour after the irradiation also showed improvement. The administration of the TLR3 specific inhibitor within a fixed time after the exposure is hopeful for the prevention of GIS, without affecting the DNA repair function of p53 gene. (A.O.)

  14. Impact of radiation exposure on mechanical and superconducting properties of Bi-2212 superconductor ceramics

    International Nuclear Information System (INIS)

    Azlan Abdul Rahman; Nasri Abdul Hamid; Abdul Aziz Mohamed; Mohd Shahrul Nizam Abdullah; Samsul Isman; Hidayah Zainal

    2013-01-01

    Full-text: For practical applications of high-temperature superconductor ceramics, the compounds must be able to sustain extreme mechanical stress and external magnetic field. Bi-2212 superconductor is one of the existing superconductors that are commonly used in various applications. Improvement in the microstructure enhanced the connectivity of the adjacent grains within the superconducting grains, and as such improved the mechanical strength of the ceramics. The ability of the superconductor ceramics to sustain superconducting properties in external magnetic field is also required. The compounds must be able to maintain high transport critical current density (Jc) in magnetic field. Another potential application of superconductors is at the nuclear facilities. Thus, study on the impact of radiation exposure on the mechanical and superconducting properties is very important to gauge the viability of superconductor ceramics in such environment. In this study, the mechanical and superconducting properties between exposure and non-irradiated samples are compared. Characterization will be done by the temperature dependence on electrical resistance measurements, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and measurements of transport critical current (Jc) dependence on temperature in magnetic field. (author)

  15. Modification in the thermo mechanical behavior of biodegradable polyesters submitted to gamma radiation

    International Nuclear Information System (INIS)

    Mega, Veronica I; Fernandez, Victor; Eisenberg, Patricia; Hermida, Elida B

    2006-01-01

    The biopolymers poly(3- polyhydroxy butyrate) (PHB), poly(3-hydroxy butyrate-co-3-hydroxyvalerate) (PHBV) and their mixtures with other biodegradables like polycaprolactone (PCL) are materials that can be used in the production of food packaging and in bioabsorbable medical applications because of their good processability, suitable mechanical properties and complete degradation in different environments. Radiation γ is an appropriate method for the sterilization of food packaging. It offers good storage stability and high microbiological safety. This work proposes to study the effect of radiation γ on the mechanical and thermal properties of sheets of PHB, PHBV and of a PHB-based commercial biodegradable mixture. The samples standardized for traction tests were irradiated in air, at a constant dosage rate of 10 kGy/h. The range of absorbed doses was from 10 to 179 kGy. The possible structural changes were evaluated by attenuated total reflection infrared spectroscopy. The thermal properties were determined by differential scanning calorimetry (DSC) and the mechanical properties were measured with a universal test machine. The ruling mechanism during the gamma irradiation of Biocycle 1000 (PHB), 1400-2 (PHB-PCL) and PHBV is chain scission. The decreased vitreous transition melting and crytallization temperatures of PHB and PHBV after increasing the dosage, are evidence of the reduction in average molecular weight due to this mechanism. A similar effect was observed in the mechanical properties of irradiated PHBV, Biocycle 1000 and 1400-2: decreased resistance to traction and in the percentage of elongation to fracture, while the tensile module remains almost constant. The tenacity of the Biocycle 1000 is reduced more than that for the PHBV, which is less crystalline; showing that the damage occurs mostly in the crystalline region. This behavior is repeated in the Biocycle 1400-2. For the doses used in food irradiation or in sterilization of food packaging (≤ 20

  16. Impact of radiations on the electromechanical properties of materials and on the piezoresistive and capacitive transduction mechanisms used in microsystems

    Science.gov (United States)

    Francis, Laurent A.; Gkotsis, Petros; Kilchytska, Valeriya; Tang, Xiaohui; Druart, Sylvain; Raskin, Jean-Pierre; Flandre, Denis

    2013-03-01

    The impact of different types of radiation on the electromechanical properties of materials used in microfabrication and on the capacitive and piezoresistive transduction mechanisms of MEMS is investigated. MEMS technologies could revolutionize avionics, satellite and space applications provided that the stress conditions which can compromise the reliability of microsystems in these environments are well understood. Initial tests with MEMS revealed a vulnerability of some types of devices to radiation induced dielectric charging, a physical mechanism which also affects microelectronics, however integration of novel functional materials in microfabrication and the current trend to substitute SiO2 with high-k dielectrics in ICs pose new questions regarding reliability in radiation environments. The performance of MEMS devices with moving parts could also degrade due to radiation induced changes in the mechanical properties of the materials. It is thus necessary to investigate the effects of radiation on the properties of thin films used in microfabrication and here we report on tests with γ, high energy protons and fast neutrons radiation. Prototype SOI based MEMS magnetometers which were developed in UCL are also used as test vehicles to investigate radiation effects on the reliability of magnetically actuated and capacitively coupled MEMS.

  17. Change in catalase and peroxidase activity in rat blood in case of combined radiation and mechanical injuries

    International Nuclear Information System (INIS)

    Volkovaya, T.A.

    1982-01-01

    Changes of catalase and peroxide activity of blood in rats in case of irradiation at 2.0 and 7.0 Gy, mechanical injury of animal chest and combined radiation injury were studied. The given data testify to considerable increase of the above enzymes activity in case of all these effects. The less decrease of catalase and peroxide activity was observed after infliction of mechanical injury alone. Aggravating effect of mechanical injury on the irradiated organism leads to more noticeable decrease of catalase activity (at early periods of observation) in comparison with radiation effect. Peroxide changes in case of combined radiation and mechanical injury of rats differ slightly from similar factors observed in case of irradiation alone

  18. Electromagnetic radiation from beam-plasma instabilities

    International Nuclear Information System (INIS)

    Stenzel, R.L.; Whelan, D.A.

    1982-01-01

    This chapter investigates the mechanism by which unstable electrostatic waves of an electron-beam plasma system are converted into observed electromagnetic waves. Electromagnetic radiation arises from both natural beam-plasma systems (e.g., type III solar bursts and kilometric radiation), and from man-made electron beams injected from rockets and spacecraft. A pulsed magnetized discharge plasma is produced with a 1 m diam. oxide-coated cathode and the discussed experiment is performed in the quiescent afterglow. The primary beam-plasma instability involves the excitation of electrostatic plasma waves. Electromagnetic radiation from the beam-plasma system is observed with microwave antennas outside the plasma (all probes removed) or with coax-fed dipoles which can be inserted radially and axially into the plasma. The physical process of mode coupling by which electromagnetic radiation is generated in an electrostatic beam-plasma instability is identified. The results are relevant to beam injection experiments from rockets or satellites into space plasmas. The limited penetration of the beam current into the plasma due to instabilities is demonstrated

  19. Mechanism of Action for Anti-radiation Vaccine in Reducing the Biological Impact of High-dose Gamma Irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2007-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  20. Mechanism of action for anti-radiation vaccine in reducing the biological impact of high-dose gamma irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after high-dose gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naïve animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which they mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  1. Influence of CO2 Laser Radiation on the Mechanical Properties of Portland Cement Pastes

    Directory of Open Access Journals (Sweden)

    González-Mota, R.

    2011-03-01

    Full Text Available This article presents the results of the treatment of fresh cement pastes with CO2 laser radiation (10.6μm, in order to improve its mechanical properties in addition to obtaining lower setting times than those of a natural setting (without radiation . It was observed that the CO2 laser radiation has a positive influence on the mechanical properties of cement paste, not due to the heat produced during irradiation, but due to the effect of electric field propagation on water molecules, whose are arranged around functional groups of the binder and by the effect of ration, causes a micro vibration effect, resulting in a more compact and less porous paste which has better mechanical properties compared to natural setting paste. The internal and surface temperature of the samples, the evolution of setting, Young's modulus (using ultrasonic pulse velocity and compressive strength were registered.En este artículo se presentan los resultados correspondientes al tratamiento de pastas frescas de cemento con radiación láser de CO2 (10.6µm, con el propósito de mejorar sus propiedades mecánicas además de obtener tiempos de fraguado menores a los del fraguado en forma natural (sin radiación. Se demostró que la radiación con láser de CO2 influye positivamente en las propiedades mecánicas de la pasta de cemento, no por el calentamiento producido durante la irradiación, sino por el efecto de la propagación del campo eléctrico sobre las moléculas de agua que están dispuestas alrededor de los grupos funcionales del aglutinante y que al rotar producen un efecto equivalente a micro vibraciones, dando como resultado un material más compacto, con menos poros y mejores propiedades mecánicas respecto al fraguado natural. Se registró la temperatura interna y superficial de las muestras, la evolución del fraguado, el módulo de Young y la resistencia a compresión.

  2. Effect of gamma radiation on dielectric and mechanical properties of modified fluoroplastic PTFE

    Science.gov (United States)

    Romanov, Boris; Kostromin, Valeriy; Bedenko, Sergey; Knyshev, Vladimir; Mukhnurov, Ilya; Matias, Rodrigo Roman

    2018-03-01

    The influence of gamma radiation on dielectric and mechanical characteristics of modified fluoroplast PTFE-4 MBK is considered in this paper. The material was exposed to Gamma-ray source GU-200 (Joint-stock company «Research Institute of Instruments», Lytkarino, Russia). The results of the research have shown that the relative permittivity and the tangent of the dielectric loss angle of PTFE-4 MBK samples at doses 4.105-1.106 Gy monotonically increase by 2.9 and 9.4%, respectively, compared to un-exposed material. The research of the mechanical properties of PTFE-4 MBK showed a maximum stress of up to 13.8 MPa and a maximum strain of 252% at doses of 8.104 Gy. It has been demonstrated that modified PTFE-4 MBK has good dielectric characteristics and withstanding high mechanical stress. We propose to use the results of the research for choosing cables and wiring location used in nuclear and space industry.

  3. Studying mechanism of radical reactions: From radiation to nitroxides as research tools

    Science.gov (United States)

    Maimon, Eric; Samuni, Uri; Goldstein, Sara

    2018-02-01

    Radicals are part of the chemistry of life, and ionizing radiation chemistry serves as an indispensable research tool for elucidation of the mechanism(s) underlying their reactions. The ever-increasing understanding of their involvement in diverse physiological and pathological processes has expanded the search for compounds that can diminish radical-induced damage. This review surveys the areas of research focusing on radical reactions and particularly with stable cyclic nitroxide radicals, which demonstrate unique antioxidative activities. Unlike common antioxidants that are progressively depleted under oxidative stress and yield secondary radicals, nitroxides are efficient radical scavengers yielding in most cases their respective oxoammonium cations, which are readily reduced back in the tissue to the nitroxide thus continuously being recycled. Nitroxides, which not only protect enzymes, cells, and laboratory animals from diverse kinds of biological injury, but also modify the catalytic activity of heme enzymes, could be utilized in chemical and biological systems serving as a research tool for elucidating mechanisms underlying complex chemical and biochemical processes.

  4. Mechanisms for radiation damage in DNA. Progress report, August 1, 1974--July 31, 1975

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1975-01-01

    A mechanism is proposed for radiation damage to DNA and a series of experiments utilizing electron spin resonance spectrometry to test the proposed mechanism is described. Investigations completed or nearing completion are: studies of electron transfer reactions in dinucleoside phosphates; studies of the anions of 5-nitropyrimidines and their reactions; and studies of protonation reactions at carbon sites in anion radicals of certain model compounds and aromatic amino acids. In the first study, the relative electron affinities of the DNA bases were determined in a model system of the DNA strand. In addition, study of the reactions of these anions showed that the thymine anion is the most reactive of the DNA bases in this model system. In the second study anisotropic and isotropic spectra of the anion radicals of 5-nitropyrimidines were characterized by newly developed computer simulation programs. Several of the anions were found to react to form iminoxy radicals. The third study showed that protonation reactions at carbon sites in anions are reactions which are general for molecules with unsaturated linkages. Thus, this mechanism is of significance to the radiolysis of many biological molecules, including DNA. (U.S.)

  5. The apoptotic effect and the plausible mechanism of microwave radiation on rat myocardial cells.

    Science.gov (United States)

    Zhu, Wenhe; Cui, Yan; Feng, Xianmin; Li, Yan; Zhang, Wei; Xu, Junjie; Wang, Huiyan; Lv, Shijie

    2016-08-01

    Microwaves may exert adverse biological effects on the cardiovascular system at the integrated system and cellular levels. However, the mechanism underlying such effects remains poorly understood. Here, we report a previously uncharacterized mechanism through which microwaves damage myocardial cells. Rats were treated with 2450 MHz microwave radiation at 50, 100, 150, or 200 mW/cm(2) for 6 min. Microwave treatment significantly enhanced the levels of various enzymes in serum. In addition, it increased the malondialdehyde content while decreasing the levels of antioxidative stress enzymes, activities of enzyme complexes I-IV, and ATP in myocardial tissues. Notably, irradiated myocardial cells exhibited structural damage and underwent apoptosis. Furthermore, Western blot analysis revealed significant changes in expression levels of proteins involved in oxidative stress regulation and apoptotic signaling pathways, indicating that microwave irradiation could induce myocardial cell apoptosis by interfering with oxidative stress and cardiac energy metabolism. Our findings provide useful insights into the mechanism of microwave-induced damage to the cardiovascular system.

  6. Fundamental Processes of Coupled Radiation Damage and Mechanical Behavior in Nuclear Fuel Materials for High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Phillpot, Simon; Tulenko, James

    2011-09-08

    The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective of this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.

  7. Fundamental Processes of Coupled Radiation Damage and Mechanical Behavior in Nuclear Fuel Materials for High Temperature Reactors

    International Nuclear Information System (INIS)

    Phillpot, Simon; Tulenko, James

    2011-01-01

    The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective of this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.

  8. Protracted Oxidative Alterations in the Mechanism of Hematopoietic Acute Radiation Syndrome

    Directory of Open Access Journals (Sweden)

    Nikolai V. Gorbunov

    2015-02-01

    Full Text Available The biological effects of high-dose total body ionizing irradiation [(thereafter, irradiation (IR] are attributed to primary oxidative breakage of biomolecule targets, mitotic, apoptotic and necrotic cell death in the dose-limiting tissues, clastogenic and epigenetic effects, and cascades of functional and reactive responses leading to radiation sickness defined as the acute radiation syndrome (ARS. The range of remaining and protracted injuries at any given radiation dose as well as the dynamics of post-IR alterations is tissue-specific. Therefore, functional integrity of the homeostatic tissue barriers may decline gradually within weeks in the post-IR period culminating with sepsis and failure of organs and systems. Multiple organ failure (MOF leading to moribundity is a common sequela of the hemotapoietic form of ARS (hARS. Onset of MOF in hARS can be presented as “two-hit phenomenon” where the “first hit” is the underlying consequences of the IR-induced radiolysis in cells and biofluids, non-septic inflammation, metabolic up-regulation of pro-oxidative metabolic reactions, suppression of the radiosensitive hematopoietic and lymphoid tissues and the damage to gut mucosa and vascular endothelium. While the “second hit” derives from bacterial translocation and spread of the bacterial pathogens and inflammagens through the vascular system leading to septic inflammatory, metabolic responses and a cascade of redox pro-oxidative and adaptive reactions. This sequence of events can create a ground for development of prolonged metabolic, inflammatory, oxidative, nitrative, and carbonyl, electrophilic stress in crucial tissues and thus exacerbate the hARS outcomes. With this perspective, the redox mechanisms, which can mediate the IR-induced protracted oxidative post-translational modification of proteins, oxidation of lipids and carbohydrates and their countermeasures in hARS are subjects of the current review. Potential role of ubiquitous

  9. Mechanical and radiation shielding properties of mortars with additive fine aggregate mine waste

    International Nuclear Information System (INIS)

    Gallala, Wissem; Hayouni, Yousra; Gaied, Mohamed Essghaier; Fusco, Michael; Alsaied, Jasmin; Bailey, Kathryn; Bourham, Mohamed

    2017-01-01

    Highlights: • Effectiveness of mine waste as additive fine aggregate has been investigated. • Experimental results are verified by computationally from composition of synthesized samples. • Work focuses on shielding materials for nuclear systems including spent fuel storage and drycasks. - Abstract: Incorporation of barite-fluorspar mine waste (BFMW) as a fine aggregate additive has been investigated for its effect on the mechanical and shielding properties of cement mortar. Several mortar mixtures were prepared with different proportions of BFMW ranging from 0% to 30% as fine aggregate replacement. Cement mortar mixtures were evaluated for density, compressive and tensile strengths, and gamma ray radiation shielding. The results revealed that the mortar mixes containing 25% BFMW reaches the highest compressive strength values, which exceeded 50 MPa. Evaluation of gamma-ray attenuation was both measured by experimental tests and computationally calculated using MicroShield software package, and results have shown that using BFMW aggregates increases attenuation coefficient by about 20%. These findings have demonstrated that the mine waste can be suitably used as partial replacement aggregate to improve radiation shielding as well as to reduce the mortar and concrete costs.

  10. Effect of radiation on disinfection and mechanical properties of Korean traditional paper, Hanji

    Science.gov (United States)

    Choi, Jong-il; Chung, Yong Jae; Kang, Dai Ill; Lee, Kyu Shik; Lee, Ju-Woon

    2012-08-01

    Fumigants, including methyl bromide and ethylene oxide, are generally used for the preservation of the Korean cultural heritage, especially paper products like letters and books. However, the use of fumigants is banned because of their harmful effects on humans and the environment. Gamma irradiation is being considered as an alternative for the sterilization of insects and fungi in organic products. Therefore, the purpose of this study was to investigate the sterilization effects of radiation and its effect on the mechanical properties of the Korean traditional paper—Hanji. Treatment doses of 9 kGy and 8 kGy of gamma irradiation inactivated 5 log units of Aspergillus niger and Bacillus cereus spores inoculated on Hanji, respectively. The gamma irradiations up to an absorbed dose of 50 kGy resulted in no significant changes in the tensile strength, bursting strength, and appearance of Hanji. These results confirmed that radiation treatment disinfects the Korean traditional paper efficiently without changing its properties and that this treatment could be used to prevent the damage of Korean ancient archives by molds and fungi.

  11. Studies on the mechanism of stable graft--host tolerance in canine and human radiation chimeras

    International Nuclear Information System (INIS)

    Storb, R.; Tsoi, M.S.; Weiden, P.L.; Graham, T.C.; Thomas, E.D.

    1976-01-01

    In studies with dogs, marrow donors were immunized against their chimeras by repeated skin grafts which they rejected. Lymphocytes from chimeras and donors were tested for cell inhibition by exposure to skin fibroblasts from chimeras and donors. Results were not compatible with the concept that tolerance in radiation chimeras is maintained by serum-blocking factors. They provide circumstantial evidence against the possibility that the stable chimeric state is the result of the deletion of a close or inactivation of donor lymphocytes specifically responsive for host antigens. They are most consistent with the possibility that a suppressor-cell population is responsible for the maintenance of tolerance. Human recipients of marrow transplants were tested with the cell inhibition assay. Although the incidence of positive cell inhibition and blocking was somewhat higher than in the dog, results were not compatible with the concept that serum blocking is the sole mechanism for maintaining the stable chimeric state in human patients

  12. Repair of endogenous and ionizing radiation-induced DNA damages: mechanisms and biological functions

    International Nuclear Information System (INIS)

    Boiteux, S.

    2002-01-01

    The cellular DNA is continuously exposed to endogenous and exogenous stress. Oxidative stress due to cellular metabolism is the major cause of endogenous DNA damage. On the other hand, ionizing radiation (IR) is an important exogenous stress. Both induce similar DNA damages: damaged bases, abasic sites and strand breakage. Most of these lesions are lethal and/or mutagenic. The survival of the cell is managed by efficient and accurate DNA repair mechanisms that remove lesions before their replication or transcription. DNA repair pathways involved in the removal of IR-induced lesions are briefly described. Base excision repair (BER) is mostly involved in the removal of base damage, abasic sites and single strand breaks. In contrast, DNA double strand breaks are mostly repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). How DNA repair pathways prevent cancer process is also discussed. (author)

  13. Interphase lymphoid cell death: its importance in the genesis of radiation disease and molecular mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Poverennyj, A M; Ryabchenko, N I

    1987-09-01

    An analysis of the data on the effect of lymphoid cells on the proliferation and differentiation of hemopoietic stem cells has led to a conclusion that radiation injury of lymphocytes plays an important role in the pathogenesis of the cerebrospinal syndrome. The molecular mechanisms of lymphocyte interphase death were considered. It was shown that due to some peculiarities in the energy supply of these' cells the appearance of breaks in DNA causes the development of biochemical processes resulting in a decrease in NAD, an increase in the activity of nucleases, a decrease in ATP, and the accumulation of active metabolites of glycolysis. There reactions result in an increase in the disintegration of DNA, chromatin and pyknosis of lymphocyte nuclei.

  14. Some resistance mechanisms to ultraviolet radiation; Algunos mecanismos de resistencia a radiacion ultravioleta

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara D, D. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2002-12-15

    The cyclical exposure of bacterial cells to the ultraviolet light (UV) it has as consequence an increment in the resistance to the lethal effects of this type of radiation, increment that happens as a result of a selection process of favorable genetic mutations induced by the same UV light. With object to study the reproducibility of the genetic changes and the associate mechanisms to the resistance to UV in the bacteria Escherichia coli, was irradiated cyclically with UV light five different derived cultures of a single clone, being obtained five stumps with different resistance grades. The genetic mapping Hfr revealed that so much the mutation events like of selection that took place during the adaptation to the UV irradiation, happened of random manner, that is to say, each one of the resistant stumps it is the result of the unspecified selection of mutations arisen at random in different genes related with the repair and duplication of the DNA. (Author)

  15. Molecular action mechanisms of solar infrared radiation and heat on human skin.

    Science.gov (United States)

    Akhalaya, M Ya; Maksimov, G V; Rubin, A B; Lademann, J; Darvin, M E

    2014-07-01

    The generation of ROS underlies all solar infrared-affected therapeutic and pathological cutaneous effects. The signaling pathway NF-kB is responsible for the induced therapeutic effects, while the AP-1 for the pathological effects. The different signaling pathways of infrared-induced ROS and infrared-induced heat shock ROS were shown to act independently multiplying the influence on each other by increasing the doses of irradiation and/or increasing the temperature. The molecular action mechanisms of solar infrared radiation and heat on human skin are summarized and discussed in detail in the present paper. The critical doses are determined. Protection strategies against infrared-induced skin damage are proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Molecular mechanisms involved in adaptive responses to radiation, UV light, and heat

    International Nuclear Information System (INIS)

    Takahashi, Akihisa; Ohnishi, Takeo

    2009-01-01

    Viable organisms recognize and respond to environmental changes or stresses. When these environmental changes and their responses by organisms are extreme, they can limit viability. However, organisms can adapt to these different stresses by utilizing different possible responses via signal transduction pathways when the stress is not lethal. In particular, prior mild stresses can provide some aid to prepare organisms for subsequent more severe stresses. These adjustments or adaptations for future stresses have been called adaptive responses. These responses are present in bacteria, plants and animals. The following review covers recent research which can help describe or postulate possible mechanisms which may be active in producing adaptive responses to radiation, ultraviolet light, and heat. (author)

  17. Effect of neutron radiation on mechanical properties of permanent near core structures

    International Nuclear Information System (INIS)

    Tavassoli, A.A.

    1988-01-01

    Several hundred specimens have been tested in order to assess the effects of low dose neutron radiation ( 0 C and ductility and toughness are primary design concerns, the changes provoked, by doses up to 1.3 dpa, in overall mechanical properties of welded joints are small. For upper core structure, where the operating temperature is about 550 0 C and fatigue and creep resistance are major design needs, the changes induced, through formation of up to about 2 appm helium, in conventional fatigue properties or fatigue with short hold times are negligible. With increasing hold time, intergranular rupture in irradiated specimens is enhanced but the limited number of tests does not allow definite conclusions to be drawn. 53 refs, 3 tabs, 9 figs

  18. Mechanisms of Low Dose Radiation-induced T helper Cell Function

    International Nuclear Information System (INIS)

    Gridley, Daila S.

    2008-01-01

    Exposure to radiation above levels normally encountered on Earth can occur during wartime, accidents such as those at Three Mile Island and Chernobyl, and detonation of 'dirty bombs' by terrorists. Relatively high levels of radiation exposure can also occur in certain occupations (low-level waste sites, nuclear power plants, nuclear medicine facilities, airline industry, and space agencies). Depression or dysfunction of the highly radiosensitive cells of the immune system can lead to serious consequences, including increased risk for infections, cancer, hypersensitivity reactions, poor wound healing, and other pathologies. The focus of this research was on the T helper (Th) subset of lymphocytes that secrete cytokines (proteins), and thus control many actions and interactions of other cell types that make up what is collectively known as the immune system. The Department of Energy (DOE) Low Dose Radiation Program is concerned with mechanisms altered by exposure to high energy photons (x- and gamma-rays), protons and electrons. This study compared, for the first time, the low-dose effects of two of these radiation forms, photons and protons, on the response of Th cells, as well as other cell types with which they communicate. The research provided insights regarding gene expression patterns and capacity to secrete potent immunostimulatory and immunosuppressive cytokines, some of which are implicated in pathophysiological processes. Furthermore, the photon versus proton comparison was important not only to healthy individuals who may be exposed, but also to patients undergoing radiotherapy, since many medical centers in the United States, as well as worldwide, are now building proton accelerators. The overall hypothesis of this study was that whole-body exposure to low-dose photons (gamma-rays) will alter CD4+ Th cell function. We further proposed that exposure to low-dose proton radiation will induce a different pattern of gene and functional changes compared to

  19. Examining the High-energy Radiation Mechanisms of Knots and Hotspots in Active Galactic Nucleus Jets

    Science.gov (United States)

    Zhang, Jin; Du, Shen-shi; Guo, Sheng-Chu; Zhang, Hai-Ming; Chen, Liang; Liang, En-Wei; Zhang, Shuang-Nan

    2018-05-01

    We compile the radio–optical–X-ray spectral energy distributions (SEDs) of 65 knots and 29 hotspots in 41 active galactic nucleus jets to examine their high-energy radiation mechanisms. Their SEDs can be fitted with the single-zone leptonic models, except for the hotspot of Pictor A and six knots of 3C 273. The X-ray emission of 1 hotspot and 22 knots is well explained as synchrotron radiation under the equipartition condition; they usually have lower X-ray and radio luminosities than the others, which may be due to a lower beaming factor. An inverse Compton (IC) process is involved for explaining the X-ray emission of the other SEDs. Without considering the equipartition condition, their X-ray emission can be attributed to the synchrotron-self-Compton process, but the derived jet powers (P jet) are not correlated with L k and most of them are larger than L k, with more than three orders of magnitude, where L k is the jet kinetic power estimated with their radio emission. Under the equipartition condition, the X-ray emission is well interpreted with the IC process for the cosmic microwave background photons (IC/CMB). In this scenario, the derived P jet of knots and hotspots are correlated with and comparable to L k. These results suggest that the IC/CMB model may be a promising interpretation of the X-ray emission. In addition, a tentative knot–hotspot sequence in the synchrotron peak-energy–peak-luminosity plane is observed, similar to the blazar sequence, which may be attributed to the different cooling mechanisms of electrons.

  20. Lightning initiation mechanism based on the development of relativistic runaway electron avalanches triggered by background cosmic radiation: Numerical simulation

    International Nuclear Information System (INIS)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2011-01-01

    The mechanism of lightning initiation due to electric field enhancement by the polarization of a conducting channel produced by relativistic runaway electron avalanches triggered by background cosmic radiation has been simulated numerically. It is shown that the fields at which the start of a lightning leader is possible even in the absence of precipitations are locally realized for realistic thundercloud configurations and charges. The computational results agree with the in-situ observations of penetrating radiation enhancement in thunderclouds.

  1. Lightning initiation mechanism based on the development of relativistic runaway electron avalanches triggered by background cosmic radiation: Numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Babich, L. P., E-mail: babich@elph.vniief.ru; Bochkov, E. I.; Kutsyk, I. M. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation)

    2011-05-15

    The mechanism of lightning initiation due to electric field enhancement by the polarization of a conducting channel produced by relativistic runaway electron avalanches triggered by background cosmic radiation has been simulated numerically. It is shown that the fields at which the start of a lightning leader is possible even in the absence of precipitations are locally realized for realistic thundercloud configurations and charges. The computational results agree with the in-situ observations of penetrating radiation enhancement in thunderclouds.

  2. Mechanism for suppression of radiation-induced segregation by oversized solute addition in austenitic stainless steel

    Science.gov (United States)

    Hackett, Micah Jeremiah

    The objective of this thesis is to quantify the effect of oversized solutes on radiation-induced segregation in austenitic stainless steels and to determine the mechanism of this effect. Zr or Hf additions to austenitic stainless steels demonstrated a reduction in radiation-induced segregation of Cr and Ni at the grain boundary after proton irradiation at 400°C and 500°C to low doses, but the solute effect disappeared at higher doses. Rate theory modeling of RIS was extended to incorporate a solute-vacancy trapping mechanism to predict the effect of solutes on RIS. The model showed that RIS is most sensitive to the solute-vacancy binding energy. First principles calculations were used to determine a binding energy of 1.08 eV for Zr and 0.71 eV for Hf. Model and experiment agreed in showing suppression of Cr depletion at doses of 3 dpa at 400°C and 1 dpa at 500°C, and experimental results were consistent with the model in showing greater effectiveness of Zr relative to Hf due to a larger binding energy. The dislocation loop microstructure was measured at 400°C, 3 and 7 dpa, and a significant decrease in loop density and total loop line length in the oversized solute alloys relative to the reference alloys. The loop microstructure results were consistent with RIS results by confirming enhanced recombination of point defects by solute-vacancy trapping. Increases in RIS with dose indicated a loss of solute effectiveness, which was consistent with an observed increase in loop line length from 3 to 7 dpa. The loss of solute effectiveness at high dose is attributed to a loss of oversized solute from the matrix due to coarsening of carbide precipitates. X-ray diffraction identified a microstructure with ZrC or HfC precipitates prior to irradiation. Precipitate coarsening was identified as the most likely mechanism for the loss of solute effectiveness on RIS by the following: (1) diffusion analysis suggested significant solute diffusion by the vacancy flux to

  3. A preliminary study on action mechanisms of surviving expression in cell apoptosis induced by high-LET radiation

    International Nuclear Information System (INIS)

    Jin Xiaodong; Li Qiang; Gong Li; Wu Qingfeng; Li Ping; Dai Zhongying; Liu Xinguo; Tao Jiajun

    2010-01-01

    It has been proven that over-expression of surviving in cancerous cell lines is related to the radioresistance of cells to high-LET radiation in previous work. In this study, action mechanisms of surviving gene in apoptosis induced by high-LET radiation were investigated. We found that inhibiting surviving by siRNA had no notable influence on Bcl-2 and Bax expressions induced by carbon ions. Surviving depressed cell apoptosis through the inhibition of the activities of caspase-3 and -9 possibly in cell apoptosis induced by high-LET radiation. (authors)

  4. Mechanism of radiation tolerance in higher plants. Radiation damage of DNA in cultured tobacco BY-2 cells and implication from its repair process

    International Nuclear Information System (INIS)

    Yokota, Yuichiro; Narumi, Issay; Funayama, Tomoo; Kobayashi, Yasuhiko; Tanaka, Jun; Inoue, Masayoshi

    2007-01-01

    This paper describes the mechanism of radiation tolerance at the cellular level in higher plants, of which fundamental study basis is rather poor, in cultured cells in the title (BY-2 cells, Nicotiana tabacum L., allotetraploid). When compared with LD 50 of radiation in higher animals (2.4-8.6 Gy), higher plants are generally tolerant to radiation (known LD 50 , >360-2000 Gy). Authors have made unicellular BY-2 cells (protoplasts) by enzyme treatment to see their colony forming ability (CFA) and have found those cells are also resistant to radiation: D 10 (10% CFA dose) (Gy) is found to be 8.2-47.2 by radiation with various linear energy transfer (LET)s like gamma ray and heavy ion beams, in contrast to human D 10 (1.17-8.12, by X-ray and carbon beam). Double strand break (DSB) of DNA by radiation per one BY-2 cell initially occurs 7-10 times more frequently than mammalian cells (CHO-K1). However, DSB repair in BY-2 cells is found only as efficient as in mammalian cells: a slow repair relative to DSB number. Checkpoint mechanism of DNA damage is found poorly working in BY-cells, which results in frequent chromosome aberration like micronucleus. Authors consider that, for an herbaceous plant, to precede the cell cycle rather than to recover from the genomic instability can be profitable for growing more rapidly to have more sunlight energy than other individuals. Improvement of plants by gene technological approach with such a mean as mutation by radiation is conceivably important from aspects of food supply and of ecological environment. (R.T.)

  5. Discovery of H I gas in a young radio galaxy at z = 0.44 using the Australian Square Kilometre Array Pathfinder

    NARCIS (Netherlands)

    Allison, J. R.; Sadler, E. M.; Moss, V. A.; Whiting, M. T.; Hunstead, R. W.; Pracy, M. B.; Curran, S. J.; Croom, S. M.; Glowacki, M.; Morganti, R.; Shabala, S. S.; Zwaan, M. A.; Allen, G.; Amy, S. W.; Axtens, P.; Ball, L.; Bannister, K. W.; Barker, S.; Bell, M. E.; Bock, D. C.-J.; Bolton, R.; Bowen, M.; Boyle, B.; Braun, R.; Broadhurst, S.; Brodrick, D.; Brothers, M.; Brown, A.; Bunton, J. D.; Cantrall, C.; Chapman, J.; Cheng, W.; Chippendale, A. P.; Chung, Y.; Cooray, F.; Cornwell, T.; DeBoer, D.; Diamond, P.; Edwards, P. G.; Ekers, R.; Feain, I.; Ferris, R. H.; Forsyth, R.; Gough, R.; Grancea, A.; Gupta, N.; Guzman, J. C.; Hampson, G.; Harvey-Smith, L.; Haskins, C.; Hay, S.; Hayman, D. B.; Heywood, I.; Hotan, A. W.; Hoyle, S.; Humphreys, B.; Indermuehle, B. T.; Jacka, C.; Jackson, C.; Jackson, S.; Jeganathan, K.; Johnston, S.; Joseph, J.; Kendall, R.; Kesteven, M.; Kiraly, D.; Koribalski, B. S.; Leach, M.; Lenc, E.; Lensson, E.; Mackay, S.; Macleod, A.; Marquarding, M.; Marvil, J.; McClure-Griffiths, N.; McConnell, D.; Mirtschin, P.; Norris, R. P.; Neuhold, S.; Ng, A.; O'Sullivan, J.; Pathikulangara, J.; Pearce, S.; Phillips, C.; Popping, A.; Qiao, R. Y.; Reynolds, J. E.; Roberts, P.; Sault, R. J.; Schinckel, A.; Serra, P.; Shaw, R.; Shields, M.; Shimwell, T.; Storey, M.; Sweetnam, T.; Troup, E.; Turner, B.; Tuthill, J.; Tzioumis, A.; Voronkov, M. A.; Westmeier, T.; Wilson, C. D.

    2015-01-01

    We report the discovery of a new 21-cm H I absorption system using commissioning data from the Boolardy Engineering Test Array of the Australian Square Kilometre Array Pathfinder (ASKAP). Using the 711.5-1015.5 MHz band of ASKAP we were able to conduct a blind search for the 21-cm line in a

  6. Administrative Circular No. 20 (Rev. 2) – Re-evaluation of the kilometre allowance when using a private vehicle for journeys on official duty

    CERN Document Server

    HR Department

    2011-01-01

    Following discussion in the Standing Concertation Committee meeting of 21 March 2011, the kilometre allowance was increased from 0,65 CHF/km to 0,70 CHF/km as from 11 April 2011 which is the first date of the new overtime period. Department Head Office

  7. Comprehensive structural analysis of the HCPB demo blanket under thermal, mechanical, electromagnetic and radiation induced loads

    International Nuclear Information System (INIS)

    Boccaccini, L.V.; Norajitra, P.; Ruatto, P.; Scaffidi-Argentina, F.

    1998-01-01

    For the helium-cooled pebble bed (HCPB) blanket, which is one of the two reference concepts studied within the European Demo Development Program, a comprehensive finite element (FEM) structural analysis has been performed. The analysis refers to the steady-state operating conditions of an outboard blanket segment. On the basis of a three-dimensional model of radial-toroidal sections of the segment box, thermal stresses caused by the temperature gradients in the blanket structure have been calculated. Furthermore, the mechanical loads due to coolant pressure in normal operating conditions as well as an accidental over-pressurization of the blanket box have been accounted for. The stresses caused by a central plasma major disruption from an initial current of 20 MA to zero in 20 ms have been also taken into account. Radiation-induced dimensional changes of breeder and multiplier material caused by both helium production and neutron damage, have also been evaluated and discussed. All the above loads have been combined as input for a FEM stress analysis and the resulting stress distribution has been evaluated according to the American Society of Mechanical Engineers (ASME) norms. (orig.)

  8. Mechanisms for radiation damage in DNA. Progress report, August 1, 1975--July 31, 1976

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1976-01-01

    In this project we have proposed a mechanism for radiation damage to DNA and detailed a series of experiments utilizing electron spin resonance spectrometry to test the proposed mechanisms. In this past year several investigations have been completed or are nearing completion. These investigations are an ESR study of the N 1 -substituted thymine π-cation radicals; studies of electron reactions with amino acid anhydrides; and ESR and pulse radiolytic studies of electron transfer in dinucleoside phosphate anions. Studies which we have made significant progress on in this past year are positive ion radicals of the dinucleoside phosphates, and reactions of the π-cations of thymine derivatives. In the first study the spin density distribution in the cation radicals of thymidine and thymidine-5 1 -monophosphate have been elucidated. Couplings are found to the ribose group in these radicals. It is believed that these results will aid the identification of cation radicals in DNA. In study 2, the results indicate that these cyclic anhydrides can undergo reductive deamination. In study 3, the results show the order of electron affinities of the DNA bases to be thymine approximately equal to cytosine greater than adenine approximately equal to guanine

  9. Radiation modification and interaction mechanism of polypropylene and polyethylene by protons and electrons

    International Nuclear Information System (INIS)

    Wang Guanghou

    1988-10-01

    A systematic investigation of radiation effects on isotactic polypropylene (PP) and low-density polyethylene (PE) films by protons and electrons is reported. Electrons can make polyethylene cross-linked and polypropylene crached while protons can improve the PP mechanical properties and deteriorate polyethylene with increasing the irradiation dose. The structural analysis shows that conversion between α and β phases occurs and the crystallinity remains constant in the electron-irradiated polypropylene whereas the network structure is formed by allyl-type radicals in the e - -irradiated polyethylene. The infrared spectra indicate that conformational changes have taken place in the polypropylene under proton bombardment, such as the transition from an ordered to a disordered state in the crystalline region, the formation of double bonds as well as trans-conformations. This leads to the cross-linking between macromolecules of polypropylene at the proper irradiation doses, thus enhancing its mechanical properties. The cross-linking of polypropylene by proton bombardment observed and its properties may have some potential applications

  10. Observations of the auroral width spectrum at kilometre-scale size

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2010-03-01

    Full Text Available This study examines auroral colour camera data from the Canadian Dense Array Imaging SYstem (DAISY. The Dense Array consists of three imagers with different narrow (compared to all-sky view field-of-view optics. The main scientific motivation arises from an earlier study by Knudsen et al. (2001 who used All-Sky Imager (ASI combined with even earlier TV camera observations (Maggs and Davis, 1968 to suggest that there is a gap in the distribution of auroral arc widths at around 1 km. With DAISY observations we are able to show that the gap is an instrument artifact and due to limited spatial resolution and coverage of commonly used instrumentation, namely ASIs and TV cameras. If the auroral scale size spectrum is indeed continuous, the mechanisms forming these structures should be able to produce all of the different scale sizes. So far, such a single process has not been proposed in the literature and very few models are designed to interact with each other even though the range of their favourable conditions do overlap. All scale-sizes should be considered in the future studies of auroral forms and electron acceleration regions, both in observational and theoretical approaches.

  11. Study of mechanical behavior of PMMA in bending and after UV irradiation and gamma radiation

    International Nuclear Information System (INIS)

    Todt, M.L.; Kienen, V.D.; Azevedo, E.C.

    2014-01-01

    PMMA is a polymer that has density similar to water and refractive index alike to glass. It has been used in the substitution to roofing tiles and coverages, affording to be exposed to UV radiation and gamma radiation. This paper had the objective to study the effect in the flexural proprieties of the PMMA exposed to these types of radiations and the evaluation of the wettability through a contact angle measurer. The PMMA specimens have been submitted to 1500 h of UVA radiation, 1500 h of UVC radiation and to 25kGy of gamma radiation. The results show that the PMMA. (author)

  12. In vitro evaluation of ionizing radiation effects in bone tissue by FTIR spectroscopy and dynamic mechanical analysis

    International Nuclear Information System (INIS)

    Veloso, Marcelo Noronha

    2013-01-01

    Ionizing radiation from gamma radiation sources or X-ray generators is frequently used in Medical Science, such as radiodiagnostic exams, radiotherapy, and sterilization of haloenxerts. Ionizing radiation is capable of breaking polypeptidic chains and causing the release of free radicals by radiolysis.of water. It interacts also with organic material at the molecular level, and it may change its mechanical properties. In the specific case of bone tissue, studies report that ionizing radiation induces changes in collagen molecules and reduces the density of intermolecular crosslinks. The aim of this study was to verify the changes promoted by different doses of ionizing radiation in bone tissue using Fourier Transform Infrared Spectroscopy (FTIR) and dynamic mechanical analysis (DMA). Samples of bovine bone were irradiated using Cobalt-60 with five different doses: 0.01 kGy, 0.1 kGy, 1 kGy, 15 kGy and 75 kGy. To study the effects of ionizing irradiation on the chemical structure of the bone, the sub-bands of amide I, the crystallinity index and relation of organic and inorganic materials, were studied. The mechanical changes were evaluated using the elastic modulus and the damping value. To verify whether the chemical changes and the mechanical characteristics of the bone were correlated, the relation between the analysis made with spectroscopic data and the mechanical analysis data was studied. It was possible to evaluate the effects of different doses of ionizing radiation in bone tissue. With ATR-FTIR spectroscopy, it was possible to observe changes in the organic components and in the hydroxyapatite crystals organization. Changes were also observed in the elastic modulus and in the damping value. High correlation with statistical significance was observed among (amide III + collagen)/ v1,v3 , PO 4 3- and the delta tangent, and among 1/FHWM and the elastic modulus. (author)

  13. Loss and source mechanisms of Jupiter's radiation belts near the inner boundary of trapping regions

    Science.gov (United States)

    Santos-Costa, Daniel; Bolton, Scott J.; Becker, Heidi N.; Clark, George; Kollmann, Peter; Paranicas, Chris; Mauk, Barry; Joergensen, John L.; Adriani, Alberto; Thorne, Richard M.; Bagenal, Fran; Janssen, Mike A.; Levin, Steve M.; Oyafuso, Fabiano A.; Williamson, Ross; Adumitroaie, Virgil; Ingersoll, Andrew P.; Kurth, Bill; Connerney, John E. P.

    2017-04-01

    We have merged a set of physics-based and empirical models to investigate the energy and spatial distributions of Jupiter's electron and proton populations in the inner and middle magnetospheric regions. Beyond the main source of plasma (> 5 Rj) where interchange instability is believed to drive the radial transport of charged particles, the method originally developed by Divine and Garrett [J. Geophys. Res., 88, 6889-6903, 1983] has been adapted. Closer to the planet where field fluctuations control the radial transport, a diffusion theory approach is used. Our results for the equatorial and mid-latitude regions are compared with Pioneer and Galileo Probe measurements. Data collected along Juno's polar orbit allow us to examine the features of Jupiter's radiation environment near the inner boundary of trapping regions. Significant discrepancies between Juno (JEDI keV energy particles and high energy radiation environment measurements made by Juno's SRU and ASC star cameras and the JIRAM infrared imager) and Galileo Probe data sets and models are observed close to the planet. Our simulations of Juno MWR observations of Jupiter's electron-belt emission confirm the limitation of our model to realistically depict the energy and spatial distributions of the ultra-energetic electrons. In this paper, we present our modeling approach, the data sets and resulting data-model comparisons for Juno's first science orbits. We describe our effort to improve our models of electron and proton belts. To gain a physical understanding of the dissimilarities with observations, we revisit the magnetic environment and the mechanisms of loss and source in our models.

  14. Radiation-induced destruction of organic compounds in aqueous solutions by dual oxidation/reduction mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Chaychiana, M.; Silverman, J.; Al-Sheikhly, M. [Department of Materials Science and Engineering, University of Maryland (United States); Poster, D.; Neta, P.; Huie, R. [Chemical Science and Technology Laboratory, National Institute of Standard and Technology (United States)

    2011-07-01

    This research presents the feasibility and mechanisms of using high energy electrons for the dechlorination of polychlorinated biphenyls (PCBs) in marine sediment, and hazardous organic compounds in waste water. The remediation of the organic contaminants by ionizing radiation is achieved by means of both reduction and oxidation processes. PCBs in marine sediment can be effectively dechlorinated by reduction, while toxic organic compounds in water are removed mainly by oxidation. Radiolytic degradation of aqueous suspensions of PCBs in marine sediments in the presence of isopropanol was also studied. Addition of isopropanol was necessary to enhance the radiolytic yield and the dechlorination of PCBs. Also presented are results from an examination of the oxidative and reductive effects of electron-beam irradiation on the concentrations of six organic solvents in water. The organic solvents in water were prepared to mimic a pharmaceutical waste stream. Radiation-induced destruction of benzene was also investigated using pulse radiolysis technique. Pulse radiolysis with spectrophotometric and conductometric detection was utilized to study the formation and reactions of radicals from benzene and dienes in aqueous solutions. The benzene OH adduct, {sup ●}C{sub 6}H{sub 6}OH, reacts with O{sub 2} (k = 3x10{sup 8} L mol{sup -1} s{sup -1}) in a reversible reaction. The peroxyl radical, HOC{sub 6}H{sub 6}O{sub 2}{sup ●}, undergoes O{sub 2}●- elimination, bimolecular decay, and reaction with benzene to initiate a chain reaction, depending on the dose rate, benzene concentration, and pH. The occurrence of the chain reaction is demonstrated in low-dose-rate gamma radiolysis experiments where the consumption of O{sub 2} was monitored. (author)

  15. Ionizing radiation effect on physico-mechanical characteristics of thermoplastic polymer materials

    International Nuclear Information System (INIS)

    Stankevich, V.M.; Pleskachevsky, Yu.M.; Smirnov, V.V.

    2001-01-01

    Investigation results in the field of ionizing radiation effect on structure and physico-mechanical properties of novel polymer materials are presented. The materials under study are various grades of PETP, PA-6 and polyethylene concentrate of technical carbon (PECC) commercially produced and extensively used in Belarus and abroad. It has been proved using EPR, thermomechanical and gel analyses that a combined effect of ionizing radiation within 0 to 10 MGy of absorbed dose range under different concentrations of mineral fillers (TiO 2 , kaolin, carbon black, graphite) and intensive cross-linking processes in amorphous phase are able to considerably improve strength characteristics of the studied polymers and their compositions. Most informative parameter was found to be breaking strength at rapture (σ r ) which enables to estimate the character of ionizing effect on the targets. At 0.01-0.05 MGy absorbed dose the highest σ r was shown as compared to initial PETP by the following materials: PN grade - 9 times, D - two and a half. When absorbed dose of PETP reached 0.2 MGy, σ r of PN surpassed the initial material 7.8 times, that of D - by 30% and E - by 1,5%. This is the evidence of elevated resistance of named materials to ionizing radiation in contrast to non-filled PETP 215. Growth of σ r in PA-6 has been noticed at absorbed dose above 2 MGy in response to maximum gel-formation values. Abrupt reduction of the studied parameters of PP upon irradiation is attributed to its destruction. Domination of cross-linking processes has been observed in PEVP and PECC which reduces macromolecular mobility and elasticity of the material as a whole but promotes polymer strengthening. Drop of PEVP impact strength can be related to its embrittlement. Presence of the filler (carbon black) in PECC at the initial stage of exposure resulted in improvement of studied parameters. Their further impairment is the result of limited mobility of macromolecules owing to cross-linking in

  16. Enhancement of radiation effect using beta-lapachone and underlying mechanism

    International Nuclear Information System (INIS)

    Ahn, Ki Jung; Lee, Hyung Sik; Bai, Se Kyung; Song, Chang Won

    2013-01-01

    Beta-lapachone (β-Lap; 3,4-dihydro-2, 2-dimethyl-2H-naphthol[1, 2-b]pyran-5,6-dione) is a novel anti-cancer drug under phase I/II clinical trials. (β-Lap has been demonstrated to cause apoptotic and necrotic death in a variety of human cancer cells in vitro and in vivo. The mechanisms underlying the (β-Lap toxicity against cancer cells has been controversial. The most recent view is that (β-Lap, which is a quinone compound, undergoes two-electron reduction to hydroquinone form utilizing NAD(P)H or NADH as electron source. This two-electron reduction of (β-Lap is mediated by NAD(P)H:quinone oxidoreductase (NQO1), which is known to mediate the reduction of many quinone compounds. The hydroquinone forms of (β-Lap then spontaneously oxidizes back to the original oxidized (β-Lap, creating futile cycling between the oxidized and reduced forms of (β-Lap. It is proposed that the futile recycling between oxidized and reduced forms of (β-Lap leads to two distinct cell death pathways. First one is that the two-electron reduced (β-Lap is converted first to one-electron reduced (β-Lap, i.e., semiquinone (β-Lap (SQ)- causing production of reactive oxygen species (ROS), which then causes apoptotic cell death. The second mechanism is that severe depletion of NAD(P)H and NADH as a result of futile cycling between the quinone and hydroquinone forms of β- p causes severe disturbance in cellular metabolism leading to apoptosis and necrosis. The relative importance of the aforementioned two mechanisms, i.e., generation of ROS or depletion of NAD(P)H/NADH, may vary depending on cell type and environment. Importantly, the NQO1 level in cancer cells has been found to be higher than that in normal cells indicating that β-Lap may be preferentially toxic to cancer cells relative to non-cancer cells. The cellular level of NQO1 has been found to be significantly increased by divergent physical and chemical stresses including ionizing radiation. Recent reports clearly demonstrated

  17. BIOCHEMICAL MECHANISMS OF MIXED EFFECT OF ELECTROMAGNETIC RADIATION AND LOW POSITIVE TEMPERATURE ON ANIMALS’ ORGANISM

    Directory of Open Access Journals (Sweden)

    Litovchenko O.L.

    2015-05-01

    Full Text Available At present, biochemical mechanisms of mixed effects of electromagnetic radiation (EMR and cold on the body are not adequately studied, so this problem is urgent for modern medicine. Purpose of study. Establishing pathognomonic criteria and biochemical mechanisms of adverse effect of EMR on the organism of laboratory animals in conditions of cold stress. Materials and methods. The laboratory subacute experiment was carried out on mature white male rats of WAG line, weighing 190-220 g for 1 month. The animals were divided into 4 groups of 10 animals in each group. The first group was subjected to the isolated action of electromagnetic radiation (frequency 70 kHz, tension 600 V/m at a comfortable air temperature of 25 ± 2 ° C. The second group was subjected to the mixed action of EMR and low temperature 4 ± 2°C. The third group served as a control with regard to the first group, and the fourth group - with regard to the second, at air temperature of 25 ± 2°C. Expositions were carried out 5 times a week (for 4:00 every day. To identify changes in biochemical parameters studied during the experiments, blood sampling was performed at the stages of 5, 15, 30 days and urine sampling – at the stages of 15, 30 days in dynamics. Blood serum was used as biomaterial. It was determined the content of malondialdehyde (MDA, conjugated diene, content of SH-groups, superoxide dismutase, ceruloplasmin, cholesterol, high density lipoprotein, low density lipoprotein, very low density lipoprotein (VLDL, triglycerides, atherogenic index was determined, the level of urea, alkaline phosphatase, acid phosphatase, content of chlorides, calcium, magnesium, phosphorus, total protein, glucose, and catalase activity. Renal function was studied by the content of creatinine, cholinesterase, urea, uric acid, chlorides, potassium, sodium, calcium, phosphorus and glucose in urine. Results and discussion. The findings showed that the isolated action of EMR only led to a

  18. A failure of serendipity: the Square Kilometre Array will struggle to eavesdrop on human-like extraterrestrial intelligence

    Science.gov (United States)

    Forgan, D. H.; Nichol, R. C.

    2011-04-01

    The Square Kilometre Array (SKA) will operate in frequency ranges often used by military radar and other communications technology. It has been shown that if extraterrestrial intelligences (ETIs) communicate using similar technology, then the SKA should be able to detect such transmissions up to distances of ~100 pc (~300 light years) from Earth. However, Mankind has greatly improved its communications technology over the last century, dramatically reducing signal leakage and making the Earth ‘radio quiet’. If ETIs follow the same pattern as the human race, will we be able to detect their signal leakage before they become radio quiet? We investigate this question using Monte Carlo realization techniques to simulate the growth and evolution of intelligent life in the Galaxy. We show that if civilizations are ‘human’ in nature (i.e. they are only ‘radio loud’ for ~100 years, and can only detect each other with an SKA-like instrument out to 100 pc, within a maximum communication time of 100 years), then the probability for such civilizations accidentally detecting each other is low (~10-7), much lower than if other, dedicated communication techniques are permissible (e.g. optical SETI or neutrino communication).

  19. On the mechanisms of the radiation-induced degradation of cellulosic substances

    Science.gov (United States)

    Tissot, Chanel; Grdanovska, Slavica; Barkatt, Aaron; Silverman, Joseph; Al-Sheikhly, Mohamad

    2013-03-01

    Much interest has been generated in utilizing ionizing radiation for the production of bio-fuels from cellulosic plant materials. It is well known that exposure of cellulose to ionizing radiation causes significant breakdown of the polysaccharide. Radiation-induced degradation of cellulose may reduce or replace ecologically hazardous chemical steps in addition to reducing the number of processing stages and decreasing energy consumption.

  20. Effect of neutron radiation on the dielectric, mechanical and thermal properties of ceramics for RF transmission windows

    International Nuclear Information System (INIS)

    Hazelton, C.; Rice, J.; Snead, L.L.; Zinkle, S.J.

    1998-01-01

    The behavior of electrically insulating ceramics was investigated before and after exposure to neutron radiation. Mechanical, thermal and dielectric specimens were studied after exposure to a fast neutron dose of 0.1 displacements per atom (dpa) at Oak Ridge National Laboratory (ORNL). Four materials were compared to alumina: polycrystalline spinel, aluminum nitride, sialon and silicon nitride. Mechanical bend tests were performed before and after irradiation. Thermal diffusivity was measured using a room temperature laser flash technique. Dielectric loss factor was measured at 105 MHz with a special high resolution resonance cavity. The materials exhibited a significant degradation of thermal diffusivity and an increase in dielectric loss tangent. The flexural strength and physical dimensions were not significantly affected by the 0.1 dpa level of neutron radiation. The aluminum nitride and S silicon nitride showed superior RF window performance over the sialon and the alumina. The results are compared to radiation studies on similar materials

  1. Mechanism of the immobilization of surfactants on polymeric surfaces by means of an argon plasma treatment: Influence of UV radiation

    NARCIS (Netherlands)

    Lens, J.P.; Spaay, B.; Terlingen, J.G.A.; Engbers, G.H.M.; Feijen, Jan

    1999-01-01

    The mechanism of the immobilization of the surfactant sodium 10-undecenoate (C11(:)) on poly(ethylene) (PE) by means of an argon plasma treatment has been investigated. In particular, the influence of the vacuum ultraviolet (UV) radiation emitted by the argon plasma on the immobilization was

  2. The involvement of topoisomerases and DNA polymerase I in the mechanism of induced thermal and radiation resistance in yeast

    International Nuclear Information System (INIS)

    Boreham, D.R.; Trivedi, A.; Weinberger, P.; Mitchel, R.E.

    1990-01-01

    Either an ionizing radiation exposure or a heat shock is capable of inducing both thermal tolerance and radiation resistance in yeast. Yeast mutants, deficient in topoisomerase I, in topoisomerase II, or in DNA polymerase I, were used to investigate the mechanism of these inducible resistances. The absence of either or both topoisomerase activities did not prevent induction of either heat or radiation resistance. However, if both topoisomerase I and II activities were absent, the sensitivity of yeast to become thermally tolerant (in response to a heat stress) was markedly increased. The absence of only topoisomerase I activity (top1) resulted in the constitutive expression of increased radiation resistance equivalent to that induced by a heat shock in wild-type cells, and the topoisomerase I-deficient cells were not further inducible by heat. This heat-inducible component of radiation resistance (or its equivalent constitutive expression in top1 cells) was, in turn, only a portion of the full response inducible by radiation. The absence of polymerase I activity had no detectable effect on either response. Our results indicate that the actual systems that confer resistance to heat or radiation are independent of either topoisomerase activity or DNA polymerase function, but suggest that topoisomerases may have a regulatory role during the signaling of these mechanisms. The results of our experiments imply that maintenance of correct DNA topology prevents induction of the heat-shock response, and that heat-shock induction of a component of the full radiation resistance in yeast may be the consequence of topoisomerase I inactivation

  3. Functional analysis of molecular mechanisms of radiation induced apoptosis, that are not mediated by DNA damages

    International Nuclear Information System (INIS)

    Angermeier, Marita; Moertl, Simone

    2012-01-01

    The effects of low-dose irradiation pose new challenges on the radiation protection efforts. Enhanced cellular radiation sensitivity is displayed by disturbed cellular reactions and resulting damage like cell cycle arrest, DNA repair and apoptosis. Apoptosis serves as genetically determinate parameter for the individual radiation sensitivity. In the frame of the project the radiation-induced apoptosis was mechanistically investigated. Since ionizing radiation induced direct DNA damage and generates a reactive oxygen species, the main focus of the research was the differentiation and weighting of DNA damage mediated apoptosis and apoptosis caused by the reactive oxygen species (ROS).

  4. Radiation Damage Mechanism in PbWO4 Crystal and Radiation Hardness Quality Control of PWO Scintillators for CMS

    CERN Document Server

    Baccaro, Stefania; Borgia, Bruno; Cavallari, Francesca; Cecilia, Angelica; Dafinei, Ioan; Diemoz, Marcella; Lecoq, Paul; Longo, Egidio; Montecchi, Marco; Organtini, Giovanni; Salvatori, S

    1997-01-01

    The optical damage induced by UV light in PbWO4 crystals is found to be similar to that induced by g radiation. Due to the peculiarities of optical absorption in PbWO4, the damage induced by UV light is a bulk process. This fact has important consequences for the approach to be adopted both for the use of the crystal as scintillator and for the qualification methods foreseen in the Regional Centres of the ECAL CMS Collaboration.

  5. Radiations

    International Nuclear Information System (INIS)

    Pujol Mora, J.

    1999-01-01

    The exposition to ionizing radiations is a constant fact in the life of the human being and its utilization as diagnostic and therapeutic method is generalized. However, it is notorious how as years go on, the fear to the ionizing radiation seems to persist too, and this fact is not limited to the common individual, but to the technical personnel and professional personnel that labors with them same. (S. Grainger) [es

  6. Radiation

    International Nuclear Information System (INIS)

    Davidson, J.H.

    1986-01-01

    The basic facts about radiation are explained, along with some simple and natural ways of combating its ill-effects, based on ancient healing wisdom as well as the latest biochemical and technological research. Details are also given of the diet that saved thousands of lives in Nagasaki after the Atomic bomb attack. Special comment is made on the use of radiation for food processing. (U.K.)

  7. Investigating Degradation Mechanisms in 130 nm and 90 nm Commercial CMOS Technologies Under Extreme Radiation Conditions

    Science.gov (United States)

    Ratti, Lodovico; Gaioni, Luigi; Manghisoni, Massimo; Traversi, Gianluca; Pantano, Devis

    2008-08-01

    The purpose of this paper is to study the mechanisms underlying performance degradation in 130 nm and 90 nm commercial CMOS technologies exposed to high doses of ionizing radiation. The investigation has been mainly focused on their noise properties in view of applications to the design of low-noise, low-power analog circuits to be operated in harsh environment. Experimental data support the hypothesis that charge trapping in shallow trench isolation (STI), besides degrading the static characteristics of interdigitated NMOS transistors, also affects their noise performances in a substantial fashion. The model discussed in this paper, presented in a previous work focused on CMOS devices irradiated with a 10 Mrad(SiO2) gamma -ray dose, has been applied here also to transistors exposed to much higher (up to 100 Mrad(SiO2 )) doses of X-rays. Such a model is able to account for the extent of the observed noise degradation as a function of the device polarity, dimensions and operating point.

  8. Radiation-induced changes in the ultrastructure and mechanical function of the rat heart

    International Nuclear Information System (INIS)

    Cilliers, G.D.; Lochner, A.

    1989-01-01

    A time sequence study was performed to study the early effects of radiation on the ultrastructure of the rat heart. Wistar rats were exposed to 20 Gy electron irradiation to a field including the heart and a third of the lung. The hearts were excised at varying time intervals (1 h-180 days), and the ultrastructure of perfusion-fixed subepicardium and subendocardium studied. Changes were observed in both myocytes and interstitium at all time intervals. The most pronounced change observed in the myocyte was that of intercalated disc damage which reached a peak at 30 days post-irradiation. Mitochondrial damage, characterized by swelling and fenstration in areas of myofibrillar contracture, was focal and relatively scarce. Swelling of the capillary endothelial cells and ollapse of the capillaries were marked up to 60 days. Of significance was the observation that the damage to both myocytes and interstitium receded after 60 days and the hearts exhibited an almost normal ultrastructure from 100 to 180 days post-irradiation. Mechanical function of these hearts followed a similar pattern: maximal depression was observed 60 days after irradiation. Thereafter the work performance of these hearts improved significantly, almost reaching control level after 180 days. (author). 34 refs.; 21 figs.; 1 tab

  9. The effect of helium, radiation damage and irradiation temperature on the mechanical properties of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Fabritsiev, S.A. [D.V. Efremov Scientific Research Inst., St. Petersburg (Russian Federation); Pokrovsky, A.S.

    1998-01-01

    In this work different RF beryllium grades were irradiated in the BOR-60 reactor to a dose of {approx}5-10 dpa at irradiation temperatures 350, 420, 500, 800degC. Irradiation at temperatures of 350-400degC is shown to result in Be hardening due to the accumulation of radiation defect complexes. Hardening is accompanied with a sharp drop in plasticity at T{sub test} {<=} 300degC. A strong anisotropy in plasticity has been found at a mechanical testing temperature of 400degC and this parameter may be preferable when the samples are cut crosswise to the pressing direction. High-temperature irradiation (T{sub irr} = 780degC) gives rise to large helium pores over the grain boundaries and smaller pores in the grain body. Fracture is brittle and intercrystallite at T{sub test} {>=} 600degC. Helium embrittlement is accompanied as well with a drop in the Be strength properties. (author)

  10. Significant enhancement of metal heat dissipation from mechanically exfoliated graphene nanosheets through thermal radiation effect

    Directory of Open Access Journals (Sweden)

    Junxiong Hu

    2017-05-01

    Full Text Available We demonstrate a facile approach to significantly enhance the heat dissipation potential of conventional aluminum (Al heat sinks by mechanically coating graphene nanosheets. For Al and graphene-coated Al heat sinks, the change in temperature with change in coating coverage, coating thickness and heat flux are studied. It is found that with the increase in coating coverage from 0 to 100%, the steady-state temperature is decreased by 5 °C at a heat flux of 1.8 W cm-1. By increasing the average thickness of graphene coating from 480 nm to 1900 nm, a remarkable temperature reduction up to 7 °C can be observed. Moreover, with the increase in heat flux from 1.2 W cm-1 to 2.4 W cm-1, the temperature difference between uncoated and graphene-coated samples increases from 1 °C to 6 °C. The thermal analysis and finite element simulation reveal that the thermal radiation plays a key role in enhancing the heat dissipation performance. The effect of heat convection remains weak owing to the low air velocity at surface-air boundary. This work provides a technological innovation in improving metal heat dissipation using graphene nanosheets.

  11. Mechanism of growth delay induced in Escherichia coli by near ultraviolet radiation

    International Nuclear Information System (INIS)

    Ramabhadran, T.V.; Jagger, J.

    1976-01-01

    Continuously growing cultures of E. coli B/r were irradiated with a fluence of broad-band near-ultraviolet radiation (315 to 405 nm) sufficient to cause extensive growth delay and complete cessation of net RNA synthesis. Chloramphenicol treatment was found to stimulate resumption of RNA synthesis, similar to that observed with chloramphenicol treatment after amino-acid starvation. E. coli strains in which amino-acid starvation does not result in cessation of RNA synthesis (''relaxed'' or rel - strains) show no cessation of growth and only a slight effect on the rate of growth or of RNA synthesis. These findings show that such near-uv fluences do not inactivate the RNA synthetic machinery but affect the regulation of RNA synthesis, in a manner similar to that produced by amino-acid starvation. Such regulation is believed to be mediated through alterations in concentration of guanosine tetraphosphate (ppGpp), and our estimations of ppGpp after near-uv irradiation are consistent with such an interpretation. These data, combined with earlier published data, strongly suggest that the mechanism of near-uv-induced growth delay in E. coli involves partial inactivation of certain tRNA species, which is interpreted by the cell in a manner similar to that of amino-acid starvation, causing a rise in ppGpp levels, a shut-off of net RNA synthesis, and the induction of a growth delay

  12. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation

    Science.gov (United States)

    Akter, Nousin; Khan, Ruhul A.; Salmieri, Stephane; Sharmin, Nusrat; Dussault, Dominic; Lacroix, Monique

    2012-08-01

    Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20-80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5-25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties.

  13. Production of a nuclear radiation resistant and mechanically tough electrically insulating material

    International Nuclear Information System (INIS)

    Brechna, H.

    1975-01-01

    According to the invention, an electrically insulating material of high mechanical strength and resistance to nuclear radiation may be made of a hardenable plastic material coated on an inorganic supporting tissue. The synthetic resin serving as binder - duroplasts, e.g. epoxide resins, polyester resins or silicon resins - is heated, mixed with a catalyst, a wetting agent and a filler (and, if required, with 0.5-1.5 weight % thixotropic material) and coated, under reduced pressure (o.4 to 0.6 mm Hg), on the supporting tissue whose surface is cleaned before this by heating. It is then hardened. Hardening may also take place directly on the electric conductor to be insulated. One obtains a bubble-free wire coating. The inorganic supporting material is glas fibre tissue, also in combination with mica, while Al 2 O 3 , zirconium, zirconia, magnesium oxide, mica and silica (grain size 10-20 μ). The invention is illustrated by a number of examples. (UWI) [de

  14. Radiation

    International Nuclear Information System (INIS)

    Winther, J.F.; Ulbak, K.; Dreyer, L.; Pukkala, E.; Oesterlind, A.

    1997-01-01

    Exposure to solar and ionizing radiation increases the risk for cancer in humans. Some 5% of solar radiation is within the ultraviolet spectrum and may cause both malignant melanoma and non-melanocytic skin cancer; the latter is regarded as a benign disease and is accordingly not included in our estimation of avoidable cancers. Under the assumption that the rate of occurrence of malignant melanoma of the buttocks of both men and women and of the scalp of women would apply to all parts of the body in people completely unexposed to solar radiation, it was estimated that approximately 95% of all malignant melanomas arising in the Nordic populations around the year 2000 will be due to exposure to natural ultraviolet radiation, equivalent to an annual number of about 4700 cases, with 2100 in men and 2600 in women, or some 4% of all cancers notified. Exposure to ionizing radiation in the Nordic countries occurs at an average effective dose per capita per year of about 3 mSv (Iceland, 1.1 mSv) from natural sources, and about 1 mSv from man-made sources. While the natural sources are primarily radon in indoor air, natural radionuclides in food, cosmic radiation and gamma radiation from soil and building materials, the man-made sources are dominated by the diagnostic and therapeutic use of ionizing radiation. On the basis of measured levels of radon in Nordic dwellings and associated risk estimates for lung cancer derived from well-conducted epidemiological studies, we estimated that about 180 cases of lung cancer (1% of all lung cancer cases) per year could be avoided in the Nordic countries around the year 2000 if indoor exposure to radon were eliminated, and that an additional 720 cases (6%) could be avoided annually if either radon or tobacco smoking were eliminated. Similarly, it was estimated that the exposure of the Nordic populations to natural sources of ionizing radiation other than radon and to medical sources will each give rise to an annual total of 2120

  15. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure.

    Directory of Open Access Journals (Sweden)

    Olav Christophersen

    2012-02-01

    Full Text Available There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs, but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: 1 during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, 2 after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, 3 by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various

  16. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part II. Fatigue crack growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: margolinbz@yandex.ru; Minkin, A.; Smirnov, V.; Sorokin, A.; Shvetsova, V.; Potapova, V.

    2016-11-15

    The experimental data on the fatigue crack growth rate (FCGR) have been obtained for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various radiation swelling. The performed study of the fracture mechanisms for cracked specimens under cyclic loading has explained why radiation swelling affects weakly FCGR unlike its effect on fracture toughness. Mechanical modeling of fatigue crack growth has been carried out and the dependencies for prediction of FCGR in irradiated austenitic steel with and with no swelling are proposed and verified with the obtained experimental results. As input data for these dependencies, FCGR for unirradiated steel and the tensile mechanical properties for unirradiated and irradiated steels are used.

  17. Hand-held, mechanically cooled, radiation detection system for gamma-ray spectroscopy

    Science.gov (United States)

    Burks, Morgan Thomas; Eckels, Joel Del

    2010-06-08

    In one embodiment, a radiation detection system is provided including a radiation detector and a first enclosure encapsulating the radiation detector, the first enclosure including a low-emissivity infra-red (IR) reflective coating used to thermally isolate the radiation detector. Additionally, a second enclosure encapsulating the first enclosure is included, the first enclosure being suspension mounted to the second enclosure. Further, a cooler capable of cooling the radiation detector is included. Still yet, a first cooling interface positioned on the second enclosure is included for coupling the cooler and the first enclosure. Furthermore, a second cooling interface positioned on the second enclosure and capable of coupling the first enclosure to a cooler separate from the radiation detection system is included. Other embodiments are also presented.

  18. Influence of gamma radiation on mechanical and thermal properties of Cedrella fissilis and Ocotea porosa used in works of art

    International Nuclear Information System (INIS)

    Severiano, Lucio C.; Bardi, Marcelo A.G.; Machado, Luci D.B.; Lahr, Francisco A.R.

    2009-01-01

    Woods, as other materials, are susceptible to alterations in their internal structure because of physical, chemical or biological agents. Wood can be considered a natural composite with high strength capacity provided by cellulose and hemicellulose agglutinated by lignin, substances with very distinct structures. In several applications, the use of radiation can be interesting, once it turns wood more resistant to biological demand. The application of gamma radiation in work of arts and archaeological artifacts preservation began in 1970, in France. By other side, no changes in wood properties and no remaining radioactive waste were desirable. Gamma radiation from a cobalt-60 source usually is applied as a tool to the decontamination of insects and microorganisms, as well as to provide resins cure in impregnated wood. In this way, the aim of this paper is to evaluate gamma radiation effects on some physical, thermal and resistance mechanical of Brazilian wood species used in carving, as Cedro Rosa (Cedrella fissilis) and Imbuia (Ocotea porosa). Gamma radiation process considered different doses (25 kGy, 50 kGy and 100 kGy). Results showed that no gamma radiation influences were detected in the studied wood properties in the dose range applied. This is a relevant conclusion that will improve safety on arts conservation around the world. (author)

  19. Influence of gamma radiation on mechanical and thermal properties of Cedrella fissilis and Ocotea porosa used in works of art

    Energy Technology Data Exchange (ETDEWEB)

    Severiano, Lucio C.; Bardi, Marcelo A.G.; Machado, Luci D.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], e-mail: lucioseveriano@usp.br; Lahr, Francisco A.R. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia de Estruturas de Madeira

    2009-07-01

    Woods, as other materials, are susceptible to alterations in their internal structure because of physical, chemical or biological agents. Wood can be considered a natural composite with high strength capacity provided by cellulose and hemicellulose agglutinated by lignin, substances with very distinct structures. In several applications, the use of radiation can be interesting, once it turns wood more resistant to biological demand. The application of gamma radiation in work of arts and archaeological artifacts preservation began in 1970, in France. By other side, no changes in wood properties and no remaining radioactive waste were desirable. Gamma radiation from a cobalt-60 source usually is applied as a tool to the decontamination of insects and microorganisms, as well as to provide resins cure in impregnated wood. In this way, the aim of this paper is to evaluate gamma radiation effects on some physical, thermal and resistance mechanical of Brazilian wood species used in carving, as Cedro Rosa (Cedrella fissilis) and Imbuia (Ocotea porosa). Gamma radiation process considered different doses (25 kGy, 50 kGy and 100 kGy). Results showed that no gamma radiation influences were detected in the studied wood properties in the dose range applied. This is a relevant conclusion that will improve safety on arts conservation around the world. (author)

  20. Sub-kilometre (intra-crater) mounds in Utopia Planitia, Mars: character, occurrence and possible formation hypotheses

    Science.gov (United States)

    Soare, Richard J.; Conway, Susan J.; Pearce, Geoffrey D.; Costard, François; Séjourné, Antoine

    2013-08-01

    At the middle latitudes of Utopia Planitia (˜35-45°N; ˜65-101°E) hundreds of small-sized mounds located in sub-kilometre impact craters dot the landscape. Their shape varies from circular to crescentic and their height ranges from ˜10 to 50 m. Often, metre to decametre pitting is observed, as is metres-thick banding or stratification. Mound albedo is relatively high, i.e. ˜0.16. The plain's terrain in the region, previously linked to the latitude-dependent mantle (LDM) of ice-dust, displays pitting and albedo similar to the small intra-crater mounds. Some workers have suggested that the mounds and the plain's terrain share a common ice-dust origin. If so, then scrutinising the mounds could provide analogical insight on the key geological characteristics and spatial distribution of the LDM itself. Other workers have hypothesised that the mounds are eroded sedimentary landforms or periglacial mounds underlain by a perennial ice-core (closed-system pingos). In this article we develop and then discuss each of the three mound-hypotheses in a much more substantial manner than has been done hitherto. Towards this end we use high-resolution images, present a detailed regional-map of mound distribution and establish a regional platform of topographical analysis using MOLA data superposed on a large-scale CTX mosaic. Although the ice-dust hypothesis is consistent with some observations and measurements, we find that a (loess-based) sedimentary hypothesis shows greater plausibility. Of the three hypotheses evaluated, the pingo or periglacial one is the weakest.

  1. Molecular mechanisms of radiation-induced cell proliferation in human carcinoma cells

    International Nuclear Information System (INIS)

    Schmidt-Ullrich, R.K.; Mikkelsen, R.; Valerie, K.; Todd, D.; Kavanagh, B.; Contessa, J.; Rorrer, K.; Chen, P.

    1996-01-01

    Purpose: At therapeutically applied ionizing radiation (IR) doses of 0.5 to 5 Gy, a certain proportion of cells will undergoes radiation-induced death while a varied proportion of cells will survive and be able of furnishing adaptive responses. One of these adaptive responses has been experimentally and clinically described as repopulation. Despite description of this phenomenon more than 20 years ago, the mechanisms of this response have remained relatively unknown until modern experimental techniques have been applied to studies on cellular radiation responses. materials and Methods: Human mammary, MCF-7 and MDA-MB-231, and squamous, A431, carcinoma cells (MCC and SCC), expressing epidermal growth factor-receptor (EGF-R) at widely varied levels, have been exposed under defined culture conditions to single and repeated IR at doses between 0.5 and 5 Gy. Cellular IR responses of activation and expression changes of growth regulatory genes and activation of signal transduction pathways were linked to IR-induced proliferation responses. Specifically, EGF-R activation and expression were assessed by levels of Tyr phosphorylation (Y p ) of the receptor protein and mRNA, respectively. Phospholipase (PL-C) activation was quantified by Y p levels and production of inositol-triphosphate (IP 3 ), elevation of cytoplasmic Ca 2+ by video-intensified florescence microscopy after Fura-2 loading. Mitogen-activated protein (MAP) kinase activation was measured by a MBP receptor assay. The EGF-R and signal transduction activation events were correlated with a proliferation response of irradiated cells as quantified by MTT assay. Results: The cell lines tested showed an about 3-fold stimulation of EGF-R Y p levels within 5 min of IR which was associated with a 2.5-fold upregulation of EGF-R after 24 hr. Repeated daily 2 Gy exposures of MCF-7 and MDA-cells resulted in up to 9-fold increases in EGF-R mRNA. EGF-R downstream signal transduction was evidenced by activation of the

  2. Malfunction of cardiac devices after radiotherapy without direct exposure to ionizing radiation: mechanisms and experimental data.

    Science.gov (United States)

    Zecchin, Massimo; Morea, Gaetano; Severgnini, Mara; Sergi, Elisabetta; Baratto Roldan, Anna; Bianco, Elisabetta; Magnani, Silvia; De Luca, Antonio; Zorzin Fantasia, Anna; Salvatore, Luca; Milan, Vittorino; Giannini, Gianrossano; Sinagra, Gianfranco

    2016-02-01

    Malfunctions of cardiac implantable electronical devices (CIED) have been described after high-energy radiation therapy even in the absence of direct exposure to ionizing radiation, due to diffusion of neutrons (n) causing soft errors in inner circuits. The purpose of the study was to analyse the effect of scattered radiation on different types and models of CIED and the possible sources of malfunctions. Fifty-nine explanted CIED were placed on an anthropomorphous phantom of tissue-equivalent material, and a high-energy photon (15 MV) radiotherapy course (total dose = 70 Gy) for prostate treatment was performed. All devices were interrogated before and after radiation. Radiation dose, the electromagnetic field, and neutron fluence at the CIED site were measured. Thirty-four pacemakers (PM) and 25 implantable cardioverter-defibrillators (ICD) were analysed. No malfunctions were detected before radiation. After radiation a software malfunction was evident in 13 (52%) ICD and 6 (18%) PM; no significant electromagnetic field or photon radiations were detected in the thoracic region. Neutron capture was demonstrated by the presence of the (198)Au((197)Au + n) or (192)Ir((191)Ir + n) isotope activation; it was significantly greater in ICD than in PM and non-significantly greater in damaged devices. A greater effect in St Jude PM (2/2 damaged), Boston (9/11), and St Jude ICD (3/6) and in older ICD models was observed; the year of production was not relevant in PM. High-energy radiation can cause different malfunctions on CIED, particularly ICD, even without direct exposure to ionizing radiation due to scattered radiation of neutrons produced by the linear accelerator. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  3. Low-temperature catalyst activator: mechanism of dense carbon nanotube forest growth studied using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Akito Takashima

    2014-07-01

    Full Text Available The mechanism of the one-order-of-magnitude increase in the density of vertically aligned carbon nanotubes (CNTs achieved by a recently developed thermal chemical vapor deposition process was studied using synchrotron radiation spectroscopic techniques. In the developed process, a Ti film is used as the underlayer for an Fe catalyst film. A characteristic point of this process is that C2H2 feeding for the catalyst starts at a low temperature of 450°C, whereas conventional feeding temperatures are ∼800°C. Photoemission spectroscopy using soft and hard X-rays revealed that the Ti underlayer reduced the initially oxidized Fe layer at 450°C. A photoemission intensity analysis also suggested that the oxidized Ti layer at 450°C behaved as a support for nanoparticle formation of the reduced Fe, which is required for dense CNT growth. In fact, a CNT growth experiment, where the catalyst chemical state was monitored in situ by X-ray absorption spectroscopy, showed that the reduced Fe yielded a CNT forest at 450°C. Contrarily, an Fe layer without the Ti underlayer did not yield such a CNT forest at 450°C. Photoemission electron microscopy showed that catalyst annealing at the conventional feeding temperature of 800°C caused excess catalyst agglomeration, which should lead to sparse CNTs. In conclusion, in the developed growth process, the low-temperature catalyst activation by the Ti underlayer before the excess Fe agglomeration realised the CNT densification.

  4. The role of biomembrane lipids in the molecular mechanism of ion transport radiation damage

    International Nuclear Information System (INIS)

    Medvedev, B.I.; Evtodienko, Yu.V.; Yaguzhinsky, L.S.; Kuzin, A.M.

    1977-01-01

    Increase in the rate of ATP synthesis (I.4-I.6 times), Ca 2+ -capacity (I.4-I.8 times), membrane potential (by 20-50 mv) and decrease in K - -conductivity (2.5-3 times) in rat liver mitochondria was observed three hours after γ-irradiation at a dose of 1000r. The process of oxidative phosphorylation was normalized 24 hours later, whereas damages of Ca 2+ -accumulation and K + -conductivity remain. The molecular mechanism of reduction in K + -permeability of mitochondrial membranes has been studied. The endogenous regulators of ionic transport in the lipid phase of mitochondrial biomembranes were investigated before and after γ-irradiation. It was revealed that K + -conductivity of the artificial phospholipid membranes (APM) formed of the phospholipids from irradiated mitochondria was substantially lower than that in the control. Using thin-layer chromatography the minor phospholipid fraction which increases K + -conductivity of APM was isolated from the lipids of unirradiated mitochondria. In the lipid preparations of irradiated mitochondria the minor phospholipid fraction content is sharply lowered (or absent at all). Besides the content of lysoforms of phosphatidylcholine and phosphatidylethanolamine as well as that of fatty acids and cholesterol esters were reduced 24 hours after irradiation. Three compounds with different capability to increase the APM conductivity for monovalent ions were revealed in the composition of the minor fraction. One of these components was shown to be lysopolyglycerophosphatide (lysodiphosphatidylglycerol). The role of the enzyme systems involved in radiational changes of the membrane lipid components and the importance of these phenomena for cell radiosensitivity will be discussed

  5. A kinetic study of the mechanism of radiation induced agglomeration of ovalbumin in aqueous solution

    International Nuclear Information System (INIS)

    Tuce, Zorana; Janata, Eberhard; Radojcic, Marija; Milosavljevic, B.H.

    2001-01-01

    The effect of concentration on the protein radiolytic damage resulting in a change in molecular mass was measured in the concentration range from 0.2 to 2 mmolxdm -3 ovalbumin in phosphate buffered solutions saturated with N 2 O. The electrophoretic analysis of samples on discontinuous SDS-polyacrylamide gels in the presence or absence of 5% β-mercaptoethanol showed an expected result, i.e. that the protein scission did not take place in the absence of oxygen. Only ovalbumin agglomerates, bonded by covalent bonds other than S-S bridges, were observed. The G-value for the formation of ovalbumin agglomerates increased linearly from 1.1 to 2.4 by increasing the ovalbumin concentration from 0.2 to 2 mmolxdm -3 . The result is interpreted as to be owing to the competition between ovalbumin agglomeration and some intramolecular reactions which did not lead to the change in the molecular mass. It was also found that the G-value is independent of irradiation dose rate. The result was rationalized as a kinetic evidence that the agglomeration is not a cross-linking process, i.e. it does not occur via recombination of the protein radicals produced in the interaction of ovalbumin and · OH radical. The result suggested that the agglomeration takes place via the process of grafting, i.e. it occurs in the reaction of ovalbumin radical and an intact ovalbumin molecule. The time-resolved light scattering experiments provided an additional proof, supporting the reaction scheme of radiation-induced protein agglomeration. The biological consequences of the proposed mechanism of protein agglomeration are also discussed

  6. Persistent polar depletion of stratospheric ozone and emergent mechanisms of ultraviolet radiation-mediated health dysregulation.

    Science.gov (United States)

    Dugo, Mark A; Han, Fengxiang; Tchounwou, Paul B

    2012-01-01

    Year 2011 noted the first definable ozone "hole" in the Arctic region, serving as an indicator to the continued threat of dangerous ultraviolet radiation (UVR) exposure caused by the deterioration of stratospheric ozone in the northern hemisphere. Despite mandates of the Montreal Protocol to phase out the production of ozone-depleting chemicals (ODCs), the relative stability of ODCs validates popular notions of persistent stratospheric ozone for several decades. Moreover, increased UVR exposure through stratospheric ozone depletion is occurring within a larger context of physiologic stress and climate change across the biosphere. In this review, we provide commentaries on stratospheric ozone depletion with relative comparisons between the well-known Antarctic ozone hole and the newly defined ozone hole in the Arctic. Compared with the Antarctic region, the increased UVR exposure in the Northern Hemisphere poses a threat to denser human populations across North America, Europe, and Asia. In this context, we discuss emerging targets of UVR exposure that can potentially offset normal biologic rhythms in terms of taxonomically conserved photoperiod-dependent seasonal signaling and entrainment of circadian clocks. Consequences of seasonal shifts during critical life history stages can alter fitness and condition, whereas circadian disruption is increasingly becoming associated as a causal link to increased carcinogenesis. We further review the significance of genomic alterations via UVR-induced modulations of phase I and II transcription factors located in skin cells, the aryl hydrocarbon receptor (AhR), and the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2), with emphasis on mechanism that can lead to metabolic shifts and cancer. Although concern for adverse health consequences due to increased UVR exposure are longstanding, recent advances in biochemical research suggest that AhR and Nrf2 transcriptional regulators are likely targets for UVR

  7. Mechanism of radiation and thermal decomposition of sulphide non-ferrous metals

    International Nuclear Information System (INIS)

    Mazhrenova, N.P.

    1998-01-01

    This paper deals with the non-ferrous metals sulfides in term of their radiative sensitivity, directed chances of their physical-chemical, and hence technological properties by radiation influence both on sulfide materials and on the processes with their participation. (author)

  8. Mechanism of obtaining carbon monoxide and hydrogen during brown coal radiolysis. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rustamov, V R; Kurbanov, M A; Dzantiev, B T; Kerimov, V K; Musaeva, P F

    1982-05-01

    This article analyzes effects of gamma radiation on the yield of products of coal gasification: hydrogen and carbon monoxide. Samples of brown coal from the Kansk-Achins basin were treated by gamma radiation with cobalt 60 radiation source. Analyses show that accumulation of hydrogen and carbon monoxide in brown coal under influence of gamma radiation is characterized by a constant rate. Yields of carbon monoxide and hydrogen amount to 0.16 molecule/100 electro volt and 0.21 molecule/electro volt respectively. Reducing radiation dose from 2.5 to 0.7 millirad/h reduces yields of hydrogen and carbon monoxide. Increasing temperature of vacuum brown coal pyrolysis from 200 to 600 C causes decrease of hydrogen yield. Hydrogen yield decrease during temperature increase is caused by a high content of aromatic nuclei in the samples used in the radiolysis. (5 refs.)

  9. Report on NCI symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1984-01-01

    The point at which the common final pathway for induction of cancer by chemical carcinogens and ionizing radiation has not been identified. Although common molecular targets are suggested by recent findings about the role of oncogenes, the mechanism by which the deposition of radiation energy and the formation of adducts or other DNA lesions induced by chemicals affects the changes in the relevant targets may be quite different. The damage to DNA that plays no part in the transformation events, but that influences the stability of the genome, and therefore, the probability of subsequent changes that influence tumorigenesis may be more readily induced by some agents than others. Similarly, the degree of cytotoxic effects that disrupt tissue integrity and increase the probability of expression of initiated cells may be dependent on the type of carcinogen. Also, evidence was presented that repair of the initial lesions could be demonstrated after exposure to low-LET radiation but not after exposure to chemical carcinogens

  10. Report on NCI symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1984-01-01

    The point at which the common final pathway for induction of cancer by chemical carcinogens and ionizing radiation has not been identified. Although common molecular targets are suggested by recent findings about the role of oncogenes, the mechanism by which the deposition of radiation energy and the formation of adducts or other DNA lesions induced by chemicals affects the changes in the relevant targets may be quite different. The damage to DNA that plays no part in the transformation events, but that influences the stability of the genome, and therefore, the probability of subsequent changes that influence tumorigenesis may be more readily induced by some agents than others. Similarly, the degree of cytotoxic effects that disrupt tissue integrity and increase the probability of expression of initiated cells may be dependent on the type of carcinogen. Also, evidence was presented that repair of the initial lesions could be demonstrated after exposure to low-LET radiation but not after exposure to chemical carcinogens.

  11. Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionizing radiation?

    Science.gov (United States)

    Morgan, William F.

    2003-01-01

    A number of nontargeted and delayed effects associated with radiation exposure have now been described. These include radiation-induced genomic instability, death-inducing and bystander effects, clastogenic factors and transgenerational effects. It is unlikely that these nontargeted effects are directly induced by cellular irradiation. Instead, it is proposed that some as yet to be identified secreted factor can be produced by irradiated cells that can stimulate effects in nonirradiated cells (death-inducing and bystander effects, clastogenic factors) and perpetuate genomic instability in the clonally expanded progeny of an irradiated cell. The proposed factor must be soluble and capable of being transported between cells by cell-to-cell gap junction communication channels. Furthermore, it must have the potential to stimulate cellular cytokines and/or reactive oxygen species. While it is difficult to imagine a role for such a secreted factor in contributing to transgenerational effects, the other nontargeted effects of radiation may all share a common mechanism.

  12. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: The mechanism of the drilling of holes in vertical metallic plates by cw CO2 laser radiation

    Science.gov (United States)

    Likhanskii, V. V.; Loboiko, A. I.; Antonova, G. F.; Krasyukov, A. G.; Sayapin, V. P.

    1999-02-01

    The possibility of making a hole in a vertical plate with the aid of laser radiation at a surface temperature not exceeding the boiling point is analysed neglecting the vapour pressure. The mechanism of the degradation of the liquid layer involving a reduction of its thickness, as a result of the redistribution of the molten mass owing to the operation of the force of gravity and of thermocapillary convection, is examined. The theoretical dependence of the critical size of the molten zone on the plate thickness is obtained and a comparison is made with experimental data.

  13. Using kites for 3-D mapping of gullies at decimetre-resolution over several square kilometres: a case study on the Kamech catchment, Tunisia

    Directory of Open Access Journals (Sweden)

    D. Feurer

    2018-06-01

    Full Text Available Monitoring agricultural areas threatened by soil erosion often requires decimetre topographic information over areas of several square kilometres. Airborne lidar and remotely piloted aircraft system (RPAS imagery have the ability to provide repeated decimetre-resolution and -accuracy digital elevation models (DEMs covering these extents, which is unrealistic with ground surveys. However, various factors hamper the dissemination of these technologies in a wide range of situations, including local regulations for RPAS and the cost for airborne laser systems and medium-format RPAS imagery. The goal of this study is to investigate the ability of low-tech kite aerial photography to obtain DEMs with decimetre resolution and accuracy that permit 3-D descriptions of active gullying in cultivated areas of several square kilometres. To this end, we developed and assessed a two-step workflow. First, we used both heuristic experimental approaches in field and numerical simulations to determine the conditions that make a photogrammetric flight possible and effective over several square kilometres with a kite and a consumer-grade camera. Second, we mapped and characterised the entire gully system of a test catchment in 3-D. We showed numerically and experimentally that using a thin and light line for the kite is key for a complete 3-D coverage over several square kilometres. We thus obtained a decimetre-resolution DEM covering 3.18 km2 with a mean error and standard deviation of the error of +7 and 22 cm respectively, hence achieving decimetre accuracy. With this data set, we showed that high-resolution topographic data permit both the detection and characterisation of an entire gully system with a high level of detail and an overall accuracy of 74 % compared to an independent field survey. Kite aerial photography with simple but appropriate equipment is hence an alternative tool that has been proven to be valuable for surveying gullies with sub

  14. Polarization mechanism for Bremsstrahlung and radiative recombination in a plasma with heavy ions

    International Nuclear Information System (INIS)

    Astapenko, V.A.; Bureeva, L.A.; Lisitsa, V.S.

    2002-01-01

    Contribution of polarization channel into radiation and recombination of electrons in plasma with heavy ions is investigated. Cases of hot plasma with temperature T e = 0.5 keV and Fe, Mo, W, U ions and relatively cold plasma with temperature 0.1-10 eV are considered. Calculations of spectral characteristics, full cross sections and recombination rates in plasma are made, bearing in mind its real ionization equilibrium. The calculations are made on the basis of quasiclassical approximation for electron scattering and statistical model of ions. It is shown that contribution of polarization channel is essential both for effective radiation and full rate of radiative recombination [ru

  15. Simulated Space Radiation and Weightlessness: Vascular-Bone Coupling Mechanisms to Preserve Skeletal Health

    Science.gov (United States)

    Globus, R. K.; Alwood, J.; Tahimic, C.; Schreurs, A.-S.; Shirazi-Fard, Y.; Terada, M.; Zaragoza, J.; Truong, T.; Bruns, K.; Castillo, A.; hide

    2018-01-01

    We examined experimentally the effects of radiation and/or simulated weightlessness by hindlimb unloading on bone and blood vessel function either after a short period or at a later time after transient exposures in adult male, C57Bl6J mice. In sum, recent findings from our studies show that in the short term, ionizing radiation and simulate weightlessness cause greater deficits in blood vessels when combined compared to either challenge alone. In the long term, heavy ion radiation, but not unloading, can lead to persistent, adverse consequences for bone and vessel function, possibly due to oxidative stress-related pathways.

  16. Low Dose Radiation-Induced Genome and Epigenome Instability Symposium and Epigenetic Mechanisms, DNA Repair, and Chromatin Symposium at the EMS 2008 Annual Meeting - October 2008

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William F; Kovalchuk, Olga; Dolinoy, Dana C; Dubrova, Yuri E; Coleman, Matthew A; Schär, Primo; Pogribny, Igor; Hendzel, Michael

    2010-02-19

    The Low Dose Radiation Symposium thoughtfully addressed ionizing radiation non-mutational but transmissable alterations in surviving cells. Deregulation of epigenetic processes has been strongly implicated in carcinogenesis, and there is increasing realization that a significant fraction of non-targeted and adaptive mechanisms in response to ionizing radiation are likely to be epigenetic in nature. Much remains to be learned about how chromatin and epigenetic regulators affect responses to low doses of radiation, and how low dose radiation impacts other epigenetic processes. The Epigenetic Mechanisms Symposium focused on on epigenetic mechanisms and their interplay with DNA repair and chromatin changes. Addressing the fact that the most well understood mediators of epigenetic regulation are histone modifications and DNA methylation. Low levels of radiation can lead to changes in the methylation status of certain gene promoters and the expression of DNA methyltransferases, However, epigenetic regulation can also involve changes in higher order chromosome structure.

  17. Radiation-curing of acrylate composites including carbon fibres: A customized surface modification for improving mechanical performances

    International Nuclear Information System (INIS)

    Martin, Arnaud; Pietras-Ozga, Dorota; Ponsaud, Philippe; Kowandy, Christelle; Barczak, Mariusz; Defoort, Brigitte; Coqueret, Xavier

    2014-01-01

    The lower transverse mechanical properties of radiation-cured acrylate-based composites reinforced with carbon-fibre with respect to the thermosettable analogues was investigated from the viewpoint of chemical interactions at the interface between the matrix and the carbon material. XPS analysis of representative commercial carbon fibres revealed the presence of a significant amount of chemical functions potentially exerting an adverse effect on the initiation and propagation of the free radical polymerization initiated under high energy radiation. The EB-induced polymerization of n-butyl acrylate as a simple model monomer was conducted in the presence of various aromatic additives exhibiting a strong inhibiting effect, whereas thiols efficiently sensitize the initiation mechanism and undergo transfer reactions. A method based on the surface modification of sized fibres by thiomalic acid is proposed for overcoming the localized inhibition phenomenon and for improving the mechanical properties of the resulting acrylate-based composites. - Highlights: • Surface functions of C-fibres are analyzed for their effect on radical reaction. • Irradiation of nBu-acrylate in presence of aromatic additives reveals inhibition. • Thiol groups sensitize the radiation-initiated polymerization of nBu-acrylate. • Modification of C-fibres with thiomalic acid enhances composite properties

  18. Synergistic effects of interstitial impurities and radiation defects on mechanical characteristics of ferritic steels

    International Nuclear Information System (INIS)

    Charit, I.; Seok, C.S.; Murty, K.L.

    2007-01-01

    Ferritic steels are generally used in pressure vessels and various reactor support structures in light water reactors. They are known to exhibit radiation embrittlement in terms of decreased toughness and increased ductile-brittle transition temperature as a result of exposure to neutron radiation. The superimposed effects of strain aging due to interstitial impurity atoms on radiation embrittlement were considered first by Wechsler, Hall and others. Here we summarize some of our efforts on the investigation of synergistic effects between interstitial impurity atoms (IIAs) and radiation-induced point defects, which result in interesting effects at appropriate temperature and strain rate conditions. Two materials, a mild steel and a pressure vessel steel (A516 Gr.70), are evaluated using tensile and three-point bend tests

  19. On the mechanism of induction of congenital nervous and imune deficienies in new borns resulting from exposure to radiation and other factors in utero theoretical analysis

    International Nuclear Information System (INIS)

    Filyushkin, I.V.

    1993-01-01

    Proposed is a mechanism through which exposure in utero to deleterious agents (including radiation) induces hereditary nervous (and immune) deficiencies in newborns. This mechanism was found theoretically in the framework of multidisciplinary analysis of neuroimmunoendocrine reactivity development peculiar to normal embryogenesis in comparison to that under in utero exposure. Found systemic mechanism accounts induced neural (and or) immune reactivity dificiencies on the response of embryonic homeostasis to effects of radiation or any other deleterious agent on growth potencies of embryo cells

  20. Simvastatin Ameliorates Radiation Enteropathy Development After Localized, Fractionated Irradiation by a Protein C-Independent Mechanism

    International Nuclear Information System (INIS)

    Wang Junru; Boerma, Marjan; Fu Qiang; Kulkarni, Ashwini; Fink, Louis M.; Hauer-Jensen, Martin

    2007-01-01

    Purpose: Microvascular injury plays a key role in normal tissue radiation responses. Statins, in addition to their lipid-lowering effects, have vasculoprotective properties that may counteract some effects of radiation on normal tissues. We examined whether administration of simvastatin ameliorates intestinal radiation injury, and whether the effect depends on protein C activation. Methods and Materials: Rats received localized, fractionated small bowel irradiation. The animals were fed either regular chow or chow containing simvastatin from 2 weeks before irradiation until termination of the experiment. Groups of rats were euthanized at 2 weeks and 26 weeks for assessment of early and delayed radiation injury by quantitative histology, morphometry, and quantitative immunohistochemistry. Dependency on protein C activation was examined in thrombomodulin (TM) mutant mice with deficient ability to activate protein C. Results: Simvastatin administration was associated with lower radiation injury scores (p < 0.0001), improved mucosal preservation (p = 0.0009), and reduced thickening of the intestinal wall and subserosa (p = 0.008 and p = 0.004), neutrophil infiltration (p = 0.04), and accumulation of collagen I (p = 0.0003). The effect of simvastatin was consistently more pronounced for delayed than for early injury. Surprisingly, simvastatin reduced intestinal radiation injury in TM mutant mice, indicating that the enteroprotective effect of simvastatin after localized irradiation is unrelated to protein C activation. Conclusions: Simvastatin ameliorates the intestinal radiation response. The radioprotective effect of simvastatin after localized small bowel irradiation does not appear to be related to protein C activation. Statins should undergo clinical testing as a strategy to minimize side effects of radiation on the intestine and other normal tissues

  1. Interactions of monochromatic visible light and near-IR radiation with cells: currently discussed mechanisms

    Science.gov (United States)

    Karu, Tiina I.

    1995-05-01

    Biological responses of cells to visible and near IR (laser) radiation occur due to physical and/or chemical changes in photoacceptor molecules, components of respiratory chains (cyt a/a3 in mitochondria, and cyt d in E. coli). As a result of the photoexcitation of electronic states, the following physical and/or chemical changes can occur: alteration of redox properties and acceleration of electron transfer, changes in biochemical activity due to local transient heating of chromophores, one-electron auto-oxidation and O2- production, and photodynamic action and 1O2 production. Different reaction channels can be activated to achieve the photobiological macroeffect. The primary physical and/or chemical changes induced by light in photoacceptor molecules are followed by a cascade of biochemical reactions in the cell that do not need further light activation and occur in the dark (photosignal transduction and amplification chains). These reactions are connected with changes in cellular homeostasis parameters. The crucial step here is thought to be an alteration of the cellular redox state: a shift towards oxidation is associated with stimulation of cellular vitality, and a shift towards reduction is linked to inhibition. Cells with a lower than normal pH, where the redox state is shifted in the reduced direction, are considered to be more sensitive to the stimulative action of light than those with the respective parameters being optimal or near optimal. This circumstance explains the possible variations in observed magnitudes of low-power laser effects. Light action on the redox state of a cell via the respiratory chain also explains the diversity of low-power laser effects. Beside explaining many controversies in the field of low-power laser effects (i.e., the diversity of effects, the variable magnitude or absence of effects in certain studies), the proposed redox-regulation mechanism may be a fundamental explanation of some clinical effects of irradiation, for

  2. Modelling and testing the molecular mechanism of radiation-induced chromatid breaks

    International Nuclear Information System (INIS)

    Bryant, P. E.

    2001-01-01

    Chromatid breaks induced by ionizing radiation in the G2 phase of the cell cycle are considered as markers of individual human radiosensitivity and may indicate the presence of low-penetrance genes regulating susceptibility to breast and other cancers). Together with our own study of Scottish (Tayside) breast cancer patients and a group of normal controls these studies show an overall 10-fold variation in chromatid break frequency (the parameter defining individual chromosomal 'radiosensitivity'). Thus, an understanding of the mechanisms and genes involved in determining these widely different responses should help to clarify the reasons for individual radiosensitivity and may lead us to identify key genes involved in cancer susceptibility. The presence of colour-switches at around 16% of chromatid break points (detected in harlequin-stained chromosomes) indicates that this type of chromatid break is formed by a chromatin rearrangement involving one or more large chromatin domains of the order of 3 - 5 Mbp, possibly representing transcription 'factories'. The signal model of chromatid breaks assumes that all chromatid breaks are the result of chromatin rearrangements, and that the initiating DNA double-strand break (dsb) is itself not involved in the rearrangement but signals its presence (possibly via ATM protein or DNAPK) leading to the initiation of the chromatin rearrangement. Experimental evidence from radiosensitive cell lines (e.g. human AT and hamster irs2) and with the nucleoside analogue araA (9-β-D-arabinofuranosyladenine) demonstrates the lack of correspondence between the rejoining kinetics of dsb and that of disappearance of chromatid breaks, thus supporting the signal model. Coupled with the linear induction of chromatid breaks with dose in both human and rodent cell lines of various types, and the production of chromatid breaks by single dsb in genetically engineered cell lines the classical 'breakage-first' model of chromatid breaks is no longer

  3. Mechanisms of radiation embrittlement of VVER-1000 RPV steel at irradiation temperatures of (50–400)°C

    Energy Technology Data Exchange (ETDEWEB)

    Kuleshova, E.A., E-mail: evgenia-orm@yandex.ru [National Research Center “Kurchatov Institute”, Kurchatov Sq. 1, Moscow 123182 (Russian Federation); National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute), Kashirskoe Highway 31, Moscow 115409 (Russian Federation); Gurovich, B.A.; Bukina, Z.V.; Frolov, A.S.; Maltsev, D.A.; Krikun, E.V.; Zhurko, D.A.; Zhuchkov, G.M. [National Research Center “Kurchatov Institute”, Kurchatov Sq. 1, Moscow 123182 (Russian Federation)

    2017-07-15

    This work summarizes and analyzes our recent research results on the effect of irradiation temperature within the range of (50–400)°C on microstructure and properties of 15Kh2NMFAA class 1 steel (VVER-1000 reactor pressure vessel (RPV) base metal). The paper considers the influence of accelerated irradiation with different temperature up to different fluences on the carbide and irradiation-induced phases, radiation defects, yield strength changes and critical brittleness temperature shift (ΔT{sub K}) as well as on changes of the fraction of brittle intergranular fracture and segregation processes in the steel. Low temperature irradiation resulted solely in formation of radiation defects – dislocation loops of high number density, the latter increased with increase in irradiation temperature while their size decreased. In this regard high embrittlement rate observed at low temperature irradiation is only due to the hardening mechanism of radiation embrittlement. Accelerated irradiation at VVER-1000 RPV operating temperature (∼300 °C) caused formation of radiation-induced precipitates and dislocation loops, as well as some increase in phosphorus grain boundary segregation. The observed ΔT{sub K} shift being within the regulatory curve for VVER-1000 RPV base metal is due to both hardening and non-hardening mechanisms of radiation embrittlement. Irradiation at elevated temperature caused more intense phosphorus grain boundary segregation, but no formation of radiation-induced precipitates or dislocation loops in contrast to irradiation at 300 °C. Carbide transformations observed only after irradiation at 400 °C caused increase in yield strength and, along with a contribution of the non-hardening mechanism, resulted in the lowest ΔT{sub K} shift in the studied range of irradiation temperature and fluence. - Highlights: •Structural elements in RPV steel are studied at different irradiation temperatures. •Highest number density dislocation loops are

  4. A model of cardiovascular disease giving a plausible mechanism for the effect of fractionated low-dose ionizing radiation exposure.

    Directory of Open Access Journals (Sweden)

    Mark P Little

    2009-10-01

    Full Text Available Atherosclerosis is the main cause of coronary heart disease and stroke, the two major causes of death in developed society. There is emerging evidence of excess risk of cardiovascular disease at low radiation doses in various occupationally exposed groups receiving small daily radiation doses. Assuming that they are causal, the mechanisms for effects of chronic fractionated radiation exposures on cardiovascular disease are unclear. We outline a spatial reaction-diffusion model for atherosclerosis and perform stability analysis, based wherever possible on human data. We show that a predicted consequence of multiple small radiation doses is to cause mean chemo-attractant (MCP-1 concentration to increase linearly with cumulative dose. The main driver for the increase in MCP-1 is monocyte death, and consequent reduction in MCP-1 degradation. The radiation-induced risks predicted by the model are quantitatively consistent with those observed in a number of occupationally-exposed groups. The changes in equilibrium MCP-1 concentrations with low density lipoprotein cholesterol concentration are also consistent with experimental and epidemiologic data. This proposed mechanism would be experimentally testable. If true, it also has substantive implications for radiological protection, which at present does not take cardiovascular disease into account. The Japanese A-bomb survivor data implies that cardiovascular disease and cancer mortality contribute similarly to radiogenic risk. The major uncertainty in assessing the low-dose risk of cardiovascular disease is the shape of the dose response relationship, which is unclear in the Japanese data. The analysis of the present paper suggests that linear extrapolation would be appropriate for this endpoint.

  5. Inhibition of phosphatidylinositol-3-kinase causes increased sensitivity to radiation through a PKB-dependent mechanism

    International Nuclear Information System (INIS)

    Gottschalk, Alexander R.; Doan, Albert; Nakamura, Jean L.; Stokoe, David; Haas-Kogan, Daphne A.

    2005-01-01

    Purpose: To identify whether inhibition of phosphatidylinositol-3-kinase (PI3K) causes increased radiosensitivity through inhibition of protein kinase B (PKB), implicating PKB as an important therapeutic target in prostate cancer. Methods and Materials: The prostate cancer cell line LNCaP was treated with the PI3K inhibitor LY294002, radiation, and combinations of the two therapies. Apoptosis and survival were measured by cell cycle analysis, Western blot analysis for cleaved poly (ADP-ribose) polymerase, and clonogenic survival. To test the hypothesis that inhibition of PKB is responsible for LY294002-induced radiosensitivity, LNCaP cells expressing a constitutively active form of PKB were used. Results: The combination of PI3K inhibition and radiation caused an increase in apoptosis and a decrease in clonogenic survival when compared to either modality alone. The expression of constitutively activated PKB blocked apoptosis induced by combination of PI3K inhibition and radiation and prevented radiosensitization by LY294002. Conclusion: These data indicate that PI3K inhibition increases sensitivity of prostate cancer cell lines to ionizing radiation through inactivation of PKB. Therefore, PTEN mutations, which lead to PKB activation, may play an important role in the resistance of prostate cancer to radiation therapy. Targeted therapy against PKB could be beneficial in the management of prostate cancer patients

  6. Influence of ionizing radiation and use of plasticizers on the mechanical properties and barrier properties of biodegradable films

    International Nuclear Information System (INIS)

    Ponce, Patricia; Parra, Duclerc F.; Carr, Laura G.; Sato, Juliana S.; Lugao, Ademar B.

    2005-01-01

    This work reports the influence of radiation and plasticizers on the barrier properties [water vapour permeability (WVP)] and mechanical properties (tensile strength and elongation) of edible films made of starch. These films were prepared with 4 g of starch/100 mL of water; 2-10 g polyethylene glycol (PEG)/100 g starch; and at natural pH. Tensile strength and percentage elongation were measured using a Mechanical Universal Testing Machine Instron 4400R and the water vapour permeability was determined according to ASTM E96-80 (ASTM, 1989). The mechanical properties of starch films are influenced by the plasticizer concentration. An increase in PEG content showed a considerable increase in elongation percentage and a decrease in the tensile strength of the films, also increase the permeability of the films in water. After irradiation, the barrier properties [water vapour permeability (WVP)] and mechanical properties (tensile strength and elongation) of the films were improved due to chemical reactions among polymer molecules. The films were irradiated at room temperature with gamma radiation. Irradiated starch cassava films with polyethylene glycol (PEG) as plasticizer have good flexibility and low water permeability, which indicate potential application as edible films (author)

  7. Impact of melting heat transfer and nonlinear radiative heat flux mechanisms for the generalized Burgers fluids

    Directory of Open Access Journals (Sweden)

    Waqar Azeem Khan

    Full Text Available The present paper deals with the analysis of melting heat and mass transfer characteristics in the stagnation point flow of an incompressible generalized Burgers fluid over a stretching sheet in the presence of non-linear radiative heat flux. A uniform magnetic field is applied normal to the flow direction. The governing equations in dimensional form are reduced to a system of dimensionless expressions by implementation of suitable similarity transformations. The resulting dimensionless problem governing the generalized Burgers is solved analytically by using the homotopy analysis method (HAM. The effects of different flow parameters like the ratio parameter, magnetic parameter, Prandtl number, melting parameter, radiation parameter, temperature ratio parameter and Schmidt number on the velocity, heat and mass transfer characteristics are computed and presented graphically. Moreover, useful discussions in detail are carried out with the help of plotted graphs and tables. Keywords: Generalized Burgers fluid, Non-linear radiative flow, Magnetic field, Melting heat transfer

  8. Effects of gamma ray irradiation on the radiation resistance, dielectric and mechanical properties of polyvinylchloride containing plasticizer and stabilizer

    International Nuclear Information System (INIS)

    Kim, B.H.; Lee, J.I.; Kang, D.Y.

    1977-01-01

    To investigate the properties of radiation resistance together with dielectric and mechanical relaxation behaviors of polyvinylchloride exposed to several different doses under the gamma ray of cobalt-60 source, experiments were carried out using the specimens prepared by mixing dibutyl-tin-dilaurate and dibutyl-tin-dimaleate as stabilizers with or without adding dioctylphthalate as a plasticizer. The origin of the absorption band at 1540-1640 cm -1 on infrared spectrum seemed to be RCOO - ion obtained from the ionization of the stabilizer, and this peak could be useful as a measure of radiation resistance on polyvinylchloride. Addition of increasing plasticizer to polyvinylchloride exhibited increasing radiation resistance and the reason for the result might be attributable to aromatic resonance adsorption of radiation energy by the dioctylphthalate. On dose dependent dielectric characteristics, nonplastized specimen showed peak at about 10 Mrad and that the peak disappeared on the plastification of specimens. Such phenomena might be explainable in considering the statistical distribution of scissored chain molecular segments as well as the plastification process of the plasticizer to polyvinylchloride chain molecules. (author)

  9. Molecular mechanisms of plant response to ionising radiation. Exploration of the glucosinolate role in the anti-oxidative response

    International Nuclear Information System (INIS)

    Gicquel, M.

    2012-01-01

    Terrestrial organisms are exposed to low doses of ionising radiation from natural or anthropogenic sources. The major effects of the radiations are due to DNA deterioration and water radiolysis which generates an oxidative stress by free radical production. Plants constitute good models to study the effects of ionising radiations and the search of antioxidant molecules because of their important secondary metabolism. Thus this thesis, funded by the Brittany region, characterized the physiological and molecular response of the model plant Arabidopsis thaliana to low (10 Gy) and moderate (40 Gy) doses of ionising radiation, and was therefore interested in glucosinolates, characteristic compounds of the Brassicaceae family. The global proteomic and transcriptomic studies carried out on this model revealed (1) a common response for both doses dealing with the activation of DNA repair mechanisms, cell cycle regulation and protection of cellular structures; (2) an adjustment of the energetic metabolism and an activation of secondary compounds biosynthesis (i.e. glucosinolates and flavonoids) after the 10 Gy dose; (3) an induction of enzymatic control of ROS, the regulation of cellular components recycling and of programmed cell death after the 40 Gy dose. The potential anti-oxidative role of glucosinolates was then explored. The in vitro anti-oxidative power of some glucosinolates and their derivative products were demonstrated. Their modulating effects against irradiation-induced damages were then tested in vivo by simple experimental approaches. The importance of the glucosinolate level to give a positive or negative effect was demonstrated. (author)

  10. A hypothetical stochastic mechanism of radiation effects in single cells: some further thoughts and results

    International Nuclear Information System (INIS)

    Puri, P.S.

    1982-01-01

    The author briefly describes a stochastic model for radiation effects in single cells, discusses some results based on this model and then raises several questions which need further attention. While the ultimate goal is to develop appropriate stochastic models of phenomena arising in irradiated experimental animals, the present concern however is limited to irradiation effects on cells of some homogeneous tissue. The basic assumptions underlying the stochastic model are presented. Some of the model implications are compared with empirical findings in the literature. The question of whether or not a primary particle of UV radiation generates any secondary particles is also considered. (Auth.)

  11. On the mechanism of cytogenetic effect of electromagnetic radiation: role of oxidation homeostasis

    International Nuclear Information System (INIS)

    Brezitskaya, N.V.; Timchenko, O.I.

    2000-01-01

    The evaluation of the role of changes in oxidation homeostasis in developing the cytogenetic effects arising by the electromagnetic irradiation impact is carried out. The experiments were performed on white male rats. The animals were subjected to impact of the nonionizing radiations in the microwave range during 40 days by 7 hours a day. It is established that changes in the free-radical oxidation by the impact of nonionizing radiation of the electromagnetic fields have a wave-like character. It is established that changes in the oxidation homeostasis proceed the development of cytogenetic effects and may be the cause thereof [ru

  12. Automatic gamma radiation scanning device and feed mechanism for plural sample holders

    International Nuclear Information System (INIS)

    Byrd, W.J.

    1976-01-01

    Apparatus is disclosed for measuring the level of gamma radiation contained in a plurality of biological samples which are located on the fibrous sheet member carried by a sample holder. The apparatus is adapted to count the radiation level of the number of closely spaced samples located in rows and columns on the sheet by automatically sequencing through the individual samples within the rows and to advance the holder to bring successive rows into proximity with the detector. The detector is moved from sample to sample within the rows, although a number of detectors can be employed. A plurality of sample holders are automatically advanced to the detector. 25 claims, 5 drawing figures

  13. Design, fabrication, and dynamic testing of a V-groove radiator mechanical development unit

    Science.gov (United States)

    Petrick, S. Walter; Bard, Steven

    1988-01-01

    This paper describes the design, fabrication, and dynamic testing of a V-groove radiator development unit. The intended goal was to survive the dynamic environment of the Mars Observer mission. The development unit was designed to achieve a temperature of 80 K with a heat load of about 80 milliwatts. An analysis was performed to predict the thermal performance of the development unit. The radiator with a mass mockup of a Gamma Ray Spectrometer detector, the most massive of the candidate Mars Observer instrument detectors (1.7 Kg), passed vibration and acoustic testing to the Mars Observer requirements in effect at that time.

  14. Mechanism of suppressive effect of low dose radiation on cancer cell dissemination in mice

    International Nuclear Information System (INIS)

    Fu Haiqing; Li Xiuyi; Chen Yubing; Zhang Yingchun; Liu Shuzheng

    1997-01-01

    Influence of low dose radiation on immunity in C57 BL/6 mice injected with cancer cells was studied. In mice given 75 mGy WBI 24 h before injection of Lewis lung carcinoma cells or B 16 melanoma cells, the percentage of S-phase thymocytes and CD 3+ thymocytes, the splenic NK cell activity, IL-2 secretion and γIFN secretion were found to be potentiated 2∼8 day after irradiation in comparison with the sham-irradiation mice. The results suggest that low dose radiation might suppress cancer cell dissemination via the enhancement of immune reactivity

  15. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: mail@crism.ru; Sorokin, A.; Shvetsova, V.; Minkin, A.; Potapova, V.; Smirnov, V.

    2016-11-15

    The radiation swelling effect on the fracture properties of irradiated austenitic steels under static loading has been studied and analyzed from the mechanical and physical viewpoints. Experimental data on the stress-strain curves, fracture strain, fracture toughness and fracture mechanisms have been represented for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various swelling. Some phenomena in mechanical behaviour of irradiated austenitic steels have been revealed and explained as follows: a sharp decrease of fracture toughness with swelling growth; untypical large increase of fracture toughness with decrease of the test temperature; some increase of fracture toughness after preliminary cyclic loading. Role of channel deformation and channel fracture has been clarified in the properties of irradiated austenitic steel and different tendencies to channel deformation have been shown and explained for the same austenitic steel irradiated at different temperatures and neutron doses.

  16. Ciliary derived neurotrophic factor protects oligodendrocytes against radiation induced damage in vitro by a mechanism independent of a proliferative effect

    International Nuclear Information System (INIS)

    Evans, Andrew J.; Mabie, Peter C.; Kessler, Jack A.; Vikram, Bhadrasain

    1997-01-01

    U studies showed that CNTF did not function as a mitogen when added to the mature oligodendrocyte cultures. Following radiation, cells incorporating BrdU appeared to be non-viable. Conclusion: CNTF appeared to protect mature oligodendrocytes from irradiation by a mechanism other than proliferation. Our in vitro studies suggest that CNTF might have the potential for preventing or alleviating radiation induced myelopathy

  17. The shapes of the radiation dose-mutation response curves in drosophila: Mechanisms and implications

    International Nuclear Information System (INIS)

    Abrahamson, S.; DeJongh, C.; Meyer, H.U.

    1981-01-01

    This chapter proposes that radiation induced mutations, namely sex-linked recessive lethals in Drosophila and forward mutations at specific loci in Drosophila, mammals and lower eucaryotes, are the result of two sub-lesions or hits, induced by either single ionization tracks or by the interaction of two independent tracks for low LET radiations, when the dose is delivered in an acute fashion. Utilizes the well recognized linear quadratic expression Y=C+αD+βD 2 , where C is the spontaneous frequency of events scored and α and β represent the coefficients of the dose. Concludes that for low LET radiations, X or gamma rays, the linear-quadratic model can be used to predict the genetic response of germ cells and somatic cells to a variety of radiation regimes. Points out that the point of inflection in the curve, α/β value, can be determined specifically by target dimensions which vary with respect to DNA content. Considers the difference in RBE values observed for different species to be a reflection of their different target sizes

  18. Study of the mechanism of radiation-chemical transformations in rubber-resinous materials

    International Nuclear Information System (INIS)

    Sharova, L.B.; Astakhova, L.G. Trufanova, N.D.; Persinen, A.A.; Vasil'ev, I.A.

    1993-01-01

    Materials based on butadiene-nitrile rubbers reinforced by phenol-formaldehyde resins presently find wide application as reliable heat-insulating coatings for various metallic constructions and are utilized under exposure to ionizing radiation. In this connection, when estimating the assured lifetime of heat-insulating coatings, it is necessary to take into account the character and degree of their radiation-chemical transformations. The aim of the present work was to study the radiation-chemical transformations of materials based on a composite of butadiene-nitrile rubber and phenol-formaldehyde resin. The investigations were carried out on model materials S-O, S-25, S-100, S-130, and S-150 based on the SKN-40M rubber with a varied content of SF-010A brand phenol-formaldehyde resin, the content of which in parts by weight per 100 parts by weight of rubber is indicated in the specifications of the materials. The possible directions of the radiation-chemical transformations in the rubber-resinous vulcanizates were studied by the method of disrupted total internal reflection (MDTIR) IR spectroscopy

  19. On mechanism of chlorophos radiation-chemical decomposition in aqueous solutions

    International Nuclear Information System (INIS)

    Danilin, D.I.; Shubin, V.N.

    1992-01-01

    Quantitative indices of chlorophos decomposition in a aqueous solution and in solutions with a number of additions are studied. Chlorine ions and substances containing the carbonyl group are found among the products of gamma-irradiation of low-concentration chlorophos solutions. The data supporting the running of radiation destructive reactions of reduction nature rather than oxidation type, are presented

  20. Effects of low intensity laser radiation on osteointegration mechanism of implants: study 'in vivo'

    International Nuclear Information System (INIS)

    Blay, Alberto

    2001-01-01

    The purpose of this study is to determine whether the process of bone integration of implants placed in rabbit tibia is changed in any way if the region is radiated with laser, as compared to the time required for the bone integration process without radiation. Thirty adult male white New Zealand rabbits were submitted to implant surgery, for subsequent evaluation of the removal torque and resonance frequency. Each animal received two implants of pure titanium, one in each proximal metaphysics of the tibia, which were inserted with a 40 Ncm torque, and their initial stability was also monitored by means of a resonance frequency analyzer. The rabbits were then divided into 3 groups: one control group and two laser groups. The groups were evaluated in regard to removal torque and resonance frequency of the implants, after 3 and 6 weeks. One of the laser groups was radiated with a laser beam of a wavelength in the infrared range (830 nm) and the other group was radiated with a laser beam emitted in the visible range (680 nm). Ten radiation sessions were performed, 48 hours apart, the first of them during the immediate post-operation period. Radiation energy density was 4 J/cm 2 per point, and there were two points at each side of the tibia. Results of the statistical analysis of the resonance frequency indicated that for both laser groups there was a significant difference between frequency values at the time of implant and the values obtained after 3 and 6 weeks. Furthermore, the results obtained for the removal torque of the three groups showed a statistically significant difference after a period of 6 weeks; removal torque values for the laser groups were, in the average, much greater than those of the control group. From these results it is possible to conclude that implants in rabbit tibia, that were exposed to laser radiation with wavelengths of 680 nm and 830 nm, had a better degree of bone integration than the control group.(author)

  1. Effect of ionizing radiation on physicochemical and mechanical properties of commercial multilayer coextruded flexible plastics packaging materials

    Science.gov (United States)

    Goulas, Antonios E.; Riganakos, Kyriakos A.; Kontominas, Michael G.

    2003-12-01

    The effect of gamma radiation (doses: 5, 10 and 30 kGy) on mechanical properties, gas and water vapour permeability and overall migration values into distilled water, 3% aqueous acetic acid and iso-octane was studied for a series of commercial multilayer flexible packaging materials based on coextruded polypropylene (PP), ethylene vinyl alcohol (EVOH), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyamide (PA) and Ionomer. The results showed that radiation doses of 5 and 10 kGy induced no statistically significant differences ( p>0.05) in all polymer properties examined. A dose of 30 kGy induced differences ( pfilms. In addition, the same dose induced differences ( pfilms into 3% acetic acid and iso-octane and in the overall migration from PP/EVOH/LDPE-LLDPE into iso-octane. Differences recorded, are discussed in relation to food irradiation applications of respective packaging materials.

  2. An update on the mechanisms and pathophysiological consequences of genomic instability with a focus on ionizing radiation

    Directory of Open Access Journals (Sweden)

    Streffer C

    2015-12-01

    Full Text Available Christian Streffer Institute for Medical Radiobiology, University Clinics Essen, Essen, Germany Abstract: The genome of eukaryotic cells is generally instable. DNA damage occurs by endogenous processes and exogenous toxic agents. The efficient DNA repair pathways conserve the genetic information to a large extent throughout the life. However, exposure to genotoxic agents can increase the genomic instability. This phenomenon develops in a delayed manner after approximately 20 and more cell generations. It is comparatively thoroughly investigated after the exposure to ionizing radiation. The increase of genomic instability has been observed after exposures to ionizing radiation in vitro and in vivo as well as with many different types of radiation. The effect is induced over a wide dose range, and it has been found with cell death, chromosomal damage, cell transformations, mutations, double-strand breaks, malformations, and cancers. No specific chromosomes or genomic sites have been observed for such events. The increased genomic instability can be transmitted to the next generation. Possible mechanisms such as oxidative stress (mitochondria may be involved, reduced DNA repair, changes in telomeres, epigenetic effects are discussed. A second wave of oxidative stress has been observed after radiation exposures with considerably high doses as well as with cytotoxic agents at time periods when an increased genomic instability was seen. However, the increase of genomic instability also happens to much lower radiation doses. Hypoxia induces an increase of genomic instability. This effect is apparently connected with a reduction of DNA repair. Changes of telomeres appear as the most probable mechanisms for the increase of genomic instability. Syndromes have been described with a genetic predisposition for high radiosensitivity. These individuals show an increase of cancer, a deficient DNA repair, a disturbed regulation of the cell cycle, and an

  3. Radiation-thermal effects change of physico-mechanical properties in reactor materials irradiated with neutrons and energetic charged particles

    International Nuclear Information System (INIS)

    Hofman, A.

    1999-01-01

    In the first part of the report (chapter 1) the earlier results of the important scientific and technological investigations which were performed in the seventies years in Poland have been presented. They concerned the fabrication, corrosion, mechanical properties of materials for research and power reactors. Being of the general survey character, the chapter includes own, original results of research of thermal irradiation effects on microstructure evolution phase transformations and mechanical properties of reactor materials. The kinetics of isothermal transformation β→α in U-Cr 0.4% wt. alloy has been studied. Factors affecting stress-corrosion cracking of zirconium in iodine vapour have been investigated. The rings and loops for irradiation specimens and Hot Laboratory for postirradiation examination of construction materials is described. In the second part (chapters 2, 3, 4, 5) performed the investigations and simulations of radiation damage in metals by heavy ion beams (E > 1 MeV/a.m.n.) were described scientific base and technical problems of the method of irradiation of heavy ions and of the examination of irradiated samples is presented. It is followed by a summary of the results of simulation and reactor experiments on different materials. Radiation hardening of a number metals (Al, Zr, Cu, Ni, U) irradiated by heavy ion and neutrons, mechanical properties and microstructural evolution in ion and neutron irradiated austenitic stainless steel is described. The last chapter is a description of practical aspects of the presented studies in nuclear science and technology. (author)

  4. Effect of ionizing radiation on mechanical and thermal properties of low-density polyethylene containing pro-degradant agents

    International Nuclear Information System (INIS)

    Bardi, Marcelo A.G.; Kodama, Yasko; Machado, Luci D.B.; Giovedi, Claudia; Rosa, Derval S.

    2009-01-01

    The wide use of plastics on packages of short-lifetime products has presented harmful consequences for the environment due to their low degradation rate. By this way, improved results to the bio-assimilation of polyolefins have been achieved by the incorporation of pro-oxidant components. The aim of this work is to evaluate the mechanical and thermal behavior of low-density polyethylene (LDPE) modified by those agents and submitted to ionizing radiation by gamma rays. LDPE was modified using a masterbatch containing calcium stearate (CaSt), or magnesium stearate (MgSt) or Clariant R commercial metallic complex. The final amount of stearate in modified LDPE was 0.2%. The films were obtained by compression molding. Samples were gamma irradiated at absorbed doses of 15 kGy and 100 kGy. Differential scanning calorimetry (DSC) and thermogravimetry (TG) were performed on samples, as well as mechanical analysis by universal testing machine. Thermal properties of samples presenting pro-degradant agents were affected by the ionizing radiation in the dose range studied, and some of the mechanical properties were clearly modified by reducing their values of tensile strength at break and elongation at break. (author)

  5. Effect of ionizing radiation on mechanical and thermal properties of low-density polyethylene containing pro-degradant agents

    Energy Technology Data Exchange (ETDEWEB)

    Bardi, Marcelo A.G.; Kodama, Yasko; Machado, Luci D.B., E-mail: magbardi@ipen.b, E-mail: ykodama@ipen.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: giovedi@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Rosa, Derval S., E-mail: derval.rosa@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2009-07-01

    The wide use of plastics on packages of short-lifetime products has presented harmful consequences for the environment due to their low degradation rate. By this way, improved results to the bio-assimilation of polyolefins have been achieved by the incorporation of pro-oxidant components. The aim of this work is to evaluate the mechanical and thermal behavior of low-density polyethylene (LDPE) modified by those agents and submitted to ionizing radiation by gamma rays. LDPE was modified using a masterbatch containing calcium stearate (CaSt), or magnesium stearate (MgSt) or Clariant{sup R} commercial metallic complex. The final amount of stearate in modified LDPE was 0.2%. The films were obtained by compression molding. Samples were gamma irradiated at absorbed doses of 15 kGy and 100 kGy. Differential scanning calorimetry (DSC) and thermogravimetry (TG) were performed on samples, as well as mechanical analysis by universal testing machine. Thermal properties of samples presenting pro-degradant agents were affected by the ionizing radiation in the dose range studied, and some of the mechanical properties were clearly modified by reducing their values of tensile strength at break and elongation at break. (author)

  6. Trapping in stochastic mechanics and applications to covers of clouds and radiation belts

    International Nuclear Information System (INIS)

    Albeverio, S.; Blanchard, P.; Combe, P.; Rodriguez, R.; Sirugue, M.; Sirugue-Collin, M.

    1984-11-01

    It is possible to assign a stochastic acceleration to conservative stochastic diffusion processes. As a basic assumption, this stochastic acceleration is set equal to the deterministic smooth component of the external force acting on the particle, whereas the influences of the remainder is modelled by a diffusion coefficient. In this paper, we shall try to see whether it can account for the observation in two cases: the cover of clouds of planets and the radiation belts in the planetary magnetic field. We describe the basic properties of Newtonian Diffusion Stochastic Processes and indicate their connection with Schroedinger-like equations. Furthermore we give a heuristic interpretation of the nodal surfaces as impenetrable barriers for Newtonian Stochastic Diffusion Processes. The possible applications to the observed average cloud covering in the planetary atmosphere are presented we discuss the radiation belts (Van Allen Belts) along the previous ideas

  7. Radiative and mechanical feedback into the molecular gas of NGC 253

    NARCIS (Netherlands)

    Rosenberg, M. J. F.; Kazandjian, M. V.; van der Werf, P. P.; Israel, F. P.; Meijerink, R.; Weiß, A.; Requena-Torres, M. A.; Güsten, R.

    Starburst galaxies are galaxies or regions of galaxies undergoing intense periods of star formation. Understanding the heating and cooling mechanisms in these galaxies can give us insight to the driving mechanisms that fuel the starburst. Molecular emission lines play a crucial role in the cooling

  8. Adaptation of the Black Yeast Wangiella dermatitidis to Ionizing Radiation: Molecular and Cellular Mechanisms

    Science.gov (United States)

    2012-11-01

    regulated by radiation. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 19 19a... iota subunit 0.56 0.61 3.6E-06 1.4E-04 ORF01786 G1/S-specific cyclin PLC2 0.51 0.36 3.7E-08 8.9E-21 ORF02802 DNA repair and recombination protein RAD52

  9. Effects of Low Level Radiation exposure on Neurogenesis and Cognitive Function: Mechanisms and Prevention

    Science.gov (United States)

    2005-09-01

    1 mental model in the old rat. Int. J. Radiat. Oncol. Biol. Phys., 31: 65-70, 1995. give rise to new nerons in the adult mammalian hippocampus. I...Morris water maze localized within a network , could significantly increase the and white noise and bright light used to motivate escape complexity and...irradiation. However, we cannot ex- can be incorporated into the hippocampal networks and/or elude the possibility that a more challenging version of the

  10. Adaptive Breast Radiation Therapy Using Modeling of Tissue Mechanics: A Breast Tissue Segmentation Study

    International Nuclear Information System (INIS)

    Juneja, Prabhjot; Harris, Emma J.; Kirby, Anna M.; Evans, Philip M.

    2012-01-01

    Purpose: To validate and compare the accuracy of breast tissue segmentation methods applied to computed tomography (CT) scans used for radiation therapy planning and to study the effect of tissue distribution on the segmentation accuracy for the purpose of developing models for use in adaptive breast radiation therapy. Methods and Materials: Twenty-four patients receiving postlumpectomy radiation therapy for breast cancer underwent CT imaging in prone and supine positions. The whole-breast clinical target volume was outlined. Clinical target volumes were segmented into fibroglandular and fatty tissue using the following algorithms: physical density thresholding; interactive thresholding; fuzzy c-means with 3 classes (FCM3) and 4 classes (FCM4); and k-means. The segmentation algorithms were evaluated in 2 stages: first, an approach based on the assumption that the breast composition should be the same in both prone and supine position; and second, comparison of segmentation with tissue outlines from 3 experts using the Dice similarity coefficient (DSC). Breast datasets were grouped into nonsparse and sparse fibroglandular tissue distributions according to expert assessment and used to assess the accuracy of the segmentation methods and the agreement between experts. Results: Prone and supine breast composition analysis showed differences between the methods. Validation against expert outlines found significant differences (P<.001) between FCM3 and FCM4. Fuzzy c-means with 3 classes generated segmentation results (mean DSC = 0.70) closest to the experts' outlines. There was good agreement (mean DSC = 0.85) among experts for breast tissue outlining. Segmentation accuracy and expert agreement was significantly higher (P<.005) in the nonsparse group than in the sparse group. Conclusions: The FCM3 gave the most accurate segmentation of breast tissues on CT data and could therefore be used in adaptive radiation therapy-based on tissue modeling. Breast tissue segmentation

  11. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea

    OpenAIRE

    Daniel L. Jones; Bonnie K. Baxter

    2017-01-01

    Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV) radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidine...

  12. Adaptive Breast Radiation Therapy Using Modeling of Tissue Mechanics: A Breast Tissue Segmentation Study

    Energy Technology Data Exchange (ETDEWEB)

    Juneja, Prabhjot, E-mail: Prabhjot.Juneja@icr.ac.uk [Joint Department of Physics, Institute of Cancer Research, Sutton (United Kingdom); Harris, Emma J. [Joint Department of Physics, Institute of Cancer Research, Sutton (United Kingdom); Kirby, Anna M. [Department of Academic Radiotherapy, Royal Marsden National Health Service Foundation Trust, Sutton (United Kingdom); Evans, Philip M. [Joint Department of Physics, Institute of Cancer Research, Sutton (United Kingdom)

    2012-11-01

    Purpose: To validate and compare the accuracy of breast tissue segmentation methods applied to computed tomography (CT) scans used for radiation therapy planning and to study the effect of tissue distribution on the segmentation accuracy for the purpose of developing models for use in adaptive breast radiation therapy. Methods and Materials: Twenty-four patients receiving postlumpectomy radiation therapy for breast cancer underwent CT imaging in prone and supine positions. The whole-breast clinical target volume was outlined. Clinical target volumes were segmented into fibroglandular and fatty tissue using the following algorithms: physical density thresholding; interactive thresholding; fuzzy c-means with 3 classes (FCM3) and 4 classes (FCM4); and k-means. The segmentation algorithms were evaluated in 2 stages: first, an approach based on the assumption that the breast composition should be the same in both prone and supine position; and second, comparison of segmentation with tissue outlines from 3 experts using the Dice similarity coefficient (DSC). Breast datasets were grouped into nonsparse and sparse fibroglandular tissue distributions according to expert assessment and used to assess the accuracy of the segmentation methods and the agreement between experts. Results: Prone and supine breast composition analysis showed differences between the methods. Validation against expert outlines found significant differences (P<.001) between FCM3 and FCM4. Fuzzy c-means with 3 classes generated segmentation results (mean DSC = 0.70) closest to the experts' outlines. There was good agreement (mean DSC = 0.85) among experts for breast tissue outlining. Segmentation accuracy and expert agreement was significantly higher (P<.005) in the nonsparse group than in the sparse group. Conclusions: The FCM3 gave the most accurate segmentation of breast tissues on CT data and could therefore be used in adaptive radiation therapy-based on tissue modeling. Breast tissue

  13. Biochemical and cellular mechanisms responsible for effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Trebukhina, R.V.; Ovchinnikov, V.A.; Lashak, L.K.; Ledneva, I.O.; Petushok, V.G.; Petushok, N.E.; Motylevich, Zh.V.; Kazhyna, M.V.

    1997-01-01

    In experiments on white rats influence of small dozes of gamma-exposure on morphological structure of blood and activity of enzymes in blood and thimus was investigated. Short-term reduction of quantity of leucocytes and more long (1 month) reduction of erythrocytes was shown. Accumulation in blood of products of lipid peroxidation correlates with activity of oxidizing enzymes (catalase, lysozyme). Radiation-induced activation of pentose-phosphate pathway of carbohydrates metabolism was established. (author)

  14. [Participation of final products of lipid peroxidation in the anticancer mechanism of ionizing radiation and radiomimetic cytostatics].

    Science.gov (United States)

    Przybyszewski, W M

    2001-01-01

    This review reports the evidence for the participation of final products of lipid peroxidation in the anticancer mechanism of ionising radiation and radiomimetic cytostatics. Processes of lipid peroxidation occur endogenously in response to oxidative stress and great diversity of reactive metabolites is formed. However, direct observation of radical reaction in pathophysiology of cells, tissues and organs is limited technically. Most investigations focused on the indirect assessment of their final products, aldehydes. The peroxidative breakdown of polyunsaturated fatty acids is believed to be involved in the regulation of cell division, and antitumor effect through biochemical and genetic processes.

  15. Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit

    DEFF Research Database (Denmark)

    Sáez-Rodríguez, D.; Nielsen, Kristian; Bang, Ole

    2014-01-01

    that increasing strain during photo-inscription leads to an increased photosensitivity, which is evidence of photodegradation. Likewise, refractive index change in the fiber was measured to be positive, which provides evidence for further polymerization of the material. Finally, we relate the data obtained......In this Letter, we provide evidence suggesting that the main photosensitive mechanism of an undoped poly(methyl methacrylate)-based microstructured optical fiber under UV radiation at 325 nm is a competitive process of both photodegradation and polymerization. We found experimentally...

  16. Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells

    Energy Technology Data Exchange (ETDEWEB)

    Duka, M V; Dvoretskaya, L N; Babelkin, N S; Khodzitskii, M K; Chivilikhin, S A; Smolyanskaya, O A [St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg (Russian Federation)

    2014-08-31

    We have studied the mechanisms underlying the effect of pulsed broadband terahertz radiation on the growth of neurites of sensory ganglia using a comparative analysis of measured reflection spectra of ganglion neurites (in the frequency range 0.1 – 2.0 THz) and spectra obtained by numerical simulation with CST Microwave Studio. The observed changes are shown to be mainly due to pulse energy absorption in the ganglion neurites. Of particular interest are the observed single resonance frequencies related to resonance size effects, which can be used to irradiate ganglia in order to activate their growth. (laser biophotonics)

  17. Planck’s radiation law, the light quantum, and the prehistory of indistinguishability in the teaching of quantum mechanics

    International Nuclear Information System (INIS)

    Passon, Oliver; Grebe-Ellis, Johannes

    2017-01-01

    Planck’s law for black-body radiation marks the origin of quantum theory and is discussed in all introductory (or advanced) courses on this subject. However, the question whether Planck really implied quantisation is debated among historians of physics. We present a simplified account of this debate which also sheds light on the issue of indistinguishability and Einstein’s light quantum hypothesis. We suggest that the teaching of quantum mechanics could benefit from including this material beyond the question of historical accuracy. (paper)

  18. Studies on the Mechanism of Radiation Resistance in Micrococcus Radiodurans and its Sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Kitayama, S.; Matsuyama, A. [Radiobiology Laboratory, Institute of Physical and Chemical Research, Wako-shi, Saitama-ken (Japan)

    1978-06-15

    Efficient and accurate repair of radiation-induced lesions in M. radiodurans was investigated as to the cause of its extreme radioresistance. The cells were made permeable to deoxyribonucleoside triphosphate by treatment with non-ionic detergent, Triton X-100. After irradiation with 2 krad gamma rays more than 80% of the single-strand scissions were rejoined in the permeable cells within 10 min at 37 Degree-Sign C. This fast repair process requires the presence of deoxyribonucleoside triphosphates and NAD. However, rejoining of DNA strand scission was incomplete after prolonged incubation in the permeable cells. This suggests that alternate repair reaction(s) is necessary for complete recovery. The other type of radiation lesion was found by postirradiation incubation at non-permissive temperature, which markedly sensitizes this bacterium to radiation. Postincubation at this temperature also sensitizes the cells to chemicals that damage DNA. The extreme radioresistance of this bacterium was also lost by mutation and an isolated radiosensitive mutant showed almost the same radiosensitivity as E. coli K12 or B/r. These results are discussed in connection with the extreme radioresistance of M. radiodurans. (author)

  19. Studies on the mechanism of radiation resistance in Micrococcus radiodurans and its sensitization

    International Nuclear Information System (INIS)

    Kitayama, S.; Matsuyama, A.

    1978-01-01

    Efficient and accurate repair of radiation-induced lesions in M. radiodurans was investigated as to the cause of its extreme radioresistance. The cells were made permeable to deoxyribonucleoside triphosphate by treatment with non-ionic detergent, Triton X-100. After irradiation with 2 krad gamma rays more than 80% of the single-strand scissions were rejoined in the permeable cells within 10 min at 37 0 C. This fast repair process requires the presence of deoxyribonucleoside triphosphates and NAD. However, rejoining of DNA strand scission was incomplete after prolonged incubation in the permeable cells. This suggests that alternate repair reaction(s) is necessary for complete recovery. The other type of radiation lesion was found by post-irradiation incubation at non-permissive temperature, which markedly sensitizes this bacterium to radiation. Postincubation at this temperature also sensitizes the cells to chemicals that damage DNA. The extreme radioresistance of this bacterium was also lost by mutation and an isolated radiosensitive mutant showed almost the same radiosensitivity as E. coli K12 or B/r. These results are discussed in connection with the extreme radioresistance of M. radiodurans. (author)

  20. A mechanism for large divertor plasma energy loss via lithium radiation in tokamaks

    Science.gov (United States)

    Rognlien, T. D.; Meier, E. T.; Soukhanovskii, V. A.

    2012-10-01

    Lithium has been used as a wall-conditioning element in a number of tokamaks over the years, including TFTR, FTU, and NSTX, where core plasma energy confinement and particle control are often found to improve following such conditioning. Here the possible role of Li in providing substantial energy loss for divertor plasmas via line radiation is reported. A multi-charge-state 2D UEDGE fluid model is used where the hydrogenic and Li ions and neutrals are each evolved as separate species and separate equations are solved for the electron and ion temperatures. It is shown that a sufficient level of Li neutrals evolving from the divertor surface via sputtering or evaporation can induce energy detachment of the divertor plasma, yielding a strongly radiating zone near the divertor where ionization and recombination from/to neutral Li can radiate most of the power flowing into the scrape-off layer while maintaining low core contamination. A local peaking of Li emissivity for electron temperatures near 1 eV appears to play an important role in the detachment of the mixed deuterium/Li plasma. Evidence of such behavior from NSTX discharges will be discussed.

  1. Gamma radiation effects on mechanical properties and morphology of a polyurethane derivate from castor oil

    Science.gov (United States)

    Azevedo, Elaine Cristina; Orivaldo Chierice, Gilberto; Claro Neto, Salvador; Scheidegger Soboll, Daniel; Mauro Nascimento, Eduardo; Lepienski, Carlos Mauricio

    2011-03-01

    In this study, an adhesive of a polyurethane derivate from castor oil was irradiated with gamma radiation from a 60Co source, at doses from 0.2 to 25 kGy. This adhesive polyurethane is considered for use in hospital furniture because it does not liberate dangerous solvents. Hardness and elastic modulus were measured by instrumented indentation with a pyramidal Berkovich indenter, using loads from 0.08-40 mN with a nanoindenter XP. The instrumented indentation hardness was 110 MPa for an untreated sample, increasing to 124 MPa after irradiation with 25 kGy, at penetration depths of about 5 μm. The increases in elastic modulus induced by radiation were less pronounced. This polyurethane is naturally cross-linked and the relative modifications in the hardness are attributed to an additional cross-linking process induced by radiation. X-ray diffraction indicates a slight increase in crystallinity. The roughness measured by atomic force microscopy increases after gamma irradiation.

  2. Analysis of noise radiation mechanisms in hot subsonic jet from a validated large eddy simulation solution

    Energy Technology Data Exchange (ETDEWEB)

    Lorteau, Mathieu, E-mail: mathieu.lorteau@onera.fr; Cléro, Franck, E-mail: franck.clero@onera.fr; Vuillot, François, E-mail: francois.vuillot@onera.fr [Onera–The French Aerospace Lab, F-92322 Châtillon (France)

    2015-07-15

    In the framework of jet noise computation, a numerical simulation of a subsonic turbulent hot jet is performed using large-eddy simulation. A geometrical tripping is used in order to trigger the turbulence at the nozzle exit. In a first part, the validity of the simulation is assessed by comparison with experimental measurements. The mean and rms velocity fields show good agreement, so do the azimuthal composition of the near pressure field and the far field spectra. Discrepancies remain close to the nozzle exit which lead to a limited overestimation of the pressure levels in both near and far fields, especially near the 90{sup ∘} angular sector. Two point correlation analyses are then applied to the data obtained from the simulation. These enable to link the downstream acoustic radiation, which is the main direction of radiation, to pressure waves developing in the shear layer and propagating toward the potential core end. The intermittency of the downstream acoustic radiation is evidenced and related to the coherent structures developing in the shear layer.

  3. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media

    Energy Technology Data Exchange (ETDEWEB)

    Ambroziński, Łukasz [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); AGH University of Science and Technology, Krakow 30059 (Poland); Pelivanov, Ivan, E-mail: ivanp3@uw.edu [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Faculty of Physics, Moscow State University, Moscow 119991 (Russian Federation); Song, Shaozhen; Yoon, Soon Joon; Gao, Liang; O' Donnell, Matthew [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Li, David [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Chemical Engineering, University of Washington Seattle, Washington 98195 (United States); Shen, Tueng T.; Wang, Ruikang K. [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Ophthalmology, University of Washington, Seattle, Washington 98104 (United States)

    2016-07-25

    A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.

  4. Physical and mechanical properties of gamma radiation cross-linked polyethylene

    International Nuclear Information System (INIS)

    Gonzalez, Maria E.; Romero, G.; Smolko, Eduardo E.

    1999-01-01

    Granulated LDPE 2003 polyethylene was extruded and irradiated under nitrogen with 150, 200 and 300 kGy gamma rays doses to produce cross-linking. The study of the physical and mechanical properties shows that the product has a high degree of molecular cross-linking, can be heated up to 200 C for 2 hours without deformation and that the mechanical properties improve. Preliminary aging tests indicate that after heating at 60 C for 4 weeks no physical or mechanical deterioration can be observed. (author)

  5. Aging Mechanisms and Nondestructive Aging Indicator of Filled Cross-linked Polyethylene (XLPE) Exposed to Simultaneous Thermal and Gamma Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuaishuai; Fifield, Leonard S.; Bowler, Nicola

    2018-04-11

    Aging mechanisms and a nondestructive aging indicator of filled cross-linked polyethylene (XLPE) cable insulation material used in nuclear power plants (NPPs) are studied. Using various material characterization techniques, likely candidates and functions for the main additives in a commercial filled-XLPE insulation material have been identified. These include decabromodiphenyl ether and Sb2O3 as flame retardants, ZnS as white pigment and polymerized 1,2-dihydro-2,2,4-trimethylquinoline as antioxidant. Gas chromatography-mass spectrometry, differential scanning calorimetry, oxidation induction time and measurements of dielectric loss tangent are utilized to monitor property changes as a function of thermal and radiation exposure of the cable material. Small-molecular-weight hydrocarbons are evolve with gamma radiation aging at 90 °C. The level of antioxidant decreases with aging by volatilization and chemical reaction with free radicals. Thermal aging at 90 °C for 25 days or less causes no observable change to the cross-linked polymer structure. Gamma radiation causes damage to crystalline polymer regions and introduces defects. Dielectric loss tangent is shown to be an effective and reliable nondestructive indicator of the aging severity of the filled-XLPE insulation material.

  6. Mechanisms of ionizing-radiation-induced gain degradation in lateral PNP BJTs

    International Nuclear Information System (INIS)

    Schmidt, D.M.; Wu, A.; Schrimpf, R.D.; Pease, R.L.; Combs, W.E.

    1996-01-01

    The physical mechanisms for gain degradation in laterals PNP bipolar transistors are examined experimentally and through simulation. The effect of increased surface recombination velocity at the base surface is moderated by positive oxide charge

  7. Whisker growth: a new mechanism for helium blistering of surfaces in complex radiation environments

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1978-01-01

    Implantation of helium concurrent with the generation of large numbers of displaced atoms in surface layers of materials exposed to 252 Cf α-particles and fission fragments produces a unique form of low temperature surface blistering. The purpose of this paper is to formulate a basis for the whisker-growth mechanism for helium blistering as an aid to the specification of conditions under which the mechanism might apply

  8. Effects of Radiation on Mechanical Properties of Poly (butylene succinate) and Cassava Starch Blends

    International Nuclear Information System (INIS)

    Hemvichian, K.; Dechasasawat, K.; Kangsumrith, W.; Suwanmala, P.

    2014-01-01

    This research compared the effects of gamma and electron beam irradiation at different doses on the mechanical properties of polymer blends between poly(butylene succinate) (PBS) and cassava starch. Two types of starch were used to prepare thermoplastic starch (TPS), native cassava starch and hydrophobic starch. PBS/TPS blends were compounded at five different weight ratios using a twin-screw extruder. Mechanical properties and degradation were evaluated in comparison to unirradiated samples. Results indicated that the incorpora- tion of TPS prepared from native cassava starch decreased the mechanical properties of PBS/TPS blends, whereas the addition of TPS prepared from hydrophobic starch improved the mechanical properties of the blends. In addition, the maximum mechanical properties of PBS/TPS blends were achieved when samples were exposed to irradiation at 120 kGy. Using soil burial evaluation, the degradation rate of blends was found to increase with the addition of TPS. Therefore we have demonstrated in this study that the type of TPS and irradiation treatment can significantly alter the mechanical properties and degradation of PBS/TPS blends.

  9. Energy dependency of mechanical properties on polymer impregnated concrete polymerized by radiation induced method

    International Nuclear Information System (INIS)

    Ono, Hironobu

    1978-01-01

    The purpose of this paper is to study the characteristics of polymerization on polymer impregnated concrete (PIC) polymerized by various radiation source which have the peculiar energy respectively as follows; Gamma-rays: 60 Co-1.25MeV, 137 Cs-0.66MeV, X-Ray: 0.88MeV and accelerated electron beam 4.0, 2.0 and 1.2MeV. This experimental program was carried out to investigate the effect of radiation energy, density of cementmortar, optimum irradiating conditions and other factors which have influence upon the polymerization and strength of PIC. The test results shows that the energy dependency on the accelerated electron was remarkable effect for relative absorption energy and strength of specimens (Fig. 5) and it can be estimate that the impregnation depth from the surface of specimens in ordinary mortar MMA-PIC were about 10 mm, 6 mm, and 3 mm as to 4.0, 2.0 and 1.2MeV respectively under curing 50 Mrads (Fig. 2). It is also show that the optimum total exposure dose on magnetic electro wave methods, estimate about 3 MR at 60 Co; 1 x 10 6 R/hr, 2 MR at 137 Cs; 4.5 x 10 4 R/hr and 2 MR at X-ray; 5 x 10 5 R/hr at curing temperature 20 0 C (Fig. 9, Fig. 10). We can see the fact that the energy dependency is noticiable only comparing same kinds of radiation source. (author)

  10. Effect of different ionizing radiation dose rates on the Staphylococcal enterotoxin in mechanically deboned chicken meat

    International Nuclear Information System (INIS)

    Azevedo, Heliana de; Brito, Poliana de Paula; Fukuma, Henrique Takuji; Roque, Claudio Vitor; Custodio, Wilson; Kodama, Yasko; Miya, Norma Terugo Nago; Pereira, Jose Luiz

    2009-01-01

    Samples weighing 50g each were prepared from allotments of back with skin MDCM, to the EEB contamination or not (control). Each sample of MDCM contaminated or not with EEB was conditioned in low density polyethylene bag, frozen (-18 ± 1 deg C) for one night in a tunnel and irradiated with gamma rays from 60 Co source in this state with doses of 0.0 kGy (control), 1.5 kGy (5.7 kGy.h -1 - higher dose rate, 1.8 kGy.h -1 - intermediary dose rate and 0.6 kGy.h -1 - lower dose rate) and 3.0 kGy (8.4 kGy.h - '1 - higher dose rate, 2.4 kGy.h -1 - intermediary dose rate and 0.6 kGy.h -1 - lower dose rate). Irradiated or non irradiated MDCM samples were processed to the EEB extraction, according to the VIDAS Staph enterotoxin II kit (bioMerieux) manufacturer protocol. The calculation to determinate the MDCM EEB recovery after the sample (control or irradiated) processing were carried out applying the principle of mass balance, along the whole process. Described experiment was performed in triplicate. Results showed that the irradiation process was effective to remove the MDCM EEB, to both 1.5 kGy and 3.0 kGy. According to the expected, doses of 3.0 kGy showed the highest values of MDCM EEB removal. Regarding the effect of dose rate of radiation on the removal of EEB of the MDCM, it could be observed only for samples irradiated with 1.5 kGy radiation dose; in these processing conditions, the highest value of EEB removal was obtained for samples processed with low radiation dose rate. (author)

  11. Mechanism of n-butyl acrylate sensitization action in radiation vulcanization of natural rubber latex

    International Nuclear Information System (INIS)

    Sabharwal, S.; Chaudhari, C.V.; Bhardwaj, Y.K.; Majali, A.B.; Das, T.N.

    1996-01-01

    In order to understand the role of n-butyl acrylate (nBA) in radiation vulcanization of natural rubber latex, pulse radiolysis technique has been utilized to study the reactions of the transient species produced by reaction of OH . , e- aq and H . atoms with nBA in aqueous solutions. The results show that transients produced by reaction of e- aq with nBA alone are capable of propagating the polymerization reaction and enhance the vulcanization process. These results have been further confirmed by studying the effect of electron scavengers on the vulcanization behaviour of natural rubber latex in presence of nBA. (author). 3 refs., 3 figs

  12. Degradation kinetics and mechanism of penicillin G in aqueous matrices by ionizing radiation

    Science.gov (United States)

    Chu, Libing; Zhuang, Shuting; Wang, Jianlong

    2018-04-01

    The gamma radiation induced-degradation of a β-lactam antibiotic, penicillin G was investigated in aqueous solution. Special attention was paid to the effects of the organic substances such as peptone and glucose on penicillin G degradation, which can be found in the wastewater of the factories producing antibiotics. Results showed that gamma radiation was effective to degrade and deactivate penicillin G in pure water. With the initial concentrations of 0.27 mM, 1.34 mM and 2.68 mM, a complete removal of penicillin G could be achieved at the adsorbed doses of 2.5 kGy, 10 kGy and 20 kGy, respectively. Penicilloic acid from the β-lactam ring cleavage and a series of fragment compounds such as thiazolidine and penicillic acid were identified during gamma irradiation-induced degradation of penicillin G. Addition of Fe2+ was efficient to enhance the mineralization. The TOC removal efficiency of penicillin G was 21.7% using gamma irradiation alone at 10 kGy, which increased to 56.4% with 1.0 mM Fe2+ addition. The gamma radiation-induced degradation of penicillin G was inhibited in the presence of peptone and glucose and the inhibitive effect increased with increasing their concentrations. The rate constant, k of the pseudo first-order kinetics decreased by 74% and 64% in the presence of 1.0 g/L of peptone and glucose, respectively, and by 96% and 89% in the presence of 10 g/L of peptone and glucose, respectively. The ratio of k/k0 was increased by 1.3 times with H2O2 addition and by 3 times with Fe2+ addition, in the presence of 10 g/L of glucose. Adding Fe2+ was effective to improve the ionizing radiation induced degradation of penicillin G antibiotic in the glucose-containing wastewater.

  13. Mechanisms of plant resistance to increased solar ultraviolet-B radiation. Final report

    International Nuclear Information System (INIS)

    Teramura, A.H.; Sullivan, J.H.

    1988-05-01

    Since the major conclusions of the project are being disseminated via the scientific literature, the final report consists of a compilation of 11 articles and manuscripts on the effects of ultraviolet-B radiation (UVB) on soybean growth and yield, stress interactions with UVB, and effects of UVB on seedling growth in conifers (the Pinaceae). The effects of UVB on soybeans under field and greenhouse conditions, and under water stress, drought stress and phosphorus deficiency were studied. Soybean yields, seed quality, and physiology, including seed fatty acid and sterol composition, were determined

  14. Radiation induced changes of optical, electrical and mechanical properties of glasses, dielectrics and semiconductors

    International Nuclear Information System (INIS)

    Adawi, M.A.

    2006-01-01

    This work is concerned with investigating the influence of ionizing radiation on different materials. Concretely, the change of their physical characteristics such as, the electrical resistivity, the optical density, the thermoluminescence spectra, the microhardness etc. The investigated materials are: polyethylene, glasses containing U 3 O 8 , Na 2 O and K 2 O, polyvinyl alcohol containing Ni 2 SO 4 , CoCl 2 , CuSO 4 and Cu (CH 3 COO) 2 , polymer Pb 2 O 3 /composite, germanium sulphur alloy, synthetic and natural diamond, nickel chromium steel and silicon. Irradiation is carried out in neutron fields of 10 5 -10 14 neutron/cm 2 , gamma radiation in the dose range 10 2 -10 6 Gy. and swift heavy ions of energy 1 MeV/amu fluence range 10 8 -10 16 ion/cm 2 . The possibility of working out dosimetric devices (using the above mentioned materials) possessing accurate and well expressed metrical characteristics for detecting different sorts of radiation is investigated. The optimum conditions of using these dosimeters (under different thermodynamic conditions and absolute values of registered radiation) are determined. The process of defect formation and evolution in silicon single crystal and diamond irradiated with swift heavy ions is studied. The influence of high-energy heavy ions on the surface structure of nickel chromium steel is investigated. The formation of thermally stable conducting layers at the far depth of the boron projective range in silicon irradiated with swift boron ions is confirmed. Irradiation of nickel chromium steel with xenon ions lead to the change of the elemental composition of the irradiated surface. For the case of diamond semiconductor single crystal irradiated with high-energy xenon or krypton ions possessing energy 1 MeV/nucleon, the track formation is observed for the first time. The track formation criteria are established. A model characterizing the interaction of high-energy heavy ions with diamond is introduced. Such model is found

  15. Degradation Mechanism of Poly(Ether-Urethane) Estane Induced by High Energy Radiation (III) : Radiolytic Gases and Water Soluble Products

    International Nuclear Information System (INIS)

    Dannoux, A.

    2006-01-01

    Within the framework of nuclear waste management, there is interest in the prediction of long-term behaviour of organic materials subjected to high energy radiation. Once organic waste has been stored, gases and low molecular products might be generated from materials irradiated by radionuclides. Long-term behaviour of organic material in nuclear waste has several common concerns with radiation ageing of polymers. But a more detailed description of the chemical evolution is needed for nuclear waste management. In a first approach, an extensive work on radiation ageing is used to identify the different processes encountered during the degradation of a polyurethane, including oxidation dose rate-effects and influence of dose on the oxidation mechanism. In a second approach, a study is performed to identify and quantify gases and possible production of water soluble chemical complexing agents which might enhance radionuclides migration away from the repository. In this work, we present results concerning the production of radiolytic gases and the formation of water soluble oligomers reached with leaching tests Films were made from a poly(ether-urethane) synthesized from methylene bis(p-phenyl isocyanate) (MDI) and poly(tetramethylene glycol) (PTMG) with 1,4 butanediol (BD) and were irradiated by high-energy electron beam to cover a wide doses range and by γ rays to determine the formation/consumption yields of gases. They were measured by mass spectrometry and gas-chromatography/mass spectrometry (GC/MS). The migration of water soluble oligomers in water was reached by measuring the weight loss versus leaching time. The identification of oligomers was performed by using a mass spectrometry with an electrospray ionisation interface (ESI-MS-MS). The analysis of radiolytic gases indicates the formation of H 2 , CO 2 and CO with respective radiolytic yields of 1, 0.5 and 0.3 molecule/100 eV. The consumption of O 2 is evaluated to 6 molecules/100 eV. For absorbed doses

  16. A comparative study on thermal, mechanical and dielectric characteristics of low density polyethylene crosslinked by radiation and chemical methods

    International Nuclear Information System (INIS)

    Kim, B.H.; Ling, D.Y.; Kim, J.S.

    1976-01-01

    A comparative study on thermal, static mechanical and dielectric characteristics were made over a temperature range of ca. 20 0 C to 320 0 C and a frequency range of KHZ band on low density polyethylene specimens crosslinked, respectively, by radiation and chemical method. The thermal property of both specimens shows that softening point appears to unchange by crosslinking however, melting and liquidizing temperatures attain rapid increase at the imitation of crosslinking. Mechanical properties show little difference to both specimens crosslinked by different method, further the behaviors were discussed in connection with the relaxation of molecular segments in amorphous phase. Dose dependent dielectric characteristics observed at ambient temperature under several fixed frequencies exhibit extremities at ca. 20 Mrad and the behaviors also were interpreted qualitatively by taking into consideration of dipole concentration change in amorphous phase together with the role of specimen geometry to the depth of oxidative layer. Observing frequency dependent dielectric characteristics, it was also proved that ionic conduction loss is appreciably greater in the specimen prepared by chemical method than that by radiation. (author)

  17. Effect of ionizing radiation on physicochemical and mechanical properties of commercial multilayer coextruded flexible plastics packaging materials

    International Nuclear Information System (INIS)

    Goulas, A.E.; Riganakos, K.A.; Kontominas, M.G.

    2003-01-01

    The effect of gamma radiation (doses: 5, 10 and 30 kGy) on mechanical properties, gas and water vapour permeability and overall migration values into distilled water, 3% aqueous acetic acid and iso-octane was studied for a series of commercial multilayer flexible packaging materials based on coextruded polypropylene (PP), ethylene vinyl alcohol (EVOH), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyamide (PA) and Ionomer. The results showed that radiation doses of 5 and 10 kGy induced no statistically significant differences (p>0.05) in all polymer properties examined. A dose of 30 kGy induced differences (p<0.05) in the mechanical properties of PA/LDPE, LDPE/EVOH/LDPE and LDPE/PA/Ionomer films. In addition, the same dose induced differences (p<0.05) in the overall migration from Ionomer/EVOH/LDPE and LDPE/PA/Ionomer films into 3% acetic acid and iso-octane and in the overall migration from PP/EVOH/LDPE-LLDPE into iso-octane. Differences recorded, are discussed in relation to food irradiation applications of respective packaging materials

  18. Investigations into the influence of therapeutic measures on the repair of spontaneous mechanisms of defence following radiation injury

    International Nuclear Information System (INIS)

    Nothdurft, W.; Fliedner, T.M.; Baltschukat, K.; Kreja, L.; Selig, C.

    1992-01-01

    Investigations into the influence of therapeutic measures on the repair of spontaneous mechanisms of defence following radiation injury. The aim of this project was to develop procedures for the repair of the body's own mechanisms of defence following radiation injury and to test these on the basis of animal models. After consultation of the relevant literature and in vivo experiments as a preliminary to the in vivo studies in dogs, recombinant human colony-stimulating factor rhGM-CSF was chosen from among a series of different cytokinins. The influence of rhGM-CSF on granulocytopoiesis and monocytophoiesis was at first studied in an animal having undisturbed bone marrow function. Treatment with daily doses of 30 μg/kg on five consecutive days led to a markedly pronounced increase of granulocytopoiesis and an only modest increase of the monocyte concentration of the blood. For the studies in irradiated dogs, treatment was carried out over a period of 21 days. Each of 2 dogs received daily doses of 10 μg/kg or 30 μg/kg administered by subcutaneous injection. These were in each case divided into two equal fractions being given in the morning and at night. The results lead to the conclusion that the treatment of irradiated individuals with rhGM-CSF alone (monotherapy) may be expected to have favourable effects in respect of granulocytopoiesis and monocytopoiesis. This appears, however, to hold only for cases where the radiation damage to the bone marrow is not much more pronounced than that from homogeneous wholebody irradiation using doses in the range between 3 and 3.5 Gy. It is still open to discussion, if and to which extent such treatments with rhGM-CSF are associated with untoward effects on certain hematological parameters. (orig./MG) [de

  19. Review of low dose-rate epidemiological studies and biological mechanisms of dose-rate effects on radiation induced carcinogenesis

    International Nuclear Information System (INIS)

    Iwasaki, Toshiyasu; Otsuka, Kensuke; Yoshida, Kazuo

    2015-01-01

    Radiation protection system adopts the linear non-threshold model with using dose and dose-rate effectiveness factor (DDREF). The dose-rate range where DDREF is applied is below 100 mGy per hour, and it is regarded that there are no dose-rate effects at very low dose rate, less than of the order of 10 mGy per year, even from the biological risk evaluation model based on cellular and molecular level mechanisms for maintenance of genetic integrity. Among low dose-rate epidemiological studies, studies of residents in high natural background areas showed no increase of cancer risks at less than about 10 mGy per year. On the other hand, some studies include a study of the Techa River cohort suggested the increase of cancer risks to the similar degree of Atomic bomb survivor data. The difference of those results was supposed due to the difference of dose rate. In 2014, International Commission on Radiological Protection opened a draft report on stem cell biology for public consultations. The report proposed a hypothesis based on the new idea of stem cell competition as a tissue level quality control mechanism, and suggested that it could explain the dose-rate effects around a few milligray per year. To verify this hypothesis, it would be needed to clarify the existence and the lowest dose of radiation-induced stem cell competition, and to elucidate the rate of stem cell turnover and radiation effects on it. As for the turnover, replenishment of damaged stem cells would be the important biological process. It would be meaningful to collect the information to show the difference of dose rates where the competition and the replenishment would be the predominant processes. (author)

  20. Bio-mechanical and morphometric evaluation of late radiation-induced changes in the mouse rectum

    International Nuclear Information System (INIS)

    Lundby, L.

    1998-01-01

    The overall aim of this thesis was to study the development of late radiation induced damage of the rectum and describe the histopathological and morphometric characteristics of the late injury. This required the design of a new, small probe for rectal measurements of cross-sectional area and distension pressure in mice. The impedance planimetric method was developed and validated in vitro and applied in in vivo studies of normal mice. The study of radiation induced damage of the rectum also required a new set-up for selective irradiation of a specific part of the rectum, shielding other organs. Mice were irradiated with varying single doses and followed with impedance planimetric measurements at regular intervals until death of the animals. In order to compare observed changes of the functional properties of the rectum following irradiation, a description of morphometric and morphologic characteristics by a stereolic technique was planned. A simplified stereological method has been applied to this study to describe late morphometric changes in the different intestinal layers after irradiation with varying single doses. (EG)

  1. Mechanisms of poliovirus inactivation by the direct and indirect effects of ionizing radiation

    International Nuclear Information System (INIS)

    Ward, R.L.

    1980-01-01

    This study was designed to measure the effects of ionizing radiation on poliovirus particles when given under conditions where either direct (in broth) or indirect (in water) effects were predominant. Under direct conditions, inactivation of poliovirus was found to be due primarily to RNA damage, although capsid damage could account for about one-third of the viral inactivation. RNA damage did not appear to be due to strand breakage and therefore was probably caused primarily by base damage or crosslink formation. Capsid damage under direct irradiation conditions did not result in significant alterations of either the sedimentation coefficients or the isoelectric points of the poliovirus particles or detectable modification of the sizes of the viral proteins. It did, however, cause loss of availability to bind to host cells. Under indirect conditions no more than 25% of viral inactivation appeared to be due to RNA damage. However, the sedimentation coefficients and isoelectric points of the viral particles were greatly altered, and their abilities to bind to cells were lost at about three-fourths the rate of loss of infectivity. Capsid damage in this case did result in changes in the sizes of capsid proteins. Therefore, the majority of the radiation inactivation under indirect conditions appeared to be due to protein damage

  2. Short-ranged structural rearrangement and enhancement of mechanical properties of organosilicate glasses induced by ultraviolet radiation

    International Nuclear Information System (INIS)

    Iacopi, F.; Travaly, Y.; Eyckens, B.; Waldfried, C.; Abell, T.; Guyer, E.P.; Gage, D.M.; Dauskardt, R.H.; Sajavaara, T.; Houthoofd, K.; Grobet, P.; Jacobs, P.; Maex, K.

    2006-01-01

    The short-ranged bonding structure of organosilicate glasses can vary to a great extent and is directly linked to the mechanical properties of the thin film material. The combined action of ultraviolet (UV) radiation and thermal activation is shown to generate a pronounced rearrangement in the bonding structure of thin organosilicate glass films involving no significant compositional change or film densification. Nuclear magnetic resonance spectroscopy indicates loss of -OH groups and an increase of the degree of cross-linking of the organosilicate matrix for UV-treated films. Fourier transform infrared spectroscopy shows a pronounced enhancement of the Si-O-Si network bond structure, indicating the formation of more energetically stable silica bonds. Investigation with x-ray reflectivity and ellipsometric porosimetry indicated only minor film densification. As a consequence, the mechanical properties of microporous organosilicate dielectric films are substantially enhanced while preserving the organosilicate nature and pristine porosity of the films. UV-treated films show an increase in elastic modulus and hardness of more than 40%, and a similar improvement in fracture energy compared to untreated films. A minor increase in material dielectric constant from 3.0 to 3.15 was observed after UV treatment. This mechanism is of high relevance for the application of organosilicate glasses as dielectric materials for microelectronics interconnects, for which a high mechanical stability and a low dielectric constant are both essential film requirements

  3. Comparison of mechanisms for DNA strand break formation by the direct and indirect effect of radiation

    International Nuclear Information System (INIS)

    Schulte-Frohlinde, D.

    1986-01-01

    Irradiation of cells may lead to mutations, reproductive cell death and the disappearance of some or all cell activities. These effects, especially reproductive cell death, are believed to be the result of damage to DNA. Two kinds of formation of DNA damage are often distinguished, the so-called ''direct'' and the ''indirect'' effect of irradiation. The direct effect is due to ionization or electronic excitation of the DNA, and the indirect effect is caused by reactive species, in most cases free radicals, which are produced in the vicinity of the DNA. These radicals may be primary radicals produced by energy absorption in water, i.e., the solvated electron, the H-atom and the OH radical, or organic radicals produced from organic material other than DNA either by interaction with radiation or by reaction with the primary radicals generated from water. 36 refs., 2 figs., 2 tabs

  4. Radiatively Generating the Higgs Potential and Electroweak Scale via the Seesaw Mechanism.

    Science.gov (United States)

    Brivio, Ilaria; Trott, Michael

    2017-10-06

    The minimal seesaw scenario can radiatively generate the Higgs potential to induce electroweak symmetry breaking while supplying an origin of the Higgs vacuum expectation value from an underlying Majorana scale. If the Higgs potential and (derived) electroweak scale have this origin, the heavy SU(3)×SU(2)×U(1)_{Y} singlet states are expected to reside at m_{N}∼10-500  PeV for couplings |ω|∼10^{-4.5}-10^{-6} between the Majorana sector and the standard model. In this framework, the usual challenge of the electroweak scale hierarchy problem with a classically assumed potential is absent as the electroweak scale is not a fundamental scale. The new challenge is the need to generate or accommodate PeV Majorana mass scales while simultaneously suppressing tree-level contributions to the potential in ultraviolet models.

  5. In situ mechanical-radiation effects test capsule for simulating fusion material environments

    International Nuclear Information System (INIS)

    Christensen, K.E.; Bennett, G.A.; Sommer, W.F.

    1981-01-01

    Conditions of radiation and simultaneous cyclic stress on materials are inherent in advanced energy source designs such as inertially and magnetically confined controlled thermonuclear reactors. A test capsule capable of applying a cyclic stress to test specimens while they are being irradiated in the 800-MeV proton beam at the Clinton P. Anderson Los Alamos Meson Physics Facility has been developed. The design and performance of this device are discussed in this report. This machine has facilities for seven pairs of differential samples; one sample of a pair receives an applied cyclic stress and its companion in an identical flux will be the unstressed control. Control of the sample temperature and in situ monitoring of sample elongation and load are provided in the design. Results of an earlier experiment will be discussed, along with those of preliminary bench tests of the redesigned capsule

  6. Crystallization in metglass: growth mechanism of crystals and radiation effects in Fe Ni P B

    International Nuclear Information System (INIS)

    Limoge, Y.; Barbu, A.

    1981-08-01

    Studying crystallization mechanisms and transport properties in amorphous metallic alloys we propose a model for systems wich are displaying eutectoid decomposition. Bringing together self diffusion, electron microscopy and electron irradiation experiments on a Fe Ni P B alloys we have shown that crystallization controlled by interfacial diffusion at the crystal surface can explain all the observed features of the experimental behaviour

  7. Radiation-induced apoptosis in undifferentiated cells of the developing brain as a biological defense mechanism

    International Nuclear Information System (INIS)

    Inouye, Minioru; Tamaru, Masao.

    1994-01-01

    Undifferentiated neural (UN) cells of the developing mammalian brain are highly sensitive to the lethal effects of ionizing radiation. Nuclear and cytoplasmic condensation, transglutaminase activation, and internucleosomal DNA cleavage reveal radiation-induced cell death in the ventricular zone of the cerebral mantle and external granular layer of the cerebellum to be due to apoptosis. A statistically significant increase of cell mortality can be induced by 0.03 Gy X-irradiation, and the mortality increases linearly with increasing doses. It is not changed by split doses, probably because of the very slow repair of cellular damage and a lack of adaptive response. Although extensive apoptosis in the UN cell population results in microcephaly and mental retardation, it possesses the ability to recover from a considerable cell loss and to form the normal structure of the central nervous system. The number of cell deaths needed to induce tissue adnormalities in the adult murine brain rises in the range of 15-25% of the germinal cell population; with the threshold doses at about 0.3 Gy for cerebral anomalies and 1 Gy for cerebellar abnormalities. Threshold level is similarly suggested in prenatally exposed A-bomb survivors. High radiosensitivity of UN cells is assumed to be a manifestation of the ability of the cell to commit suicide when injured. Repeated replication of DNA and extensive gene expression are required in future proliferation and differentiation. Once an abnormality in DNA was induced and fixed in the UN cell, it would be greatly amplified and prove a danger in producing malformations and tumors. These cells would thus commit suicide for the benefit of the individual to eliminate their acquired genetic abnormalities rather than make DNA repair. UN cells in the developing brain are highly radiosensitive and readily involved in apoptosis. Paradoxically, however, this may be to protect individuals against teratogenesis and tumorigenesis. (J.P.N.)

  8. Radiation-induced apoptosis in undifferentiated cells of the developing brain as a biological defense mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Inouye, Minioru [Nagoya Univ. (Japan). Research Inst. of Environmental Medicine; Tamaru, Masao

    1994-12-31

    Undifferentiated neural (UN) cells of the developing mammalian brain are highly sensitive to the lethal effects of ionizing radiation. Nuclear and cytoplasmic condensation, transglutaminase activation, and internucleosomal DNA cleavage reveal radiation-induced cell death in the ventricular zone of the cerebral mantle and external granular layer of the cerebellum to be due to apoptosis. A statistically significant increase of cell mortality can be induced by 0.03 Gy X-irradiation, and the mortality increases linearly with increasing doses. It is not changed by split doses, probably because of the very slow repair of cellular damage and a lack of adaptive response. Although extensive apoptosis in the UN cell population results in microcephaly and mental retardation, it possesses the ability to recover from a considerable cell loss and to form the normal structure of the central nervous system. The number of cell deaths needed to induce tissue adnormalities in the adult murine brain rises in the range of 15-25% of the germinal cell population; with the threshold doses at about 0.3 Gy for cerebral anomalies and 1 Gy for cerebellar abnormalities. Threshold level is similarly suggested in prenatally exposed A-bomb survivors. High radiosensitivity of UN cells is assumed to be a manifestation of the ability of the cell to commit suicide when injured. Repeated replication of DNA and extensive gene expression are required in future proliferation and differentiation. Once an abnormality in DNA was induced and fixed in the UN cell, it would be greatly amplified and prove a danger in producing malformations and tumors. These cells would thus commit suicide for the benefit of the individual to eliminate their acquired genetic abnormalities rather than make DNA repair. UN cells in the developing brain are highly radiosensitive and readily involved in apoptosis. Paradoxically, however, this may be to protect individuals against teratogenesis and tumorigenesis. (J.P.N.).

  9. Mechanisms of radiation - chemical conversion of high-paraffinic crude oil

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Zaikina, R.F.; Silverman, J.

    2002-01-01

    Complete text of publication follows. Regularities of radiation-thermal cracking (RTC) are studied in high-paraffinic oil. Irradiation of oil samples by 2 MeV electrons was performed using a special facility assembled at the electron accelerator ELU-4. The following characteristic RTC features were observed in oil with high contents of heavy paraffins: low level of isomerization in light RTC fractions; very high polymerization rate and low olefin contents in RTC products; relatively low yields of light fractions at low irradiation dose rates; increase in the molecular weight of the gasoline fraction as the irradiation dose rate grows. Similar intense polymerization of RTC products was observed in our experiments with such wastes of oil extraction as asphalt-pitch-paraffin sediments (APPS). Theoretically this feedstock contains great reserves of hydrogen, and, therefore, has high potential yields of light fractions. However, in this case RTC was accompanied by intense reactions of polymerization and chemical adsorption that limited the maximum yields of light RTC products to 40% in our experiments. A specific feature of APPS radiation-induced destruction is formation of the big amount of a reactive paraffinic residue. As a result of interaction with the polymerizing residue the light liquid fractions were completely absorbed and the heavy residue got denser and solidified after several days of exposure at room temperature. RTC regularities in heavy paraffinic oil differ from those observed both in highly viscous petroleum feedstock and light paraffin oils. We attribute these observations to the behavior of heavy alkyl radicals that initiate polymerization and isomerization in heavy paraffin fractions

  10. Microstructural Evolution of Advanced Radiation-Resistant ODS Steel with Different Lengths of Mechanical Alloying Time

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Kim, Ga Eon; Kang, Suk Hoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling well occurred to 120dpa at high temperatures and this leads the decrease of the mechanical properties and dimensional stability. Compared to this, ferritic/ martensitic steel is a good solution because of excellent thermal conductivity and good swelling resistance. Unfortunately, the available temperature range of ferritic/martensitic steel is limited up to 650 .deg. C. ODS steel is the most promising structural material because of excellent creep and irradiation resistance by uniformly distributed nano-oxide particles with a high density which is extremely stable at the high temperature in ferritic/martensitic matrix. In this study, powder properties and microstructures of the ODS steel with different length of mechanical alloying time was investigated. The ODS steel milled 5h showed homogeneous grain structure with the highest hardness.

  11. Microstructural Evolution of Advanced Radiation-Resistant ODS Steel with Different Lengths of Mechanical Alloying Time

    International Nuclear Information System (INIS)

    Noh, Sanghoon; Kim, Ga Eon; Kang, Suk Hoon; Kim, Tae Kyu

    2015-01-01

    Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling well occurred to 120dpa at high temperatures and this leads the decrease of the mechanical properties and dimensional stability. Compared to this, ferritic/ martensitic steel is a good solution because of excellent thermal conductivity and good swelling resistance. Unfortunately, the available temperature range of ferritic/martensitic steel is limited up to 650 .deg. C. ODS steel is the most promising structural material because of excellent creep and irradiation resistance by uniformly distributed nano-oxide particles with a high density which is extremely stable at the high temperature in ferritic/martensitic matrix. In this study, powder properties and microstructures of the ODS steel with different length of mechanical alloying time was investigated. The ODS steel milled 5h showed homogeneous grain structure with the highest hardness

  12. A promising new mechanism of ionizing radiation detection for positron emission tomography: Modulation of optical properties

    OpenAIRE

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-01-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit for the coincidence time resolution of around 100 ps. On the other hand, modulation mechanisms of the optical properties of a material exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we...

  13. Radiation-induced microcrystal shape change as a mechanism of wasteform degradation

    Science.gov (United States)

    Ojovan, Michael I.; Burakov, Boris E.; Lee, William E.

    2018-04-01

    Experiments with actinide-containing insulating wasteforms such as devitrified glasses containing 244Cm, Ti-pyrochlore, single-phase La-monazite, Pu-monazite ceramics, Eu-monazite and zircon single crystals containing 238Pu indicate that mechanical self-irradiation-induced destruction may not reveal itself for many years (even decades). The mechanisms causing these slowly-occurring changes remain unknown therefore in addition to known mechanisms of wasteform degradation such as matrix swelling and loss of solid solution we have modelled the damaging effects of electrical fields induced by the decay of radionuclides in clusters embedded in a non-conducting matrix. Three effects were important: (i) electric breakdown; (ii) cluster shape change due to dipole interaction, and (iii) cluster shape change due to polarisation interaction. We reveal a critical size of radioactive clusters in non-conducting matrices so that the matrix material can be damaged if clusters are larger than this critical size. The most important parameters that control the matrix integrity are the radioactive cluster (inhomogeneity) size, specific radioactivity, and effective matrix electrical conductivity. We conclude that the wasteform should be as homogeneous as possible and even electrically conductive to avoid potential damage caused by electrical charges induced by radioactive decay.

  14. Alzheimer ’s Disease: Possible Mechanisms Behind Neurohormesis Induced by Exposure to Low Doses of Ionizing Radiation

    Science.gov (United States)

    Bevelacqua, J.J.; Mortazavi, S.M.J.

    2018-01-01

    In 2016, scientists reported that human exposure to low doses of ionizing radiation (CT scans of the brain) might relieve symptoms of both Alzheimer’s disease (AD) and Parkinson disease (PD). The findings were unbelievable for those who were not familiar with neurohormesis. X-ray stimulation of the patient’s adaptive protection systems against neurodegenerative diseases was the mechanism proposed by those authors. Now, some more recent studies performed in the field of neurobiological research confirm that low levels of stress can produce protective responses against the pathogenic processes. This paper outlines possible protective consequences of LDR in preventing the pathogenesis of AD through mechanisms such as restoring the myelin sheath and preventing neurodegeneration caused by oxidative stress. Focal demyelination is frequently reported in the proximity of beta-amyloid plaques within neocortex. Extracellular accumulation of amyloid is among well-characterized pathological changes in AD. It should be noted that LDR has been shown to contribute to the regeneration and functional recovery after transverse peripheral nerve injury (through inducing increased production of VEGF and GAP-43), which advances both the axonal regeneration and myelination. Another mechanism which is possibly involved is preventing neurodegeneration caused by oxidative stress. While high doses can induce reactive oxygen species (ROS) formation, oxidative stress and neuro-inflammation, substantial evidence now indicates that LDR can mitigate tissue damage through antioxidant defenses. Although adult neurogenesis has been reported to be beneficial for the regeneration of nervous system, some studies demonstrate that neurogenesis increases in AD brains. In spite of these reports, cellular therapy is introduced as a promising strategy for AD, and hence, LDR can affect the proliferation and differentiation of neural stem cells. Although such mechanisms are not fully known yet, it is hoped

  15. Defence biochemical mechanisms of the organisms against chemical pollution and ionizing radiations

    International Nuclear Information System (INIS)

    Olinescu, Radu

    2001-01-01

    Acute exposure to high concentrations / doses of chemical pollutants and ionizing radiation usually kills giving no chance for survival, if not immediately, than later followed by specific diseases. Fortunately, this acute exposure is accidental, but chronic, low level exposure is also damaging. The involvement of pollution, especially of chemically produced, one in the etiology of several diseases is still under intensive research. Compared to other kinds of pollution (radioactive, microbiological), the chemical one seldom kills suddenly; it acts slowly, silently, by accumulation into the tissues, eventually inducing a failure of certain organ. The body is continuously adapting to low level concentrations of chemicals from environment until a certain threshold. All organisms, including humans, have a limited capacity of resisting the effects of various types of pollutants. Extensive laboratory research, demonstrated that most of damaging organic pollutants cause the formation of free radicals when they penetrate into the body and are metabolized. Free radicals are very reactive and are known to damage tissues with potentially fatal results. Substantial experimental evidence in recent years has demonstrated that all organisms are endowed with versatile, efficient antioxidant systems, that provide protection against the formation or effects of free radicals. However, the antioxidant systems are limited and when their capacity of protection is exceeded, injury resulting in illness or death occurs. In most cases, the harmful effects of chemicals on organisms depend on the biotransformation step, where free radicals are produced as byproducts of the metabolic reactions. The damaging effects of chemical pollutants are mostly restricted to an important organ depending on the way of penetration, nature of the compound and concentration. The organisms possess specific and nonspecific defense systems, which act from the exposure step, with attempt to block the entry of

  16. THE INVESTIGATION OF INFLUENCE OF LASER RADIATION ON THE STRUCTURE AND MECHANICAL PROPERTIES OF COMPOSITE ELECTROLYTIC NICKEL COATING

    Directory of Open Access Journals (Sweden)

    V. A. Zabludovsky

    2013-09-01

    Full Text Available Purpose. Investigation of laser radiation effect on the structure and mechanical properties of electrodeposited nickel composite coatings containing ultrafine diamonds. Methodology. Electrodeposition of nickel films was carried out with the addition of a standard solution of ultrafine diamonds (UFD on laser-electrolytic installation, built on the basis of the gas-discharge CO2 laser. Mechanical testing the durability of coatings were performed on a machine with reciprocating samples in conditions of dry friction against steel. The spectral microanalysis of the elemental composition of the film - substrate was performed on REMMA-102-02. Findings. Research of nickel coatings and modified ultrafine diamond electrodeposited under external stimulation laser demonstrated the dependence of the structure and mechanical properties of composite electrolytic coating (CEC, and the qualitative and quantitative distribution of nanodiamond coprecipitated from an electrodeposition method. Originality. The effect of laser light on the process of co-precipitation of the UFD, which increases the micro-hardness and wear resistance of electrolytic nickel coatings was determined. Practical value. The test method of laser-stimulated composite electrolytic nickel electrodeposition coating is an effective method of local increase in wear resistance of metal coatings, which provides durability save performance (functional properties of the surface.

  17. Influence of radiation-induced grafting process on mechanical properties of ETFE-based membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ben Youcef, H.; Alkan Guersel, S.; Buisson, A.; Gubler, L.; Wokaun, A.; Scherer, G.G. [Electrochemistry Laboratory, Paul Scherrer Institut, Villigen PSI (Switzerland)

    2010-06-15

    The mechanical stability is, in addition to thermal and chemical stability, a primary requirement of polymer electrolyte membranes in fuel cells. In this study, the impact of grafting parameters and preparation steps on stress-strain properties of ETFE-based proton conducting membranes, prepared by radiation-induced grafting and subsequent sulphonation, was studied. No significant change in the mechanical properties of the ETFE base film was observed below an irradiation dose of 50 kGy. It was shown that the elongation at break decreases with increasing both the crosslinker concentration and graft level (GL). However, the tensile strength was positively affected by the crosslinker concentration. Yield strength and modulus of elasticity are almost unaffected by the introduction of crosslinker. Interestingly, yield strength and modulus of elasticity increase gradually with GL without noticeable change of the inherent crystallinity of grafted films. The most brittle membranes are obtained via the combination of high GL and crosslinker concentration. The optimised ETFE-based membrane (GL of {proportional_to}25%, 5% DVB v/v), shows mechanical properties superior to those of Nafion registered 112 membrane. The obtained results were correlated qualitatively to the other ex situ properties, including crystallinity, thermal properties and water uptake of the grafted membranes. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Studying the molecular mechanisms of radiation damage : low-energy electron interactions with biomolecules and medically relevant molecules

    International Nuclear Information System (INIS)

    Tanzer, K.

    2015-01-01

    Since it was discovered in the year 2000 that secondary electrons with energies below 20 eV, which are the most abundant secondary species produced upon the interaction of ionizing radiation with biological tissue, can induce severe damages in the DNA such as single and double strand breaks, the interest for the study of the interaction of electrons with essential molecules of the human body has grown immensely. Double strand breaks can lead to cancer and are therefore a substantial threat to human health, however, the radiation research community is not sure how these strand breaks are formed upon interaction with ionizing radiation. The fact that even electrons with energies well below the ionization threshold can induce great damage in biological molecules via a resonant process called dissociative electron attachment (DEA), has even furthered the interest in these electron interactions, as it was shown to be a very efficient decomposition mechanism. A variety of studies, such as DEA studies to components of the DNA, for example, have been undertaken so far to shed more light on the role electrons play in the radiation damage of biomolecules. In this thesis two nucleobases, adenine and hypoxanthine, have been studied by observing their response towards low-energy electrons. It has been found that these nucleobases behave in a similar manner upon low-energy electron interaction, as do other nucleobases, that have been studied previously. The loss of hydrogen is suspected to act as a precursor for the decomposition of the DNA and the nucleobases can also undergo ring cleavage, which will induce substantial damage in the DNA. Furthermore, the search for improved and more efficient methods for the treatment of cancer is as important as ever, considering the ever-rising number of cancer deaths. Radiotherapy has proven to be one of the best treatments for tumors, but was found to be ineffective in hypoxic - oxygen deprived - tumors. Compounds called radiosensitizers

  19. Effect of ionizing radiation dose, temperature, and atmosphere on the survival of Salmonella typhimurium in sterile, mechanically deboned chicken meat

    International Nuclear Information System (INIS)

    Thayer, D.W.; Boyd, G.

    1991-01-01

    The response to gamma radiation (0 to 3.60 kGy; 100 krad = 1 kGy) of Salmonella typhimurium was tested in otherwise sterile, mechanically deboned chicken meat (MDCM) in the absence of competing microflora. Response was determined at temperatures of -20 to +20 C and when the MDCM was packaged in vacuum or in the presence of air. A central composite response-surface design was used to test the response of the pathogen to the treatments in a single experiment. Predictive equations were developed from the analyses of variances of the resulting data. The accuracy of each predictive equation was tested by further studies of the effects of gamma radiation on S. typhimurium in the presence or absence of air at -20, 0, and +20 C. All data were then analyzed to refine the predictive equations further. Both the original and the refined equations adequately predicted the response of S. typhimurium in MDCM to gamma radiation doses up to 3.60 kGy in the presence of air or in vacuo. Gamma irradiation was significantly more lethal for S. typhimurium in the presence of air and at higher temperatures. The final equations predict a reduction in the number of surviving Salmonella in MDCM irradiated to 1.50 kGy at -20 C of 2.53 logs in air or 2.12 logs if irradiated in vacuum. If the contaminated MDCM were to receive a dose of 3.0 kGy at -20 C in air, the number of Salmonella would be decreased by 4.78 logs, and if irradiated in vacuum, by 4.29 logs

  20. Studies on the mechanism of the self restriction of T cell responses in radiation chimeras

    International Nuclear Information System (INIS)

    Fink, P.J.; Bevan, M.J.

    1981-01-01

    Recent experiments with murine radiation chimeras have shown that F 1 T cells that mature in an H-2 homozygous thymus, as is the case in [F 1 → Parent 1] chimeras, are restricted to recognizing foreign antigen in the context of Parent 1 H-2 antigens. Conflicting results on the stringency of self H-2 restriction of T cells from normal mice have suggested that the thymic restriction in chimeras may be due to active suppression of parent 2-restricted T cell clones. We have therefore conducted 3 sets of experiments to test for suppression of maturing T cells that could mediate thymic tutoring of H-2-restriction specificity in chimeras. In 2 sets of experiments, we found no evidence that suppressor cells could be exported from 1 thymus and act either intrathymically on thymocytes in a 2nd thymus or extrathymically on recent thymic emigrants. We believe current data support a role for the thymus in positive as well as negative selection of maturing thymocytes on the basis of self recognition, in the absence of any suppression. Our results do not support the concept that suppression is responsible for the difference in the degree of self preference in the T cells of chimeric mice relative to cell populations obtained from neonatally tolerant mice or from normal mice after acute negative selection

  1. Radiation carcinogenesis

    International Nuclear Information System (INIS)

    1978-01-01

    The Cancergram deals with all aspects of radiation carcinogenesis. The term radiation here includes U-V radiation and the entire electromagnetic spectrum, electron and other charged particle beams, neutrons, and alpha and beta radiation from radioactive substances. Abstracts included concern relationships between radiation and carcinogenesis in humans, experimental induction of tumors in animals by irradiation, studies on the mechanism of radiation carcinogenesis at the cellular level, studies of RBE, dose response or dose threshold in relation to radiation carcinogenesis, and methods and policies for control of radiation exposure in the general population. In general, this Cancergram excludes abstracts on radio-therapy, radiologic diagnosis, radiation pathology, and radiation biology, where these articles have no bearing on radiation carcinogenesis

  2. Formation mechanism of 3D macroporous graphene aerogel in alcohol-water media under gamma-ray radiation

    Science.gov (United States)

    Wang, Weikang; Wu, Yihu; Jiang, Zhiwen; Wang, Mozhen; Wu, Qichao; Zhou, Xiao; Ge, Xuewu

    2018-01-01

    The subtle control on the self-assembly behavior of graphene oxide (GO) nanosheets is one of effective ways for the preparation of high-performance macroscopic graphene-based materials. In this work, detailed characterizations and discussion on the morphological and compositional changes on the solid products in various alcohol-water dispersions of GO under γ-ray radiation were carried out, proving the concurrent hydroxyalkylation and reduction processes of GO nanosheets in the system, which triggered the spontaneous self-assembly of the hydroxyalkylated and reduced GO nanosheets (HA-rGO). The pH and the volume ratio of alcohol to water (ϕa/w) are the key factors to control the self-assembly of the HA-rGO sheets. A free-standing graphene hydrogel (GH) only forms in the strong acid alcohol-water media with an appropriate ϕa/w. After the freeze-drying of the GH, a macroporous graphene aerogel (GA) was obtained, which exhibited a high absorption performance for not only nonpolar molecules (cyclohexane and kerosene), but also most polar molecules (toluene, chloroform, glycol, etc). This work demonstrates a comprehensive self-assembly mechanism of GO nanosheets in an aqueous media under γ-ray radiation and reveals that GA produced from the reduction of GO can be used as potential super-adsorbents for not only waste oil, but also the polar alcohols.

  3. “Triple M” Effect: A Proposed Mechanism to Explain Increased Dental Amalgam Microleakage after Exposure to Radiofrequency Electromagnetic Radiation

    Science.gov (United States)

    Mortazavi, Gh.; Mortazavi, S.A.R.; Mehdizadeh, A.R.

    2018-01-01

    A large body of evidence now indicates that the amount of mercury released from dental amalgam fillings can be significantly accelerated by exposure to radiofrequency electromagnetic fields (RF-EMFs) such as common mobile phones and magnetic resonance imaging (MRI). Studies performed on the increased microleakage of dental amalgam restorations after exposure to RF-EMFs have further supported these findings. Although the accelerated microleakage induced by RF-EMFs is clinically significant, the entire mechanisms of this phenomenon are not clearly understood. In this paper, we introduce “Triple M” effect, a new evidence-based theory which can explain the accelerated microleakage of dental amalgam fillings after exposure to different sources of electromagnetic radiation. Based on this theory, there are saliva-filled tiny spaces between amalgam and the tooth. Exposure of the oral cavity to RF-EMFs increases the energy of these small amounts of saliva. Due to the small mass of saliva in these tiny spaces, a small amount of energy will be required for heating. Moreover, reflection of the radiofrequency radiation on the inner walls of the tiny spaces causes interference which in turn produces some “hot spots” in these spaces. Finally, formation of gas bubbles in response to increased temperature and very rapid expansion of these bubbles will accelerate the microleakage of amalgam. Experiments that confirm the validity of this theory are discussed. PMID:29732349

  4. "Triple M" Effect: A Proposed Mechanism to Explain Increased Dental Amalgam Microleakage after Exposure to Radiofrequency Electromagnetic Radiation.

    Science.gov (United States)

    Mortazavi, Gh; Mortazavi, S A R; Mehdizadeh, A R

    2018-03-01

    A large body of evidence now indicates that the amount of mercury released from dental amalgam fillings can be significantly accelerated by exposure to radiofrequency electromagnetic fields (RF-EMFs) such as common mobile phones and magnetic resonance imaging (MRI). Studies performed on the increased microleakage of dental amalgam restorations after exposure to RF-EMFs have further supported these findings. Although the accelerated microleakage induced by RF-EMFs is clinically significant, the entire mechanisms of this phenomenon are not clearly understood. In this paper, we introduce "Triple M" effect, a new evidence-based theory which can explain the accelerated microleakage of dental amalgam fillings after exposure to different sources of electromagnetic radiation. Based on this theory, there are saliva-filled tiny spaces between amalgam and the tooth. Exposure of the oral cavity to RF-EMFs increases the energy of these small amounts of saliva. Due to the small mass of saliva in these tiny spaces, a small amount of energy will be required for heating. Moreover, reflection of the radiofrequency radiation on the inner walls of the tiny spaces causes interference which in turn produces some "hot spots" in these spaces. Finally, formation of gas bubbles in response to increased temperature and very rapid expansion of these bubbles will accelerate the microleakage of amalgam. Experiments that confirm the validity of this theory are discussed.

  5. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation

    Energy Technology Data Exchange (ETDEWEB)

    Asaithamby, Aroumougame, E-mail: Aroumougame.Asaithamy@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States); Chen, David J., E-mail: David.Chen@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States)

    2011-06-03

    Low-linear energy transfer (LET) radiation (i.e., {gamma}- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.

  6. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation

    International Nuclear Information System (INIS)

    Asaithamby, Aroumougame; Chen, David J.

    2011-01-01

    Low-linear energy transfer (LET) radiation (i.e., γ- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.

  7. Influence of thermal and radiation effects on microstructural and mechanical properties of Nb-1Zr

    Science.gov (United States)

    Leonard, Keith J.; Busby, Jeremy T.; Zinkle, Steven J.

    2011-07-01

    The microstructural changes and corresponding effects on mechanical properties, electrical resistivity and density of Nb-1Zr were examined following neutron irradiation up to 1.8 dpa at temperatures of 1073, 1223 and 1373 K and compared with material thermally aged for similar exposure times of ˜1100 h. Thermally driven changes in the development of intragranular and grain boundary precipitate phases showed a greater influence on mechanical and physical properties compared to irradiation-induced defects for the examined conditions. Initial formation of the zirconium oxide precipitates was identified as cubic structured plates following a Baker-Nutting orientation relationship to the β-Nb matrix, with particles developing a monoclinic structure on further growth. Tensile properties of the Nb-1Zr samples showed increased strength and reduced elongation following aging and irradiation below 1373 K, with the largest tensile and hardness increases following aging at 1098 K. Tensile properties at 1373 K for the aged and irradiated samples were similar to that of the as-annealed material. Total elongation was lower in the aged material due to a strain hardening response, rather than a weak strain softening observed in the irradiated materials due in part to an irregular distribution of the precipitates in the irradiated materials. Though intergranular fracture surfaces were observed on the 1248 K aged tensile specimens, the aged and irradiated material showed uniform elongations >3% and total elongation >12% for all conditions tested. Cavity formation was observed in material irradiated to 0.9 dpa at 1073 and 1223 K. However, since void densities were estimated to be below 3 × 10 17 m -3 these voids contributed little to either mechanical strengthening of the material or measured density changes.

  8. Radiation preparation of graphene/carbon nanotubes hybrid fillers for mechanical reinforcement of poly(vinyl alcohol) films

    Science.gov (United States)

    Ma, Hui-Ling; Zhang, Long; Zhang, Youwei; Wang, Shuojue; Sun, Chao; Yu, Hongyan; Zeng, Xinmiao; Zhai, Maolin

    2016-01-01

    Graphene/carbon nanotubes (G/CNTs) hybrid fillers were synthesized by γ-ray radiation reduction of graphene oxide (GO) in presence of CNTs. The obtained hybrid fillers with three-dimensional (3D) interconnected network structure were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Poly(vinyl alcohol) (PVA) composite films with enhanced mechanical properties and thermal stability were subsequently prepared by solution blending of G/CNTs with PVA matrix. The tensile strength and Young's modulus of PVA composite films containing 1 wt% G/CNTs were measured to be 81.9 MPa and 3.9 GPa respectively, which were 56% and 33.6% higher than those of pure PVA. These substantial improvements could be attributed to the interconnected 3D structure of G/CNTs, homogeneous dispersion as well as the strong hydrogen-bonding interaction between G/CNTs and PVA macromolecular chains.

  9. Radiation-induced polymerisation of 2,3-dihydrofuran: free-radical or cationic mechanism?

    International Nuclear Information System (INIS)

    Janovsky, Igor; Naumov, Sergej; Knolle, Wolfgang; Mehnert, Reiner

    2005-01-01

    Concentrated (10 mol%) solutions of 2,3-dihydrofuran in CFCl 2 CF 2 Cl matrix were irradiated at 77 K and several intermediates (dimer radical cation, dihydrofuryl radical, and polymer radicals) were observed by low-temperature EPR spectroscopy. The irradiated solutions yielded after melting a polymeric product, which was characterised by IR spectroscopy and gel permeation chromatography. The polydisperse polymer is assumed to be formed mainly by a cationic process initiated by a dimer carbocation. The free-radical mechanism via the dihydrofuryl radical leads to low molecular weight oligomers only. Quantum chemical calculations support the interpretation of the experimental results

  10. Study on mechanism of decreased lipid peroxide by low dose radiation

    International Nuclear Information System (INIS)

    Yamaoka, Kiyonori; Okazoe, Yoko; Akimaru, Kunihiro; Sato, E.F.; Utsumi, Kozo.

    1991-01-01

    We examined the effect of SOD on lipid peroxidation in biomembrane from V.E-deficient rats, in order to study the mechanism of increased SOD activities and decreased lipid peroxide by low dose irradiation. The following results were obtained. i. Active oxygen (O 2 - ) strongly enhances lipid peroxidations in biomembrane with the Fe 3+ as catalyst. ii. SOD evidently inhibits lipid peroxidations under above conditions. iii. We suggested that the effect of SOD enhanced by low dose irradiation results in inhibition of lipid peroxidation. (author)

  11. Influence of γ-ray radiation on mechanical character of packing

    International Nuclear Information System (INIS)

    Tashiro, Hisao; Sakuma, Toshio

    1989-01-01

    This paper describes the results of investigation on coefficient of friction, normal to axial pressure-ratio and compressed strain of packings influenced by γ-ray irradiation, which are necessary to evaluate the mechanical characteristics of packing, using packings made of seven kinds of new materials and conventional asbestos packing A. It resulted that graphite packing was less influenced by the γ-ray exposure, whereas carbon-fiber (pitch) packing, tefron-fiber packing and alamid-fiber packing were much influenced as compared with the graphite packing. (author)

  12. Different (direct and indirect) mechanisms for the induction of DNA-protein crosslinks in human cells by far- and near-ultraviolet radiations (290 and 405 nm)

    International Nuclear Information System (INIS)

    Peak, M.J.; Peak, J.G.; Jones, C.A.

    1985-01-01

    Apparent DNA-protein crosslinking induced by monochromatic 290 and 405 nm radiations was measured in cultured human P3 teratocarcinoma cells with DNA alkaline elution techniques. The rates of the induction of crosslinks by 290 nm radiation were the same when the cells were irradiated either aerobically or anaerobically or when the cells were in an H 2 O or D 2 O aqueous environment. With 405 nm radiation, anaerobic irradiation reduced the induction of the crosslinks (dose modifying factor is about 0.2), and about twice as many crosslinks were observed when the cells were irradiated in an environment of D 2 O rather than H 2 O. The results are consistent with the hypothesis that far-UV radiation induces DNA-protein crosslinks by a direct mechanism, whereas near-UV radiation induces crosslinks via indirect photodynamic photosensitizations in which unidentified cellular endogenous photosensitizers and reactive species of oxygen are used. (author)

  13. Incidence, Causative Mechanisms, and Anatomic Localization of Stroke in Pituitary Adenoma Patients Treated With Postoperative Radiation Therapy Versus Surgery Alone

    Energy Technology Data Exchange (ETDEWEB)

    Sattler, Margriet G.A., E-mail: g.a.sattler@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Vroomen, Patrick C. [Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Sluiter, Wim J. [Department of Endocrinology and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schers, Henk J. [Department of Primary and Community Care, Radboud University Nijmegen Medical Centre (Netherlands); Berg, Gerrit van den [Department of Endocrinology and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Wolffenbuttel, Bruce H.R. [Department of Endocrinology and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Bergh, Alphons C.M. van d