WorldWideScience

Sample records for kernelized hybrid c-mean

  1. TOWARDS FINDING A NEW KERNELIZED FUZZY C-MEANS CLUSTERING ALGORITHM

    Directory of Open Access Journals (Sweden)

    Samarjit Das

    2014-04-01

    Full Text Available Kernelized Fuzzy C-Means clustering technique is an attempt to improve the performance of the conventional Fuzzy C-Means clustering technique. Recently this technique where a kernel-induced distance function is used as a similarity measure instead of a Euclidean distance which is used in the conventional Fuzzy C-Means clustering technique, has earned popularity among research community. Like the conventional Fuzzy C-Means clustering technique this technique also suffers from inconsistency in its performance due to the fact that here also the initial centroids are obtained based on the randomly initialized membership values of the objects. Our present work proposes a new method where we have applied the Subtractive clustering technique of Chiu as a preprocessor to Kernelized Fuzzy CMeans clustering technique. With this new method we have tried not only to remove the inconsistency of Kernelized Fuzzy C-Means clustering technique but also to deal with the situations where the number of clusters is not predetermined. We have also provided a comparison of our method with the Subtractive clustering technique of Chiu and Kernelized Fuzzy C-Means clustering technique using two validity measures namely Partition Coefficient and Clustering Entropy.

  2. Determining the number of clusters for kernelized fuzzy C-means algorithms for automatic medical image segmentation

    Directory of Open Access Journals (Sweden)

    E.A. Zanaty

    2012-03-01

    Full Text Available In this paper, we determine the suitable validity criterion of kernelized fuzzy C-means and kernelized fuzzy C-means with spatial constraints for automatic segmentation of magnetic resonance imaging (MRI. For that; the original Euclidean distance in the FCM is replaced by a Gaussian radial basis function classifier (GRBF and the corresponding algorithms of FCM methods are derived. The derived algorithms are called as the kernelized fuzzy C-means (KFCM and kernelized fuzzy C-means with spatial constraints (SKFCM. These methods are implemented on eighteen indexes as validation to determine whether indexes are capable to acquire the optimal clusters number. The performance of segmentation is estimated by applying these methods independently on several datasets to prove which method can give good results and with which indexes. Our test spans various indexes covering the classical and the rather more recent indexes that have enjoyed noticeable success in that field. These indexes are evaluated and compared by applying them on various test images, including synthetic images corrupted with noise of varying levels, and simulated volumetric MRI datasets. Comparative analysis is also presented to show whether the validity index indicates the optimal clustering for our datasets.

  3. Segmentation of Brain Tissues from Magnetic Resonance Images Using Adaptively Regularized Kernel-Based Fuzzy C-Means Clustering

    Directory of Open Access Journals (Sweden)

    Ahmed Elazab

    2015-01-01

    Full Text Available An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity.

  4. Higher-Order Hybrid Gaussian Kernel in Meshsize Boosting Algorithm

    African Journals Online (AJOL)

    In this paper, we shall use higher-order hybrid Gaussian kernel in a meshsize boosting algorithm in kernel density estimation. Bias reduction is guaranteed in this scheme like other existing schemes but uses the higher-order hybrid Gaussian kernel instead of the regular fixed kernels. A numerical verification of this scheme ...

  5. Identification of flooded area from satellite images using Hybrid Kohonen Fuzzy C-Means sigma classifier

    Directory of Open Access Journals (Sweden)

    Krishna Kant Singh

    2017-06-01

    Full Text Available A novel neuro fuzzy classifier Hybrid Kohonen Fuzzy C-Means-σ (HKFCM-σ is proposed in this paper. The proposed classifier is a hybridization of Kohonen Clustering Network (KCN with FCM-σ clustering algorithm. The network architecture of HKFCM-σ is similar to simple KCN network having only two layers, i.e., input and output layer. However, the selection of winner neuron is done based on FCM-σ algorithm. Thus, embedding the features of both, a neural network and a fuzzy clustering algorithm in the classifier. This hybridization results in a more efficient, less complex and faster classifier for classifying satellite images. HKFCM-σ is used to identify the flooding that occurred in Kashmir area in September 2014. The HKFCM-σ classifier is applied on pre and post flooding Landsat 8 OLI images of Kashmir to detect the areas that were flooded due to the heavy rainfalls of September, 2014. The classifier is trained using the mean values of the various spectral indices like NDVI, NDWI, NDBI and first component of Principal Component Analysis. The error matrix was computed to test the performance of the method. The method yields high producer’s accuracy, consumer’s accuracy and kappa coefficient value indicating that the proposed classifier is highly effective and efficient.

  6. Normed kernel function-based fuzzy possibilistic C-means (NKFPCM) algorithm for high-dimensional breast cancer database classification with feature selection is based on Laplacian Score

    Science.gov (United States)

    Lestari, A. W.; Rustam, Z.

    2017-07-01

    In the last decade, breast cancer has become the focus of world attention as this disease is one of the primary leading cause of death for women. Therefore, it is necessary to have the correct precautions and treatment. In previous studies, Fuzzy Kennel K-Medoid algorithm has been used for multi-class data. This paper proposes an algorithm to classify the high dimensional data of breast cancer using Fuzzy Possibilistic C-means (FPCM) and a new method based on clustering analysis using Normed Kernel Function-Based Fuzzy Possibilistic C-Means (NKFPCM). The objective of this paper is to obtain the best accuracy in classification of breast cancer data. In order to improve the accuracy of the two methods, the features candidates are evaluated using feature selection, where Laplacian Score is used. The results show the comparison accuracy and running time of FPCM and NKFPCM with and without feature selection.

  7. An SVM model with hybrid kernels for hydrological time series

    Science.gov (United States)

    Wang, C.; Wang, H.; Zhao, X.; Xie, Q.

    2017-12-01

    Support Vector Machine (SVM) models have been widely applied to the forecast of climate/weather and its impact on other environmental variables such as hydrologic response to climate/weather. When using SVM, the choice of the kernel function plays the key role. Conventional SVM models mostly use one single type of kernel function, e.g., radial basis kernel function. Provided that there are several featured kernel functions available, each having its own advantages and drawbacks, a combination of these kernel functions may give more flexibility and robustness to SVM approach, making it suitable for a wide range of application scenarios. This paper presents such a linear combination of radial basis kernel and polynomial kernel for the forecast of monthly flowrate in two gaging stations using SVM approach. The results indicate significant improvement in the accuracy of predicted series compared to the approach with either individual kernel function, thus demonstrating the feasibility and advantages of such hybrid kernel approach for SVM applications.

  8. A Hybrid Method for Image Segmentation Based on Artificial Fish Swarm Algorithm and Fuzzy c-Means Clustering

    Directory of Open Access Journals (Sweden)

    Li Ma

    2015-01-01

    Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM clustering is one of the popular clustering algorithms for medical image segmentation. However, FCM has the problems of depending on initial clustering centers, falling into local optimal solution easily, and sensitivity to noise disturbance. To solve these problems, this paper proposes a hybrid artificial fish swarm algorithm (HAFSA. The proposed algorithm combines artificial fish swarm algorithm (AFSA with FCM whose advantages of global optimization searching and parallel computing ability of AFSA are utilized to find a superior result. Meanwhile, Metropolis criterion and noise reduction mechanism are introduced to AFSA for enhancing the convergence rate and antinoise ability. The artificial grid graph and Magnetic Resonance Imaging (MRI are used in the experiments, and the experimental results show that the proposed algorithm has stronger antinoise ability and higher precision. A number of evaluation indicators also demonstrate that the effect of HAFSA is more excellent than FCM and suppressed FCM (SFCM.

  9. Soft Sensing of Key State Variables in Fermentation Process Based on Relevance Vector Machine with Hybrid Kernel Function

    Directory of Open Access Journals (Sweden)

    Xianglin ZHU

    2014-06-01

    Full Text Available To resolve the online detection difficulty of some important state variables in fermentation process with traditional instruments, a soft sensing modeling method based on relevance vector machine (RVM with a hybrid kernel function is presented. Based on the characteristic analysis of two commonly-used kernel functions, that is, local Gaussian kernel function and global polynomial kernel function, a hybrid kernel function combing merits of Gaussian kernel function and polynomial kernel function is constructed. To design optimal parameters of this kernel function, the particle swarm optimization (PSO algorithm is applied. The proposed modeling method is used to predict the value of cell concentration in the Lysine fermentation process. Simulation results show that the presented hybrid-kernel RVM model has a better accuracy and performance than the single kernel RVM model.

  10. Stability-integrated Fuzzy C means segmentation for spatial ...

    Indian Academy of Sciences (India)

    V ROYNA DAISY

    2018-03-16

    Mar 16, 2018 ... clusters and including spatial information to basic Fuzzy C Means clustering are done in .... modify the objective function with Kernel distance function .... spatial information, thus making it sensitive to noise and outliers.

  11. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System

    Directory of Open Access Journals (Sweden)

    Xianfeng Yuan

    2015-01-01

    presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel support vector machine (SVM and Dempster-Shafer (D-S fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods.

  12. Combination of Biorthogonal Wavelet Hybrid Kernel OCSVM with Feature Weighted Approach Based on EVA and GRA in Financial Distress Prediction

    Directory of Open Access Journals (Sweden)

    Chao Huang

    2014-01-01

    Full Text Available Financial distress prediction plays an important role in the survival of companies. In this paper, a novel biorthogonal wavelet hybrid kernel function is constructed by combining linear kernel function with biorthogonal wavelet kernel function. Besides, a new feature weighted approach is presented based on economic value added (EVA and grey relational analysis (GRA. Considering the imbalance between financially distressed companies and normal ones, the feature weighted one-class support vector machine based on biorthogonal wavelet hybrid kernel (BWH-FWOCSVM is further put forward for financial distress prediction. The empirical study with real data from the listed companies on Growth Enterprise Market (GEM in China shows that the proposed approach has good performance.

  13. A Temperature Compensation Method for Piezo-Resistive Pressure Sensor Utilizing Chaotic Ions Motion Algorithm Optimized Hybrid Kernel LSSVM

    Directory of Open Access Journals (Sweden)

    Ji Li

    2016-10-01

    Full Text Available A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.

  14. A Temperature Compensation Method for Piezo-Resistive Pressure Sensor Utilizing Chaotic Ions Motion Algorithm Optimized Hybrid Kernel LSSVM.

    Science.gov (United States)

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir

    2016-10-14

    A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM) optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF) kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.

  15. Effects of Drought Stress on Vegetative and Reproductive Stages of Forage and Kernel Corn Hybrids

    Directory of Open Access Journals (Sweden)

    M Hajibabaei

    2016-10-01

    plot, ρb is soil bulk density, F.C is the moisture level at field capacity, m is plot moisture mass desired at irrigation time, D is the root development depth, V is the volume of irrigation water in the plot, and A is the plot area. From each plot 10 plants were randomly selected to determine traits such as dry forage yield per hectare. In this experiment kernel yield per hectare, Dry forage yield per ha, Number of days until to pollination, number of days until silk emergence cords and period of pollination until silk emergence, ear length, ear diameter, number of ear in corn, number of kernels per row and number of rows per ear measured and calculated. Results and Discussion The results showed that hybrid differences in terms of number of days until the pollination, number of days until silk emergence cords, period of pollination until silk emergence and ear length was significant at 1% probability level. No significance differences were observed between hybrids for kernel yield, total number of kernels per ear, number of ear in corn and ear diameter. Hybrid and irrigation regimes interactions were not significant for any of the traits except for ear length that represent the same reaction of hybrids to the irrigation regimes. Evaluation of dry forage showed significant difference between years (P

  16. Biochemical and physical kernel properties of a standard maize hybrid in different TopCross™ Blends

    Directory of Open Access Journals (Sweden)

    Jelena Vancetovic

    Full Text Available ABSTRACT A pilot experiment was undertaken in order to examine high oil populations of maize (Zea mays L. to be used as pollinators in TopCross blends with commercial ZP341 standard hybrid. Five high oil populations (HOPs from the Maize Research Institute (MRI gene bank were chosen for this research, according to their high grain oil content, synchrony between silking of ZP341 and anthesis of the populations and good agronomic performances in 2012. Selfing of ZP341 and HOPs, as well as crosses of ZP341 cmsS sterile × HOPs were carried out in 2013. Oil content, fatty acid composition, protein and tryptophan content, and physical characteristics of the obtained kernels were measured. Four HOPs showed significant positive influence on the oil content in the TopCrosses (TC, 16.85 g kg−1 on average. Oleic acid, which is the principal monounsaturated fatty acid, was significantly lower in all HOPs and all TCs, while selfed ZP341 had almost twice the average value typical for standard maize. However, this decrease in TCs was in a narrow range from 1 % (in TC-3 to 5 % (in TC-4 and the oleic content of TCs was on average higher by 60 % compared to the typical standard maize. Different favorable and unfavorable significant changes were detected in fatty acid compositions, protein and tryptophan contents and physical kernel properties for each potential TC combination. Results indicate differences in gene effects present in different TC combinations and underscore the need to examine each potential TC blend by conducting similar simple experiments.

  17. Spent Fuel Pool Dose Rate Calculations Using Point Kernel and Hybrid Deterministic-Stochastic Shielding Methods

    International Nuclear Information System (INIS)

    Matijevic, M.; Grgic, D.; Jecmenica, R.

    2016-01-01

    This paper presents comparison of the Krsko Power Plant simplified Spent Fuel Pool (SFP) dose rates using different computational shielding methodologies. The analysis was performed to estimate limiting gamma dose rates on wall mounted level instrumentation in case of significant loss of cooling water. The SFP was represented with simple homogenized cylinders (point kernel and Monte Carlo (MC)) or cuboids (MC) using uranium, iron, water, and dry-air as bulk region materials. The pool is divided on the old and new section where the old one has three additional subsections representing fuel assemblies (FAs) with different burnup/cooling time (60 days, 1 year and 5 years). The new section represents the FAs with the cooling time of 10 years. The time dependent fuel assembly isotopic composition was calculated using ORIGEN2 code applied to the depletion of one of the fuel assemblies present in the pool (AC-29). The source used in Microshield calculation is based on imported isotopic activities. The time dependent photon spectra with total source intensity from Microshield multigroup point kernel calculations was then prepared for two hybrid deterministic-stochastic sequences. One is based on SCALE/MAVRIC (Monaco and Denovo) methodology and another uses Monte Carlo code MCNP6.1.1b and ADVANTG3.0.1. code. Even though this model is a fairly simple one, the layers of shielding materials are thick enough to pose a significant shielding problem for MC method without the use of effective variance reduction (VR) technique. For that purpose the ADVANTG code was used to generate VR parameters (SB cards in SDEF and WWINP file) for MCNP fixed-source calculation using continuous energy transport. ADVATNG employs a deterministic forward-adjoint transport solver Denovo which implements CADIS/FW-CADIS methodology. Denovo implements a structured, Cartesian-grid SN solver based on the Koch-Baker-Alcouffe parallel transport sweep algorithm across x-y domain blocks. This was first

  18. A Histological Study of Aspergillus flavus Colonization of Wound Inoculated Maize Kernels of Resistant and Susceptible Maize Hybrids in the Field

    Directory of Open Access Journals (Sweden)

    Gary L. Windham

    2018-04-01

    Full Text Available Aspergillus flavus colonization in developing kernels of maize single-cross hybrids resistant (Mp313E × Mp717 and susceptible (GA209 × T173 to aflatoxin accumulation was determined in the field over three growing seasons (2012–2014. Plants were hand pollinated, and individual kernels were inoculated with a needle dipped in a suspension of A. flavus conidia 21 days after pollination. Kernels were harvested at 1- to 2-day intervals from 1 to 21 days after inoculation (DAI. Kernels were placed in FAA fixative, dehydrated, embedded in paraffin, sectioned, and stained with toluidine blue. Kernels were also collected additional kernels for aflatoxin analyses in 2013 and 2014. At 2 DAI, A. flavus hyphae were observed among endosperm cells in the susceptible hybrid, but colonization of the endosperm in the resistant hybrid was limited to the wound site of the resistant hybrid. Sections of the scutellum of the susceptible hybrid were colonized by A. flavus by 5 DAI. Fungal growth was slower in the resistant hybrid compared to the susceptible hybrid. By 10 DAI, A. flavus had colonized a large section of the embryo in the susceptible hybrid; whereas in the resistant hybrid, approximately half of the endosperm had been colonized and very few cells in the embryo were colonized. Fungal colonization in some of the kernels of the resistant hybrid was slowed in the aleurone layer or at the endosperm-scutellum interface. In wounded kernels with intact aleurone layers, the fungus spread around the kernel between the pericarp and aleurone layer with minimal colonization of the endosperm. Aflatoxin B1 was first detected in susceptible kernel tissues 8 DAI in 2013 (14 μg/kg and 2014 (18 μg/kg. The resistant hybrid had significantly lower levels of aflatoxin accumulation compared to the susceptible hybrid at harvests 10, 21, and 28 DAI in 2013, and 20 and 24 DAI in 2014. Our study found differential A. flavus colonization of susceptible and resistant kernel

  19. Improved coronary in-stent visualization using a combined high-resolution kernel and a hybrid iterative reconstruction technique at 256-slice cardiac CT—Pilot study

    International Nuclear Information System (INIS)

    Oda, Seitaro; Utsunomiya, Daisuke; Funama, Yoshinori; Takaoka, Hiroko; Katahira, Kazuhiro; Honda, Keiichi; Noda, Katsuo; Oshima, Shuichi; Yamashita, Yasuyuki

    2013-01-01

    Objectives: To investigate the diagnostic performance of 256-slice cardiac CT for the evaluation of the in-stent lumen by using a hybrid iterative reconstruction (HIR) algorithm combined with a high-resolution kernel. Methods: This study included 28 patients with 28 stents who underwent cardiac CT. Three different reconstruction images were obtained with: (1) a standard filtered back projection (FBP) algorithm with a standard cardiac kernel (CB), (2) an FBP algorithm with a high-resolution cardiac kernel (CD), and (3) an HIR algorithm with the CD kernel. We measured image noise and kurtosis and used receiver operating characteristics analysis to evaluate observer performance in the detection of in-stent stenosis. Results: Image noise with FBP plus the CD kernel (80.2 ± 15.5 HU) was significantly higher than with FBP plus the CB kernel (28.8 ± 4.6 HU) and HIR plus the CD kernel (36.1 ± 6.4 HU). There was no significant difference in the image noise between FBP plus the CB kernel and HIR plus the CD kernel. Kurtosis was significantly better with the CD- than the CB kernel. The kurtosis values obtained with the CD kernel were not significantly different between the FBP- and HIR reconstruction algorithms. The areas under the receiver operating characteristics curves with HIR plus the CD kernel were significantly higher than with FBP plus the CB- or the CD kernel. The difference between FBP plus the CB- or the CD kernel was not significant. The average sensitivity, specificity, and positive and negative predictive value for the detection of in-stent stenosis were 83.3, 50.0, 33.3, and 91.6% for FBP plus the CB kernel, 100, 29.6, 40.0, and 100% for FBP plus the CD kernel, and 100, 54.5, 40.0, and 100% for HIR plus the CD kernel. Conclusions: The HIR algorithm combined with the high-resolution kernel significantly improved diagnostic performance in the detection of in-stent stenosis

  20. A quadratic kernel for computing the hybridization number of multiple trees

    NARCIS (Netherlands)

    L.J.J. van Iersel (Leo); S. Linz

    2012-01-01

    htmlabstractIt has recently been shown that the NP-hard problem of calculating the minimum number of hybridization events that is needed to explain a set of rooted binary phylogenetic trees by means of a hybridization network is fixed-parameter tractable if an instance of the problem consists of

  1. A Hybrid Short-Term Traffic Flow Prediction Model Based on Singular Spectrum Analysis and Kernel Extreme Learning Machine.

    Directory of Open Access Journals (Sweden)

    Qiang Shang

    Full Text Available Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS. Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM is proposed based on singular spectrum analysis (SSA and kernel extreme learning machine (KELM. SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA. Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust.

  2. Fuzzy C-means method for clustering microarray data.

    Science.gov (United States)

    Dembélé, Doulaye; Kastner, Philippe

    2003-05-22

    Clustering analysis of data from DNA microarray hybridization studies is essential for identifying biologically relevant groups of genes. Partitional clustering methods such as K-means or self-organizing maps assign each gene to a single cluster. However, these methods do not provide information about the influence of a given gene for the overall shape of clusters. Here we apply a fuzzy partitioning method, Fuzzy C-means (FCM), to attribute cluster membership values to genes. A major problem in applying the FCM method for clustering microarray data is the choice of the fuzziness parameter m. We show that the commonly used value m = 2 is not appropriate for some data sets, and that optimal values for m vary widely from one data set to another. We propose an empirical method, based on the distribution of distances between genes in a given data set, to determine an adequate value for m. By setting threshold levels for the membership values, genes which are tigthly associated to a given cluster can be selected. Using a yeast cell cycle data set as an example, we show that this selection increases the overall biological significance of the genes within the cluster. Supplementary text and Matlab functions are available at http://www-igbmc.u-strasbg.fr/fcm/

  3. Segmentation of 3D microPET images of the rat brain via the hybrid gaussian mixture method with kernel density estimation.

    Science.gov (United States)

    Chen, Tai-Been; Chen, Jyh-Cheng; Lu, Henry Horng-Shing

    2012-01-01

    Segmentation of positron emission tomography (PET) is typically achieved using the K-Means method or other approaches. In preclinical and clinical applications, the K-Means method needs a prior estimation of parameters such as the number of clusters and appropriate initialized values. This work segments microPET images using a hybrid method combining the Gaussian mixture model (GMM) with kernel density estimation. Segmentation is crucial to registration of disordered 2-deoxy-2-fluoro-D-glucose (FDG) accumulation locations with functional diagnosis and to estimate standardized uptake values (SUVs) of region of interests (ROIs) in PET images. Therefore, simulation studies are conducted to apply spherical targets to evaluate segmentation accuracy based on Tanimoto's definition of similarity. The proposed method generates a higher degree of similarity than the K-Means method. The PET images of a rat brain are used to compare the segmented shape and area of the cerebral cortex by the K-Means method and the proposed method by volume rendering. The proposed method provides clearer and more detailed activity structures of an FDG accumulation location in the cerebral cortex than those by the K-Means method.

  4. A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield

    Science.gov (United States)

    Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan

    2018-04-01

    In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.

  5. Semi-Supervised Kernel PCA

    DEFF Research Database (Denmark)

    Walder, Christian; Henao, Ricardo; Mørup, Morten

    We present three generalisations of Kernel Principal Components Analysis (KPCA) which incorporate knowledge of the class labels of a subset of the data points. The first, MV-KPCA, penalises within class variances similar to Fisher discriminant analysis. The second, LSKPCA is a hybrid of least...... squares regression and kernel PCA. The final LR-KPCA is an iteratively reweighted version of the previous which achieves a sigmoid loss function on the labeled points. We provide a theoretical risk bound as well as illustrative experiments on real and toy data sets....

  6. Thermogram breast cancer prediction approach based on Neutrosophic sets and fuzzy c-means algorithm.

    Science.gov (United States)

    Gaber, Tarek; Ismail, Gehad; Anter, Ahmed; Soliman, Mona; Ali, Mona; Semary, Noura; Hassanien, Aboul Ella; Snasel, Vaclav

    2015-08-01

    The early detection of breast cancer makes many women survive. In this paper, a CAD system classifying breast cancer thermograms to normal and abnormal is proposed. This approach consists of two main phases: automatic segmentation and classification. For the former phase, an improved segmentation approach based on both Neutrosophic sets (NS) and optimized Fast Fuzzy c-mean (F-FCM) algorithm was proposed. Also, post-segmentation process was suggested to segment breast parenchyma (i.e. ROI) from thermogram images. For the classification, different kernel functions of the Support Vector Machine (SVM) were used to classify breast parenchyma into normal or abnormal cases. Using benchmark database, the proposed CAD system was evaluated based on precision, recall, and accuracy as well as a comparison with related work. The experimental results showed that our system would be a very promising step toward automatic diagnosis of breast cancer using thermograms as the accuracy reached 100%.

  7. Land cover classification using reformed fuzzy C-means

    Indian Academy of Sciences (India)

    This paper explains the task of land cover classification using reformed fuzzy C means. Clustering is the assignment of objects into groups called clusters so that objects from the same cluster are more similar to each other than objects from different clusters. The most basic attribute for clustering of an image is its luminance ...

  8. Lupin kernel fiber consumption modifies fecal microbiota in healthy men as determined by rRNA gene fluorescent in situ hybridization

    NARCIS (Netherlands)

    Smith, Stuart C.; Choy, Rachel; Johnson, Stuart K.; Hall, Ramon S.; Wildeboer-Veloo, Alida C. M.; Welling, Gjalt W.

    Background: Changes in the composition of gastrointestinal microbiota by dietary interventions using pro- and prebiotics provide opportunity for improving health and preventing disease. However, the capacity of lupin kernel fiber (LKFibre), a novel legume-derived food ingredient, to act as a

  9. Genetic relationship between plant growth, shoot and kernel sizes in ...

    African Journals Online (AJOL)

    Maize (Zea mays L.) ear vascular tissue transports nutrients that contribute to grain yield. To assess kernel heritabilities that govern ear development and plant growth, field studies were conducted to determine the combining abilities of parents that differed for kernel-size, grain-filling rates and shoot-size. Thirty two hybrids ...

  10. Robust Kernel (Cross-) Covariance Operators in Reproducing Kernel Hilbert Space toward Kernel Methods

    OpenAIRE

    Alam, Md. Ashad; Fukumizu, Kenji; Wang, Yu-Ping

    2016-01-01

    To the best of our knowledge, there are no general well-founded robust methods for statistical unsupervised learning. Most of the unsupervised methods explicitly or implicitly depend on the kernel covariance operator (kernel CO) or kernel cross-covariance operator (kernel CCO). They are sensitive to contaminated data, even when using bounded positive definite kernels. First, we propose robust kernel covariance operator (robust kernel CO) and robust kernel crosscovariance operator (robust kern...

  11. Approximate kernel competitive learning.

    Science.gov (United States)

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Optimized Kernel Entropy Components.

    Science.gov (United States)

    Izquierdo-Verdiguier, Emma; Laparra, Valero; Jenssen, Robert; Gomez-Chova, Luis; Camps-Valls, Gustau

    2017-06-01

    This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.

  13. Subsampling Realised Kernels

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Hansen, Peter Reinhard; Lunde, Asger

    2011-01-01

    In a recent paper we have introduced the class of realised kernel estimators of the increments of quadratic variation in the presence of noise. We showed that this estimator is consistent and derived its limit distribution under various assumptions on the kernel weights. In this paper we extend our...... that subsampling is impotent, in the sense that subsampling has no effect on the asymptotic distribution. Perhaps surprisingly, for the efficient smooth kernels, such as the Parzen kernel, we show that subsampling is harmful as it increases the asymptotic variance. We also study the performance of subsampled...

  14. Iterative software kernels

    Energy Technology Data Exchange (ETDEWEB)

    Duff, I.

    1994-12-31

    This workshop focuses on kernels for iterative software packages. Specifically, the three speakers discuss various aspects of sparse BLAS kernels. Their topics are: `Current status of user lever sparse BLAS`; Current status of the sparse BLAS toolkit`; and `Adding matrix-matrix and matrix-matrix-matrix multiply to the sparse BLAS toolkit`.

  15. Classification With Truncated Distance Kernel.

    Science.gov (United States)

    Huang, Xiaolin; Suykens, Johan A K; Wang, Shuning; Hornegger, Joachim; Maier, Andreas

    2018-05-01

    This brief proposes a truncated distance (TL1) kernel, which results in a classifier that is nonlinear in the global region but is linear in each subregion. With this kernel, the subregion structure can be trained using all the training data and local linear classifiers can be established simultaneously. The TL1 kernel has good adaptiveness to nonlinearity and is suitable for problems which require different nonlinearities in different areas. Though the TL1 kernel is not positive semidefinite, some classical kernel learning methods are still applicable which means that the TL1 kernel can be directly used in standard toolboxes by replacing the kernel evaluation. In numerical experiments, the TL1 kernel with a pregiven parameter achieves similar or better performance than the radial basis function kernel with the parameter tuned by cross validation, implying the TL1 kernel a promising nonlinear kernel for classification tasks.

  16. A field operational test on valve-regulated lead-acid absorbent-glass-mat batteries in micro-hybrid electric vehicles. Part I. Results based on kernel density estimation

    Science.gov (United States)

    Schaeck, S.; Karspeck, T.; Ott, C.; Weckler, M.; Stoermer, A. O.

    2011-03-01

    In March 2007 the BMW Group has launched the micro-hybrid functions brake energy regeneration (BER) and automatic start and stop function (ASSF). Valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology are applied in vehicles with micro-hybrid power system (MHPS). In both part I and part II of this publication vehicles with MHPS and AGM batteries are subject to a field operational test (FOT). Test vehicles with conventional power system (CPS) and flooded batteries were used as a reference. In the FOT sample batteries were mounted several times and electrically tested in the laboratory intermediately. Vehicle- and battery-related diagnosis data were read out for each test run and were matched with laboratory data in a data base. The FOT data were analyzed by the use of two-dimensional, nonparametric kernel estimation for clear data presentation. The data show that capacity loss in the MHPS is comparable to the CPS. However, the influence of mileage performance, which cannot be separated, suggests that battery stress is enhanced in the MHPS although a battery refresh function is applied. Anyway, the FOT demonstrates the unsuitability of flooded batteries for the MHPS because of high early capacity loss due to acid stratification and because of vanishing cranking performance due to increasing internal resistance. Furthermore, the lack of dynamic charge acceptance for high energy regeneration efficiency is illustrated. Under the presented FOT conditions charge acceptance of lead-acid (LA) batteries decreases to less than one third for about half of the sample batteries compared to new battery condition. In part II of this publication FOT data are presented by multiple regression analysis (Schaeck et al., submitted for publication [1]).

  17. Kernels for structured data

    CERN Document Server

    Gärtner, Thomas

    2009-01-01

    This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains. Originally, kernel methods were developed with data in mind that can easily be embedded in a Euclidean vector space. Much real-world data does not have this property but is inherently structured. An example of such data, often consulted in the book, is the (2D) graph structure of molecules formed by

  18. Locally linear approximation for Kernel methods : the Railway Kernel

    OpenAIRE

    Muñoz, Alberto; González, Javier

    2008-01-01

    In this paper we present a new kernel, the Railway Kernel, that works properly for general (nonlinear) classification problems, with the interesting property that acts locally as a linear kernel. In this way, we avoid potential problems due to the use of a general purpose kernel, like the RBF kernel, as the high dimension of the induced feature space. As a consequence, following our methodology the number of support vectors is much lower and, therefore, the generalization capab...

  19. Data-variant kernel analysis

    CERN Document Server

    Motai, Yuichi

    2015-01-01

    Describes and discusses the variants of kernel analysis methods for data types that have been intensely studied in recent years This book covers kernel analysis topics ranging from the fundamental theory of kernel functions to its applications. The book surveys the current status, popular trends, and developments in kernel analysis studies. The author discusses multiple kernel learning algorithms and how to choose the appropriate kernels during the learning phase. Data-Variant Kernel Analysis is a new pattern analysis framework for different types of data configurations. The chapters include

  20. Realized kernels in practice

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Hansen, P. Reinhard; Lunde, Asger

    2009-01-01

    and find a remarkable level of agreement. We identify some features of the high-frequency data, which are challenging for realized kernels. They are when there are local trends in the data, over periods of around 10 minutes, where the prices and quotes are driven up or down. These can be associated......Realized kernels use high-frequency data to estimate daily volatility of individual stock prices. They can be applied to either trade or quote data. Here we provide the details of how we suggest implementing them in practice. We compare the estimates based on trade and quote data for the same stock...

  1. Adaptive metric kernel regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    2000-01-01

    Kernel smoothing is a widely used non-parametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this contribution, we propose an algorithm that adapts the input metric used in multivariate...... regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...

  2. Adaptive Metric Kernel Regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    1998-01-01

    Kernel smoothing is a widely used nonparametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this paper, we propose an algorithm that adapts the input metric used in multivariate regression...... by minimising a cross-validation estimate of the generalisation error. This allows one to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms the standard...

  3. Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-Maize.

    Science.gov (United States)

    Ma, Yuntao; Chen, Youjia; Zhu, Jinyu; Meng, Lei; Guo, Yan; Li, Baoguo; Hoogenboom, Gerrit

    2018-02-13

    Failure to account for the variation of kernel growth in a cereal crop simulation model may cause serious deviations in the estimates of crop yield. The goal of this research was to revise the GREENLAB-Maize model to incorporate source- and sink-limited allocation approaches to simulate the dry matter accumulation of individual kernels of an ear (GREENLAB-Maize-Kernel). The model used potential individual kernel growth rates to characterize the individual potential sink demand. The remobilization of non-structural carbohydrates from reserve organs to kernels was also incorporated. Two years of field experiments were conducted to determine the model parameter values and to evaluate the model using two maize hybrids with different plant densities and pollination treatments. Detailed observations were made on the dimensions and dry weights of individual kernels and other above-ground plant organs throughout the seasons. Three basic traits characterizing an individual kernel were compared on simulated and measured individual kernels: (1) final kernel size; (2) kernel growth rate; and (3) duration of kernel filling. Simulations of individual kernel growth closely corresponded to experimental data. The model was able to reproduce the observed dry weight of plant organs well. Then, the source-sink dynamics and the remobilization of carbohydrates for kernel growth were quantified to show that remobilization processes accompanied source-sink dynamics during the kernel-filling process. We conclude that the model may be used to explore options for optimizing plant kernel yield by matching maize management to the environment, taking into account responses at the level of individual kernels. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Kernel methods for deep learning

    OpenAIRE

    Cho, Youngmin

    2012-01-01

    We introduce a new family of positive-definite kernels that mimic the computation in large neural networks. We derive the different members of this family by considering neural networks with different activation functions. Using these kernels as building blocks, we also show how to construct other positive-definite kernels by operations such as composition, multiplication, and averaging. We explore the use of these kernels in standard models of supervised learning, such as support vector mach...

  5. STUDI SIMULASI MENGGUNAKAN FUZZY C-MEANS DALAM MENGKLASIFIKASI KONSTRUK TES

    Directory of Open Access Journals (Sweden)

    Rukli Rukli

    2013-01-01

    Full Text Available Tulisan ini memperkenalkan metode fuzzy c-means dalam mengklasifikasi konstruk tes. Untuk memverifikasi sifat unidimensional suatu tes biasanya menggunakan analisis faktor sebagai bagian dari statistik parametrik dengan beberapa persyaratan yang ketat sedangkan metode fuzzy c-means termasuk metode heuristik yang tidak memerlukan persyaratan yang ketat. Studi simulasi penelitian ini menggunakan dua metode yakni analisis faktor menggunakan program SPSS dan fuzzy c-means menggunakan program Matlab. Data simulasi menggunakan tipe data dikotomi dan politomi yang dibangkitkan lewat prog-ram Microsoft Office Excel dengan desain 2 kategori, yakni: tiga butir soal dengan banyak peserta tes 10, dan 30 butir soal dengan banyak peserta tes 100. Hasil simulasi menunjukkan bahwa metode fuzzy c-means lebih memberikan gambaran pengelompokan secara deskriptif dan dinamis pada semua desain yang telah dibuat dalam memverifikasi unidimensional pada suatu tes. Kata kunci: fuzzy c-means, analisis faktor, unidimensional _____________________________________________________________ SIMULATION STUDY USING FUZZY C-MEANS FOR CLASIFYING TEST CONSTRUCTION Abstract This paper introduces the fuzzy c-means method for classifying the test constructs. To verify the unidimensional a test typically uses factor analysis as part of parametric statistics with some strict requirements, while fuzzy c-means methods including method heuristic that do not require strict require-ments. Simulation comparison between the method of factor analysis using SPSS program and fuzzy c-means methods using Matlab. Simulation data using data type dichotomy and politomus generated through Microsoft Office Excel programs each with a number of 3 items using the number of participants 10 tests, while the number of 30 test items using the number as many as 100 participants. The simulation results show that the fuzzy c-means method provides a more descriptive and dyna-mic grouping of all the designs that

  6. Combined multi-kernel head computed tomography images optimized for depicting both brain parenchyma and bone.

    Science.gov (United States)

    Takagi, Satoshi; Nagase, Hiroyuki; Hayashi, Tatsuya; Kita, Tamotsu; Hayashi, Katsumi; Sanada, Shigeru; Koike, Masayuki

    2014-01-01

    The hybrid convolution kernel technique for computed tomography (CT) is known to enable the depiction of an image set using different window settings. Our purpose was to decrease the number of artifacts in the hybrid convolution kernel technique for head CT and to determine whether our improved combined multi-kernel head CT images enabled diagnosis as a substitute for both brain (low-pass kernel-reconstructed) and bone (high-pass kernel-reconstructed) images. Forty-four patients with nondisplaced skull fractures were included. Our improved multi-kernel images were generated so that pixels of >100 Hounsfield unit in both brain and bone images were composed of CT values of bone images and other pixels were composed of CT values of brain images. Three radiologists compared the improved multi-kernel images with bone images. The improved multi-kernel images and brain images were identically displayed on the brain window settings. All three radiologists agreed that the improved multi-kernel images on the bone window settings were sufficient for diagnosing skull fractures in all patients. This improved multi-kernel technique has a simple algorithm and is practical for clinical use. Thus, simplified head CT examinations and fewer images that need to be stored can be expected.

  7. Multivariate realised kernels

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Hansen, Peter Reinhard; Lunde, Asger

    We propose a multivariate realised kernel to estimate the ex-post covariation of log-prices. We show this new consistent estimator is guaranteed to be positive semi-definite and is robust to measurement noise of certain types and can also handle non-synchronous trading. It is the first estimator...

  8. Kernel bundle EPDiff

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Lauze, Francois Bernard; Nielsen, Mads

    2011-01-01

    In the LDDMM framework, optimal warps for image registration are found as end-points of critical paths for an energy functional, and the EPDiff equations describe the evolution along such paths. The Large Deformation Diffeomorphic Kernel Bundle Mapping (LDDKBM) extension of LDDMM allows scale space...

  9. Kernel structures for Clouds

    Science.gov (United States)

    Spafford, Eugene H.; Mckendry, Martin S.

    1986-01-01

    An overview of the internal structure of the Clouds kernel was presented. An indication of how these structures will interact in the prototype Clouds implementation is given. Many specific details have yet to be determined and await experimentation with an actual working system.

  10. Viscosity kernel of molecular fluids

    DEFF Research Database (Denmark)

    Puscasu, Ruslan; Todd, Billy; Daivis, Peter

    2010-01-01

    , temperature, and chain length dependencies of the reciprocal and real-space viscosity kernels are presented. We find that the density has a major effect on the shape of the kernel. The temperature range and chain lengths considered here have by contrast less impact on the overall normalized shape. Functional...... forms that fit the wave-vector-dependent kernel data over a large density and wave-vector range have also been tested. Finally, a structural normalization of the kernels in physical space is considered. Overall, the real-space viscosity kernel has a width of roughly 3–6 atomic diameters, which means...

  11. Variable Kernel Density Estimation

    OpenAIRE

    Terrell, George R.; Scott, David W.

    1992-01-01

    We investigate some of the possibilities for improvement of univariate and multivariate kernel density estimates by varying the window over the domain of estimation, pointwise and globally. Two general approaches are to vary the window width by the point of estimation and by point of the sample observation. The first possibility is shown to be of little efficacy in one variable. In particular, nearest-neighbor estimators in all versions perform poorly in one and two dimensions, but begin to b...

  12. Steerability of Hermite Kernel

    Czech Academy of Sciences Publication Activity Database

    Yang, Bo; Flusser, Jan; Suk, Tomáš

    2013-01-01

    Roč. 27, č. 4 (2013), 1354006-1-1354006-25 ISSN 0218-0014 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Hermite polynomials * Hermite kernel * steerability * adaptive filtering Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.558, year: 2013 http://library.utia.cas.cz/separaty/2013/ZOI/yang-0394387. pdf

  13. Kernel Machine SNP-set Testing under Multiple Candidate Kernels

    Science.gov (United States)

    Wu, Michael C.; Maity, Arnab; Lee, Seunggeun; Simmons, Elizabeth M.; Harmon, Quaker E.; Lin, Xinyi; Engel, Stephanie M.; Molldrem, Jeffrey J.; Armistead, Paul M.

    2013-01-01

    Joint testing for the cumulative effect of multiple single nucleotide polymorphisms grouped on the basis of prior biological knowledge has become a popular and powerful strategy for the analysis of large scale genetic association studies. The kernel machine (KM) testing framework is a useful approach that has been proposed for testing associations between multiple genetic variants and many different types of complex traits by comparing pairwise similarity in phenotype between subjects to pairwise similarity in genotype, with similarity in genotype defined via a kernel function. An advantage of the KM framework is its flexibility: choosing different kernel functions allows for different assumptions concerning the underlying model and can allow for improved power. In practice, it is difficult to know which kernel to use a priori since this depends on the unknown underlying trait architecture and selecting the kernel which gives the lowest p-value can lead to inflated type I error. Therefore, we propose practical strategies for KM testing when multiple candidate kernels are present based on constructing composite kernels and based on efficient perturbation procedures. We demonstrate through simulations and real data applications that the procedures protect the type I error rate and can lead to substantially improved power over poor choices of kernels and only modest differences in power versus using the best candidate kernel. PMID:23471868

  14. Analisis Perbandingan Algoritma Fuzzy C-Means dan K-Means

    OpenAIRE

    Yohannes, Yohannes

    2016-01-01

    Klasterisasi merupakan teknik pengelompokkan data berdasarkan kemiripan data. Teknik klasterisasi ini banyak digunakan pada bidang ilmu komputer khususnya pengolahan citra, pengenalan pola, dan data mining. Banyak sekali algoritma yang digunakan untuk klasterisasi data. Algoritma yang sering digunakan untuk klasterisasi data pada umumnya adalah Fuzzy C-Means dan K-Means. Algoritma Fuzzy C-Means merupakan algoritma klasterisasi dimana data dikelompokkan ke dalam suatu pusat cluster data denga...

  15. Protein fold recognition using geometric kernel data fusion.

    Science.gov (United States)

    Zakeri, Pooya; Jeuris, Ben; Vandebril, Raf; Moreau, Yves

    2014-07-01

    Various approaches based on features extracted from protein sequences and often machine learning methods have been used in the prediction of protein folds. Finding an efficient technique for integrating these different protein features has received increasing attention. In particular, kernel methods are an interesting class of techniques for integrating heterogeneous data. Various methods have been proposed to fuse multiple kernels. Most techniques for multiple kernel learning focus on learning a convex linear combination of base kernels. In addition to the limitation of linear combinations, working with such approaches could cause a loss of potentially useful information. We design several techniques to combine kernel matrices by taking more involved, geometry inspired means of these matrices instead of convex linear combinations. We consider various sequence-based protein features including information extracted directly from position-specific scoring matrices and local sequence alignment. We evaluate our methods for classification on the SCOP PDB-40D benchmark dataset for protein fold recognition. The best overall accuracy on the protein fold recognition test set obtained by our methods is ∼ 86.7%. This is an improvement over the results of the best existing approach. Moreover, our computational model has been developed by incorporating the functional domain composition of proteins through a hybridization model. It is observed that by using our proposed hybridization model, the protein fold recognition accuracy is further improved to 89.30%. Furthermore, we investigate the performance of our approach on the protein remote homology detection problem by fusing multiple string kernels. The MATLAB code used for our proposed geometric kernel fusion frameworks are publicly available at http://people.cs.kuleuven.be/∼raf.vandebril/homepage/software/geomean.php?menu=5/. © The Author 2014. Published by Oxford University Press.

  16. The definition of kernel Oz

    OpenAIRE

    Smolka, Gert

    1994-01-01

    Oz is a concurrent language providing for functional, object-oriented, and constraint programming. This paper defines Kernel Oz, a semantically complete sublanguage of Oz. It was an important design requirement that Oz be definable by reduction to a lean kernel language. The definition of Kernel Oz introduces three essential abstractions: the Oz universe, the Oz calculus, and the actor model. The Oz universe is a first-order structure defining the values and constraints Oz computes with. The ...

  17. 7 CFR 981.7 - Edible kernel.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Edible kernel. 981.7 Section 981.7 Agriculture... Regulating Handling Definitions § 981.7 Edible kernel. Edible kernel means a kernel, piece, or particle of almond kernel that is not inedible. [41 FR 26852, June 30, 1976] ...

  18. 7 CFR 981.408 - Inedible kernel.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Inedible kernel. 981.408 Section 981.408 Agriculture... Administrative Rules and Regulations § 981.408 Inedible kernel. Pursuant to § 981.8, the definition of inedible kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as...

  19. 7 CFR 981.8 - Inedible kernel.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Inedible kernel. 981.8 Section 981.8 Agriculture... Regulating Handling Definitions § 981.8 Inedible kernel. Inedible kernel means a kernel, piece, or particle of almond kernel with any defect scored as serious damage, or damage due to mold, gum, shrivel, or...

  20. Multivariate realised kernels

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Hansen, Peter Reinhard; Lunde, Asger

    2011-01-01

    We propose a multivariate realised kernel to estimate the ex-post covariation of log-prices. We show this new consistent estimator is guaranteed to be positive semi-definite and is robust to measurement error of certain types and can also handle non-synchronous trading. It is the first estimator...... which has these three properties which are all essential for empirical work in this area. We derive the large sample asymptotics of this estimator and assess its accuracy using a Monte Carlo study. We implement the estimator on some US equity data, comparing our results to previous work which has used...

  1. Clustering via Kernel Decomposition

    DEFF Research Database (Denmark)

    Have, Anna Szynkowiak; Girolami, Mark A.; Larsen, Jan

    2006-01-01

    Methods for spectral clustering have been proposed recently which rely on the eigenvalue decomposition of an affinity matrix. In this work it is proposed that the affinity matrix is created based on the elements of a non-parametric density estimator. This matrix is then decomposed to obtain...... posterior probabilities of class membership using an appropriate form of nonnegative matrix factorization. The troublesome selection of hyperparameters such as kernel width and number of clusters can be obtained using standard cross-validation methods as is demonstrated on a number of diverse data sets....

  2. Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization

    Science.gov (United States)

    Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li

    2018-04-01

    Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.

  3. Optimal Sizing for Wind/PV/Battery System Using Fuzzy c-Means Clustering with Self-Adapted Cluster Number

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-01-01

    Full Text Available Integrating wind generation, photovoltaic power, and battery storage to form hybrid power systems has been recognized to be promising in renewable energy development. However, considering the system complexity and uncertainty of renewable energies, such as wind and solar types, it is difficult to obtain practical solutions for these systems. In this paper, optimal sizing for a wind/PV/battery system is realized by trade-offs between technical and economic factors. Firstly, the fuzzy c-means clustering algorithm was modified with self-adapted parameters to extract useful information from historical data. Furthermore, the Markov model is combined to determine the chronological system states of natural resources and load. Finally, a power balance strategy is introduced to guide the optimization process with the genetic algorithm to establish the optimal configuration with minimized cost while guaranteeing reliability and environmental factors. A case of island hybrid power system is analyzed, and the simulation results are compared with the general FCM method and chronological method to validate the effectiveness of the mentioned method.

  4. Global Polynomial Kernel Hazard Estimation

    DEFF Research Database (Denmark)

    Hiabu, Munir; Miranda, Maria Dolores Martínez; Nielsen, Jens Perch

    2015-01-01

    This paper introduces a new bias reducing method for kernel hazard estimation. The method is called global polynomial adjustment (GPA). It is a global correction which is applicable to any kernel hazard estimator. The estimator works well from a theoretical point of view as it asymptotically redu...

  5. Determination System Of Food Vouchers For the Poor Based On Fuzzy C-Means Method

    Science.gov (United States)

    Anamisa, D. R.; Yusuf, M.; Syakur, M. A.

    2018-01-01

    Food vouchers are government programs to tackle the poverty of rural communities. This program aims to help the poor group in getting enough food and nutrients from carbohydrates. There are several factors that influence to receive the food voucher, such as: job, monthly income, Taxes, electricity bill, size of house, number of family member, education certificate and amount of rice consumption every week. In the execution for the distribution of vouchers is often a lot of problems, such as: the distribution of food vouchers has been misdirected and someone who receives is still subjective. Some of the solutions to decision making have not been done. The research aims to calculating the change of each partition matrix and each cluster using Fuzzy C-Means method. Hopefully this research makes contribution by providing higher result using Fuzzy C-Means comparing to other method for this case study. In this research, decision making is done by using Fuzzy C-Means method. The Fuzzy C-Means method is a clustering method that has an organized and scattered cluster structure with regular patterns on two-dimensional datasets. Furthermore, Fuzzy C-Means method used for calculates the change of each partition matrix. Each cluster will be sorted by the proximity of the data element to the centroid of the cluster to get the ranking. Various trials were conducted for grouping and ranking of proposed data that received food vouchers based on the quota of each village. This testing by Fuzzy C-Means method, is developed and abled for determining the recipient of the food voucher with satisfaction results. Fulfillment of the recipient of the food voucher is 80% to 90% and this testing using data of 115 Family Card from 6 Villages. The quality of success affected, has been using the number of iteration factors is 20 and the number of clusters is 3

  6. Robotic intelligence kernel

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  7. Clinical assessment using an algorithm based on clustering Fuzzy c-means

    NARCIS (Netherlands)

    Guijarro-Rodriguez, A.; Cevallos-Torres, L.; Yepez-Holguin, J.; Botto-Tobar, M.; Valencia-García, R.; Lagos-Ortiz, K.; Alcaraz-Mármol, G.; Del Cioppo, J.; Vera-Lucio, N.; Bucaram-Leverone, M.

    2017-01-01

    The Fuzzy c-means (FCM) algorithms dene a grouping criterion from a function, which seeks to minimize iteratively the function up to an optimal fuzzy partition is obtained. In the execution of this algorithm relates each element to the clusters that were determined in the same n-dimensional space,

  8. New Embedded Denotes Fuzzy C-Mean Application for Breast Cancer Density Segmentation in Digital Mammograms

    Science.gov (United States)

    Othman, Khairulnizam; Ahmad, Afandi

    2016-11-01

    In this research we explore the application of normalize denoted new techniques in advance fast c-mean in to the problem of finding the segment of different breast tissue regions in mammograms. The goal of the segmentation algorithm is to see if new denotes fuzzy c- mean algorithm could separate different densities for the different breast patterns. The new density segmentation is applied with multi-selection of seeds label to provide the hard constraint, whereas the seeds labels are selected based on user defined. New denotes fuzzy c- mean have been explored on images of various imaging modalities but not on huge format digital mammograms just yet. Therefore, this project is mainly focused on using normalize denoted new techniques employed in fuzzy c-mean to perform segmentation to increase visibility of different breast densities in mammography images. Segmentation of the mammogram into different mammographic densities is useful for risk assessment and quantitative evaluation of density changes. Our proposed methodology for the segmentation of mammograms on the basis of their region into different densities based categories has been tested on MIAS database and Trueta Database.

  9. Effect of co-operative fuzzy c-means clustering on estimates of three ...

    Indian Academy of Sciences (India)

    infinite isotropic elastic media in concise matrix ... hydrate and free gas accumulation. 2. AVA method ... wave propagation across the boundaries of hori- zontally .... Flow chart showing the sequence of steps in the present scheme of fuzzy c-mean clustering adapted for AVA ... porosity 0.38, OIL API 28.5, brine salinity 0.07, ...

  10. The influence of maize kernel moisture on the sterilizing effect of gamma rays

    International Nuclear Information System (INIS)

    Khanymova, T.; Poloni, E.

    1980-01-01

    The influence of 4 levels of maize kernel moisture (16, 20, 25 and 30%) on gamma-ray sterilizing effect was studied and the after-effect of radiation on the microorganisms at short term storage was followed up. Maize kernels of the hybrid Knezha-36 produced in 1975 were used. Gamma-ray treatment of the kernels was effected by GUBEh-4000 irradiator at doses of 0.2 and 0.3 Mrad and after that they were stored for a month at 12 deg and 25 deg C and controlled moisture conditions. Surface and subepidermal infection of the kernels was determined immediately post irradiation and at the end of the experiment. Non-irradiated kernels were used as controls. Results indicated that the initial kernel moisture has a considerable influence on the sterilizing effect of gamma-rays at the rates used in the experiment and affects to a considerable extent the post-irradiation recovery of organisms. The speed of recovery was highest in the treatment with 30% moisture and lowest in the treatment with 16% kernel moisture. Irradiation of the kernels causes pronounced changes on the surface and subepidermal infection. This was due to the unequal radio resistance to the microbial components and to the modifying effect of the moisture holding capacity. The useful effect of maize kernel irradiation was more prolonged at 12 deg C than at 25 deg C

  11. Mixture Density Mercer Kernels: A Method to Learn Kernels

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents a method of generating Mercer Kernels from an ensemble of probabilistic mixture models, where each mixture model is generated from a Bayesian...

  12. 7 CFR 981.9 - Kernel weight.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Kernel weight. 981.9 Section 981.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 981.9 Kernel weight. Kernel weight means the weight of kernels, including...

  13. 7 CFR 51.2295 - Half kernel.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Half kernel. 51.2295 Section 51.2295 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2295 Half kernel. Half kernel means the separated half of a kernel with not more than one-eighth broken off. ...

  14. A kernel version of spatial factor analysis

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    2009-01-01

    . Schölkopf et al. introduce kernel PCA. Shawe-Taylor and Cristianini is an excellent reference for kernel methods in general. Bishop and Press et al. describe kernel methods among many other subjects. Nielsen and Canty use kernel PCA to detect change in univariate airborne digital camera images. The kernel...... version of PCA handles nonlinearities by implicitly transforming data into high (even infinite) dimensional feature space via the kernel function and then performing a linear analysis in that space. In this paper we shall apply kernel versions of PCA, maximum autocorrelation factor (MAF) analysis...

  15. kernel oil by lipolytic organisms

    African Journals Online (AJOL)

    USER

    2010-08-02

    Aug 2, 2010 ... Rancidity of extracted cashew oil was observed with cashew kernel stored at 70, 80 and 90% .... method of American Oil Chemist Society AOCS (1978) using glacial ..... changes occur and volatile products are formed that are.

  16. A curvature-based weighted fuzzy c-means algorithm for point clouds de-noising

    Science.gov (United States)

    Cui, Xin; Li, Shipeng; Yan, Xiutian; He, Xinhua

    2018-04-01

    In order to remove the noise of three-dimensional scattered point cloud and smooth the data without damnify the sharp geometric feature simultaneity, a novel algorithm is proposed in this paper. The feature-preserving weight is added to fuzzy c-means algorithm which invented a curvature weighted fuzzy c-means clustering algorithm. Firstly, the large-scale outliers are removed by the statistics of r radius neighboring points. Then, the algorithm estimates the curvature of the point cloud data by using conicoid parabolic fitting method and calculates the curvature feature value. Finally, the proposed clustering algorithm is adapted to calculate the weighted cluster centers. The cluster centers are regarded as the new points. The experimental results show that this approach is efficient to different scale and intensities of noise in point cloud with a high precision, and perform a feature-preserving nature at the same time. Also it is robust enough to different noise model.

  17. α/β-particle radiation identification based on fuzzy C-means clustering

    International Nuclear Information System (INIS)

    Yang Yijianxia; Yang Lu; Li Wenqiang

    2013-01-01

    A pulse shape recognition method based on fuzzy C-means clustering for the discrimination of α/βparticle was presented. A detection circuit to isolate α/β-particles is designed. Using a single probe scintillating detector to acquire α/β particles. By comparing the results to pulse amplitude analysis, it is shown that by Fuzzy C-means clustering α-particle count rate increased by 42.9% and the cross-talk ratio of α-β is decreased by 15.9% for 6190 cps 0420 αsource; β-particle count rate increased by 31.8% and the cross -talk ratio of β-α is decreased by 7.7% for 05-05β source. (authors)

  18. Drought Forecasting by SPI Index and ANFIS Model Using Fuzzy C-mean Clustering

    Directory of Open Access Journals (Sweden)

    mehdi Komasi

    2013-08-01

    Full Text Available Drought is the interaction between environment and water cycle in the world and affects natural environment of an area when it persists for a longer period. So, developing a suitable index to forecast the spatial and temporal distribution of drought plays an important role in the planning and management of natural resources and water resource systems. In this article, firstly, the drought concept and drought indexes were introduced and then the fuzzy neural networks and fuzzy C-mean clustering were applied to forecast drought via standardized precipitation index (SPI. The results of this research indicate that the SPI index is more capable than the other indexes such as PDSI (Palmer Drought Severity Index, PAI (Palfai Aridity Index and etc. in drought forecasting process. Moreover, application of adaptive nero-fuzzy network accomplished by C-mean clustering has high efficiency in the drought forecasting.

  19. Multivariate and semiparametric kernel regression

    OpenAIRE

    Härdle, Wolfgang; Müller, Marlene

    1997-01-01

    The paper gives an introduction to theory and application of multivariate and semiparametric kernel smoothing. Multivariate nonparametric density estimation is an often used pilot tool for examining the structure of data. Regression smoothing helps in investigating the association between covariates and responses. We concentrate on kernel smoothing using local polynomial fitting which includes the Nadaraya-Watson estimator. Some theory on the asymptotic behavior and bandwidth selection is pro...

  20. Notes on the gamma kernel

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.

    The density function of the gamma distribution is used as shift kernel in Brownian semistationary processes modelling the timewise behaviour of the velocity in turbulent regimes. This report presents exact and asymptotic properties of the second order structure function under such a model......, and relates these to results of von Karmann and Horwath. But first it is shown that the gamma kernel is interpretable as a Green’s function....

  1. Consistent Valuation across Curves Using Pricing Kernels

    Directory of Open Access Journals (Sweden)

    Andrea Macrina

    2018-03-01

    Full Text Available The general problem of asset pricing when the discount rate differs from the rate at which an asset’s cash flows accrue is considered. A pricing kernel framework is used to model an economy that is segmented into distinct markets, each identified by a yield curve having its own market, credit and liquidity risk characteristics. The proposed framework precludes arbitrage within each market, while the definition of a curve-conversion factor process links all markets in a consistent arbitrage-free manner. A pricing formula is then derived, referred to as the across-curve pricing formula, which enables consistent valuation and hedging of financial instruments across curves (and markets. As a natural application, a consistent multi-curve framework is formulated for emerging and developed inter-bank swap markets, which highlights an important dual feature of the curve-conversion factor process. Given this multi-curve framework, existing multi-curve approaches based on HJM and rational pricing kernel models are recovered, reviewed and generalised and single-curve models extended. In another application, inflation-linked, currency-based and fixed-income hybrid securities are shown to be consistently valued using the across-curve valuation method.

  2. Influence Function and Robust Variant of Kernel Canonical Correlation Analysis

    OpenAIRE

    Alam, Md. Ashad; Fukumizu, Kenji; Wang, Yu-Ping

    2017-01-01

    Many unsupervised kernel methods rely on the estimation of the kernel covariance operator (kernel CO) or kernel cross-covariance operator (kernel CCO). Both kernel CO and kernel CCO are sensitive to contaminated data, even when bounded positive definite kernels are used. To the best of our knowledge, there are few well-founded robust kernel methods for statistical unsupervised learning. In addition, while the influence function (IF) of an estimator can characterize its robustness, asymptotic ...

  3. Kernel versions of some orthogonal transformations

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    Kernel versions of orthogonal transformations such as principal components are based on a dual formulation also termed Q-mode analysis in which the data enter into the analysis via inner products in the Gram matrix only. In the kernel version the inner products of the original data are replaced...... by inner products between nonlinear mappings into higher dimensional feature space. Via kernel substitution also known as the kernel trick these inner products between the mappings are in turn replaced by a kernel function and all quantities needed in the analysis are expressed in terms of this kernel...... function. This means that we need not know the nonlinear mappings explicitly. Kernel principal component analysis (PCA) and kernel minimum noise fraction (MNF) analyses handle nonlinearities by implicitly transforming data into high (even infinite) dimensional feature space via the kernel function...

  4. An Approximate Approach to Automatic Kernel Selection.

    Science.gov (United States)

    Ding, Lizhong; Liao, Shizhong

    2016-02-02

    Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.

  5. Model Selection in Kernel Ridge Regression

    DEFF Research Database (Denmark)

    Exterkate, Peter

    Kernel ridge regression is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts. This paper investigates the influence of the choice of kernel and the setting of tuning parameters on forecast accuracy. We review several popular kernels......, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. We interpret the latter two kernels in terms of their smoothing properties, and we relate the tuning parameters associated to all these kernels to smoothness measures of the prediction function and to the signal-to-noise ratio. Based...... on these interpretations, we provide guidelines for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study confirms the practical usefulness of these rules of thumb. Finally, the flexible and smooth functional forms provided by the Gaussian and Sinc kernels makes them widely...

  6. Fuzzy C-Means Clustering Model Data Mining For Recognizing Stock Data Sampling Pattern

    Directory of Open Access Journals (Sweden)

    Sylvia Jane Annatje Sumarauw

    2007-06-01

    Full Text Available Abstract Capital market has been beneficial to companies and investor. For investors, the capital market provides two economical advantages, namely deviden and capital gain, and a non-economical one that is a voting .} hare in Shareholders General Meeting. But, it can also penalize the share owners. In order to prevent them from the risk, the investors should predict the prospect of their companies. As a consequence of having an abstract commodity, the share quality will be determined by the validity of their company profile information. Any information of stock value fluctuation from Jakarta Stock Exchange can be a useful consideration and a good measurement for data analysis. In the context of preventing the shareholders from the risk, this research focuses on stock data sample category or stock data sample pattern by using Fuzzy c-Me, MS Clustering Model which providing any useful information jar the investors. lite research analyses stock data such as Individual Index, Volume and Amount on Property and Real Estate Emitter Group at Jakarta Stock Exchange from January 1 till December 31 of 204. 'he mining process follows Cross Industry Standard Process model for Data Mining (CRISP,. DM in the form of circle with these steps: Business Understanding, Data Understanding, Data Preparation, Modelling, Evaluation and Deployment. At this modelling process, the Fuzzy c-Means Clustering Model will be applied. Data Mining Fuzzy c-Means Clustering Model can analyze stock data in a big database with many complex variables especially for finding the data sample pattern, and then building Fuzzy Inference System for stimulating inputs to be outputs that based on Fuzzy Logic by recognising the pattern. Keywords: Data Mining, AUz..:y c-Means Clustering Model, Pattern Recognition

  7. Integral equations with contrasting kernels

    Directory of Open Access Journals (Sweden)

    Theodore Burton

    2008-01-01

    Full Text Available In this paper we study integral equations of the form $x(t=a(t-\\int^t_0 C(t,sx(sds$ with sharply contrasting kernels typified by $C^*(t,s=\\ln (e+(t-s$ and $D^*(t,s=[1+(t-s]^{-1}$. The kernel assigns a weight to $x(s$ and these kernels have exactly opposite effects of weighting. Each type is well represented in the literature. Our first project is to show that for $a\\in L^2[0,\\infty$, then solutions are largely indistinguishable regardless of which kernel is used. This is a surprise and it leads us to study the essential differences. In fact, those differences become large as the magnitude of $a(t$ increases. The form of the kernel alone projects necessary conditions concerning the magnitude of $a(t$ which could result in bounded solutions. Thus, the next project is to determine how close we can come to proving that the necessary conditions are also sufficient. The third project is to show that solutions will be bounded for given conditions on $C$ regardless of whether $a$ is chosen large or small; this is important in real-world problems since we would like to have $a(t$ as the sum of a bounded, but badly behaved function, and a large well behaved function.

  8. Kernel learning algorithms for face recognition

    CERN Document Server

    Li, Jun-Bao; Pan, Jeng-Shyang

    2013-01-01

    Kernel Learning Algorithms for Face Recognition covers the framework of kernel based face recognition. This book discusses the advanced kernel learning algorithms and its application on face recognition. This book also focuses on the theoretical deviation, the system framework and experiments involving kernel based face recognition. Included within are algorithms of kernel based face recognition, and also the feasibility of the kernel based face recognition method. This book provides researchers in pattern recognition and machine learning area with advanced face recognition methods and its new

  9. Model selection for Gaussian kernel PCA denoising

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Winther; Hansen, Lars Kai

    2012-01-01

    We propose kernel Parallel Analysis (kPA) for automatic kernel scale and model order selection in Gaussian kernel PCA. Parallel Analysis [1] is based on a permutation test for covariance and has previously been applied for model order selection in linear PCA, we here augment the procedure to also...... tune the Gaussian kernel scale of radial basis function based kernel PCA.We evaluate kPA for denoising of simulated data and the US Postal data set of handwritten digits. We find that kPA outperforms other heuristics to choose the model order and kernel scale in terms of signal-to-noise ratio (SNR...

  10. Soft Sensor Modeling Based on Multiple Gaussian Process Regression and Fuzzy C-mean Clustering

    Directory of Open Access Journals (Sweden)

    Xianglin ZHU

    2014-06-01

    Full Text Available In order to overcome the difficulties of online measurement of some crucial biochemical variables in fermentation processes, a new soft sensor modeling method is presented based on the Gaussian process regression and fuzzy C-mean clustering. With the consideration that the typical fermentation process can be distributed into 4 phases including lag phase, exponential growth phase, stable phase and dead phase, the training samples are classified into 4 subcategories by using fuzzy C- mean clustering algorithm. For each sub-category, the samples are trained using the Gaussian process regression and the corresponding soft-sensing sub-model is established respectively. For a new sample, the membership between this sample and sub-models are computed based on the Euclidean distance, and then the prediction output of soft sensor is obtained using the weighting sum. Taking the Lysine fermentation as example, the simulation and experiment are carried out and the corresponding results show that the presented method achieves better fitting and generalization ability than radial basis function neutral network and single Gaussian process regression model.

  11. Clustering Batik Images using Fuzzy C-Means Algorithm Based on Log-Average Luminance

    Directory of Open Access Journals (Sweden)

    Ahmad Sanmorino

    2012-06-01

    Full Text Available Batik is a fabric or clothes that are made ​​with a special staining technique called wax-resist dyeing and is one of the cultural heritage which has high artistic value. In order to improve the efficiency and give better semantic to the image, some researchers apply clustering algorithm for managing images before they can be retrieved. Image clustering is a process of grouping images based on their similarity. In this paper we attempt to provide an alternative method of grouping batik image using fuzzy c-means (FCM algorithm based on log-average luminance of the batik. FCM clustering algorithm is an algorithm that works using fuzzy models that allow all data from all cluster members are formed with different degrees of membership between 0 and 1. Log-average luminance (LAL is the average value of the lighting in an image. We can compare different image lighting from one image to another using LAL. From the experiments that have been made, it can be concluded that fuzzy c-means algorithm can be used for batik image clustering based on log-average luminance of each image possessed.

  12. RTOS kernel in portable electrocardiograph

    Science.gov (United States)

    Centeno, C. A.; Voos, J. A.; Riva, G. G.; Zerbini, C.; Gonzalez, E. A.

    2011-12-01

    This paper presents the use of a Real Time Operating System (RTOS) on a portable electrocardiograph based on a microcontroller platform. All medical device digital functions are performed by the microcontroller. The electrocardiograph CPU is based on the 18F4550 microcontroller, in which an uCOS-II RTOS can be embedded. The decision associated with the kernel use is based on its benefits, the license for educational use and its intrinsic time control and peripherals management. The feasibility of its use on the electrocardiograph is evaluated based on the minimum memory requirements due to the kernel structure. The kernel's own tools were used for time estimation and evaluation of resources used by each process. After this feasibility analysis, the migration from cyclic code to a structure based on separate processes or tasks able to synchronize events is used; resulting in an electrocardiograph running on one Central Processing Unit (CPU) based on RTOS.

  13. RTOS kernel in portable electrocardiograph

    International Nuclear Information System (INIS)

    Centeno, C A; Voos, J A; Riva, G G; Zerbini, C; Gonzalez, E A

    2011-01-01

    This paper presents the use of a Real Time Operating System (RTOS) on a portable electrocardiograph based on a microcontroller platform. All medical device digital functions are performed by the microcontroller. The electrocardiograph CPU is based on the 18F4550 microcontroller, in which an uCOS-II RTOS can be embedded. The decision associated with the kernel use is based on its benefits, the license for educational use and its intrinsic time control and peripherals management. The feasibility of its use on the electrocardiograph is evaluated based on the minimum memory requirements due to the kernel structure. The kernel's own tools were used for time estimation and evaluation of resources used by each process. After this feasibility analysis, the migration from cyclic code to a structure based on separate processes or tasks able to synchronize events is used; resulting in an electrocardiograph running on one Central Processing Unit (CPU) based on RTOS.

  14. Discrimination of neutrons and γ-rays in liquid scintillators based of fuzzy c-means clustering

    International Nuclear Information System (INIS)

    Luo Xiaoliang; Liu Guofu; Yang Jun

    2011-01-01

    A novel method based on fuzzy c-means (FCM) clustering for the discrimination of neutrons and γ-rays in liquid scintillators was presented. The neutrons and γ-rays in the environment were firstly acquired by the portable real-time n-γ discriminator and then discriminated using fuzzy c-means clustering and pulse gradient analysis, respectively. By comparing the results with each other, it is shown that the discrimination results of the fuzzy c-means clustering are consistent with those of the pulse gradient analysis. The decrease in uncertainty and the improvement in discrimination performance of the fuzzy c-means clustering were also observed. (authors)

  15. Model selection in kernel ridge regression

    DEFF Research Database (Denmark)

    Exterkate, Peter

    2013-01-01

    Kernel ridge regression is a technique to perform ridge regression with a potentially infinite number of nonlinear transformations of the independent variables as regressors. This method is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts....... The influence of the choice of kernel and the setting of tuning parameters on forecast accuracy is investigated. Several popular kernels are reviewed, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. The latter two kernels are interpreted in terms of their smoothing properties......, and the tuning parameters associated to all these kernels are related to smoothness measures of the prediction function and to the signal-to-noise ratio. Based on these interpretations, guidelines are provided for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study...

  16. Gas load forecasting based on optimized fuzzy c-mean clustering analysis of selecting similar days

    Directory of Open Access Journals (Sweden)

    Qiu Jing

    2017-08-01

    Full Text Available Traditional fuzzy c-means (FCM clustering in short term load forecasting method is easy to fall into local optimum and is sensitive to the initial cluster center.In this paper,we propose to use global search feature of particle swarm optimization (PSO algorithm to avoid these shortcomings,and to use FCM optimization to select similar date of forecast as training sample of support vector machines.This will not only strengthen the data rule of training samples,but also ensure the consistency of data characteristics.Experimental results show that the prediction accuracy of this prediction model is better than that of BP neural network and support vector machine (SVM algorithms.

  17. APPLICATION OF FUZZY C-MEANS CLUSTERING TECHNIQUE IN VEHICULAR POLLUTION

    Directory of Open Access Journals (Sweden)

    Samarjit Das

    2013-07-01

    Full Text Available Presently in most of the urban areas all over the world, due to the exponential increase in traffic, vehicular pollution has become one of the key contributors to air pollution. As uncertainty prevails in the process of designating the level of pollution of a particular region, a fuzzy method can be applied to see the membership values of that region to a number of predefined clusters. Also, due to the existence of different pollutants in vehicular pollution, the data used to represent it are in the form of numerical vectors. In our work, we shall apply the fuzzy c-means technique of Bezdek on a dataset representing vehicular pollution to obtain the membership values of pollution due to vehicular emission of a city to one or more of some predefined clusters. We shall try also to see the benefits of adopting a fuzzy approach over the traditional way of determining the level of pollution of the particular region

  18. Penerapan Fuzzy C-Means Untuk Penentuan Besar Uang Kuliah Tunggal Mahasiswa Baru

    Directory of Open Access Journals (Sweden)

    Ariyady Kurniawan Muchsin

    2015-12-01

    Full Text Available In accordance with the mandate of the 1945 Constitution article 31 concerning the education authorities have issued various policies to realize the cost of education is getting cheaper and affordable to all people, one of which is the system UKT (Tuition Single which is partially Tuition Single (BKT which were passed to each student based on their economic capabilities. UKT grouping mechanism is still done manually by Udayana University which resulted in the value of equity for prospective new students to their economic capacity is still lacking. Therefore, it needs a mechanism for charging and determination UKT which can be done online, so as to improve efficiency and effectiveness. The next solution that can be done is by using classification techniques using Fuzzy C-Means (FCM and Beni Xie Index to determine the optimum clusters in the process of determining the type UKT so as to meet the values ??of justice for prospective new students.

  19. Eigenspace-based fuzzy c-means for sensing trending topics in Twitter

    Science.gov (United States)

    Muliawati, T.; Murfi, H.

    2017-07-01

    As the information and communication technology are developed, the fulfillment of information can be obtained through social media, like Twitter. The enormous number of internet users has triggered fast and large data flow, thus making the manual analysis is difficult or even impossible. An automated methods for data analysis is needed, one of which is the topic detection and tracking. An alternative method other than latent Dirichlet allocation (LDA) is a soft clustering approach using Fuzzy C-Means (FCM). FCM meets the assumption that a document may consist of several topics. However, FCM works well in low-dimensional data but fails in high-dimensional data. Therefore, we propose an approach where FCM works on low-dimensional data by reducing the data using singular value decomposition (SVD). Our simulations show that this approach gives better accuracies in term of topic recall than LDA for sensing trending topic in Twitter about an event.

  20. Fuzzy C-Means Algorithm for Segmentation of Aerial Photography Data Obtained Using Unmanned Aerial Vehicle

    Science.gov (United States)

    Akinin, M. V.; Akinina, N. V.; Klochkov, A. Y.; Nikiforov, M. B.; Sokolova, A. V.

    2015-05-01

    The report reviewed the algorithm fuzzy c-means, performs image segmentation, give an estimate of the quality of his work on the criterion of Xie-Beni, contain the results of experimental studies of the algorithm in the context of solving the problem of drawing up detailed two-dimensional maps with the use of unmanned aerial vehicles. According to the results of the experiment concluded that the possibility of applying the algorithm in problems of decoding images obtained as a result of aerial photography. The considered algorithm can significantly break the original image into a plurality of segments (clusters) in a relatively short period of time, which is achieved by modification of the original k-means algorithm to work in a fuzzy task.

  1. A simple and fast method to determine the parameters for fuzzy c-means cluster analysis

    DEFF Research Database (Denmark)

    Schwämmle, Veit; Jensen, Ole Nørregaard

    2010-01-01

    MOTIVATION: Fuzzy c-means clustering is widely used to identify cluster structures in high-dimensional datasets, such as those obtained in DNA microarray and quantitative proteomics experiments. One of its main limitations is the lack of a computationally fast method to set optimal values...... of algorithm parameters. Wrong parameter values may either lead to the inclusion of purely random fluctuations in the results or ignore potentially important data. The optimal solution has parameter values for which the clustering does not yield any results for a purely random dataset but which detects cluster...... formation with maximum resolution on the edge of randomness. RESULTS: Estimation of the optimal parameter values is achieved by evaluation of the results of the clustering procedure applied to randomized datasets. In this case, the optimal value of the fuzzifier follows common rules that depend only...

  2. An Improved Fuzzy C-Means Algorithm for the Implementation of Demand Side Management Measures

    Directory of Open Access Journals (Sweden)

    Ioannis Panapakidis

    2017-09-01

    Full Text Available Load profiling refers to a procedure that leads to the formulation of daily load curves and consumer classes regarding the similarity of the curve shapes. This procedure incorporates a set of unsupervised machine learning algorithms. While many crisp clustering algorithms have been proposed for grouping load curves into clusters, only one soft clustering algorithm is utilized for the aforementioned purpose, namely the Fuzzy C-Means (FCM algorithm. Since the benefits of soft clustering are demonstrated in a variety of applications, the potential of introducing a novel modification of the FCM in the electricity consumer clustering process is examined. Additionally, this paper proposes a novel Demand Side Management (DSM strategy for load management of consumers that are eligible for the implementation of Real-Time Pricing (RTP schemes. The DSM strategy is formulated as a constrained optimization problem that can be easily solved and therefore, making it a useful tool for retailers’ decision-making framework in competitive electricity markets.

  3. An image segmentation method based on fuzzy C-means clustering and Cuckoo search algorithm

    Science.gov (United States)

    Wang, Mingwei; Wan, Youchuan; Gao, Xianjun; Ye, Zhiwei; Chen, Maolin

    2018-04-01

    Image segmentation is a significant step in image analysis and machine vision. Many approaches have been presented in this topic; among them, fuzzy C-means (FCM) clustering is one of the most widely used methods for its high efficiency and ambiguity of images. However, the success of FCM could not be guaranteed because it easily traps into local optimal solution. Cuckoo search (CS) is a novel evolutionary algorithm, which has been tested on some optimization problems and proved to be high-efficiency. Therefore, a new segmentation technique using FCM and blending of CS algorithm is put forward in the paper. Further, the proposed method has been measured on several images and compared with other existing FCM techniques such as genetic algorithm (GA) based FCM and particle swarm optimization (PSO) based FCM in terms of fitness value. Experimental results indicate that the proposed method is robust, adaptive and exhibits the better performance than other methods involved in the paper.

  4. Multiple Kernel Learning with Data Augmentation

    Science.gov (United States)

    2016-11-22

    JMLR: Workshop and Conference Proceedings 63:49–64, 2016 ACML 2016 Multiple Kernel Learning with Data Augmentation Khanh Nguyen nkhanh@deakin.edu.au...University, Australia Editors: Robert J. Durrant and Kee-Eung Kim Abstract The motivations of multiple kernel learning (MKL) approach are to increase... kernel expres- siveness capacity and to avoid the expensive grid search over a wide spectrum of kernels . A large amount of work has been proposed to

  5. A kernel version of multivariate alteration detection

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Vestergaard, Jacob Schack

    2013-01-01

    Based on the established methods kernel canonical correlation analysis and multivariate alteration detection we introduce a kernel version of multivariate alteration detection. A case study with SPOT HRV data shows that the kMAD variates focus on extreme change observations.......Based on the established methods kernel canonical correlation analysis and multivariate alteration detection we introduce a kernel version of multivariate alteration detection. A case study with SPOT HRV data shows that the kMAD variates focus on extreme change observations....

  6. SPEQTACLE: An automated generalized fuzzy C-means algorithm for tumor delineation in PET

    International Nuclear Information System (INIS)

    Lapuyade-Lahorgue, Jérôme; Visvikis, Dimitris; Hatt, Mathieu; Pradier, Olivier; Cheze Le Rest, Catherine

    2015-01-01

    Purpose: Accurate tumor delineation in positron emission tomography (PET) images is crucial in oncology. Although recent methods achieved good results, there is still room for improvement regarding tumors with complex shapes, low signal-to-noise ratio, and high levels of uptake heterogeneity. Methods: The authors developed and evaluated an original clustering-based method called spatial positron emission quantification of tumor—Automatic Lp-norm estimation (SPEQTACLE), based on the fuzzy C-means (FCM) algorithm with a generalization exploiting a Hilbertian norm to more accurately account for the fuzzy and non-Gaussian distributions of PET images. An automatic and reproducible estimation scheme of the norm on an image-by-image basis was developed. Robustness was assessed by studying the consistency of results obtained on multiple acquisitions of the NEMA phantom on three different scanners with varying acquisition parameters. Accuracy was evaluated using classification errors (CEs) on simulated and clinical images. SPEQTACLE was compared to another FCM implementation, fuzzy local information C-means (FLICM) and fuzzy locally adaptive Bayesian (FLAB). Results: SPEQTACLE demonstrated a level of robustness similar to FLAB (variability of 14% ± 9% vs 14% ± 7%, p = 0.15) and higher than FLICM (45% ± 18%, p < 0.0001), and improved accuracy with lower CE (14% ± 11%) over both FLICM (29% ± 29%) and FLAB (22% ± 20%) on simulated images. Improvement was significant for the more challenging cases with CE of 17% ± 11% for SPEQTACLE vs 28% ± 22% for FLAB (p = 0.009) and 40% ± 35% for FLICM (p < 0.0001). For the clinical cases, SPEQTACLE outperformed FLAB and FLICM (15% ± 6% vs 37% ± 14% and 30% ± 17%, p < 0.004). Conclusions: SPEQTACLE benefitted from the fully automatic estimation of the norm on a case-by-case basis. This promising approach will be extended to multimodal images and multiclass estimation in future developments

  7. A novel adaptive kernel method with kernel centers determined by a support vector regression approach

    NARCIS (Netherlands)

    Sun, L.G.; De Visser, C.C.; Chu, Q.P.; Mulder, J.A.

    2012-01-01

    The optimality of the kernel number and kernel centers plays a significant role in determining the approximation power of nearly all kernel methods. However, the process of choosing optimal kernels is always formulated as a global optimization task, which is hard to accomplish. Recently, an

  8. Soil-landscape modelling using fuzzy c-means clustering of attribute data derived from a Digital Elevation Model (DEM).

    NARCIS (Netherlands)

    Bruin, de S.; Stein, A.

    1998-01-01

    This study explores the use of fuzzy c-means clustering of attribute data derived from a digital elevation model to represent transition zones in the soil-landscape. The conventional geographic model used for soil-landscape description is not able to properly deal with these. Fuzzy c-means

  9. Complex use of cottonseed kernels

    Energy Technology Data Exchange (ETDEWEB)

    Glushenkova, A I

    1977-01-01

    A review with 41 references is made on the manufacture of oil, protein, and other products from cottonseed, the effects of gossypol on protein yield and quality and technology of gossypol removal. A process eliminating thermal treatment of the kernels and permitting the production of oil, proteins, phytin, gossypol, sugar, sterols, phosphatides, tocopherols, and residual shells and baggase is described.

  10. Kernel regression with functional response

    OpenAIRE

    Ferraty, Frédéric; Laksaci, Ali; Tadj, Amel; Vieu, Philippe

    2011-01-01

    We consider kernel regression estimate when both the response variable and the explanatory one are functional. The rates of uniform almost complete convergence are stated as function of the small ball probability of the predictor and as function of the entropy of the set on which uniformity is obtained.

  11. GRIM : Leveraging GPUs for Kernel integrity monitoring

    NARCIS (Netherlands)

    Koromilas, Lazaros; Vasiliadis, Giorgos; Athanasopoulos, Ilias; Ioannidis, Sotiris

    2016-01-01

    Kernel rootkits can exploit an operating system and enable future accessibility and control, despite all recent advances in software protection. A promising defense mechanism against rootkits is Kernel Integrity Monitor (KIM) systems, which inspect the kernel text and data to discover any malicious

  12. Paramecium: An Extensible Object-Based Kernel

    NARCIS (Netherlands)

    van Doorn, L.; Homburg, P.; Tanenbaum, A.S.

    1995-01-01

    In this paper we describe the design of an extensible kernel, called Paramecium. This kernel uses an object-based software architecture which together with instance naming, late binding and explicit overrides enables easy reconfiguration. Determining which components reside in the kernel protection

  13. Local Observed-Score Kernel Equating

    Science.gov (United States)

    Wiberg, Marie; van der Linden, Wim J.; von Davier, Alina A.

    2014-01-01

    Three local observed-score kernel equating methods that integrate methods from the local equating and kernel equating frameworks are proposed. The new methods were compared with their earlier counterparts with respect to such measures as bias--as defined by Lord's criterion of equity--and percent relative error. The local kernel item response…

  14. Veto-Consensus Multiple Kernel Learning

    NARCIS (Netherlands)

    Zhou, Y.; Hu, N.; Spanos, C.J.

    2016-01-01

    We propose Veto-Consensus Multiple Kernel Learning (VCMKL), a novel way of combining multiple kernels such that one class of samples is described by the logical intersection (consensus) of base kernelized decision rules, whereas the other classes by the union (veto) of their complements. The

  15. An Extreme Learning Machine Based on the Mixed Kernel Function of Triangular Kernel and Generalized Hermite Dirichlet Kernel

    Directory of Open Access Journals (Sweden)

    Senyue Zhang

    2016-01-01

    Full Text Available According to the characteristics that the kernel function of extreme learning machine (ELM and its performance have a strong correlation, a novel extreme learning machine based on a generalized triangle Hermitian kernel function was proposed in this paper. First, the generalized triangle Hermitian kernel function was constructed by using the product of triangular kernel and generalized Hermite Dirichlet kernel, and the proposed kernel function was proved as a valid kernel function of extreme learning machine. Then, the learning methodology of the extreme learning machine based on the proposed kernel function was presented. The biggest advantage of the proposed kernel is its kernel parameter values only chosen in the natural numbers, which thus can greatly shorten the computational time of parameter optimization and retain more of its sample data structure information. Experiments were performed on a number of binary classification, multiclassification, and regression datasets from the UCI benchmark repository. The experiment results demonstrated that the robustness and generalization performance of the proposed method are outperformed compared to other extreme learning machines with different kernels. Furthermore, the learning speed of proposed method is faster than support vector machine (SVM methods.

  16. Viscozyme L pretreatment on palm kernels improved the aroma of palm kernel oil after kernel roasting.

    Science.gov (United States)

    Zhang, Wencan; Leong, Siew Mun; Zhao, Feifei; Zhao, Fangju; Yang, Tiankui; Liu, Shaoquan

    2018-05-01

    With an interest to enhance the aroma of palm kernel oil (PKO), Viscozyme L, an enzyme complex containing a wide range of carbohydrases, was applied to alter the carbohydrates in palm kernels (PK) to modulate the formation of volatiles upon kernel roasting. After Viscozyme treatment, the content of simple sugars and free amino acids in PK increased by 4.4-fold and 4.5-fold, respectively. After kernel roasting and oil extraction, significantly more 2,5-dimethylfuran, 2-[(methylthio)methyl]-furan, 1-(2-furanyl)-ethanone, 1-(2-furyl)-2-propanone, 5-methyl-2-furancarboxaldehyde and 2-acetyl-5-methylfuran but less 2-furanmethanol and 2-furanmethanol acetate were found in treated PKO; the correlation between their formation and simple sugar profile was estimated by using partial least square regression (PLS1). Obvious differences in pyrroles and Strecker aldehydes were also found between the control and treated PKOs. Principal component analysis (PCA) clearly discriminated the treated PKOs from that of control PKOs on the basis of all volatile compounds. Such changes in volatiles translated into distinct sensory attributes, whereby treated PKO was more caramelic and burnt after aqueous extraction and more nutty, roasty, caramelic and smoky after solvent extraction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Wigner functions defined with Laplace transform kernels.

    Science.gov (United States)

    Oh, Se Baek; Petruccelli, Jonathan C; Tian, Lei; Barbastathis, George

    2011-10-24

    We propose a new Wigner-type phase-space function using Laplace transform kernels--Laplace kernel Wigner function. Whereas momentum variables are real in the traditional Wigner function, the Laplace kernel Wigner function may have complex momentum variables. Due to the property of the Laplace transform, a broader range of signals can be represented in complex phase-space. We show that the Laplace kernel Wigner function exhibits similar properties in the marginals as the traditional Wigner function. As an example, we use the Laplace kernel Wigner function to analyze evanescent waves supported by surface plasmon polariton. © 2011 Optical Society of America

  18. Credit scoring analysis using kernel discriminant

    Science.gov (United States)

    Widiharih, T.; Mukid, M. A.; Mustafid

    2018-05-01

    Credit scoring model is an important tool for reducing the risk of wrong decisions when granting credit facilities to applicants. This paper investigate the performance of kernel discriminant model in assessing customer credit risk. Kernel discriminant analysis is a non- parametric method which means that it does not require any assumptions about the probability distribution of the input. The main ingredient is a kernel that allows an efficient computation of Fisher discriminant. We use several kernel such as normal, epanechnikov, biweight, and triweight. The models accuracy was compared each other using data from a financial institution in Indonesia. The results show that kernel discriminant can be an alternative method that can be used to determine who is eligible for a credit loan. In the data we use, it shows that a normal kernel is relevant to be selected for credit scoring using kernel discriminant model. Sensitivity and specificity reach to 0.5556 and 0.5488 respectively.

  19. Testing Infrastructure for Operating System Kernel Development

    DEFF Research Database (Denmark)

    Walter, Maxwell; Karlsson, Sven

    2014-01-01

    Testing is an important part of system development, and to test effectively we require knowledge of the internal state of the system under test. Testing an operating system kernel is a challenge as it is the operating system that typically provides access to this internal state information. Multi......-core kernels pose an even greater challenge due to concurrency and their shared kernel state. In this paper, we present a testing framework that addresses these challenges by running the operating system in a virtual machine, and using virtual machine introspection to both communicate with the kernel...... and obtain information about the system. We have also developed an in-kernel testing API that we can use to develop a suite of unit tests in the kernel. We are using our framework for for the development of our own multi-core research kernel....

  20. Kernel parameter dependence in spatial factor analysis

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    2010-01-01

    kernel PCA. Shawe-Taylor and Cristianini [4] is an excellent reference for kernel methods in general. Bishop [5] and Press et al. [6] describe kernel methods among many other subjects. The kernel version of PCA handles nonlinearities by implicitly transforming data into high (even infinite) dimensional...... feature space via the kernel function and then performing a linear analysis in that space. In this paper we shall apply a kernel version of maximum autocorrelation factor (MAF) [7, 8] analysis to irregularly sampled stream sediment geochemistry data from South Greenland and illustrate the dependence...... of the kernel width. The 2,097 samples each covering on average 5 km2 are analyzed chemically for the content of 41 elements....

  1. Unsupervised seismic facies analysis with spatial constraints using regularized fuzzy c-means

    Science.gov (United States)

    Song, Chengyun; Liu, Zhining; Cai, Hanpeng; Wang, Yaojun; Li, Xingming; Hu, Guangmin

    2017-12-01

    Seismic facies analysis techniques combine classification algorithms and seismic attributes to generate a map that describes main reservoir heterogeneities. However, most of the current classification algorithms only view the seismic attributes as isolated data regardless of their spatial locations, and the resulting map is generally sensitive to noise. In this paper, a regularized fuzzy c-means (RegFCM) algorithm is used for unsupervised seismic facies analysis. Due to the regularized term of the RegFCM algorithm, the data whose adjacent locations belong to same classification will play a more important role in the iterative process than other data. Therefore, this method can reduce the effect of seismic data noise presented in discontinuous regions. The synthetic data with different signal/noise values are used to demonstrate the noise tolerance ability of the RegFCM algorithm. Meanwhile, the fuzzy factor, the neighbour window size and the regularized weight are tested using various values, to provide a reference of how to set these parameters. The new approach is also applied to a real seismic data set from the F3 block of the Netherlands. The results show improved spatial continuity, with clear facies boundaries and channel morphology, which reveals that the method is an effective seismic facies analysis tool.

  2. Approximate fuzzy C-means (AFCM) cluster analysis of medical magnetic resonance image (MRI) data

    International Nuclear Information System (INIS)

    DelaPaz, R.L.; Chang, P.J.; Bernstein, R.; Dave, J.V.

    1987-01-01

    The authors describe the application of an approximate fuzzy C-means (AFCM) clustering algorithm as a data dimension reduction approach to medical magnetic resonance images (MRI). Image data consisted of one T1-weighted, two T2-weighted, and one T2*-weighted (magnetic susceptibility) image for each cranial study and a matrix of 10 images generated from 10 combinations of TE and TR for each body lymphoma study. All images were obtained with a 1.5 Tesla imaging system (GE Signa). Analyses were performed on over 100 MR image sets with a variety of pathologies. The cluster analysis was operated in an unsupervised mode and computational overhead was minimized by utilizing a table look-up approach without adversely affecting accuracy. Image data were first segmented into 2 coarse clusters, each of which was then subdivided into 16 fine clusters. The final tissue classifications were presented as color-coded anatomically-mapped images and as two and three dimensional displays of cluster center data in selected feature space (minimum spanning tree). Fuzzy cluster analysis appears to be a clinically useful dimension reduction technique which results in improved diagnostic specificity of medical magnetic resonance images

  3. A Decentralized Fuzzy C-Means-Based Energy-Efficient Routing Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Osama Moh’d Alia

    2014-01-01

    Full Text Available Energy conservation in wireless sensor networks (WSNs is a vital consideration when designing wireless networking protocols. In this paper, we propose a Decentralized Fuzzy Clustering Protocol, named DCFP, which minimizes total network energy dissipation to promote maximum network lifetime. The process of constructing the infrastructure for a given WSN is performed only once at the beginning of the protocol at a base station, which remains unchanged throughout the network’s lifetime. In this initial construction step, a fuzzy C-means algorithm is adopted to allocate sensor nodes into their most appropriate clusters. Subsequently, the protocol runs its rounds where each round is divided into a CH-Election phase and a Data Transmission phase. In the CH-Election phase, the election of new cluster heads is done locally in each cluster where a new multicriteria objective function is proposed to enhance the quality of elected cluster heads. In the Data Transmission phase, the sensing and data transmission from each sensor node to their respective cluster head is performed and cluster heads in turn aggregate and send the sensed data to the base station. Simulation results demonstrate that the proposed protocol improves network lifetime, data delivery, and energy consumption compared to other well-known energy-efficient protocols.

  4. A decentralized fuzzy C-means-based energy-efficient routing protocol for wireless sensor networks.

    Science.gov (United States)

    Alia, Osama Moh'd

    2014-01-01

    Energy conservation in wireless sensor networks (WSNs) is a vital consideration when designing wireless networking protocols. In this paper, we propose a Decentralized Fuzzy Clustering Protocol, named DCFP, which minimizes total network energy dissipation to promote maximum network lifetime. The process of constructing the infrastructure for a given WSN is performed only once at the beginning of the protocol at a base station, which remains unchanged throughout the network's lifetime. In this initial construction step, a fuzzy C-means algorithm is adopted to allocate sensor nodes into their most appropriate clusters. Subsequently, the protocol runs its rounds where each round is divided into a CH-Election phase and a Data Transmission phase. In the CH-Election phase, the election of new cluster heads is done locally in each cluster where a new multicriteria objective function is proposed to enhance the quality of elected cluster heads. In the Data Transmission phase, the sensing and data transmission from each sensor node to their respective cluster head is performed and cluster heads in turn aggregate and send the sensed data to the base station. Simulation results demonstrate that the proposed protocol improves network lifetime, data delivery, and energy consumption compared to other well-known energy-efficient protocols.

  5. A Decentralized Fuzzy C-Means-Based Energy-Efficient Routing Protocol for Wireless Sensor Networks

    Science.gov (United States)

    2014-01-01

    Energy conservation in wireless sensor networks (WSNs) is a vital consideration when designing wireless networking protocols. In this paper, we propose a Decentralized Fuzzy Clustering Protocol, named DCFP, which minimizes total network energy dissipation to promote maximum network lifetime. The process of constructing the infrastructure for a given WSN is performed only once at the beginning of the protocol at a base station, which remains unchanged throughout the network's lifetime. In this initial construction step, a fuzzy C-means algorithm is adopted to allocate sensor nodes into their most appropriate clusters. Subsequently, the protocol runs its rounds where each round is divided into a CH-Election phase and a Data Transmission phase. In the CH-Election phase, the election of new cluster heads is done locally in each cluster where a new multicriteria objective function is proposed to enhance the quality of elected cluster heads. In the Data Transmission phase, the sensing and data transmission from each sensor node to their respective cluster head is performed and cluster heads in turn aggregate and send the sensed data to the base station. Simulation results demonstrate that the proposed protocol improves network lifetime, data delivery, and energy consumption compared to other well-known energy-efficient protocols. PMID:25162060

  6. Query by example video based on fuzzy c-means initialized by fixed clustering center

    Science.gov (United States)

    Hou, Sujuan; Zhou, Shangbo; Siddique, Muhammad Abubakar

    2012-04-01

    Currently, the high complexity of video contents has posed the following major challenges for fast retrieval: (1) efficient similarity measurements, and (2) efficient indexing on the compact representations. A video-retrieval strategy based on fuzzy c-means (FCM) is presented for querying by example. Initially, the query video is segmented and represented by a set of shots, each shot can be represented by a key frame, and then we used video processing techniques to find visual cues to represent the key frame. Next, because the FCM algorithm is sensitive to the initializations, here we initialized the cluster center by the shots of query video so that users could achieve appropriate convergence. After an FCM cluster was initialized by the query video, each shot of query video was considered a benchmark point in the aforesaid cluster, and each shot in the database possessed a class label. The similarity between the shots in the database with the same class label and benchmark point can be transformed into the distance between them. Finally, the similarity between the query video and the video in database was transformed into the number of similar shots. Our experimental results demonstrated the performance of this proposed approach.

  7. Segmentasi Citra USG (Ultrasonography Kanker Payudara Menggunakan Fuzzy C-Means Clustering

    Directory of Open Access Journals (Sweden)

    Ri Munarto

    2018-01-01

    Full Text Available Health is a valuable treasure in survival and can be used as a parameter of quality assurance of human life. Some people even tend to ignore of health, so don’t care about the disease that will them attack and finally to death. Noted the main disease that causes death in the world is cancer. Cancer has many types, but the greatest death in each year is caused by breast cancer. Indonesia found more than 80% of cases in advanced stage, it is estimated that the incidence get 12 people from 10000 women. These numbers will to grow when there is no such treatment as prevention or early diagnosis. Growing of breast cancer patients inversely proportional to the percentage of complaints patients to doctors diagnosis in USG (Ultrasonography breast cancer 20%. The problem is ultrasound imaging which is distorted by speckle noise. The solution is to help easier for doctors to diagnose the presence and form of breast cancer using USG. Speckle noise on USG is able to good reduce using SRAD (Speckle Reducing Anisotropic Diffusion. The filtering results are then well segmented using Fuzzy C-Means Clustering with an accuracy 91.43% of 35 samples USG image breast cancer.

  8. Fuzzy C-means classification for corrosion evolution of steel images

    Science.gov (United States)

    Trujillo, Maite; Sadki, Mustapha

    2004-05-01

    An unavoidable problem of metal structures is their exposure to rust degradation during their operational life. Thus, the surfaces need to be assessed in order to avoid potential catastrophes. There is considerable interest in the use of patch repair strategies which minimize the project costs. However, to operate such strategies with confidence in the long useful life of the repair, it is essential that the condition of the existing coatings and the steel substrate can be accurately quantified and classified. This paper describes the application of fuzzy set theory for steel surfaces classification according to the steel rust time. We propose a semi-automatic technique to obtain image clustering using the Fuzzy C-means (FCM) algorithm and we analyze two kinds of data to study the classification performance. Firstly, we investigate the use of raw images" pixels without any pre-processing methods and neighborhood pixels. Secondly, we apply Gaussian noise to the images with different standard deviation to study the FCM method tolerance to Gaussian noise. The noisy images simulate the possible perturbations of the images due to the weather or rust deposits in the steel surfaces during typical on-site acquisition procedures

  9. Segmentation of pomegranate MR images using spatial fuzzy c-means (SFCM) algorithm

    Science.gov (United States)

    Moradi, Ghobad; Shamsi, Mousa; Sedaaghi, M. H.; Alsharif, M. R.

    2011-10-01

    Segmentation is one of the fundamental issues of image processing and machine vision. It plays a prominent role in a variety of image processing applications. In this paper, one of the most important applications of image processing in MRI segmentation of pomegranate is explored. Pomegranate is a fruit with pharmacological properties such as being anti-viral and anti-cancer. Having a high quality product in hand would be critical factor in its marketing. The internal quality of the product is comprehensively important in the sorting process. The determination of qualitative features cannot be manually made. Therefore, the segmentation of the internal structures of the fruit needs to be performed as accurately as possible in presence of noise. Fuzzy c-means (FCM) algorithm is noise-sensitive and pixels with noise are classified inversely. As a solution, in this paper, the spatial FCM algorithm in pomegranate MR images' segmentation is proposed. The algorithm is performed with setting the spatial neighborhood information in FCM and modification of fuzzy membership function for each class. The segmentation algorithm results on the original and the corrupted Pomegranate MR images by Gaussian, Salt Pepper and Speckle noises show that the SFCM algorithm operates much more significantly than FCM algorithm. Also, after diverse steps of qualitative and quantitative analysis, we have concluded that the SFCM algorithm with 5×5 window size is better than the other windows.

  10. A Self-Adaptive Fuzzy c-Means Algorithm for Determining the Optimal Number of Clusters

    Science.gov (United States)

    Wang, Zhihao; Yi, Jing

    2016-01-01

    For the shortcoming of fuzzy c-means algorithm (FCM) needing to know the number of clusters in advance, this paper proposed a new self-adaptive method to determine the optimal number of clusters. Firstly, a density-based algorithm was put forward. The algorithm, according to the characteristics of the dataset, automatically determined the possible maximum number of clusters instead of using the empirical rule n and obtained the optimal initial cluster centroids, improving the limitation of FCM that randomly selected cluster centroids lead the convergence result to the local minimum. Secondly, this paper, by introducing a penalty function, proposed a new fuzzy clustering validity index based on fuzzy compactness and separation, which ensured that when the number of clusters verged on that of objects in the dataset, the value of clustering validity index did not monotonically decrease and was close to zero, so that the optimal number of clusters lost robustness and decision function. Then, based on these studies, a self-adaptive FCM algorithm was put forward to estimate the optimal number of clusters by the iterative trial-and-error process. At last, experiments were done on the UCI, KDD Cup 1999, and synthetic datasets, which showed that the method not only effectively determined the optimal number of clusters, but also reduced the iteration of FCM with the stable clustering result. PMID:28042291

  11. Validation of Born Traveltime Kernels

    Science.gov (United States)

    Baig, A. M.; Dahlen, F. A.; Hung, S.

    2001-12-01

    Most inversions for Earth structure using seismic traveltimes rely on linear ray theory to translate observed traveltime anomalies into seismic velocity anomalies distributed throughout the mantle. However, ray theory is not an appropriate tool to use when velocity anomalies have scale lengths less than the width of the Fresnel zone. In the presence of these structures, we need to turn to a scattering theory in order to adequately describe all of the features observed in the waveform. By coupling the Born approximation to ray theory, the first order dependence of heterogeneity on the cross-correlated traveltimes (described by the Fréchet derivative or, more colourfully, the banana-doughnut kernel) may be determined. To determine for what range of parameters these banana-doughnut kernels outperform linear ray theory, we generate several random media specified by their statistical properties, namely the RMS slowness perturbation and the scale length of the heterogeneity. Acoustic waves are numerically generated from a point source using a 3-D pseudo-spectral wave propagation code. These waves are then recorded at a variety of propagation distances from the source introducing a third parameter to the problem: the number of wavelengths traversed by the wave. When all of the heterogeneity has scale lengths larger than the width of the Fresnel zone, ray theory does as good a job at predicting the cross-correlated traveltime as the banana-doughnut kernels do. Below this limit, wavefront healing becomes a significant effect and ray theory ceases to be effective even though the kernels remain relatively accurate provided the heterogeneity is weak. The study of wave propagation in random media is of a more general interest and we will also show our measurements of the velocity shift and the variance of traveltime compare to various theoretical predictions in a given regime.

  12. RKRD: Runtime Kernel Rootkit Detection

    Science.gov (United States)

    Grover, Satyajit; Khosravi, Hormuzd; Kolar, Divya; Moffat, Samuel; Kounavis, Michael E.

    In this paper we address the problem of protecting computer systems against stealth malware. The problem is important because the number of known types of stealth malware increases exponentially. Existing approaches have some advantages for ensuring system integrity but sophisticated techniques utilized by stealthy malware can thwart them. We propose Runtime Kernel Rootkit Detection (RKRD), a hardware-based, event-driven, secure and inclusionary approach to kernel integrity that addresses some of the limitations of the state of the art. Our solution is based on the principles of using virtualization hardware for isolation, verifying signatures coming from trusted code as opposed to malware for scalability and performing system checks driven by events. Our RKRD implementation is guided by our goals of strong isolation, no modifications to target guest OS kernels, easy deployment, minimal infra-structure impact, and minimal performance overhead. We developed a system prototype and conducted a number of experiments which show that the per-formance impact of our solution is negligible.

  13. Kernel Bayesian ART and ARTMAP.

    Science.gov (United States)

    Masuyama, Naoki; Loo, Chu Kiong; Dawood, Farhan

    2018-02-01

    Adaptive Resonance Theory (ART) is one of the successful approaches to resolving "the plasticity-stability dilemma" in neural networks, and its supervised learning model called ARTMAP is a powerful tool for classification. Among several improvements, such as Fuzzy or Gaussian based models, the state of art model is Bayesian based one, while solving the drawbacks of others. However, it is known that the Bayesian approach for the high dimensional and a large number of data requires high computational cost, and the covariance matrix in likelihood becomes unstable. This paper introduces Kernel Bayesian ART (KBA) and ARTMAP (KBAM) by integrating Kernel Bayes' Rule (KBR) and Correntropy Induced Metric (CIM) to Bayesian ART (BA) and ARTMAP (BAM), respectively, while maintaining the properties of BA and BAM. The kernel frameworks in KBA and KBAM are able to avoid the curse of dimensionality. In addition, the covariance-free Bayesian computation by KBR provides the efficient and stable computational capability to KBA and KBAM. Furthermore, Correntropy-based similarity measurement allows improving the noise reduction ability even in the high dimensional space. The simulation experiments show that KBA performs an outstanding self-organizing capability than BA, and KBAM provides the superior classification ability than BAM, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Brain vascular image segmentation based on fuzzy local information C-means clustering

    Science.gov (United States)

    Hu, Chaoen; Liu, Xia; Liang, Xiao; Hui, Hui; Yang, Xin; Tian, Jie

    2017-02-01

    Light sheet fluorescence microscopy (LSFM) is a powerful optical resolution fluorescence microscopy technique which enables to observe the mouse brain vascular network in cellular resolution. However, micro-vessel structures are intensity inhomogeneity in LSFM images, which make an inconvenience for extracting line structures. In this work, we developed a vascular image segmentation method by enhancing vessel details which should be useful for estimating statistics like micro-vessel density. Since the eigenvalues of hessian matrix and its sign describes different geometric structure in images, which enable to construct vascular similarity function and enhance line signals, the main idea of our method is to cluster the pixel values of the enhanced image. Our method contained three steps: 1) calculate the multiscale gradients and the differences between eigenvalues of Hessian matrix. 2) In order to generate the enhanced microvessels structures, a feed forward neural network was trained by 2.26 million pixels for dealing with the correlations between multi-scale gradients and the differences between eigenvalues. 3) The fuzzy local information c-means clustering (FLICM) was used to cluster the pixel values in enhance line signals. To verify the feasibility and effectiveness of this method, mouse brain vascular images have been acquired by a commercial light-sheet microscope in our lab. The experiment of the segmentation method showed that dice similarity coefficient can reach up to 85%. The results illustrated that our approach extracting line structures of blood vessels dramatically improves the vascular image and enable to accurately extract blood vessels in LSFM images.

  15. [Predicting Incidence of Hepatitis E in Chinausing Fuzzy Time Series Based on Fuzzy C-Means Clustering Analysis].

    Science.gov (United States)

    Luo, Yi; Zhang, Tao; Li, Xiao-song

    2016-05-01

    To explore the application of fuzzy time series model based on fuzzy c-means clustering in forecasting monthly incidence of Hepatitis E in mainland China. Apredictive model (fuzzy time series method based on fuzzy c-means clustering) was developed using Hepatitis E incidence data in mainland China between January 2004 and July 2014. The incidence datafrom August 2014 to November 2014 were used to test the fitness of the predictive model. The forecasting results were compared with those resulted from traditional fuzzy time series models. The fuzzy time series model based on fuzzy c-means clustering had 0.001 1 mean squared error (MSE) of fitting and 6.977 5 x 10⁻⁴ MSE of forecasting, compared with 0.0017 and 0.0014 from the traditional forecasting model. The results indicate that the fuzzy time series model based on fuzzy c-means clustering has a better performance in forecasting incidence of Hepatitis E.

  16. Improved R2* liver iron concentration assessment using a novel fuzzy c-mean clustering scheme

    International Nuclear Information System (INIS)

    Saiviroonporn, Pairash; Viprakasit, Vip; Krittayaphong, Rungroj

    2015-01-01

    In thalassemia patients, R2* liver iron concentration (LIC) measurement is a common clinical tool for assessing iron overload and for determining necessary chelator dose and evaluating its efficacy. Despite the importance of accurate LIC measurement, existing methods suffer from LIC variability, especially at the severe iron overload range due to inclusion of vessel parts in LIC calculation. In this study, we build upon previous Fuzzy C-Mean (FCM) clustering work to formulate a scheme with superior performance in segmenting vessel pixels from the parenchyma. Our method (MIX-FCM) combines our novel 2D-FCM with the existing 1D-FCM algorithm. This study further assessed possible optimal clustering parameters (OP scheme) and proposed a semi-automatic (SA) scheme for routine clinical application. Segmentation of liver parenchyma and vessels was performed on T2* images and their LIC maps in 196 studies from 147 thalassemia major patients. We used manual segmentation as the reference. 1D-FCM clustering was performed on the acquired image alone and 2D-FCM used both the acquired image and its LIC data. To execute the MIX-FCM method, the best outcome (OP-MIX-FCM) was selected from the aforementioned methods and was compared to the SA-MIX-FCM scheme. We used the percent value of the normalized interquartile range (nIQR) to its median to evaluate the variability of all methods. 2D-FCM clustering is more effective than 1D-FCM clustering at the severe overload range only, but inferior for other ranges (where 1D-FCM provides suitable results). This complementary performance between the two methods allows MIX-FCM to improve results for all ranges. OP-MIX-FCM clustering error was 2.1 ± 2.3 %, compared with 10.3 ± 9.9 % and 7.0 ± 11.9 % from 1D- and 2D-FCM clustering, respectively. SA-MIX-FCM result was comparable to OP-MIX-FCM result, with both schemes showing ability to decrease overall nIQR by approximately 30 %. Our proposed 2D-FCM algorithm is not as superior to 1D-FCM as

  17. Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering.

    Science.gov (United States)

    Oliynyk, Andriy; Bonifazzi, Claudio; Montani, Fernando; Fadiga, Luciano

    2012-08-08

    Understanding how neurons contribute to perception, motor functions and cognition requires the reliable detection of spiking activity of individual neurons during a number of different experimental conditions. An important problem in computational neuroscience is thus to develop algorithms to automatically detect and sort the spiking activity of individual neurons from extracellular recordings. While many algorithms for spike sorting exist, the problem of accurate and fast online sorting still remains a challenging issue. Here we present a novel software tool, called FSPS (Fuzzy SPike Sorting), which is designed to optimize: (i) fast and accurate detection, (ii) offline sorting and (iii) online classification of neuronal spikes with very limited or null human intervention. The method is based on a combination of Singular Value Decomposition for fast and highly accurate pre-processing of spike shapes, unsupervised Fuzzy C-mean, high-resolution alignment of extracted spike waveforms, optimal selection of the number of features to retain, automatic identification the number of clusters, and quantitative quality assessment of resulting clusters independent on their size. After being trained on a short testing data stream, the method can reliably perform supervised online classification and monitoring of single neuron activity. The generalized procedure has been implemented in our FSPS spike sorting software (available free for non-commercial academic applications at the address: http://www.spikesorting.com) using LabVIEW (National Instruments, USA). We evaluated the performance of our algorithm both on benchmark simulated datasets with different levels of background noise and on real extracellular recordings from premotor cortex of Macaque monkeys. The results of these tests showed an excellent accuracy in discriminating low-amplitude and overlapping spikes under strong background noise. The performance of our method is competitive with respect to other robust spike

  18. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction

    Energy Technology Data Exchange (ETDEWEB)

    Tsantis, Stavros [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504 (Greece); Spiliopoulos, Stavros; Karnabatidis, Dimitrios [Department of Radiology, School of Medicine, University of Patras, Rion, GR 26504 (Greece); Skouroliakou, Aikaterini [Department of Energy Technology Engineering, Technological Education Institute of Athens, Athens 12210 (Greece); Hazle, John D. [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Kagadis, George C., E-mail: gkagad@gmail.com, E-mail: George.Kagadis@med.upatras.gr, E-mail: GKagadis@mdanderson.org [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504, Greece and Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2014-07-15

    Purpose: Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. Methods: The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. Results: A total of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists’ qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. Conclusions: A

  19. Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering

    Directory of Open Access Journals (Sweden)

    Oliynyk Andriy

    2012-08-01

    Full Text Available Abstract Background Understanding how neurons contribute to perception, motor functions and cognition requires the reliable detection of spiking activity of individual neurons during a number of different experimental conditions. An important problem in computational neuroscience is thus to develop algorithms to automatically detect and sort the spiking activity of individual neurons from extracellular recordings. While many algorithms for spike sorting exist, the problem of accurate and fast online sorting still remains a challenging issue. Results Here we present a novel software tool, called FSPS (Fuzzy SPike Sorting, which is designed to optimize: (i fast and accurate detection, (ii offline sorting and (iii online classification of neuronal spikes with very limited or null human intervention. The method is based on a combination of Singular Value Decomposition for fast and highly accurate pre-processing of spike shapes, unsupervised Fuzzy C-mean, high-resolution alignment of extracted spike waveforms, optimal selection of the number of features to retain, automatic identification the number of clusters, and quantitative quality assessment of resulting clusters independent on their size. After being trained on a short testing data stream, the method can reliably perform supervised online classification and monitoring of single neuron activity. The generalized procedure has been implemented in our FSPS spike sorting software (available free for non-commercial academic applications at the address: http://www.spikesorting.com using LabVIEW (National Instruments, USA. We evaluated the performance of our algorithm both on benchmark simulated datasets with different levels of background noise and on real extracellular recordings from premotor cortex of Macaque monkeys. The results of these tests showed an excellent accuracy in discriminating low-amplitude and overlapping spikes under strong background noise. The performance of our method is

  20. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction

    International Nuclear Information System (INIS)

    Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitrios; Skouroliakou, Aikaterini; Hazle, John D.; Kagadis, George C.

    2014-01-01

    Purpose: Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. Methods: The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. Results: A total of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists’ qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. Conclusions: A

  1. Theory of reproducing kernels and applications

    CERN Document Server

    Saitoh, Saburou

    2016-01-01

    This book provides a large extension of the general theory of reproducing kernels published by N. Aronszajn in 1950, with many concrete applications. In Chapter 1, many concrete reproducing kernels are first introduced with detailed information. Chapter 2 presents a general and global theory of reproducing kernels with basic applications in a self-contained way. Many fundamental operations among reproducing kernel Hilbert spaces are dealt with. Chapter 2 is the heart of this book. Chapter 3 is devoted to the Tikhonov regularization using the theory of reproducing kernels with applications to numerical and practical solutions of bounded linear operator equations. In Chapter 4, the numerical real inversion formulas of the Laplace transform are presented by applying the Tikhonov regularization, where the reproducing kernels play a key role in the results. Chapter 5 deals with ordinary differential equations; Chapter 6 includes many concrete results for various fundamental partial differential equations. In Chapt...

  2. Relationship between processing score and kernel-fraction particle size in whole-plant corn silage.

    Science.gov (United States)

    Dias Junior, G S; Ferraretto, L F; Salvati, G G S; de Resende, L C; Hoffman, P C; Pereira, M N; Shaver, R D

    2016-04-01

    Kernel processing increases starch digestibility in whole-plant corn silage (WPCS). Corn silage processing score (CSPS), the percentage of starch passing through a 4.75-mm sieve, is widely used to assess degree of kernel breakage in WPCS. However, the geometric mean particle size (GMPS) of the kernel-fraction that passes through the 4.75-mm sieve has not been well described. Therefore, the objectives of this study were (1) to evaluate particle size distribution and digestibility of kernels cut in varied particle sizes; (2) to propose a method to measure GMPS in WPCS kernels; and (3) to evaluate the relationship between CSPS and GMPS of the kernel fraction in WPCS. Composite samples of unfermented, dried kernels from 110 corn hybrids commonly used for silage production were kept whole (WH) or manually cut in 2, 4, 8, 16, 32 or 64 pieces (2P, 4P, 8P, 16P, 32P, and 64P, respectively). Dry sieving to determine GMPS, surface area, and particle size distribution using 9 sieves with nominal square apertures of 9.50, 6.70, 4.75, 3.35, 2.36, 1.70, 1.18, and 0.59 mm and pan, as well as ruminal in situ dry matter (DM) digestibilities were performed for each kernel particle number treatment. Incubation times were 0, 3, 6, 12, and 24 h. The ruminal in situ DM disappearance of unfermented kernels increased with the reduction in particle size of corn kernels. Kernels kept whole had the lowest ruminal DM disappearance for all time points with maximum DM disappearance of 6.9% at 24 h and the greatest disappearance was observed for 64P, followed by 32P and 16P. Samples of WPCS (n=80) from 3 studies representing varied theoretical length of cut settings and processor types and settings were also evaluated. Each WPCS sample was divided in 2 and then dried at 60 °C for 48 h. The CSPS was determined in duplicate on 1 of the split samples, whereas on the other split sample the kernel and stover fractions were separated using a hydrodynamic separation procedure. After separation, the

  3. Convergence of barycentric coordinates to barycentric kernels

    KAUST Repository

    Kosinka, Jiří

    2016-02-12

    We investigate the close correspondence between barycentric coordinates and barycentric kernels from the point of view of the limit process when finer and finer polygons converge to a smooth convex domain. We show that any barycentric kernel is the limit of a set of barycentric coordinates and prove that the convergence rate is quadratic. Our convergence analysis extends naturally to barycentric interpolants and mappings induced by barycentric coordinates and kernels. We verify our theoretical convergence results numerically on several examples.

  4. Convergence of barycentric coordinates to barycentric kernels

    KAUST Repository

    Kosinka, Jiří ; Barton, Michael

    2016-01-01

    We investigate the close correspondence between barycentric coordinates and barycentric kernels from the point of view of the limit process when finer and finer polygons converge to a smooth convex domain. We show that any barycentric kernel is the limit of a set of barycentric coordinates and prove that the convergence rate is quadratic. Our convergence analysis extends naturally to barycentric interpolants and mappings induced by barycentric coordinates and kernels. We verify our theoretical convergence results numerically on several examples.

  5. Kernel principal component analysis for change detection

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Morton, J.C.

    2008-01-01

    region acquired at two different time points. If change over time does not dominate the scene, the projection of the original two bands onto the second eigenvector will show change over time. In this paper a kernel version of PCA is used to carry out the analysis. Unlike ordinary PCA, kernel PCA...... with a Gaussian kernel successfully finds the change observations in a case where nonlinearities are introduced artificially....

  6. Partial Deconvolution with Inaccurate Blur Kernel.

    Science.gov (United States)

    Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei

    2017-10-17

    Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning

  7. Process for producing metal oxide kernels and kernels so obtained

    International Nuclear Information System (INIS)

    Lelievre, Bernard; Feugier, Andre.

    1974-01-01

    The process desbribed is for producing fissile or fertile metal oxide kernels used in the fabrication of fuels for high temperature nuclear reactors. This process consists in adding to an aqueous solution of at least one metallic salt, particularly actinide nitrates, at least one chemical compound capable of releasing ammonia, in dispersing drop by drop the solution thus obtained into a hot organic phase to gel the drops and transform them into solid particles. These particles are then washed, dried and treated to turn them into oxide kernels. The organic phase used for the gel reaction is formed of a mixture composed of two organic liquids, one acting as solvent and the other being a product capable of extracting the anions from the metallic salt of the drop at the time of gelling. Preferably an amine is used as product capable of extracting the anions. Additionally, an alcohol that causes a part dehydration of the drops can be employed as solvent, thus helping to increase the resistance of the particles [fr

  8. Hilbertian kernels and spline functions

    CERN Document Server

    Atteia, M

    1992-01-01

    In this monograph, which is an extensive study of Hilbertian approximation, the emphasis is placed on spline functions theory. The origin of the book was an effort to show that spline theory parallels Hilbertian Kernel theory, not only for splines derived from minimization of a quadratic functional but more generally for splines considered as piecewise functions type. Being as far as possible self-contained, the book may be used as a reference, with information about developments in linear approximation, convex optimization, mechanics and partial differential equations.

  9. Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system

    Science.gov (United States)

    Wu, Qi

    2010-03-01

    Demand forecasts play a crucial role in supply chain management. The future demand for a certain product is the basis for the respective replenishment systems. Aiming at demand series with small samples, seasonal character, nonlinearity, randomicity and fuzziness, the existing support vector kernel does not approach the random curve of the sales time series in the space (quadratic continuous integral space). In this paper, we present a hybrid intelligent system combining the wavelet kernel support vector machine and particle swarm optimization for demand forecasting. The results of application in car sale series forecasting show that the forecasting approach based on the hybrid PSOWv-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves that this method is, for the discussed example, better than hybrid PSOv-SVM and other traditional methods.

  10. Application of fuzzy C-Means Algorithm for Determining Field of Interest in Information System Study STTH Medan

    Science.gov (United States)

    Rahman Syahputra, Edy; Agustina Dalimunthe, Yulia; Irvan

    2017-12-01

    Many students are confused in choosing their own field of specialization, ultimately choosing areas of specialization that are incompatible with a variety of reasons such as just following a friend or because of the area of interest of many choices without knowing whether they have Competencies in the chosen field of interest. This research aims to apply Clustering method with Fuzzy C-means algorithm to classify students in the chosen interest field. The Fuzzy C-Means algorithm is one of the easiest and often used algorithms in data grouping techniques because it makes efficient estimates and does not require many parameters. Several studies have led to the conclusion that the Fuzzy C-Means algorithm can be used to group data based on certain attributes. In this research will be used Fuzzy C-Means algorithm to classify student data based on the value of core subjects in the selection of specialization field. This study also tested the accuracy of the Fuzzy C-Means algorithm in the determination of interest area. The study was conducted on the STT-Harapan Medan Information System Study program, and the object of research is the value of all students of STT-Harapan Medan Information System Study Program 2012. From this research, it is expected to get the specialization field, according to the students' ability based on the prerequisite principal value.

  11. Study on the scattering law and scattering kernel of hydrogen in zirconium hydride

    International Nuclear Information System (INIS)

    Jiang Xinbiao; Chen Wei; Chen Da; Yin Banghua; Xie Zhongsheng

    1999-01-01

    The nuclear analytical model of calculating scattering law and scattering kernel for the uranium zirconium hybrid reactor is described. In the light of the acoustic and optic model of zirconium hydride, its frequency distribution function f(ω) is given and the scattering law of hydrogen in zirconium hydride is obtained by GASKET. The scattering kernel σ l (E 0 →E) of hydrogen bound in zirconium hydride is provided by the SMP code in the standard WIMS cross section library. Along with this library, WIMS is used to calculate the thermal neutron energy spectrum of fuel cell. The results are satisfied

  12. QTL Mapping of Kernel Number-Related Traits and Validation of One Major QTL for Ear Length in Maize.

    Science.gov (United States)

    Huo, Dongao; Ning, Qiang; Shen, Xiaomeng; Liu, Lei; Zhang, Zuxin

    2016-01-01

    The kernel number is a grain yield component and an important maize breeding goal. Ear length, kernel number per row and ear row number are highly correlated with the kernel number per ear, which eventually determines the ear weight and grain yield. In this study, two sets of F2:3 families developed from two bi-parental crosses sharing one inbred line were used to identify quantitative trait loci (QTL) for four kernel number-related traits: ear length, kernel number per row, ear row number and ear weight. A total of 39 QTLs for the four traits were identified in the two populations. The phenotypic variance explained by a single QTL ranged from 0.4% to 29.5%. Additionally, 14 overlapping QTLs formed 5 QTL clusters on chromosomes 1, 4, 5, 7, and 10. Intriguingly, six QTLs for ear length and kernel number per row overlapped in a region on chromosome 1. This region was designated qEL1.10 and was validated as being simultaneously responsible for ear length, kernel number per row and ear weight in a near isogenic line-derived population, suggesting that qEL1.10 was a pleiotropic QTL with large effects. Furthermore, the performance of hybrids generated by crossing 6 elite inbred lines with two near isogenic lines at qEL1.10 showed the breeding value of qEL1.10 for the improvement of the kernel number and grain yield of maize hybrids. This study provides a basis for further fine mapping, molecular marker-aided breeding and functional studies of kernel number-related traits in maize.

  13. Dense Medium Machine Processing Method for Palm Kernel/ Shell ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Cracked palm kernel is a mixture of kernels, broken shells, dusts and other impurities. In ... machine processing method using dense medium, a separator, a shell collector and a kernel .... efficiency, ease of maintenance and uniformity of.

  14. Mitigation of artifacts in rtm with migration kernel decomposition

    KAUST Repository

    Zhan, Ge; Schuster, Gerard T.

    2012-01-01

    The migration kernel for reverse-time migration (RTM) can be decomposed into four component kernels using Born scattering and migration theory. Each component kernel has a unique physical interpretation and can be interpreted differently

  15. Modified fuzzy c-means applied to a Bragg grating-based spectral imager for material clustering

    Science.gov (United States)

    Rodríguez, Aida; Nieves, Juan Luis; Valero, Eva; Garrote, Estíbaliz; Hernández-Andrés, Javier; Romero, Javier

    2012-01-01

    We have modified the Fuzzy C-Means algorithm for an application related to segmentation of hyperspectral images. Classical fuzzy c-means algorithm uses Euclidean distance for computing sample membership to each cluster. We have introduced a different distance metric, Spectral Similarity Value (SSV), in order to have a more convenient similarity measure for reflectance information. SSV distance metric considers both magnitude difference (by the use of Euclidean distance) and spectral shape (by the use of Pearson correlation). Experiments confirmed that the introduction of this metric improves the quality of hyperspectral image segmentation, creating spectrally more dense clusters and increasing the number of correctly classified pixels.

  16. Ranking Support Vector Machine with Kernel Approximation

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2017-01-01

    Full Text Available Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels can give higher accuracy than linear RankSVM (RankSVM with a linear kernel for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  17. Ranking Support Vector Machine with Kernel Approximation.

    Science.gov (United States)

    Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  18. Sentiment classification with interpolated information diffusion kernels

    NARCIS (Netherlands)

    Raaijmakers, S.

    2007-01-01

    Information diffusion kernels - similarity metrics in non-Euclidean information spaces - have been found to produce state of the art results for document classification. In this paper, we present a novel approach to global sentiment classification using these kernels. We carry out a large array of

  19. Evolution kernel for the Dirac field

    International Nuclear Information System (INIS)

    Baaquie, B.E.

    1982-06-01

    The evolution kernel for the free Dirac field is calculated using the Wilson lattice fermions. We discuss the difficulties due to which this calculation has not been previously performed in the continuum theory. The continuum limit is taken, and the complete energy eigenfunctions as well as the propagator are then evaluated in a new manner using the kernel. (author)

  20. Panel data specifications in nonparametric kernel regression

    DEFF Research Database (Denmark)

    Czekaj, Tomasz Gerard; Henningsen, Arne

    parametric panel data estimators to analyse the production technology of Polish crop farms. The results of our nonparametric kernel regressions generally differ from the estimates of the parametric models but they only slightly depend on the choice of the kernel functions. Based on economic reasoning, we...

  1. Improving the Bandwidth Selection in Kernel Equating

    Science.gov (United States)

    Andersson, Björn; von Davier, Alina A.

    2014-01-01

    We investigate the current bandwidth selection methods in kernel equating and propose a method based on Silverman's rule of thumb for selecting the bandwidth parameters. In kernel equating, the bandwidth parameters have previously been obtained by minimizing a penalty function. This minimization process has been criticized by practitioners…

  2. Kernel Korner : The Linux keyboard driver

    NARCIS (Netherlands)

    Brouwer, A.E.

    1995-01-01

    Our Kernel Korner series continues with an article describing the Linux keyboard driver. This article is not for "Kernel Hackers" only--in fact, it will be most useful to those who wish to use their own keyboard to its fullest potential, and those who want to write programs to take advantage of the

  3. Metabolic network prediction through pairwise rational kernels.

    Science.gov (United States)

    Roche-Lima, Abiel; Domaratzki, Michael; Fristensky, Brian

    2014-09-26

    Metabolic networks are represented by the set of metabolic pathways. Metabolic pathways are a series of biochemical reactions, in which the product (output) from one reaction serves as the substrate (input) to another reaction. Many pathways remain incompletely characterized. One of the major challenges of computational biology is to obtain better models of metabolic pathways. Existing models are dependent on the annotation of the genes. This propagates error accumulation when the pathways are predicted by incorrectly annotated genes. Pairwise classification methods are supervised learning methods used to classify new pair of entities. Some of these classification methods, e.g., Pairwise Support Vector Machines (SVMs), use pairwise kernels. Pairwise kernels describe similarity measures between two pairs of entities. Using pairwise kernels to handle sequence data requires long processing times and large storage. Rational kernels are kernels based on weighted finite-state transducers that represent similarity measures between sequences or automata. They have been effectively used in problems that handle large amount of sequence information such as protein essentiality, natural language processing and machine translations. We create a new family of pairwise kernels using weighted finite-state transducers (called Pairwise Rational Kernel (PRK)) to predict metabolic pathways from a variety of biological data. PRKs take advantage of the simpler representations and faster algorithms of transducers. Because raw sequence data can be used, the predictor model avoids the errors introduced by incorrect gene annotations. We then developed several experiments with PRKs and Pairwise SVM to validate our methods using the metabolic network of Saccharomyces cerevisiae. As a result, when PRKs are used, our method executes faster in comparison with other pairwise kernels. Also, when we use PRKs combined with other simple kernels that include evolutionary information, the accuracy

  4. Bayesian Kernel Mixtures for Counts.

    Science.gov (United States)

    Canale, Antonio; Dunson, David B

    2011-12-01

    Although Bayesian nonparametric mixture models for continuous data are well developed, there is a limited literature on related approaches for count data. A common strategy is to use a mixture of Poissons, which unfortunately is quite restrictive in not accounting for distributions having variance less than the mean. Other approaches include mixing multinomials, which requires finite support, and using a Dirichlet process prior with a Poisson base measure, which does not allow smooth deviations from the Poisson. As a broad class of alternative models, we propose to use nonparametric mixtures of rounded continuous kernels. An efficient Gibbs sampler is developed for posterior computation, and a simulation study is performed to assess performance. Focusing on the rounded Gaussian case, we generalize the modeling framework to account for multivariate count data, joint modeling with continuous and categorical variables, and other complications. The methods are illustrated through applications to a developmental toxicity study and marketing data. This article has supplementary material online.

  5. Putting Priors in Mixture Density Mercer Kernels

    Science.gov (United States)

    Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd

    2004-01-01

    This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. We describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using predefined kernels. These data adaptive kernels can en- code prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS). The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains template for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic- algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code. The results show that the Mixture Density Mercer-Kernel described here outperforms tree-based classification in distinguishing high-redshift galaxies from low- redshift galaxies by approximately 16% on test data, bagged trees by approximately 7%, and bagged trees built on a much larger sample of data by approximately 2%.

  6. Anisotropic hydrodynamics with a scalar collisional kernel

    Science.gov (United States)

    Almaalol, Dekrayat; Strickland, Michael

    2018-04-01

    Prior studies of nonequilibrium dynamics using anisotropic hydrodynamics have used the relativistic Anderson-Witting scattering kernel or some variant thereof. In this paper, we make the first study of the impact of using a more realistic scattering kernel. For this purpose, we consider a conformal system undergoing transversally homogenous and boost-invariant Bjorken expansion and take the collisional kernel to be given by the leading order 2 ↔2 scattering kernel in scalar λ ϕ4 . We consider both classical and quantum statistics to assess the impact of Bose enhancement on the dynamics. We also determine the anisotropic nonequilibrium attractor of a system subject to this collisional kernel. We find that, when the near-equilibrium relaxation-times in the Anderson-Witting and scalar collisional kernels are matched, the scalar kernel results in a higher degree of momentum-space anisotropy during the system's evolution, given the same initial conditions. Additionally, we find that taking into account Bose enhancement further increases the dynamically generated momentum-space anisotropy.

  7. Nitrogen deficiency in maize. I. Effects on crop growth, development, dry matter partitioning, and kernel set

    International Nuclear Information System (INIS)

    Uhart, S.A.; Andrade, F.H.

    1995-01-01

    Variations in N availability affect growth and development of maize (Zea mays L.) and may lead to changes in crop physiological conditions at flowering and in kernel set. The objectives of this study were (i) to establish the effect of N availability on crop development, crop radiation interception, radiation use efficiency, and dry matter partitioning; and (ii) to study the relationship between kernel number and crop growth at flowering and between kernel number and crop N accumulation at flowering. Three experiments with a commercial hybrid (DK636) were carried out under field conditions at the INTA Balcarce Experimental Station, Argentina, without water limitations. The treatments consisted of different radiation levels, obtained by shading, combined with different levels of N availability obtained by the addition of N fertilizer or organic matter to immobilize N. Nitrogen deficiencies delayed both vegetative and reproductive phenological development, slightly reduced leaf emergence rate, and strongly diminished leaf expansion rate and leaf area duration. Nitrogen deficiencies reduced radiation interception as much as radiation use efficiency and their effects on the ear dry mater/total dry matter ratio at harvest were associated with crop growth rate reductions at flowering. Dry matter partitioning to reproductive sinks at flowering and the ear dry matter/total dry matter ratio at harvest were reduced by N shortages. Significant relationships between kernel number and N accumulation rate or crop growth rate at flowering were fitted by linear + plateau functions with thresholds above which kernel number and grain yield did not increase

  8. Effect of self-pollination monitored by microsatellite markers on maize kernel weight

    Directory of Open Access Journals (Sweden)

    Marcio Balestre

    2007-01-01

    Full Text Available The objective of this study was to evaluate the effect of fertilization by autopollen on maize kernel weight. Fivesingle cross hybrids (30F90. A2555, DKB333B, 2223, and 2324 were planted and hybrid leaf samples taken for DNAextraction. The crosses 2223XDKB333B; 2223XA2555; 2324XDKB333B and 2324XP30F90 were performed. Ten kernels ofeach ear of each cross were separated, sown in a greenhouse and the DNA of the respective seedlings was extracted, to identifythe kernel origin. The results obtained here demonstrated that allopollen increased the mean kernel weight by 16.5mg (gainof 4.65%. The proportion of sampled allopollen to self pollen was statistically equal, according to the c2 test, demonstratingthat there were no significant differences between the proportion of fertilized and sampled allopollen and autopollen in the ear.It was concluded that compared to autopollen, allopollen increases the mean weight of fertilized grain.

  9. Comparative Performance Of Using PCA With K-Means And Fuzzy C Means Clustering For Customer Segmentation

    Directory of Open Access Journals (Sweden)

    Fahmida Afrin

    2015-08-01

    Full Text Available Abstract Data mining is the process of analyzing data and discovering useful information. Sometimes it is called knowledge Discovery. Clustering refers to groups whereas data are grouped in such a way that the data in one cluster are similar data in different clusters are dissimilar. Many data mining technologies are developed for customer segmentation. PCA is working as a preprocessor of Fuzzy C means and K- means for reducing the high dimensional and noisy data. There are many clustering method apply on customer segmentation. In this paper the performance of Fuzzy C means and K-means after implementing Principal Component Analysis is analyzed. We analyze the performance on a standard dataset for these algorithms. The results indicate that PCA based fuzzy clustering produces better results than PCA based K-means and is a more stable method for customer segmentation.

  10. NLO corrections to the Kernel of the BKP-equations

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Fadin, V.S. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Novosibirskij Gosudarstvennyj Univ., Novosibirsk (Russian Federation); Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation); Vacca, G.P. [INFN, Sezione di Bologna (Italy)

    2012-10-02

    We present results for the NLO kernel of the BKP equations for composite states of three reggeized gluons in the Odderon channel, both in QCD and in N=4 SYM. The NLO kernel consists of the NLO BFKL kernel in the color octet representation and the connected 3{yields}3 kernel, computed in the tree approximation.

  11. Adaptive Kernel in Meshsize Boosting Algorithm in KDE ...

    African Journals Online (AJOL)

    This paper proposes the use of adaptive kernel in a meshsize boosting algorithm in kernel density estimation. The algorithm is a bias reduction scheme like other existing schemes but uses adaptive kernel instead of the regular fixed kernels. An empirical study for this scheme is conducted and the findings are comparatively ...

  12. Adaptive Kernel In The Bootstrap Boosting Algorithm In KDE ...

    African Journals Online (AJOL)

    This paper proposes the use of adaptive kernel in a bootstrap boosting algorithm in kernel density estimation. The algorithm is a bias reduction scheme like other existing schemes but uses adaptive kernel instead of the regular fixed kernels. An empirical study for this scheme is conducted and the findings are comparatively ...

  13. Kernel maximum autocorrelation factor and minimum noise fraction transformations

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    2010-01-01

    in hyperspectral HyMap scanner data covering a small agricultural area, and 3) maize kernel inspection. In the cases shown, the kernel MAF/MNF transformation performs better than its linear counterpart as well as linear and kernel PCA. The leading kernel MAF/MNF variates seem to possess the ability to adapt...

  14. 7 CFR 51.1441 - Half-kernel.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Half-kernel. 51.1441 Section 51.1441 Agriculture... Standards for Grades of Shelled Pecans Definitions § 51.1441 Half-kernel. Half-kernel means one of the separated halves of an entire pecan kernel with not more than one-eighth of its original volume missing...

  15. 7 CFR 51.2296 - Three-fourths half kernel.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Three-fourths half kernel. 51.2296 Section 51.2296 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards...-fourths half kernel. Three-fourths half kernel means a portion of a half of a kernel which has more than...

  16. 7 CFR 981.401 - Adjusted kernel weight.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Adjusted kernel weight. 981.401 Section 981.401... Administrative Rules and Regulations § 981.401 Adjusted kernel weight. (a) Definition. Adjusted kernel weight... kernels in excess of five percent; less shells, if applicable; less processing loss of one percent for...

  17. 7 CFR 51.1403 - Kernel color classification.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Kernel color classification. 51.1403 Section 51.1403... STANDARDS) United States Standards for Grades of Pecans in the Shell 1 Kernel Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be described in terms of the color...

  18. The Linux kernel as flexible product-line architecture

    NARCIS (Netherlands)

    M. de Jonge (Merijn)

    2002-01-01

    textabstractThe Linux kernel source tree is huge ($>$ 125 MB) and inflexible (because it is difficult to add new kernel components). We propose to make this architecture more flexible by assembling kernel source trees dynamically from individual kernel components. Users then, can select what

  19. Distributed k-Means Algorithm and Fuzzy c-Means Algorithm for Sensor Networks Based on Multiagent Consensus Theory.

    Science.gov (United States)

    Qin, Jiahu; Fu, Weiming; Gao, Huijun; Zheng, Wei Xing

    2016-03-03

    This paper is concerned with developing a distributed k-means algorithm and a distributed fuzzy c-means algorithm for wireless sensor networks (WSNs) where each node is equipped with sensors. The underlying topology of the WSN is supposed to be strongly connected. The consensus algorithm in multiagent consensus theory is utilized to exchange the measurement information of the sensors in WSN. To obtain a faster convergence speed as well as a higher possibility of having the global optimum, a distributed k-means++ algorithm is first proposed to find the initial centroids before executing the distributed k-means algorithm and the distributed fuzzy c-means algorithm. The proposed distributed k-means algorithm is capable of partitioning the data observed by the nodes into measure-dependent groups which have small in-group and large out-group distances, while the proposed distributed fuzzy c-means algorithm is capable of partitioning the data observed by the nodes into different measure-dependent groups with degrees of membership values ranging from 0 to 1. Simulation results show that the proposed distributed algorithms can achieve almost the same results as that given by the centralized clustering algorithms.

  20. Developing the fuzzy c-means clustering algorithm based on maximum entropy for multitarget tracking in a cluttered environment

    Science.gov (United States)

    Chen, Xiao; Li, Yaan; Yu, Jing; Li, Yuxing

    2018-01-01

    For fast and more effective implementation of tracking multiple targets in a cluttered environment, we propose a multiple targets tracking (MTT) algorithm called maximum entropy fuzzy c-means clustering joint probabilistic data association that combines fuzzy c-means clustering and the joint probabilistic data association (PDA) algorithm. The algorithm uses the membership value to express the probability of the target originating from measurement. The membership value is obtained through fuzzy c-means clustering objective function optimized by the maximum entropy principle. When considering the effect of the public measurement, we use a correction factor to adjust the association probability matrix to estimate the state of the target. As this algorithm avoids confirmation matrix splitting, it can solve the high computational load problem of the joint PDA algorithm. The results of simulations and analysis conducted for tracking neighbor parallel targets and cross targets in a different density cluttered environment show that the proposed algorithm can realize MTT quickly and efficiently in a cluttered environment. Further, the performance of the proposed algorithm remains constant with increasing process noise variance. The proposed algorithm has the advantages of efficiency and low computational load, which can ensure optimum performance when tracking multiple targets in a dense cluttered environment.

  1. Digital signal processing with kernel methods

    CERN Document Server

    Rojo-Alvarez, José Luis; Muñoz-Marí, Jordi; Camps-Valls, Gustavo

    2018-01-01

    A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research. Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors. * Presents the necess...

  2. Parsimonious Wavelet Kernel Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Wang Qin

    2015-11-01

    Full Text Available In this study, a parsimonious scheme for wavelet kernel extreme learning machine (named PWKELM was introduced by combining wavelet theory and a parsimonious algorithm into kernel extreme learning machine (KELM. In the wavelet analysis, bases that were localized in time and frequency to represent various signals effectively were used. Wavelet kernel extreme learning machine (WELM maximized its capability to capture the essential features in “frequency-rich” signals. The proposed parsimonious algorithm also incorporated significant wavelet kernel functions via iteration in virtue of Householder matrix, thus producing a sparse solution that eased the computational burden and improved numerical stability. The experimental results achieved from the synthetic dataset and a gas furnace instance demonstrated that the proposed PWKELM is efficient and feasible in terms of improving generalization accuracy and real time performance.

  3. Ensemble Approach to Building Mercer Kernels

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive...

  4. Control Transfer in Operating System Kernels

    Science.gov (United States)

    1994-05-13

    microkernel system that runs less code in the kernel address space. To realize the performance benefit of allocating stacks in unmapped kseg0 memory, the...review how I modified the Mach 3.0 kernel to use continuations. Because of Mach’s message-passing microkernel structure, interprocess communication was...critical control transfer paths, deeply- nested call chains are undesirable in any case because of the function call overhead. 4.1.3 Microkernel Operating

  5. Uranium kernel formation via internal gelation

    International Nuclear Information System (INIS)

    Hunt, R.D.; Collins, J.L.

    2004-01-01

    In the 1970s and 1980s, U.S. Department of Energy (DOE) conducted numerous studies on the fabrication of nuclear fuel particles using the internal gelation process. These amorphous kernels were prone to flaking or breaking when gases tried to escape from the kernels during calcination and sintering. These earlier kernels would not meet today's proposed specifications for reactor fuel. In the interim, the internal gelation process has been used to create hydrous metal oxide microspheres for the treatment of nuclear waste. With the renewed interest in advanced nuclear fuel by the DOE, the lessons learned from the nuclear waste studies were recently applied to the fabrication of uranium kernels, which will become tri-isotropic (TRISO) fuel particles. These process improvements included equipment modifications, small changes to the feed formulations, and a new temperature profile for the calcination and sintering. The modifications to the laboratory-scale equipment and its operation as well as small changes to the feed composition increased the product yield from 60% to 80%-99%. The new kernels were substantially less glassy, and no evidence of flaking was found. Finally, key process parameters were identified, and their effects on the uranium microspheres and kernels are discussed. (orig.)

  6. Quantum tomography, phase-space observables and generalized Markov kernels

    International Nuclear Information System (INIS)

    Pellonpaeae, Juha-Pekka

    2009-01-01

    We construct a generalized Markov kernel which transforms the observable associated with the homodyne tomography into a covariant phase-space observable with a regular kernel state. Illustrative examples are given in the cases of a 'Schroedinger cat' kernel state and the Cahill-Glauber s-parametrized distributions. Also we consider an example of a kernel state when the generalized Markov kernel cannot be constructed.

  7. Penetuan Bilangan Iodin pada Hydrogenated Palm Kernel Oil (HPKO) dan Refined Bleached Deodorized Palm Kernel Oil (RBDPKO)

    OpenAIRE

    Sitompul, Monica Angelina

    2015-01-01

    Have been conducted Determination of Iodin Value by method titration to some Hydrogenated Palm Kernel Oil (HPKO) and Refined Bleached Deodorized Palm Kernel Oil (RBDPKO). The result of analysis obtained the Iodin Value in Hydrogenated Palm Kernel Oil (A) = 0,16 gr I2/100gr, Hydrogenated Palm Kernel Oil (B) = 0,20 gr I2/100gr, Hydrogenated Palm Kernel Oil (C) = 0,24 gr I2/100gr. And in Refined Bleached Deodorized Palm Kernel Oil (A) = 17,51 gr I2/100gr, Refined Bleached Deodorized Palm Kernel ...

  8. Exact Heat Kernel on a Hypersphere and Its Applications in Kernel SVM

    Directory of Open Access Journals (Sweden)

    Chenchao Zhao

    2018-01-01

    Full Text Available Many contemporary statistical learning methods assume a Euclidean feature space. This paper presents a method for defining similarity based on hyperspherical geometry and shows that it often improves the performance of support vector machine compared to other competing similarity measures. Specifically, the idea of using heat diffusion on a hypersphere to measure similarity has been previously proposed and tested by Lafferty and Lebanon [1], demonstrating promising results based on a heuristic heat kernel obtained from the zeroth order parametrix expansion; however, how well this heuristic kernel agrees with the exact hyperspherical heat kernel remains unknown. This paper presents a higher order parametrix expansion of the heat kernel on a unit hypersphere and discusses several problems associated with this expansion method. We then compare the heuristic kernel with an exact form of the heat kernel expressed in terms of a uniformly and absolutely convergent series in high-dimensional angular momentum eigenmodes. Being a natural measure of similarity between sample points dwelling on a hypersphere, the exact kernel often shows superior performance in kernel SVM classifications applied to text mining, tumor somatic mutation imputation, and stock market analysis.

  9. Sistem Perencanaan Penambahan Stok Barang menggunakan Metode Fuzzy C-Means dan Fuzzy Tsukamoto (Studi Kasus di Distributor Alfamart Semarang

    Directory of Open Access Journals (Sweden)

    Tono Puryanto

    2016-08-01

    Full Text Available Gudang barang suatu perusahaan merupakan tempat penyimpanan barang yang akan dijual kepada pelanggan. Permasalahan utama pada gudang barang suatu perusahaan adalah terjadinya penumpukan barang atau barang keluar lebih banyak daripada barang masuk yang dapat mengakibatkan kerugian bagi perusahaan. Penambahan stok barang pada gudang dilakukan berdasarkan permintaan pelanggan dan stok barang saat itu. Banyak permintaan pelanggan setiap waktu selalu berubah yang dapat menyebabkan terjadinya penumpukan barang atau kekurangan barang. Hal ini menyebabkan sulit dalam pengambilan keputusan jumlah barang yang akan dikirim. Salah satu cara untuk membantu pengambilan keputusan tersebut yaitu dengan pembangunan aplikasi perencanaan penambahan stok barang yang menggunakan konsep logika fuzzy. Fuzzy merupakan suatu cara untuk menyelesaikan masalah ketidakpastian. Pada aplikasi perencanaan penambahan stok barang, proses penentuan penambahan stok barang dilakukan dengan menggunakan metode fuzzy C-Means dan mekanisme inferensi fuzzy Tsukamoto. Hasil akhir dari aplikasi ini berupa jumlah barang yang akan dikirim. Hasil tersebut menjadi saran yang dapat dipertimbangkan oleh admin bagian pengiriman barang. Pengujian dilakukan menggunakan data Coca-Cola pada bulan September 2014 sampai Oktober 2014. Pada pengujian sistem dilakukan 11 kali pengujian dengan memasukkan stok dan permintaan data asli menghasilkan tingkat keakuratan sistem sebesar 80,22 %. Tingkat keakuratan sistem dapat berubah tergantung pada data pelatihan yang digunakan pada proses pelatihan fuzzy C-Means.

  10. Comparison between Possibilistic c-Means (PCM and Artificial Neural Network (ANN Classification Algorithms in Land use/ Land cover Classification

    Directory of Open Access Journals (Sweden)

    Ganchimeg Ganbold

    2017-03-01

    Full Text Available There are several statistical classification algorithms available for landuse/land cover classification. However, each has a certain bias orcompromise. Some methods like the parallel piped approach in supervisedclassification, cannot classify continuous regions within a feature. Onthe other hand, while unsupervised classification method takes maximumadvantage of spectral variability in an image, the maximally separableclusters in spectral space may not do much for our perception of importantclasses in a given study area. In this research, the output of an ANNalgorithm was compared with the Possibilistic c-Means an improvementof the fuzzy c-Means on both moderate resolutions Landsat8 and a highresolution Formosat 2 images. The Formosat 2 image comes with an8m spectral resolution on the multispectral data. This multispectral imagedata was resampled to 10m in order to maintain a uniform ratio of1:3 against Landsat 8 image. Six classes were chosen for analysis including:Dense forest, eucalyptus, water, grassland, wheat and riverine sand. Using a standard false color composite (FCC, the six features reflecteddifferently in the infrared region with wheat producing the brightestpixel values. Signature collection per class was therefore easily obtainedfor all classifications. The output of both ANN and FCM, were analyzedseparately for accuracy and an error matrix generated to assess the qualityand accuracy of the classification algorithms. When you compare theresults of the two methods on a per-class-basis, ANN had a crisperoutput compared to PCM which yielded clusters with pixels especiallyon the moderate resolution Landsat 8 imagery.

  11. Fractal dimension to classify the heart sound recordings with KNN and fuzzy c-mean clustering methods

    Science.gov (United States)

    Juniati, D.; Khotimah, C.; Wardani, D. E. K.; Budayasa, K.

    2018-01-01

    The heart abnormalities can be detected from heart sound. A heart sound can be heard directly with a stethoscope or indirectly by a phonocardiograph, a machine of the heart sound recording. This paper presents the implementation of fractal dimension theory to make a classification of phonocardiograms into a normal heart sound, a murmur, or an extrasystole. The main algorithm used to calculate the fractal dimension was Higuchi’s Algorithm. There were two steps to make a classification of phonocardiograms, feature extraction, and classification. For feature extraction, we used Discrete Wavelet Transform to decompose the signal of heart sound into several sub-bands depending on the selected level. After the decomposition process, the signal was processed using Fast Fourier Transform (FFT) to determine the spectral frequency. The fractal dimension of the FFT output was calculated using Higuchi Algorithm. The classification of fractal dimension of all phonocardiograms was done with KNN and Fuzzy c-mean clustering methods. Based on the research results, the best accuracy obtained was 86.17%, the feature extraction by DWT decomposition level 3 with the value of kmax 50, using 5-fold cross validation and the number of neighbors was 5 at K-NN algorithm. Meanwhile, for fuzzy c-mean clustering, the accuracy was 78.56%.

  12. Aflatoxin contamination of developing corn kernels.

    Science.gov (United States)

    Amer, M A

    2005-01-01

    Preharvest of corn and its contamination with aflatoxin is a serious problem. Some environmental and cultural factors responsible for infection and subsequent aflatoxin production were investigated in this study. Stage of growth and location of kernels on corn ears were found to be one of the important factors in the process of kernel infection with A. flavus & A. parasiticus. The results showed positive correlation between the stage of growth and kernel infection. Treatment of corn with aflatoxin reduced germination, protein and total nitrogen contents. Total and reducing soluble sugar was increase in corn kernels as response to infection. Sucrose and protein content were reduced in case of both pathogens. Shoot system length, seeding fresh weigh and seedling dry weigh was also affected. Both pathogens induced reduction of starch content. Healthy corn seedlings treated with aflatoxin solution were badly affected. Their leaves became yellow then, turned brown with further incubation. Moreover, their total chlorophyll and protein contents showed pronounced decrease. On the other hand, total phenolic compounds were increased. Histopathological studies indicated that A. flavus & A. parasiticus could colonize corn silks and invade developing kernels. Germination of A. flavus spores was occurred and hyphae spread rapidly across the silk, producing extensive growth and lateral branching. Conidiophores and conidia had formed in and on the corn silk. Temperature and relative humidity greatly influenced the growth of A. flavus & A. parasiticus and aflatoxin production.

  13. Analog forecasting with dynamics-adapted kernels

    Science.gov (United States)

    Zhao, Zhizhen; Giannakis, Dimitrios

    2016-09-01

    Analog forecasting is a nonparametric technique introduced by Lorenz in 1969 which predicts the evolution of states of a dynamical system (or observables defined on the states) by following the evolution of the sample in a historical record of observations which most closely resembles the current initial data. Here, we introduce a suite of forecasting methods which improve traditional analog forecasting by combining ideas from kernel methods developed in harmonic analysis and machine learning and state-space reconstruction for dynamical systems. A key ingredient of our approach is to replace single-analog forecasting with weighted ensembles of analogs constructed using local similarity kernels. The kernels used here employ a number of dynamics-dependent features designed to improve forecast skill, including Takens’ delay-coordinate maps (to recover information in the initial data lost through partial observations) and a directional dependence on the dynamical vector field generating the data. Mathematically, our approach is closely related to kernel methods for out-of-sample extension of functions, and we discuss alternative strategies based on the Nyström method and the multiscale Laplacian pyramids technique. We illustrate these techniques in applications to forecasting in a low-order deterministic model for atmospheric dynamics with chaotic metastability, and interannual-scale forecasting in the North Pacific sector of a comprehensive climate model. We find that forecasts based on kernel-weighted ensembles have significantly higher skill than the conventional approach following a single analog.

  14. OS X and iOS Kernel Programming

    CERN Document Server

    Halvorsen, Ole Henry

    2011-01-01

    OS X and iOS Kernel Programming combines essential operating system and kernel architecture knowledge with a highly practical approach that will help you write effective kernel-level code. You'll learn fundamental concepts such as memory management and thread synchronization, as well as the I/O Kit framework. You'll also learn how to write your own kernel-level extensions, such as device drivers for USB and Thunderbolt devices, including networking, storage and audio drivers. OS X and iOS Kernel Programming provides an incisive and complete introduction to the XNU kernel, which runs iPhones, i

  15. The Classification of Diabetes Mellitus Using Kernel k-means

    Science.gov (United States)

    Alamsyah, M.; Nafisah, Z.; Prayitno, E.; Afida, A. M.; Imah, E. M.

    2018-01-01

    Diabetes Mellitus is a metabolic disorder which is characterized by chronicle hypertensive glucose. Automatics detection of diabetes mellitus is still challenging. This study detected diabetes mellitus by using kernel k-Means algorithm. Kernel k-means is an algorithm which was developed from k-means algorithm. Kernel k-means used kernel learning that is able to handle non linear separable data; where it differs with a common k-means. The performance of kernel k-means in detecting diabetes mellitus is also compared with SOM algorithms. The experiment result shows that kernel k-means has good performance and a way much better than SOM.

  16. Object classification and detection with context kernel descriptors

    DEFF Research Database (Denmark)

    Pan, Hong; Olsen, Søren Ingvor; Zhu, Yaping

    2014-01-01

    Context information is important in object representation. By embedding context cue of image attributes into kernel descriptors, we propose a set of novel kernel descriptors called Context Kernel Descriptors (CKD) for object classification and detection. The motivation of CKD is to use spatial...... consistency of image attributes or features defined within a neighboring region to improve the robustness of descriptor matching in kernel space. For feature selection, Kernel Entropy Component Analysis (KECA) is exploited to learn a subset of discriminative CKD. Different from Kernel Principal Component...

  17. Multiple insect resistance in 59 commmerical corn hybrids - 2017

    Science.gov (United States)

    Commercial corn hybrids were screened for ear- and kernel-feeding insect resistance under field conditions at Tifton, GA. Nine hybrids were rated Very Good (VG), the highest rating for multiple insect resistance in 2017 (see following table). Thirteen were Good (G), 19 were Fair (F), and 13 were Poo...

  18. Nonparametric evaluation of dynamic disease risk: a spatio-temporal kernel approach.

    Directory of Open Access Journals (Sweden)

    Zhijie Zhang

    Full Text Available Quantifying the distributions of disease risk in space and time jointly is a key element for understanding spatio-temporal phenomena while also having the potential to enhance our understanding of epidemiologic trajectories. However, most studies to date have neglected time dimension and focus instead on the "average" spatial pattern of disease risk, thereby masking time trajectories of disease risk. In this study we propose a new idea titled "spatio-temporal kernel density estimation (stKDE" that employs hybrid kernel (i.e., weight functions to evaluate the spatio-temporal disease risks. This approach not only can make full use of sample data but also "borrows" information in a particular manner from neighboring points both in space and time via appropriate choice of kernel functions. Monte Carlo simulations show that the proposed method performs substantially better than the traditional (i.e., frequency-based kernel density estimation (trKDE which has been used in applied settings while two illustrative examples demonstrate that the proposed approach can yield superior results compared to the popular trKDE approach. In addition, there exist various possibilities for improving and extending this method.

  19. Protein Subcellular Localization with Gaussian Kernel Discriminant Analysis and Its Kernel Parameter Selection.

    Science.gov (United States)

    Wang, Shunfang; Nie, Bing; Yue, Kun; Fei, Yu; Li, Wenjia; Xu, Dongshu

    2017-12-15

    Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex biological data before undergoing classification processes such as protein subcellular localization. Kernel parameters make a great impact on the performance of the KDA model. Specifically, for KDA with the popular Gaussian kernel, to select the scale parameter is still a challenging problem. Thus, this paper introduces the KDA method and proposes a new method for Gaussian kernel parameter selection depending on the fact that the differences between reconstruction errors of edge normal samples and those of interior normal samples should be maximized for certain suitable kernel parameters. Experiments with various standard data sets of protein subcellular localization show that the overall accuracy of protein classification prediction with KDA is much higher than that without KDA. Meanwhile, the kernel parameter of KDA has a great impact on the efficiency, and the proposed method can produce an optimum parameter, which makes the new algorithm not only perform as effectively as the traditional ones, but also reduce the computational time and thus improve efficiency.

  20. Kernel abortion in maize. II. Distribution of 14C among kernel carboydrates

    International Nuclear Information System (INIS)

    Hanft, J.M.; Jones, R.J.

    1986-01-01

    This study was designed to compare the uptake and distribution of 14 C among fructose, glucose, sucrose, and starch in the cob, pedicel, and endosperm tissues of maize (Zea mays L.) kernels induced to abort by high temperature with those that develop normally. Kernels cultured in vitro at 309 and 35 0 C were transferred to [ 14 C]sucrose media 10 days after pollination. Kernels cultured at 35 0 C aborted prior to the onset of linear dry matter accumulation. Significant uptake into the cob, pedicel, and endosperm of radioactivity associated with the soluble and starch fractions of the tissues was detected after 24 hours in culture on atlageled media. After 8 days in culture on [ 14 C]sucrose media, 48 and 40% of the radioactivity associated with the cob carbohydrates was found in the reducing sugars at 30 and 35 0 C, respectively. Of the total carbohydrates, a higher percentage of label was associated with sucrose and lower percentage with fructose and glucose in pedicel tissue of kernels cultured at 35 0 C compared to kernels cultured at 30 0 C. These results indicate that sucrose was not cleaved to fructose and glucose as rapidly during the unloading process in the pedicel of kernels induced to abort by high temperature. Kernels cultured at 35 0 C had a much lower proportion of label associated with endosperm starch (29%) than did kernels cultured at 30 0 C (89%). Kernels cultured at 35 0 C had a correspondingly higher proportion of 14 C in endosperm fructose, glucose, and sucrose

  1. Fluidization calculation on nuclear fuel kernel coating

    International Nuclear Information System (INIS)

    Sukarsono; Wardaya; Indra-Suryawan

    1996-01-01

    The fluidization of nuclear fuel kernel coating was calculated. The bottom of the reactor was in the from of cone on top of the cone there was a cylinder, the diameter of the cylinder for fluidization was 2 cm and at the upper part of the cylinder was 3 cm. Fluidization took place in the cone and the first cylinder. The maximum and the minimum velocity of the gas of varied kernel diameter, the porosity and bed height of varied stream gas velocity were calculated. The calculation was done by basic program

  2. Reduced multiple empirical kernel learning machine.

    Science.gov (United States)

    Wang, Zhe; Lu, MingZhe; Gao, Daqi

    2015-02-01

    Multiple kernel learning (MKL) is demonstrated to be flexible and effective in depicting heterogeneous data sources since MKL can introduce multiple kernels rather than a single fixed kernel into applications. However, MKL would get a high time and space complexity in contrast to single kernel learning, which is not expected in real-world applications. Meanwhile, it is known that the kernel mapping ways of MKL generally have two forms including implicit kernel mapping and empirical kernel mapping (EKM), where the latter is less attracted. In this paper, we focus on the MKL with the EKM, and propose a reduced multiple empirical kernel learning machine named RMEKLM for short. To the best of our knowledge, it is the first to reduce both time and space complexity of the MKL with EKM. Different from the existing MKL, the proposed RMEKLM adopts the Gauss Elimination technique to extract a set of feature vectors, which is validated that doing so does not lose much information of the original feature space. Then RMEKLM adopts the extracted feature vectors to span a reduced orthonormal subspace of the feature space, which is visualized in terms of the geometry structure. It can be demonstrated that the spanned subspace is isomorphic to the original feature space, which means that the dot product of two vectors in the original feature space is equal to that of the two corresponding vectors in the generated orthonormal subspace. More importantly, the proposed RMEKLM brings a simpler computation and meanwhile needs a less storage space, especially in the processing of testing. Finally, the experimental results show that RMEKLM owns a much efficient and effective performance in terms of both complexity and classification. The contributions of this paper can be given as follows: (1) by mapping the input space into an orthonormal subspace, the geometry of the generated subspace is visualized; (2) this paper first reduces both the time and space complexity of the EKM-based MKL; (3

  3. Proposed Network Intrusion Detection System ‎Based on Fuzzy c Mean Algorithm in Cloud ‎Computing Environment

    Directory of Open Access Journals (Sweden)

    Shawq Malik Mehibs

    2017-12-01

    Full Text Available Nowadays cloud computing had become is an integral part of IT industry, cloud computing provides Working environment allow a user of environmental to share data and resources over the internet. Where cloud computing its virtual grouping of resources offered over the internet, this lead to different matters related to the security and privacy in cloud computing. And therefore, create intrusion detection very important to detect outsider and insider intruders of cloud computing with high detection rate and low false positive alarm in the cloud environment. This work proposed network intrusion detection module using fuzzy c mean algorithm. The kdd99 dataset used for experiments .the proposed system characterized by a high detection rate with low false positive alarm

  4. Comparison of K-means and fuzzy c-means algorithm performance for automated determination of the arterial input function.

    Science.gov (United States)

    Yin, Jiandong; Sun, Hongzan; Yang, Jiawen; Guo, Qiyong

    2014-01-01

    The arterial input function (AIF) plays a crucial role in the quantification of cerebral perfusion parameters. The traditional method for AIF detection is based on manual operation, which is time-consuming and subjective. Two automatic methods have been reported that are based on two frequently used clustering algorithms: fuzzy c-means (FCM) and K-means. However, it is still not clear which is better for AIF detection. Hence, we compared the performance of these two clustering methods using both simulated and clinical data. The results demonstrate that K-means analysis can yield more accurate and robust AIF results, although it takes longer to execute than the FCM method. We consider that this longer execution time is trivial relative to the total time required for image manipulation in a PACS setting, and is acceptable if an ideal AIF is obtained. Therefore, the K-means method is preferable to FCM in AIF detection.

  5. Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    P. Akhavan

    2014-10-01

    Full Text Available Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.

  6. Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System

    Science.gov (United States)

    Akhavan, P.; Karimi, M.; Pahlavani, P.

    2014-10-01

    Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL) created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.

  7. Comparative Analysis of Kernel Methods for Statistical Shape Learning

    National Research Council Canada - National Science Library

    Rathi, Yogesh; Dambreville, Samuel; Tannenbaum, Allen

    2006-01-01

    .... In this work, we perform a comparative analysis of shape learning techniques such as linear PCA, kernel PCA, locally linear embedding and propose a new method, kernelized locally linear embedding...

  8. Variable kernel density estimation in high-dimensional feature spaces

    CSIR Research Space (South Africa)

    Van der Walt, Christiaan M

    2017-02-01

    Full Text Available Estimating the joint probability density function of a dataset is a central task in many machine learning applications. In this work we address the fundamental problem of kernel bandwidth estimation for variable kernel density estimation in high...

  9. Influence of differently processed mango seed kernel meal on ...

    African Journals Online (AJOL)

    Influence of differently processed mango seed kernel meal on performance response of west African ... and TD( consisted spear grass and parboiled mango seed kernel meal with concentrate diet in a ratio of 35:30:35). ... HOW TO USE AJOL.

  10. On methods to increase the security of the Linux kernel

    International Nuclear Information System (INIS)

    Matvejchikov, I.V.

    2014-01-01

    Methods to increase the security of the Linux kernel for the implementation of imposed protection tools have been examined. The methods of incorporation into various subsystems of the kernel on the x86 architecture have been described [ru

  11. Linear and kernel methods for multi- and hypervariate change detection

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Canty, Morton J.

    2010-01-01

    . Principal component analysis (PCA) as well as maximum autocorrelation factor (MAF) and minimum noise fraction (MNF) analyses of IR-MAD images, both linear and kernel-based (which are nonlinear), may further enhance change signals relative to no-change background. The kernel versions are based on a dual...... formulation, also termed Q-mode analysis, in which the data enter into the analysis via inner products in the Gram matrix only. In the kernel version the inner products of the original data are replaced by inner products between nonlinear mappings into higher dimensional feature space. Via kernel substitution......, also known as the kernel trick, these inner products between the mappings are in turn replaced by a kernel function and all quantities needed in the analysis are expressed in terms of the kernel function. This means that we need not know the nonlinear mappings explicitly. Kernel principal component...

  12. Kernel methods in orthogonalization of multi- and hypervariate data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    2009-01-01

    A kernel version of maximum autocorrelation factor (MAF) analysis is described very briefly and applied to change detection in remotely sensed hyperspectral image (HyMap) data. The kernel version is based on a dual formulation also termed Q-mode analysis in which the data enter into the analysis...... via inner products in the Gram matrix only. In the kernel version the inner products are replaced by inner products between nonlinear mappings into higher dimensional feature space of the original data. Via kernel substitution also known as the kernel trick these inner products between the mappings...... are in turn replaced by a kernel function and all quantities needed in the analysis are expressed in terms of this kernel function. This means that we need not know the nonlinear mappings explicitly. Kernel PCA and MAF analysis handle nonlinearities by implicitly transforming data into high (even infinite...

  13. Mitigation of artifacts in rtm with migration kernel decomposition

    KAUST Repository

    Zhan, Ge

    2012-01-01

    The migration kernel for reverse-time migration (RTM) can be decomposed into four component kernels using Born scattering and migration theory. Each component kernel has a unique physical interpretation and can be interpreted differently. In this paper, we present a generalized diffraction-stack migration approach for reducing RTM artifacts via decomposition of migration kernel. The decomposition leads to an improved understanding of migration artifacts and, therefore, presents us with opportunities for improving the quality of RTM images.

  14. Sparse Event Modeling with Hierarchical Bayesian Kernel Methods

    Science.gov (United States)

    2016-01-05

    SECURITY CLASSIFICATION OF: The research objective of this proposal was to develop a predictive Bayesian kernel approach to model count data based on...several predictive variables. Such an approach, which we refer to as the Poisson Bayesian kernel model, is able to model the rate of occurrence of... kernel methods made use of: (i) the Bayesian property of improving predictive accuracy as data are dynamically obtained, and (ii) the kernel function

  15. Relationship between attenuation coefficients and dose-spread kernels

    International Nuclear Information System (INIS)

    Boyer, A.L.

    1988-01-01

    Dose-spread kernels can be used to calculate the dose distribution in a photon beam by convolving the kernel with the primary fluence distribution. The theoretical relationships between various types and components of dose-spread kernels relative to photon attenuation coefficients are explored. These relations can be valuable as checks on the conservation of energy by dose-spread kernels calculated by analytic or Monte Carlo methods

  16. Fabrication of Uranium Oxycarbide Kernels for HTR Fuel

    International Nuclear Information System (INIS)

    Barnes, Charles; Richardson, Clay; Nagley, Scott; Hunn, John; Shaber, Eric

    2010-01-01

    Babcock and Wilcox (B and W) has been producing high quality uranium oxycarbide (UCO) kernels for Advanced Gas Reactor (AGR) fuel tests at the Idaho National Laboratory. In 2005, 350-(micro)m, 19.7% 235U-enriched UCO kernels were produced for the AGR-1 test fuel. Following coating of these kernels and forming the coated-particles into compacts, this fuel was irradiated in the Advanced Test Reactor (ATR) from December 2006 until November 2009. B and W produced 425-(micro)m, 14% enriched UCO kernels in 2008, and these kernels were used to produce fuel for the AGR-2 experiment that was inserted in ATR in 2010. B and W also produced 500-(micro)m, 9.6% enriched UO2 kernels for the AGR-2 experiments. Kernels of the same size and enrichment as AGR-1 were also produced for the AGR-3/4 experiment. In addition to fabricating enriched UCO and UO2 kernels, B and W has produced more than 100 kg of natural uranium UCO kernels which are being used in coating development tests. Successive lots of kernels have demonstrated consistent high quality and also allowed for fabrication process improvements. Improvements in kernel forming were made subsequent to AGR-1 kernel production. Following fabrication of AGR-2 kernels, incremental increases in sintering furnace charge size have been demonstrated. Recently small scale sintering tests using a small development furnace equipped with a residual gas analyzer (RGA) has increased understanding of how kernel sintering parameters affect sintered kernel properties. The steps taken to increase throughput and process knowledge have reduced kernel production costs. Studies have been performed of additional modifications toward the goal of increasing capacity of the current fabrication line to use for production of first core fuel for the Next Generation Nuclear Plant (NGNP) and providing a basis for the design of a full scale fuel fabrication facility.

  17. Consistent Estimation of Pricing Kernels from Noisy Price Data

    OpenAIRE

    Vladislav Kargin

    2003-01-01

    If pricing kernels are assumed non-negative then the inverse problem of finding the pricing kernel is well-posed. The constrained least squares method provides a consistent estimate of the pricing kernel. When the data are limited, a new method is suggested: relaxed maximization of the relative entropy. This estimator is also consistent. Keywords: $\\epsilon$-entropy, non-parametric estimation, pricing kernel, inverse problems.

  18. Quantum logic in dagger kernel categories

    NARCIS (Netherlands)

    Heunen, C.; Jacobs, B.P.F.

    2009-01-01

    This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial

  19. Quantum logic in dagger kernel categories

    NARCIS (Netherlands)

    Heunen, C.; Jacobs, B.P.F.; Coecke, B.; Panangaden, P.; Selinger, P.

    2011-01-01

    This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial

  20. Symbol recognition with kernel density matching.

    Science.gov (United States)

    Zhang, Wan; Wenyin, Liu; Zhang, Kun

    2006-12-01

    We propose a novel approach to similarity assessment for graphic symbols. Symbols are represented as 2D kernel densities and their similarity is measured by the Kullback-Leibler divergence. Symbol orientation is found by gradient-based angle searching or independent component analysis. Experimental results show the outstanding performance of this approach in various situations.

  1. Flexible Scheduling in Multimedia Kernels: An Overview

    NARCIS (Netherlands)

    Jansen, P.G.; Scholten, Johan; Laan, Rene; Chow, W.S.

    1999-01-01

    Current Hard Real-Time (HRT) kernels have their timely behaviour guaranteed on the cost of a rather restrictive use of the available resources. This makes current HRT scheduling techniques inadequate for use in a multimedia environment where we can make a considerable profit by a better and more

  2. Reproducing kernel Hilbert spaces of Gaussian priors

    NARCIS (Netherlands)

    Vaart, van der A.W.; Zanten, van J.H.; Clarke, B.; Ghosal, S.

    2008-01-01

    We review definitions and properties of reproducing kernel Hilbert spaces attached to Gaussian variables and processes, with a view to applications in nonparametric Bayesian statistics using Gaussian priors. The rate of contraction of posterior distributions based on Gaussian priors can be described

  3. A synthesis of empirical plant dispersal kernels

    Czech Academy of Sciences Publication Activity Database

    Bullock, J. M.; González, L. M.; Tamme, R.; Götzenberger, Lars; White, S. M.; Pärtel, M.; Hooftman, D. A. P.

    2017-01-01

    Roč. 105, č. 1 (2017), s. 6-19 ISSN 0022-0477 Institutional support: RVO:67985939 Keywords : dispersal kernel * dispersal mode * probability density function Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 5.813, year: 2016

  4. Analytic continuation of weighted Bergman kernels

    Czech Academy of Sciences Publication Activity Database

    Engliš, Miroslav

    2010-01-01

    Roč. 94, č. 6 (2010), s. 622-650 ISSN 0021-7824 R&D Projects: GA AV ČR IAA100190802 Keywords : Bergman kernel * analytic continuation * Toeplitz operator Subject RIV: BA - General Mathematics Impact factor: 1.450, year: 2010 http://www.sciencedirect.com/science/article/pii/S0021782410000942

  5. On convergence of kernel learning estimators

    NARCIS (Netherlands)

    Norkin, V.I.; Keyzer, M.A.

    2009-01-01

    The paper studies convex stochastic optimization problems in a reproducing kernel Hilbert space (RKHS). The objective (risk) functional depends on functions from this RKHS and takes the form of a mathematical expectation (integral) of a nonnegative integrand (loss function) over a probability

  6. Analytic properties of the Virasoro modular kernel

    Energy Technology Data Exchange (ETDEWEB)

    Nemkov, Nikita [Moscow Institute of Physics and Technology (MIPT), Dolgoprudny (Russian Federation); Institute for Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); National University of Science and Technology MISIS, The Laboratory of Superconducting metamaterials, Moscow (Russian Federation)

    2017-06-15

    On the space of generic conformal blocks the modular transformation of the underlying surface is realized as a linear integral transformation. We show that the analytic properties of conformal block implied by Zamolodchikov's formula are shared by the kernel of the modular transformation and illustrate this by explicit computation in the case of the one-point toric conformal block. (orig.)

  7. Kernel based subspace projection of hyperspectral images

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg; Arngren, Morten

    In hyperspectral image analysis an exploratory approach to analyse the image data is to conduct subspace projections. As linear projections often fail to capture the underlying structure of the data, we present kernel based subspace projections of PCA and Maximum Autocorrelation Factors (MAF...

  8. Kernel Temporal Differences for Neural Decoding

    Science.gov (United States)

    Bae, Jihye; Sanchez Giraldo, Luis G.; Pohlmeyer, Eric A.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2015-01-01

    We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm's convergence can be guaranteed for policy evaluation. The algorithm's nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey's neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm's capabilities in reinforcement learning brain machine interfaces. PMID:25866504

  9. Scattering kernels and cross sections working group

    International Nuclear Information System (INIS)

    Russell, G.; MacFarlane, B.; Brun, T.

    1998-01-01

    Topics addressed by this working group are: (1) immediate needs of the cold-moderator community and how to fill them; (2) synthetic scattering kernels; (3) very simple synthetic scattering functions; (4) measurements of interest; and (5) general issues. Brief summaries are given for each of these topics

  10. Enhanced gluten properties in soft kernel durum wheat

    Science.gov (United States)

    Soft kernel durum wheat is a relatively recent development (Morris et al. 2011 Crop Sci. 51:114). The soft kernel trait exerts profound effects on kernel texture, flour milling including break flour yield, milling energy, and starch damage, and dough water absorption (DWA). With the caveat of reduce...

  11. Predictive Model Equations for Palm Kernel (Elaeis guneensis J ...

    African Journals Online (AJOL)

    Estimated error of ± 0.18 and ± 0.2 are envisaged while applying the models for predicting palm kernel and sesame oil colours respectively. Keywords: Palm kernel, Sesame, Palm kernel, Oil Colour, Process Parameters, Model. Journal of Applied Science, Engineering and Technology Vol. 6 (1) 2006 pp. 34-38 ...

  12. Stable Kernel Representations as Nonlinear Left Coprime Factorizations

    NARCIS (Netherlands)

    Paice, A.D.B.; Schaft, A.J. van der

    1994-01-01

    A representation of nonlinear systems based on the idea of representing the input-output pairs of the system as elements of the kernel of a stable operator has been recently introduced. This has been denoted the kernel representation of the system. In this paper it is demonstrated that the kernel

  13. 7 CFR 981.60 - Determination of kernel weight.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Determination of kernel weight. 981.60 Section 981.60... Regulating Handling Volume Regulation § 981.60 Determination of kernel weight. (a) Almonds for which settlement is made on kernel weight. All lots of almonds, whether shelled or unshelled, for which settlement...

  14. 21 CFR 176.350 - Tamarind seed kernel powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...

  15. End-use quality of soft kernel durum wheat

    Science.gov (United States)

    Kernel texture is a major determinant of end-use quality of wheat. Durum wheat has very hard kernels. We developed soft kernel durum wheat via Ph1b-mediated homoeologous recombination. The Hardness locus was transferred from Chinese Spring to Svevo durum wheat via back-crossing. ‘Soft Svevo’ had SKC...

  16. Heat kernel analysis for Bessel operators on symmetric cones

    DEFF Research Database (Denmark)

    Möllers, Jan

    2014-01-01

    . The heat kernel is explicitly given in terms of a multivariable $I$-Bessel function on $Ω$. Its corresponding heat kernel transform defines a continuous linear operator between $L^p$-spaces. The unitary image of the $L^2$-space under the heat kernel transform is characterized as a weighted Bergmann space...

  17. A Fast and Simple Graph Kernel for RDF

    NARCIS (Netherlands)

    de Vries, G.K.D.; de Rooij, S.

    2013-01-01

    In this paper we study a graph kernel for RDF based on constructing a tree for each instance and counting the number of paths in that tree. In our experiments this kernel shows comparable classification performance to the previously introduced intersection subtree kernel, but is significantly faster

  18. 7 CFR 981.61 - Redetermination of kernel weight.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Redetermination of kernel weight. 981.61 Section 981... GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.61 Redetermination of kernel weight. The Board, on the basis of reports by handlers, shall redetermine the kernel weight of almonds...

  19. Single pass kernel k-means clustering method

    Indian Academy of Sciences (India)

    paper proposes a simple and faster version of the kernel k-means clustering ... It has been considered as an important tool ... On the other hand, kernel-based clustering methods, like kernel k-means clus- ..... able at the UCI machine learning repository (Murphy 1994). ... All the data sets have only numeric valued features.

  20. Model of spatial analysis of electric power market using the Fuzzy C-Means technical classification; Modelo de analise espacial de mercado de energia eletrica utilizando a tecnica de classificacao Fuzzy C-Means

    Energy Technology Data Exchange (ETDEWEB)

    Neto, J.C. [Companhia Energetica de Goias (CELG-D), Goiania, GO (Brazil)], E-mail: joao.cn@celg.com.br; Lima, W.S. [Votorantim Siderurgia, Resende, Rio de Janeiro, RJ (Brazil). Gerencia Geral de Tecnologia], E-mail: wagner.lima@vmetais.com.br

    2009-07-01

    The power distribution companies live with an antagonistic reality: an increasing energy demand, due to steady economic and population growth, and a limitation on their financial resources to expand its network. Therefore, it is essential an improvement in activity of planning of the power distribution system trying to improve the application of available resources. In this context fits the application of Geographic Information System combined with clustering techniques and classification in order to enhance the planning process, giving the planner a more complete picture of the consumer market by the distributor. This paper presents a system that makes use of Geographic Information System combined with the technique of clustering and classification Fuzzy C-Means, with the aim of analyzing the distribution of network load and the performance of the technique. Each group performed leads to a spatial representation (scenario). This, together with an index measuring the performance of the group (intra-group and inter-group) implemented in this work, provides a favorable environment for spatial analysis of the electric power market.

  1. Aida-CMK multi-algorithm optimization kernel applied to analog IC sizing

    CERN Document Server

    Lourenço, Ricardo; Horta, Nuno

    2015-01-01

    This work addresses the research and development of an innovative optimization kernel applied to analog integrated circuit (IC) design. Particularly, this works describes the modifications inside the AIDA Framework, an electronic design automation framework fully developed by at the Integrated Circuits Group-LX of the Instituto de Telecomunicações, Lisbon. It focusses on AIDA-CMK, by enhancing AIDA-C, which is the circuit optimizer component of AIDA, with a new multi-objective multi-constraint optimization module that constructs a base for multiple algorithm implementations. The proposed solution implements three approaches to multi-objective multi-constraint optimization, namely, an evolutionary approach with NSGAII, a swarm intelligence approach with MOPSO and stochastic hill climbing approach with MOSA. Moreover, the implemented structure allows the easy hybridization between kernels transforming the previous simple NSGAII optimization module into a more evolved and versatile module supporting multiple s...

  2. Scuba: scalable kernel-based gene prioritization.

    Science.gov (United States)

    Zampieri, Guido; Tran, Dinh Van; Donini, Michele; Navarin, Nicolò; Aiolli, Fabio; Sperduti, Alessandro; Valle, Giorgio

    2018-01-25

    The uncovering of genes linked to human diseases is a pressing challenge in molecular biology and precision medicine. This task is often hindered by the large number of candidate genes and by the heterogeneity of the available information. Computational methods for the prioritization of candidate genes can help to cope with these problems. In particular, kernel-based methods are a powerful resource for the integration of heterogeneous biological knowledge, however, their practical implementation is often precluded by their limited scalability. We propose Scuba, a scalable kernel-based method for gene prioritization. It implements a novel multiple kernel learning approach, based on a semi-supervised perspective and on the optimization of the margin distribution. Scuba is optimized to cope with strongly unbalanced settings where known disease genes are few and large scale predictions are required. Importantly, it is able to efficiently deal both with a large amount of candidate genes and with an arbitrary number of data sources. As a direct consequence of scalability, Scuba integrates also a new efficient strategy to select optimal kernel parameters for each data source. We performed cross-validation experiments and simulated a realistic usage setting, showing that Scuba outperforms a wide range of state-of-the-art methods. Scuba achieves state-of-the-art performance and has enhanced scalability compared to existing kernel-based approaches for genomic data. This method can be useful to prioritize candidate genes, particularly when their number is large or when input data is highly heterogeneous. The code is freely available at https://github.com/gzampieri/Scuba .

  3. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction.

    Science.gov (United States)

    Bandeira E Sousa, Massaine; Cuevas, Jaime; de Oliveira Couto, Evellyn Giselly; Pérez-Rodríguez, Paulino; Jarquín, Diego; Fritsche-Neto, Roberto; Burgueño, Juan; Crossa, Jose

    2017-06-07

    Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1) single-environment, main genotypic effect model (SM); (2) multi-environment, main genotypic effects model (MM); (3) multi-environment, single variance G×E deviation model (MDs); and (4) multi-environment, environment-specific variance G×E deviation model (MDe). Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB), and a nonlinear kernel Gaussian kernel (GK). The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets), having different numbers of maize hybrids evaluated in different environments for grain yield (GY), plant height (PH), and ear height (EH). Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK) had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied. Copyright © 2017 Bandeira e Sousa et al.

  4. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction

    Directory of Open Access Journals (Sweden)

    Massaine Bandeira e Sousa

    2017-06-01

    Full Text Available Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1 single-environment, main genotypic effect model (SM; (2 multi-environment, main genotypic effects model (MM; (3 multi-environment, single variance G×E deviation model (MDs; and (4 multi-environment, environment-specific variance G×E deviation model (MDe. Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB, and a nonlinear kernel Gaussian kernel (GK. The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets, having different numbers of maize hybrids evaluated in different environments for grain yield (GY, plant height (PH, and ear height (EH. Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied.

  5. Evaluation of the OpenCL AES Kernel using the Intel FPGA SDK for OpenCL

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zheming [Argonne National Lab. (ANL), Argonne, IL (United States); Yoshii, Kazutomo [Argonne National Lab. (ANL), Argonne, IL (United States); Finkel, Hal [Argonne National Lab. (ANL), Argonne, IL (United States); Cappello, Franck [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-04-20

    The OpenCL standard is an open programming model for accelerating algorithms on heterogeneous computing system. OpenCL extends the C-based programming language for developing portable codes on different platforms such as CPU, Graphics processing units (GPUs), Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs). The Intel FPGA SDK for OpenCL is a suite of tools that allows developers to abstract away the complex FPGA-based development flow for a high-level software development flow. Users can focus on the design of hardware-accelerated kernel functions in OpenCL and then direct the tools to generate the low-level FPGA implementations. The approach makes the FPGA-based development more accessible to software users as the needs for hybrid computing using CPUs and FPGAs are increasing. It can also significantly reduce the hardware development time as users can evaluate different ideas with high-level language without deep FPGA domain knowledge. In this report, we evaluate the performance of the kernel using the Intel FPGA SDK for OpenCL and Nallatech 385A FPGA board. Compared to the M506 module, the board provides more hardware resources for a larger design exploration space. The kernel performance is measured with the compute kernel throughput, an upper bound to the FPGA throughput. The report presents the experimental results in details. The Appendix lists the kernel source code.

  6. A Trajectory Regression Clustering Technique Combining a Novel Fuzzy C-Means Clustering Algorithm with the Least Squares Method

    Directory of Open Access Journals (Sweden)

    Xiangbing Zhou

    2018-04-01

    Full Text Available Rapidly growing GPS (Global Positioning System trajectories hide much valuable information, such as city road planning, urban travel demand, and population migration. In order to mine the hidden information and to capture better clustering results, a trajectory regression clustering method (an unsupervised trajectory clustering method is proposed to reduce local information loss of the trajectory and to avoid getting stuck in the local optimum. Using this method, we first define our new concept of trajectory clustering and construct a novel partitioning (angle-based partitioning method of line segments; second, the Lagrange-based method and Hausdorff-based K-means++ are integrated in fuzzy C-means (FCM clustering, which are used to maintain the stability and the robustness of the clustering process; finally, least squares regression model is employed to achieve regression clustering of the trajectory. In our experiment, the performance and effectiveness of our method is validated against real-world taxi GPS data. When comparing our clustering algorithm with the partition-based clustering algorithms (K-means, K-median, and FCM, our experimental results demonstrate that the presented method is more effective and generates a more reasonable trajectory.

  7. Optimizing Energy Consumption in Vehicular Sensor Networks by Clustering Using Fuzzy C-Means and Fuzzy Subtractive Algorithms

    Science.gov (United States)

    Ebrahimi, A.; Pahlavani, P.; Masoumi, Z.

    2017-09-01

    Traffic monitoring and managing in urban intelligent transportation systems (ITS) can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC) for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs); moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH), and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM) and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  8. OPTIMIZING ENERGY CONSUMPTION IN VEHICULAR SENSOR NETWORKS BY CLUSTERING USING FUZZY C-MEANS AND FUZZY SUBTRACTIVE ALGORITHMS

    Directory of Open Access Journals (Sweden)

    A. Ebrahimi

    2017-09-01

    Full Text Available Traffic monitoring and managing in urban intelligent transportation systems (ITS can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs; moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH, and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  9. Kernel based orthogonalization for change detection in hyperspectral images

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    function and all quantities needed in the analysis are expressed in terms of this kernel function. This means that we need not know the nonlinear mappings explicitly. Kernel PCA and MNF analyses handle nonlinearities by implicitly transforming data into high (even infinite) dimensional feature space via...... analysis all 126 spectral bands of the HyMap are included. Changes on the ground are most likely due to harvest having taken place between the two acquisitions and solar effects (both solar elevation and azimuth have changed). Both types of kernel analysis emphasize change and unlike kernel PCA, kernel MNF...

  10. A laser optical method for detecting corn kernel defects

    Energy Technology Data Exchange (ETDEWEB)

    Gunasekaran, S.; Paulsen, M. R.; Shove, G. C.

    1984-01-01

    An opto-electronic instrument was developed to examine individual corn kernels and detect various kernel defects according to reflectance differences. A low power helium-neon (He-Ne) laser (632.8 nm, red light) was used as the light source in the instrument. Reflectance from good and defective parts of corn kernel surfaces differed by approximately 40%. Broken, chipped, and starch-cracked kernels were detected with nearly 100% accuracy; while surface-split kernels were detected with about 80% accuracy. (author)

  11. Generalization Performance of Regularized Ranking With Multiscale Kernels.

    Science.gov (United States)

    Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin

    2016-05-01

    The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.

  12. Windows Vista Kernel-Mode: Functions, Security Enhancements and Flaws

    Directory of Open Access Journals (Sweden)

    Mohammed D. ABDULMALIK

    2008-06-01

    Full Text Available Microsoft has made substantial enhancements to the kernel of the Microsoft Windows Vista operating system. Kernel improvements are significant because the kernel provides low-level operating system functions, including thread scheduling, interrupt and exception dispatching, multiprocessor synchronization, and a set of routines and basic objects.This paper describes some of the kernel security enhancements for 64-bit edition of Windows Vista. We also point out some weakness areas (flaws that can be attacked by malicious leading to compromising the kernel.

  13. Difference between standard and quasi-conformal BFKL kernels

    International Nuclear Information System (INIS)

    Fadin, V.S.; Fiore, R.; Papa, A.

    2012-01-01

    As it was recently shown, the colour singlet BFKL kernel, taken in Möbius representation in the space of impact parameters, can be written in quasi-conformal shape, which is unbelievably simple compared with the conventional form of the BFKL kernel in momentum space. It was also proved that the total kernel is completely defined by its Möbius representation. In this paper we calculated the difference between standard and quasi-conformal BFKL kernels in momentum space and discovered that it is rather simple. Therefore we come to the conclusion that the simplicity of the quasi-conformal kernel is caused mainly by using the impact parameter space.

  14. A combined approach for the enhancement and segmentation of mammograms using modified fuzzy C-means method in wavelet domain.

    Science.gov (United States)

    Srivastava, Subodh; Sharma, Neeraj; Singh, S K; Srivastava, R

    2014-07-01

    In this paper, a combined approach for enhancement and segmentation of mammograms is proposed. In preprocessing stage, a contrast limited adaptive histogram equalization (CLAHE) method is applied to obtain the better contrast mammograms. After this, the proposed combined methods are applied. In the first step of the proposed approach, a two dimensional (2D) discrete wavelet transform (DWT) is applied to all the input images. In the second step, a proposed nonlinear complex diffusion based unsharp masking and crispening method is applied on the approximation coefficients of the wavelet transformed images to further highlight the abnormalities such as micro-calcifications, tumours, etc., to reduce the false positives (FPs). Thirdly, a modified fuzzy c-means (FCM) segmentation method is applied on the output of the second step. In the modified FCM method, the mutual information is proposed as a similarity measure in place of conventional Euclidian distance based dissimilarity measure for FCM segmentation. Finally, the inverse 2D-DWT is applied. The efficacy of the proposed unsharp masking and crispening method for image enhancement is evaluated in terms of signal-to-noise ratio (SNR) and that of the proposed segmentation method is evaluated in terms of random index (RI), global consistency error (GCE), and variation of information (VoI). The performance of the proposed segmentation approach is compared with the other commonly used segmentation approaches such as Otsu's thresholding, texture based, k-means, and FCM clustering as well as thresholding. From the obtained results, it is observed that the proposed segmentation approach performs better and takes lesser processing time in comparison to the standard FCM and other segmentation methods in consideration.

  15. Analytic scattering kernels for neutron thermalization studies

    International Nuclear Information System (INIS)

    Sears, V.F.

    1990-01-01

    Current plans call for the inclusion of a liquid hydrogen or deuterium cold source in the NRU replacement vessel. This report is part of an ongoing study of neutron thermalization in such a cold source. Here, we develop a simple analytical model for the scattering kernel of monatomic and diatomic liquids. We also present the results of extensive numerical calculations based on this model for liquid hydrogen, liquid deuterium, and mixtures of the two. These calculations demonstrate the dependence of the scattering kernel on the incident and scattered-neutron energies, the behavior near rotational thresholds, the dependence on the centre-of-mass pair correlations, the dependence on the ortho concentration, and the dependence on the deuterium concentration in H 2 /D 2 mixtures. The total scattering cross sections are also calculated and compared with available experimental results

  16. Quantized kernel least mean square algorithm.

    Science.gov (United States)

    Chen, Badong; Zhao, Songlin; Zhu, Pingping; Príncipe, José C

    2012-01-01

    In this paper, we propose a quantization approach, as an alternative of sparsification, to curb the growth of the radial basis function structure in kernel adaptive filtering. The basic idea behind this method is to quantize and hence compress the input (or feature) space. Different from sparsification, the new approach uses the "redundant" data to update the coefficient of the closest center. In particular, a quantized kernel least mean square (QKLMS) algorithm is developed, which is based on a simple online vector quantization method. The analytical study of the mean square convergence has been carried out. The energy conservation relation for QKLMS is established, and on this basis we arrive at a sufficient condition for mean square convergence, and a lower and upper bound on the theoretical value of the steady-state excess mean square error. Static function estimation and short-term chaotic time-series prediction examples are presented to demonstrate the excellent performance.

  17. Kernel-based tests for joint independence

    DEFF Research Database (Denmark)

    Pfister, Niklas; Bühlmann, Peter; Schölkopf, Bernhard

    2018-01-01

    if the $d$ variables are jointly independent, as long as the kernel is characteristic. Based on an empirical estimate of dHSIC, we define three different non-parametric hypothesis tests: a permutation test, a bootstrap test and a test based on a Gamma approximation. We prove that the permutation test......We investigate the problem of testing whether $d$ random variables, which may or may not be continuous, are jointly (or mutually) independent. Our method builds on ideas of the two variable Hilbert-Schmidt independence criterion (HSIC) but allows for an arbitrary number of variables. We embed...... the $d$-dimensional joint distribution and the product of the marginals into a reproducing kernel Hilbert space and define the $d$-variable Hilbert-Schmidt independence criterion (dHSIC) as the squared distance between the embeddings. In the population case, the value of dHSIC is zero if and only...

  18. Wilson Dslash Kernel From Lattice QCD Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Balint [Jefferson Lab, Newport News, VA; Smelyanskiy, Mikhail [Parallel Computing Lab, Intel Corporation, California, USA; Kalamkar, Dhiraj D. [Parallel Computing Lab, Intel Corporation, India; Vaidyanathan, Karthikeyan [Parallel Computing Lab, Intel Corporation, India

    2015-07-01

    Lattice Quantum Chromodynamics (LQCD) is a numerical technique used for calculations in Theoretical Nuclear and High Energy Physics. LQCD is traditionally one of the first applications ported to many new high performance computing architectures and indeed LQCD practitioners have been known to design and build custom LQCD computers. Lattice QCD kernels are frequently used as benchmarks (e.g. 168.wupwise in the SPEC suite) and are generally well understood, and as such are ideal to illustrate several optimization techniques. In this chapter we will detail our work in optimizing the Wilson-Dslash kernels for Intel Xeon Phi, however, as we will show the technique gives excellent performance on regular Xeon Architecture as well.

  19. A Kernel for Protein Secondary Structure Prediction

    OpenAIRE

    Guermeur , Yann; Lifchitz , Alain; Vert , Régis

    2004-01-01

    http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10338&mode=toc; International audience; Multi-class support vector machines have already proved efficient in protein secondary structure prediction as ensemble methods, to combine the outputs of sets of classifiers based on different principles. In this chapter, their implementation as basic prediction methods, processing the primary structure or the profile of multiple alignments, is investigated. A kernel devoted to the task is in...

  20. Scalar contribution to the BFKL kernel

    International Nuclear Information System (INIS)

    Gerasimov, R. E.; Fadin, V. S.

    2010-01-01

    The contribution of scalar particles to the kernel of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation is calculated. A great cancellation between the virtual and real parts of this contribution, analogous to the cancellation in the quark contribution in QCD, is observed. The reason of this cancellation is discovered. This reason has a common nature for particles with any spin. Understanding of this reason permits to obtain the total contribution without the complicated calculations, which are necessary for finding separate pieces.

  1. Weighted Bergman Kernels for Logarithmic Weights

    Czech Academy of Sciences Publication Activity Database

    Engliš, Miroslav

    2010-01-01

    Roč. 6, č. 3 (2010), s. 781-813 ISSN 1558-8599 R&D Projects: GA AV ČR IAA100190802 Keywords : Bergman kernel * Toeplitz operator * logarithmic weight * pseudodifferential operator Subject RIV: BA - General Mathematics Impact factor: 0.462, year: 2010 http://www.intlpress.com/site/pub/pages/journals/items/pamq/content/vols/0006/0003/a008/

  2. Heat kernels and zeta functions on fractals

    International Nuclear Information System (INIS)

    Dunne, Gerald V

    2012-01-01

    On fractals, spectral functions such as heat kernels and zeta functions exhibit novel features, very different from their behaviour on regular smooth manifolds, and these can have important physical consequences for both classical and quantum physics in systems having fractal properties. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (paper)

  3. Exploiting graph kernels for high performance biomedical relation extraction.

    Science.gov (United States)

    Panyam, Nagesh C; Verspoor, Karin; Cohn, Trevor; Ramamohanarao, Kotagiri

    2018-01-30

    Relation extraction from biomedical publications is an important task in the area of semantic mining of text. Kernel methods for supervised relation extraction are often preferred over manual feature engineering methods, when classifying highly ordered structures such as trees and graphs obtained from syntactic parsing of a sentence. Tree kernels such as the Subset Tree Kernel and Partial Tree Kernel have been shown to be effective for classifying constituency parse trees and basic dependency parse graphs of a sentence. Graph kernels such as the All Path Graph kernel (APG) and Approximate Subgraph Matching (ASM) kernel have been shown to be suitable for classifying general graphs with cycles, such as the enhanced dependency parse graph of a sentence. In this work, we present a high performance Chemical-Induced Disease (CID) relation extraction system. We present a comparative study of kernel methods for the CID task and also extend our study to the Protein-Protein Interaction (PPI) extraction task, an important biomedical relation extraction task. We discuss novel modifications to the ASM kernel to boost its performance and a method to apply graph kernels for extracting relations expressed in multiple sentences. Our system for CID relation extraction attains an F-score of 60%, without using external knowledge sources or task specific heuristic or rules. In comparison, the state of the art Chemical-Disease Relation Extraction system achieves an F-score of 56% using an ensemble of multiple machine learning methods, which is then boosted to 61% with a rule based system employing task specific post processing rules. For the CID task, graph kernels outperform tree kernels substantially, and the best performance is obtained with APG kernel that attains an F-score of 60%, followed by the ASM kernel at 57%. The performance difference between the ASM and APG kernels for CID sentence level relation extraction is not significant. In our evaluation of ASM for the PPI task, ASM

  4. Identification of Fusarium damaged wheat kernels using image analysis

    Directory of Open Access Journals (Sweden)

    Ondřej Jirsa

    2011-01-01

    Full Text Available Visual evaluation of kernels damaged by Fusarium spp. pathogens is labour intensive and due to a subjective approach, it can lead to inconsistencies. Digital imaging technology combined with appropriate statistical methods can provide much faster and more accurate evaluation of the visually scabby kernels proportion. The aim of the present study was to develop a discrimination model to identify wheat kernels infected by Fusarium spp. using digital image analysis and statistical methods. Winter wheat kernels from field experiments were evaluated visually as healthy or damaged. Deoxynivalenol (DON content was determined in individual kernels using an ELISA method. Images of individual kernels were produced using a digital camera on dark background. Colour and shape descriptors were obtained by image analysis from the area representing the kernel. Healthy and damaged kernels differed significantly in DON content and kernel weight. Various combinations of individual shape and colour descriptors were examined during the development of the model using linear discriminant analysis. In addition to basic descriptors of the RGB colour model (red, green, blue, very good classification was also obtained using hue from the HSL colour model (hue, saturation, luminance. The accuracy of classification using the developed discrimination model based on RGBH descriptors was 85 %. The shape descriptors themselves were not specific enough to distinguish individual kernels.

  5. Implementing Kernel Methods Incrementally by Incremental Nonlinear Projection Trick.

    Science.gov (United States)

    Kwak, Nojun

    2016-05-20

    Recently, the nonlinear projection trick (NPT) was introduced enabling direct computation of coordinates of samples in a reproducing kernel Hilbert space. With NPT, any machine learning algorithm can be extended to a kernel version without relying on the so called kernel trick. However, NPT is inherently difficult to be implemented incrementally because an ever increasing kernel matrix should be treated as additional training samples are introduced. In this paper, an incremental version of the NPT (INPT) is proposed based on the observation that the centerization step in NPT is unnecessary. Because the proposed INPT does not change the coordinates of the old data, the coordinates obtained by INPT can directly be used in any incremental methods to implement a kernel version of the incremental methods. The effectiveness of the INPT is shown by applying it to implement incremental versions of kernel methods such as, kernel singular value decomposition, kernel principal component analysis, and kernel discriminant analysis which are utilized for problems of kernel matrix reconstruction, letter classification, and face image retrieval, respectively.

  6. Fracture enhancement based on artificial ants and fuzzy c-means clustering (FCMC) in Dezful Embayment of Iran

    International Nuclear Information System (INIS)

    Nasseri, Aynur; Mohammadzadeh, Mohammad Jafar; Tabatabaei Raeisi, S Hashem

    2015-01-01

    This paper deals with the application of the ant colony algorithm (AC) to a seismic dataset from Dezful Embayment in the southwest region of Iran. The objective of the approach is to generate an accurate representation of faults and discontinuities to assist in pertinent matters such as well planning and field optimization. The AC analyzed all spatial discontinuities in the seismic attributes from which features were extracted. True fault information from the attributes was detected by many artificial ants, whereas noise and the remains of the reflectors were eliminated. Furthermore, the fracture enhancement procedure was conducted by three steps on seismic data of the area. In the first step several attributes such as chaos, variance/coherence and dip deviation were taken into account; the resulting maps indicate high-resolution contrast for the variance attribute. Subsequently, the enhancement of spatial discontinuities was performed and finally elimination of the noise and remains of non-faulting events was carried out by simulating the behavior of ant colonies. After considering stepwise attribute optimization, focusing on chaos and variance in particular, an attribute fusion was generated and used in the ant colony algorithm. The resulting map displayed the highest performance in feature detection along the main structural feature trend, confined to a NW–SE direction. Thus, the optimized attribute fusion might be used with greater confidence to map the structural feature network with more accuracy and resolution. In order to assess the performance of the AC in feature detection, and cross validate the reliability of the method used, fuzzy c-means clustering (FCMC) was employed for the same dataset. Comparing the maps illustrates the effectiveness and preference of the AC approach due to its high resolution contrast for structural feature detection compared to the FCMC method. Accordingly, 3D planes of discontinuity determined spatial distribution of

  7. Kernel based subspace projection of near infrared hyperspectral images of maize kernels

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Arngren, Morten; Hansen, Per Waaben

    2009-01-01

    In this paper we present an exploratory analysis of hyper- spectral 900-1700 nm images of maize kernels. The imaging device is a line scanning hyper spectral camera using a broadband NIR illumi- nation. In order to explore the hyperspectral data we compare a series of subspace projection methods ......- tor transform outperform the linear methods as well as kernel principal components in producing interesting projections of the data.......In this paper we present an exploratory analysis of hyper- spectral 900-1700 nm images of maize kernels. The imaging device is a line scanning hyper spectral camera using a broadband NIR illumi- nation. In order to explore the hyperspectral data we compare a series of subspace projection methods...... including principal component analysis and maximum autocorrelation factor analysis. The latter utilizes the fact that interesting phenomena in images exhibit spatial autocorrelation. However, linear projections often fail to grasp the underlying variability on the data. Therefore we propose to use so...

  8. LZW-Kernel: fast kernel utilizing variable length code blocks from LZW compressors for protein sequence classification.

    Science.gov (United States)

    Filatov, Gleb; Bauwens, Bruno; Kertész-Farkas, Attila

    2018-05-07

    Bioinformatics studies often rely on similarity measures between sequence pairs, which often pose a bottleneck in large-scale sequence analysis. Here, we present a new convolutional kernel function for protein sequences called the LZW-Kernel. It is based on code words identified with the Lempel-Ziv-Welch (LZW) universal text compressor. The LZW-Kernel is an alignment-free method, it is always symmetric, is positive, always provides 1.0 for self-similarity and it can directly be used with Support Vector Machines (SVMs) in classification problems, contrary to normalized compression distance (NCD), which often violates the distance metric properties in practice and requires further techniques to be used with SVMs. The LZW-Kernel is a one-pass algorithm, which makes it particularly plausible for big data applications. Our experimental studies on remote protein homology detection and protein classification tasks reveal that the LZW-Kernel closely approaches the performance of the Local Alignment Kernel (LAK) and the SVM-pairwise method combined with Smith-Waterman (SW) scoring at a fraction of the time. Moreover, the LZW-Kernel outperforms the SVM-pairwise method when combined with BLAST scores, which indicates that the LZW code words might be a better basis for similarity measures than local alignment approximations found with BLAST. In addition, the LZW-Kernel outperforms n-gram based mismatch kernels, hidden Markov model based SAM and Fisher kernel, and protein family based PSI-BLAST, among others. Further advantages include the LZW-Kernel's reliance on a simple idea, its ease of implementation, and its high speed, three times faster than BLAST and several magnitudes faster than SW or LAK in our tests. LZW-Kernel is implemented as a standalone C code and is a free open-source program distributed under GPLv3 license and can be downloaded from https://github.com/kfattila/LZW-Kernel. akerteszfarkas@hse.ru. Supplementary data are available at Bioinformatics Online.

  9. Kernel based eigenvalue-decomposition methods for analysing ham

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Nielsen, Allan Aasbjerg; Møller, Flemming

    2010-01-01

    methods, such as PCA, MAF or MNF. We therefore investigated the applicability of kernel based versions of these transformation. This meant implementing the kernel based methods and developing new theory, since kernel based MAF and MNF is not described in the literature yet. The traditional methods only...... have two factors that are useful for segmentation and none of them can be used to segment the two types of meat. The kernel based methods have a lot of useful factors and they are able to capture the subtle differences in the images. This is illustrated in Figure 1. You can see a comparison of the most...... useful factor of PCA and kernel based PCA respectively in Figure 2. The factor of the kernel based PCA turned out to be able to segment the two types of meat and in general that factor is much more distinct, compared to the traditional factor. After the orthogonal transformation a simple thresholding...

  10. Short-term traffic flow prediction model using particle swarm optimization–based combined kernel function-least squares support vector machine combined with chaos theory

    Directory of Open Access Journals (Sweden)

    Qiang Shang

    2016-08-01

    Full Text Available Short-term traffic flow prediction is an important part of intelligent transportation systems research and applications. For further improving the accuracy of short-time traffic flow prediction, a novel hybrid prediction model (multivariate phase space reconstruction–combined kernel function-least squares support vector machine based on multivariate phase space reconstruction and combined kernel function-least squares support vector machine is proposed. The C-C method is used to determine the optimal time delay and the optimal embedding dimension of traffic variables’ (flow, speed, and occupancy time series for phase space reconstruction. The G-P method is selected to calculate the correlation dimension of attractor which is an important index for judging chaotic characteristics of the traffic variables’ series. The optimal input form of combined kernel function-least squares support vector machine model is determined by multivariate phase space reconstruction, and the model’s parameters are optimized by particle swarm optimization algorithm. Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. The experimental results suggest that the new proposed model yields better predictions compared with similar models (combined kernel function-least squares support vector machine, multivariate phase space reconstruction–generalized kernel function-least squares support vector machine, and phase space reconstruction–combined kernel function-least squares support vector machine, which indicates that the new proposed model exhibits stronger prediction ability and robustness.

  11. Classification of maize kernels using NIR hyperspectral imaging

    DEFF Research Database (Denmark)

    Williams, Paul; Kucheryavskiy, Sergey V.

    2016-01-01

    NIR hyperspectral imaging was evaluated to classify maize kernels of three hardness categories: hard, medium and soft. Two approaches, pixel-wise and object-wise, were investigated to group kernels according to hardness. The pixel-wise classification assigned a class to every pixel from individual...... and specificity of 0.95 and 0.93). Both feature extraction methods can be recommended for classification of maize kernels on production scale....

  12. Ideal gas scattering kernel for energy dependent cross-sections

    International Nuclear Information System (INIS)

    Rothenstein, W.; Dagan, R.

    1998-01-01

    A third, and final, paper on the calculation of the joint kernel for neutron scattering by an ideal gas in thermal agitation is presented, when the scattering cross-section is energy dependent. The kernel is a function of the neutron energy after scattering, and of the cosine of the scattering angle, as in the case of the ideal gas kernel for a constant bound atom scattering cross-section. The final expression is suitable for numerical calculations

  13. Embedded real-time operating system micro kernel design

    Science.gov (United States)

    Cheng, Xiao-hui; Li, Ming-qiang; Wang, Xin-zheng

    2005-12-01

    Embedded systems usually require a real-time character. Base on an 8051 microcontroller, an embedded real-time operating system micro kernel is proposed consisting of six parts, including a critical section process, task scheduling, interruption handle, semaphore and message mailbox communication, clock managent and memory managent. Distributed CPU and other resources are among tasks rationally according to the importance and urgency. The design proposed here provides the position, definition, function and principle of micro kernel. The kernel runs on the platform of an ATMEL AT89C51 microcontroller. Simulation results prove that the designed micro kernel is stable and reliable and has quick response while operating in an application system.

  14. Influence of wheat kernel physical properties on the pulverizing process.

    Science.gov (United States)

    Dziki, Dariusz; Cacak-Pietrzak, Grażyna; Miś, Antoni; Jończyk, Krzysztof; Gawlik-Dziki, Urszula

    2014-10-01

    The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel.

  15. Dose point kernels for beta-emitting radioisotopes

    International Nuclear Information System (INIS)

    Prestwich, W.V.; Chan, L.B.; Kwok, C.S.; Wilson, B.

    1986-01-01

    Knowledge of the dose point kernel corresponding to a specific radionuclide is required to calculate the spatial dose distribution produced in a homogeneous medium by a distributed source. Dose point kernels for commonly used radionuclides have been calculated previously using as a basis monoenergetic dose point kernels derived by numerical integration of a model transport equation. The treatment neglects fluctuations in energy deposition, an effect which has been later incorporated in dose point kernels calculated using Monte Carlo methods. This work describes new calculations of dose point kernels using the Monte Carlo results as a basis. An analytic representation of the monoenergetic dose point kernels has been developed. This provides a convenient method both for calculating the dose point kernel associated with a given beta spectrum and for incorporating the effect of internal conversion. An algebraic expression for allowed beta spectra has been accomplished through an extension of the Bethe-Bacher approximation, and tested against the exact expression. Simplified expression for first-forbidden shape factors have also been developed. A comparison of the calculated dose point kernel for 32 P with experimental data indicates good agreement with a significant improvement over the earlier results in this respect. An analytic representation of the dose point kernel associated with the spectrum of a single beta group has been formulated. 9 references, 16 figures, 3 tables

  16. Hadamard Kernel SVM with applications for breast cancer outcome predictions.

    Science.gov (United States)

    Jiang, Hao; Ching, Wai-Ki; Cheung, Wai-Shun; Hou, Wenpin; Yin, Hong

    2017-12-21

    Breast cancer is one of the leading causes of deaths for women. It is of great necessity to develop effective methods for breast cancer detection and diagnosis. Recent studies have focused on gene-based signatures for outcome predictions. Kernel SVM for its discriminative power in dealing with small sample pattern recognition problems has attracted a lot attention. But how to select or construct an appropriate kernel for a specified problem still needs further investigation. Here we propose a novel kernel (Hadamard Kernel) in conjunction with Support Vector Machines (SVMs) to address the problem of breast cancer outcome prediction using gene expression data. Hadamard Kernel outperform the classical kernels and correlation kernel in terms of Area under the ROC Curve (AUC) values where a number of real-world data sets are adopted to test the performance of different methods. Hadamard Kernel SVM is effective for breast cancer predictions, either in terms of prognosis or diagnosis. It may benefit patients by guiding therapeutic options. Apart from that, it would be a valuable addition to the current SVM kernel families. We hope it will contribute to the wider biology and related communities.

  17. Parameter optimization in the regularized kernel minimum noise fraction transformation

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Vestergaard, Jacob Schack

    2012-01-01

    Based on the original, linear minimum noise fraction (MNF) transformation and kernel principal component analysis, a kernel version of the MNF transformation was recently introduced. Inspired by we here give a simple method for finding optimal parameters in a regularized version of kernel MNF...... analysis. We consider the model signal-to-noise ratio (SNR) as a function of the kernel parameters and the regularization parameter. In 2-4 steps of increasingly refined grid searches we find the parameters that maximize the model SNR. An example based on data from the DLR 3K camera system is given....

  18. Systematic approach in optimizing numerical memory-bound kernels on GPU

    KAUST Repository

    Abdelfattah, Ahmad

    2013-01-01

    The use of GPUs has been very beneficial in accelerating dense linear algebra computational kernels (DLA). Many high performance numerical libraries like CUBLAS, MAGMA, and CULA provide BLAS and LAPACK implementations on GPUs as well as hybrid computations involving both, CPUs and GPUs. GPUs usually score better performance than CPUs for compute-bound operations, especially those characterized by a regular data access pattern. This paper highlights a systematic approach for efficiently implementing memory-bound DLA kernels on GPUs, by taking advantage of the underlying device\\'s architecture (e.g., high throughput). This methodology proved to outperform existing state-of-the-art GPU implementations for the symmetric matrix-vector multiplication (SYMV), characterized by an irregular data access pattern, in a recent work (Abdelfattah et. al, VECPAR 2012). We propose to extend this methodology to the general matrix-vector multiplication (GEMV) kernel. The performance results show that our GEMV implementation achieves better performance for relatively small to medium matrix sizes, making it very influential in calculating the Hessenberg and bidiagonal reductions of general matrices (radar applications), which are the first step toward computing eigenvalues and singular values, respectively. Considering small and medium size matrices (≤4500), our GEMV kernel achieves an average 60% improvement in single precision (SP) and an average 25% in double precision (DP) over existing open-source and commercial software solutions. These results improve reduction algorithms for both small and large matrices. The improved GEMV performances engender an averge 30% (SP) and 15% (DP) in Hessenberg reduction and up to 25% (SP) and 14% (DP) improvement for the bidiagonal reduction over the implementation provided by CUBLAS 5.0. © 2013 Springer-Verlag.

  19. Analysis of Advanced Fuel Kernel Technology

    International Nuclear Information System (INIS)

    Oh, Seung Chul; Jeong, Kyung Chai; Kim, Yeon Ku; Kim, Young Min; Kim, Woong Ki; Lee, Young Woo; Cho, Moon Sung

    2010-03-01

    The reference fuel for prismatic reactor concepts is based on use of an LEU UCO TRISO fissile particle. This fuel form was selected in the early 1980s for large high-temperature gas-cooled reactor (HTGR) concepts using LEU, and the selection was reconfirmed for modular designs in the mid-1980s. Limited existing irradiation data on LEU UCO TRISO fuel indicate the need for a substantial improvement in performance with regard to in-pile gaseous fission product release. Existing accident testing data on LEU UCO TRISO fuel are extremely limited, but it is generally expected that performance would be similar to that of LEU UO 2 TRISO fuel if performance under irradiation were successfully improved. Initial HTGR fuel technology was based on carbide fuel forms. In the early 1980s, as HTGR technology was transitioning from high-enriched uranium (HEU) fuel to LEU fuel. An initial effort focused on LEU prismatic design for large HTGRs resulted in the selection of UCO kernels for the fissile particles and thorium oxide (ThO 2 ) for the fertile particles. The primary reason for selection of the UCO kernel over UO 2 was reduced CO pressure, allowing higher burnup for equivalent coating thicknesses and reduced potential for kernel migration, an important failure mechanism in earlier fuels. A subsequent assessment in the mid-1980s considering modular HTGR concepts again reached agreement on UCO for the fissile particle for a prismatic design. In the early 1990s, plant cost-reduction studies led to a decision to change the fertile material from thorium to natural uranium, primarily because of a lower long-term decay heat level for the natural uranium fissile particles. Ongoing economic optimization in combination with anticipated capabilities of the UCO particles resulted in peak fissile particle burnup projection of 26% FIMA in steam cycle and gas turbine concepts

  20. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones.

    Science.gov (United States)

    Mallikarjuna, Mallana Gowdra; Thirunavukkarasu, Nepolean; Hossain, Firoz; Bhat, Jayant S; Jha, Shailendra K; Rathore, Abhishek; Agrawal, Pawan Kumar; Pattanayak, Arunava; Reddy, Sokka S; Gularia, Satish Kumar; Singh, Anju Mahendru; Manjaiah, Kanchikeri Math; Gupta, Hari Shanker

    2015-01-01

    Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1); zinc: 5.41 to 30.85 mg kg(-1); manganese: 3.30 to 17.73 mg kg(-1); copper: 0.53 to 5.48 mg kg(-1)) and grain yield (826.6 to 5413 kg ha(-1)). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter GGE distance (GGED) showed strong and positive correlation with both mean kernel concentrations and grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investigation will be useful in

  1. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones.

    Directory of Open Access Journals (Sweden)

    Mallana Gowdra Mallikarjuna

    Full Text Available Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1; zinc: 5.41 to 30.85 mg kg(-1; manganese: 3.30 to 17.73 mg kg(-1; copper: 0.53 to 5.48 mg kg(-1 and grain yield (826.6 to 5413 kg ha(-1. Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05 and across locations (r = 0.44, p < 0.01. Variance components of the additive main effects and multiplicative interactions (AMMI model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%, manganese (41.34% and copper (41.12%, and environment main effects for both kernel zinc (40.5% and grain yield (37.0%. Genotype main effect plus genotype-by-environment interaction (GGE biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV as the better representative of the AMMI stability parameters. Dynamic stability

  2. Learning Rotation for Kernel Correlation Filter

    KAUST Repository

    Hamdi, Abdullah

    2017-08-11

    Kernel Correlation Filters have shown a very promising scheme for visual tracking in terms of speed and accuracy on several benchmarks. However it suffers from problems that affect its performance like occlusion, rotation and scale change. This paper tries to tackle the problem of rotation by reformulating the optimization problem for learning the correlation filter. This modification (RKCF) includes learning rotation filter that utilizes circulant structure of HOG feature to guesstimate rotation from one frame to another and enhance the detection of KCF. Hence it gains boost in overall accuracy in many of OBT50 detest videos with minimal additional computation.

  3. Research of Performance Linux Kernel File Systems

    Directory of Open Access Journals (Sweden)

    Andrey Vladimirovich Ostroukh

    2015-10-01

    Full Text Available The article describes the most common Linux Kernel File Systems. The research was carried out on a personal computer, the characteristics of which are written in the article. The study was performed on a typical workstation running GNU/Linux with below characteristics. On a personal computer for measuring the file performance, has been installed the necessary software. Based on the results, conclusions and proposed recommendations for use of file systems. Identified and recommended by the best ways to store data.

  4. Fixed kernel regression for voltammogram feature extraction

    International Nuclear Information System (INIS)

    Acevedo Rodriguez, F J; López-Sastre, R J; Gil-Jiménez, P; Maldonado Bascón, S; Ruiz-Reyes, N

    2009-01-01

    Cyclic voltammetry is an electroanalytical technique for obtaining information about substances under analysis without the need for complex flow systems. However, classifying the information in voltammograms obtained using this technique is difficult. In this paper, we propose the use of fixed kernel regression as a method for extracting features from these voltammograms, reducing the information to a few coefficients. The proposed approach has been applied to a wine classification problem with accuracy rates of over 98%. Although the method is described here for extracting voltammogram information, it can be used for other types of signals

  5. Reciprocity relation for multichannel coupling kernels

    International Nuclear Information System (INIS)

    Cotanch, S.R.; Satchler, G.R.

    1981-01-01

    Assuming time-reversal invariance of the many-body Hamiltonian, it is proven that the kernels in a general coupled-channels formulation are symmetric, to within a specified spin-dependent phase, under the interchange of channel labels and coordinates. The theorem is valid for both Hermitian and suitably chosen non-Hermitian Hamiltonians which contain complex effective interactions. While of direct practical consequence for nuclear rearrangement reactions, the reciprocity relation is also appropriate for other areas of physics which involve coupled-channels analysis

  6. Wheat kernel dimensions: how do they contribute to kernel weight at ...

    Indian Academy of Sciences (India)

    2011-12-02

    Dec 2, 2011 ... yield components, is greatly influenced by kernel dimensions. (KD), such as ..... six linkage gaps, and it covered 3010.70 cM of the whole genome with an ...... Ersoz E. et al. 2009 The Genetic architecture of maize flowering.

  7. Kernel Multivariate Analysis Framework for Supervised Subspace Learning: A Tutorial on Linear and Kernel Multivariate Methods

    DEFF Research Database (Denmark)

    Arenas-Garcia, J.; Petersen, K.; Camps-Valls, G.

    2013-01-01

    correlation analysis (CCA), and orthonormalized PLS (OPLS), as well as their nonlinear extensions derived by means of the theory of reproducing kernel Hilbert spaces (RKHSs). We also review their connections to other methods for classification and statistical dependence estimation and introduce some recent...

  8. Kernel learning at the first level of inference.

    Science.gov (United States)

    Cawley, Gavin C; Talbot, Nicola L C

    2014-05-01

    Kernel learning methods, whether Bayesian or frequentist, typically involve multiple levels of inference, with the coefficients of the kernel expansion being determined at the first level and the kernel and regularisation parameters carefully tuned at the second level, a process known as model selection. Model selection for kernel machines is commonly performed via optimisation of a suitable model selection criterion, often based on cross-validation or theoretical performance bounds. However, if there are a large number of kernel parameters, as for instance in the case of automatic relevance determination (ARD), there is a substantial risk of over-fitting the model selection criterion, resulting in poor generalisation performance. In this paper we investigate the possibility of learning the kernel, for the Least-Squares Support Vector Machine (LS-SVM) classifier, at the first level of inference, i.e. parameter optimisation. The kernel parameters and the coefficients of the kernel expansion are jointly optimised at the first level of inference, minimising a training criterion with an additional regularisation term acting on the kernel parameters. The key advantage of this approach is that the values of only two regularisation parameters need be determined in model selection, substantially alleviating the problem of over-fitting the model selection criterion. The benefits of this approach are demonstrated using a suite of synthetic and real-world binary classification benchmark problems, where kernel learning at the first level of inference is shown to be statistically superior to the conventional approach, improves on our previous work (Cawley and Talbot, 2007) and is competitive with Multiple Kernel Learning approaches, but with reduced computational expense. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Caractérisation Physico-Chimique de l'Amande d'Hybride de ...

    African Journals Online (AJOL)

    utilisée en biscuiterie, pâtisserie et savonnerie comme le PB 121 ordinaire. Mots clés: Cocotier, hybride, vitroculture, amande, caractéristique. Abstract. Chemical and physical characterization of kernel from coconut hybrid PB 121 (Cocos nucifera L.) regenerated by in vitro culture at different storage duration and mature ...

  10. The Kernel Estimation in Biosystems Engineering

    Directory of Open Access Journals (Sweden)

    Esperanza Ayuga Téllez

    2008-04-01

    Full Text Available In many fields of biosystems engineering, it is common to find works in which statistical information is analysed that violates the basic hypotheses necessary for the conventional forecasting methods. For those situations, it is necessary to find alternative methods that allow the statistical analysis considering those infringements. Non-parametric function estimation includes methods that fit a target function locally, using data from a small neighbourhood of the point. Weak assumptions, such as continuity and differentiability of the target function, are rather used than "a priori" assumption of the global target function shape (e.g., linear or quadratic. In this paper a few basic rules of decision are enunciated, for the application of the non-parametric estimation method. These statistical rules set up the first step to build an interface usermethod for the consistent application of kernel estimation for not expert users. To reach this aim, univariate and multivariate estimation methods and density function were analysed, as well as regression estimators. In some cases the models to be applied in different situations, based on simulations, were defined. Different biosystems engineering applications of the kernel estimation are also analysed in this review.

  11. Aligning Biomolecular Networks Using Modular Graph Kernels

    Science.gov (United States)

    Towfic, Fadi; Greenlee, M. Heather West; Honavar, Vasant

    Comparative analysis of biomolecular networks constructed using measurements from different conditions, tissues, and organisms offer a powerful approach to understanding the structure, function, dynamics, and evolution of complex biological systems. We explore a class of algorithms for aligning large biomolecular networks by breaking down such networks into subgraphs and computing the alignment of the networks based on the alignment of their subgraphs. The resulting subnetworks are compared using graph kernels as scoring functions. We provide implementations of the resulting algorithms as part of BiNA, an open source biomolecular network alignment toolkit. Our experiments using Drosophila melanogaster, Saccharomyces cerevisiae, Mus musculus and Homo sapiens protein-protein interaction networks extracted from the DIP repository of protein-protein interaction data demonstrate that the performance of the proposed algorithms (as measured by % GO term enrichment of subnetworks identified by the alignment) is competitive with some of the state-of-the-art algorithms for pair-wise alignment of large protein-protein interaction networks. Our results also show that the inter-species similarity scores computed based on graph kernels can be used to cluster the species into a species tree that is consistent with the known phylogenetic relationships among the species.

  12. Pareto-path multitask multiple kernel learning.

    Science.gov (United States)

    Li, Cong; Georgiopoulos, Michael; Anagnostopoulos, Georgios C

    2015-01-01

    A traditional and intuitively appealing Multitask Multiple Kernel Learning (MT-MKL) method is to optimize the sum (thus, the average) of objective functions with (partially) shared kernel function, which allows information sharing among the tasks. We point out that the obtained solution corresponds to a single point on the Pareto Front (PF) of a multiobjective optimization problem, which considers the concurrent optimization of all task objectives involved in the Multitask Learning (MTL) problem. Motivated by this last observation and arguing that the former approach is heuristic, we propose a novel support vector machine MT-MKL framework that considers an implicitly defined set of conic combinations of task objectives. We show that solving our framework produces solutions along a path on the aforementioned PF and that it subsumes the optimization of the average of objective functions as a special case. Using the algorithms we derived, we demonstrate through a series of experimental results that the framework is capable of achieving a better classification performance, when compared with other similar MTL approaches.

  13. Formal truncations of connected kernel equations

    International Nuclear Information System (INIS)

    Dixon, R.M.

    1977-01-01

    The Connected Kernel Equations (CKE) of Alt, Grassberger and Sandhas (AGS); Kouri, Levin and Tobocman (KLT); and Bencze, Redish and Sloan (BRS) are compared against reaction theory criteria after formal channel space and/or operator truncations have been introduced. The Channel Coupling Class concept is used to study the structure of these CKE's. The related wave function formalism of Sandhas, of L'Huillier, Redish and Tandy and of Kouri, Krueger and Levin are also presented. New N-body connected kernel equations which are generalizations of the Lovelace three-body equations are derived. A method for systematically constructing fewer body models from the N-body BRS and generalized Lovelace (GL) equations is developed. The formally truncated AGS, BRS, KLT and GL equations are analyzed by employing the criteria of reciprocity and two-cluster unitarity. Reciprocity considerations suggest that formal truncations of BRS, KLT and GL equations can lead to reciprocity-violating results. This study suggests that atomic problems should employ three-cluster connected truncations and that the two-cluster connected truncations should be a useful starting point for nuclear systems

  14. Scientific Computing Kernels on the Cell Processor

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Samuel W.; Shalf, John; Oliker, Leonid; Kamil, Shoaib; Husbands, Parry; Yelick, Katherine

    2007-04-04

    The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. As a result, the high performance computing community is examining alternative architectures that address the limitations of modern cache-based designs. In this work, we examine the potential of using the recently-released STI Cell processor as a building block for future high-end computing systems. Our work contains several novel contributions. First, we introduce a performance model for Cell and apply it to several key scientific computing kernels: dense matrix multiply, sparse matrix vector multiply, stencil computations, and 1D/2D FFTs. The difficulty of programming Cell, which requires assembly level intrinsics for the best performance, makes this model useful as an initial step in algorithm design and evaluation. Next, we validate the accuracy of our model by comparing results against published hardware results, as well as our own implementations on a 3.2GHz Cell blade. Additionally, we compare Cell performance to benchmarks run on leading superscalar (AMD Opteron), VLIW (Intel Itanium2), and vector (Cray X1E) architectures. Our work also explores several different mappings of the kernels and demonstrates a simple and effective programming model for Cell's unique architecture. Finally, we propose modest microarchitectural modifications that could significantly increase the efficiency of double-precision calculations. Overall results demonstrate the tremendous potential of the Cell architecture for scientific computations in terms of both raw performance and power efficiency.

  15. Delimiting areas of endemism through kernel interpolation.

    Science.gov (United States)

    Oliveira, Ubirajara; Brescovit, Antonio D; Santos, Adalberto J

    2015-01-01

    We propose a new approach for identification of areas of endemism, the Geographical Interpolation of Endemism (GIE), based on kernel spatial interpolation. This method differs from others in being independent of grid cells. This new approach is based on estimating the overlap between the distribution of species through a kernel interpolation of centroids of species distribution and areas of influence defined from the distance between the centroid and the farthest point of occurrence of each species. We used this method to delimit areas of endemism of spiders from Brazil. To assess the effectiveness of GIE, we analyzed the same data using Parsimony Analysis of Endemism and NDM and compared the areas identified through each method. The analyses using GIE identified 101 areas of endemism of spiders in Brazil GIE demonstrated to be effective in identifying areas of endemism in multiple scales, with fuzzy edges and supported by more synendemic species than in the other methods. The areas of endemism identified with GIE were generally congruent with those identified for other taxonomic groups, suggesting that common processes can be responsible for the origin and maintenance of these biogeographic units.

  16. Delimiting areas of endemism through kernel interpolation.

    Directory of Open Access Journals (Sweden)

    Ubirajara Oliveira

    Full Text Available We propose a new approach for identification of areas of endemism, the Geographical Interpolation of Endemism (GIE, based on kernel spatial interpolation. This method differs from others in being independent of grid cells. This new approach is based on estimating the overlap between the distribution of species through a kernel interpolation of centroids of species distribution and areas of influence defined from the distance between the centroid and the farthest point of occurrence of each species. We used this method to delimit areas of endemism of spiders from Brazil. To assess the effectiveness of GIE, we analyzed the same data using Parsimony Analysis of Endemism and NDM and compared the areas identified through each method. The analyses using GIE identified 101 areas of endemism of spiders in Brazil GIE demonstrated to be effective in identifying areas of endemism in multiple scales, with fuzzy edges and supported by more synendemic species than in the other methods. The areas of endemism identified with GIE were generally congruent with those identified for other taxonomic groups, suggesting that common processes can be responsible for the origin and maintenance of these biogeographic units.

  17. Extracting Feature Model Changes from the Linux Kernel Using FMDiff

    NARCIS (Netherlands)

    Dintzner, N.J.R.; Van Deursen, A.; Pinzger, M.

    2014-01-01

    The Linux kernel feature model has been studied as an example of large scale evolving feature model and yet details of its evolution are not known. We present here a classification of feature changes occurring on the Linux kernel feature model, as well as a tool, FMDiff, designed to automatically

  18. Replacement Value of Palm Kernel Meal for Maize on Carcass ...

    African Journals Online (AJOL)

    This study was conducted to evaluate the effect of replacing maize with palm kernel meal on nutrient composition, fatty acid profile and sensory qualities of the meat of turkeys fed the dietary treatments. Six dietary treatments were formulated using palm kernel meal to replace maize at 0, 20, 40, 60, 80 and 100 percent.

  19. Effect of Palm Kernel Cake Replacement and Enzyme ...

    African Journals Online (AJOL)

    A feeding trial which lasted for twelve weeks was conducted to study the performance of finisher pigs fed five different levels of palm kernel cake replacement for maize (0%, 40%, 40%, 60%, 60%) in a maize-palm kernel cake based ration with or without enzyme supplementation. It was a completely randomized design ...

  20. Capturing option anomalies with a variance-dependent pricing kernel

    NARCIS (Netherlands)

    Christoffersen, P.; Heston, S.; Jacobs, K.

    2013-01-01

    We develop a GARCH option model with a variance premium by combining the Heston-Nandi (2000) dynamic with a new pricing kernel that nests Rubinstein (1976) and Brennan (1979). While the pricing kernel is monotonic in the stock return and in variance, its projection onto the stock return is

  1. Nonlinear Forecasting With Many Predictors Using Kernel Ridge Regression

    DEFF Research Database (Denmark)

    Exterkate, Peter; Groenen, Patrick J.F.; Heij, Christiaan

    This paper puts forward kernel ridge regression as an approach for forecasting with many predictors that are related nonlinearly to the target variable. In kernel ridge regression, the observed predictor variables are mapped nonlinearly into a high-dimensional space, where estimation of the predi...

  2. Commutators of Integral Operators with Variable Kernels on Hardy ...

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 115; Issue 4. Commutators of Integral Operators with Variable Kernels on Hardy Spaces. Pu Zhang Kai Zhao. Volume 115 Issue 4 November 2005 pp 399-410 ... Keywords. Singular and fractional integrals; variable kernel; commutator; Hardy space.

  3. Discrete non-parametric kernel estimation for global sensitivity analysis

    International Nuclear Information System (INIS)

    Senga Kiessé, Tristan; Ventura, Anne

    2016-01-01

    This work investigates the discrete kernel approach for evaluating the contribution of the variance of discrete input variables to the variance of model output, via analysis of variance (ANOVA) decomposition. Until recently only the continuous kernel approach has been applied as a metamodeling approach within sensitivity analysis framework, for both discrete and continuous input variables. Now the discrete kernel estimation is known to be suitable for smoothing discrete functions. We present a discrete non-parametric kernel estimator of ANOVA decomposition of a given model. An estimator of sensitivity indices is also presented with its asymtotic convergence rate. Some simulations on a test function analysis and a real case study from agricultural have shown that the discrete kernel approach outperforms the continuous kernel one for evaluating the contribution of moderate or most influential discrete parameters to the model output. - Highlights: • We study a discrete kernel estimation for sensitivity analysis of a model. • A discrete kernel estimator of ANOVA decomposition of the model is presented. • Sensitivity indices are calculated for discrete input parameters. • An estimator of sensitivity indices is also presented with its convergence rate. • An application is realized for improving the reliability of environmental models.

  4. Kernel Function Tuning for Single-Layer Neural Networks

    Czech Academy of Sciences Publication Activity Database

    Vidnerová, Petra; Neruda, Roman

    -, accepted 28.11. 2017 (2018) ISSN 2278-0149 R&D Projects: GA ČR GA15-18108S Institutional support: RVO:67985807 Keywords : single-layer neural networks * kernel methods * kernel function * optimisation Subject RIV: IN - Informatics, Computer Science http://www.ijmerr.com/

  5. Geodesic exponential kernels: When Curvature and Linearity Conflict

    DEFF Research Database (Denmark)

    Feragen, Aase; Lauze, François; Hauberg, Søren

    2015-01-01

    manifold, the geodesic Gaussian kernel is only positive definite if the Riemannian manifold is Euclidean. This implies that any attempt to design geodesic Gaussian kernels on curved Riemannian manifolds is futile. However, we show that for spaces with conditionally negative definite distances the geodesic...

  6. Denoising by semi-supervised kernel PCA preimaging

    DEFF Research Database (Denmark)

    Hansen, Toke Jansen; Abrahamsen, Trine Julie; Hansen, Lars Kai

    2014-01-01

    Kernel Principal Component Analysis (PCA) has proven a powerful tool for nonlinear feature extraction, and is often applied as a pre-processing step for classification algorithms. In denoising applications Kernel PCA provides the basis for dimensionality reduction, prior to the so-called pre-imag...

  7. Design and construction of palm kernel cracking and separation ...

    African Journals Online (AJOL)

    Design and construction of palm kernel cracking and separation machines. ... Username, Password, Remember me, or Register. DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Design and construction of palm kernel cracking and separation machines. JO Nordiana, K ...

  8. Kernel Methods for Machine Learning with Life Science Applications

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie

    Kernel methods refer to a family of widely used nonlinear algorithms for machine learning tasks like classification, regression, and feature extraction. By exploiting the so-called kernel trick straightforward extensions of classical linear algorithms are enabled as long as the data only appear a...

  9. A relationship between Gel'fand-Levitan and Marchenko kernels

    International Nuclear Information System (INIS)

    Kirst, T.; Von Geramb, H.V.; Amos, K.A.

    1989-01-01

    An integral equation which relates the output kernels of the Gel'fand-Levitan and Marchenko inverse scattering equations is specified. Structural details of this integral equation are studied when the S-matrix is a rational function, and the output kernels are separable in terms of Bessel, Hankel and Jost solutions. 4 refs

  10. Boundary singularity of Poisson and harmonic Bergman kernels

    Czech Academy of Sciences Publication Activity Database

    Engliš, Miroslav

    2015-01-01

    Roč. 429, č. 1 (2015), s. 233-272 ISSN 0022-247X R&D Projects: GA AV ČR IAA100190802 Institutional support: RVO:67985840 Keywords : harmonic Bergman kernel * Poisson kernel * pseudodifferential boundary operators Subject RIV: BA - General Mathematics Impact factor: 1.014, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022247X15003170

  11. Oven-drying reduces ruminal starch degradation in maize kernels

    NARCIS (Netherlands)

    Ali, M.; Cone, J.W.; Hendriks, W.H.; Struik, P.C.

    2014-01-01

    The degradation of starch largely determines the feeding value of maize (Zea mays L.) for dairy cows. Normally, maize kernels are dried and ground before chemical analysis and determining degradation characteristics, whereas cows eat and digest fresh material. Drying the moist maize kernels

  12. Real time kernel performance monitoring with SystemTap

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    SystemTap is a dynamic method of monitoring and tracing the operation of a running Linux kernel. In this talk I will present a few practical use cases where SystemTap allowed me to turn otherwise complex userland monitoring tasks in simple kernel probes.

  13. Resolvent kernel for the Kohn Laplacian on Heisenberg groups

    Directory of Open Access Journals (Sweden)

    Neur Eddine Askour

    2002-07-01

    Full Text Available We present a formula that relates the Kohn Laplacian on Heisenberg groups and the magnetic Laplacian. Then we obtain the resolvent kernel for the Kohn Laplacian and find its spectral density. We conclude by obtaining the Green kernel for fractional powers of the Kohn Laplacian.

  14. Reproducing Kernels and Coherent States on Julia Sets

    Energy Technology Data Exchange (ETDEWEB)

    Thirulogasanthar, K., E-mail: santhar@cs.concordia.ca; Krzyzak, A. [Concordia University, Department of Computer Science and Software Engineering (Canada)], E-mail: krzyzak@cs.concordia.ca; Honnouvo, G. [Concordia University, Department of Mathematics and Statistics (Canada)], E-mail: g_honnouvo@yahoo.fr

    2007-11-15

    We construct classes of coherent states on domains arising from dynamical systems. An orthonormal family of vectors associated to the generating transformation of a Julia set is found as a family of square integrable vectors, and, thereby, reproducing kernels and reproducing kernel Hilbert spaces are associated to Julia sets. We also present analogous results on domains arising from iterated function systems.

  15. Reproducing Kernels and Coherent States on Julia Sets

    International Nuclear Information System (INIS)

    Thirulogasanthar, K.; Krzyzak, A.; Honnouvo, G.

    2007-01-01

    We construct classes of coherent states on domains arising from dynamical systems. An orthonormal family of vectors associated to the generating transformation of a Julia set is found as a family of square integrable vectors, and, thereby, reproducing kernels and reproducing kernel Hilbert spaces are associated to Julia sets. We also present analogous results on domains arising from iterated function systems

  16. A multi-scale kernel bundle for LDDMM

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Nielsen, Mads; Lauze, Francois Bernard

    2011-01-01

    The Large Deformation Diffeomorphic Metric Mapping framework constitutes a widely used and mathematically well-founded setup for registration in medical imaging. At its heart lies the notion of the regularization kernel, and the choice of kernel greatly affects the results of registrations...

  17. Comparison of Kernel Equating and Item Response Theory Equating Methods

    Science.gov (United States)

    Meng, Yu

    2012-01-01

    The kernel method of test equating is a unified approach to test equating with some advantages over traditional equating methods. Therefore, it is important to evaluate in a comprehensive way the usefulness and appropriateness of the Kernel equating (KE) method, as well as its advantages and disadvantages compared with several popular item…

  18. An analysis of 1-D smoothed particle hydrodynamics kernels

    International Nuclear Information System (INIS)

    Fulk, D.A.; Quinn, D.W.

    1996-01-01

    In this paper, the smoothed particle hydrodynamics (SPH) kernel is analyzed, resulting in measures of merit for one-dimensional SPH. Various methods of obtaining an objective measure of the quality and accuracy of the SPH kernel are addressed. Since the kernel is the key element in the SPH methodology, this should be of primary concern to any user of SPH. The results of this work are two measures of merit, one for smooth data and one near shocks. The measure of merit for smooth data is shown to be quite accurate and a useful delineator of better and poorer kernels. The measure of merit for non-smooth data is not quite as accurate, but results indicate the kernel is much less important for these types of problems. In addition to the theory, 20 kernels are analyzed using the measure of merit demonstrating the general usefulness of the measure of merit and the individual kernels. In general, it was decided that bell-shaped kernels perform better than other shapes. 12 refs., 16 figs., 7 tabs

  19. Optimal Bandwidth Selection in Observed-Score Kernel Equating

    Science.gov (United States)

    Häggström, Jenny; Wiberg, Marie

    2014-01-01

    The selection of bandwidth in kernel equating is important because it has a direct impact on the equated test scores. The aim of this article is to examine the use of double smoothing when selecting bandwidths in kernel equating and to compare double smoothing with the commonly used penalty method. This comparison was made using both an equivalent…

  20. Computing an element in the lexicographic kernel of a game

    NARCIS (Netherlands)

    Faigle, U.; Kern, Walter; Kuipers, Jeroen

    The lexicographic kernel of a game lexicographically maximizes the surplusses $s_{ij}$ (rather than the excesses as would the nucleolus). We show that an element in the lexicographic kernel can be computed efficiently, provided we can efficiently compute the surplusses $s_{ij}(x)$ corresponding to a

  1. Computing an element in the lexicographic kernel of a game

    NARCIS (Netherlands)

    Faigle, U.; Kern, Walter; Kuipers, J.

    2002-01-01

    The lexicographic kernel of a game lexicographically maximizes the surplusses $s_{ij}$ (rather than the excesses as would the nucleolus). We show that an element in the lexicographic kernel can be computed efficiently, provided we can efficiently compute the surplusses $s_{ij}(x)$ corresponding to a

  2. 3-D waveform tomography sensitivity kernels for anisotropic media

    KAUST Repository

    Djebbi, Ramzi

    2014-01-01

    The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate this ambiguity between the different parameters. We use dynamic ray tracing to efficiently handle the expensive computational cost for 3-D anisotropic models. Ray tracing provides also the ray direction information necessary for conditioning the sensitivity kernels to handle anisotropy. The NMO velocity and η parameter kernels showed a maximum sensitivity for diving waves which results in a relevant choice of those parameters in wave equation tomography. The δ parameter kernel showed zero sensitivity; therefore it can serve as a secondary parameter to fit the amplitude in the acoustic anisotropic inversion. Considering the limited penetration depth of diving waves, migration velocity analysis based kernels are introduced to fix the depth ambiguity with reflections and compute sensitivity maps in the deeper parts of the model.

  3. Anatomically-aided PET reconstruction using the kernel method.

    Science.gov (United States)

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi

    2016-09-21

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization algorithm.

  4. Open Problem: Kernel methods on manifolds and metric spaces

    DEFF Research Database (Denmark)

    Feragen, Aasa; Hauberg, Søren

    2016-01-01

    Radial kernels are well-suited for machine learning over general geodesic metric spaces, where pairwise distances are often the only computable quantity available. We have recently shown that geodesic exponential kernels are only positive definite for all bandwidths when the input space has strong...... linear properties. This negative result hints that radial kernel are perhaps not suitable over geodesic metric spaces after all. Here, however, we present evidence that large intervals of bandwidths exist where geodesic exponential kernels have high probability of being positive definite over finite...... datasets, while still having significant predictive power. From this we formulate conjectures on the probability of a positive definite kernel matrix for a finite random sample, depending on the geometry of the data space and the spread of the sample....

  5. Compactly Supported Basis Functions as Support Vector Kernels for Classification.

    Science.gov (United States)

    Wittek, Peter; Tan, Chew Lim

    2011-10-01

    Wavelet kernels have been introduced for both support vector regression and classification. Most of these wavelet kernels do not use the inner product of the embedding space, but use wavelets in a similar fashion to radial basis function kernels. Wavelet analysis is typically carried out on data with a temporal or spatial relation between consecutive data points. We argue that it is possible to order the features of a general data set so that consecutive features are statistically related to each other, thus enabling us to interpret the vector representation of an object as a series of equally or randomly spaced observations of a hypothetical continuous signal. By approximating the signal with compactly supported basis functions and employing the inner product of the embedding L2 space, we gain a new family of wavelet kernels. Empirical results show a clear advantage in favor of these kernels.

  6. Improved modeling of clinical data with kernel methods.

    Science.gov (United States)

    Daemen, Anneleen; Timmerman, Dirk; Van den Bosch, Thierry; Bottomley, Cecilia; Kirk, Emma; Van Holsbeke, Caroline; Valentin, Lil; Bourne, Tom; De Moor, Bart

    2012-02-01

    Despite the rise of high-throughput technologies, clinical data such as age, gender and medical history guide clinical management for most diseases and examinations. To improve clinical management, available patient information should be fully exploited. This requires appropriate modeling of relevant parameters. When kernel methods are used, traditional kernel functions such as the linear kernel are often applied to the set of clinical parameters. These kernel functions, however, have their disadvantages due to the specific characteristics of clinical data, being a mix of variable types with each variable its own range. We propose a new kernel function specifically adapted to the characteristics of clinical data. The clinical kernel function provides a better representation of patients' similarity by equalizing the influence of all variables and taking into account the range r of the variables. Moreover, it is robust with respect to changes in r. Incorporated in a least squares support vector machine, the new kernel function results in significantly improved diagnosis, prognosis and prediction of therapy response. This is illustrated on four clinical data sets within gynecology, with an average increase in test area under the ROC curve (AUC) of 0.023, 0.021, 0.122 and 0.019, respectively. Moreover, when combining clinical parameters and expression data in three case studies on breast cancer, results improved overall with use of the new kernel function and when considering both data types in a weighted fashion, with a larger weight assigned to the clinical parameters. The increase in AUC with respect to a standard kernel function and/or unweighted data combination was maximum 0.127, 0.042 and 0.118 for the three case studies. For clinical data consisting of variables of different types, the proposed kernel function--which takes into account the type and range of each variable--has shown to be a better alternative for linear and non-linear classification problems

  7. A method for manufacturing kernels of metallic oxides and the thus obtained kernels

    International Nuclear Information System (INIS)

    Lelievre Bernard; Feugier, Andre.

    1973-01-01

    A method is described for manufacturing fissile or fertile metal oxide kernels, consisting in adding at least a chemical compound capable of releasing ammonia to an aqueous solution of actinide nitrates dispersing the thus obtained solution dropwise in a hot organic phase so as to gelify the drops and transform them into solid particles, washing drying and treating said particles so as to transform them into oxide kernels. Such a method is characterized in that the organic phase used in the gel-forming reactions comprises a mixture of two organic liquids, one of which acts as a solvent, whereas the other is a product capable of extracting the metal-salt anions from the drops while the gel forming reaction is taking place. This can be applied to the so-called high temperature nuclear reactors [fr

  8. Learning molecular energies using localized graph kernels

    Science.gov (United States)

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-01

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  9. A particle swarm optimized kernel-based clustering method for crop mapping from multi-temporal polarimetric L-band SAR observations

    Science.gov (United States)

    Tamiminia, Haifa; Homayouni, Saeid; McNairn, Heather; Safari, Abdoreza

    2017-06-01

    Polarimetric Synthetic Aperture Radar (PolSAR) data, thanks to their specific characteristics such as high resolution, weather and daylight independence, have become a valuable source of information for environment monitoring and management. The discrimination capability of observations acquired by these sensors can be used for land cover classification and mapping. The aim of this paper is to propose an optimized kernel-based C-means clustering algorithm for agriculture crop mapping from multi-temporal PolSAR data. Firstly, several polarimetric features are extracted from preprocessed data. These features are linear polarization intensities, and several statistical and physical based decompositions such as Cloude-Pottier, Freeman-Durden and Yamaguchi techniques. Then, the kernelized version of hard and fuzzy C-means clustering algorithms are applied to these polarimetric features in order to identify crop types. The kernel function, unlike the conventional partitioning clustering algorithms, simplifies the non-spherical and non-linearly patterns of data structure, to be clustered easily. In addition, in order to enhance the results, Particle Swarm Optimization (PSO) algorithm is used to tune the kernel parameters, cluster centers and to optimize features selection. The efficiency of this method was evaluated by using multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Manitoba, Canada, during June and July in 2012. The results demonstrate more accurate crop maps using the proposed method when compared to the classical approaches, (e.g. 12% improvement in general). In addition, when the optimization technique is used, greater improvement is observed in crop classification, e.g. 5% in overall. Furthermore, a strong relationship between Freeman-Durden volume scattering component, which is related to canopy structure, and phenological growth stages is observed.

  10. Stochastic subset selection for learning with kernel machines.

    Science.gov (United States)

    Rhinelander, Jason; Liu, Xiaoping P

    2012-06-01

    Kernel machines have gained much popularity in applications of machine learning. Support vector machines (SVMs) are a subset of kernel machines and generalize well for classification, regression, and anomaly detection tasks. The training procedure for traditional SVMs involves solving a quadratic programming (QP) problem. The QP problem scales super linearly in computational effort with the number of training samples and is often used for the offline batch processing of data. Kernel machines operate by retaining a subset of observed data during training. The data vectors contained within this subset are referred to as support vectors (SVs). The work presented in this paper introduces a subset selection method for the use of kernel machines in online, changing environments. Our algorithm works by using a stochastic indexing technique when selecting a subset of SVs when computing the kernel expansion. The work described here is novel because it separates the selection of kernel basis functions from the training algorithm used. The subset selection algorithm presented here can be used in conjunction with any online training technique. It is important for online kernel machines to be computationally efficient due to the real-time requirements of online environments. Our algorithm is an important contribution because it scales linearly with the number of training samples and is compatible with current training techniques. Our algorithm outperforms standard techniques in terms of computational efficiency and provides increased recognition accuracy in our experiments. We provide results from experiments using both simulated and real-world data sets to verify our algorithm.

  11. Multiple kernel boosting framework based on information measure for classification

    International Nuclear Information System (INIS)

    Qi, Chengming; Wang, Yuping; Tian, Wenjie; Wang, Qun

    2016-01-01

    The performance of kernel-based method, such as support vector machine (SVM), is greatly affected by the choice of kernel function. Multiple kernel learning (MKL) is a promising family of machine learning algorithms and has attracted many attentions in recent years. MKL combines multiple sub-kernels to seek better results compared to single kernel learning. In order to improve the efficiency of SVM and MKL, in this paper, the Kullback–Leibler kernel function is derived to develop SVM. The proposed method employs an improved ensemble learning framework, named KLMKB, which applies Adaboost to learning multiple kernel-based classifier. In the experiment for hyperspectral remote sensing image classification, we employ feature selected through Optional Index Factor (OIF) to classify the satellite image. We extensively examine the performance of our approach in comparison to some relevant and state-of-the-art algorithms on a number of benchmark classification data sets and hyperspectral remote sensing image data set. Experimental results show that our method has a stable behavior and a noticeable accuracy for different data set.

  12. Per-Sample Multiple Kernel Approach for Visual Concept Learning

    Directory of Open Access Journals (Sweden)

    Ling-Yu Duan

    2010-01-01

    Full Text Available Learning visual concepts from images is an important yet challenging problem in computer vision and multimedia research areas. Multiple kernel learning (MKL methods have shown great advantages in visual concept learning. As a visual concept often exhibits great appearance variance, a canonical MKL approach may not generate satisfactory results when a uniform kernel combination is applied over the input space. In this paper, we propose a per-sample multiple kernel learning (PS-MKL approach to take into account intraclass diversity for improving discrimination. PS-MKL determines sample-wise kernel weights according to kernel functions and training samples. Kernel weights as well as kernel-based classifiers are jointly learned. For efficient learning, PS-MKL employs a sample selection strategy. Extensive experiments are carried out over three benchmarking datasets of different characteristics including Caltech101, WikipediaMM, and Pascal VOC'07. PS-MKL has achieved encouraging performance, comparable to the state of the art, which has outperformed a canonical MKL.

  13. Per-Sample Multiple Kernel Approach for Visual Concept Learning

    Directory of Open Access Journals (Sweden)

    Tian Yonghong

    2010-01-01

    Full Text Available Abstract Learning visual concepts from images is an important yet challenging problem in computer vision and multimedia research areas. Multiple kernel learning (MKL methods have shown great advantages in visual concept learning. As a visual concept often exhibits great appearance variance, a canonical MKL approach may not generate satisfactory results when a uniform kernel combination is applied over the input space. In this paper, we propose a per-sample multiple kernel learning (PS-MKL approach to take into account intraclass diversity for improving discrimination. PS-MKL determines sample-wise kernel weights according to kernel functions and training samples. Kernel weights as well as kernel-based classifiers are jointly learned. For efficient learning, PS-MKL employs a sample selection strategy. Extensive experiments are carried out over three benchmarking datasets of different characteristics including Caltech101, WikipediaMM, and Pascal VOC'07. PS-MKL has achieved encouraging performance, comparable to the state of the art, which has outperformed a canonical MKL.

  14. Localized Multiple Kernel Learning Via Sample-Wise Alternating Optimization.

    Science.gov (United States)

    Han, Yina; Yang, Kunde; Ma, Yuanliang; Liu, Guizhong

    2014-01-01

    Our objective is to train support vector machines (SVM)-based localized multiple kernel learning (LMKL), using the alternating optimization between the standard SVM solvers with the local combination of base kernels and the sample-specific kernel weights. The advantage of alternating optimization developed from the state-of-the-art MKL is the SVM-tied overall complexity and the simultaneous optimization on both the kernel weights and the classifier. Unfortunately, in LMKL, the sample-specific character makes the updating of kernel weights a difficult quadratic nonconvex problem. In this paper, starting from a new primal-dual equivalence, the canonical objective on which state-of-the-art methods are based is first decomposed into an ensemble of objectives corresponding to each sample, namely, sample-wise objectives. Then, the associated sample-wise alternating optimization method is conducted, in which the localized kernel weights can be independently obtained by solving their exclusive sample-wise objectives, either linear programming (for l1-norm) or with closed-form solutions (for lp-norm). At test time, the learnt kernel weights for the training data are deployed based on the nearest-neighbor rule. Hence, to guarantee their generality among the test part, we introduce the neighborhood information and incorporate it into the empirical loss when deriving the sample-wise objectives. Extensive experiments on four benchmark machine learning datasets and two real-world computer vision datasets demonstrate the effectiveness and efficiency of the proposed algorithm.

  15. Deep Restricted Kernel Machines Using Conjugate Feature Duality.

    Science.gov (United States)

    Suykens, Johan A K

    2017-08-01

    The aim of this letter is to propose a theory of deep restricted kernel machines offering new foundations for deep learning with kernel machines. From the viewpoint of deep learning, it is partially related to restricted Boltzmann machines, which are characterized by visible and hidden units in a bipartite graph without hidden-to-hidden connections and deep learning extensions as deep belief networks and deep Boltzmann machines. From the viewpoint of kernel machines, it includes least squares support vector machines for classification and regression, kernel principal component analysis (PCA), matrix singular value decomposition, and Parzen-type models. A key element is to first characterize these kernel machines in terms of so-called conjugate feature duality, yielding a representation with visible and hidden units. It is shown how this is related to the energy form in restricted Boltzmann machines, with continuous variables in a nonprobabilistic setting. In this new framework of so-called restricted kernel machine (RKM) representations, the dual variables correspond to hidden features. Deep RKM are obtained by coupling the RKMs. The method is illustrated for deep RKM, consisting of three levels with a least squares support vector machine regression level and two kernel PCA levels. In its primal form also deep feedforward neural networks can be trained within this framework.

  16. Training Lp norm multiple kernel learning in the primal.

    Science.gov (United States)

    Liang, Zhizheng; Xia, Shixiong; Zhou, Yong; Zhang, Lei

    2013-10-01

    Some multiple kernel learning (MKL) models are usually solved by utilizing the alternating optimization method where one alternately solves SVMs in the dual and updates kernel weights. Since the dual and primal optimization can achieve the same aim, it is valuable in exploring how to perform Lp norm MKL in the primal. In this paper, we propose an Lp norm multiple kernel learning algorithm in the primal where we resort to the alternating optimization method: one cycle for solving SVMs in the primal by using the preconditioned conjugate gradient method and other cycle for learning the kernel weights. It is interesting to note that the kernel weights in our method can obtain analytical solutions. Most importantly, the proposed method is well suited for the manifold regularization framework in the primal since solving LapSVMs in the primal is much more effective than solving LapSVMs in the dual. In addition, we also carry out theoretical analysis for multiple kernel learning in the primal in terms of the empirical Rademacher complexity. It is found that optimizing the empirical Rademacher complexity may obtain a type of kernel weights. The experiments on some datasets are carried out to demonstrate the feasibility and effectiveness of the proposed method. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Assessing pigmented pericarp of maize kernels as possible source of resistance to fusarium ear rot, Fusarium spp. infection and fumonisin accumulation.

    Science.gov (United States)

    Venturini, Giovanni; Babazadeh, Laleh; Casati, Paola; Pilu, Roberto; Salomoni, Daiana; Toffolatti, Silvia L

    2016-06-16

    One of the purposes of maize genetic improvement is the research of genotypes resistant to fusarium ear rot (FER) and fumonisin accumulation. Flavonoids in the pericarp of the kernels are considered particularly able to reduce the fumonisin accumulation (FUM). The aim of this field study was to assess the effect of flavonoids, associated with anti-insect protection and Fusarium verticillioides inoculation, on FER symptoms and fumonisin contamination in maize kernels. Two isogenic hybrids, one having pigmentation in the pericarp (P1-rr) and the other without it (P1-wr), were compared. P1-rr showed lower values of FER symptoms and FUM contamination than P1-wr only if the anti-insect protection and the F. verticillioides inoculations were applied in combination. Fusarium spp. kernel infection was not influenced by the presence of flavonoids in the pericarp. Artificial F. verticillioides inoculation was more effective than anti-insect protection in enhancing the inhibition activity of flavonoids toward FUM contamination. The interactions between FUM contamination levels and FER ratings were better modeled in the pigmented hybrid than in the unpigmented one. The variable role that the pigment played in kernel defense against FER and FUM indicates that flavonoids alone may not be completely effective in the resistance of fumonisin contamination in maize. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A fourth order PDE based fuzzy c- means approach for segmentation of microscopic biopsy images in presence of Poisson noise for cancer detection.

    Science.gov (United States)

    Kumar, Rajesh; Srivastava, Subodh; Srivastava, Rajeev

    2017-07-01

    For cancer detection from microscopic biopsy images, image segmentation step used for segmentation of cells and nuclei play an important role. Accuracy of segmentation approach dominate the final results. Also the microscopic biopsy images have intrinsic Poisson noise and if it is present in the image the segmentation results may not be accurate. The objective is to propose an efficient fuzzy c-means based segmentation approach which can also handle the noise present in the image during the segmentation process itself i.e. noise removal and segmentation is combined in one step. To address the above issues, in this paper a fourth order partial differential equation (FPDE) based nonlinear filter adapted to Poisson noise with fuzzy c-means segmentation method is proposed. This approach is capable of effectively handling the segmentation problem of blocky artifacts while achieving good tradeoff between Poisson noise removals and edge preservation of the microscopic biopsy images during segmentation process for cancer detection from cells. The proposed approach is tested on breast cancer microscopic biopsy data set with region of interest (ROI) segmented ground truth images. The microscopic biopsy data set contains 31 benign and 27 malignant images of size 896 × 768. The region of interest selected ground truth of all 58 images are also available for this data set. Finally, the result obtained from proposed approach is compared with the results of popular segmentation algorithms; fuzzy c-means, color k-means, texture based segmentation, and total variation fuzzy c-means approaches. The experimental results shows that proposed approach is providing better results in terms of various performance measures such as Jaccard coefficient, dice index, Tanimoto coefficient, area under curve, accuracy, true positive rate, true negative rate, false positive rate, false negative rate, random index, global consistency error, and variance of information as compared to other

  19. Gradient-based adaptation of general gaussian kernels.

    Science.gov (United States)

    Glasmachers, Tobias; Igel, Christian

    2005-10-01

    Gradient-based optimizing of gaussian kernel functions is considered. The gradient for the adaptation of scaling and rotation of the input space is computed to achieve invariance against linear transformations. This is done by using the exponential map as a parameterization of the kernel parameter manifold. By restricting the optimization to a constant trace subspace, the kernel size can be controlled. This is, for example, useful to prevent overfitting when minimizing radius-margin generalization performance measures. The concepts are demonstrated by training hard margin support vector machines on toy data.

  20. On weights which admit the reproducing kernel of Bergman type

    Directory of Open Access Journals (Sweden)

    Zbigniew Pasternak-Winiarski

    1992-01-01

    Full Text Available In this paper we consider (1 the weights of integration for which the reproducing kernel of the Bergman type can be defined, i.e., the admissible weights, and (2 the kernels defined by such weights. It is verified that the weighted Bergman kernel has the analogous properties as the classical one. We prove several sufficient conditions and necessary and sufficient conditions for a weight to be an admissible weight. We give also an example of a weight which is not of this class. As a positive example we consider the weight μ(z=(Imz2 defined on the unit disk in ℂ.

  1. Visualization of nonlinear kernel models in neuroimaging by sensitivity maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Hansen, Lars Kai; Madsen, Kristoffer Hougaard

    There is significant current interest in decoding mental states from neuroimages. In this context kernel methods, e.g., support vector machines (SVM) are frequently adopted to learn statistical relations between patterns of brain activation and experimental conditions. In this paper we focus...... on visualization of such nonlinear kernel models. Specifically, we investigate the sensitivity map as a technique for generation of global summary maps of kernel classification methods. We illustrate the performance of the sensitivity map on functional magnetic resonance (fMRI) data based on visual stimuli. We...

  2. Flour quality and kernel hardness connection in winter wheat

    Directory of Open Access Journals (Sweden)

    Szabó B. P.

    2016-12-01

    Full Text Available Kernel hardness is controlled by friabilin protein and it depends on the relation between protein matrix and starch granules. Friabilin is present in high concentration in soft grain varieties and in low concentration in hard grain varieties. The high gluten, hard wheat our generally contains about 12.0–13.0% crude protein under Mid-European conditions. The relationship between wheat protein content and kernel texture is usually positive and kernel texture influences the power consumption during milling. Hard-textured wheat grains require more grinding energy than soft-textured grains.

  3. Deep kernel learning method for SAR image target recognition

    Science.gov (United States)

    Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao

    2017-10-01

    With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.

  4. Explicit signal to noise ratio in reproducing kernel Hilbert spaces

    DEFF Research Database (Denmark)

    Gomez-Chova, Luis; Nielsen, Allan Aasbjerg; Camps-Valls, Gustavo

    2011-01-01

    This paper introduces a nonlinear feature extraction method based on kernels for remote sensing data analysis. The proposed approach is based on the minimum noise fraction (MNF) transform, which maximizes the signal variance while also minimizing the estimated noise variance. We here propose...... an alternative kernel MNF (KMNF) in which the noise is explicitly estimated in the reproducing kernel Hilbert space. This enables KMNF dealing with non-linear relations between the noise and the signal features jointly. Results show that the proposed KMNF provides the most noise-free features when confronted...

  5. Examining Potential Boundary Bias Effects in Kernel Smoothing on Equating: An Introduction for the Adaptive and Epanechnikov Kernels.

    Science.gov (United States)

    Cid, Jaime A; von Davier, Alina A

    2015-05-01

    Test equating is a method of making the test scores from different test forms of the same assessment comparable. In the equating process, an important step involves continuizing the discrete score distributions. In traditional observed-score equating, this step is achieved using linear interpolation (or an unscaled uniform kernel). In the kernel equating (KE) process, this continuization process involves Gaussian kernel smoothing. It has been suggested that the choice of bandwidth in kernel smoothing controls the trade-off between variance and bias. In the literature on estimating density functions using kernels, it has also been suggested that the weight of the kernel depends on the sample size, and therefore, the resulting continuous distribution exhibits bias at the endpoints, where the samples are usually smaller. The purpose of this article is (a) to explore the potential effects of atypical scores (spikes) at the extreme ends (high and low) on the KE method in distributions with different degrees of asymmetry using the randomly equivalent groups equating design (Study I), and (b) to introduce the Epanechnikov and adaptive kernels as potential alternative approaches to reducing boundary bias in smoothing (Study II). The beta-binomial model is used to simulate observed scores reflecting a range of different skewed shapes.

  6. Rare variant testing across methods and thresholds using the multi-kernel sequence kernel association test (MK-SKAT).

    Science.gov (United States)

    Urrutia, Eugene; Lee, Seunggeun; Maity, Arnab; Zhao, Ni; Shen, Judong; Li, Yun; Wu, Michael C

    Analysis of rare genetic variants has focused on region-based analysis wherein a subset of the variants within a genomic region is tested for association with a complex trait. Two important practical challenges have emerged. First, it is difficult to choose which test to use. Second, it is unclear which group of variants within a region should be tested. Both depend on the unknown true state of nature. Therefore, we develop the Multi-Kernel SKAT (MK-SKAT) which tests across a range of rare variant tests and groupings. Specifically, we demonstrate that several popular rare variant tests are special cases of the sequence kernel association test which compares pair-wise similarity in trait value to similarity in the rare variant genotypes between subjects as measured through a kernel function. Choosing a particular test is equivalent to choosing a kernel. Similarly, choosing which group of variants to test also reduces to choosing a kernel. Thus, MK-SKAT uses perturbation to test across a range of kernels. Simulations and real data analyses show that our framework controls type I error while maintaining high power across settings: MK-SKAT loses power when compared to the kernel for a particular scenario but has much greater power than poor choices.

  7. Efficient Online Subspace Learning With an Indefinite Kernel for Visual Tracking and Recognition

    NARCIS (Netherlands)

    Liwicki, Stephan; Zafeiriou, Stefanos; Tzimiropoulos, Georgios; Pantic, Maja

    2012-01-01

    We propose an exact framework for online learning with a family of indefinite (not positive) kernels. As we study the case of nonpositive kernels, we first show how to extend kernel principal component analysis (KPCA) from a reproducing kernel Hilbert space to Krein space. We then formulate an

  8. Calculation of the thermal neutron scattering kernel using the synthetic model. Pt. 2. Zero-order energy transfer kernel

    International Nuclear Information System (INIS)

    Drozdowicz, K.

    1995-01-01

    A comprehensive unified description of the application of Granada's Synthetic Model to the slow-neutron scattering by the molecular systems is continued. Detailed formulae for the zero-order energy transfer kernel are presented basing on the general formalism of the model. An explicit analytical formula for the total scattering cross section as a function of the incident neutron energy is also obtained. Expressions of the free gas model for the zero-order scattering kernel and for total scattering kernel are considered as a sub-case of the Synthetic Model. (author). 10 refs

  9. A kernel adaptive algorithm for quaternion-valued inputs.

    Science.gov (United States)

    Paul, Thomas K; Ogunfunmi, Tokunbo

    2015-10-01

    The use of quaternion data can provide benefit in applications like robotics and image recognition, and particularly for performing transforms in 3-D space. Here, we describe a kernel adaptive algorithm for quaternions. A least mean square (LMS)-based method was used, resulting in the derivation of the quaternion kernel LMS (Quat-KLMS) algorithm. Deriving this algorithm required describing the idea of a quaternion reproducing kernel Hilbert space (RKHS), as well as kernel functions suitable with quaternions. A modified HR calculus for Hilbert spaces was used to find the gradient of cost functions defined on a quaternion RKHS. In addition, the use of widely linear (or augmented) filtering is proposed to improve performance. The benefit of the Quat-KLMS and widely linear forms in learning nonlinear transformations of quaternion data are illustrated with simulations.

  10. Bioconversion of palm kernel meal for aquaculture: Experiences ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... es as well as food supplies have existed traditionally with coastal regions of Liberia and ..... Contamination of palm kernel meal with Aspergillus ... Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia. Aquacult. Res.

  11. The effect of apricot kernel flour incorporation on the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-05

    Jan 5, 2009 ... 2Department of Food Engineering, Erciyes University 38039, Kayseri, Turkey. Accepted 27 ... Key words: Noodle; apricot kernel, flour, cooking, sensory properties. ... their simple preparation requirement, desirable sensory.

  12. 3-D waveform tomography sensitivity kernels for anisotropic media

    KAUST Repository

    Djebbi, Ramzi; Alkhalifah, Tariq Ali

    2014-01-01

    The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate

  13. Kernel-based noise filtering of neutron detector signals

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Shin, Ho Cheol; Lee, Eun Ki

    2007-01-01

    This paper describes recently developed techniques for effective filtering of neutron detector signal noise. In this paper, three kinds of noise filters are proposed and their performance is demonstrated for the estimation of reactivity. The tested filters are based on the unilateral kernel filter, unilateral kernel filter with adaptive bandwidth and bilateral filter to show their effectiveness in edge preservation. Filtering performance is compared with conventional low-pass and wavelet filters. The bilateral filter shows a remarkable improvement compared with unilateral kernel and wavelet filters. The effectiveness and simplicity of the unilateral kernel filter with adaptive bandwidth is also demonstrated by applying it to the reactivity measurement performed during reactor start-up physics tests

  14. Linear and kernel methods for multivariate change detection

    DEFF Research Database (Denmark)

    Canty, Morton J.; Nielsen, Allan Aasbjerg

    2012-01-01

    ), as well as maximum autocorrelation factor (MAF) and minimum noise fraction (MNF) analyses of IR-MAD images, both linear and kernel-based (nonlinear), may further enhance change signals relative to no-change background. IDL (Interactive Data Language) implementations of IR-MAD, automatic radiometric...... normalization, and kernel PCA/MAF/MNF transformations are presented that function as transparent and fully integrated extensions of the ENVI remote sensing image analysis environment. The train/test approach to kernel PCA is evaluated against a Hebbian learning procedure. Matlab code is also available...... that allows fast data exploration and experimentation with smaller datasets. New, multiresolution versions of IR-MAD that accelerate convergence and that further reduce no-change background noise are introduced. Computationally expensive matrix diagonalization and kernel image projections are programmed...

  15. Resummed memory kernels in generalized system-bath master equations

    International Nuclear Information System (INIS)

    Mavros, Michael G.; Van Voorhis, Troy

    2014-01-01

    Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between the two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the “Landau-Zener resummation” of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics

  16. On Improving Convergence Rates for Nonnegative Kernel Density Estimators

    OpenAIRE

    Terrell, George R.; Scott, David W.

    1980-01-01

    To improve the rate of decrease of integrated mean square error for nonparametric kernel density estimators beyond $0(n^{-\\frac{4}{5}}),$ we must relax the constraint that the density estimate be a bonafide density function, that is, be nonnegative and integrate to one. All current methods for kernel (and orthogonal series) estimators relax the nonnegativity constraint. In this paper we show how to achieve similar improvement by relaxing the integral constraint only. This is important in appl...

  17. Improved Variable Window Kernel Estimates of Probability Densities

    OpenAIRE

    Hall, Peter; Hu, Tien Chung; Marron, J. S.

    1995-01-01

    Variable window width kernel density estimators, with the width varying proportionally to the square root of the density, have been thought to have superior asymptotic properties. The rate of convergence has been claimed to be as good as those typical for higher-order kernels, which makes the variable width estimators more attractive because no adjustment is needed to handle the negativity usually entailed by the latter. However, in a recent paper, Terrell and Scott show that these results ca...

  18. Graphical analyses of connected-kernel scattering equations

    International Nuclear Information System (INIS)

    Picklesimer, A.

    1982-10-01

    Simple graphical techniques are employed to obtain a new (simultaneous) derivation of a large class of connected-kernel scattering equations. This class includes the Rosenberg, Bencze-Redish-Sloan, and connected-kernel multiple scattering equations as well as a host of generalizations of these and other equations. The graphical method also leads to a new, simplified form for some members of the class and elucidates the general structural features of the entire class

  19. MULTITASKER, Multitasking Kernel for C and FORTRAN Under UNIX

    International Nuclear Information System (INIS)

    Brooks, E.D. III

    1988-01-01

    1 - Description of program or function: MULTITASKER implements a multitasking kernel for the C and FORTRAN programming languages that runs under UNIX. The kernel provides a multitasking environment which serves two purposes. The first is to provide an efficient portable environment for the development, debugging, and execution of production multiprocessor programs. The second is to provide a means of evaluating the performance of a multitasking program on model multiprocessor hardware. The performance evaluation features require no changes in the application program source and are implemented as a set of compile- and run-time options in the kernel. 2 - Method of solution: The FORTRAN interface to the kernel is identical in function to the CRI multitasking package provided for the Cray XMP. This provides a migration path to high speed (but small N) multiprocessors once the application has been coded and debugged. With use of the UNIX m4 macro preprocessor, source compatibility can be achieved between the UNIX code development system and the target Cray multiprocessor. The kernel also provides a means of evaluating a program's performance on model multiprocessors. Execution traces may be obtained which allow the user to determine kernel overhead, memory conflicts between various tasks, and the average concurrency being exploited. The kernel may also be made to switch tasks every cpu instruction with a random execution ordering. This allows the user to look for unprotected critical regions in the program. These features, implemented as a set of compile- and run-time options, cause extra execution overhead which is not present in the standard production version of the kernel

  20. The Flux OSKit: A Substrate for Kernel and Language Research

    Science.gov (United States)

    1997-10-01

    unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 tions. Our own microkernel -based OS, Fluke [17], puts almost all of the OSKit to use...kernels distance the language from the hardware; even microkernels and other extensible kernels enforce some default policy which often conflicts with a...be particu- larly useful in these research projects. 6.1.1 The Fluke OS In 1996 we developed an entirely new microkernel - based system called Fluke

  1. Salus: Kernel Support for Secure Process Compartments

    Directory of Open Access Journals (Sweden)

    Raoul Strackx

    2015-01-01

    Full Text Available Consumer devices are increasingly being used to perform security and privacy critical tasks. The software used to perform these tasks is often vulnerable to attacks, due to bugs in the application itself or in included software libraries. Recent work proposes the isolation of security-sensitive parts of applications into protected modules, each of which can be accessed only through a predefined public interface. But most parts of an application can be considered security-sensitive at some level, and an attacker who is able to gain inapplication level access may be able to abuse services from protected modules. We propose Salus, a Linux kernel modification that provides a novel approach for partitioning processes into isolated compartments sharing the same address space. Salus significantly reduces the impact of insecure interfaces and vulnerable compartments by enabling compartments (1 to restrict the system calls they are allowed to perform, (2 to authenticate their callers and callees and (3 to enforce that they can only be accessed via unforgeable references. We describe the design of Salus, report on a prototype implementation and evaluate it in terms of security and performance. We show that Salus provides a significant security improvement with a low performance overhead, without relying on any non-standard hardware support.

  2. Local Kernel for Brains Classification in Schizophrenia

    Science.gov (United States)

    Castellani, U.; Rossato, E.; Murino, V.; Bellani, M.; Rambaldelli, G.; Tansella, M.; Brambilla, P.

    In this paper a novel framework for brain classification is proposed in the context of mental health research. A learning by example method is introduced by combining local measurements with non linear Support Vector Machine. Instead of considering a voxel-by-voxel comparison between patients and controls, we focus on landmark points which are characterized by local region descriptors, namely Scale Invariance Feature Transform (SIFT). Then, matching is obtained by introducing the local kernel for which the samples are represented by unordered set of features. Moreover, a new weighting approach is proposed to take into account the discriminative relevance of the detected groups of features. Experiments have been performed including a set of 54 patients with schizophrenia and 54 normal controls on which region of interest (ROI) have been manually traced by experts. Preliminary results on Dorso-lateral PreFrontal Cortex (DLPFC) region are promising since up to 75% of successful classification rate has been obtained with this technique and the performance has improved up to 85% when the subjects have been stratified by sex.

  3. KERNEL MAD ALGORITHM FOR RELATIVE RADIOMETRIC NORMALIZATION

    Directory of Open Access Journals (Sweden)

    Y. Bai

    2016-06-01

    Full Text Available The multivariate alteration detection (MAD algorithm is commonly used in relative radiometric normalization. This algorithm is based on linear canonical correlation analysis (CCA which can analyze only linear relationships among bands. Therefore, we first introduce a new version of MAD in this study based on the established method known as kernel canonical correlation analysis (KCCA. The proposed method effectively extracts the non-linear and complex relationships among variables. We then conduct relative radiometric normalization experiments on both the linear CCA and KCCA version of the MAD algorithm with the use of Landsat-8 data of Beijing, China, and Gaofen-1(GF-1 data derived from South China. Finally, we analyze the difference between the two methods. Results show that the KCCA-based MAD can be satisfactorily applied to relative radiometric normalization, this algorithm can well describe the nonlinear relationship between multi-temporal images. This work is the first attempt to apply a KCCA-based MAD algorithm to relative radiometric normalization.

  4. Scalable and Power Efficient Data Analytics for Hybrid Exascale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Alok [Northwestern Univ., Evanston, IL (United States); Samatova, Nagiza [North Carolina State Univ., Raleigh, NC (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wu, Kesheng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liao, Wei-keng [Northwestern Univ., Evanston, IL (United States)

    2015-03-19

    This project developed a generic and optimized set of core data analytics functions. These functions organically consolidate a broad constellation of high performance analytical pipelines. As the architectures of emerging HPC systems become inherently heterogeneous, there is a need to design algorithms for data analysis kernels accelerated on hybrid multi-node, multi-core HPC architectures comprised of a mix of CPUs, GPUs, and SSDs. Furthermore, the power-aware trend drives the advances in our performance-energy tradeoff analysis framework which enables our data analysis kernels algorithms and software to be parameterized so that users can choose the right power-performance optimizations.

  5. An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2013-01-01

    Full Text Available Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component analysis (PCA to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM with RBF kernel, using particle swarm optimization (PSO to optimize the parameters C and σ. Fivefold cross-validation was utilized to avoid overfitting. In the experimental procedure, we created a 90 images dataset brain downloaded from Harvard Medical School website. The abnormal brain MR images consist of the following diseases: glioma, metastatic adenocarcinoma, metastatic bronchogenic carcinoma, meningioma, sarcoma, Alzheimer, Huntington, motor neuron disease, cerebral calcinosis, Pick’s disease, Alzheimer plus visual agnosia, multiple sclerosis, AIDS dementia, Lyme encephalopathy, herpes encephalitis, Creutzfeld-Jakob disease, and cerebral toxoplasmosis. The 5-folded cross-validation classification results showed that our method achieved 97.78% classification accuracy, higher than 86.22% by BP-NN and 91.33% by RBF-NN. For the parameter selection, we compared PSO with those of random selection method. The results showed that the PSO is more effective to build optimal KSVM.

  6. An Ensemble Approach to Building Mercer Kernels with Prior Information

    Science.gov (United States)

    Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd

    2005-01-01

    This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly dimensional feature space. we describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using pre-defined kernels. These data adaptive kernels can encode prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. Specifically, we demonstrate the use of the algorithm in situations with extremely small samples of data. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS) and demonstrate the method's superior performance against standard methods. The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains templates for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic-algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code.

  7. A new discrete dipole kernel for quantitative susceptibility mapping.

    Science.gov (United States)

    Milovic, Carlos; Acosta-Cabronero, Julio; Pinto, José Miguel; Mattern, Hendrik; Andia, Marcelo; Uribe, Sergio; Tejos, Cristian

    2018-09-01

    Most approaches for quantitative susceptibility mapping (QSM) are based on a forward model approximation that employs a continuous Fourier transform operator to solve a differential equation system. Such formulation, however, is prone to high-frequency aliasing. The aim of this study was to reduce such errors using an alternative dipole kernel formulation based on the discrete Fourier transform and discrete operators. The impact of such an approach on forward model calculation and susceptibility inversion was evaluated in contrast to the continuous formulation both with synthetic phantoms and in vivo MRI data. The discrete kernel demonstrated systematically better fits to analytic field solutions, and showed less over-oscillations and aliasing artifacts while preserving low- and medium-frequency responses relative to those obtained with the continuous kernel. In the context of QSM estimation, the use of the proposed discrete kernel resulted in error reduction and increased sharpness. This proof-of-concept study demonstrated that discretizing the dipole kernel is advantageous for QSM. The impact on small or narrow structures such as the venous vasculature might by particularly relevant to high-resolution QSM applications with ultra-high field MRI - a topic for future investigations. The proposed dipole kernel has a straightforward implementation to existing QSM routines. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Exploration of Shorea robusta (Sal seeds, kernels and its oil

    Directory of Open Access Journals (Sweden)

    Shashi Kumar C.

    2016-12-01

    Full Text Available Physical, mechanical, and chemical properties of Shorea robusta seed with wing, seed without wing, and kernel were investigated in the present work. The physico-chemical composition of sal oil was also analyzed. The physico-mechanical properties and proximate composition of seed with wing, seed without wing, and kernel at three moisture contents of 9.50% (w.b, 9.54% (w.b, and 12.14% (w.b, respectively, were studied. The results show that the moisture content of the kernel was highest as compared to seed with wing and seed without wing. The sphericity of the kernel was closer to that of a sphere as compared to seed with wing and seed without wing. The hardness of the seed with wing (32.32, N/mm and seed without wing (42.49, N/mm was lower than the kernels (72.14, N/mm. The proximate composition such as moisture, protein, carbohydrates, oil, crude fiber, and ash content were also determined. The kernel (30.20%, w/w contains higher oil percentage as compared to seed with wing and seed without wing. The scientific data from this work are important for designing of equipment and processes for post-harvest value addition of sal seeds.

  9. Omnibus risk assessment via accelerated failure time kernel machine modeling.

    Science.gov (United States)

    Sinnott, Jennifer A; Cai, Tianxi

    2013-12-01

    Integrating genomic information with traditional clinical risk factors to improve the prediction of disease outcomes could profoundly change the practice of medicine. However, the large number of potential markers and possible complexity of the relationship between markers and disease make it difficult to construct accurate risk prediction models. Standard approaches for identifying important markers often rely on marginal associations or linearity assumptions and may not capture non-linear or interactive effects. In recent years, much work has been done to group genes into pathways and networks. Integrating such biological knowledge into statistical learning could potentially improve model interpretability and reliability. One effective approach is to employ a kernel machine (KM) framework, which can capture nonlinear effects if nonlinear kernels are used (Scholkopf and Smola, 2002; Liu et al., 2007, 2008). For survival outcomes, KM regression modeling and testing procedures have been derived under a proportional hazards (PH) assumption (Li and Luan, 2003; Cai, Tonini, and Lin, 2011). In this article, we derive testing and prediction methods for KM regression under the accelerated failure time (AFT) model, a useful alternative to the PH model. We approximate the null distribution of our test statistic using resampling procedures. When multiple kernels are of potential interest, it may be unclear in advance which kernel to use for testing and estimation. We propose a robust Omnibus Test that combines information across kernels, and an approach for selecting the best kernel for estimation. The methods are illustrated with an application in breast cancer. © 2013, The International Biometric Society.

  10. Ideal Gas Resonance Scattering Kernel Routine for the NJOY Code

    International Nuclear Information System (INIS)

    Rothenstein, W.

    1999-01-01

    In a recent publication an expression for the temperature-dependent double-differential ideal gas scattering kernel is derived for the case of scattering cross sections that are energy dependent. Some tabulations and graphical representations of the characteristics of these kernels are presented in Ref. 2. They demonstrate the increased probability that neutron scattering by a heavy nuclide near one of its pronounced resonances will bring the neutron energy nearer to the resonance peak. This enhances upscattering, when a neutron with energy just below that of the resonance peak collides with such a nuclide. A routine for using the new kernel has now been introduced into the NJOY code. Here, its principal features are described, followed by comparisons between scattering data obtained by the new kernel, and the standard ideal gas kernel, when such comparisons are meaningful (i.e., for constant values of the scattering cross section a 0 K). The new ideal gas kernel for variable σ s 0 (E) at 0 K leads to the correct Doppler-broadened σ s T (E) at temperature T

  11. Proteome analysis of the almond kernel (Prunus dulcis).

    Science.gov (United States)

    Li, Shugang; Geng, Fang; Wang, Ping; Lu, Jiankang; Ma, Meihu

    2016-08-01

    Almond (Prunus dulcis) is a popular tree nut worldwide and offers many benefits to human health. However, the importance of almond kernel proteins in the nutrition and function in human health requires further evaluation. The present study presents a systematic evaluation of the proteins in the almond kernel using proteomic analysis. The nutrient and amino acid content in almond kernels from Xinjiang is similar to that of American varieties; however, Xinjiang varieties have a higher protein content. Two-dimensional electrophoresis analysis demonstrated a wide distribution of molecular weights and isoelectric points of almond kernel proteins. A total of 434 proteins were identified by LC-MS/MS, and most were proteins that were experimentally confirmed for the first time. Gene ontology (GO) analysis of the 434 proteins indicated that proteins involved in primary biological processes including metabolic processes (67.5%), cellular processes (54.1%), and single-organism processes (43.4%), the main molecular function of almond kernel proteins are in catalytic activity (48.0%), binding (45.4%) and structural molecule activity (11.9%), and proteins are primarily distributed in cell (59.9%), organelle (44.9%), and membrane (22.8%). Almond kernel is a source of a wide variety of proteins. This study provides important information contributing to the screening and identification of almond proteins, the understanding of almond protein function, and the development of almond protein products. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  12. Evaluating the Application of Tissue-Specific Dose Kernels Instead of Water Dose Kernels in Internal Dosimetry : A Monte Carlo Study

    NARCIS (Netherlands)

    Moghadam, Maryam Khazaee; Asl, Alireza Kamali; Geramifar, Parham; Zaidi, Habib

    2016-01-01

    Purpose: The aim of this work is to evaluate the application of tissue-specific dose kernels instead of water dose kernels to improve the accuracy of patient-specific dosimetry by taking tissue heterogeneities into consideration. Materials and Methods: Tissue-specific dose point kernels (DPKs) and

  13. Scientific opinion on the acute health risks related to the presence of cyanogenic glycosides in raw apricot kernels and products derived from raw apricot kernels

    DEFF Research Database (Denmark)

    Petersen, Annette

    of kernels promoted (10 and 60 kernels/day for the general population and cancer patients, respectively), exposures exceeded the ARfD 17–413 and 3–71 times in toddlers and adults, respectively. The estimated maximum quantity of apricot kernels (or raw apricot material) that can be consumed without exceeding...

  14. Local coding based matching kernel method for image classification.

    Directory of Open Access Journals (Sweden)

    Yan Song

    Full Text Available This paper mainly focuses on how to effectively and efficiently measure visual similarity for local feature based representation. Among existing methods, metrics based on Bag of Visual Word (BoV techniques are efficient and conceptually simple, at the expense of effectiveness. By contrast, kernel based metrics are more effective, but at the cost of greater computational complexity and increased storage requirements. We show that a unified visual matching framework can be developed to encompass both BoV and kernel based metrics, in which local kernel plays an important role between feature pairs or between features and their reconstruction. Generally, local kernels are defined using Euclidean distance or its derivatives, based either explicitly or implicitly on an assumption of Gaussian noise. However, local features such as SIFT and HoG often follow a heavy-tailed distribution which tends to undermine the motivation behind Euclidean metrics. Motivated by recent advances in feature coding techniques, a novel efficient local coding based matching kernel (LCMK method is proposed. This exploits the manifold structures in Hilbert space derived from local kernels. The proposed method combines advantages of both BoV and kernel based metrics, and achieves a linear computational complexity. This enables efficient and scalable visual matching to be performed on large scale image sets. To evaluate the effectiveness of the proposed LCMK method, we conduct extensive experiments with widely used benchmark datasets, including 15-Scenes, Caltech101/256, PASCAL VOC 2007 and 2011 datasets. Experimental results confirm the effectiveness of the relatively efficient LCMK method.

  15. Generalized synthetic kernel approximation for elastic moderation of fast neutrons

    International Nuclear Information System (INIS)

    Yamamoto, Koji; Sekiya, Tamotsu; Yamamura, Yasunori.

    1975-01-01

    A method of synthetic kernel approximation is examined in some detail with a view to simplifying the treatment of the elastic moderation of fast neutrons. A sequence of unified kernel (fsub(N)) is introduced, which is then divided into two subsequences (Wsub(n)) and (Gsub(n)) according to whether N is odd (Wsub(n)=fsub(2n-1), n=1,2, ...) or even (Gsub(n)=fsub(2n), n=0,1, ...). The W 1 and G 1 kernels correspond to the usual Wigner and GG kernels, respectively, and the Wsub(n) and Gsub(n) kernels for n>=2 represent generalizations thereof. It is shown that the Wsub(n) kernel solution with a relatively small n (>=2) is superior on the whole to the Gsub(n) kernel solution for the same index n, while both converge to the exact values with increasing n. To evaluate the collision density numerically and rapidly, a simple recurrence formula is derived. In the asymptotic region (except near resonances), this recurrence formula allows calculation with a relatively coarse mesh width whenever hsub(a)<=0.05 at least. For calculations in the transient lethargy region, a mesh width of order epsilon/10 is small enough to evaluate the approximate collision density psisub(N) with an accuracy comparable to that obtained analytically. It is shown that, with the present method, an order of approximation of about n=7 should yield a practically correct solution diviating not more than 1% in collision density. (auth.)

  16. Unsupervised multiple kernel learning for heterogeneous data integration.

    Science.gov (United States)

    Mariette, Jérôme; Villa-Vialaneix, Nathalie

    2018-03-15

    Recent high-throughput sequencing advances have expanded the breadth of available omics datasets and the integrated analysis of multiple datasets obtained on the same samples has allowed to gain important insights in a wide range of applications. However, the integration of various sources of information remains a challenge for systems biology since produced datasets are often of heterogeneous types, with the need of developing generic methods to take their different specificities into account. We propose a multiple kernel framework that allows to integrate multiple datasets of various types into a single exploratory analysis. Several solutions are provided to learn either a consensus meta-kernel or a meta-kernel that preserves the original topology of the datasets. We applied our framework to analyse two public multi-omics datasets. First, the multiple metagenomic datasets, collected during the TARA Oceans expedition, was explored to demonstrate that our method is able to retrieve previous findings in a single kernel PCA as well as to provide a new image of the sample structures when a larger number of datasets are included in the analysis. To perform this analysis, a generic procedure is also proposed to improve the interpretability of the kernel PCA in regards with the original data. Second, the multi-omics breast cancer datasets, provided by The Cancer Genome Atlas, is analysed using a kernel Self-Organizing Maps with both single and multi-omics strategies. The comparison of these two approaches demonstrates the benefit of our integration method to improve the representation of the studied biological system. Proposed methods are available in the R package mixKernel, released on CRAN. It is fully compatible with the mixOmics package and a tutorial describing the approach can be found on mixOmics web site http://mixomics.org/mixkernel/. jerome.mariette@inra.fr or nathalie.villa-vialaneix@inra.fr. Supplementary data are available at Bioinformatics online.

  17. Automatic detection of multiple UXO-like targets using magnetic anomaly inversion and self-adaptive fuzzy c-means clustering

    Science.gov (United States)

    Yin, Gang; Zhang, Yingtang; Fan, Hongbo; Ren, Guoquan; Li, Zhining

    2017-12-01

    We have developed a method for automatically detecting UXO-like targets based on magnetic anomaly inversion and self-adaptive fuzzy c-means clustering. Magnetic anomaly inversion methods are used to estimate the initial locations of multiple UXO-like sources. Although these initial locations have some errors with respect to the real positions, they form dense clouds around the actual positions of the magnetic sources. Then we use the self-adaptive fuzzy c-means clustering algorithm to cluster these initial locations. The estimated number of cluster centroids represents the number of targets and the cluster centroids are regarded as the locations of magnetic targets. Effectiveness of the method has been demonstrated using synthetic datasets. Computational results show that the proposed method can be applied to the case of several UXO-like targets that are randomly scattered within in a confined, shallow subsurface, volume. A field test was carried out to test the validity of the proposed method and the experimental results show that the prearranged magnets can be detected unambiguously and located precisely.

  18. Collision kernels in the eikonal approximation for Lennard-Jones interaction potential

    International Nuclear Information System (INIS)

    Zielinska, S.

    1985-03-01

    The velocity changing collisions are conveniently described by collisional kernels. These kernels depend on an interaction potential and there is a necessity for evaluating them for realistic interatomic potentials. Using the collision kernels, we are able to investigate the redistribution of atomic population's caused by the laser light and velocity changing collisions. In this paper we present the method of evaluating the collision kernels in the eikonal approximation. We discuss the influence of the potential parameters Rsub(o)sup(i), epsilonsub(o)sup(i) on kernel width for a given atomic state. It turns out that unlike the collision kernel for the hard sphere model of scattering the Lennard-Jones kernel is not so sensitive to changes of Rsub(o)sup(i) as the previous one. Contrary to the general tendency of approximating collisional kernels by the Gaussian curve, kernels for the Lennard-Jones potential do not exhibit such a behaviour. (author)

  19. Bivariate discrete beta Kernel graduation of mortality data.

    Science.gov (United States)

    Mazza, Angelo; Punzo, Antonio

    2015-07-01

    Various parametric/nonparametric techniques have been proposed in literature to graduate mortality data as a function of age. Nonparametric approaches, as for example kernel smoothing regression, are often preferred because they do not assume any particular mortality law. Among the existing kernel smoothing approaches, the recently proposed (univariate) discrete beta kernel smoother has been shown to provide some benefits. Bivariate graduation, over age and calendar years or durations, is common practice in demography and actuarial sciences. In this paper, we generalize the discrete beta kernel smoother to the bivariate case, and we introduce an adaptive bandwidth variant that may provide additional benefits when data on exposures to the risk of death are available; furthermore, we outline a cross-validation procedure for bandwidths selection. Using simulations studies, we compare the bivariate approach proposed here with its corresponding univariate formulation and with two popular nonparametric bivariate graduation techniques, based on Epanechnikov kernels and on P-splines. To make simulations realistic, a bivariate dataset, based on probabilities of dying recorded for the US males, is used. Simulations have confirmed the gain in performance of the new bivariate approach with respect to both the univariate and the bivariate competitors.

  20. Structured Kernel Dictionary Learning with Correlation Constraint for Object Recognition.

    Science.gov (United States)

    Wang, Zhengjue; Wang, Yinghua; Liu, Hongwei; Zhang, Hao

    2017-06-21

    In this paper, we propose a new discriminative non-linear dictionary learning approach, called correlation constrained structured kernel KSVD, for object recognition. The objective function for dictionary learning contains a reconstructive term and a discriminative term. In the reconstructive term, signals are implicitly non-linearly mapped into a space, where a structured kernel dictionary, each sub-dictionary of which lies in the span of the mapped signals from the corresponding class, is established. In the discriminative term, by analyzing the classification mechanism, the correlation constraint is proposed in kernel form, constraining the correlations between different discriminative codes, and restricting the coefficient vectors to be transformed into a feature space, where the features are highly correlated inner-class and nearly independent between-classes. The objective function is optimized by the proposed structured kernel KSVD. During the classification stage, the specific form of the discriminative feature is needless to be known, while the inner product of the discriminative feature with kernel matrix embedded is available, and is suitable for a linear SVM classifier. Experimental results demonstrate that the proposed approach outperforms many state-of-the-art dictionary learning approaches for face, scene and synthetic aperture radar (SAR) vehicle target recognition.

  1. Mixed kernel function support vector regression for global sensitivity analysis

    Science.gov (United States)

    Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng

    2017-11-01

    Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.

  2. On flame kernel formation and propagation in premixed gases

    Energy Technology Data Exchange (ETDEWEB)

    Eisazadeh-Far, Kian; Metghalchi, Hameed [Northeastern University, Mechanical and Industrial Engineering Department, Boston, MA 02115 (United States); Parsinejad, Farzan [Chevron Oronite Company LLC, Richmond, CA 94801 (United States); Keck, James C. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2010-12-15

    Flame kernel formation and propagation in premixed gases have been studied experimentally and theoretically. The experiments have been carried out at constant pressure and temperature in a constant volume vessel located in a high speed shadowgraph system. The formation and propagation of the hot plasma kernel has been simulated for inert gas mixtures using a thermodynamic model. The effects of various parameters including the discharge energy, radiation losses, initial temperature and initial volume of the plasma have been studied in detail. The experiments have been extended to flame kernel formation and propagation of methane/air mixtures. The effect of energy terms including spark energy, chemical energy and energy losses on flame kernel formation and propagation have been investigated. The inputs for this model are the initial conditions of the mixture and experimental data for flame radii. It is concluded that these are the most important parameters effecting plasma kernel growth. The results of laminar burning speeds have been compared with previously published results and are in good agreement. (author)

  3. Insights from Classifying Visual Concepts with Multiple Kernel Learning

    Science.gov (United States)

    Binder, Alexander; Nakajima, Shinichi; Kloft, Marius; Müller, Christina; Samek, Wojciech; Brefeld, Ulf; Müller, Klaus-Robert; Kawanabe, Motoaki

    2012-01-01

    Combining information from various image features has become a standard technique in concept recognition tasks. However, the optimal way of fusing the resulting kernel functions is usually unknown in practical applications. Multiple kernel learning (MKL) techniques allow to determine an optimal linear combination of such similarity matrices. Classical approaches to MKL promote sparse mixtures. Unfortunately, 1-norm regularized MKL variants are often observed to be outperformed by an unweighted sum kernel. The main contributions of this paper are the following: we apply a recently developed non-sparse MKL variant to state-of-the-art concept recognition tasks from the application domain of computer vision. We provide insights on benefits and limits of non-sparse MKL and compare it against its direct competitors, the sum-kernel SVM and sparse MKL. We report empirical results for the PASCAL VOC 2009 Classification and ImageCLEF2010 Photo Annotation challenge data sets. Data sets (kernel matrices) as well as further information are available at http://doc.ml.tu-berlin.de/image_mkl/(Accessed 2012 Jun 25). PMID:22936970

  4. Semi-supervised learning for ordinal Kernel Discriminant Analysis.

    Science.gov (United States)

    Pérez-Ortiz, M; Gutiérrez, P A; Carbonero-Ruz, M; Hervás-Martínez, C

    2016-12-01

    Ordinal classification considers those classification problems where the labels of the variable to predict follow a given order. Naturally, labelled data is scarce or difficult to obtain in this type of problems because, in many cases, ordinal labels are given by a user or expert (e.g. in recommendation systems). Firstly, this paper develops a new strategy for ordinal classification where both labelled and unlabelled data are used in the model construction step (a scheme which is referred to as semi-supervised learning). More specifically, the ordinal version of kernel discriminant learning is extended for this setting considering the neighbourhood information of unlabelled data, which is proposed to be computed in the feature space induced by the kernel function. Secondly, a new method for semi-supervised kernel learning is devised in the context of ordinal classification, which is combined with our developed classification strategy to optimise the kernel parameters. The experiments conducted compare 6 different approaches for semi-supervised learning in the context of ordinal classification in a battery of 30 datasets, showing (1) the good synergy of the ordinal version of discriminant analysis and the use of unlabelled data and (2) the advantage of computing distances in the feature space induced by the kernel function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Kernel Methods for Mining Instance Data in Ontologies

    Science.gov (United States)

    Bloehdorn, Stephan; Sure, York

    The amount of ontologies and meta data available on the Web is constantly growing. The successful application of machine learning techniques for learning of ontologies from textual data, i.e. mining for the Semantic Web, contributes to this trend. However, no principal approaches exist so far for mining from the Semantic Web. We investigate how machine learning algorithms can be made amenable for directly taking advantage of the rich knowledge expressed in ontologies and associated instance data. Kernel methods have been successfully employed in various learning tasks and provide a clean framework for interfacing between non-vectorial data and machine learning algorithms. In this spirit, we express the problem of mining instances in ontologies as the problem of defining valid corresponding kernels. We present a principled framework for designing such kernels by means of decomposing the kernel computation into specialized kernels for selected characteristics of an ontology which can be flexibly assembled and tuned. Initial experiments on real world Semantic Web data enjoy promising results and show the usefulness of our approach.

  6. Semisupervised kernel marginal Fisher analysis for face recognition.

    Science.gov (United States)

    Wang, Ziqiang; Sun, Xia; Sun, Lijun; Huang, Yuchun

    2013-01-01

    Dimensionality reduction is a key problem in face recognition due to the high-dimensionality of face image. To effectively cope with this problem, a novel dimensionality reduction algorithm called semisupervised kernel marginal Fisher analysis (SKMFA) for face recognition is proposed in this paper. SKMFA can make use of both labelled and unlabeled samples to learn the projection matrix for nonlinear dimensionality reduction. Meanwhile, it can successfully avoid the singularity problem by not calculating the matrix inverse. In addition, in order to make the nonlinear structure captured by the data-dependent kernel consistent with the intrinsic manifold structure, a manifold adaptive nonparameter kernel is incorporated into the learning process of SKMFA. Experimental results on three face image databases demonstrate the effectiveness of our proposed algorithm.

  7. Capturing Option Anomalies with a Variance-Dependent Pricing Kernel

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Heston, Steven; Jacobs, Kris

    2013-01-01

    We develop a GARCH option model with a new pricing kernel allowing for a variance premium. While the pricing kernel is monotonic in the stock return and in variance, its projection onto the stock return is nonmonotonic. A negative variance premium makes it U shaped. We present new semiparametric...... evidence to confirm this U-shaped relationship between the risk-neutral and physical probability densities. The new pricing kernel substantially improves our ability to reconcile the time-series properties of stock returns with the cross-section of option prices. It provides a unified explanation...... for the implied volatility puzzle, the overreaction of long-term options to changes in short-term variance, and the fat tails of the risk-neutral return distribution relative to the physical distribution....

  8. Heat Kernel Asymptotics of Zaremba Boundary Value Problem

    Energy Technology Data Exchange (ETDEWEB)

    Avramidi, Ivan G. [Department of Mathematics, New Mexico Institute of Mining and Technology (United States)], E-mail: iavramid@nmt.edu

    2004-03-15

    The Zaremba boundary-value problem is a boundary value problem for Laplace-type second-order partial differential operators acting on smooth sections of a vector bundle over a smooth compact Riemannian manifold with smooth boundary but with discontinuous boundary conditions, which include Dirichlet boundary conditions on one part of the boundary and Neumann boundary conditions on another part of the boundary. We study the heat kernel asymptotics of Zaremba boundary value problem. The construction of the asymptotic solution of the heat equation is described in detail and the heat kernel is computed explicitly in the leading approximation. Some of the first nontrivial coefficients of the heat kernel asymptotic expansion are computed explicitly.

  9. Weighted Feature Gaussian Kernel SVM for Emotion Recognition.

    Science.gov (United States)

    Wei, Wei; Jia, Qingxuan

    2016-01-01

    Emotion recognition with weighted feature based on facial expression is a challenging research topic and has attracted great attention in the past few years. This paper presents a novel method, utilizing subregion recognition rate to weight kernel function. First, we divide the facial expression image into some uniform subregions and calculate corresponding recognition rate and weight. Then, we get a weighted feature Gaussian kernel function and construct a classifier based on Support Vector Machine (SVM). At last, the experimental results suggest that the approach based on weighted feature Gaussian kernel function has good performance on the correct rate in emotion recognition. The experiments on the extended Cohn-Kanade (CK+) dataset show that our method has achieved encouraging recognition results compared to the state-of-the-art methods.

  10. Rational kernels for Arabic Root Extraction and Text Classification

    Directory of Open Access Journals (Sweden)

    Attia Nehar

    2016-04-01

    Full Text Available In this paper, we address the problems of Arabic Text Classification and root extraction using transducers and rational kernels. We introduce a new root extraction approach on the basis of the use of Arabic patterns (Pattern Based Stemmer. Transducers are used to model these patterns and root extraction is done without relying on any dictionary. Using transducers for extracting roots, documents are transformed into finite state transducers. This document representation allows us to use and explore rational kernels as a framework for Arabic Text Classification. Root extraction experiments are conducted on three word collections and yield 75.6% of accuracy. Classification experiments are done on the Saudi Press Agency dataset and N-gram kernels are tested with different values of N. Accuracy and F1 report 90.79% and 62.93% respectively. These results show that our approach, when compared with other approaches, is promising specially in terms of accuracy and F1.

  11. A multi-label learning based kernel automatic recommendation method for support vector machine.

    Science.gov (United States)

    Zhang, Xueying; Song, Qinbao

    2015-01-01

    Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance.

  12. Broken rice kernels and the kinetics of rice hydration and texture during cooking.

    Science.gov (United States)

    Saleh, Mohammed; Meullenet, Jean-Francois

    2013-05-01

    During rice milling and processing, broken kernels are inevitably present, although to date it has been unclear as to how the presence of broken kernels affects rice hydration and cooked rice texture. Therefore, this work intended to study the effect of broken kernels in a rice sample on rice hydration and texture during cooking. Two medium-grain and two long-grain rice cultivars were harvested, dried and milled, and the broken kernels were separated from unbroken kernels. Broken rice kernels were subsequently combined with unbroken rice kernels forming treatments of 0, 40, 150, 350 or 1000 g kg(-1) broken kernels ratio. Rice samples were then cooked and the moisture content of the cooked rice, the moisture uptake rate, and rice hardness and stickiness were measured. As the amount of broken rice kernels increased, rice sample texture became increasingly softer (P hardness was negatively correlated to the percentage of broken kernels in rice samples. Differences in the proportions of broken rice in a milled rice sample play a major role in determining the texture properties of cooked rice. Variations in the moisture migration kinetics between broken and unbroken kernels caused faster hydration of the cores of broken rice kernels, with greater starch leach-out during cooking affecting the texture of the cooked rice. The texture of cooked rice can be controlled, to some extent, by varying the proportion of broken kernels in milled rice. © 2012 Society of Chemical Industry.

  13. Measurement of Weight of Kernels in a Simulated Cylindrical Fuel Compact for HTGR

    International Nuclear Information System (INIS)

    Kim, Woong Ki; Lee, Young Woo; Kim, Young Min; Kim, Yeon Ku; Eom, Sung Ho; Jeong, Kyung Chai; Cho, Moon Sung; Cho, Hyo Jin; Kim, Joo Hee

    2011-01-01

    The TRISO-coated fuel particle for the high temperature gas-cooled reactor (HTGR) is composed of a nuclear fuel kernel and outer coating layers. The coated particles are mixed with graphite matrix to make HTGR fuel element. The weight of fuel kernels in an element is generally measured by the chemical analysis or a gamma-ray spectrometer. Although it is accurate to measure the weight of kernels by the chemical analysis, the samples used in the analysis cannot be put again in the fabrication process. Furthermore, radioactive wastes are generated during the inspection procedure. The gamma-ray spectrometer requires an elaborate reference sample to reduce measurement errors induced from the different geometric shape of test sample from that of reference sample. X-ray computed tomography (CT) is an alternative to measure the weight of kernels in a compact nondestructively. In this study, X-ray CT is applied to measure the weight of kernels in a cylindrical compact containing simulated TRISO-coated particles with ZrO 2 kernels. The volume of kernels as well as the number of kernels in the simulated compact is measured from the 3-D density information. The weight of kernels was calculated from the volume of kernels or the number of kernels. Also, the weight of kernels was measured by extracting the kernels from a compact to review the result of the X-ray CT application

  14. Theoretical developments for interpreting kernel spectral clustering from alternative viewpoints

    Directory of Open Access Journals (Sweden)

    Diego Peluffo-Ordóñez

    2017-08-01

    Full Text Available To perform an exploration process over complex structured data within unsupervised settings, the so-called kernel spectral clustering (KSC is one of the most recommended and appealing approaches, given its versatility and elegant formulation. In this work, we explore the relationship between (KSC and other well-known approaches, namely normalized cut clustering and kernel k-means. To do so, we first deduce a generic KSC model from a primal-dual formulation based on least-squares support-vector machines (LS-SVM. For experiments, KSC as well as other consider methods are assessed on image segmentation tasks to prove their usability.

  15. Modelling microwave heating of discrete samples of oil palm kernels

    International Nuclear Information System (INIS)

    Law, M.C.; Liew, E.L.; Chang, S.L.; Chan, Y.S.; Leo, C.P.

    2016-01-01

    Highlights: • Microwave (MW) drying of oil palm kernels is experimentally determined and modelled. • MW heating of discrete samples of oil palm kernels (OPKs) is simulated. • OPK heating is due to contact effect, MW interference and heat transfer mechanisms. • Electric field vectors circulate within OPKs sample. • Loosely-packed arrangement improves temperature uniformity of OPKs. - Abstract: Recently, microwave (MW) pre-treatment of fresh palm fruits has showed to be environmentally friendly compared to the existing oil palm milling process as it eliminates the condensate production of palm oil mill effluent (POME) in the sterilization process. Moreover, MW-treated oil palm fruits (OPF) also possess better oil quality. In this work, the MW drying kinetic of the oil palm kernels (OPK) was determined experimentally. Microwave heating/drying of oil palm kernels was modelled and validated. The simulation results show that temperature of an OPK is not the same over the entire surface due to constructive and destructive interferences of MW irradiance. The volume-averaged temperature of an OPK is higher than its surface temperature by 3–7 °C, depending on the MW input power. This implies that point measurement of temperature reading is inadequate to determine the temperature history of the OPK during the microwave heating process. The simulation results also show that arrangement of OPKs in a MW cavity affects the kernel temperature profile. The heating of OPKs were identified to be affected by factors such as local electric field intensity due to MW absorption, refraction, interference, the contact effect between kernels and also heat transfer mechanisms. The thermal gradient patterns of OPKs change as the heating continues. The cracking of OPKs is expected to occur first in the core of the kernel and then it propagates to the kernel surface. The model indicates that drying of OPKs is a much slower process compared to its MW heating. The model is useful

  16. Graphical analyses of connected-kernel scattering equations

    International Nuclear Information System (INIS)

    Picklesimer, A.

    1983-01-01

    Simple graphical techniques are employed to obtain a new (simultaneous) derivation of a large class of connected-kernel scattering equations. This class includes the Rosenberg, Bencze-Redish-Sloan, and connected-kernel multiple scattering equations as well as a host of generalizations of these and other equations. The basic result is the application of graphical methods to the derivation of interaction-set equations. This yields a new, simplified form for some members of the class and elucidates the general structural features of the entire class

  17. Reproducing Kernel Method for Solving Nonlinear Differential-Difference Equations

    Directory of Open Access Journals (Sweden)

    Reza Mokhtari

    2012-01-01

    Full Text Available On the basis of reproducing kernel Hilbert spaces theory, an iterative algorithm for solving some nonlinear differential-difference equations (NDDEs is presented. The analytical solution is shown in a series form in a reproducing kernel space, and the approximate solution , is constructed by truncating the series to terms. The convergence of , to the analytical solution is also proved. Results obtained by the proposed method imply that it can be considered as a simple and accurate method for solving such differential-difference problems.

  18. Kernel and divergence techniques in high energy physics separations

    Science.gov (United States)

    Bouř, Petr; Kůs, Václav; Franc, Jiří

    2017-10-01

    Binary decision trees under the Bayesian decision technique are used for supervised classification of high-dimensional data. We present a great potential of adaptive kernel density estimation as the nested separation method of the supervised binary divergence decision tree. Also, we provide a proof of alternative computing approach for kernel estimates utilizing Fourier transform. Further, we apply our method to Monte Carlo data set from the particle accelerator Tevatron at DØ experiment in Fermilab and provide final top-antitop signal separation results. We have achieved up to 82 % AUC while using the restricted feature selection entering the signal separation procedure.

  19. Rebootless Linux Kernel Patching with Ksplice Uptrack at BNL

    International Nuclear Information System (INIS)

    Hollowell, Christopher; Pryor, James; Smith, Jason

    2012-01-01

    Ksplice/Oracle Uptrack is a software tool and update subscription service which allows system administrators to apply security and bug fix patches to the Linux kernel running on servers/workstations without rebooting them. The RHIC/ATLAS Computing Facility (RACF) at Brookhaven National Laboratory (BNL) has deployed Uptrack on nearly 2,000 hosts running Scientific Linux and Red Hat Enterprise Linux. The use of this software has minimized downtime, and increased our security posture. In this paper, we provide an overview of Ksplice's rebootless kernel patch creation/insertion mechanism, and our experiences with Uptrack.

  20. Employment of kernel methods on wind turbine power performance assessment

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Sweeney, Christian Walsted; Marhadi, Kun S.

    2015-01-01

    A power performance assessment technique is developed for the detection of power production discrepancies in wind turbines. The method employs a widely used nonparametric pattern recognition technique, the kernel methods. The evaluation is based on the trending of an extracted feature from...... the kernel matrix, called similarity index, which is introduced by the authors for the first time. The operation of the turbine and consequently the computation of the similarity indexes is classified into five power bins offering better resolution and thus more consistent root cause analysis. The accurate...

  1. Sparse kernel orthonormalized PLS for feature extraction in large datasets

    DEFF Research Database (Denmark)

    Arenas-García, Jerónimo; Petersen, Kaare Brandt; Hansen, Lars Kai

    2006-01-01

    In this paper we are presenting a novel multivariate analysis method for large scale problems. Our scheme is based on a novel kernel orthonormalized partial least squares (PLS) variant for feature extraction, imposing sparsity constrains in the solution to improve scalability. The algorithm...... is tested on a benchmark of UCI data sets, and on the analysis of integrated short-time music features for genre prediction. The upshot is that the method has strong expressive power even with rather few features, is clearly outperforming the ordinary kernel PLS, and therefore is an appealing method...

  2. Borneo: The new NS sunflower confectionary type hybrid

    Directory of Open Access Journals (Sweden)

    Hladni Nada

    2009-01-01

    Full Text Available At the Institute of Field and Vegetable Crops in Novi Sad, beside the basic direction in sunflower breeding, the creation of standard hybrids with high oil content with high seed and oil yield, hybrids are being created for special confectionery purposes directed towards the final kernel products. In this program, apart from breeding in order to improve main seed yield components, special attention is given to the increase of protein content and the quality with the decrease of seed oil content, to the increase of the weight of 1000 seeds and to the decrease of content of the shell. Two-line SC hybrid was created by crossing the cytoplasmatic male sterile line of the mother with a father line with fertility restoration genes. Borneo is a high protein confectionary type hybrid that has been registered in Slovakia (EU in 2009. It contains successfully combined genes responsible for high genetic potential for yield and valuable technical and technological seed traits. The hybrid is adequate for nutrition, dehuling and kernel production. Borneo is a medium early hybrid with the genetic potential for yield of over 4,5t/ha and its seed oil content is under 43%. .

  3. Integrated model of multiple kernel learning and differential evolution for EUR/USD trading.

    Science.gov (United States)

    Deng, Shangkun; Sakurai, Akito

    2014-01-01

    Currency trading is an important area for individual investors, government policy decisions, and organization investments. In this study, we propose a hybrid approach referred to as MKL-DE, which combines multiple kernel learning (MKL) with differential evolution (DE) for trading a currency pair. MKL is used to learn a model that predicts changes in the target currency pair, whereas DE is used to generate the buy and sell signals for the target currency pair based on the relative strength index (RSI), while it is also combined with MKL as a trading signal. The new hybrid implementation is applied to EUR/USD trading, which is the most traded foreign exchange (FX) currency pair. MKL is essential for utilizing information from multiple information sources and DE is essential for formulating a trading rule based on a mixture of discrete structures and continuous parameters. Initially, the prediction model optimized by MKL predicts the returns based on a technical indicator called the moving average convergence and divergence. Next, a combined trading signal is optimized by DE using the inputs from the prediction model and technical indicator RSI obtained from multiple timeframes. The experimental results showed that trading using the prediction learned by MKL yielded consistent profits.

  4. Integrated Model of Multiple Kernel Learning and Differential Evolution for EUR/USD Trading

    Directory of Open Access Journals (Sweden)

    Shangkun Deng

    2014-01-01

    Full Text Available Currency trading is an important area for individual investors, government policy decisions, and organization investments. In this study, we propose a hybrid approach referred to as MKL-DE, which combines multiple kernel learning (MKL with differential evolution (DE for trading a currency pair. MKL is used to learn a model that predicts changes in the target currency pair, whereas DE is used to generate the buy and sell signals for the target currency pair based on the relative strength index (RSI, while it is also combined with MKL as a trading signal. The new hybrid implementation is applied to EUR/USD trading, which is the most traded foreign exchange (FX currency pair. MKL is essential for utilizing information from multiple information sources and DE is essential for formulating a trading rule based on a mixture of discrete structures and continuous parameters. Initially, the prediction model optimized by MKL predicts the returns based on a technical indicator called the moving average convergence and divergence. Next, a combined trading signal is optimized by DE using the inputs from the prediction model and technical indicator RSI obtained from multiple timeframes. The experimental results showed that trading using the prediction learned by MKL yielded consistent profits.

  5. Supervised Kernel Optimized Locality Preserving Projection with Its Application to Face Recognition and Palm Biometrics

    Directory of Open Access Journals (Sweden)

    Chuang Lin

    2015-01-01

    Full Text Available Kernel Locality Preserving Projection (KLPP algorithm can effectively preserve the neighborhood structure of the database using the kernel trick. We have known that supervised KLPP (SKLPP can preserve within-class geometric structures by using label information. However, the conventional SKLPP algorithm endures the kernel selection which has significant impact on the performances of SKLPP. In order to overcome this limitation, a method named supervised kernel optimized LPP (SKOLPP is proposed in this paper, which can maximize the class separability in kernel learning. The proposed method maps the data from the original space to a higher dimensional kernel space using a data-dependent kernel. The adaptive parameters of the data-dependent kernel are automatically calculated through optimizing an objective function. Consequently, the nonlinear features extracted by SKOLPP have larger discriminative ability compared with SKLPP and are more adaptive to the input data. Experimental results on ORL, Yale, AR, and Palmprint databases showed the effectiveness of the proposed method.

  6. Comparative histological and transcriptional analysis of maize kernels infected with Aspergillus flavus and Fusarium verticillioides

    Science.gov (United States)

    Aspergillus flavus and Fusarium verticillioides infect maize kernels and contaminate them with the mycotoxins aflatoxin and fumonisin, respectively. Combined histological examination of fungal colonization and transcriptional changes in maize kernels at 4, 12, 24, 48, and 72 hours post inoculation (...

  7. Parameter Selection Method for Support Vector Regression Based on Adaptive Fusion of the Mixed Kernel Function

    Directory of Open Access Journals (Sweden)

    Hailun Wang

    2017-01-01

    Full Text Available Support vector regression algorithm is widely used in fault diagnosis of rolling bearing. A new model parameter selection method for support vector regression based on adaptive fusion of the mixed kernel function is proposed in this paper. We choose the mixed kernel function as the kernel function of support vector regression. The mixed kernel function of the fusion coefficients, kernel function parameters, and regression parameters are combined together as the parameters of the state vector. Thus, the model selection problem is transformed into a nonlinear system state estimation problem. We use a 5th-degree cubature Kalman filter to estimate the parameters. In this way, we realize the adaptive selection of mixed kernel function weighted coefficients and the kernel parameters, the regression parameters. Compared with a single kernel function, unscented Kalman filter (UKF support vector regression algorithms, and genetic algorithms, the decision regression function obtained by the proposed method has better generalization ability and higher prediction accuracy.

  8. Yields of ZP sweet maize hybrids in dependence on sowing densities

    Directory of Open Access Journals (Sweden)

    Srdić Jelena

    2008-01-01

    Full Text Available Sweet maize differs from maize of standard grain quality by many important traits that affect the ear appearance, and especially by traits controlling taste. The ear appearance trait encompasses the kernel row number, configuration, row pattern (direction and arrangement, seed set, kernel width and depth, ear shape and size. The quality of immature kernels is controlled by genes by which sweet maize differs from common maize. In order to obtain high-ranking and high-quality yields, it is necessary to provide the most suitable cropping practices for sweet maize hybrids developed at the Maize Research Institute, Zemun Polje. The adequate sowing density is one of more important elements of correct cropping practices. The objective of the present study was to determine the effect of four sowing densities in four ZP sweet maize hybrids of different FAO maturity groups on ear qualitative traits and yields obtained on chernozem type of soil in Zemun Polje. The observed traits of sweet maize (ear length, kernel row number, number of kernels per row, yield and shelling percentage significantly varied over years. The higher sowing density was the higher yield of sweet maize was, hence the highest ear yield of 9.67 t ha-1 , on the average for all four hybrids, was recorded at the highest sowing density of 70,000 plants ha-1. The highest yield was detected in the hybrid ZP 424su. The highest shelling percentage (67.81% was found in the hybrid ZP 521su at the sowing density of 60,000 plants ha-1. Generally, it can be stated that sweet maize hybrids of a shorter growing season (FAO 400 could be cultivated up to 70,000 plants ha-1, while those of a longer growing season (FAO 500 could be grown up to 60,000 plants ha-1. In such a way, the most favorable parameters of yields and the highest yields can be obtained.

  9. The heating of UO_2 kernels in argon gas medium on the physical properties of sintered UO_2 kernels

    International Nuclear Information System (INIS)

    Damunir; Sri Rinanti Susilowati; Ariyani Kusuma Dewi

    2015-01-01

    The heating of UO_2 kernels in argon gas medium on the physical properties of sinter UO_2 kernels was conducted. The heated of the UO_2 kernels was conducted in a sinter reactor of a bed type. The sample used was the UO_2 kernels resulted from the reduction results at 800 °C temperature for 3 hours that had the density of 8.13 g/cm"3; porosity of 0.26; O/U ratio of 2.05; diameter of 1146 μm and sphericity of 1.05. The sample was put into a sinter reactor, then it was vacuumed by flowing the argon gas at 180 mmHg pressure to drain the air from the reactor. After that, the cooling water and argon gas were continuously flowed with the pressure of 5 mPa with 1.5 liter/minutes velocity. The reactor temperature was increased and variated at 1200-1500 °C temperature and for 1-4 hours. The sinters UO_2 kernels resulted from the study were analyzed in term of their physical properties including the density, porosity, diameter, sphericity, and specific surface area. The density was analyzed using pycnometer with CCl_4 solution. The porosity was determined using Haynes equation. The diameters and sphericity were showed using the Dino-lite microscope. The specific surface area was determined using surface area meter Nova-1000. The obtained products showed the the heating of UO_2 kernel in argon gas medium were influenced on the physical properties of sinters UO_2 kernel. The condition of best relatively at 1400 °C temperature and 2 hours time. The product resulted from the study was relatively at its best when heating was conducted at 1400 °C temperature and 2 hours time, produced sinters UO_2 kernel with density of 10.14 gr/ml; porosity of 7 %; diameters of 893 μm; sphericity of 1.07 and specific surface area of 4.68 m"2/g with solidify shrinkage of 22 %. (author)

  10. Significant characteristics of the new maize hybrid Rubin-7

    Directory of Open Access Journals (Sweden)

    Jeličić Zora

    2003-01-01

    Full Text Available The Rubin-7 maize hybrid belongs to the FAO 700 maturity group. It is characterized by high yield potential for kernels, which was proven during investigations by the Committee for Species. During the three year monitoring period, from 1999 to 2001, the average yield of kernel was 9.412 t/ha which is 5% above the ZP 704 standard, and was highly statistically significant. Resistance to disease was high for Ustilago maydis 0.49, Fusarium spp. 0.13, and Exerohilum turcicum 1.25. Tolerance against Ostrinia nubilalis is 3-33. All of the above parameters and the agreeable phenotype of this hybrid indicate the value of Rubin-7. .

  11. Biasing anisotropic scattering kernels for deep-penetration Monte Carlo calculations

    International Nuclear Information System (INIS)

    Carter, L.L.; Hendricks, J.S.

    1983-01-01

    The exponential transform is often used to improve the efficiency of deep-penetration Monte Carlo calculations. This technique is usually implemented by biasing the distance-to-collision kernel of the transport equation, but leaving the scattering kernel unchanged. Dwivedi obtained significant improvements in efficiency by biasing an isotropic scattering kernel as well as the distance-to-collision kernel. This idea is extended to anisotropic scattering, particularly the highly forward Klein-Nishina scattering of gamma rays

  12. The dipole form of the gluon part of the BFKL kernel

    International Nuclear Information System (INIS)

    Fadin, V.S.; Fiore, R.; Grabovsky, A.V.; Papa, A.

    2007-01-01

    The dipole form of the gluon part of the color singlet BFKL kernel in the next-to-leading order (NLO) is obtained in the coordinate representation by direct transfer from the momentum representation, where the kernel was calculated before. With this paper the transformation of the NLO BFKL kernel to the dipole form, started a few months ago with the quark part of the kernel, is completed

  13. Multivariable Christoffel-Darboux Kernels and Characteristic Polynomials of Random Hermitian Matrices

    Directory of Open Access Journals (Sweden)

    Hjalmar Rosengren

    2006-12-01

    Full Text Available We study multivariable Christoffel-Darboux kernels, which may be viewed as reproducing kernels for antisymmetric orthogonal polynomials, and also as correlation functions for products of characteristic polynomials of random Hermitian matrices. Using their interpretation as reproducing kernels, we obtain simple proofs of Pfaffian and determinant formulas, as well as Schur polynomial expansions, for such kernels. In subsequent work, these results are applied in combinatorics (enumeration of marked shifted tableaux and number theory (representation of integers as sums of squares.

  14. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  15. Flexible Scheduling by Deadline Inheritance in Soft Real Time Kernels

    NARCIS (Netherlands)

    Jansen, P.G.; Wygerink, Emiel

    1996-01-01

    Current Hard Real Time (HRT) kernels have their timely behaviour guaranteed on the cost of a rather restrictive use of the available resources. This makes HRT scheduling techniques inadequate for use in Soft Real Time (SRT) environment where we can make a considerable profit by a better and more

  16. MARMER, a flexible point-kernel shielding code

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Hoogenboom, J.E.

    1990-01-01

    A point-kernel shielding code entitled MARMER is described. It has several options with respect to geometry input, source description and detector point description which extend the flexibility and usefulness of the code, and which are especially useful in spent fuel shielding. MARMER has been validated using the TN12 spent fuel shipping cask benchmark. (author)

  17. MARMER, a flexible point-kernel shielding code

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L.; Hoogenboom, J.E. (Interuniversitair Reactor Inst., Delft (Netherlands))

    1990-01-01

    A point-kernel shielding code entitled MARMER is described. It has several options with respect to geometry input, source description and detector point description which extend the flexibility and usefulness of the code, and which are especially useful in spent fuel shielding. MARMER has been validated using the TN12 spent fuel shipping cask benchmark. (author).

  18. Mycological deterioration of stored palm kernels recovered from oil ...

    African Journals Online (AJOL)

    Palm kernels obtained from Pioneer Oil Mill Ltd. were stored for eight (8) weeks and examined for their microbiological quality and proximate composition. Seven (7) different fungal species were isolated by serial dilution plate technique. The fungal species included Aspergillus flavus Link; A nidulans Eidem; A niger ...

  19. Metabolite identification through multiple kernel learning on fragmentation trees.

    Science.gov (United States)

    Shen, Huibin; Dührkop, Kai; Böcker, Sebastian; Rousu, Juho

    2014-06-15

    Metabolite identification from tandem mass spectrometric data is a key task in metabolomics. Various computational methods have been proposed for the identification of metabolites from tandem mass spectra. Fragmentation tree methods explore the space of possible ways in which the metabolite can fragment, and base the metabolite identification on scoring of these fragmentation trees. Machine learning methods have been used to map mass spectra to molecular fingerprints; predicted fingerprints, in turn, can be used to score candidate molecular structures. Here, we combine fragmentation tree computations with kernel-based machine learning to predict molecular fingerprints and identify molecular structures. We introduce a family of kernels capturing the similarity of fragmentation trees, and combine these kernels using recently proposed multiple kernel learning approaches. Experiments on two large reference datasets show that the new methods significantly improve molecular fingerprint prediction accuracy. These improvements result in better metabolite identification, doubling the number of metabolites ranked at the top position of the candidates list. © The Author 2014. Published by Oxford University Press.

  20. Notes on a storage manager for the Clouds kernel

    Science.gov (United States)

    Pitts, David V.; Spafford, Eugene H.

    1986-01-01

    The Clouds project is research directed towards producing a reliable distributed computing system. The initial goal is to produce a kernel which provides a reliable environment with which a distributed operating system can be built. The Clouds kernal consists of a set of replicated subkernels, each of which runs on a machine in the Clouds system. Each subkernel is responsible for the management of resources on its machine; the subkernal components communicate to provide the cooperation necessary to meld the various machines into one kernel. The implementation of a kernel-level storage manager that supports reliability is documented. The storage manager is a part of each subkernel and maintains the secondary storage residing at each machine in the distributed system. In addition to providing the usual data transfer services, the storage manager ensures that data being stored survives machine and system crashes, and that the secondary storage of a failed machine is recovered (made consistent) automatically when the machine is restarted. Since the storage manager is part of the Clouds kernel, efficiency of operation is also a concern.

  1. On Convergence of Kernel Density Estimates in Particle Filtering

    Czech Academy of Sciences Publication Activity Database

    Coufal, David

    2016-01-01

    Roč. 52, č. 5 (2016), s. 735-756 ISSN 0023-5954 Grant - others:GA ČR(CZ) GA16-03708S; SVV(CZ) 260334/2016 Institutional support: RVO:67985807 Keywords : Fourier analysis * kernel methods * particle filter Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.379, year: 2016

  2. Screening of the kernels of Pentadesma butyracea from various ...

    African Journals Online (AJOL)

    Gwla10

    Joseph D. Hounhouigan. 2. 1Laboratoire de .... laboratory. Kernels were washed and dried at 45°C for 72 h before analysis. ... generated values allow calculating the various shape ... (LLYOD Instruments, USA) fit with a 0.42 cm thick blade with a triangular ... vacuum. Extraction was run in triplicate on germ, albumen and.

  3. Some engineering properties of shelled and kernel tea ( Camellia ...

    African Journals Online (AJOL)

    Some engineering properties (size dimensions, sphericity, volume, bulk and true densities, friction coefficient, colour characteristics and mechanical behaviour as rupture ... The static coefficients of friction of shelled and kernel tea seeds for the large and small sizes higher values for rubber than the other friction surfaces.

  4. PERI - auto-tuning memory-intensive kernels for multicore

    International Nuclear Information System (INIS)

    Williams, S; Carter, J; Oliker, L; Shalf, J; Yelick, K; Bailey, D; Datta, K

    2008-01-01

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to sparse matrix vector multiplication (SpMV), the explicit heat equation PDE on a regular grid (Stencil), and a lattice Boltzmann application (LBMHD). We explore one of the broadest sets of multicore architectures in the high-performance computing literature, including the Intel Xeon Clovertown, AMD Opteron Barcelona, Sun Victoria Falls, and the Sony-Toshiba-IBM (STI) Cell. Rather than hand-tuning each kernel for each system, we develop a code generator for each kernel that allows us identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned kernel applications often achieve a better than 4x improvement compared with the original code. Additionally, we analyze a Roofline performance model for each platform to reveal hardware bottlenecks and software challenges for future multicore systems and applications

  5. Deep sequencing of RNA from ancient maize kernels

    DEFF Research Database (Denmark)

    Fordyce, Sarah Louise; Avila Arcos, Maria del Carmen; Rasmussen, Morten

    2013-01-01

    The characterization of biomolecules from ancient samples can shed otherwise unobtainable insights into the past. Despite the fundamental role of transcriptomal change in evolution, the potential of ancient RNA remains unexploited - perhaps due to dogma associated with the fragility of RNA. We hy...... maize kernels. The results suggest that ancient seed transcriptomics may offer a powerful new tool with which to study plant domestication....

  6. Effect of Coconut ( cocus Nucifera ) and Palm Kernel ( eleasis ...

    African Journals Online (AJOL)

    Effect of Coconut ( cocus Nucifera ) and Palm Kernel ( eleasis Guinensis ) Oil Supplmented Diets on Serum Lipid Profile of Albino Wistar Rats. ... were fed normal rat pellet. At the end of the feeding period, animals were anaesthetized under chloroform vapor, dissected and blood obtained via cardiac puncture into tubes.

  7. Calculation of Volterra kernels for solutions of nonlinear differential equations

    NARCIS (Netherlands)

    van Hemmen, JL; Kistler, WM; Thomas, EGF

    2000-01-01

    We consider vector-valued autonomous differential equations of the form x' = f(x) + phi with analytic f and investigate the nonanticipative solution operator phi bar right arrow A(phi) in terms of its Volterra series. We show that Volterra kernels of order > 1 occurring in the series expansion of

  8. Moderate deviations principles for the kernel estimator of ...

    African Journals Online (AJOL)

    Abstract. The aim of this paper is to provide pointwise and uniform moderate deviations principles for the kernel estimator of a nonrandom regression function. Moreover, we give an application of these moderate deviations principles to the construction of condence regions for the regression function. Resume. L'objectif de ...

  9. Hollow microspheres with a tungsten carbide kernel for PEMFC application.

    Science.gov (United States)

    d'Arbigny, Julien Bernard; Taillades, Gilles; Marrony, Mathieu; Jones, Deborah J; Rozière, Jacques

    2011-07-28

    Tungsten carbide microspheres comprising an outer shell and a compact kernel prepared by a simple hydrothermal method exhibit very high surface area promoting a high dispersion of platinum nanoparticles, and an exceptionally high electrochemically active surface area (EAS) stability compared to the usual Pt/C electrocatalysts used for PEMFC application.

  10. Fractional quantum integral operator with general kernels and applications

    Science.gov (United States)

    Babakhani, Azizollah; Neamaty, Abdolali; Yadollahzadeh, Milad; Agahi, Hamzeh

    In this paper, we first introduce the concept of fractional quantum integral with general kernels, which generalizes several types of fractional integrals known from the literature. Then we give more general versions of some integral inequalities for this operator, thus generalizing some previous results obtained by many researchers.2,8,25,29,30,36

  11. Optimizing Multiple Kernel Learning for the Classification of UAV Data

    Directory of Open Access Journals (Sweden)

    Caroline M. Gevaert

    2016-12-01

    Full Text Available Unmanned Aerial Vehicles (UAVs are capable of providing high-quality orthoimagery and 3D information in the form of point clouds at a relatively low cost. Their increasing popularity stresses the necessity of understanding which algorithms are especially suited for processing the data obtained from UAVs. The features that are extracted from the point cloud and imagery have different statistical characteristics and can be considered as heterogeneous, which motivates the use of Multiple Kernel Learning (MKL for classification problems. In this paper, we illustrate the utility of applying MKL for the classification of heterogeneous features obtained from UAV data through a case study of an informal settlement in Kigali, Rwanda. Results indicate that MKL can achieve a classification accuracy of 90.6%, a 5.2% increase over a standard single-kernel Support Vector Machine (SVM. A comparison of seven MKL methods indicates that linearly-weighted kernel combinations based on simple heuristics are competitive with respect to computationally-complex, non-linear kernel combination methods. We further underline the importance of utilizing appropriate feature grouping strategies for MKL, which has not been directly addressed in the literature, and we propose a novel, automated feature grouping method that achieves a high classification accuracy for various MKL methods.

  12. Corruption clubs: empirical evidence from kernel density estimates

    NARCIS (Netherlands)

    Herzfeld, T.; Weiss, Ch.

    2007-01-01

    A common finding of many analytical models is the existence of multiple equilibria of corruption. Countries characterized by the same economic, social and cultural background do not necessarily experience the same levels of corruption. In this article, we use Kernel Density Estimation techniques to

  13. A compact kernel for the calculus of inductive constructions

    Indian Academy of Sciences (India)

    CIC) implemented inside the Matita Interactive Theorem Prover. The design of the new kernel has been completely revisited since the first release, resulting in a remarkably compact implementation of about 2300 lines of OCaml code. The work ...

  14. Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels

    DEFF Research Database (Denmark)

    Khorunzhina, Natalia; Richard, Jean-Francois

    The objective of the paper is that of constructing finite Gaussian mixture approximations to analytically intractable density kernels. The proposed method is adaptive in that terms are added one at the time and the mixture is fully re-optimized at each step using a distance measure that approxima...

  15. Disinfection studies of Nahar (Mesua ferrea) seed kernel oil using ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... with a k value of -0.040. Key words: Nahar (Mesua ferrea) seed kernel oil, extraction, gum Arabic, disinfection, kinetics. INTRODUCTION. Disinfection plays a key role in the reclamation and reuse of wastewater for eliminating infectious diseases, this, in part, augments domestic water supply and decreases ...

  16. Improved Interpolation Kernels for Super-resolution Algorithms

    DEFF Research Database (Denmark)

    Rasti, Pejman; Orlova, Olga; Tamberg, Gert

    2016-01-01

    Super resolution (SR) algorithms are widely used in forensics investigations to enhance the resolution of images captured by surveillance cameras. Such algorithms usually use a common interpolation algorithm to generate an initial guess for the desired high resolution (HR) image. This initial guess...... when their original interpolation kernel is replaced by the ones introduced in this work....

  17. Briquetting of Palm Kernel Shell | Ugwu | Journal of Applied ...

    African Journals Online (AJOL)

    In several developing countries, briquettes from agricultural residues contribute significantly to the energy mix especially for small scale and household requirements. In this work, briquettes were produced from Palm kernel shell. This was achieved by carbonising the shell to get the charcoal followed by the pulverization of ...

  18. Controller synthesis for L2 behaviors using rational kernel representations

    NARCIS (Netherlands)

    Mutsaers, M.E.C.; Weiland, S.

    2008-01-01

    This paper considers the controller synthesis problem for the class of linear time-invariant L2 behaviors. We introduce classes of LTI L2 systems whose behavior can be represented as the kernel of a rational operator. Given a plant and a controlled system in this class, an algorithm is developed

  19. Recent sea level change analysed with kernel EOF

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Andersen, Ole Baltazar; Knudsen, Per

    2009-01-01

    -2008. Preliminary analysis shows some interesting features related to climate change and particularly the pulsing of the El Niño/Southern Oscillation. Large scale ocean events associated with the El Niño/Southern Oscillation related signals are conveniently concentrated in the first SSH kernel EOF modes....

  20. Polynomial kernels for deletion to classes of acyclic digraphs

    NARCIS (Netherlands)

    Mnich, Matthias; van Leeuwen, E.J.

    2017-01-01

    We consider the problem to find a set X of vertices (or arcs) with |X| ≤ k in a given digraph G such that D = G − X is an acyclic digraph. In its generality, this is Directed Feedback Vertex Set (or Directed Feedback Arc Set); the existence of a polynomial kernel for these problems is a notorious

  1. Nutritional evaluation of fermented palm kernel cake using red tilapia

    African Journals Online (AJOL)

    The use of palm kernel cake (PKC) and other plant residues in fish feeding especially under extensive aquaculture have been in practice for a long time. On the other hand, the use of microbial-based feedstuff is increasing. In this study, the performance of red tilapia raised on Trichoderma longibrachiatum fermented PKC ...

  2. Preparation and characterization of active carbon using palm kernel ...

    African Journals Online (AJOL)

    Activated carbons were prepared from Palm kernel shells. Carbonization temperature was 6000C, at a residence time of 5 min for each process. Chemical activation was done by heating a mixture of carbonized material and the activating agents at a temperature of 700C to form a paste, followed by subsequent cooling and ...

  3. Matrix kernels for MEG and EEG source localization and imaging

    International Nuclear Information System (INIS)

    Mosher, J.C.; Lewis, P.S.; Leahy, R.M.

    1994-01-01

    The most widely used model for electroencephalography (EEG) and magnetoencephalography (MEG) assumes a quasi-static approximation of Maxwell's equations and a piecewise homogeneous conductor model. Both models contain an incremental field element that linearly relates an incremental source element (current dipole) to the field or voltage at a distant point. The explicit form of the field element is dependent on the head modeling assumptions and sensor configuration. Proper characterization of this incremental element is crucial to the inverse problem. The field element can be partitioned into the product of a vector dependent on sensor characteristics and a matrix kernel dependent only on head modeling assumptions. We present here the matrix kernels for the general boundary element model (BEM) and for MEG spherical models. We show how these kernels are easily interchanged in a linear algebraic framework that includes sensor specifics such as orientation and gradiometer configuration. We then describe how this kernel is easily applied to ''gain'' or ''transfer'' matrices used in multiple dipole and source imaging models

  4. PERI - Auto-tuning Memory Intensive Kernels for Multicore

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H; Williams, Samuel; Datta, Kaushik; Carter, Jonathan; Oliker, Leonid; Shalf, John; Yelick, Katherine; Bailey, David H

    2008-06-24

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to Sparse Matrix Vector Multiplication (SpMV), the explicit heat equation PDE on a regular grid (Stencil), and a lattice Boltzmann application (LBMHD). We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Xeon Clovertown, AMD Opteron Barcelona, Sun Victoria Falls, and the Sony-Toshiba-IBM (STI) Cell. Rather than hand-tuning each kernel for each system, we develop a code generator for each kernel that allows us to identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned kernel applications often achieve a better than 4X improvement compared with the original code. Additionally, we analyze a Roofline performance model for each platform to reveal hardware bottlenecks and software challenges for future multicore systems and applications.

  5. An Adaptive Genetic Association Test Using Double Kernel Machines.

    Science.gov (United States)

    Zhan, Xiang; Epstein, Michael P; Ghosh, Debashis

    2015-10-01

    Recently, gene set-based approaches have become very popular in gene expression profiling studies for assessing how genetic variants are related to disease outcomes. Since most genes are not differentially expressed, existing pathway tests considering all genes within a pathway suffer from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of interest to select important genes that drive the effect of the pathway. In this article, we propose an adaptive association test using double kernel machines (DKM), which can both select important genes within the pathway as well as test for the overall genetic pathway effect. This DKM procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. An appealing feature of the kernel machine framework is that it can provide a flexible and unified method for multi-dimensional modeling of the genetic pathway effect allowing for both parametric and nonparametric components. This DKM approach is illustrated with application to simulated data as well as to data from a neuroimaging genetics study.

  6. Evaluating Equating Results: Percent Relative Error for Chained Kernel Equating

    Science.gov (United States)

    Jiang, Yanlin; von Davier, Alina A.; Chen, Haiwen

    2012-01-01

    This article presents a method for evaluating equating results. Within the kernel equating framework, the percent relative error (PRE) for chained equipercentile equating was computed under the nonequivalent groups with anchor test (NEAT) design. The method was applied to two data sets to obtain the PRE, which can be used to measure equating…

  7. Structured Kernel Subspace Learning for Autonomous Robot Navigation.

    Science.gov (United States)

    Kim, Eunwoo; Choi, Sungjoon; Oh, Songhwai

    2018-02-14

    This paper considers two important problems for autonomous robot navigation in a dynamic environment, where the goal is to predict pedestrian motion and control a robot with the prediction for safe navigation. While there are several methods for predicting the motion of a pedestrian and controlling a robot to avoid incoming pedestrians, it is still difficult to safely navigate in a dynamic environment due to challenges, such as the varying quality and complexity of training data with unwanted noises. This paper addresses these challenges simultaneously by proposing a robust kernel subspace learning algorithm based on the recent advances in nuclear-norm and l 1 -norm minimization. We model the motion of a pedestrian and the robot controller using Gaussian processes. The proposed method efficiently approximates a kernel matrix used in Gaussian process regression by learning low-rank structured matrix (with symmetric positive semi-definiteness) to find an orthogonal basis, which eliminates the effects of erroneous and inconsistent data. Based on structured kernel subspace learning, we propose a robust motion model and motion controller for safe navigation in dynamic environments. We evaluate the proposed robust kernel learning in various tasks, including regression, motion prediction, and motion control problems, and demonstrate that the proposed learning-based systems are robust against outliers and outperform existing regression and navigation methods.

  8. Bayesian Frequency Domain Identification of LTI Systems with OBFs kernels

    NARCIS (Netherlands)

    Darwish, M.A.H.; Lataire, J.P.G.; Tóth, R.

    2017-01-01

    Regularised Frequency Response Function (FRF) estimation based on Gaussian process regression formulated directly in the frequency-domain has been introduced recently The underlying approach largely depends on the utilised kernel function, which encodes the relevant prior knowledge on the system

  9. Single pass kernel k-means clustering method

    Indian Academy of Sciences (India)

    In unsupervised classification, kernel -means clustering method has been shown to perform better than conventional -means clustering method in ... 518501, India; Department of Computer Science and Engineering, Jawaharlal Nehru Technological University, Anantapur College of Engineering, Anantapur 515002, India ...

  10. Szegö Kernels and Asymptotic Expansions for Legendre Polynomials

    Directory of Open Access Journals (Sweden)

    Roberto Paoletti

    2017-01-01

    Full Text Available We present a geometric approach to the asymptotics of the Legendre polynomials Pk,n+1, based on the Szegö kernel of the Fermat quadric hypersurface, leading to complete asymptotic expansions holding on expanding subintervals of [-1,1].

  11. Magnetic resonance imaging of single rice kernels during cooking

    NARCIS (Netherlands)

    Mohoric, A.; Vergeldt, F.J.; Gerkema, E.; Jager, de P.A.; Duynhoven, van J.P.M.; Dalen, van G.; As, van H.

    2004-01-01

    The RARE imaging method was used to monitor the cooking of single rice kernels in real time and with high spatial resolution in three dimensions. The imaging sequence is optimized for rapid acquisition of signals with short relaxation times using centered out RARE. Short scan time and high spatial

  12. Optimizing memory-bound SYMV kernel on GPU hardware accelerators

    KAUST Repository

    Abdelfattah, Ahmad; Dongarra, Jack; Keyes, David E.; Ltaief, Hatem

    2013-01-01

    and increasing bandwidth, our preliminary asymptotic results show 3.5x and 2.5x fold speedups over the similar CUBLAS 4.0 kernel, and 7-8% and 30% fold improvement over the Matrix Algebra on GPU and Multicore Architectures (MAGMA) library in single and double

  13. Visualization of nonlinear kernel models in neuroimaging by sensitivity maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Madsen, Kristoffer Hougaard; Lund, Torben Ellegaard

    2011-01-01

    There is significant current interest in decoding mental states from neuroimages. In this context kernel methods, e.g., support vector machines (SVM) are frequently adopted to learn statistical relations between patterns of brain activation and experimental conditions. In this paper we focus on v...

  14. Effects of de-oiled palm kernel cake based fertilizers on sole maize ...

    African Journals Online (AJOL)

    A study was conducted to determine the effect of de-oiled palm kernel cake based fertilizer formulations on the yield of sole maize and cassava crops. Two de-oiled palm kernel cake based fertilizer formulations A and B were compounded from different proportions of de-oiled palm kernel cake, urea, muriate of potash and ...

  15. System identification via sparse multiple kernel-based regularization using sequential convex optimization techniques

    DEFF Research Database (Denmark)

    Chen, Tianshi; Andersen, Martin Skovgaard; Ljung, Lennart

    2014-01-01

    Model estimation and structure detection with short data records are two issues that receive increasing interests in System Identification. In this paper, a multiple kernel-based regularization method is proposed to handle those issues. Multiple kernels are conic combinations of fixed kernels...

  16. Differential metabolome analysis of field-grown maize kernels in response to drought stress

    Science.gov (United States)

    Drought stress constrains maize kernel development and can exacerbate aflatoxin contamination. In order to identify drought responsive metabolites and explore pathways involved in kernel responses, a metabolomics analysis was conducted on kernels from a drought tolerant line, Lo964, and a sensitive ...

  17. Using the Intel Math Kernel Library on Peregrine | High-Performance

    Science.gov (United States)

    Computing | NREL the Intel Math Kernel Library on Peregrine Using the Intel Math Kernel Library on Peregrine Learn how to use the Intel Math Kernel Library (MKL) with Peregrine system software. MKL architectures. Core math functions in MKL include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast Fourier

  18. Kernel based pattern analysis methods using eigen-decompositions for reading Icelandic sagas

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Carstensen, Jens Michael

    We want to test the applicability of kernel based eigen-decomposition methods, compared to the traditional eigen-decomposition methods. We have implemented and tested three kernel based methods methods, namely PCA, MAF and MNF, all using a Gaussian kernel. We tested the methods on a multispectral...... image of a page in the book 'hauksbok', which contains Icelandic sagas....

  19. Interaction between UO2 kernel and pyrocarbon coating in irradiated and unirradiated HTR fuel particles

    International Nuclear Information System (INIS)

    Drago, A.; Klersy, R.; Simoni, O.; Schrader, K.H.

    1975-08-01

    Experimental observations on unidirectional UO 2 kernel migration in TRISO type coated particle fuels are reported. An analysis of the experimental results on the basis of data and models from the literature is reported. The stoichiometric composition of the kernel is considered the main parameter that, associated with a temperature gradient, controls the unidirectional kernel migration

  20. Occurrence of 'super soft' wheat kernel texture in hexaploid and tetraploid wheats

    Science.gov (United States)

    Wheat kernel texture is a key trait that governs milling performance, flour starch damage, flour particle size, flour hydration properties, and baking quality. Kernel texture is commonly measured using the Perten Single Kernel Characterization System (SKCS). The SKCS returns texture values (Hardness...

  1. Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat

    Science.gov (United States)

    Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...

  2. Gaussian interaction profile kernels for predicting drug-target interaction.

    Science.gov (United States)

    van Laarhoven, Twan; Nabuurs, Sander B; Marchiori, Elena

    2011-11-01

    The in silico prediction of potential interactions between drugs and target proteins is of core importance for the identification of new drugs or novel targets for existing drugs. However, only a tiny portion of all drug-target pairs in current datasets are experimentally validated interactions. This motivates the need for developing computational methods that predict true interaction pairs with high accuracy. We show that a simple machine learning method that uses the drug-target network as the only source of information is capable of predicting true interaction pairs with high accuracy. Specifically, we introduce interaction profiles of drugs (and of targets) in a network, which are binary vectors specifying the presence or absence of interaction with every target (drug) in that network. We define a kernel on these profiles, called the Gaussian Interaction Profile (GIP) kernel, and use a simple classifier, (kernel) Regularized Least Squares (RLS), for prediction drug-target interactions. We test comparatively the effectiveness of RLS with the GIP kernel on four drug-target interaction networks used in previous studies. The proposed algorithm achieves area under the precision-recall curve (AUPR) up to 92.7, significantly improving over results of state-of-the-art methods. Moreover, we show that using also kernels based on chemical and genomic information further increases accuracy, with a neat improvement on small datasets. These results substantiate the relevance of the network topology (in the form of interaction profiles) as source of information for predicting drug-target interactions. Software and Supplementary Material are available at http://cs.ru.nl/~tvanlaarhoven/drugtarget2011/. tvanlaarhoven@cs.ru.nl; elenam@cs.ru.nl. Supplementary data are available at Bioinformatics online.

  3. A kernel for open source drug discovery in tropical diseases.

    Science.gov (United States)

    Ortí, Leticia; Carbajo, Rodrigo J; Pieper, Ursula; Eswar, Narayanan; Maurer, Stephen M; Rai, Arti K; Taylor, Ginger; Todd, Matthew H; Pineda-Lucena, Antonio; Sali, Andrej; Marti-Renom, Marc A

    2009-01-01

    Conventional patent-based drug development incentives work badly for the developing world, where commercial markets are usually small to non-existent. For this reason, the past decade has seen extensive experimentation with alternative R&D institutions ranging from private-public partnerships to development prizes. Despite extensive discussion, however, one of the most promising avenues-open source drug discovery-has remained elusive. We argue that the stumbling block has been the absence of a critical mass of preexisting work that volunteers can improve through a series of granular contributions. Historically, open source software collaborations have almost never succeeded without such "kernels". HERE, WE USE A COMPUTATIONAL PIPELINE FOR: (i) comparative structure modeling of target proteins, (ii) predicting the localization of ligand binding sites on their surfaces, and (iii) assessing the similarity of the predicted ligands to known drugs. Our kernel currently contains 143 and 297 protein targets from ten pathogen genomes that are predicted to bind a known drug or a molecule similar to a known drug, respectively. The kernel provides a source of potential drug targets and drug candidates around which an online open source community can nucleate. Using NMR spectroscopy, we have experimentally tested our predictions for two of these targets, confirming one and invalidating the other. The TDI kernel, which is being offered under the Creative Commons attribution share-alike license for free and unrestricted use, can be accessed on the World Wide Web at http://www.tropicaldisease.org. We hope that the kernel will facilitate collaborative efforts towards the discovery of new drugs against parasites that cause tropical diseases.

  4. Adaptive kernel regression for freehand 3D ultrasound reconstruction

    Science.gov (United States)

    Alshalalfah, Abdel-Latif; Daoud, Mohammad I.; Al-Najar, Mahasen

    2017-03-01

    Freehand three-dimensional (3D) ultrasound imaging enables low-cost and flexible 3D scanning of arbitrary-shaped organs, where the operator can freely move a two-dimensional (2D) ultrasound probe to acquire a sequence of tracked cross-sectional images of the anatomy. Often, the acquired 2D ultrasound images are irregularly and sparsely distributed in the 3D space. Several 3D reconstruction algorithms have been proposed to synthesize 3D ultrasound volumes based on the acquired 2D images. A challenging task during the reconstruction process is to preserve the texture patterns in the synthesized volume and ensure that all gaps in the volume are correctly filled. This paper presents an adaptive kernel regression algorithm that can effectively reconstruct high-quality freehand 3D ultrasound volumes. The algorithm employs a kernel regression model that enables nonparametric interpolation of the voxel gray-level values. The kernel size of the regression model is adaptively adjusted based on the characteristics of the voxel that is being interpolated. In particular, when the algorithm is employed to interpolate a voxel located in a region with dense ultrasound data samples, the size of the kernel is reduced to preserve the texture patterns. On the other hand, the size of the kernel is increased in areas that include large gaps to enable effective gap filling. The performance of the proposed algorithm was compared with seven previous interpolation approaches by synthesizing freehand 3D ultrasound volumes of a benign breast tumor. The experimental results show that the proposed algorithm outperforms the other interpolation approaches.

  5. Simultaneous determination of aquifer parameters and zone structures with fuzzy c-means clustering and meta-heuristic harmony search algorithm

    Science.gov (United States)

    Ayvaz, M. Tamer

    2007-11-01

    This study proposes an inverse solution algorithm through which both the aquifer parameters and the zone structure of these parameters can be determined based on a given set of observations on piezometric heads. In the zone structure identification problem fuzzy c-means ( FCM) clustering method is used. The association of the zone structure with the transmissivity distribution is accomplished through an optimization model. The meta-heuristic harmony search ( HS) algorithm, which is conceptualized using the musical process of searching for a perfect state of harmony, is used as an optimization technique. The optimum parameter zone structure is identified based on three criteria which are the residual error, parameter uncertainty, and structure discrimination. A numerical example given in the literature is solved to demonstrate the performance of the proposed algorithm. Also, a sensitivity analysis is performed to test the performance of the HS algorithm for different sets of solution parameters. Results indicate that the proposed solution algorithm is an effective way in the simultaneous identification of aquifer parameters and their corresponding zone structures.

  6. Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange

    Science.gov (United States)

    Jahangoshai Rezaee, Mustafa; Jozmaleki, Mehrdad; Valipour, Mahsa

    2018-01-01

    One of the main features to invest in stock exchange companies is their financial performance. On the other hand, conventional evaluation methods such as data envelopment analysis are not only a retrospective process, but are also a process, which are incomplete and ineffective approaches to evaluate the companies in the future. To remove this problem, it is required to plan an expert system for evaluating organizations when the online data are received from stock exchange market. This paper deals with an approach for predicting the online financial performance of companies when data are received in different time's intervals. The proposed approach is based on integrating fuzzy C-means (FCM), data envelopment analysis (DEA) and artificial neural network (ANN). The classical FCM method is unable to update the number of clusters and their members when the data are changed or the new data are received. Hence, this method is developed in order to make dynamic features for the number of clusters and clusters members in classical FCM. Then, DEA is used to evaluate DMUs by using financial ratios to provide targets in neural network. Finally, the designed network is trained and prepared for predicting companies' future performance. The data on Tehran Stock Market companies for six consecutive years (2007-2012) are used to show the abilities of the proposed approach.

  7. A Fault Diagnosis Approach for Gas Turbine Exhaust Gas Temperature Based on Fuzzy C-Means Clustering and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhi-tao Wang

    2015-01-01

    Full Text Available As an important gas path performance parameter of gas turbine, exhaust gas temperature (EGT can represent the thermal health condition of gas turbine. In order to monitor and diagnose the EGT effectively, a fusion approach based on fuzzy C-means (FCM clustering algorithm and support vector machine (SVM classification model is proposed in this paper. Considering the distribution characteristics of gas turbine EGT, FCM clustering algorithm is used to realize clustering analysis and obtain the state pattern, on the basis of which the preclassification of EGT is completed. Then, SVM multiclassification model is designed to carry out the state pattern recognition and fault diagnosis. As an example, the historical monitoring data of EGT from an industrial gas turbine is analyzed and used to verify the performance of the fusion fault diagnosis approach presented in this paper. The results show that this approach can make full use of the unsupervised feature extraction ability of FCM clustering algorithm and the sample classification generalization properties of SVM multiclassification model, which offers an effective way to realize the online condition recognition and fault diagnosis of gas turbine EGT.

  8. Support vector machine and fuzzy C-mean clustering-based comparative evaluation of changes in motor cortex electroencephalogram under chronic alcoholism.

    Science.gov (United States)

    Kumar, Surendra; Ghosh, Subhojit; Tetarway, Suhash; Sinha, Rakesh Kumar

    2015-07-01

    In this study, the magnitude and spatial distribution of frequency spectrum in the resting electroencephalogram (EEG) were examined to address the problem of detecting alcoholism in the cerebral motor cortex. The EEG signals were recorded from chronic alcoholic conditions (n = 20) and the control group (n = 20). Data were taken from motor cortex region and divided into five sub-bands (delta, theta, alpha, beta-1 and beta-2). Three methodologies were adopted for feature extraction: (1) absolute power, (2) relative power and (3) peak power frequency. The dimension of the extracted features is reduced by linear discrimination analysis and classified by support vector machine (SVM) and fuzzy C-mean clustering. The maximum classification accuracy (88 %) with SVM clustering was achieved with the EEG spectral features with absolute power frequency on F4 channel. Among the bands, relatively higher classification accuracy was found over theta band and beta-2 band in most of the channels when computed with the EEG features of relative power. Electrodes wise CZ, C3 and P4 were having more alteration. Considering the good classification accuracy obtained by SVM with relative band power features in most of the EEG channels of motor cortex, it can be suggested that the noninvasive automated online diagnostic system for the chronic alcoholic condition can be developed with the help of EEG signals.

  9. Unified heat kernel regression for diffusion, kernel smoothing and wavelets on manifolds and its application to mandible growth modeling in CT images.

    Science.gov (United States)

    Chung, Moo K; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K

    2015-05-01

    We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel method is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, the method is applied to characterize the localized growth pattern of mandible surfaces obtained in CT images between ages 0 and 20 by regressing the length of displacement vectors with respect to a surface template. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites was investigated by Kalaprasad et al [25].Chemical surface modifications such as alkali, acetic anhydride, stearic acid, permanganate, maleic anhydride, silane...

  11. Hybrid intermediaries

    OpenAIRE

    Cetorelli, Nicola

    2014-01-01

    I introduce the concept of hybrid intermediaries: financial conglomerates that control a multiplicity of entity types active in the "assembly line" process of modern financial intermediation, a system that has become known as shadow banking. The complex bank holding companies of today are the best example of hybrid intermediaries, but I argue that financial firms from the "nonbank" space can just as easily evolve into conglomerates with similar organizational structure, thus acquiring the cap...

  12. Coupling SIMD and SIMT architectures to boost performance of a phylogeny-aware alignment kernel

    Directory of Open Access Journals (Sweden)

    Alachiotis Nikolaos

    2012-08-01

    Full Text Available Abstract Background Aligning short DNA reads to a reference sequence alignment is a prerequisite for detecting their biological origin and analyzing them in a phylogenetic context. With the PaPaRa tool we introduced a dedicated dynamic programming algorithm for simultaneously aligning short reads to reference alignments and corresponding evolutionary reference trees. The algorithm aligns short reads to phylogenetic profiles that correspond to the branches of such a reference tree. The algorithm needs to perform an immense number of pairwise alignments. Therefore, we explore vector intrinsics and GPUs to accelerate the PaPaRa alignment kernel. Results We optimized and parallelized PaPaRa on CPUs and GPUs. Via SSE 4.1 SIMD (Single Instruction, Multiple Data intrinsics for x86 SIMD architectures and multi-threading, we obtained a 9-fold acceleration on a single core as well as linear speedups with respect to the number of cores. The peak CPU performance amounts to 18.1 GCUPS (Giga Cell Updates per Second using all four physical cores on an Intel i7 2600 CPU running at 3.4 GHz. The average CPU performance (averaged over all test runs is 12.33 GCUPS. We also used OpenCL to execute PaPaRa on a GPU SIMT (Single Instruction, Multiple Threads architecture. A NVIDIA GeForce 560 GPU delivered peak and average performance of 22.1 and 18.4 GCUPS respectively. Finally, we combined the SIMD and SIMT implementations into a hybrid CPU-GPU system that achieved an accumulated peak performance of 33.8 GCUPS. Conclusions This accelerated version of PaPaRa (available at http://www.exelixis-lab.org/software.html provides a significant performance improvement that allows for analyzing larger datasets in less time. We observe that state-of-the-art SIMD and SIMT architectures deliver comparable performance for this dynamic programming kernel when the “competing programmer approach” is deployed. Finally, we show that overall performance can be substantially increased

  13. Analysis of Drude model using fractional derivatives without singular kernels

    Directory of Open Access Journals (Sweden)

    Jiménez Leonardo Martínez

    2017-11-01

    Full Text Available We report study exploring the fractional Drude model in the time domain, using fractional derivatives without singular kernels, Caputo-Fabrizio (CF, and fractional derivatives with a stretched Mittag-Leffler function. It is shown that the velocity and current density of electrons moving through a metal depend on both the time and the fractional order 0 < γ ≤ 1. Due to non-singular fractional kernels, it is possible to consider complete memory effects in the model, which appear neither in the ordinary model, nor in the fractional Drude model with Caputo fractional derivative. A comparison is also made between these two representations of the fractional derivatives, resulting a considered difference when γ < 0.8.

  14. Development of Cold Neutron Scattering Kernels for Advanced Moderators

    International Nuclear Information System (INIS)

    Granada, J. R.; Cantargi, F.

    2010-01-01

    The development of scattering kernels for a number of molecular systems was performed, including a set of hydrogeneous methylated aromatics such as toluene, mesitylene, and mixtures of those. In order to partially validate those new libraries, we compared predicted total cross sections with experimental data obtained in our laboratory. In addition, we have introduced a new model to describe the interaction of slow neutrons with solid methane in phase II (stable phase below T = 20.4 K, atmospheric pressure). Very recently, a new scattering kernel to describe the interaction of slow neutrons with solid Deuterium was also developed. The main dynamical characteristics of that system are contained in the formalism, the elastic processes involving coherent and incoherent contributions are fully described, as well as the spin-correlation effects.

  15. Integral equations with difference kernels on finite intervals

    CERN Document Server

    Sakhnovich, Lev A

    2015-01-01

    This book focuses on solving integral equations with difference kernels on finite intervals. The corresponding problem on the semiaxis was previously solved by N. Wiener–E. Hopf and by M.G. Krein. The problem on finite intervals, though significantly more difficult, may be solved using our method of operator identities. This method is also actively employed in inverse spectral problems, operator factorization and nonlinear integral equations. Applications of the obtained results to optimal synthesis, light scattering, diffraction, and hydrodynamics problems are discussed in this book, which also describes how the theory of operators with difference kernels is applied to stable processes and used to solve the famous M. Kac problems on stable processes. In this second edition these results are extensively generalized and include the case of all Levy processes. We present the convolution expression for the well-known Ito formula of the generator operator, a convolution expression that has proven to be fruitful...

  16. Fault Localization for Synchrophasor Data using Kernel Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    CHEN, R.

    2017-11-01

    Full Text Available In this paper, based on Kernel Principal Component Analysis (KPCA of Phasor Measurement Units (PMU data, a nonlinear method is proposed for fault location in complex power systems. Resorting to the scaling factor, the derivative for a polynomial kernel is obtained. Then, the contribution of each variable to the T2 statistic is derived to determine whether a bus is the fault component. Compared to the previous Principal Component Analysis (PCA based methods, the novel version can combat the characteristic of strong nonlinearity, and provide the precise identification of fault location. Computer simulations are conducted to demonstrate the improved performance in recognizing the fault component and evaluating its propagation across the system based on the proposed method.

  17. Analysis of Linux kernel as a complex network

    International Nuclear Information System (INIS)

    Gao, Yichao; Zheng, Zheng; Qin, Fangyun

    2014-01-01

    Operating system (OS) acts as an intermediary between software and hardware in computer-based systems. In this paper, we analyze the core of the typical Linux OS, Linux kernel, as a complex network to investigate its underlying design principles. It is found that the Linux Kernel Network (LKN) is a directed network and its out-degree follows an exponential distribution while the in-degree follows a power-law distribution. The correlation between topology and functions is also explored, by which we find that LKN is a highly modularized network with 12 key communities. Moreover, we investigate the robustness of LKN under random failures and intentional attacks. The result shows that the failure of the large in-degree nodes providing basic services will do more damage on the whole system. Our work may shed some light on the design of complex software systems

  18. Some physical and mechanical properties of palm kernel shell (PKS ...

    African Journals Online (AJOL)

    In this study, some of the mechanical and physical properties of palm kernel shells (PKS) were evaluated. These are moisture content, 7.8325 ± 0.6672%; true density, 1.254 ± 5.292 x 10-3 g/cm3; bulk density, 1.1248g/cm3; mean rupture force along width, and thickness were 3174.52 ± 270.70N and 2806.94 ± 498.45N for ...

  19. Near infrared face recognition using Zernike moments and Hermite kernels

    Czech Academy of Sciences Publication Activity Database

    Farokhi, Sajad; Sheikh, U.U.; Flusser, Jan; Yang, Bo

    2015-01-01

    Roč. 316, č. 1 (2015), s. 234-245 ISSN 0020-0255 R&D Projects: GA ČR(CZ) GA13-29225S Keywords : face recognition * Zernike moments * Hermite kernel * Decision fusion * Near infrared Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.364, year: 2015 http://library.utia.cas.cz/separaty/2015/ZOI/flusser-0444205.pdf

  20. Contextual Weisfeiler-Lehman Graph Kernel For Malware Detection

    OpenAIRE

    Narayanan, Annamalai; Meng, Guozhu; Yang, Liu; Liu, Jinliang; Chen, Lihui

    2016-01-01

    In this paper, we propose a novel graph kernel specifically to address a challenging problem in the field of cyber-security, namely, malware detection. Previous research has revealed the following: (1) Graph representations of programs are ideally suited for malware detection as they are robust against several attacks, (2) Besides capturing topological neighbourhoods (i.e., structural information) from these graphs it is important to capture the context under which the neighbourhoods are reac...

  1. Microscopic description of the collisions between nuclei. [Generator coordinate kernels

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L F; Brink, D M [Oxford Univ. (UK). Dept. of Theoretical Physics

    1977-03-21

    The equivalence of the generator coordinate method and the resonating group method is used in the derivation of two new methods to describe the scattering of spin-zero fragments. Both these methods use generator coordinate kernels, but avoid the problem of calculating the generator coordinate weight function in the asymptotic region. The scattering of two ..cap alpha..-particles is studied as an illustration.

  2. Benchmarking NWP Kernels on Multi- and Many-core Processors

    Science.gov (United States)

    Michalakes, J.; Vachharajani, M.

    2008-12-01

    Increased computing power for weather, climate, and atmospheric science has provided direct benefits for defense, agriculture, the economy, the environment, and public welfare and convenience. Today, very large clusters with many thousands of processors are allowing scientists to move forward with simulations of unprecedented size. But time-critical applications such as real-time forecasting or climate prediction need strong scaling: faster nodes and processors, not more of them. Moreover, the need for good cost- performance has never been greater, both in terms of performance per watt and per dollar. For these reasons, the new generations of multi- and many-core processors being mass produced for commercial IT and "graphical computing" (video games) are being scrutinized for their ability to exploit the abundant fine- grain parallelism in atmospheric models. We present results of our work to date identifying key computational kernels within the dynamics and physics of a large community NWP model, the Weather Research and Forecast (WRF) model. We benchmark and optimize these kernels on several different multi- and many-core processors. The goals are to (1) characterize and model performance of the kernels in terms of computational intensity, data parallelism, memory bandwidth pressure, memory footprint, etc. (2) enumerate and classify effective strategies for coding and optimizing for these new processors, (3) assess difficulties and opportunities for tool or higher-level language support, and (4) establish a continuing set of kernel benchmarks that can be used to measure and compare effectiveness of current and future designs of multi- and many-core processors for weather and climate applications.

  3. Engineering a static verification tool for GPU kernels

    OpenAIRE

    Bardsley, E; Betts, A; Chong, N; Collingbourne, P; Deligiannis, P; Donaldson, AF; Ketema, J; Liew, D; Qadeer, S

    2014-01-01

    We report on practical experiences over the last 2.5 years related to the engineering of GPUVerify, a static verification tool for OpenCL and CUDA GPU kernels, plotting the progress of GPUVerify from a prototype to a fully functional and relatively efficient analysis tool. Our hope is that this experience report will serve the verification community by helping to inform future tooling efforts. ? 2014 Springer International Publishing.

  4. Adaptive Learning in Cartesian Product of Reproducing Kernel Hilbert Spaces

    OpenAIRE

    Yukawa, Masahiro

    2014-01-01

    We propose a novel adaptive learning algorithm based on iterative orthogonal projections in the Cartesian product of multiple reproducing kernel Hilbert spaces (RKHSs). The task is estimating/tracking nonlinear functions which are supposed to contain multiple components such as (i) linear and nonlinear components, (ii) high- and low- frequency components etc. In this case, the use of multiple RKHSs permits a compact representation of multicomponent functions. The proposed algorithm is where t...

  5. Wilson and Domainwall Kernels on Oakforest-PACS

    Science.gov (United States)

    Kanamori, Issaku; Matsufuru, Hideo

    2018-03-01

    We report the performance of Wilson and Domainwall Kernels on a new Intel Xeon Phi Knights Landing based machine named Oakforest-PACS, which is co-hosted by University of Tokyo and Tsukuba University and is currently fastest in Japan. This machine uses Intel Omni-Path for the internode network. We compare performance with several types of implementation including that makes use of the Grid library. The code is incorporated with the code set Bridge++.

  6. Learning with Generalization Capability by Kernel Methods of Bounded Complexity

    Czech Academy of Sciences Publication Activity Database

    Kůrková, Věra; Sanguineti, M.

    2005-01-01

    Roč. 21, č. 3 (2005), s. 350-367 ISSN 0885-064X R&D Projects: GA AV ČR 1ET100300419 Institutional research plan: CEZ:AV0Z10300504 Keywords : supervised learning * generalization * model complexity * kernel methods * minimization of regularized empirical errors * upper bounds on rates of approximate optimization Subject RIV: BA - General Mathematics Impact factor: 1.186, year: 2005

  7. The heat kernel as the pagerank of a graph

    Science.gov (United States)

    Chung, Fan

    2007-01-01

    The concept of pagerank was first started as a way for determining the ranking of Web pages by Web search engines. Based on relations in interconnected networks, pagerank has become a major tool for addressing fundamental problems arising in general graphs, especially for large information networks with hundreds of thousands of nodes. A notable notion of pagerank, introduced by Brin and Page and denoted by PageRank, is based on random walks as a geometric sum. In this paper, we consider a notion of pagerank that is based on the (discrete) heat kernel and can be expressed as an exponential sum of random walks. The heat kernel satisfies the heat equation and can be used to analyze many useful properties of random walks in a graph. A local Cheeger inequality is established, which implies that, by focusing on cuts determined by linear orderings of vertices using the heat kernel pageranks, the resulting partition is within a quadratic factor of the optimum. This is true, even if we restrict the volume of the small part separated by the cut to be close to some specified target value. This leads to a graph partitioning algorithm for which the running time is proportional to the size of the targeted volume (instead of the size of the whole graph).

  8. Optimal Bandwidth Selection for Kernel Density Functionals Estimation

    Directory of Open Access Journals (Sweden)

    Su Chen

    2015-01-01

    Full Text Available The choice of bandwidth is crucial to the kernel density estimation (KDE and kernel based regression. Various bandwidth selection methods for KDE and local least square regression have been developed in the past decade. It has been known that scale and location parameters are proportional to density functionals ∫γ(xf2(xdx with appropriate choice of γ(x and furthermore equality of scale and location tests can be transformed to comparisons of the density functionals among populations. ∫γ(xf2(xdx can be estimated nonparametrically via kernel density functionals estimation (KDFE. However, the optimal bandwidth selection for KDFE of ∫γ(xf2(xdx has not been examined. We propose a method to select the optimal bandwidth for the KDFE. The idea underlying this method is to search for the optimal bandwidth by minimizing the mean square error (MSE of the KDFE. Two main practical bandwidth selection techniques for the KDFE of ∫γ(xf2(xdx are provided: Normal scale bandwidth selection (namely, “Rule of Thumb” and direct plug-in bandwidth selection. Simulation studies display that our proposed bandwidth selection methods are superior to existing density estimation bandwidth selection methods in estimating density functionals.

  9. Optimizing memory-bound SYMV kernel on GPU hardware accelerators

    KAUST Repository

    Abdelfattah, Ahmad

    2013-01-01

    Hardware accelerators are becoming ubiquitous high performance scientific computing. They are capable of delivering an unprecedented level of concurrent execution contexts. High-level programming language extensions (e.g., CUDA), profiling tools (e.g., PAPI-CUDA, CUDA Profiler) are paramount to improve productivity, while effectively exploiting the underlying hardware. We present an optimized numerical kernel for computing the symmetric matrix-vector product on nVidia Fermi GPUs. Due to its inherent memory-bound nature, this kernel is very critical in the tridiagonalization of a symmetric dense matrix, which is a preprocessing step to calculate the eigenpairs. Using a novel design to address the irregular memory accesses by hiding latency and increasing bandwidth, our preliminary asymptotic results show 3.5x and 2.5x fold speedups over the similar CUBLAS 4.0 kernel, and 7-8% and 30% fold improvement over the Matrix Algebra on GPU and Multicore Architectures (MAGMA) library in single and double precision arithmetics, respectively. © 2013 Springer-Verlag.

  10. Aveiro method in reproducing kernel Hilbert spaces under complete dictionary

    Science.gov (United States)

    Mai, Weixiong; Qian, Tao

    2017-12-01

    Aveiro Method is a sparse representation method in reproducing kernel Hilbert spaces (RKHS) that gives orthogonal projections in linear combinations of reproducing kernels over uniqueness sets. It, however, suffers from determination of uniqueness sets in the underlying RKHS. In fact, in general spaces, uniqueness sets are not easy to be identified, let alone the convergence speed aspect with Aveiro Method. To avoid those difficulties we propose an anew Aveiro Method based on a dictionary and the matching pursuit idea. What we do, in fact, are more: The new Aveiro method will be in relation to the recently proposed, the so called Pre-Orthogonal Greedy Algorithm (P-OGA) involving completion of a given dictionary. The new method is called Aveiro Method Under Complete Dictionary (AMUCD). The complete dictionary consists of all directional derivatives of the underlying reproducing kernels. We show that, under the boundary vanishing condition, bring available for the classical Hardy and Paley-Wiener spaces, the complete dictionary enables an efficient expansion of any given element in the Hilbert space. The proposed method reveals new and advanced aspects in both the Aveiro Method and the greedy algorithm.

  11. Analyzing kernel matrices for the identification of differentially expressed genes.

    Directory of Open Access Journals (Sweden)

    Xiao-Lei Xia

    Full Text Available One of the most important applications of microarray data is the class prediction of biological samples. For this purpose, statistical tests have often been applied to identify the differentially expressed genes (DEGs, followed by the employment of the state-of-the-art learning machines including the Support Vector Machines (SVM in particular. The SVM is a typical sample-based classifier whose performance comes down to how discriminant samples are. However, DEGs identified by statistical tests are not guaranteed to result in a training dataset composed of discriminant samples. To tackle this problem, a novel gene ranking method namely the Kernel Matrix Gene Selection (KMGS is proposed. The rationale of the method, which roots in the fundamental ideas of the SVM algorithm, is described. The notion of ''the separability of a sample'' which is estimated by performing [Formula: see text]-like statistics on each column of the kernel matrix, is first introduced. The separability of a classification problem is then measured, from which the significance of a specific gene is deduced. Also described is a method of Kernel Matrix Sequential Forward Selection (KMSFS which shares the KMGS method's essential ideas but proceeds in a greedy manner. On three public microarray datasets, our proposed algorithms achieved noticeably competitive performance in terms of the B.632+ error rate.

  12. A kernel plus method for quantifying wind turbine performance upgrades

    KAUST Repository

    Lee, Giwhyun

    2014-04-21

    Power curves are commonly estimated using the binning method recommended by the International Electrotechnical Commission, which primarily incorporates wind speed information. When such power curves are used to quantify a turbine\\'s upgrade, the results may not be accurate because many other environmental factors in addition to wind speed, such as temperature, air pressure, turbulence intensity, wind shear and humidity, all potentially affect the turbine\\'s power output. Wind industry practitioners are aware of the need to filter out effects from environmental conditions. Toward that objective, we developed a kernel plus method that allows incorporation of multivariate environmental factors in a power curve model, thereby controlling the effects from environmental factors while comparing power outputs. We demonstrate that the kernel plus method can serve as a useful tool for quantifying a turbine\\'s upgrade because it is sensitive to small and moderate changes caused by certain turbine upgrades. Although we demonstrate the utility of the kernel plus method in this specific application, the resulting method is a general, multivariate model that can connect other physical factors, as long as their measurements are available, with a turbine\\'s power output, which may allow us to explore new physical properties associated with wind turbine performance. © 2014 John Wiley & Sons, Ltd.

  13. KNBD: A Remote Kernel Block Server for Linux

    Science.gov (United States)

    Becker, Jeff

    1999-01-01

    I am developing a prototype of a Linux remote disk block server whose purpose is to serve as a lower level component of a parallel file system. Parallel file systems are an important component of high performance supercomputers and clusters. Although supercomputer vendors such as SGI and IBM have their own custom solutions, there has been a void and hence a demand for such a system on Beowulf-type PC Clusters. Recently, the Parallel Virtual File System (PVFS) project at Clemson University has begun to address this need (1). Although their system provides much of the functionality of (and indeed was inspired by) the equivalent file systems in the commercial supercomputer market, their system is all in user-space. Migrating their 10 services to the kernel could provide a performance boost, by obviating the need for expensive system calls. Thanks to Pavel Machek, the Linux kernel has provided the network block device (2) with kernels 2.1.101 and later. You can configure this block device to redirect reads and writes to a remote machine's disk. This can be used as a building block for constructing a striped file system across several nodes.

  14. The depression of a graph and k-kernels

    Directory of Open Access Journals (Sweden)

    Schurch Mark

    2014-05-01

    Full Text Available An edge ordering of a graph G is an injection f : E(G → R, the set of real numbers. A path in G for which the edge ordering f increases along its edge sequence is called an f-ascent ; an f-ascent is maximal if it is not contained in a longer f-ascent. The depression of G is the smallest integer k such that any edge ordering f has a maximal f-ascent of length at most k. A k-kernel of a graph G is a set of vertices U ⊆ V (G such that for any edge ordering f of G there exists a maximal f-ascent of length at most k which neither starts nor ends in U. Identifying a k-kernel of a graph G enables one to construct an infinite family of graphs from G which have depression at most k. We discuss various results related to the concept of k-kernels, including an improved upper bound for the depression of trees.

  15. Multiple Kernel Learning for adaptive graph regularized nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan; AbdulJabbar, Mustafa Abdulmajeed

    2012-01-01

    Nonnegative Matrix Factorization (NMF) has been continuously evolving in several areas like pattern recognition and information retrieval methods. It factorizes a matrix into a product of 2 low-rank non-negative matrices that will define parts-based, and linear representation of non-negative data. Recently, Graph regularized NMF (GrNMF) is proposed to find a compact representation, which uncovers the hidden semantics and simultaneously respects the intrinsic geometric structure. In GNMF, an affinity graph is constructed from the original data space to encode the geometrical information. In this paper, we propose a novel idea which engages a Multiple Kernel Learning approach into refining the graph structure that reflects the factorization of the matrix and the new data space. The GrNMF is improved by utilizing the graph refined by the kernel learning, and then a novel kernel learning method is introduced under the GrNMF framework. Our approach shows encouraging results of the proposed algorithm in comparison to the state-of-the-art clustering algorithms like NMF, GrNMF, SVD etc.

  16. Fast metabolite identification with Input Output Kernel Regression

    Science.gov (United States)

    Brouard, Céline; Shen, Huibin; Dührkop, Kai; d'Alché-Buc, Florence; Böcker, Sebastian; Rousu, Juho

    2016-01-01

    Motivation: An important problematic of metabolomics is to identify metabolites using tandem mass spectrometry data. Machine learning methods have been proposed recently to solve this problem by predicting molecular fingerprint vectors and matching these fingerprints against existing molecular structure databases. In this work we propose to address the metabolite identification problem using a structured output prediction approach. This type of approach is not limited to vector output space and can handle structured output space such as the molecule space. Results: We use the Input Output Kernel Regression method to learn the mapping between tandem mass spectra and molecular structures. The principle of this method is to encode the similarities in the input (spectra) space and the similarities in the output (molecule) space using two kernel functions. This method approximates the spectra-molecule mapping in two phases. The first phase corresponds to a regression problem from the input space to the feature space associated to the output kernel. The second phase is a preimage problem, consisting in mapping back the predicted output feature vectors to the molecule space. We show that our approach achieves state-of-the-art accuracy in metabolite identification. Moreover, our method has the advantage of decreasing the running times for the training step and the test step by several orders of magnitude over the preceding methods. Availability and implementation: Contact: celine.brouard@aalto.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307628

  17. Direct Patlak Reconstruction From Dynamic PET Data Using the Kernel Method With MRI Information Based on Structural Similarity.

    Science.gov (United States)

    Gong, Kuang; Cheng-Liao, Jinxiu; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi

    2018-04-01

    Positron emission tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neuroscience. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information into image reconstruction. Previously, kernel learning has been successfully embedded into static and dynamic PET image reconstruction using either PET temporal or MRI information. Here, we combine both PET temporal and MRI information adaptively to improve the quality of direct Patlak reconstruction. We examined different approaches to combine the PET and MRI information in kernel learning to address the issue of potential mismatches between MRI and PET signals. Computer simulations and hybrid real-patient data acquired on a simultaneous PET/MR scanner were used to evaluate the proposed methods. Results show that the method that combines PET temporal information and MRI spatial information adaptively based on the structure similarity index has the best performance in terms of noise reduction and resolution improvement.

  18. Mode of inheritance and combining abilities for kernel row number, kernel number per row and grain yield in maize (Zea mays L.)

    NARCIS (Netherlands)

    Bocanski, J.; Sreckov, Z.; Nastasic, A.; Ivanovic, M.; Djalovic, I.; Vukosavljev, M.

    2010-01-01

    Bocanski J., Z. Sreckov, A. Nastasic, M. Ivanovic, I.Djalovic and M. Vukosavljev (2010): Mode of inheritance and combining abilities for kernel row number, kernel number per row and grain yield in maize (Zea mays L.) - Genetika, Vol 42, No. 1, 169- 176. Utilization of heterosis requires the study of

  19. Influence of Kernel Age on Fumonisin B1 Production in Maize by Fusarium moniliforme

    Science.gov (United States)

    Warfield, Colleen Y.; Gilchrist, David G.

    1999-01-01

    Production of fumonisins by Fusarium moniliforme on naturally infected maize ears is an important food safety concern due to the toxic nature of this class of mycotoxins. Assessing the potential risk of fumonisin production in developing maize ears prior to harvest requires an understanding of the regulation of toxin biosynthesis during kernel maturation. We investigated the developmental-stage-dependent relationship between maize kernels and fumonisin B1 production by using kernels collected at the blister (R2), milk (R3), dough (R4), and dent (R5) stages following inoculation in culture at their respective field moisture contents with F. moniliforme. Highly significant differences (P ≤ 0.001) in fumonisin B1 production were found among kernels at the different developmental stages. The highest levels of fumonisin B1 were produced on the dent stage kernels, and the lowest levels were produced on the blister stage kernels. The differences in fumonisin B1 production among kernels at the different developmental stages remained significant (P ≤ 0.001) when the moisture contents of the kernels were adjusted to the same level prior to inoculation. We concluded that toxin production is affected by substrate composition as well as by moisture content. Our study also demonstrated that fumonisin B1 biosynthesis on maize kernels is influenced by factors which vary with the developmental age of the tissue. The risk of fumonisin contamination may begin early in maize ear development and increases as the kernels reach physiological maturity. PMID:10388675

  20. Multineuron spike train analysis with R-convolution linear combination kernel.

    Science.gov (United States)

    Tezuka, Taro

    2018-06-01

    A spike train kernel provides an effective way of decoding information represented by a spike train. Some spike train kernels have been extended to multineuron spike trains, which are simultaneously recorded spike trains obtained from multiple neurons. However, most of these multineuron extensions were carried out in a kernel-specific manner. In this paper, a general framework is proposed for extending any single-neuron spike train kernel to multineuron spike trains, based on the R-convolution kernel. Special subclasses of the proposed R-convolution linear combination kernel are explored. These subclasses have a smaller number of parameters and make optimization tractable when the size of data is limited. The proposed kernel was evaluated using Gaussian process regression for multineuron spike trains recorded from an animal brain. It was compared with the sum kernel and the population Spikernel, which are existing ways of decoding multineuron spike trains using kernels. The results showed that the proposed approach performs better than these kernels and also other commonly used neural decoding methods. Copyright © 2018 Elsevier Ltd. All rights reserved.