WorldWideScience

Sample records for karnafuli river efforts

  1. Elemental analysis in bed sediment samples of Karnafuli estuarine zone in the Bay of Bengal by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Molla, N.I.; Hossain, S.M.; Basunia, S.; Miah, R.U.; Rahman, M.; Sikder, D.H.; Chowdhury, M.I.

    1997-01-01

    The concentration of rare earths and other elements have been determined in the bed sediment samples of Karnafuli estuarine zone in the Bay of Bengal by instrumental neutron activation analysis (INAA). The samples and the standards soil-5, soil-7, coal fly ash and pond sediment were prepared and simultaneously irradiated for short and long time at the TRIGA Mark-II research reactor facility of Atomic Energy Research Establishment, Savar, Dhaka. The maximum thermal neutron flux was of the order of 10 13 n x cm -2 x s -1 . After irradiation the radioactivity of the product nuclides was measured by using a high resolution high purity germanium detector system. Analysis of γ-ray spectra and quantitative analysis of the elemental concentration were done via the software GANAAS. It has been possible to determine the concentration level of 27 elements including the rare earths La, Ce, Sm, Eu, Tb, Dy and Yb and uranium and thorium. (author)

  2. Fishing effort statistics of the artisanal fisheries of the Cross River ...

    African Journals Online (AJOL)

    Frame surveys were carried out in 1997 and 1998 to assess the effort statistics of the artisanal fisheries of the Cross River Estuary. These surveys covered the inner Estuary and the West coast of the outer Estuary. Fishing effort was taken as number of fishers, number of canoes, and types of fishing gears. A total of 64 fishing ...

  3. Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts.

    Science.gov (United States)

    Kibria, Golam; Hossain, Md Maruf; Mallick, Debbrota; Lau, T C; Wu, Rudolf

    2016-04-15

    Using artificial mussels (AMs), this study reports and compares time-integrated level of eleven trace metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, U, Zn) in Karnafuli River estuary and coastal area of the Bay of Bengal, Bangladesh. Through this study, "hot spots" of metal pollution were identified. The results may demonstrate that the Karnafuli Estuary, and adjacent coastal area of Chittagong, Bangladesh are highly polluted by high risk metals (cadmium, chromium, copper, mercury, nickel, lead, uranium). Agricultural, domestic and industrial wastes directly discharged into the waterways have been identified as the main causes of metal pollution in Chittagong, Bangladesh. The high level of metal pollution identified may impact on local water quality, and seafood catch, livelihoods of people and public health resulting from seafood consumption. There is a need for regular monitoring to ascertain that local water quality with respect to metal levels are within acceptable levels to safeguards both environmental health and public health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Cumulative effects of restoration efforts on ecological characteristics of an open water area within the Upper Mississippi River

    Science.gov (United States)

    Gray, B.R.; Shi, W.; Houser, J.N.; Rogala, J.T.; Guan, Z.; Cochran-Biederman, J. L.

    2011-01-01

    Ecological restoration efforts in large rivers generally aim to ameliorate ecological effects associated with large-scale modification of those rivers. This study examined whether the effects of restoration efforts-specifically those of island construction-within a largely open water restoration area of the Upper Mississippi River (UMR) might be seen at the spatial scale of that 3476ha area. The cumulative effects of island construction, when observed over multiple years, were postulated to have made the restoration area increasingly similar to a positive reference area (a proximate area comprising contiguous backwater areas) and increasingly different from two negative reference areas. The negative reference areas represented the Mississippi River main channel in an area proximate to the restoration area and an open water area in a related Mississippi River reach that has seen relatively little restoration effort. Inferences on the effects of restoration were made by comparing constrained and unconstrained models of summer chlorophyll a (CHL), summer inorganic suspended solids (ISS) and counts of benthic mayfly larvae. Constrained models forced trends in means or in both means and sampling variances to become, over time, increasingly similar to those in the positive reference area and increasingly dissimilar to those in the negative reference areas. Trends were estimated over 12- (mayflies) or 14-year sampling periods, and were evaluated using model information criteria. Based on these methods, restoration effects were observed for CHL and mayflies while evidence in favour of restoration effects on ISS was equivocal. These findings suggest that the cumulative effects of island building at relatively large spatial scales within large rivers may be estimated using data from large-scale surveillance monitoring programs. Published in 2010 by John Wiley & Sons, Ltd.

  5. Relationship of fish indices with sampling effort and land use change in a large Mediterranean river.

    Science.gov (United States)

    Almeida, David; Alcaraz-Hernández, Juan Diego; Merciai, Roberto; Benejam, Lluís; García-Berthou, Emili

    2017-12-15

    Fish are invaluable ecological indicators in freshwater ecosystems but have been less used for ecological assessments in large Mediterranean rivers. We evaluated the effects of sampling effort (transect length) on fish metrics, such as species richness and two fish indices (the new European Fish Index EFI+ and a regional index, IBICAT2b), in the mainstem of a large Mediterranean river. For this purpose, we sampled by boat electrofishing five sites each with 10 consecutive transects corresponding to a total length of 20 times the river width (European standard required by the Water Framework Directive) and we also analysed the effect of sampling area on previous surveys. Species accumulation curves and richness extrapolation estimates in general suggested that species richness was reasonably estimated with transect lengths of 10 times the river width or less. The EFI+ index was significantly affected by sampling area, both for our samplings and previous data. Surprisingly, EFI+ values in general decreased with increasing sampling area, despite the higher observed richness, likely because the expected values of metrics were higher. By contrast, the regional fish index was not dependent on sampling area, likely because it does not use a predictive model. Both fish indices, but particularly the EFI+, decreased with less forest cover percentage, even within the smaller disturbance gradient in the river type studied (mainstem of a large Mediterranean river, where environmental pressures are more general). Although the two fish-based indices are very different in terms of their development, methodology, and metrics used, they were significantly correlated and provided a similar assessment of ecological status. Our results reinforce the importance of standardization of sampling methods for bioassessment and suggest that predictive models that use sampling area as a predictor might be more affected by differences in sampling effort than simpler biotic indices. Copyright

  6. The Ganges and the GAP: An Assessment of Efforts to Clean a Sacred River

    Directory of Open Access Journals (Sweden)

    Kenneth R. Tamminga

    2012-07-01

    Full Text Available For centuries, the Ganges River in India has been the locus of sacred rites for the Hindus. The religious significance of the Ganges is physically manifested in ghats (stepped landings that form the land-water interface. Besides serving as a site for religious bathing and cremation, the ghats are also tied to people’s livelihoods and are an inseparable part of their daily lives. Today, the increasingly urbanized Ganges basin sustains more than 40 percent of India’s population. At the same time, industrialization and the pressures of a growing population along its banks have contributed to alarming levels of pollution in the river. In 1985, the federal government of India launched the Ganga Action Plan (GAP with the primary objective of cleaning the river. However, characterized by centralized planning and control with little public participation, the GAP had limited impact. In 2011, the government launched yet another clean up program—the National Ganga River Basin Project—with support from the World Bank. In this paper, we take a closer look at the programs to highlight the tenuous relationship between the need for ‘efficient’ management of environmental problems and public participation. Can public participation fit into the technocratic model that is often adopted by environmental programs? What approaches to participation kindle authorship and empowerment among those who share a deep relationship with the river and the ghats? Can religious practices be accommodated within scientific frameworks of adaptive management and resilience? We argue that rethinking the relationship between pollution control programs and participation is crucial for any effort to clean the Ganges, restore its waterfront, and catalyze broader regeneration in the Ganges basin.

  7. A modeling approach to establish environmental flow threshold in ungauged semidiurnal tidal river

    Science.gov (United States)

    Akter, A.; Tanim, A. H.

    2018-03-01

    Due to shortage of flow monitoring data in ungauged semidiurnal river, 'environmental flow' (EF) determination based on its key component 'minimum low flow' is always difficult. For EF assessment this study selected a reach immediately after the Halda-Karnafuli confluence, a unique breeding ground for Indian Carp fishes of Bangladesh. As part of an ungauged tidal river, EF threshold establishment faces challenges in changing ecological paradigms with periodic change of tides and hydrologic alterations. This study describes a novel approach through modeling framework comprising hydrological, hydrodynamic and habitat simulation model. The EF establishment was conceptualized according to the hydrologic process of an ungauged semi-diurnal tidal regime in four steps. Initially, a hydrologic model coupled with a hydrodynamic model to simulate flow considering land use changes effect on streamflow, seepage loss of channel, friction dominated tidal decay as well as lack of long term flow characteristics. Secondly, to define hydraulic habitat feature, a statistical analysis on derived flow data was performed to identify 'habitat suitability'. Thirdly, to observe the ecological habitat behavior based on the identified hydrologic alteration, hydraulic habitat features were investigated. Finally, based on the combined habitat suitability index flow alteration and ecological response relationship was established. Then, the obtained EF provides a set of low flow indices of desired regime and thus the obtained discharge against maximum Weighted Usable Area (WUA) was defined as EF threshold for the selected reach. A suitable EF regime condition was obtained within flow range 25-30.1 m3/s i.e., around 10-12% of the mean annual runoff of 245 m3/s and these findings are within researchers' recommendation of minimum flow requirement. Additionally it was observed that tidal characteristics are dominant process in semi-diurnal regime. However, during the study period (2010-2015) the

  8. Regional Cooperation Efforts in the Mekong River Basin: Mitigating river-related security threats and promoting regional development

    Directory of Open Access Journals (Sweden)

    Susanne Schmeier

    2009-01-01

    Full Text Available The development of international rivers is often perceived as leading to conflicts or even water wars. However, as the development of the Mekong River shows, cooperation has not only prevailed in the last decades, but River Basin Organizations (RBOs, established to mitigate river-related conflicts and/or develop the river basin, have also contributed to the emergence of more general cooperation structures, mainly by creating spill-over effects in other issue-areas, bringing cooperation to policy fields beyond the river itself. This article assesses the contribution of the Mekong River Commission (MRC and the Greater Mekong Sub-Region (GMS to the sustainable development of the Mekong Region as well as to the promotion of regional cooperation in mainland South-East Asia in general. --- Die Entwicklung grenzüberschreitender Flüsse wird oft mit Konflikten oder gar Kriegen um Wasser assoziiert. Wie jedoch die Entwicklung im Mekong-Becken zeigt, waren die vergangenen Jahrzehnte nicht nur von Kooperation gezeichnet, sondern Flussbeckenorganisationen konnten außerdem dazu beitragen, weitreichendere Kooperationsstrukturen zu entwickeln, die sich auf andere Politikfelder ausdehnen. Dieser Artikel beschäftigt sich mit dem Beitrag der Mekong River Commission (MRC und der Greater Mekong Sub-Region (GMS zur nachhaltigen Entwicklung in der Mekong Region sowie zur Förderung allgemeiner regionaler Kooperation im Festländischen Südostasien.

  9. Discharge, water quality, and native fish abundance in the Virgin River, Utah, Nevada, and Arizona, in support of Pah Tempe Springs discharge remediation efforts

    Science.gov (United States)

    Miller, Matthew P.; Lambert, Patrick M.; Hardy, Thomas B.

    2014-01-01

    Pah Tempe Springs discharge hot, saline, low dissolved-oxygen water to the Virgin River in southwestern Utah, which is transported downstream to Lake Mead and the Colorado River. The dissolved salts in the Virgin River negatively influence the suitability of this water for downstream agricultural, municipal, and industrial use. Therefore, various remediation scenarios to remove the salt load discharged from Pah Tempe Springs to the Virgin River are being considered. One concern about this load removal is the potential to impact the ecology of the Virgin River. Specifically, information is needed regarding possible impacts of Pah Tempe Springs remediation scenarios on the abundance, distribution, and survival of native fish in the Virgin River. Future efforts that aim to quantitatively assess how various remediation scenarios to reduce the load of dissolved salts from Pah Tempe Springs into the Virgin River may influence the abundance, distribution, and survival of native fish will require data on discharge, water quality, and native fish abundance. This report contains organized accessible discharge, water quality, and native fish abundance data sets from the Virgin River, documents the compilation of these data, and discusses approaches for quantifying relations between abiotic physical and chemical conditions, and fish abundance.

  10. Charles River

    Science.gov (United States)

    Information on the efforts of the US EPA, the Commonwealth of Massachusetts, the municipalities within the Charles River Watershed and nongovernmental organizations to improve the water quality of the Charles River.

  11. Sampling little fish in big rivers: Larval fish detection probabilities in two Lake Erie tributaries and implications for sampling effort and abundance indices

    Science.gov (United States)

    Pritt, Jeremy J.; DuFour, Mark R.; Mayer, Christine M.; Roseman, Edward F.; DeBruyne, Robin L.

    2014-01-01

    Larval fish are frequently sampled in coastal tributaries to determine factors affecting recruitment, evaluate spawning success, and estimate production from spawning habitats. Imperfect detection of larvae is common, because larval fish are small and unevenly distributed in space and time, and coastal tributaries are often large and heterogeneous. We estimated detection probabilities of larval fish from several taxa in the Maumee and Detroit rivers, the two largest tributaries of Lake Erie. We then demonstrated how accounting for imperfect detection influenced (1) the probability of observing taxa as present relative to sampling effort and (2) abundance indices for larval fish of two Detroit River species. We found that detection probabilities ranged from 0.09 to 0.91 but were always less than 1.0, indicating that imperfect detection is common among taxa and between systems. In general, taxa with high fecundities, small larval length at hatching, and no nesting behaviors had the highest detection probabilities. Also, detection probabilities were higher in the Maumee River than in the Detroit River. Accounting for imperfect detection produced up to fourfold increases in abundance indices for Lake Whitefish Coregonus clupeaformis and Gizzard Shad Dorosoma cepedianum. The effect of accounting for imperfect detection in abundance indices was greatest during periods of low abundance for both species. Detection information can be used to determine the appropriate level of sampling effort for larval fishes and may improve management and conservation decisions based on larval fish data.

  12. Physicochemical Assessment of Surface and Groundwater Quality of the Greater Chittagong Region of Bangladesh

    Directory of Open Access Journals (Sweden)

    M. J. Ahmed

    2010-12-01

    Full Text Available The study was carried out to assess surface and groundwater quality of the greater Chittagong (Chittagong and Cox’s Bazar districts and Chittagong Hill Tracts (Rangamati, Khagrachhari and Bandarban districts of Bangladesh. To study the various physicochemical and microbiological parameters, surface water samples from the Karnafuli, Halda, Sangu, Matamuhuri, Bakkhali, Naf, Kasalong, Chingri and Mayani Rivers, Kaptai Lake and groundwater samples from almost every Upazilas, smaller administrative unit of Bangladesh, were collected and analyzed. The statistical methods of sampling were used for collecting samples. Samples were preserved using suitable preservation methods. Water samples from the freshwater resources were collected from different points and tide conditions and at different seasons for continuous monitoring during the hydrological years 2008-2009. The collected samples were analyzed for the following parameters: pH, electrical conductivity (EC, total dissolved solids (TDS, total suspended solids (TSS, total solids (TS, dissolved oxygen (DO, transparency, acidity, dissolved carbon dioxide, total alkalinity, total hardness, chloride, ammonia-N, hydrogen sulfide, sulphate-S, o-phosphate-P, biochemical oxygen demand (BOD, chemical oxygen demand (COD, nitrate-N, nitrite-N, total nitrite and nitrate-N, arsenic, iron, manganese, copper, nickel, chromium, cadmium, lead, calcium, magnesium, sodium and potassium using the procedure outlined in the standard methods. Average values of maximum physicochemical and microbiological parameters studied for the Karnafuli River were found higher than the World Health Organization (WHO guideline. The maximum water quality parameters of Kaptai Lake and other Rivers of Chittagong region were existed within the permissible limits of WHO guideline. The data showed the water quality slightly differs in pre-monsoon and post-monsoon than monsoon season. The concentration of different constituents of most of

  13. BPA efforts to protect salmon and supply energy

    International Nuclear Information System (INIS)

    Geiselman, J.; Schiewe, R.

    1993-01-01

    The Bonneville Power Administration has sought to increase numbers of anadromous fish in the Columbia River for many years. In spite of these efforts, numbers of some species have continued to decline while others increased. As a result, several species of Salmon from the Snake River portion of the Columbia River basin have been listed as threatened or endangered under the Endangered Species Act. This presentation will identify analytical tools used to assess fish mitigation measures and the changes in power production and marketing expected from implementation of the National Marine Fisheries Service Recovery Plan and the Northwest Power Planning Council's Fish and Wildlife Program

  14. Conservation efforts and possibilities for increased collaboration in the Santa Cruz River watershed

    Science.gov (United States)

    Claire A. Zugmeyer; Emily M. Brott

    2013-01-01

    Attendees of the annual Santa Cruz River Researchers’ Day meetings have identified a need to expand collaboration, partnership, and sharing of lessons learned across the watershed. To help guide this interest, Sonoran Institute organized a symposium on 2 May 2012 entitled “Santa Cruz River Conservation.” The symposium had simultaneous Spanish/English translation and...

  15. Endangered river fish: factors hindering conservation and restoration

    Science.gov (United States)

    Cooke, Steven J.; Paukert, Craig P.; Hogan, Zeb

    2012-01-01

    Globally, riverine fish face many anthropogenic threats including riparian and flood plain habitat degradation, altered hydrology, migration barriers, fisheries exploitation, environmental (climate) change, and introduction of invasive species. Collectively, these threats have made riverine fishes some of the most threatened taxa on the planet. Although much effort has been devoted to identifying the threats faced by river fish, there has been less effort devoted to identifying the factors that may hinder our ability to conserve and restore river fish populations and their watersheds. Therefore, we focus our efforts on identifying and discussing 10 general factors (can also be viewed as research and implementation needs) that constrain or hinder effective conservation action for endangered river fish: (1) limited basic natural history information; (2) limited appreciation for the scale/extent of migrations and the level of connectivity needed to sustain populations; (3) limited understanding of fish/river-flow relationships; (4) limited understanding of the seasonal aspects of river fish biology, particularly during winter and/or wet seasons; (5) challenges in predicting the response of river fish and river ecosystems to both environmental change and various restoration or management actions; (6) limited understanding of the ecosystem services provided by river fish; (7) the inherent difficulty in studying river fish; (8) limited understanding of the human dimension of river fish conservation and management; (9) limitations of single species approaches that often fail to address the broader-scale problems; and (10) limited effectiveness of governance structures that address endangered river fish populations and rivers that cross multiple jurisdictions. We suggest that these issues may need to be addressed to help protect, restore, or conserve river fish globally, particularly those that are endangered.

  16. Columbia River Component Data Evaluation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    C.S. Cearlock

    2006-08-02

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  17. Savannah River Plant/Savannah River Laboratory radiation exposure report

    International Nuclear Information System (INIS)

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L.; Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R.

    1989-01-01

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs

  18. Fisher research and the Kings River Sustainable Forest Ecosystem Project: current results and future efforts

    Science.gov (United States)

    Brian B. Boroski; Richard T. Golightly; Amie K. Mazzoni; Kimberly A. Sager

    2002-01-01

    The Kings River Sustainable Forest Ecosystems Project was initiated on the Kings River Ranger District of the Sierra National Forest, California, in 1993, with fieldwork beginning in 1994. Knowledge of the ecology of the fisher (Martes pennanti) in the Project area, and in the Sierra Nevada of California in general, is insufficient to develop...

  19. Remote Sensing and River Discharge Forecasting for Major Rivers in South Asia (Invited)

    Science.gov (United States)

    Webster, P. J.; Hopson, T. M.; Hirpa, F. A.; Brakenridge, G. R.; De-Groeve, T.; Shrestha, K.; Gebremichael, M.; Restrepo, P. J.

    2013-12-01

    The South Asia is a flashpoint for natural disasters particularly flooding of the Indus, Ganges, and Brahmaputra has profound societal impacts for the region and globally. The 2007 Brahmaputra floods affecting India and Bangladesh, the 2008 avulsion of the Kosi River in India, the 2010 flooding of the Indus River in Pakistan and the 2013 Uttarakhand exemplify disasters on scales almost inconceivable elsewhere. Their frequent occurrence of floods combined with large and rapidly growing populations, high levels of poverty and low resilience, exacerbate the impact of the hazards. Mitigation of these devastating hazards are compounded by limited flood forecast capability, lack of rain/gauge measuring stations and forecast use within and outside the country, and transboundary data sharing on natural hazards. Here, we demonstrate the utility of remotely-derived hydrologic and weather products in producing skillful flood forecasting information without reliance on vulnerable in situ data sources. Over the last decade a forecast system has been providing operational probabilistic forecasts of severe flooding of the Brahmaputra and Ganges Rivers in Bangldesh was developed (Hopson and Webster 2010). The system utilizes ECMWF weather forecast uncertainty information and ensemble weather forecasts, rain gauge and satellite-derived precipitation estimates, together with the limited near-real-time river stage observations from Bangladesh. This system has been expanded to Pakistan and has successfully forecast the 2010-2012 flooding (Shrestha and Webster 2013). To overcome the in situ hydrological data problem, recent efforts in parallel with the numerical modeling have utilized microwave satellite remote sensing of river widths to generate operational discharge advective-based forecasts for the Ganges and Brahmaputra. More than twenty remotely locations upstream of Bangldesh were used to produce stand-alone river flow nowcasts and forecasts at 1-15 days lead time. showing that

  20. Implementing Integrated River Basin Management in China

    NARCIS (Netherlands)

    Boekhorst, D.G.J. te; Smits, A.J.M.; Yu, X.; Lifeng, L.; Lei, G.; Zhang, C.

    2010-01-01

    This paper examines the role of the World Wildlife Fund for Nature China as policy entrepreneur in China. It illustrates the ways in which the World Wildlife Fund for Nature is active in promoting integrated river basin management in the Yangtze River basin and how the efforts at basin level are

  1. River-Based Experiential Learning: the Bear River Fellows Program

    Science.gov (United States)

    Rosenberg, D. E.; Shirley, B.; Roark, M. F.

    2012-12-01

    The Department of Civil and Environmental Engineering, Outdoor Recreation, and Parks and Recreation programs at Utah State University (USU) have partnered to offer a new, unique river-based experiential learning opportunity for undergraduates called the Bear River Fellows Program. The program allows incoming freshmen Fellows to experience a river first hand during a 5-day/4-night river trip on the nearby Bear River two weeks before the start of their first Fall semester. As part of the program, Fellows will navigate the Bear River in canoes, camp along the banks, interact with local water and environmental managers, collect channel cross section, stream flow, vegetation cover, and topological complexity data, meet other incoming freshmen, interact with faculty and graduate students, develop boating and leadership skills, problem solve, and participate as full members of the trip team. Subsequently, Fellows will get paid as undergraduate researchers during their Fall and Spring Freshman semesters to analyze, synthesize, and present the field data they collect. The program is a collaborative effort between two USU academic units and the (non-academic) division of Student Services and supports a larger National Science Foundation funded environmental modelling and management project for the lower Bear River, Utah watershed. We have advertised the program via Facebook and emails to incoming USU freshmen, received 35 applications (60% women), and accepted 5 Fellows into the program (3 female and 2 male). The river trip departs August 14, 2012. The poster will overview the Bear River Fellows Program and present qualitative and preliminary outcomes emerging from the trip and Fellows' work through the Fall semester with the field data they collect. We will also undertake more rigorous and longer longitudinal quantitative evaluation of Program outcomes (for example, in problem-solving and leadership) both in Spring 2013 and in subsequent 2013 and 2014 offerings of the

  2. Comparative Research on River Basin Management in the Sagami River Basin (Japan and the Muda River Basin (Malaysia

    Directory of Open Access Journals (Sweden)

    Lay Mei Sim

    2018-05-01

    Full Text Available In the world, river basins often interwoven into two or more states or prefectures and because of that, disputes over water are common. Nevertheless, not all shared river basins are associated with water conflicts. Rivers in Japan and Malaysia play a significant role in regional economic development. They also play a significant role as water sources for industrial, domestic, agricultural, aquaculture, hydroelectric power generation, and the environment. The research aim is to determine the similarities and differences between the Sagami and Muda River Basins in order to have a better understanding of the governance needed for effectively implementing the lessons drawn from the Sagami River Basin for improving the management of the Muda River Basin in Malaysia. This research adopts qualitative and quantitative approaches. Semi-structured interviews were held with the key stakeholders from both basins and show that Japan has endeavored to present policy efforts to accommodate the innovative approaches in the management of their water resources, including the establishment of a river basin council. In Malaysia, there is little or no stakeholder involvement in the Muda River Basin, and the water resource management is not holistic and is not integrated as it should be. Besides that, there is little or no Integrated Resources Water Management, a pre-requisite for sustainable water resources. The results from this comparative study concluded that full support and participation from public stakeholders (meaning the non-government and non-private sector stakeholders is vital for achieving sustainable water use in the Muda River Basin. Integrated Water Resources Management (IWRM approaches such as the introduction of payments for ecosystems services and the development of river basin organization in the Muda River Basin should take place in the spirit of political willingness.

  3. Protect and Restore Red River Watershed, 2007-2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bransford, Stephanie [Nez Perce Tribe Fisheries/Watershed Program

    2009-05-04

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Red River Watershed of the South Fork Clearwater River in 2001. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. From completing a watershed assessment to two NEPA efforts and a final stream restoration design, we will begin the effort of restoring the mainstem channel of Red River to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed. Another major, and extremely, important component of this project is the Red River Meadow Conservation Easement. We have begun the process of pursuing a conservation easement on approximately 270 acres of prime meadow habitat (Red River runs through this meadow and is prime spawning and rearing habitat).

  4. Lower Red River Meadow Stream Restoration Project

    International Nuclear Information System (INIS)

    1996-05-01

    As part of a continuing effort to restore anadromous fish populations in the South Fork Clearwater River basin of Idaho, Bonneville Power Administration (BPA) proposes to fund the Lower Red River Meadow Restoration Project (Project). The Project is a cooperative effort with the Idaho Soil and Water Conservation District, Nez Perce National Forest, Idaho Department of Fish and Game (IDFG), and the Nez Perce Tribe of Idaho. The proposed action would allow the sponsors to perform stream bank stabilization, aquatic and riparian habitat improvement activities on IDFG's Red River Management Area and to secure long-term conservation contracts or agreements for conducting streambank and habitat improvement activities with participating private landowners located in the Idaho County, Idaho, study area. This preliminary Environmental Assessment (EA) examines the potential environmental effects of stabilizing the stream channel, restoring juvenile fish rearing habitat and reestablishing a riparian shrub community along the stream

  5. Flathead River creel report, 1992--1993. Final report

    International Nuclear Information System (INIS)

    Hanzel, D.

    1995-09-01

    A roving creel survey was conducted on the Flathead River system, May 1992 through May 1993, as part of Hungry Horse Dam Fisheries Mitigation, funded by Bonneville Power Administration. The Flathead River system is a tributary to the Clarks Fork of the Columbia River originating in northwest Montana and southern British Columbia. The river creel survey was conducted in conjunction with a Flathead Lake creel survey. This document summarizes the creel survey on the river system. The purpose of these creel surveys was to quantify fishery status prior to mitigation efforts and provide replicative survey methodology to measure success of future mitigation activities. 4 figs., 21 tabs

  6. Proceedings of the 14. workshop of the Committee on River Ice Processes and the Environment : hydraulics of ice covered rivers

    International Nuclear Information System (INIS)

    Morse, B.; Bergeron, N.; Gauthier, Y.

    2007-01-01

    Ice processes play a significant role in the hydrologic regime of Canadian rivers. The Committee on River Ice Processes and the Environment (CRIPE) identifies high-priority topics for research and development and promotes research programs at Canadian colleges and universities. This workshop reviewed the hydraulic aspects of river ice phenomena in an effort to clarify the effects of ice cover on river flow characteristics. Other issues of concern were also discussed, notably ice formation, ice jams, winter operation of hydroelectric power plants, environmental aspects of river ice, and climate change. The workshop featured 12 poster sessions and 40 presentations, of which 5 have been catalogued separately for inclusion in this database. refs., tabs., figs

  7. Salmon River Habitat Enhancement. 1990 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  8. Advances in river ice hydrology 1999-2003

    Science.gov (United States)

    Morse, Brian; Hicks, Faye

    2005-01-01

    In the period 1999 to 2003, river ice has continued to have important socio-economic impacts in Canada and other Nordic countries. Concurrently, there have been many important advances in all areas of Canadian research into river ice engineering and hydrology. For example: (1) River ice processes were highlighted in two special journal issues (Canadian Journal of Civil Engineering in 2003 and Hydrological Processes in 2002) and at five conferences (Canadian Committee on River Ice Processes and the Environment in 1999, 2001 and 2003, and International Association of Hydraulic Research in 2000 and 2002). (2) A number of workers have clearly advanced our understanding of river ice processes by bringing together disparate information in comprehensive review articles. (3) There have been significant advances in river ice modelling. For example, both one-dimensional (e.g. RIVICE, RIVJAM, ICEJAM, HEC-RAS, etc.) and two-dimensional (2-D; www.river2d.ca) public-domain ice-jam models are now available. Work is ongoing to improve RIVER2D, and a commercial 2-D ice-process model is being developed. (4) The 1999-2003 period is notable for the number of distinctly hydrological and ecological studies. On the quantitative side, many are making efforts to determine streamflow during the winter period. On the ecological side, some new publications have addressed the link to water quality (temperature, dissolved oxygen, nutrients and pollutants), and others have dealt with sediment transport and geomorphology (particularly as it relates to break-up), stream ecology (plants, food cycle, etc.) and fish habitat.There is the growing recognition, that these types of study require collaborative efforts. In our view, the main areas requiring further work are: (1) to interface geomorphological and habitat models with quantitative river ice hydrodynamic models; (2) to develop a manager's toolbox (database management, remote sensing, forecasting, intervention methodologies, etc.) to enable

  9. Rebirth of the Cheat River

    Science.gov (United States)

    The Cheat River in West Virginia is again a haven for whitewater rafting and smallmouth bass fishing after years of Clean Water Act funding and the efforts of a local non-profit group and others to control pollution from old abandoned mines.

  10. Reservoir response to thermal and high-pressure well stimulation efforts at Raft River, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bradford, Jacob [Energy & Geoscience Institute at the Univ. of Utah, Salt Lake City, UT (United States); Moore, Joseph [Energy & Geoscience Institute at the Univ. of Utah, Salt Lake City, UT (United States); Podgorney, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    An injection stimulation test begun at the Raft River geothermal reservoir in June, 2013 has produced a wealth of data describing well and reservoir response via high-resolution temperature logging and distributed temperature sensing, seismic monitoring, periodic borehole televiewer logging, periodic stepped flow rate tests and tracer injections before and after stimulation efforts. One of the primary measures of response to the stimulation is the relationship between fluid pressure and flow rate, short-term during forced flow rate changes and the long-term change in injectivity. In this paper we examine that hydraulic response using standard pumping test analysis methods, largely because pressure response to the stimulation was not detected, or measurable, in other wells. Analysis of stepped rate flow tests supports the inference from other data that a large fracture, with a radial extent of one to several meters, intersects the well in the target reservoir, suggests that the flow regime is radial to a distance of only several meters and demonstrates that the pressure build-up cone reaches an effective constant head at that distance. The well’s longer term hydraulic response demonstrated continually increasing injectivity but at a dramatically faster rate later from ~2 years out and continuing to the present. The net change in injectivity is significantly greater than observed in other longterm injectivity monitoring studies, with an approximately 150–fold increase occurring over ~2.5 years. While gradually increasing injectivity is a likely consequence of slow migration of a cooling front, and consequent dilation of fractures, the steady, ongoing, rate of increase is contrary to what would be expected in a radial or linear flow regime, where the cooling front would slow with time. As a result, occasional step-like changes in injectivity, immediately following high-flow rate tests suggest that hydro shearing during high-pressure testing altered the near

  11. Reconnaissance of contaminants in selected wastewater-treatment-plant effluent and stormwater runoff entering the Columbia River, Columbia River Basin, Washington and Oregon, 2008-10

    Science.gov (United States)

    Morace, Jennifer L.

    2012-01-01

    Toxic contamination is a significant concern in the Columbia River Basin in Washington and Oregon. To help water managers and policy makers in decision making about future sampling efforts and toxic-reduction activities, a reconnaissance was done to assess contaminant concentrations directly contributed to the Columbia River through wastewater-treatment-plant (WWTP) effluent and stormwater runoff from adjacent urban environments and to evaluate instantaneous loadings to the Columbia River Basin from these inputs.

  12. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd

    1993-04-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program Measure 704 (d) (1) 34.02 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River (downstream of the Meacham Creek confluence upstream to the Reservation East Boundary). In 1993, the project shifted emphasis to a comprehensive watershed approach consistent with other basin efforts and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. Maintenance of existing habitat improvement projects was included under this comprehensive approach. Maintenance of existing gravel traps, instream and bank stabilization structures was required within project areas during the reporting period due to spring flooding damage and high bedload movement. Maintenance activities were completed between river mile (RM) 0.0 and RM 0.25 Boston Canyon Creek, between RM 0.0 and RM 4 Meacham Creek and between RM 78.5 and RM 79 Umatilla River. Habitat enhancement areas were seeded with native grass, legume, shrub and wildflower mixes and planted with willow cuttings to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. Water quality monitoring continued for temperature and turbidity throughout the upper Umatilla River Watershed. Survey of cross sections and

  13. Dam Removals and River Restoration in International Perspective

    Directory of Open Access Journals (Sweden)

    Chris S. Sneddon

    2017-10-01

    Full Text Available In the Anthropocene era, questions over institutions, economics, culture and politics are central to the promotion of water-society relations that enhance biophysical resilience and democratic modes of environmental governance. The removal of dams and weirs from river systems may well signal an important shift in how human actors value and utilize rivers. Yet the removal of water infrastructure is often lengthy, institutionally complex, and characterized by social conflict. This Special Issue draws insights from case studies of recent efforts in North America and Europe to restore river systems through dam and weir removal. These cases include both instances where removal has come to fruition in conjunction with efforts to rehabilitate aquatic systems and instances where removal has been stymied by a constellation of institutional, political and cultural factors. Drawing from diverse theoretical frames and methodological approaches, the authors present novel ways to conceptualize water-society relations using the lens of dam removal and river restoration, as well as crucial reminders of the multiple biophysical and social dimensions of restoration initiatives for water resource practitioners interested in the rehabilitation of socioecological systems.

  14. The Columbia River System : the Inside Story.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1991-09-01

    The Columbia Ricer is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Northwest-from providing the world-famous Pacific salmon to supplying the clean natural fuel for over 75 percent of the region's electrical generation. Since early in the century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system. And through cooperative efforts, the floods that periodically threaten developments near the river can be controlled. This publication presents a detailed explanation of the planning and operation of the multiple-use dams and reservoirs of the Columbia River system. It describes the river system, those who operate and use it, the agreements and policies that guide system operation, and annual planning for multiple-use operation.

  15. Designing the RiverCare knowledge base and web-collaborative platform to exchange knowledge in river management

    Science.gov (United States)

    Cortes Arevalo, Juliette; den Haan, Robert-Jan; van der Voort, Mascha; Hulscher, Suzanne

    2016-04-01

    Effective communication strategies are necessary between different scientific disciplines, practitioners and non-experts for a shared understanding and better implementation of river management measures. In that context, the RiverCare program aims to get a better understanding of riverine measures that are being implemented towards self-sustaining multifunctional rivers in the Netherlands. During the RiverCare program, user committees are organized between the researchers and practitioners to discuss the aim and value of RiverCare outputs, related assumptions and uncertainties behind scientific results. Beyond the RiverCare program end, knowledge about river interventions, integrated effects, management and self-sustaining applications will be available to experts and non-experts by means of River Care communication tools: A web-collaborative platform and a serious gaming environment. As part of the communication project of RiverCare, we are designing the RiverCare web-collaborative platform and the knowledge-base behind that platform. We aim at promoting collaborative efforts and knowledge exchange in river management. However, knowledge exchange does not magically happen. Consultation and discussion of RiverCare outputs as well as elicitation of perspectives and preferences from different actors about the effects of riverine measures has to be facilitated. During the RiverCare research activities, the platform will support the user committees or collaborative sessions that are regularly held with the organizations directly benefiting from our research, at project level or in study areas. The design process of the collaborative platform follows an user centred approach to identify user requirements, co-create a conceptual design and iterative develop and evaluate prototypes of the platform. The envisioned web-collaborative platform opens with an explanation and visualisation of the RiverCare outputs that are available in the knowledge base. Collaborative sessions

  16. Where Does the River Run? Lessons from a Semi-Arid River

    Science.gov (United States)

    Meixner, T.; Soto, C. D.; Richter, H.; Uhlman, K.

    2009-12-01

    Spatial data sets to assess the nature of stream groundwater interactions and the resulting power law/fractal structure of travel time distributions are rare. Spatial data sets can be collected using high technology or by use of a large number of field assistants. The labor intensive way is expensive unless the public can be enlisted as citizen scientists to gather large, robust, spatial data sets robustly and cheaply. Such an effort requires public interest and the ability of a few to organize such an effort at a basin if not regional scale. The San Pedro basin offers such an opportunity for citizen science due to the water resource restrictions of the basins semi-arid climate. Since 1999 The Nature Conservancy, in cooperation with the Upper San Pedro Partnership, the public at large and various university and federal science agency participants, has been mapping where the San Pedro River has water present versus where it is dry. This mapping has used an army of volunteers armed with GPS units, clipboards and their eyes to make the determination if a given 10m reach of the river is wet or dry. These wet/dry mapping data now exist for 11 different annual surveys. These data are unique and enable an investigation of the hydrologic connectedness of flowing waters within this system. Analysis of these data reveals several important findings. The total river area that is wet is strongly correlated with stream flow as observed at three USGS gauges. The correlation is strongest however for 90 day and 1 year average flows rather than more local in time observations such as the daily, 7 day or monthly mean flow at the gauges. This result indicates that where the river is flowing depends on long term hydrologic conditions. The length of river reach that is mapped as wet or dry is indicative of the travel distance and thus time that water travels in the surface (wet) and subsurface (dry) of the river system. The reach length that is mapped as wet follows a power law function

  17. Regionally Applied Research Efforts (RARE) Report titled " ...

    Science.gov (United States)

    The traditional methodology for health risk assessment used by the U. S. Environmental Protection Agency (EPA) is based on the use of exposure assumptions (e.g. exposure duration, food ingestion rate, body weight, etc.) that represent the entire American population, either as a central tendency exposure (e.g. average, median) or as a reasonable maximum exposure (e.g. 95% upper confidence limit). Unfortunately, EPA lacked exposure information for assessing health risks for New England regional tribes sustaining a tribal subsistence way of life. As a riverine tribe, the Penobscot culture and traditions are inextricably tied to the Penobscot River watershed. It is through hunting, fishing, trapping, gathering and making baskets, pottery, moccasins, birch-bark canoes and other traditional practices that the Penobscot culture and people are sustained. The Penobscot River receives a variety of pollutant discharges leaving the Penobscot Indian Nation (PIN) questioning the ecological health and water quality of the river and how this may affect the practices that sustain their way of life. The objectives of this Regional Applied Research Effort (RARE) study were to: (1) Develop culturally sensitive methodologies for assessing the potential level of exposure to contaminants that Penobscot Indian Nation tribal members may have from maintaining tribal sustenance practices; (2) Conduct field surveys and laboratory analysis on targeted flora and fauna for chemical expo

  18. Rapid River Hatchery - Spring Chinook, Final Report

    International Nuclear Information System (INIS)

    Watson, M.

    1996-05-01

    This report presents the findings of the independent audit of the Rapid River Hatchery (Spring Chinook). The hatchery is located in the lower Snake River basin near Riggins Idaho. The hatchery is used for adult collection, egg incubation, and rearing of spring chinook. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife

  19. Naturalness and Place in River Rehabilitation

    Directory of Open Access Journals (Sweden)

    Kirstie Fryirs

    2009-06-01

    Full Text Available An authentic approach to river rehabilitation emphasizes concerns for the natural values of a given place. As landscape considerations fashion the physical template upon which biotic associations take place, various geomorphic issues must be addressed in framing rehabilitation activities that strive to improve river health. An open-ended approach to river classification promotes applications that appreciate the values of a given river, rather than pigeonholing reality. As the geomorphic structure of some rivers is naturally simple, promoting heterogeneity as a basis for management may not always be appropriate. Efforts to protect unique attributes of river systems must be balanced with procedures that look after common features. Concerns for ecosystem functionality must relate to the behavioral regime of a given river, remembering that some rivers are inherently sensitive to disturbance. Responses to human disturbance must be viewed in relation to natural variability, recognizing how spatial relationships in a catchment, and responses to past disturbances, fashion the operation of contemporary fluxes. These fluxes, in turn, influence what is achievable in the rehabilitation of a given reach. Given the inherently adjusting and evolutionary nature of river systems, notional endpoints do not provide an appropriate basis upon which to promote concepts of naturalness and place in the rehabilitation process. These themes are drawn together to promote rehabilitation practices that relate to the natural values of each river system, in preference to applications of "cookbook" measures that build upon textbook geomorphology.

  20. Managing salinity in Upper Colorado River Basin streams: Selecting catchments for sediment control efforts using watershed characteristics and random forests models

    Science.gov (United States)

    Tillman, Fred; Anning, David W.; Heilman, Julian A.; Buto, Susan G.; Miller, Matthew P.

    2018-01-01

    Elevated concentrations of dissolved-solids (salinity) including calcium, sodium, sulfate, and chloride, among others, in the Colorado River cause substantial problems for its water users. Previous efforts to reduce dissolved solids in upper Colorado River basin (UCRB) streams often focused on reducing suspended-sediment transport to streams, but few studies have investigated the relationship between suspended sediment and salinity, or evaluated which watershed characteristics might be associated with this relationship. Are there catchment properties that may help in identifying areas where control of suspended sediment will also reduce salinity transport to streams? A random forests classification analysis was performed on topographic, climate, land cover, geology, rock chemistry, soil, and hydrologic information in 163 UCRB catchments. Two random forests models were developed in this study: one for exploring stream and catchment characteristics associated with stream sites where dissolved solids increase with increasing suspended-sediment concentration, and the other for predicting where these sites are located in unmonitored reaches. Results of variable importance from the exploratory random forests models indicate that no simple source, geochemical process, or transport mechanism can easily explain the relationship between dissolved solids and suspended sediment concentrations at UCRB monitoring sites. Among the most important watershed characteristics in both models were measures of soil hydraulic conductivity, soil erodibility, minimum catchment elevation, catchment area, and the silt component of soil in the catchment. Predictions at key locations in the basin were combined with observations from selected monitoring sites, and presented in map-form to give a complete understanding of where catchment sediment control practices would also benefit control of dissolved solids in streams.

  1. Data Compendium for the Columbia River comprehensive impact assessment

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Huesties, L.R.; Maughan, A.D.; Miley, T.B.; Walters, W.H.

    1994-04-01

    The Columbia River Comprehensive Impact Assessment (CRCIA). The CRCIA is conducted by the Pacific Northwest Laboratory (PNL). The purpose of the CRCIA is to evaluate the current human and ecological risk from the Columbia River attributable to past and present activities on the Hanford Site. Human risk will be addressed for radioactive and hazardous materials over a range of river use options. Ecological risk will be evaluated relative to the health of the current river ecosystem. The initial effort for the CRCIA is the development of a compendium of existing data on Columbia River contamination. This document provides the data compendium. It also includes a discussion of data sources, descriptions of the physical format of the data, and descriptions of the search process used to identify data

  2. Bed Degradation and Sediment Export from the Missouri River after Dam Construction and River Training: Significance to Lower Mississippi River Sediment Loads

    Science.gov (United States)

    Blum, M. D.; Viparelli, E.; Sulaiman, Z. A.; Pettit, B. S.

    2016-12-01

    More than 40,000 dams have been constructed in the Mississippi River drainage basin, which has had a dramatic impact on suspended sediment load for the Mississippi delta. The most significant dams were constructed in the 1950s on the Missouri River in South Dakota, after which total suspended loads for the lower Mississippi River, some 2500 km downstream, were cut in half: gauging station data from the Missouri-Mississippi system show significant load reductions immediately after dam closure, followed by a continued downward trend since that time. The delta region is experiencing tremendous land loss in response to acceleration of global sea-level rise, and load reductions of this magnitude may place severe limits on mitigation efforts. Here we examine sediment export from the Missouri system due to bed scour. The US Army Corps of Engineers has compiled changes in river stage at constant discharge for 8 stations between the lowermost dam at Yankton, South Dakota and the Missouri-Mississippi confluence at St. Louis (a distance of 1250 river km), for the period 1930-2010, which we have updated to 2015. These data show two general reaches of significant bed degradation. The first extends from the last major dam at Yankton, South Dakota downstream 300 km to Omaha, Nebraska, where degradation in response to the dam exceeds 3 m. The second reach, with >2.5 m of degradation, occurs in and around Kansas City, Missouri, and has been attributed to river training activities. The reach between Omaha and Kansas City, as well as the lower Missouri below Kansas City, show River due to bed scour following dam construction and river training. This number equates to 20-25 million tons per year, which is sufficient to account for 30% of the total Missouri River load, and 15% of the total post-dam annual sediment load for the lower Mississippi River. For perspective, the quantity of sediment exported from the Missouri River due to bed scour is greater than the total load for all

  3. Hotspots within the Transboundary Selenga River Basin

    Science.gov (United States)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems

  4. The Missouri River Floodplain: History of Oak Forest & Current Restoration Efforts

    Science.gov (United States)

    Daniel C. Dey; Dirk Burhans; John Kabrick; Brain Root; Jennifer Grabner; Mike Gold

    2000-01-01

    Efforts to restore floodplains are complicated by our variable understanding of history and ecology; our lack of knowledge of past environmental and vegetative conditions; and our differing viewpoints of what natural, what the role of humans is in the ecosystem, and what the desirable restored state is. Managers are challenged to decide how to restore native vegetation...

  5. Umatilla River Basin Anadromus Fish Habitat Enhancement Project. 1994 Annual report

    International Nuclear Information System (INIS)

    Shaw, R.T.

    1994-05-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing cooperative instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River in the vicinity of Gibbon, Oregon. In 1993, the project shifted emphasis to a comprehensive watershed approach, consistent with other basin efforts, and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. During the 1994--95 project period, a one river mile demonstration project was implemented on two privately owned properties on Wildhorse Creek. This was the first watershed improvement project to be implemented by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) off of the Reservation

  6. The role of river flow and tidal asymmetry on 1-D estuarine morphodynamics

    NARCIS (Netherlands)

    Guo, L.; Van der Wegen, M.; Roelvink, J.A.; He, Q.

    2014-01-01

    Numerous research efforts have been devoted to understanding estuarine morphodynamics under tidal forcing. However, the impact of river discharge on estuarine morphodynamics is insufficiently examined. Inspired by the Yangtze Estuary, this work explores the morphodynamic impact of river discharge in

  7. Wind River Watershed Restoration 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.; Jezorek, Ian G. [U.S. Geological Survey

    2008-11-10

    During 2004, researchers from U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. Juvenile salmonid population surveys were conducted within select study areas throughout the subbasin. We expanded our survey coverage of the mainstem Wind River to a reach in the vicinity of Carson National Fish Hatchery to assess effects of non-indigenous Chinook on native steelhead. These efforts add to a database of habitat and fish data collected in the Wind River since 1996. This research contributes to the Wind River Restoration Project, which includes active stream habitat restoration and monitoring of adult and juvenile steelhead populations. We maintained a network of 32 thermographs in the Wind River subbasin during 2004. Additionally, Underwood Conservation District provided us with data from seven thermographs that they maintained during 2004. Thermograph data are identifying areas with chronic high water temperatures and stream sections where high rates of warming are occurring. During 2004, water temperatures at 26 thermograph sites exceeded the 16 C limit for surface waters set by the Washington Department of Ecology. Water temperatures exceeded 20 C at five sites in the Trout Creek watershed. Our thermograph dataset includes information from as early as 1996 at some sites and has become a valuable long-term dataset, which will be crucial in determining bioenergetic relationships with habitat and life-histories. We have monitored salmonid populations throughout the Wind River subbasin by electrofishing and snorkeling. We electrofished four stream sections for population estimates during 2004. In these sections, and others where we simply collected fish without a population estimate, we tagged juvenile steelhead and Chinook salmon with Passive Integrated Transponder

  8. RiverCare communication strategy for reaching beyond

    Science.gov (United States)

    Cortes Arevalo, Juliette; den Haan, Robert Jan; Berends, Koen; Leung, Nick; Augustijn, Denie; Hulscher, Suzanne J. M. H.

    2017-04-01

    Effectively communicating river research to water professionals and researchers working in multiple disciplines or organizations is challenging. RiverCare studies the mid-term effects of innovative river interventions in the Netherlands to improve river governance and sustainable management. A total of 21 researchers working at 5 universities are part of the consortium, which also includes research institutes, consultancies, and water management authorities. RiverCare results do not only benefit Dutch river management, but can also provide useful insights to challenges abroad. Dutch partner organizations actively involved in RiverCare are our direct users. However, we want to reach water professionals from the Netherlands and beyond. To communicate with and disseminate to these users, we set up a communication strategy that includes the following approaches : (1) Netherlands Centre of River studies (NCR) website to announce activities post news, not limited to RiverCare; (2) A RiverCare newsletter that is published twice per year to update about our progress and activities; (3) A multimedia promotional providing a 'first glance' of RiverCare. It consists of four video episodes and an interactive menu; (4) An interactive knowledge platform to provide access, explain RiverCare results and gather feedback about the added value and potential use of these results; and (5) A serious gaming environment titled Virtual River where actors can play out flood scaling intervention and monitoring strategies to assess maintenance scenarios. The communication strategy and related approaches are being designed and developed during the project. We use participatory methods and systematic evaluation to understand communication needs and to identify needs for improvement. As a first step, RiverCare information is provided via the NCR website. The active collaboration with the NCR is important to extend communication efforts beyond the RiverCare consortium and after the program ends

  9. Nitrogen and phosphorus in the Upper Mississippi River: Transport, processing, and effects on the river ecosystem

    Science.gov (United States)

    Houser, J.N.; Richardson, W.B.

    2010-01-01

    Existing research on nutrients (nitrogen and phosphorus) in the Upper Mississippi River (UMR) can be organized into the following categories: (1) Long-term changes in nutrient concentrations and export, and their causes; (2) Nutrient cycling within the river; (3) Spatial and temporal patterns of river nutrient concentrations; (4) Effects of elevated nutrient concentrations on the river; and (5) Actions to reduce river nutrient concentrations and flux. Nutrient concentration and flux in the Mississippi River have increased substantially over the last century because of changes in land use, climate, hydrology, and river management and engineering. As in other large floodplain rivers, rates of processes that cycle nitrogen and phosphorus in the UMR exhibit pronounced spatial and temporal heterogeneity because of the complex morphology of the river. This spatial variability in nutrient processing creates clear spatial patterns in nutrient concentrations. For example, nitrate concentrations generally are much lower in off-channel areas than in the main channel. The specifics of in-river nutrient cycling and the effects of high rates of nutrient input on UMR have been less studied than the factors affecting nutrient input to the river and transport to the Gulf of Mexico, and important questions concerning nutrient cycling in the UMR remain. Eutrophication and resulting changes in river productivity have only recently been investigated the UMR. These recent studies indicate that the high nutrient concentrations in the river may affect community composition of aquatic vegetation (e. g., the abundance of filamentous algae and duckweeds), dissolved oxygen concentrations in off-channel areas, and the abundance of cyanobacteria. Actions to reduce nutrient input to the river include changes in land-use practices, wetland restoration, and hydrological modifications to the river. Evidence suggests that most of the above methods can contribute to reducing nutrient concentration in

  10. 77 FR 9847 - Safety Zone; Kinnickinnic River Containment and Cleanup; Milwaukee, WI

    Science.gov (United States)

    2012-02-21

    ... Kinnickinnic River due to the petroleum cleanup efforts. This temporary safety zone is necessary to protect the...-AA00 Safety Zone; Kinnickinnic River Containment and Cleanup; Milwaukee, WI AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on the...

  11. Salmonid Gamete Preservation in the Snake River Basin, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Young, William; Kucera, Paul

    2003-07-01

    In spite of an intensive management effort, chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) populations in the Northwest have not recovered and are currently listed as threatened species under the Endangered Species Act. In addition to the loss of diversity from stocks that have already gone extinct, decreased genetic diversity resulting from genetic drift and inbreeding is a major concern. Reduced population and genetic variability diminishes the environmental adaptability of individual species and entire ecological communities. The Nez Perce Tribe (NPT), in cooperation with Washington State University and the University of Idaho, established a germplasm repository in 1992 in order to preserve the remaining salmonid diversity in the region. The germplasm repository provides long-term storage for cryopreserved gametes. Although only male gametes can be cryopreserved, conserving the male component of genetic diversity will maintain future management options for species recovery. NPT efforts have focused on preserving salmon and steelhead gametes from the major river subbasins in the Snake River basin. However, the repository is available for all management agencies to contribute gamete samples from other regions and species. In 2002 a total of 570 viable semen samples were added to the germplasm repository. This included the gametes of 287 chinook salmon from the Lostine River, Catherine Creek, upper Grande Ronde River, Imnaha River (Lookingglass Hatchery), Lake Creek, South Fork Salmon River, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi River (Pahsimeroi Hatchery), and upper Salmon River (Sawtooth Hatchery) and the gametes of 280 steelhead from the North Fork Clearwater River (Dworshak Hatchery), Fish Creek, Little Sheep Creek, Pahsimeroi River (Pahsimeroi Hatchery) and Snake River (Oxbow Hatchery). In addition, gametes from 60 Yakima River spring chinook and 34 Wenatchee River coho salmon were added to the

  12. Fishing effort and catch composition of urban market and rural villages in Brazilian Amazon.

    Science.gov (United States)

    Hallwass, Gustavo; Lopes, Priscila Fabiana; Juras, Anastacio Afonso; Silvano, Renato Azevedo Matias

    2011-02-01

    The management of small-scale freshwater fisheries in Amazon has been based usually on surveys of urban markets, while fisheries of rural villages have gone unnoticed. We compared the fishing characteristics (catch, effort and selectivity) between an urban market and five small villages in the Lower Tocantins River (Brazilian Amazon), downstream from a large reservoir. We recorded 86 and 601 fish landings in the urban market and villages, respectively, using the same methodology. The urban fishers showed higher catch per unit of effort, higher amount of ice (related to a higher fishing effort, as ice is used to store fish catches) and larger crew size per fishing trip, but village fishers had a higher estimated annual fish production. Conversely, urban and village fishers used similar fishing gear (gillnets) and the main fish species caught were the same. However, village fishers showed more diverse strategies regarding gear, habitats and fish caught. Therefore, although it underestimated the total amount of fish caught in the Lower Tocantins River region, the data from the urban market could be a reliable indicator of main fish species exploited and fishing gear used by village fishers. Monitoring and management should consider the differences and similarities between urban and rural fisheries, in Amazon and in other tropical regions.

  13. Fishing Effort and Catch Composition of Urban Market and Rural Villages in Brazilian Amazon

    Science.gov (United States)

    Hallwass, Gustavo; Lopes, Priscila Fabiana; Juras, Anastacio Afonso; Silvano, Renato Azevedo Matias

    2011-02-01

    The management of small-scale freshwater fisheries in Amazon has been based usually on surveys of urban markets, while fisheries of rural villages have gone unnoticed. We compared the fishing characteristics (catch, effort and selectivity) between an urban market and five small villages in the Lower Tocantins River (Brazilian Amazon), downstream from a large reservoir. We recorded 86 and 601 fish landings in the urban market and villages, respectively, using the same methodology. The urban fishers showed higher catch per unit of effort, higher amount of ice (related to a higher fishing effort, as ice is used to store fish catches) and larger crew size per fishing trip, but village fishers had a higher estimated annual fish production. Conversely, urban and village fishers used similar fishing gear (gillnets) and the main fish species caught were the same. However, village fishers showed more diverse strategies regarding gear, habitats and fish caught. Therefore, although it underestimated the total amount of fish caught in the Lower Tocantins River region, the data from the urban market could be a reliable indicator of main fish species exploited and fishing gear used by village fishers. Monitoring and management should consider the differences and similarities between urban and rural fisheries, in Amazon and in other tropical regions.

  14. Creel survey sampling designs for estimating effort in short-duration Chinook salmon fisheries

    Science.gov (United States)

    McCormick, Joshua L.; Quist, Michael C.; Schill, Daniel J.

    2013-01-01

    Chinook Salmon Oncorhynchus tshawytscha sport fisheries in the Columbia River basin are commonly monitored using roving creel survey designs and require precise, unbiased catch estimates. The objective of this study was to examine the relative bias and precision of total catch estimates using various sampling designs to estimate angling effort under the assumption that mean catch rate was known. We obtained information on angling populations based on direct visual observations of portions of Chinook Salmon fisheries in three Idaho river systems over a 23-d period. Based on the angling population, Monte Carlo simulations were used to evaluate the properties of effort and catch estimates for each sampling design. All sampling designs evaluated were relatively unbiased. Systematic random sampling (SYS) resulted in the most precise estimates. The SYS and simple random sampling designs had mean square error (MSE) estimates that were generally half of those observed with cluster sampling designs. The SYS design was more efficient (i.e., higher accuracy per unit cost) than a two-cluster design. Increasing the number of clusters available for sampling within a day decreased the MSE of estimates of daily angling effort, but the MSE of total catch estimates was variable depending on the fishery. The results of our simulations provide guidelines on the relative influence of sample sizes and sampling designs on parameters of interest in short-duration Chinook Salmon fisheries.

  15. Precision and relative effectiveness of a purse seine for sampling age-0 river herring in lakes

    Science.gov (United States)

    Devine, Matthew T.; Roy, Allison; Whiteley, Andrew R.; Gahagan, Benjamin I.; Armstrong, Michael P.; Jordaan, Adrian

    2018-01-01

    Stock assessments for anadromous river herring, collectively Alewife Alosa pseudoharengus and Blueback Herring A. aestivalis, lack adequate demographic information, particularly with respect to early life stages. Although sampling adult river herring is increasingly common throughout their range, currently no standardized, field‐based, analytical methods exist for estimating juvenile abundance in freshwater lakes. The objective of this research was to evaluate the relative effectiveness and sampling precision of a purse seine for estimating densities of age‐0 river herring in freshwater lakes. We used a purse seine to sample age‐0 river herring in June–September 2015 and June–July 2016 in 16 coastal freshwater lakes in the northeastern USA. Sampling effort varied from two seine hauls to more than 50 seine hauls per lake. Catch rates were highest in June and July, and sampling precision was maximized in July. Sampling at night (versus day) in open water (versus littoral areas) was most effective for capturing newly hatched larvae and juveniles up to ca. 100 mm TL. Bootstrap simulation results indicated that sampling precision of CPUE estimates increased with sampling effort, and there was a clear threshold beyond which increased effort resulted in negligible increases in precision. The effort required to produce precise CPUE estimates, as determined by the CV, was dependent on lake size; river herring densities could be estimated with up to 10 purse‐seine hauls (one‐two nights) in a small lake (50 ha). Fish collection techniques using a purse seine as described in this paper are likely to be effective for estimating recruit abundance of river herring in freshwater lakes across their range.

  16. Columbia River pathway report

    International Nuclear Information System (INIS)

    1991-07-01

    This report summarizes the river-pathway portion of the first phase of the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project is estimating radiation doses that could have been received by the public from the Department of Energy's Hanford Site, in southeastern Washington State. Phase 1 of the river-pathway dose reconstruction effort sought to determine whether dose estimates could be calculated for populations in the area from above the Hanford Site at Priest Rapids Dam to below the site at McNary Dam from January 1964 to December 1966. Of the potential sources of radionuclides from the river, fish consumption was the most important. Doses from drinking water were lower at Pasco than at Richland and lower at Kennewick than at Pasco. The median values of preliminary dose estimates calculated by HEDR are similar to independent, previously published estimates of average doses to Richland residents. Later phases of the HEDR Project will address dose estimates for periods other than 1964--1966 and for populations downstream of McNary Dam. 17 refs., 19 figs., 1 tab

  17. Walla Walla River Basin Fish Habitat Enhancement Project, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed; Sexton, Amy D. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2001-01-01

    In 2000, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. Six projects, two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River were part of the exercise. Several thousand native plants as bare-root stock and cuttings were reintroduced to the sites and 18 acres of floodplain corridor was seeded with native grass seed. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan.

  18. Implementing Integrated River Basin Management in China

    Directory of Open Access Journals (Sweden)

    Dorri G. J. te Boekhorst

    2010-06-01

    Full Text Available This paper examines the role of the World Wildlife Fund for Nature China as policy entrepreneur in China. It illustrates the ways in which the World Wildlife Fund for Nature is active in promoting integrated river basin management in the Yangtze River basin and how the efforts at basin level are matched with the advice of the China Council for International Cooperation on Environment and Development task force on integrated river basin management to the national government of China. This article demonstrates that the World Wildlife Fund for Nature uses various strategies of different types to support a transition process towards integrated river basin management. Successful deployment of these strategies for change in environmental policy requires special skills, actions, and attitudes on the part of the policy entrepreneur, especially in China, where the government has a dominant role regarding water management and the position of policy entrepeneurs is delicate.

  19. Population trends of smallmouth bass in the upper Colorado River basin with an evaluation of removal effects

    Science.gov (United States)

    Breton, André R.; Winkelman, Dana L.; Hawkins, John A.; Bestgen, Kevin R.

    2014-01-01

    Smallmouth bass Micropterus dolomieu were rare in the upper Colorado River basin until the early 1990’s when their abundance dramatically increased in the Yampa River sub-basin. Increased abundance was due primarily to colonization from Elkhead Reservoir, which was rapidly drawn down twice, first to make improvements to the dam (1992) and a second time for reservoir expansion (2005), and allowed escapement of resident bass to the river through an unscreened outlet. Elkhead Reservoir is located on Elkhead Creek, a tributary of the Yampa River. The rapid Elkhead Reservoir drawdown in 1992 was followed by a period of drought years with low, early runoff in the Yampa River sub-basin that benefitted smallmouth bass reproduction. This combination of factors allowed smallmouth bass to establish a self-sustaining population in the Yampa River. Subsequently, successful recruitment allowed smallmouth bass to disperse upstream and downstream in the Yampa River and eventually move into the downstream Green River. Smallmouth bass were also likely introduced, by unknown means, into the upper Colorado River and have since dispersed in this sub-basin. The rapid increase of smallmouth bass in the upper Colorado River basin overlapped with significant reductions in native fish populations in some locations. The threat to these native fishes initiated intensive mechanical removal of smallmouth bass by the Upper Colorado River Endangered Fish Recovery Program.In general, three factors explain fluctuating patterns in smallmouth bass density in the upper Colorado River basin in the last decade: reductions due to electrofishing removal, bass recovery after exploitation due to recruitment and immigration, and changes due to environmental factors not related to electrofishing and other management actions. Our analyses indicated that smallmouth bass densities were substantially reduced in most years by 7 electrofishing removal efforts. Less often, but dramatically in some cases

  20. Channel mapping river miles 29–62 of the Colorado River in Grand Canyon National Park, Arizona, May 2009

    Science.gov (United States)

    Kaplinski, Matt; Hazel, Joseph E.; Grams, Paul E.; Kohl, Keith; Buscombe, Daniel D.; Tusso, Robert B.

    2017-03-23

    Bathymetric, topographic, and grain-size data were collected in May 2009 along a 33-mi reach of the Colorado River in Grand Canyon National Park, Arizona. The study reach is located from river miles 29 to 62 at the confluence of the Colorado and Little Colorado Rivers. Channel bathymetry was mapped using multibeam and singlebeam echosounders, subaerial topography was mapped using ground-based total-stations, and bed-sediment grain-size data were collected using an underwater digital microscope system. These data were combined to produce digital elevation models, spatially variable estimates of digital elevation model uncertainty, georeferenced grain-size data, and bed-sediment distribution maps. This project is a component of a larger effort to monitor the status and trends of sand storage along the Colorado River in Grand Canyon National Park. This report documents the survey methods and post-processing procedures, digital elevation model production and uncertainty assessment, and procedures for bed-sediment classification, and presents the datasets resulting from this study.

  1. Large dams and alluvial rivers in the Anthropocene: The impacts of the Garrison and Oahe Dams on the Upper Missouri River

    Science.gov (United States)

    Skalak, Katherine; Benthem, Adam J.; Schenk, Edward R.; Hupp, Cliff R.; Galloway, Joel M.; Nustad, Rochelle A.; Wiche, Gregg J.

    2013-01-01

    The Missouri River has had a long history of anthropogenic modification with considerable impacts on river and riparian ecology, form, and function. During the 20th century, several large dam-building efforts in the basin served the needs for irrigation, flood control, navigation, and the generation of hydroelectric power. The managed flow provided a range of uses, including recreation, fisheries, and habitat. Fifteen dams impound the main stem of the river, with hundreds more on tributaries. Though the effects of dams and reservoirs are well-documented, their impacts have been studied individually, with relatively little attention paid to their interaction along a river corridor. We examine the morphological and sedimentological changes in the Upper Missouri River between the Garrison Dam in ND (operational in 1953) and Oahe Dam in SD (operational in 1959). Through historical aerial photography, stream gage data, and cross sectional surveys, we demonstrate that the influence of the upstream dam is still a major control of river dynamics when the backwater effects of the downstream reservoir begin. In the “Anthropocene”, dams are ubiquitous on large rivers and often occur in series, similar to the Garrison Dam Segment. We propose a conceptual model of how interacting dams might affect river geomorphology, resulting in distinct and recognizable morphologic sequences that we term “Inter-Dam sequence” characteristic of major rivers in the US.

  2. Salmon and steelhead in the White Salmon River after the removal of Condit Dam–Planning efforts and recolonization results

    Science.gov (United States)

    Allen, Brady; Engle, Rod O; Zendt, Joseph S; Shrier, Frank C; Wilson, Jeremy T; Connolly, Patrick J.

    2016-01-01

    Condit Dam, at river kilometer 5.3 on the White Salmon River, Washington, was breached in 2011 and completely removed in 2012. This action opened habitat to migratory fish for the first time in 100 years. The White Salmon Working Group was formed to create plans for fish salvage in preparation for fish recolonization and to prescribe the actions necessary to restore anadromous salmonid populations in the White Salmon River after Condit Dam removal. Studies conducted by work group members and others served to inform management decisions. Management options for individual species were considered, including natural recolonization, introduction of a neighboring stock, hatchery supplementation, and monitoring natural recolonization for some time period to assess the need for hatchery supplementation. Monitoring to date indicates that multiple species and stocks of anadromous salmonids are finding and spawning in the now accessible and recovering habitat.

  3. Assessing Impacts of Hydropower Regulation on Salmonid Habitat Connectivity to Guide River Restoration

    Science.gov (United States)

    Buddendorf, Bas; Geris, Josie; Malcolm, Iain; Wilkinson, Mark; Soulsby, Chris

    2016-04-01

    Anthropogenic activity in riverine ecosystems has led to a substantial divergence from the natural state of many rivers globally. Many of Scotland's rivers have been regulated for hydropower with increasing intensity since the 1890s. At the same time they sustain substantial populations of Atlantic Salmon (Salmo salar L.), which have a range of requirements in terms of flow and access to habitat, depending on the different life-stages. River barriers for hydropower regulation can change the spatial and temporal connectivity within river networks, the impacts of which on salmon habitat are not fully understood. Insight into such changes in connectivity, and the link with the distribution and accessibility of suitable habitat and areas of high productivity, are essential to aid restoration and/or conservation efforts. This is because they indicate where such efforts might have a higher chance of being successful in terms of providing suitable habitat and increasing river productivity. In this study we applied a graph theory approach to assess historic (natural) and contemporary (regulated) in-stream habitat connectivity of the River Lyon, an important UK salmon river that is moderately regulated for hydropower. Historic maps and GIS techniques were used to construct the two contrasting river networks (i.e., natural vs. regulated). Subsequently, connectivity metrics were used to assess the impacts of hydropower infrastructure on upstream and downstream migration possibilities for adults and juveniles, respectively. A national juvenile salmon production model was used to weight the importance of reaches for juvenile salmon production. Results indicate that the impact of barriers in the Lyon on the connectivity indices depends on the type of barrier and its location within the network, but is generally low for both adults and juveniles, and that compared to the historic river network the reduction in the amount of suitable habitat and juvenile production is most marked

  4. Modelling qualitative knowledge for strategic river management

    NARCIS (Netherlands)

    Janssen, Judith

    2009-01-01

    In decision making processes on strategic river management, use of models is not as great as the research efforts in the field of model application might suggest they could be. Both the fact that the development of many models remains restricted to readily available data and pre-existing models,

  5. 76 FR 11334 - Safety Zone; Soil Sampling; Chicago River, Chicago, IL

    Science.gov (United States)

    2011-03-02

    ...The Coast Guard is establishing a temporary safety zone on the North Branch of the Chicago River near Chicago, Illinois. This zone is intended to restrict vessels from a portion of the North Branch of the Chicago River due to soil sampling in this area. This temporary safety zone is necessary to protect the surrounding public and vessels from the hazards associated with the soil sampling efforts.

  6. In Brief: Improving Mississippi River water quality

    Science.gov (United States)

    Showstack, Randy

    2007-10-01

    If water quality in the Mississippi River and the northern Gulf of Mexico is to improve, the U.S. Environmental Protection Agency (EPA) needs to take a stronger leadership role in implementing the federal Clean Water Act, according to a 16 October report from the U.S. National Research Council. The report notes that EPA has failed to use its authority to coordinate and oversee activities along the river. In addition, river states need to be more proactive and cooperative in efforts to monitor and improve water quality, and the river should be monitored and evaluated as a single system, the report indicates. Currently, the 10 states along the river conduct separate and widely varying water quality monitoring programs. ``The limited attention being given to monitoring and managing the Mississippi's water quality does not match the river's significant economic, ecological, and cultural importance,'' said committee chair David A. Dzombak, director of the Steinbrenner Institute for Environmental Education and Research at Carnegie Mellon University, Pittsburgh, Pa. The report notes that while measures taken under the Clean Water Act have successfully reduced much point source pollution, nutrient and sediment loads from nonpoint sources continue to be significant problems. For more information, visit the Web site: http://books.nap.edu/catalog.php?record_id=12051.

  7. Assessment of lake sturgeon (Acipenser fulvescens) spawning efforts in the lower St. Clair River, Michigan

    Science.gov (United States)

    Nichols, S. Jerrine; Kennedy, Gregory; Crawford, Eric; Allen, Jeffrey; French, John; Black, Glen; Blouin, Marc; Hickey, James P.; Chernyak, Sergei; Haas, Robert; Thomas, Michael

    2003-01-01

    One of the most threatened remaining populations of lake sturgeon in the Great Lakes is found in the connecting channels between Lake Huron and Lake Erie. Only two spawning grounds are presently known to be active in this region, and both are in the St. Clair River. The spawning reef in the St. Clair River delta has been recently colonized by round gobies (Neogobius melanostomus) in densities up to 25/m2, raising concerns regarding predation on the benthic-oriented eggs and larvae of the sturgeon. Investigations in 1998–1999 showed that while round goby predation does occur, a number of other factors may be equally affecting sturgeon spawning success, including few spawning adults (noted in either year. There were factors other than predation affecting larval survival in 1999. There was a higher silt load on the reef than in 1998 and large numbers of dead larvae were found. Recruitment success from this site could be improved by utilizing techniques to increase the number of eggs on the reef, such as reducing the illegal take of adult fish and by placing eggs in predator-exclusion chambers to increase hatch rate.

  8. High Variability Is a Defining Component of Mediterranean-Climate Rivers and Their Biota

    Directory of Open Access Journals (Sweden)

    Núria Cid

    2017-01-01

    Full Text Available Variability in flow as a result of seasonal precipitation patterns is a defining element of streams and rivers in Mediterranean-climate regions of the world and strongly influences the biota of these unique systems. Mediterranean-climate areas include the Mediterranean Basin and parts of Australia, California, Chile, and South Africa. Mediterranean streams and rivers can experience wet winters and consequent floods to severe droughts, when intermittency in otherwise perennial systems can occur. Inter-annual variation in precipitation can include multi-year droughts or consecutive wet years. Spatial variation in patterns of precipitation (rain vs. snow combined with topographic variability lead to spatial variability in hydrologic patterns that influence populations and communities. Mediterranean streams and rivers are global biodiversity hotspots and are particularly vulnerable to human impacts. Biomonitoring, conservation efforts, and management responses to climate change require approaches that account for spatial and temporal variability (including both intra- and inter-annual. The importance of long-term data sets for understanding and managing these systems highlights the need for sustained and coordinated research efforts in Mediterranean-climate streams and rivers.

  9. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Sobocinski, Kathryn L.; Johnson, Gary E.; Sather, Nichole K.; Storch, Adam; Jones, Tucker A.; Mallette, Christine; Dawley, Earl M.; Skalski, John R.; Teel, David; Moran, Paul

    2008-03-18

    This document is the first annual report for the study titled “Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River.” Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council’s Columbia Basin Fish and Wildlife Program.

  10. Life-history variability of non-native centrarchids in regulated river systems of the lower River Guadiana drainage (south-west Iberian Peninsula).

    Science.gov (United States)

    Ribeiro, F; Collares-Pereira, M J

    2010-02-01

    Life-history variability of two non-native centrarchids, pumpkinseed Lepomis gibbosus and largemouth bass Micropterus salmoides, was evaluated in three stream stretches of the lower River Guadiana drainage (south-west Iberian Peninsula) with different degrees of regulated flows. Abundance, condition and population structure differed among populations for both species, but invasion success was lower in the least regulated river. Lepomis gibbosus were abundant and had multiple age classes in the three river sites, whereas M. salmoides were less abundant and mainly represented by young-of-the-year fish. Juvenile growth in L. gibbosus was similar in all three populations, though longevity was slightly greater in the population from the River Guadiana mainstream. Lepomis gibbosus exhibited a long reproductive season, but the duration of season, size at maturity and reproductive effort varied among populations. The life-history differences found demonstrate the importance of species adaptation to local conditions which might favour their invasion success. Lepomis gibbosus were more adaptable and resilient to local conditions, whereas M. salmoides seemed dependent on reservoirs and large rivers for maintenance of riverine populations.

  11. Smolt migration characteristics and mainstem Snake and Columbia River detection rates of pit-tagged Grande Ronde and Imnaha River naturally produced spring chinook salmon. 1993, 1994 and 1995 annual reports

    International Nuclear Information System (INIS)

    Walters, T.R.; Carmichael, R.W.; Keefe, M.L.; Sankovich, P.

    1997-01-01

    This reports on the second, third, and fourth years of a multi-year study to assess smolt migration characteristics and cumulative detection rates of naturally produced spring chinook salmon (Oncorhynchus tshawytscha) from Northeast Oregon streams. The goal of this project is to develop an understanding of interpopulational and interannual variation in several early life history parameters of naturally produced spring and summer chinook salmon in the Grande Ronde and Imnaha River subbasins. This project will provide information to assist chinook salmon population recovery efforts. Specific populations included in the study are: (1) Catherine Creek; (2) Upper Grande Ronde River; (3) Lostine River; (4) Imnaha River; (5) Wenaha River; and (6) Minam River. In this document, the authors present findings and activities from research completed in 1993, 1994, and 1995

  12. Updating river basin models with radar altimetry

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.

    suited for use in data assimilation frameworks which combine the information content from models and current observations to produce improved forecasts and reduce prediction uncertainty. The focus of the second and third papers of this thesis was therefore the use of radar altimetry as update data...... of political unwillingness to share data which is a common problem in particular in transboundary settings. In this context, remote sensing (RS) datasets provide an appealing alternative to traditional in-situ data and much research effort has gone into the use of these datasets for hydrological applications...... response of a catchment to meteorological forcing. While river discharge cannot be directly measured from space, radar altimetry (RA) can measure water level variations in rivers at the locations where the satellite ground track and river network intersect called virtual stations or VS. In this PhD study...

  13. A brief history and summary of the effects of river engineering and dams on the Mississippi River system and delta

    Science.gov (United States)

    Alexander, Jason S.; Wilson, Richard C.; Green, W. Reed

    2012-01-01

    The U.S. Geological Survey Forecast Mekong project is providing technical assistance and information to aid management decisions and build science capacity of institutions in the Mekong River Basin. A component of this effort is to produce a synthesis of the effects of dams and other engineering structures on large-river hydrology, sediment transport, geomorphology, ecology, water quality, and deltaic systems. The Mississippi River Basin (MRB) of the United States was used as the backdrop and context for this synthesis because it is a continental scale river system with a total annual water discharge proportional to the Mekong River, has been highly engineered over the past two centuries, and the effects of engineering have been widely studied and documented by scientists and engineers. The MRB is controlled and regulated by dams and river-engineering structures. These modifications have resulted in multiple benefits including navigation, flood control, hydropower, bank stabilization, and recreation. Dams and other river-engineering structures in the MRB have afforded the United States substantial socioeconomic benefits; however, these benefits also have transformed the hydrologic, sediment transport, geomorphic, water-quality, and ecologic characteristics of the river and its delta. Large dams on the middle Missouri River have substantially reduced the magnitude of peak floods, increased base discharges, and reduced the overall variability of intraannual discharges. The extensive system of levees and wing dikes throughout the MRB, although providing protection from intermediate magnitude floods, have reduced overall channel capacity and increased flood stage by up to 4 meters for higher magnitude floods. Prior to major river engineering, the estimated average annual sediment yield of the Mississippi River Basin was approximately 400 million metric tons. The construction of large main-channel reservoirs on the Missouri and Arkansas Rivers, sedimentation in dike

  14. What role do hurricanes play in sediment delivery to subsiding river deltas?

    Science.gov (United States)

    Smith, James E.; Bentley, Samuel J.; Snedden, Gregg; White, Crawford

    2015-01-01

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50–100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  15. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    Science.gov (United States)

    Smith, James E; Bentley, Samuel J; Snedden, Gregg A; White, Crawford

    2015-12-02

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50-100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  16. Madawaska River water management review : issues, concerns, solutions

    International Nuclear Information System (INIS)

    1999-01-01

    Public consultations were held by the Public Advisory Committee, the Ontario Ministry of Natural Resources (MNR) and Ontario Hydro (OH) Working Group and Steering Committee, in an effort to develop a water management system for the Madawaska River, that would address public interests such as public safety, maintenance of the aquatic ecosystem and hydroelectric power generation. Provision of long-term opportunities for broad public involvement in the river's management was an additional objective. The report emphasizes the importance of limiting conflicts between hydroelectric generation and recreation/tourism on the Madawaska River, which runs within the Madawaska Highlands, Algonquin Provincial Park and the Upper Ottawa Valley. The major competing uses for water management in the Madawaska River are: (1) hydroelectric generation, (2) flood control, (3) recreation and tourism, and (4) fish and aquatic ecosystems. Each of these are described in detail, with details of the responses to the issue description and recommended actions

  17. River Cetaceans and Habitat Change: Generalist Resilience or Specialist Vulnerability?

    Directory of Open Access Journals (Sweden)

    Brian D. Smith

    2012-01-01

    Full Text Available River dolphins are among the world’s most threatened mammals, and indeed the baiji (Lipotes vexillifer, a species endemic to China's Yangtze River, is likely extinct. Exploitation for products such as meat, oil, and skins has been a lesser feature in the population histories of river dolphins compared to most large mammals. Habitat factors are therefore of particular interest and concern. In this paper we attempt to describe the population-level responses of river dolphins to habitat transformation. We find circumstantial but compelling evidence supporting the view that, at a local scale, river dolphins are opportunists (generalists capable of adapting to a wide range of habitat conditions while, at a river basin scale, they are more appropriately viewed as vulnerable specialists. The same evidence implies that the distributional responses of river dolphins to basinwide ecological change can be informative about their extinction risk, while their local behaviour patterns may provide important insights about critical ecological attributes. Empirical studies are needed on the ecology of river cetaceans, both to inform conservation efforts on behalf of these threatened animals and to help address broader concerns related to biodiversity conservation and the sustainability of human use in several of the world's largest river systems.

  18. Application of two quality indices as monitoring and management tools of rivers. Case study: the Imera Meridionale River, Italy.

    Science.gov (United States)

    Bonanno, Giuseppe; Lo Giudice, Rosa

    2010-04-01

    On the basis of the European Water Framework Directive (2000/60), the water resources of the member states of the European Community should reach good quality standards by 2015. Although such regulations illustrate the basic points for a comprehensive and effective policy of water monitoring and management, no practical tools are provided to face and solve the issues concerning freshwater ecosystems such as rivers. The Italian government has developed a set of regulations as adoption of the European Directive but failed to indicate feasible procedures for river monitoring and management. On a local scale, Sicilian authorities have implemented monitoring networks of watersheds, aiming at describing the general conditions of rivers. However, such monitoring programs have provided a relatively fragmentary picture of the ecological conditions of the rivers. In this study, the integrated use of environmental quality indices is proposed as a methodology able to provide a practical approach to river monitoring and management. As a case study, the Imera Meridionale River, Sicily's largest river, was chosen. The water quality index developed by the U.S. National Sanitation Foundation and the floristic quality index based on the Wilhelm method were applied. The former enabled us to describe the water quality according to a spatial-temporal gradient, whereas the latter focused on the ecological quality of riparian vegetation. This study proposes a holistic view of river ecosystems by considering biotic and abiotic factors in agreement with the current European regulations. How the combined use of such indices can guide sustainable management efforts is also discussed.

  19. Application of Two Quality Indices as Monitoring and Management Tools of Rivers. Case Study: The Imera Meridionale River, Italy

    Science.gov (United States)

    Bonanno, Giuseppe; Giudice, Rosa Lo

    2010-04-01

    On the basis of the European Water Framework Directive (2000/60), the water resources of the member states of the European Community should reach good quality standards by 2015. Although such regulations illustrate the basic points for a comprehensive and effective policy of water monitoring and management, no practical tools are provided to face and solve the issues concerning freshwater ecosystems such as rivers. The Italian government has developed a set of regulations as adoption of the European Directive but failed to indicate feasible procedures for river monitoring and management. On a local scale, Sicilian authorities have implemented monitoring networks of watersheds, aiming at describing the general conditions of rivers. However, such monitoring programs have provided a relatively fragmentary picture of the ecological conditions of the rivers. In this study, the integrated use of environmental quality indices is proposed as a methodology able to provide a practical approach to river monitoring and management. As a case study, the Imera Meridionale River, Sicily’s largest river, was chosen. The water quality index developed by the U.S. National Sanitation Foundation and the floristic quality index based on the Wilhelm method were applied. The former enabled us to describe the water quality according to a spatial-temporal gradient, whereas the latter focused on the ecological quality of riparian vegetation. This study proposes a holistic view of river ecosystems by considering biotic and abiotic factors in agreement with the current European regulations. How the combined use of such indices can guide sustainable management efforts is also discussed.

  20. Walla Walla River Basin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2005-12-01

    In 2002 and 2003, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts on private properties in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of this effort is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled nine properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and four properties on the mainstem Walla Walla River. Major accomplishments during the reporting period include the following: (1) Secured approximately $229,000 in project cost share; (2) Purchase of 46 acres on the mainstem Walla Walla River to be protected perpetually for native fish and wildlife; (3) Developed three new 15 year conservation easements with private landowners; (4) Installed 3000 feet of weed barrier tarp with new plantings within project area on the mainstem Walla Walla River; (5) Expanded easement area on Couse Creek to include an additional 0.5 miles of stream corridor and 32 acres of upland habitat; (6) Restored 12 acres on the mainstem Walla Walla River and 32 acres on Couse Creek to native perennial grasses; and (7) Installed 50,000+ new native plants/cuttings within project areas.

  1. Snake River Sockeye Salmon Habitat and Limnological Research : 2008 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E. [Shoshone-Bannock Tribes; Griswold, Robert G. [Biolines Environmental Consulting; Taki, Doug [Shoshone-Bannock Tribes

    2009-07-31

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: the immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the evolutionarily significant unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency Recovery effort. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2008 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee salmon spawning in Alturas Lake Creek; (4) monitor, enumerate, and evaluate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook and Alturas Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish species in

  2. Dissolved nitrogen in rivers: comparing pristine and impacted regions of Brazil

    Directory of Open Access Journals (Sweden)

    LA Martinelli

    Full Text Available Riverine nitrogen distribution is increasingly controlled by anthropogenic activities in their watersheds, regardless of spatial scale, climate, and geographical zone. Consequently, modelling efforts to predict the export of nitrogen from rivers worldwide have used attributes such as population density, land use, urbanization and sanitation. These models have greatly enhanced our understanding of the sources and fate of nitrogen added to terrestrial systems and transported to rivers and streams, especially for developed countries of the North temperate zone. However, much of the world's population lives in developing countries of the tropics, where the effects of human activities on riverine N exports are still poorly understood. In an effort to close this gap, we compare riverine nitrogen data from 32 Brazilian rivers draining two contrasting regions in this tropical country in terms of economic development - the State of São Paulo and the Amazon. Our data include nitrogen in different dissolved forms, such as Dissolved Inorganic Nitrogen (DIN and Dissolved Organic Nitrogen (DON. The results show that nitrogen concentrations decreased as river runoff increased in both study areas, and that concentrations were significantly higher in rivers draining the most economically developed region. The relationships between nitrogen concentrations and fluxes with demographic parameters such as population density were also determined and compared to those in temperate systems. In contrast to temperate watersheds, we found that nitrogen fluxes increased only after population densities were higher than 10 individuals per km².

  3. The Patoka River, Indiana: An ecosystem at risk

    International Nuclear Information System (INIS)

    Morales, N.E.; Sobiech, S.

    1993-01-01

    An ecological assessment of the Patoka River was conducted during the summer of 1992. The purpose of the study was to determine the status of the fish population along 68 sampling stations in the mainstream of the river and the watershed. The river system was subjected to various forms of man-made alterations including acid mine drainage, agricultural runoff, oil film drainage from oil drilling operations, feed lot runoff, domestic sewage disposal, illegal solid waste dumping, and partial channelization. The observed effects of these alterations to the fish community depended on the dominant environmental alterations to the studied sites. In sites impacted by heavy mine drainage, the fish were absent, probably due to the high toxicity observed at the sites. Oil film drainage effects were overshadowed by the effects of the nutrient enrichment from farm and feed lot runoff. Water eutrophication effects caused higher abundance of juvenile fish at selected sites. Within the channelized portion of the river, larger individuals were collected. This was probably due to the loss of habitat for young and for small individuals along the banks of the river. The extreme effects of these environmental alterations could be decreased by initiating a series of restoration efforts in the river and the watershed

  4. Summer habitat use by Columbia River redband trout in the Kootenai River drainage, Montana

    Science.gov (United States)

    Muhlfeld, Clint C.; Bennett, David H.

    2001-01-01

    The reported decline in the abundance, distribution, and genetic diversity of Columbia River redband trout Oncorhynchus mykiss gairdneri (a rainbow trout subspecies) has prompted fisheries managers to investigate their habitat requirements, identify critical habitat, and develop effective conservation and recovery programs. We analyzed the microhabitat, mesohabitat, and macrohabitat use and distribution of Columbia River redband trout by means of snorkel surveys in two watersheds in the Kootenai River drainage, Montana and Idaho, during the summers of 1997 and 1998. Juvenile (36–125 mm total length, TL) and adult (>=126 mm TL) fish preferred deep microhabitats (>=0.4 m) with low to moderate velocities (thalweg. Conversely, age-0 (<=35 mm) fish selected slow water (<=0.1 m/s) and shallow depths (<=0.2 m) located in lateral areas of the channel. Age-0, juvenile, and adult fish strongly selected pool mesohabitats and avoided riffles; juveniles and adults generally used runs in proportion to their availability. At the macrohabitat scale, density of Columbia River redband trout (35 mm) was positively related to the abundance of pools and negatively related to stream gradient. The pool: riffle ratio, gradient, and stream size combined accounted for 80% of the variation in density among 23 stream reaches in five streams. Our results demonstrate that low-gradient, medium-elevation reaches with an abundance of complex pools are critical areas for the production of Columbia River redband trout. These data will be useful in assessing the impacts of land-use practices on the remaining populations and may assist with habitat restoration or enhancement efforts.

  5. Predicting effects of environmental change on river inflows to ...

    Science.gov (United States)

    Estuarine river watersheds provide valued ecosystem services to their surrounding communities including drinking water, fish habitat, and regulation of estuarine water quality. However, the provisioning of these services can be affected by changes in the quantity and quality of river water, such as those caused by altered landscapes or shifting temperatures or precipitation. We used the ecohydrology model, VELMA, in the Trask River watershed to simulate the effects of environmental change scenarios on estuarine river inputs to Tillamook Bay (OR) estuary. The Trask River watershed is 453 km2 and contains extensive agriculture, silviculture, urban, and wetland areas. VELMA was parameterized using existing spatial datasets of elevation, soil type, land use, air temperature, precipitation, river flow, and water quality. Simulated land use change scenarios included alterations in the distribution of the nitrogen-fixing tree species Alnus rubra, and comparisons of varying timber harvest plans. Scenarios involving spatial and temporal shifts in air temperature and precipitation trends were also simulated. Our research demonstrates the utility of ecohydrology models such as VELMA to aid in watershed management decision-making. Model outputs of river water flow, temperature, and nutrient concentrations can be used to predict effects on drinking water quality, salmonid populations, and estuarine water quality. This modeling effort is part of a larger framework of

  6. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd; Sexton, Amy D.

    2003-02-01

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2001 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla Subbasin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Projects continued to be maintained on 49 private properties, one 25-year Non-Exclusive Bureau of Indian Affairs' Easement was secured, six new projects implemented and two existing project areas improved to enhance anadromous fish habitat. New project locations included sites on the mid Umatilla River, upper Umatilla River, Mission Creek, Cottonwood Creek and Buckaroo Creek. New enhancements included: (1) construction of 11,264 feet of fencing between River Mile 43.0 and 46.5 on the Umatilla River, (2) a stream bank stabilization project implemented at approximately River Mile 63.5 Umatilla River to stabilize 330 feet of eroding stream bank and improve instream habitat diversity, included construction of eight root wad revetments and three boulder J-vanes, (3) drilling a 358-foot well for off-stream livestock watering at approximately River Mile 46.0 Umatilla River, (4) installing a 50-foot bottomless arch replacement culvert at approximately River Mile 3.0 Mission Creek, (5) installing a Geoweb stream ford crossing on Mission Creek (6) installing a 22-foot bottomless arch culvert at approximately River Mile 0.5 Cottonwood Creek, and (7) providing fence materials for construction of 21,300 feet of livestock exclusion fencing in the Buckaroo Creek Drainage. An approximate total of 3,800 native willow cuttings and 350 pounds of native grass seed was planted at new upper Umatilla River, Mission Creek and Cottonwood Creek project sites. Habitat improvements implemented at existing project sites included

  7. Flow characteristics and salinity patterns of tidal rivers within the northern Ten Thousand Islands, southwest Florida, water years 2007–14

    Science.gov (United States)

    Booth, Amanda C.; Soderqvist, Lars E.

    2016-12-12

    Freshwater flow to the Ten Thousand Islands estuary has been altered by the construction of the Tamiami Trail and the Southern Golden Gate Estates. The Picayune Strand Restoration Project, which is associated with the Comprehensive Everglades Restoration Plan, has been implemented to improve freshwater delivery to the Ten Thousand Islands estuary by removing hundreds of miles of roads, emplacing hundreds of canal plugs, removing exotic vegetation, and constructing three pump stations. Quantifying the tributary flows and salinity patterns prior to, during, and after the restoration is essential to assessing the effectiveness of upstream restoration efforts.Tributary flow and salinity patterns during preliminary restoration efforts and prior to the installation of pump stations were analyzed to provide baseline data and preliminary analysis of changes due to restoration efforts. The study assessed streamflow and salinity data for water years1 2007–2014 for the Faka Union River (canal flow included), East River, Little Wood River, Pumpkin River, and Blackwater River. Salinity data from the Palm River and Faka Union Boundary water-quality stations were also assessed.Faka Union River was the dominant contributor of freshwater during water years 2007–14 to the Ten Thousand Islands estuary, followed by Little Wood and East Rivers. Pumpkin River and Blackwater River were the least substantial contributors of freshwater flow. The lowest annual flow volumes, the highest annual mean salinities, and the highest percentage of salinity values greater than 35 parts per thousand (ppt) occurred in water year 2011 at all sites with available data, corresponding with the lowest annual rainfall during the study. The highest annual flow volumes and the lowest percentage of salinities greater than 35 ppt occurred in water year 2013 for all sites with available data, corresponding with the highest rainfall during the study.In water year 2014, the percentage of monitored annual flow

  8. 1992 Columbia River salmon flow measures Options Analysis/EIS

    International Nuclear Information System (INIS)

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described

  9. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

  10. The Effort Paradox: Effort Is Both Costly and Valued.

    Science.gov (United States)

    Inzlicht, Michael; Shenhav, Amitai; Olivola, Christopher Y

    2018-04-01

    According to prominent models in cognitive psychology, neuroscience, and economics, effort (be it physical or mental) is costly: when given a choice, humans and non-human animals alike tend to avoid effort. Here, we suggest that the opposite is also true and review extensive evidence that effort can also add value. Not only can the same outcomes be more rewarding if we apply more (not less) effort, sometimes we select options precisely because they require effort. Given the increasing recognition of effort's role in motivation, cognitive control, and value-based decision-making, considering this neglected side of effort will not only improve formal computational models, but also provide clues about how to promote sustained mental effort across time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Kootenai River fisheries investigations. Chapter 3: Mainstem habitat use and recruitment estimates of rainbow trout in the Kootenai River, Idaho. Annual report 1996

    International Nuclear Information System (INIS)

    Fredericks, J.; Hendricks, S.

    1997-09-01

    The objective of this study was to determine if recruitment is limiting the population of rainbow trout Oncorhynchus mykiss in the mainstem Kootenai River. The authors used snorkeling and electrofishing techniques to estimate juvenile rainbow trout density and total numbers in Idaho tributaries, and they trapped juvenile outmigrants to identify the age at which juvenile trout migrate from tributaries to the Kootenai River. The authors radio and reward-tagged post-spawn adult rainbow trout captured in Deep Creek to identify river reach and habitat used by those fish spawning and rearing in the Deep Creek drainage. They also conducted redd surveys in the Kootenai River to determine the extent of mainstem spawning. Based on the amount of available habitat and juvenile rainbow trout densities, the Deep Creek drainage was the most important area for juvenile production. Population estimates of age 0, age 1+, and age 2+ rainbow trout indicated moderate to high densities in several streams in the Deep Creek drainage whereas other streams, such as Deep Creek, had very low densities of juvenile trout. The total number of age 0, age 1+, and age 2+ rainbow trout in Deep Creek drainage in 1996 was estimated to be 63,743, 12,095, and 3,095, respectively. Radio telemetry efforts were hindered by the limited range of the transmitters, but movements of a radio-tagged trout and a returned reward tag indicated that at least a portion of the trout utilizing the Deep Creek drainage migrated downriver from the mouth of Deep Creek to the meandering section of river. They found no evidence of mainstem spawning by rainbow trout, but redd counting efforts were hindered by high flows from mid-April through June

  12. Application of Science-Based Restoration Planning to a Desert River System

    Science.gov (United States)

    Laub, Brian G.; Jimenez, Justin; Budy, Phaedra

    2015-06-01

    Persistence of many desert river species is threatened by a suite of impacts linked to water infrastructure projects that provide human water security where water is scarce. Many desert rivers have undergone regime shifts from spatially and temporally dynamic ecosystems to more stable systems dominated by homogenous physical habitat. Restoration of desert river systems could aid in biodiversity conservation, but poses formidable challenges due to multiple threats and the infeasibility of recovery to pre-development conditions. The challenges faced in restoring desert rivers can be addressed by incorporating scientific recommendations into restoration planning efforts at multiple stages, as demonstrated here through an example restoration project. In particular, use of a watershed-scale planning process can identify data gaps and irreversible constraints, which aid in developing achievable restoration goals and objectives. Site-prioritization focuses limited the resources for restoration on areas with the greatest potential to improve populations of target organisms. Investment in research to understand causes of degradation, coupled with adoption of a guiding vision is critical for identifying feasible restoration actions that can enhance river processes. Setting monitoring as a project goal, developing hypotheses for expected outcomes, and implementing restoration as an experimental design will facilitate adaptive management and learning from project implementation. Involvement of scientists and managers during all planning stages is critical for developing process-based restoration actions and an implementation plan to maximize learning. The planning process developed here provides a roadmap for use of scientific recommendations in future efforts to recover dynamic processes in imperiled riverine ecosystems.

  13. Application of science-based restoration planning to a desert river system

    Science.gov (United States)

    Laub, Brian G.; Jimenez, Justin; Budy, Phaedra

    2015-01-01

    Persistence of many desert river species is threatened by a suite of impacts linked to water infrastructure projects that provide human water security where water is scarce. Many desert rivers have undergone regime shifts from spatially and temporally dynamic ecosystems to more stable systems dominated by homogenous physical habitat. Restoration of desert river systems could aid in biodiversity conservation, but poses formidable challenges due to multiple threats and the infeasibility of recovery to pre-development conditions. The challenges faced in restoring desert rivers can be addressed by incorporating scientific recommendations into restoration planning efforts at multiple stages, as demonstrated here through an example restoration project. In particular, use of a watershed-scale planning process can identify data gaps and irreversible constraints, which aid in developing achievable restoration goals and objectives. Site-prioritization focuses limited the resources for restoration on areas with the greatest potential to improve populations of target organisms. Investment in research to understand causes of degradation, coupled with adoption of a guiding vision is critical for identifying feasible restoration actions that can enhance river processes. Setting monitoring as a project goal, developing hypotheses for expected outcomes, and implementing restoration as an experimental design will facilitate adaptive management and learning from project implementation. Involvement of scientists and managers during all planning stages is critical for developing process-based restoration actions and an implementation plan to maximize learning. The planning process developed here provides a roadmap for use of scientific recommendations in future efforts to recover dynamic processes in imperiled riverine ecosystems.

  14. Fishes of the White River basin, Indiana

    Science.gov (United States)

    Crawford, Charles G.; Lydy, Michael J.; Frey, Jeffrey W.

    1996-01-01

    Since 1875, researchers have reported 158 species of fish belonging to 25 families in the White River Basin. Of these species, 6 have not been reported since 1900 and 10 have not been reported since 1943. Since the 1820's, fish communities in the White River Basin have been affected by the alteration of stream habitat, overfishing, the introduction of non-native species, agriculture, and urbanization. Erosion resulting from conversion of forest land to cropland in the 1800's led to siltation of streambeds and resulted in the loss of some silt-sensitive species. In the early 1900's, the water quality of the White River was seriously degraded for 100 miles by untreated sewage from the City of Indianapolis. During the last 25 years, water quality in the basin has improved because of efforts to control water pollution. Fish communities in the basin have responded favorably to the improved water quality.

  15. The Missing Link: the Role of Floodplain Tie Channels in Connecting Off River Water Bodies to Lowland Rivers

    Science.gov (United States)

    Rowland, J. C.; Dietrich, W. E.; Day, G.

    2005-05-01

    times in tie channel progradation rates. In a few instances Fly River tie channels have become filled with sediment following the increase in sediment loading. The precise role of tie channels in the ecology of lowland river systems has yet to be quantified, but given their critical role in connecting rivers with floodplain habitats it is likely they provide an important source of refuge, breeding habitat, and biomass production for many aquatic organisms. As restoration efforts increasingly focus on the improving or reestablishing connectivity between lowland rivers and their floodplains, consideration should be given as to whether tie channels are an important missing component of such systems.

  16. Can we predict the response of large sand bed rivers to changes in flow and sediment supply? The case of the Missouri River.

    Science.gov (United States)

    Viparelli, E.; Blum, M. D.

    2015-12-01

    In the past century engineering projects and changes in land use significantly modified the hydrology and the sediment supply of large sand bed rivers all over the world. Field studies documented the river responses to the imposed changes, which can be summarized as adjustments in channel geometry, slope, and/or characteristics of the bed material. Further, one-, two- and three-dimensional river morphodynamic models were used to predict the fluvial system response to the imposed changes at time scales ranging from few months up to several decades. Notwithstading this previous research effort, the spatial and temporal scales of river adjustment, as well as quantitative predictions of the river responses, are still a matter of debate due to the difficulties associated with the interpretation of limited field datasets and with the large scale sediment transport modeling. Here we present the preliminary results of a study of the Missouri River response to the construction of dams, i.e. reduction in flood flow and sediment supply. In particular, we first compare the numerical results of a one-dimensional model of river morphodynamics for large, low slope sand bed rivers with field data to validate the model. The validated model is then used to constrain the spatial and temporal scales of the river adjustment, i.e. bed degradation in the Missouri River case. In other words, our numerical work focuses on how the magnitude and speed of the wave of channel bed degradation changes in time and space for the Missouri River case and how these scales change for different values of the ratio between pre- and pos-dam flow rates, and pre- and post-dam sediment loads.

  17. River Protection Project FY 2000 Multi Year Work Plan Summary

    International Nuclear Information System (INIS)

    LENSEIGNE, D.L.

    1999-01-01

    The River Protection Project (RPP), formerly the Tank Waste Remediation System (TWRS), is a major part of the U.S. Department of Energy's (DOE) Office of River Protection (ORP). The ORP was established as directed by Congress in Section 3139 of the Strom Thurmond National Defense Authorization Act for Fiscal Year (FY) 1999. The ORP was established to elevate the reporting and accountability for the RPP to the DOE-Headquarters level. This was done to gain Congressional visibility and obtain support for a major $10 billion high-level liquid waste vitrification effort

  18. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    Science.gov (United States)

    Smith, J. E., IV

    2016-02-01

    James E. Smith IV1, Samuel J. Bentley, Sr.1, Gregg A. Snedden2, Crawford White1 Department of Geology and Geophysics and Coastal Studies Institute, Louisiana State University, Baton Rouge, LA 70803 USA United States Geological Survey, National Wetlands Research Center, Baton Rouge LA 70803 USA The Mississippi River Delta has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50-100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply, accumulation, and delta geomorphology. In the Mississippi River Delta, hurricanes have been paradoxically identified as both agents of widespread land loss, and positive influences for marsh vertical sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the Mississippi River Delta that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Twenty seven cores have been analyzed for radioisotope geochronology and organic content to establish the chronology of mineral sediment supply to the wetlands over the past 70 years. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  19. The natural sediment regime in rivers: broadening the foundation for ecosystem management

    Science.gov (United States)

    Wohl, Ellen E.; Bledsoe, Brian P.; Jacobson, Robert B.; Poff, N. LeRoy; Rathburn, Sara L.; Walters, David M.; Wilcox, Andrew C.

    2015-01-01

    Water and sediment inputs are fundamental drivers of river ecosystems, but river management tends to emphasize flow regime at the expense of sediment regime. In an effort to frame a more inclusive paradigm for river management, we discuss sediment inputs, transport, and storage within river systems; interactions among water, sediment, and valley context; and the need to broaden the natural flow regime concept. Explicitly incorporating sediment is challenging, because sediment is supplied, transported, and stored by nonlinear and episodic processes operating at different temporal and spatial scales than water and because sediment regimes have been highly altered by humans. Nevertheless, managing for a desired balance between sediment supply and transport capacity is not only tractable, given current geomorphic process knowledge, but also essential because of the importance of sediment regimes to aquatic and riparian ecosystems, the physical template of which depends on sediment-driven river structure and function.

  20. Statistical and Conceptual Model Testing Geomorphic Principles through Quantification in the Middle Rio Grande River, NM.

    Science.gov (United States)

    Posner, A. J.

    2017-12-01

    The Middle Rio Grande River (MRG) traverses New Mexico from Cochiti to Elephant Butte reservoirs. Since the 1100s, cultivating and inhabiting the valley of this alluvial river has required various river training works. The mid-20th century saw a concerted effort to tame the river through channelization, Jetty Jacks, and dam construction. A challenge for river managers is to better understand the interactions between a river training works, dam construction, and the geomorphic adjustments of a desert river driven by spring snowmelt and summer thunderstorms carrying water and large sediment inputs from upstream and ephemeral tributaries. Due to its importance to the region, a vast wealth of data exists for conditions along the MRG. The investigation presented herein builds upon previous efforts by combining hydraulic model results, digitized planforms, and stream gage records in various statistical and conceptual models in order to test our understanding of this complex system. Spatially continuous variables were clipped by a set of river cross section data that is collected at decadal intervals since the early 1960s, creating a spatially homogenous database upon which various statistical testing was implemented. Conceptual models relate forcing variables and response variables to estimate river planform changes. The developed database, represents a unique opportunity to quantify and test geomorphic conceptual models in the unique characteristics of the MRG. The results of this investigation provides a spatially distributed characterization of planform variable changes, permitting managers to predict planform at a much higher resolution than previously available, and a better understanding of the relationship between flow regime and planform changes such as changes to longitudinal slope, sinuosity, and width. Lastly, data analysis and model interpretation led to the development of a new conceptual model for the impact of ephemeral tributaries in alluvial rivers.

  1. Hydrologic bibliography of the Columbia River basalts in Washington

    International Nuclear Information System (INIS)

    Tanaka, H.H.; Wildrick, L.

    1978-07-01

    This bibliography is part of the hydrologic data compilation effort of the Columbia Plateau Hydrology Study, Rockwell Hanford Operations' Waste Isolation Program. It includes references on both surface and subsurface hydrology directly or indirectly related to the Washington State portion of the Columbia River basalts. A comprehensive, annotated bibliography of the Pasco Basin (including the Hanford site) hydrology has been prepared for Rockwell Hanford Operations under the Pasco Basin Hydrology Study. In order to avoid unnecessary duplication, no effort was made to include a complete list of bibliographic references on Hanford in this volume

  2. PCDD/Fs and dioxin-like PCBs in the Tone River, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Eiki; Heesoo, Eun; Koji, Baba; Tomohito, Arao; Shozo, Endo [National Institute for Agro-Environmental Sciences, Tsukuba (Japan); Tadashi, Sekino [Environmental Research Center, Tsukuba (Japan)

    2004-09-15

    Environmental pollution by PCDD/Fs has arisen exclusively from human activities, and for example, they are inadvertently produced from various combustion sources and manufacturing processes, such as municipal solid waste incineration steel production processes and chemical production processes. In Japan, it is well known that the environmental pollution has close relation to agricultural operation, that is, some PCDD/Fs are contained as impurities in a kind of pesticide. The Tone River is the largest basin area (about 16,900 km{sup 2}) in Japan, and after the Shinano River, is the second longest river (about 322 km). The river has many tributaries (about 800 rivers), and the rivers taking the Kokai River, the Kinu River, the Edo River, and the Watarase River as objects of the present study are also representative tributaries. Since the Tone River basin corresponding to about 4.5% of the total area of Japan leads about twelve million population corresponding to about 10% of the gross population in Japan, it plays an important part in a supply of water for human activities. Not only some residential zones near Tokyo and industrial zones but also representative agricultural zones in Japan expand in the basin expands, and especially the lower basin leads a leading granary. The objective of our effort is to investigate the levels of PCDD/Fs and PCBs in surface sediment and water samples from the Tone River and some related tributaries, and to assess their distribution and origin using congener-specific characterization approach.

  3. Walla Walla River Basin Fish Habitat Enhancement Project, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed; Sexton, Amy D. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2003-04-01

    In 2001, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled six properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River. Since 1997, approximately 7 miles of critical salmonid habitat has been secured for restoration and protection under this project. Major accomplishments to date include the following: Secured approximately $250,000 in cost share; Secured 7 easements; Planted 30,000+ native plants; Installed 50,000+ cuttings; and Seeded 18 acres to native grass. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan. Basin-wide monitoring also included the deployment of 6 thermographs to collect summer stream temperatures.

  4. Long-term fish monitoring in large rivers: Utility of “benchmarking” across basins

    Science.gov (United States)

    Ward, David L.; Casper, Andrew F.; Counihan, Timothy D.; Bayer, Jennifer M.; Waite, Ian R.; Kosovich, John J.; Chapman, Colin; Irwin, Elise R.; Sauer, Jennifer S.; Ickes, Brian; McKerrow, Alexa

    2017-01-01

    In business, benchmarking is a widely used practice of comparing your own business processes to those of other comparable companies and incorporating identified best practices to improve performance. Biologists and resource managers designing and conducting monitoring programs for fish in large river systems tend to focus on single river basins or segments of large rivers, missing opportunities to learn from those conducting fish monitoring in other rivers. We briefly examine five long-term fish monitoring programs in large rivers in the United States (Colorado, Columbia, Mississippi, Illinois, and Tallapoosa rivers) and identify opportunities for learning across programs by detailing best monitoring practices and why these practices were chosen. Although monitoring objectives, methods, and program maturity differ between each river system, examples from these five case studies illustrate the important role that long-term monitoring programs play in interpreting temporal and spatial shifts in fish populations for both established objectives and newly emerging questions. We suggest that deliberate efforts to develop a broader collaborative network through benchmarking will facilitate sharing of ideas and development of more effective monitoring programs.

  5. Integrating lateral contributions along river reaches to improve SWOT discharge estimates

    Science.gov (United States)

    Beighley, E.; Zhao, Y.; Feng, D.; Fisher, C. K.; Raoufi, R.; Durand, M. T.; David, C. H.; Lee, H.; Boone, A. A.; Cretaux, J. F.

    2016-12-01

    Understanding the potential impacts of climate and land cover change at continental to global scales with a sufficient resolution for community scale planning and management requires an improved representation of the hydrologic cycle that is possible based on existing measurement networks and current Earth system models. The Surface Water and Ocean Topography (SWOT) mission, scheduled to launch in 2021, has the potential to address this challenge by providing measurements of water surface elevation, slope and extent for rivers wider than roughly 50-100 meters at a temporal sampling frequency ranging from days to weeks. The global uniformity and space/time resolution of the proposed SWOT measurements will enable hydrologic discovery, model advancements and new applications addressing the above challenges that are not currently possible or likely even conceivable. One derived data product planned for the SWOT mission is river discharge. Although there are several discharge algorithms that perform well for a range of conditions, this effort is focused on the MetroMan discharge algorithm. For example, in MetroMan, lateral inflow assumptions have been shown to impact performance. Here, the role of lateral inflows on discharge estimate performance is investigated. Preliminary results are presented for the Ohio River Basin. Lateral inflows are quantified for SWOT-observable river reaches using surface and subsurface runoff from North American Land Data Assimilation System (NLDAS) and lateral routing in the Hillslope River Routing (HRR) model. Frequency distributions for the fraction of reach-averaged discharge resulting from lateral inflow are presented. Future efforts will integrate lateral inflow characteristics into the MetroMan discharge algorithm and quantify the potential value of SWOT measurement in flood insurance applications.

  6. The International River Interface Cooperative: Public Domain Software for River Flow and Morphodynamics (Invited)

    Science.gov (United States)

    Nelson, J. M.; Shimizu, Y.; McDonald, R.; Takebayashi, H.

    2009-12-01

    The International River Interface Cooperative is an informal organization made up of academic faculty and government scientists with the goal of developing, distributing and providing education for a public-domain software interface for modeling river flow and morphodynamics. Formed in late 2007, the group released the first version of this interface (iRIC) in late 2009. iRIC includes models for two and three-dimensional flow, sediment transport, bed evolution, groundwater-surface water interaction, topographic data processing, and habitat assessment, as well as comprehensive data and model output visualization, mapping, and editing tools. All the tools in iRIC are specifically designed for use in river reaches and utilize common river data sets. The models are couched within a single graphical user interface so that a broad spectrum of models are available to users without learning new pre- and post-processing tools. The first version of iRIC was developed by combining the USGS public-domain Multi-Dimensional Surface Water Modeling System (MD_SWMS), developed at the USGS Geomorphology and Sediment Transport Laboratory in Golden, Colorado, with the public-domain river modeling code NAYS developed by the Universities of Hokkaido and Kyoto, Mizuho Corporation, and the Foundation of the River Disaster Prevention Research Institute in Sapporo, Japan. Since this initial effort, other Universities and Agencies have joined the group, and the interface has been expanded to allow users to integrate their own modeling code using Executable Markup Language (XML), which provides easy access and expandability to the iRIC software interface. In this presentation, the current components of iRIC are described and results from several practical modeling applications are presented to illustrate the capabilities and flexibility of the software. In addition, some future extensions to iRIC are demonstrated, including software for Lagrangian particle tracking and the prediction of

  7. Impact of habitat diversity on the sampling effort required for the assessment of river fish communities and IBI

    NARCIS (Netherlands)

    Van Liefferinge, C.; Simoens, I.; Vogt, C.; Cox, T.J.S.; Breine, J.; Ercken, D.; Goethals, P.; Belpaire, C.; Meire, P.

    2010-01-01

    The spatial variation in the fish communities of four small Belgian rivers with variable habitat diversity was investigated by electric fishing to define the minimum sampling distance required for optimal fish stock assessment and determination of the Index of Biotic Integrity. This study shows that

  8. Reference Inflow Characterization for River Resource Reference Model (RM2)

    Energy Technology Data Exchange (ETDEWEB)

    Neary, Vincent S [ORNL

    2011-12-01

    Sandia National Laboratory (SNL) is leading an effort to develop reference models for marine and hydrokinetic technologies and wave and current energy resources. This effort will allow the refinement of technology design tools, accurate estimates of a baseline levelized cost of energy (LCoE), and the identification of the main cost drivers that need to be addressed to achieve a competitive LCoE. As part of this effort, Oak Ridge National Laboratory was charged with examining and reporting reference river inflow characteristics for reference model 2 (RM2). Published turbulent flow data from large rivers, a water supply canal and laboratory flumes, are reviewed to determine the range of velocities, turbulence intensities and turbulent stresses acting on hydrokinetic technologies, and also to evaluate the validity of classical models that describe the depth variation of the time-mean velocity and turbulent normal Reynolds stresses. The classical models are found to generally perform well in describing river inflow characteristics. A potential challenge in river inflow characterization, however, is the high variability of depth and flow over the design life of a hydrokinetic device. This variation can have significant effects on the inflow mean velocity and turbulence intensity experienced by stationary and bottom mounted hydrokinetic energy conversion devices, which requires further investigation, but are expected to have minimal effects on surface mounted devices like the vertical axis turbine device designed for RM2. A simple methodology for obtaining an approximate inflow characterization for surface deployed devices is developed using the relation umax=(7/6)V where V is the bulk velocity and umax is assumed to be the near-surface velocity. The application of this expression is recommended for deriving the local inflow velocity acting on the energy extraction planes of the RM2 vertical axis rotors, where V=Q/A can be calculated given a USGS gage flow time

  9. 2010 US Army Corps of Engineers (USACE) Portland District Columbia River Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Columbia River Light Detection and Ranging (LiDAR) survey project was a collaborative effort to develop detailed high density LiDAR terrain data for the US Army...

  10. Three run-of-river power plants

    International Nuclear Information System (INIS)

    1992-01-01

    Three 'run-of-river' hydroelectric power plants in the Montreal area in the province of Quebec were described visually and in sound. A run-of-river generating station is one that has no reservoir behind the generating facilities. Instead of a reservoir, the generating station draws its power from the strong flow of the whole river as it passes through the turbines. The first generating station described was the Beauharnois power plant completed in 1963 which became the most powerful generating station in Canada at that time. Today, it ranks fourth after the La Grande complex. In winter, it supplies electricity primarily to the Quebec power system, but between April and November, 90 per cent of its power is destined for export. The Carillon power station on the Ottawa River, the second to be discussed in this videotape presentation, was completed in 1964 with a total generating capacity of 654 MW. Today, it is the tenth largest of its kind in Quebec. The Rivieres des Prairies generating station, the third and last one described was completed in 1930; today it has a generating capacity of 45 MW. Some of the efforts made by Hydro-Quebec to protect and enhance the natural environment were shown in action, including regular removal and recycling of debris at the gateways to the generating stations, construction of fish spawning ladders, and the control of zebra mussels

  11. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Scott R.; Tuell, Michael A. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2002-03-01

    In 1998 white sturgeon (Acipenser transmontanus) were captured, marked, and population data were collected in the Snake River between Lower Granite Dam and the mouth of the Salmon River. A total of 13,785 hours of setline effort and 389 hours of hook-and-line effort was employed in 1998. Of the 278 white sturgeon captured in the Snake River, 238 were marked for future identification. Three sturgeon were captured in the Salmon River and none were captured in the Clearwater River. Since 1997, 6.9% of the tagged fish have been recovered. Movement of recaptured white sturgeon ranged from 98.5 kilometers downstream to 60.7 kilometers upstream, however, less than 25% of the fish moved more than 16 kilometers (10 miles). In the Snake River, white sturgeon ranged in total length from 51.5 cm to 286 cm and averaged 118.9 cm. Differences were detected in the length frequency distributions of sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P < 0.05). In addition, the proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 37% since the 1970's. Analysis of the length-weight relationship indicated that white sturgeon in Lower Granite Reservoir were slightly larger than white sturgeon in the free-flowing Snake River.

  12. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sather, NK; Johnson, GE; Storch, AJ [Pacific Northwest National Laboratory

    2009-07-06

    The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington. The overarching goal of the TFM project is to bridge the gap in knowledge between tidal freshwater habitats and the early life history attributes of migrating salmon. The research questions include: In what types of habitats within the tidal freshwater area of the Columbia River are juvenile salmon found, when are they present, and under what environmental conditions? What is the ecological contribution of shallow (0-5 m) tidal freshwater habitats to the recovery of ESA-listed salmon in the Columbia River basin? Field data collection for the TFM project commenced in June 2007 and since then has continued monthly at six to nine sites in the vicinity of the Sandy River delta (river kilometer 192-208). While this report includes summary data spanning the 19-month period of study from June 2007 through December 2008, it highlights sampling conducted during calendar year 2008. Detailed data for calendar year 2007 were reported previously. The 2008 research objectives were as follows: (1) Characterize the vegetation composition and percent cover, conventional water quality, water surface elevation, substrate composition, bathymetry, and beach slope at the study sites within the vicinity of the Sandy

  13. Iteroparity in Columbia River summer-run steelhead (Oncorhynchus mykiss) : implications for conservation

    International Nuclear Information System (INIS)

    Keefer, M.L.; Boggs, C.T.; Peery, C.A.; Evans, A.F.

    2008-01-01

    This study examined the outmigration environment for steelhead kelts (anadromous rainbow trout, Oncorhynchus mykiss) in the Columbia River Basin, where summer-run kelts must pass up to 9 hydroelectric dams and reservoirs to reach the Pacific Ocean. Such fish passage barriers present many direct and indirect mortality hazards for outmigrating kelts. In some years, kelt migration mortality in the impounded portion of the system can be higher than 95 per cent. Current efforts to improve kelt survival in the Columbia system include increasing iteroparity to take advantage of genetic and demographic benefits of repeat spawners. Some of the basic iteroparity information gaps in the aggregated summer-run steelhead population of the interior Columbia River Basin were addressed in this study. Kelt demographics were collected along the outmigration corridor. Repeat spawner return rates were examined along with kelt demographics, outmigration timing and collection location and year. The roles of these factors in predicting repeat spawner returns were evaluated using an information-theoretic approach. The life history characteristics of returning fish was examined with reference to breeding interval, migration timing and distribution within the Columbia River Basin. The study tested whether repeat spawner return rates would be affected by outmigration distance and whether they would differ among demographic groups. It was concluded that the expression of iteroparity among interior Columbia River steelhead has persisted despite decades of impoundment-related selection pressures. Post spawn kelts and repeat spawners in downstream fish bypass systems at the Columbia River and Snake River dams were found to be disproportionately female and of wild origin. The results of this study provide baseline data for evaluating kelt mortality mitigation efforts and basic life history information for steelhead conservation planning. 78 refs., 4 tabs., 4 figs

  14. Climate-driven disturbances in the San Juan River sub-basin of the Colorado River

    Science.gov (United States)

    Bennett, Katrina E.; Bohn, Theodore J.; Solander, Kurt; McDowell, Nathan G.; Xu, Chonggang; Vivoni, Enrique; Middleton, Richard S.

    2018-01-01

    Accelerated climate change and associated forest disturbances in the southwestern USA are anticipated to have substantial impacts on regional water resources. Few studies have quantified the impact of both climate change and land cover disturbances on water balances on the basin scale, and none on the regional scale. In this work, we evaluate the impacts of forest disturbances and climate change on a headwater basin to the Colorado River, the San Juan River watershed, using a robustly calibrated (Nash-Sutcliffe efficiency 0.76) hydrologic model run with updated formulations that improve estimates of evapotranspiration for semi-arid regions. Our results show that future disturbances will have a substantial impact on streamflow with implications for water resource management. Our findings are in contradiction with conventional thinking that forest disturbances reduce evapotranspiration and increase streamflow. In this study, annual average regional streamflow under the coupled climate-disturbance scenarios is at least 6-11 % lower than those scenarios accounting for climate change alone; for forested zones of the San Juan River basin, streamflow is 15-21 % lower. The monthly signals of altered streamflow point to an emergent streamflow pattern related to changes in forests of the disturbed systems. Exacerbated reductions of mean and low flows under disturbance scenarios indicate a high risk of low water availability for forested headwater systems of the Colorado River basin. These findings also indicate that explicit representation of land cover disturbances is required in modeling efforts that consider the impact of climate change on water resources.

  15. Wind River Watershed Restoration Project, Segment II, 2000-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, Brian; Olegario, Anthony; Powers, Paul

    2002-06-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its second year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey - Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW).

  16. Modern comprehensive approach to monitor the morphodynamic evolution of restored river corridors

    NARCIS (Netherlands)

    Pasquale, N; Perona, P; Schneider, P.; Shrestha, J.; Wombacher, Andreas; Burlando, P

    2011-01-01

    River restoration has become a common measure to repair anthropogenically-induced alteration of fluvial ecosystems. The inherent complexity of ecohydrologic systems leads to limitations in understanding the response of such systems to restoration over time. Therefore, a significant effort has been

  17. Snake River sockeye salmon Sawtooth Valley project: 1992 Juvenile and Adult Trapping Program

    International Nuclear Information System (INIS)

    1992-04-01

    Sockeye salmon (Oncorhynchus nerka) runs in the Snake River Basin have severely declined. Redfish Lake near Stanley, Idaho is the only lake in the drainage known to still support a run. In 1989, two adults were observed returning to this lake and in 1990, none returned. In the summer of 1991, only four adults returned. If no action is taken, the Snake River sockeye salmon will probably cease to exist. On November 20, 1991, the National Marine Fisheries Service (NMFS) declared the Snake River sockeye salmon ''endangered'' (effective December 20, 1991), pursuant to the Endangered Species Act (ESA) of 1973. In 1991, in response to a request from the Idaho Department of Fish and Game and the Shoshone-Bannock Tribes, the Bonneville Power Administration (BPA) funded efforts to conserve and begin rebuilding the Snake River sockeye salmon run. The initial efforts were focused on Redfish Lake in the Sawtooth Valley of southcentral Idaho. The 1991 measures involved: trapping some of the juvenile outmigrants (O. nerka) from Redfish Lake and rearing them in the Eagle Fish Health Facility (Idaho Department of Fish and Game) near Boise, Idaho; Upgrading of the Eagle Facility where the outmigrants are being reared; and trapping adult Snake River sockeye salmon returning to Redfish Lake and holding and spawning them at the Sawtooth Hatchery near Stanley, Idaho. This Environmental Assessment (EA) evaluates the potential environmental effects of the proposed actions for 1992. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) of 1969 and section 7 of the ESA of 1973

  18. Snake River Sockeye Salmon Habitat and Limnological Research : 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Taki, Doug; Kohler, Andre E.; Griswold, Robert G.; Gilliland, Kim

    2006-07-14

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2005 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee spawning in Fishhook and Alturas Lake creeks; (4) monitor and enumerate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish species in

  19. Predicting the effects of proposed Mississippi River diversions on oyster habitat quality; application of an oyster habitat suitability index model

    Science.gov (United States)

    Soniat, Thomas M.; Conzelmann, Craig P.; Byrd, Jason D.; Roszell, Dustin P.; Bridevaux, Joshua L.; Suir, Kevin J.; Colley, Susan B.

    2013-01-01

    In an attempt to decelerate the rate of coastal erosion and wetland loss, and protect human communities, the state of Louisiana developed its Comprehensive Master Plan for a Sustainable Coast. The master plan proposes a combination of restoration efforts including shoreline protection, marsh creation, sediment diversions, and ridge, barrier island, and hydrological restoration. Coastal restoration projects, particularly the large-scale diversions of fresh water from the Mississippi River, needed to supply sediment to an eroding coast potentially impact oyster populations and oyster habitat. An oyster habitat suitability index model is presented that evaluates the effects of a proposed sediment and freshwater diversion into Lower Breton Sound. Voluminous freshwater, needed to suspend and broadly distribute river sediment, will push optimal salinities for oysters seaward and beyond many of the existing reefs. Implementation and operation of the Lower Breton Sound diversion structure as proposed would render about 6,173 ha of hard bottom immediately east of the Mississippi River unsuitable for the sustained cultivation of oysters. If historical harvests are to be maintained in this region, a massive and unprecedented effort to relocate private leases and restore oyster bottoms would be required. Habitat suitability index model results indicate that the appropriate location for such efforts are to the east and north of the Mississippi River Gulf Outlet.

  20. From mountains to the ocean: quantifying connectivity along the river corridor

    Science.gov (United States)

    Gomez-Velez, J. D.; Harvey, J. W.

    2015-12-01

    Rivers are the landscape's arteries; they convey water, solutes, energy, and living organisms from the hillslopes, floodplains, aquifers, and atmosphere to the oceans. As water moves along this complex circulatory system, it is continuously exchanged with the surrounding alluvial aquifer, termed hyporheic exchange, which strongly conditions and constrains the biogeochemical evolution of water at the local scale with basin-scale consequences. Over the last two decades, considerable efforts have focused on the use of detailed mathematical models to explore the hydrodynamics and biogeochemical effect of hyporheic exchange at the scale of individual channel morphologies. While these efforts are essential to gain mechanistic understanding, their computational demand makes them impractical for basin applications. In this talk, a parsimonious but physically based model of hyporheic flow for application in large river basins is presented: Networks with EXchange and Subsurface Storage (NEXSS). At the core of NEXSS are the up-scaling of detailed mathematical models and a characterization of the channel geometry, geomorphic features, and related hydraulic drivers based on scaling equations from the literature and readily accessible information such as river discharge, width, grain size, sinuosity, channel slope, and regional groundwater gradients. As a proof-of-concept, we use NEXSS to characterize the spatial and temporal variability of hyporheic exchange and denitrification potential along the Mississippi River basin. This modeling approach allows us to map the location of critical hot spots for biogeochemical transformation, their geomorphic drivers, and cumulative effect. Finally, we discuss new avenues to incorporate exchange with floodplains and ponded waters, which also play a key role in water quality along the river corridor. This new modeling approach is critical to transition from purely empirical continental models of water quality to hybrid approaches that

  1. Clinch River Breeder Reactor Plant: a building block in nuclear technology

    International Nuclear Information System (INIS)

    McCormack, M.

    1979-01-01

    Interest in breeder reactors dates from the Manhatten Project to the present effort to build the Clinch River Liquid Metal Fast Breeder Reactor (LMFBR) demonstration plant. Seven breeder-type reactors which were built during this time are described and their technological progress assessed. The Clinch River Breeder Reactor Project (CRBRP) has been designed to demonstrate that it can be licensed, can operate on a large power grid, and can provide industry with important experience. As the next logical step in LMFBR development, the project has suffered repeated cancellation efforts with only minor modifications to its schedule. Controversies have developed over the timing of a large-scale demonstration plant, the risks of proliferation, economics, and other problems. Among the innovative developments adopted for the CRBRP is a higher thermal efficiency potential, the type of development which Senator McCormack feels justifies continuing the project. He argues that the nuclear power program can and should be revitalized by continuing the CRBRP

  2. Clinch River Breeder Reactor Plant: a building block in nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    McCormack, M.

    1979-01-01

    Interest in breeder reactors dates from the Manhatten Project to the present effort to build the Clinch River Liquid Metal Fast Breeder Reactor (LMFBR) demonstration plant. Seven breeder-type reactors which were built during this time are described and their technological progress assessed. The Clinch River Breeder Reactor Project (CRBRP) has been designed to demonstrate that it can be licensed, can operate on a large power grid, and can provide industry with important experience. As the next logical step in LMFBR development, the project has suffered repeated cancellation efforts with only minor modifications to its schedule. Controversies have developed over the timing of a large-scale demonstration plant, the risks of proliferation, economics, and other problems. Among the innovative developments adopted for the CRBRP is a higher thermal efficiency potential, the type of development which Senator McCormack feels justifies continuing the project. He argues that the nuclear power program can and should be revitalized by continuing the CRBRP.

  3. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    Science.gov (United States)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  4. River Rehabilitation for Conservation of Fish Biodiversity in Monsoonal Asia

    Directory of Open Access Journals (Sweden)

    David Dudgeon

    2005-12-01

    agriculture and industry dominate water allocation policies, and in-stream flow needs for ecosystems have yet to be widely addressed. Restoration of Asian rivers to their original state is impractical given the constraints prevailing in the region, but some degree of rehabilitation will be possible if relevant legislation and scientific information are promptly applied. Opportunities do exist: enforcement of environmental legislation in China has been strengthened, leading to the suspension of major dam projects. The 2003 introduction of an annual fishing moratorium along the Yangtze River, as well as breeding and restocking programs for endangered fishes in the Yangtze and Mekong, offer the chance to leverage other initiatives that enhance river health and preserve biodiversity, particularly that of fish species. Preliminary data indicate that degraded rivers still retain some biodiversity that can be the focus of rehabilitation efforts. To strengthen these efforts, it is important to identify which ecological features enhance biodiversity and which ones make rivers more vulnerable to human impacts.

  5. Assessing Microplastic Loads in the Mississippi River and Its Major Tributaries

    Science.gov (United States)

    Hasenmueller, E. A.; Martin, K. M.; Conkle, J. L.; White, J. R.

    2017-12-01

    Plastic debris is ubiquitous in marine environments and can cause significant harm to aquatic life when organisms become entangled in the plastic or mistake it for food. Macroplastic debris (plastic >5 mm in diameter) has received significant attention from the public, government agencies, and the scientific community. However, the majority of plastics in aquatic environments are microplastics (plastic Administration (NOAA) Marine Debris Program, has quantified and characterized microplastics (i.e., size, shape, and resin type) at the surface and at depth along the mainstem of the Mississippi River, including near major cities such as St. Louis and New Orleans, as well as in some of the Mississippi River's major tributaries (i.e., the Missouri River, Ohio River, and Illinois River). Sampling is ongoing, but our datasets will allow us to characterize: 1) total microplastic concentrations and loads, 2) spatial and temporal trends in microplastic abundances, and 3) land-use effects on microplastic levels across the Mississippi River watershed. Our data will also provide estimates of the total discharge of microplastics from the Mississippi River to the Gulf of Mexico. These efforts will provide a baseline for future research relating to the fate and effects of microplastics in aquatic environments and can guide federal and local policy makers in creating and assessing mitigation strategies to improve water quality.

  6. Organochlorine Pesticide Residues in the Major Rivers of Southern Thailand

    Directory of Open Access Journals (Sweden)

    Abd Naser Haji Samoh

    2009-01-01

    Full Text Available Environmental contaminations by organochlorine pesticides (OCPs of inland water have been a global issue, since most of these compounds are very persistent, bioaccumulative and toxic compounds. Due to the widespread use of DDT for malaria vector eradication programs in the past and no comprehensive works have been conducted to assess trace organic pollutants in river waters, this work is the first effort to assess the contamination levels of OCPs in the major rivers of Southern Thailand. The objectives of this study were to determine the concentration levels of OCPs and oil and grease in the 3 major rivers and to compare the present results with surrounding regions for further assessment of OCPs contamination status in inland waters of Southern Thailand. The water samples were collected along the 3 major rivers (Saiburi, Patani and Tiba River during June 2007-February 2008. Water samples were solid phase extracted with Supelco C-18 cartridge (1g/6 mL and quantified by gas chromatograph (GC-ECD. The concentration of oil and grease was determined by gravimetric method and reported as hexane extractable material (HEM and silica gel treated hexane extractable material (SGT-HEM. Several parameters of waters such as total suspended solid, pH, turbidity, and conductivity were measured. The commonly found OCP residues in these rivers were β-HCH, γ-HCH, heptachlor epoxide, endosulfan 1, p,p’- DDE and endrin aldehyde. The overall results showed that Saiburi River was more polluted with OCPs than Patani and Tiba River, especially p, p’-DDE which was detected in the wide range concentration of 9.6 to 203.1 ng/mL. For oil and grease contamination, Tiba River waters were found to be more polluted than either Patani or Saiburi River. The experimental procedures and analytical results together with the possible sources of OCPs and its environmental impacts are presented.

  7. Chicago and New Orleans: opposite ends of a great river

    Directory of Open Access Journals (Sweden)

    Craig Edward Colten

    2017-06-01

    Full Text Available This paper considers the contrasting and deliberate efforts to reshape the Tluvial futures of two important American cities which essentially re-wrote their riparian heritages. Chicago’s aggressive extension of its commercial reach through its artiTicial connection with the Mississippi has become embodied in its environmental, political, and literary history. Conversely, New Orleans crafted a defensive local culture in its environmental history, politics, and literature. The contrasting investments in river-altering infrastructure and urban relationships with the one river expose the signiTicance of each city’s position within a watershed and in shaping its respective cultural history and its identity.

  8. Hudson River settlement agreement: Technical rationale and cost considerations

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Boreman, J.; Englert, T.L.; Kirk, W.L.; Horn, E.G.

    1988-01-01

    In an effort to end litigation over open-cycle cooling at Hudson River power plants, out-of-court negotiations began in August 1979. On December 19, 1980, an agreement that was acceptable to all parties was reached. As an alternative to building cooling towers at the Indian Point, Bowline Point, and Roseton generating stations, the utilities agreed to a variety of technical and operational changes intended to reduce entrainment and impingement. In addition, they agreed to supplement the production of striped bass in the Hudson River estuary by means of a hatchery, to conduct a biological monitoring program, and to fund an independent research foundation for study of Hudson River environmental problems. Although the settlement costs were substantial, they were much smaller than the estimated costs of constructing and operating cooling towers. The settlement was expected to provide 15-43% of the impact reduction that might have been obtained with cooling at approximately 10% of the cost. 20 refs., 3 tabs

  9. Salmon River Habitat Enhancement, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  10. Ichthyofauna of the Kubo, Tochikura, and Ichinono river systems (Kitakami River drainage, northern Japan), with a comparison of predicted and surveyed species richness

    Science.gov (United States)

    Nakae, Masanori; Senou, Hiroshi

    2014-01-01

    Abstract The potential fish species pool of the Kubo, Tochikura, and Ichinono river systems (tributaries of the Iwai River, Kitakami River drainage), Iwate Prefecture, northern Japan, was compared with the observed ichthyofauna by using historical records and new field surveys. Based on the literature survey, the potential species pool comprised 24 species/subspecies but only 20, including 7 non-native taxa, were recorded during the fieldwork. The absence during the survey of 11 species/subspecies from the potential species pool suggested either that sampling effort was insufficient, or that accurate determination of the potential species pool was hindered by lack of biogeographic data and ecological data related to the habitat use of the species. With respect to freshwater fish conservation in the area, Lethenteron reissneri, Carassius auratus buergeri, Pseudorasbora pumila, Tachysurus tokiensis, Oryzias latipes, and Cottus nozawae are regarded as priority species, and Cyprinus rubrofuscus, Pseudorasbora parva, and Micropterus salmoides as targets for removal. PMID:25425932

  11. River-corridor habitat dynamics, Lower Missouri River

    Science.gov (United States)

    Jacobson, Robert B.

    2010-01-01

    Intensive management of the Missouri River for navigation, flood control, and power generation has resulted in substantial physical changes to the river corridor. Historically, the Missouri River was characterized by a shifting, multithread channel and abundant unvegetated sandbars. The shifting channel provided a wide variety of hydraulic environments and large areas of connected and unconnected off-channel water bodies.Beginning in the early 1800s and continuing to the present, the channel of the Lower Missouri River (downstream from Sioux City, Iowa) has been trained into a fast, deep, single-thread channel to stabilize banks and maintain commercial navigation. Wing dikes now concentrate the flow, and revetments and levees keep the channel in place and disconnect it from the flood plain. In addition, reservoir regulation of the Missouri River upstream of Yankton, South Dakota, has substantially changed the annual hydrograph, sediment loads, temperature regime, and nutrient budgets.While changes to the Missouri River have resulted in broad social and economic benefits, they have also been associated with loss of river-corridor habitats and diminished populations of native fish and wildlife species. Today, Missouri River stakeholders are seeking ways to restore some natural ecosystem benefits of the Lower Missouri River without compromising traditional economic uses of the river and flood plain.

  12. TRAC-PF1/MOD3 calculations of Savannah River Laboratory Rig FA single-annulus heated experiments

    International Nuclear Information System (INIS)

    Fischer, S.R.; McDaniel, C.K.

    1992-01-01

    This paper presents the results of TRAC-PF1/MOD3 benchmarks of the Rig FA experiments performed at the Savannah River Laboratory to simulate prototypic reactor fuel assembly behavior over a range of fluid conditions typical of the emergency cooling system (ECS) phase of a loss-of-coolant accident (LOCA). The primary purpose of this work was to use the SRL Rig FA tests to qualify the TRAC-PF1/MOD3 computer code and models for computing Mark-22 fuel assembly LOCA/ECS power limits. This qualification effort was part of a larger effort undertaken by the Los Alamos National Laboratory for the US Department of Energy to independently confirm power limits for the Savannah River Site K Reactor. The results of this benchmark effort as discussed in this paper demonstrate that TRAC/PF1/MOD3 coupled with proper modeling is capable of simulating thermal-hydraulic phenomena typical of that encountered in Mark-22 fuel assembly during LOCA/ECS conditions

  13. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Sather, Nichole K.; Johnson, Gary E.; Storch, Adam; Teel, David; Skalski, John R.; Jones, Tucker A.; Dawley, Earl M.; Zimmerman, Shon A.; Borde, Amy B.; Mallette, Christine; Farr, R.

    2009-05-29

    The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council’s Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington.

  14. Relative distribution and abundance of fishes and crayfish in 2010 and 2014 prior to saltcedar (Tamarix ssp.) removal in the Amargosa River Canyon, southeastern California

    Science.gov (United States)

    Hereford, Mark E.

    2016-07-22

    The Amargosa River Canyon, located in the Mojave Desert of southeastern California, contains the longest perennial reach of the Amargosa River. Because of its diverse flora and fauna, it has been designated as an Area of Critical Environmental Concern and a Wild and Scenic River by the Bureau of Land Management. A survey of fishes conducted in summer 2010 indicated that endemic Amargosa River pupfish (Cyprinodon nevadensis amargosae) and speckled dace (Rhinichthys osculus spp.) were abundant and occurred throughout the Amargosa River Canyon. The 2010 survey reported non-native red swamp crayfish (Procambarus clarkii) and western mosquitofish (Gambusia affinis) captures were significantly higher, whereas pupfish captures were lower, in areas dominated by non-native saltcedar (Tamarix ssp.). Based on the 2010 survey, it was hypothesized that the invasion of saltcedar could result in a decrease in native species. In an effort to maintain and enhance native fish populations, the Bureau of Land Management removed saltcedar from a 1,550 meter reach of stream on the Amargosa River in autumn 2014 and autumn 2015. Prior to the removal of saltcedar, a survey of fishes and crayfish using baited minnow traps was conducted in the treatment reach to serve as a baseline for future comparisons with post-saltcedar removal surveys. During the 2014 survey, 1,073 pupfish and 960 speckled dace were captured within the treatment reach. Catch per unit effort of pupfish and speckled dace in the treatment reach was less in 2014 than in 2010, although differences could be owing to seasonal variation in capture probability. Non-native mosquitofish catch per unit effort decreased from 2010 to 2014; however, the catch per unit effort of crayfish increased from 2010 to 2014. Future monitoring efforts of this reach should be conducted at the same time period to account for potential seasonal fluctuations of abundance and distribution of fishes and crayfish. A more robust study design that

  15. Addressing climate change impacts and trans-boundary agreements on the Columbia River

    International Nuclear Information System (INIS)

    Vaddey, S.

    2008-01-01

    Research is showing that climate change could systematically affect hydrologic variability in the Columbia River basin. Changes in winter temperatures and mountain snowpack could result in increased winter flow, earlier peak flows, and decreased spring and summer flow volumes. Model results also show that snowpack in the Canadian portion of the Columbia basin is less sensitive to warming in comparison to portions of the basin in the U.S. and in turn could 'unbalance' current coordination agreements. These hydrologic changes are likely to result in impacts to operation of Columbia River dams that will require ongoing adaptations as warming progresses. The U.S. Army Corps of Engineers (USACE) is responsible for management of many hydropower and flood control projects on the Columbia River and its tributaries, and are thus expected to play an integral role in planning for and adapting to climate change in the Basin. USACE has worked closely with the Bureau of Reclamation (Reclamation), Bonneville Power Administration (BPA), resource agencies (USFWS, and NMFS) and tribal interests in dealing with Columbia River operations. Within this collaborative process there have been efforts to look at climate change impacts in operations planning; however, the efforts are just getting underway and they are not strongly coordinated among the various stakeholders. As preparations are being made for renewal of the Columbia River Treaty between Canada and the U.S. it is clear to all participants that a coordinated and comprehensive approach to consider climate impacts is required. This paper argues for and provides a framework for the implementation of a new comprehensive climate impacts program coordinated by stakeholders on the Columbia River. Such a program would address questions such as: What is the current range of predicted changes to streamflow and resulting system power generation? Under what framework would decisions be made as to where and when mitigation or adaptation

  16. Coal rank, distribution and coalbed methane potential of the lower cretaceous luscar group, Bow River to Blackstone River, Central Alberta Foothills. Bulletin No. 473

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, F M

    1994-12-31

    Renewed interest in coal for alternative sources of energy such as coalbed methane have led to an expansion of exploration efforts into areas where the distribution and characterization of the coal resources is not well documented. This paper provides a geological compilation and assessment of the coal distribution and characterization of the Lower Cretaceous Luscar Group for the foothills area from the Bow River to Blackstone River in west-central Alberta. Included with the report are a series of geological maps and cross-sections that highlight the distribution of the coal-bearing strata and potential coalbed methane exploration targets. Field mapping of the area was carried out during the summers of 1988, 1989, and 1990.

  17. An ecological response model for the Cache la Poudre River through Fort Collins

    Science.gov (United States)

    Shanahan, Jennifer; Baker, Daniel; Bledsoe, Brian P.; Poff, LeRoy; Merritt, David M.; Bestgen, Kevin R.; Auble, Gregor T.; Kondratieff, Boris C.; Stokes, John; Lorie, Mark; Sanderson, John

    2014-01-01

    The Poudre River Ecological Response Model (ERM) is a collaborative effort initiated by the City of Fort Collins and a team of nine river scientists to provide the City with a tool to improve its understanding of the past, present, and likely future conditions of the Cache la Poudre River ecosystem. The overall ecosystem condition is described through the measurement of key ecological indicators such as shape and character of the stream channel and banks, streamside plant communities and floodplain wetlands, aquatic vegetation and insects, and fishes, both coolwater trout and warmwater native species. The 13- mile-long study area of the Poudre River flows through Fort Collins, Colorado, and is located in an ecological transition zone between the upstream, cold-water, steep-gradient system in the Front Range of the Southern Rocky Mountains and the downstream, warm-water, low-gradient reach in the Colorado high plains.

  18. Coho Salmon Master Plan, Clearwater River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Nez Perce Tribe; FishPro

    2004-10-01

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these

  19. Managing the Mississippi River floodplain: Achieving ecological benefits requires more than hydrological connection to the river: Chapter

    Science.gov (United States)

    Schramm, Harold; Richardson, William B.; Knights, Brent C.

    2015-01-01

    Floodplains are vital to the structure and function of river-floodplain ecosystems. Among the many ecological services provided by floodplains are nutrient cycling and seasonal habitats for fish, including spawning, nursery, foraging and wintering habitats. Connections between the river channel and floodplain habitats are essential to realize these ecological services, but spatial and temporal aspects of the connection and contemporary geomorphology must also be considered in restoration efforts. This chapter synthesizes available information to compare floodplain function and needed management strategies in two extensive reaches (upper impounded and lower free-flowing) of the Mississippi River, USA. The upper impounded reach is the 523-km reach from about Minneapolis, Minnesota to Clinton, Iowa. This reach has been impounded and channelized for navigation. Mean annual water-level fluctuation ranges from 1 to 2 m in the navigation pools in this reach. Floodplain environmental conditions that affect nitrogen cycling and fish production vary seasonally and longitudinally within and among navigation pools. Significant issues affecting ecological services include sedimentation, constrained water level fluctuations, island erosion and seasonal hypoxia. The lower free-flowing reach, the 1570-km reach from the confluence of the Ohio and Mississippi rivers to the Gulf of Mexico, has no dams and average annual fluctuations of 7 m throughout most of the reach. Despite the substantial flood pulse, floodplain inundation is often brief and may not occur annually. Significant issues affecting floodplain ecological function are the short duration and thermal asynchrony of the flood pulse, sedimentation and loss of connection between the river channel and permanent/semi-permanent floodplain water bodies due to channel incision. Needs and strategies for floodplain enhancement to increase ecological services, particularly nitrogen cycling and fish production, differ along the

  20. Flood-inundation maps for the Susquehanna River near Harrisburg, Pennsylvania, 2013

    Science.gov (United States)

    Roland, Mark A.; Underwood, Stacey M.; Thomas, Craig M.; Miller, Jason F.; Pratt, Benjamin A.; Hogan, Laurie G.; Wnek, Patricia A.

    2014-01-01

    A series of 28 digital flood-inundation maps was developed for an approximate 25-mile reach of the Susquehanna River in the vicinity of Harrisburg, Pennsylvania. The study was selected by the U.S. Army Corps of Engineers (USACE) national Silver Jackets program, which supports interagency teams at the state level to coordinate and collaborate on flood-risk management. This study to produce flood-inundation maps was the result of a collaborative effort between the USACE, National Weather Service (NWS), Susquehanna River Basin Commission (SRBC), The Harrisburg Authority, and the U.S. Geological Survey (USGS). These maps are accessible through Web-mapping applications associated with the NWS, SRBC, and USGS. The maps can be used in conjunction with the real-time stage data from the USGS streamgage 01570500, Susquehanna River at Harrisburg, Pa., and NWS flood-stage forecasts to help guide the general public in taking individual safety precautions and will provide local municipal officials with a tool to efficiently manage emergency flood operations and flood mitigation efforts. The maps were developed using the USACE HEC–RAS and HEC–GeoRAS programs to compute water-surface profiles and to delineate estimated flood-inundation areas for selected stream stages. The maps show estimated flood-inundation areas overlaid on high-resolution, georeferenced, aerial photographs of the study area for stream stages at 1-foot intervals between 11 feet and 37 feet (which include NWS flood categories Action, Flood, Moderate, and Major) and the June 24, 1972, peak-of-record flood event at a stage of 33.27 feet at the Susquehanna River at Harrisburg, Pa., streamgage.

  1. Fish assemblage structure and habitat associations in a large western river system

    Science.gov (United States)

    Smith, C.D.; Quist, Michael C.; Hardy, R. S.

    2016-01-01

    Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500-m river reaches was sampled repeatedly with several techniques (boat-mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non-native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non-native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species-specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems.

  2. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Vlaming, V. de [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States)]. E-mail: vldevlaming@ucdavis.edu; DiGiorgio, C. [Department of Water Resources, P.O. Box 942836, Sacramento, CA 94236 (United States); Fong, S. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Deanovic, L.A. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Paz Carpio-Obeso, M. de la [Colorado River Basin Region Water Quality Control Board, 73-720 Fred Waring Drive, Suite 100, Palm Desert, CA 92260 (United States); Miller, J.L. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Miller, M.J. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Richard, N.J. [Division of Water Quality, State Water Resources Control Board, 1001 I Street, Sacramento, CA 95814 (United States)

    2004-11-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California.

  3. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    International Nuclear Information System (INIS)

    Vlaming, V. de; DiGiorgio, C.; Fong, S.; Deanovic, L.A.; Paz Carpio-Obeso, M. de la; Miller, J.L.; Miller, M.J.; Richard, N.J.

    2004-01-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California

  4. Interoperability challenges in river discharge modelling: A cross domain application scenario

    Science.gov (United States)

    Santoro, Mattia; Andres, Volker; Jirka, Simon; Koike, Toshio; Looser, Ulrich; Nativi, Stefano; Pappenberger, Florian; Schlummer, Manuela; Strauch, Adrian; Utech, Michael; Zsoter, Ervin

    2018-06-01

    River discharge is a critical water cycle variable, as it integrates all the processes (e.g. runoff and evapotranspiration) occurring within a river basin and provides a hydrological output variable that can be readily measured. Its prediction is of invaluable help for many water-related tasks including water resources assessment and management, flood protection, and disaster mitigation. Observations of river discharge are important to calibrate and validate hydrological or coupled land, atmosphere and ocean models. This requires using datasets from different scientific domains (Water, Weather, etc.). Typically, such datasets are provided using different technological solutions. This complicates the integration of new hydrological data sources into application systems. Therefore, a considerable effort is often spent on data access issues instead of the actual scientific question. This paper describes the work performed to address multidisciplinary interoperability challenges related to river discharge modeling and validation. This includes definition and standardization of domain specific interoperability standards for hydrological data sharing and their support in global frameworks such as the Global Earth Observation System of Systems (GEOSS). The research was developed in the context of the EU FP7-funded project GEOWOW (GEOSS Interoperability for Weather, Ocean and Water), which implemented a "River Discharge" application scenario. This scenario demonstrates the combination of river discharge observations data from the Global Runoff Data Centre (GRDC) database and model outputs produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) predicting river discharge based on weather forecast information in the context of the GEOSS.

  5. Science to Manage a Very Rare Fish in a Very Large River - Pallid Sturgeon in the Missouri River, U.S.A.

    Science.gov (United States)

    Jacobson, R. B.; Colvin, M. E.; Marmorek, D.; Randall, M.

    2017-12-01

    The Missouri River Recovery Program (MRRP) seeks to revise river-management strategies to avoid jeopardizing the existence of three species: pallid sturgeon (Scaphirhynchus albus), interior least tern (Sterna antillarum)), and piping plover (Charadrius melodus). Managing the river to maintain populations of the two birds (terns and plovers) is relatively straightforward: reproductive success can be modeled with some certainty as a direct, increasing function of exposed sandbar area. In contrast, the pallid sturgeon inhabits the benthic zone of a deep, turbid river and many parts of its complex life history are not directly observable. Hence, pervasive uncertainties exist about what factors are limiting population growth and what management actions may reverse population declines. These uncertainties are being addressed by the MRRP through a multi-step process. The first step was an Effects Analysis (EA), which: documented what is known and unknown about the river and the species; documented quality and quantity of existing information; used an expert-driven process to develop conceptual ecological models and to prioritize management hypotheses; and developed quantitative models linking management actions (flows, channel reconfigurations, and stocking) to population responses. The EA led to development of a science and adaptive-management plan with prioritized allocation of investment among 4 levels of effort ranging from fundamental research to full implementation. The plan includes learning from robust, hypothesis-driven effectiveness monitoring for all actions, with statistically sound experimental designs, multiple metrics, and explicit decision criteria to guide management. Finally, the science plan has been fully integrated with a new adaptive-management structure that links science to decision makers. The reinvigorated investment in science stems from the understanding that costly river-management decisions are not socially or politically supportable without

  6. SAVANNAH RIVER ENVIRONMENTAL REPORT FOR 2006

    International Nuclear Information System (INIS)

    Mamatey, A

    2007-01-01

    The ''Savannah River Site Environmental Report for 2006'' (WSRC-TR-2007-00008) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: present summary environmental data that characterize site environmental management performance; confirm compliance with environmental standards and requirements; highlight significant programs and efforts; and assess the impact of SRS operations on the public and the environment

  7. Criticality safety engineering at the Savannah River Site - the 1990s

    International Nuclear Information System (INIS)

    Chandler, J.R.; Apperson, C.E. Jr.

    1996-01-01

    The privatization and downsizing effort that is ongoing within the U.S. Department of Energy (DOE) is requiring a change in the management of criticality safety engineering resources at the Savannah River Site (SRS). Downsizing affects the number of criticality engineers employed by the prime contractor, Westinghouse Savannah River Company (WSRC), and privatization affects the manner in which business is conducted. In the past, criticality engineers at the SRS have been part of the engineering organizations that support each facility handling fissile material. This practice led to different criticality safety engineering organizations dedicated to fuel fabrication activities, reactor loading and unloading activities, separation and waste management operations, and research and development

  8. Can data from disparate long-term fish monitoring programs be used to increase our understanding of regional and continental trends in large river assemblages?

    Science.gov (United States)

    Waite, Ian R.; Casper, Andrew F.; Ward, David L.; Sauer, Jennifer S.; Irwin, Elise R.; Chapman, Colin G.; Ickes, Brian S.; Paukert, Craig P.; Kosovich, John J.; Bayer, Jennifer M.

    2018-01-01

    Understanding trends in the diverse resources provided by large rivers will help balance tradeoffs among stakeholders and inform strategies to mitigate the effects of landscape scale stressors such as climate change and invasive species. Absent a cohesive coordinated effort to assess trends in important large river resources, a logical starting point is to assess our ability to draw inferences from existing efforts. In this paper, we use a common analytical framework to analyze data from five disparate fish monitoring programs to better understand the nature of spatial and temporal trends in large river fish assemblages. We evaluated data from programs that monitor fishes in the Colorado, Columbia, Illinois, Mississippi, and Tallapoosa rivers using non-metric dimensional scaling ordinations and associated tests to evaluate trends in fish assemblage structure and native fish biodiversity. Our results indicate that fish assemblages exhibited significant spatial and temporal trends in all five of the rivers. We also document native species diversity trends that were variable within and between rivers and generally more evident in rivers with higher species richness and programs of longer duration. We discuss shared and basin-specific landscape level stressors. Having a basic understanding of the nature and extent of trends in fish assemblages is a necessary first step towards understanding factors affecting biodiversity and fisheries in large rivers. PMID:29364953

  9. Can data from disparate long-term fish monitoring programs be used to increase our understanding of regional and continental trends in large river assemblages?

    Science.gov (United States)

    Counihan, Timothy D.; Waite, Ian R.; Casper, Andrew F.; Ward, David L.; Sauer, Jennifer S.; Irwin, Elise R.; Chapman, Colin G.; Ickes, Brian; Paukert, Craig P.; Kosovich, John J.; Bayer, Jennifer M.

    2018-01-01

    Understanding trends in the diverse resources provided by large rivers will help balance tradeoffs among stakeholders and inform strategies to mitigate the effects of landscape scale stressors such as climate change and invasive species. Absent a cohesive coordinated effort to assess trends in important large river resources, a logical starting point is to assess our ability to draw inferences from existing efforts. In this paper, we use a common analytical framework to analyze data from five disparate fish monitoring programs to better understand the nature of spatial and temporal trends in large river fish assemblages. We evaluated data from programs that monitor fishes in the Colorado, Columbia, Illinois, Mississippi, and Tallapoosa rivers using non-metric dimensional scaling ordinations and associated tests to evaluate trends in fish assemblage structure and native fish biodiversity. Our results indicate that fish assemblages exhibited significant spatial and temporal trends in all five of the rivers. We also document native species diversity trends that were variable within and between rivers and generally more evident in rivers with higher species richness and programs of longer duration. We discuss shared and basin-specific landscape level stressors. Having a basic understanding of the nature and extent of trends in fish assemblages is a necessary first step towards understanding factors affecting biodiversity and fisheries in large rivers.

  10. Water Quality Trends in the Entiat River Watershed: 2007–2010

    Science.gov (United States)

    Richard D. Woodsmith; Pamela K. Wilkins; Andy Bookter

    2013-01-01

    A large, multiagency effort is underway in the interior Columbia River basin (ICRB) to restore salmon, trout, and char listed as threatened or endangered under the 1973 federal Endangered Species Act. Water quantity and quality are widely recognized as important components of habitat for these depleted salmonid populations. There is also broad concern about...

  11. Snake River Sockeye Salmon Habitat and Limnological Research; 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Teuscher, David (Shoshone-Bannock Tribes, Fort Hall, ID); Wurtsbaugh, Wayne A. (Utah State University, Department of Fisheries and Wildlife, Ecology Center and Watershed Science Unit); Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID)

    1994-06-01

    In 1990 the Shoshone-Bannock Tribes (SBT) petitioned the National Marine Fisheries Service (NMFS) to list Snake River Sockeye salmon as endangered. As a result, Snake River Sockeye were listed and the Bonneville Power Administration (BPA) began funding efforts to enhance sockeye stocks. Recovery efforts include development of a brood stock program, genetics work, describing fish community dynamics in rearing lakes, and completing limnology studies. The SBT, in cooperation with Idaho Department of Fish and Game (IDFG), are directing fish community and limnology studies. IDFG is managing the brood stock program. The University of Idaho and NMFS are completing genetics work. Part I of this document is the SBT 1993' annual report that describes findings related to fish community research. Part II is a document completed by Utah State University (USU). The SBT subcontracted USU to complete a limnology investigation on the Sawtooth Valley Lakes. Management suggestions in Part II are those of USU and are not endorsed by the SBT and may not reflect the opinions of SBT biologists.

  12. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS : Appendices.

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described. The document concludes with an evaluation of the potential effects that could result from implementing proposed actions. The conclusions are based on evaluation of existing data, utilization of numerical models, and application of logical inference. This volume contains the appendices.

  13. 1992 Columbia River salmon flow measures Options Analysis/EIS: Appendices

    International Nuclear Information System (INIS)

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described. The document concludes with an evaluation of the potential effects that could result from implementing proposed actions. The conclusions are based on evaluation of existing data, utilization of numerical models, and application of logical inference. This volume contains the appendices

  14. Habitat assessment of non-wadeable rivers in Michigan.

    Science.gov (United States)

    Wilhelm, Jennifer G O; Allan, J David; Wessell, Kelly J; Merritt, Richard W; Cummins, Kenneth W

    2005-10-01

    Habitat evaluation of wadeable streams based on accepted protocols provides a rapid and widely used adjunct to biological assessment. However, little effort has been devoted to habitat evaluation in non-wadeable rivers, where it is likely that protocols will differ and field logistics will be more challenging. We developed and tested a non-wadeable habitat index (NWHI) for rivers of Michigan, where non-wadeable rivers were defined as those of order >or=5, drainage area >or=1600 km2, mainstem lengths >or=100 km, and mean annual discharge >or=15 m3/s. This identified 22 candidate rivers that ranged in length from 103 to 825 km and in drainage area from 1620 to 16,860 km2. We measured 171 individual habitat variables over 2-km reaches at 35 locations on 14 rivers during 2000-2002, where mean wetted width was found to range from 32 to 185 m and mean thalweg depth from 0.8 to 8.3 m. We used correlation and principal components analysis to reduce the number of variables, and examined the spatial pattern of retained variables to exclude any that appeared to reflect spatial location rather than reach condition, resulting in 12 variables to be considered in the habitat index. The proposed NWHI included seven variables: riparian width, large woody debris, aquatic vegetation, bottom deposition, bank stability, thalweg substrate, and off-channel habitat. These variables were included because of their statistical association with independently derived measures of human disturbance in the riparian zone and the catchment, and because they are considered important in other habitat protocols or to the ecology of large rivers. Five variables were excluded because they were primarily related to river size rather than anthropogenic disturbance. This index correlated strongly with indices of disturbance based on the riparian (adjusted R2 = 0.62) and the catchment (adjusted R2 = 0.50), and distinguished the 35 river reaches into the categories of poor (2), fair (19), good (13), and

  15. Practical Application of Modern Forecasting and Decision Tools at an Operational River Management Agency

    Science.gov (United States)

    Jawdy, C. M.; Carney, S.; Barber, N. M.; Balk, B. C.; Miller, G. A.

    2017-12-01

    The Tennessee Valley Authority (TVA) recently completed a complete overhaul of our River Forecast System (RFS). This modernization effort encompassed: uplift or addition of 89 data feeds calibration of a 140 subbasin rainfall-runoff model calibration of over 650 miles of hydraulic routings implementation of a decision optimization routine for 29 reservoirs implementation of hydrothermal forecast models for five river-cooled thermal plants creation of decision-friendly displays creation of a user-friendly wiki creation of a robust reporting system This talk will walk attendees through how a 24x7 river and grid management agency made decisions around how to operationalize the latest technologies in hydrology, hydraulics, decision science and information technology. The tradeoffs inherent in such an endeavor will be discussed so that research-oriented attendees can understand how best to align their research if they desire adoption within industry. More industry-oriented attendees can learn about the mechanics of how to succeed at such a large and complex project. Following the description of the modernization project, I can discuss TVA's plans for future growth of the system. We plan to add the following capabilities in the coming years: forecast verification tools to communicate floodplain risk tools to choose the best possible model forcings ensemble inflow modelling a river policy that allows for more reasonable tradeoff of benefits river decisions based on ensembles The iterative staging of such improvements is highly fraught with technical, political and operational risks. I will discuss how TVA's is using what we learned in the RFS modernization effort to grow further into delivering on the promise of these additional technologies.

  16. The Colorado River and its deposits downstream from Grand Canyon in Arizona, California, and Nevada

    Science.gov (United States)

    Crow, Ryan S.; Block, Debra L.; Felger, Tracey J.; House, P. Kyle; Pearthree, Philip A.; Gootee, Brian F.; Youberg, Ann M.; Howard, Keith A.; Beard, L. Sue

    2018-02-05

    Understanding the evolution of the Colorado River system has direct implications for (1) the processes and timing of continental-scale river system integration, (2) the formation of iconic landscapes like those in and around Grand Canyon, and (3) the availability of groundwater resources. Spatial patterns in the position and type of Colorado River deposits, only discernible through geologic mapping, can be used to test models related to Colorado River evolution. This is particularly true downstream from Grand Canyon where ancestral Colorado River deposits are well-exposed. We are principally interested in (1) regional patterns in the minimum and maximum elevation of each depositional unit, which are affected by depositional mechanism and postdepositional deformation; and (2) the volume of each unit, which reflects regional changes in erosion, transport efficiency, and accommodation space. The volume of Colorado River deposits below Grand Canyon has implications for groundwater resources, as the primary regional aquifer there is composed of those deposits. To this end, we are presently mapping Colorado River deposits and compiling and updating older mapping. This preliminary data release shows the current status of our mapping and compilation efforts. We plan to update it at regular intervals in conjunction with ongoing mapping.

  17. Savannah River Site generic data base development

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report describes the results of a project to improve the generic component failure database for the Savannah River Site (SRS). Additionally, guidelines were developed further for more advanced applications of database values. A representative list of components and failure modes for SRS risk models was generated by reviewing existing safety analyses and component failure data bases and from suggestions from SRS safety analysts. Then sources of data or failure rate estimates were identified and reviewed for applicability. A major source of information was the Nuclear Computerized Library for Assessing Reactor Reliability, or NUCLARR. This source includes an extensive collection of failure data and failure rate estimates for commercial nuclear power plants. A recent Idaho National Engineering Laboratory report on failure data from the Idaho Chemical Processing Plant was also reviewed. From these and other recent sources, failure data and failure rate estimates were collected for the components and failure modes of interest. For each component failure mode, this information was aggregated to obtain a recommended generic failure rate distribution (mean and error factor based on a lognormal distribution). Results are presented in a table in this report. A major difference between generic database and previous efforts is that this effort estimates failure rates based on actual data (failure events) rather than on existing failure rate estimates. This effort was successful in that over 75% of the results are now based on actual data. Also included is a section on guidelines for more advanced applications of failure rate data. This report describes the results of a project to improve the generic component failure database for the Savannah River site (SRS). Additionally, guidelines were developed further for more advanced applications of database values

  18. Remediating and Monitoring White Phosphorus Contamination at Eagle River Flats (Operable Unit C), Fort Richardson, Alaska

    National Research Council Canada - National Science Library

    Walsh, M. E; Racine, C. H; Collins, C. M; Walsh, M. R; Bailey, R. N

    2001-01-01

    .... Army Engineer District, Alaska, and U.S. Army Alaska, Public Works, describing the results of research, monitoring, and remediation efforts addressing the white phosphorus contamination in Eagle River Flats, an 865-ha estuarine salt marsh...

  19. Changes in freshwater mussel communities linked to legacy pollution in the Lower Delaware River

    Science.gov (United States)

    Blakeslee, Carrie J.; Silldorff, Erik L.; Galbraith, Heather S.

    2018-01-01

    Freshwater mussels are among the most-imperiled organisms worldwide, although they provide a variety of important functions in the streams and rivers they inhabit. Among Atlantic-slope rivers, the Delaware River is known for its freshwater mussel diversity and biomass; however, limited data are available on the freshwater mussel fauna in the lower, non-tidal portion of the river. This section of the Delaware River has experienced decades of water-quality degradation from both industrial and municipal sources, primarily as a function of one of its major tributaries, the Lehigh River. We completed semi-quantitative snorkel surveys in 53.5 of the 121 km of the river to document mussel community composition and the continued impacts from pollution (particularly inputs from the Lehigh River) on mussel fauna. We detected changes in mussel catch per unit effort (CPUE) below the confluence of the Lehigh River, with significant declines in the dominant species Elliptio complanata (Eastern Elliptio) as we moved downstream from its confluence—CPUE dropped from 179 to 21 mussels/h. Patterns in mussel distribution around the Lehigh confluence matched chemical signatures of Lehigh water input. Specifically, Eastern Elliptio CPUE declined more quickly moving downstream on the Pennsylvania bank, where Lehigh River water input was more concentrated compared to the New Jersey bank. A definitive causal link remains to be established between the Lehigh River and the dramatic shifts in mussel community composition, warranting continued investigation as it relates to mussel conservation and restoration in the basin.

  20. Simple Words and Fuzzy Zones: Early Directions for Temporary River Research in South Africa

    Science.gov (United States)

    Uys; O'Keeffe

    1997-07-01

    / Although a large proportion of South Africa's rivers are nonperennial, ecological research into these systems has only recently been initiated. Consequently, we have little verified information about the ecological functioning of these rivers or knowledge of how best to manage them. High water demands in a semiarid region results in the flow of most perennial rivers being altered from permanent to temporary in sections, through impoundment, land-use changes, abstraction, etc. Conversely, sections of many temporary rivers are altered to perennial as a result of interbasin transfers or may be exploited for surface water. Effective and appropriate management of these modifications must be based on sound scientific information, which requires intensified, directed research. We anticipate that temporary river research in South Africa will, of necessity, be driven primarily by short-term collaborative efforts and secondarily by long-term ecological studies. At the outset, a simple conceptual framework is required to encourage an appreciation of current views of the spatial and temporal dynamics of nonperennial rivers and of the variability and unpredictability that characterize these systems. We adopt the view that perennial and episodic/ephemeral rivers represent either end of a continuum, separated by a suite of intermediate flow regimes. A conceptual diagram of this continuum is presented. In the absence of a functional classification for temporary rivers, a descriptive terminology has been systematically devised in an attempt to standardize definition of the different types of river regimes encountered in the country. Present terminology lacks structure and commonly accepted working definitions. KEY WORDS: Temporary rivers; Intermittent rivers; Continuum; Terminology; Classification; Ecosystem management; South Africa

  1. Methow River Studies, Washington: abundance estimates from Beaver Creek and the Chewuch River screw trap, methodology testing in the Whitefish Island side channel, and survival and detection estimates from hatchery fish releases, 2013

    Science.gov (United States)

    Martens, Kyle D.; Fish, Teresa M.; Watson, Grace A.; Connolly, Patrick J.

    2014-01-01

    Salmon and steelhead populations have been severely depleted in the Columbia River from factors such as the presence of tributary dams, unscreened irrigation diversions, and habitat degradation from logging, mining, grazing, and others (Raymond, 1988). The U.S. Geological Survey (USGS) has been funded by the Bureau of Reclamation (Reclamation) to provide evaluation of on-going Reclamation funded efforts to recover Endangered Species Act (ESA) listed anadromous salmonid populations in the Methow River watershed, a watershed of the Columbia River in the Upper Columbia River Basin, in north-central Washington State (fig. 1). This monitoring and evaluation program was funded to document Reclamation’s effort to partially fulfill the 2008 Federal Columbia River Power System Biological Opinion (BiOp) (National Oceanographic and Atmospheric Administration, Fisheries Division 2003). This Biological Opinion includes Reasonable and Prudent Alternatives (RPA) to protect listed salmon and steelhead across their life cycle. Species of concern in the Methow River include Upper Columbia River (UCR) spring Chinook salmon (Oncorhynchus tshawytscha), UCR summer steelhead (O. mykiss), and bull trout (Salvelinus confluentus), which are all listed as threatened or endangered under the ESA. The work done by the USGS since 2004 has encompassed three phases of work. The first phase started in 2004 and continued through 2012. This first phase involved the evaluation of stream colonization and fish production in Beaver Creek following the modification of several water diversions (2000–2006) that were acting as barriers to upstream fish movement. Products to date from this work include: Ruttenburg (2007), Connolly and others (2008), Martens and Connolly (2008), Connolly (2010), Connolly and others (2010), Martens and Connolly (2010), Benjamin and others (2012), Romine and others (2013a), Weigel and others (2013a, 2013b, 2013c), and Martens and others (2014). The second phase, initiated in

  2. Bioassessment metrics and deposited sediments in tributaries of the Chattooga river watershed

    Science.gov (United States)

    Erica Chiao; J. Bruce Wallace

    2003-01-01

    Excessive sedimentation places waters of the Chattooga River network at risk of biological impairment. Monitoring efforts could be improved by including metrics that are responsive to changes in levels of fine sediments. We sampled three habitats (riffle, depositional, bedrock outcrop) for benthic macroinvertebrates at four sites in three low-order, tributary reaches...

  3. Kankakee River Basin: Evaluation of Sediment Management Strategies

    Science.gov (United States)

    2013-09-01

    basin, and development of a SIAM model from an existing US Army Corps of Engineers Hydrologic Engineering Center, River Analysis System ( HEC - RAS ...4 SIAM Model A SIAM model was developed from an existing calibrated HEC - RAS model provided by the Rock Island District. The limits of the HEC - RAS ...model are shown in Figure 4.1. No further effort was made to verify the calibration of the HEC - RAS model. The estimated sediment loads were used to

  4. River plume patterns and dynamics within the Southern California Bight

    Science.gov (United States)

    Warrick, J.A.; DiGiacomo, P.M.; Weisberg, S.B.; Nezlin, N.P.; Mengel, M.; Jones, B.H.; Ohlmann, J.C.; Washburn, L.; Terrill, E.J.; Farnsworth, K.L.

    2007-01-01

    Stormwater river plumes are important vectors of marine contaminants and pathogens in the Southern California Bight. Here we report the results of a multi-institution investigation of the river plumes across eight major river systems of southern California. We use in situ water samples from multi-day cruises in combination with MODIS satellite remote sensing, buoy meteorological observations, drifters, and HF radar current measurements to evaluate the dispersal patterns and dynamics of the freshwater plumes. River discharge was exceptionally episodic, and the majority of storm discharge occurred in a few hours. The combined plume observing techniques revealed that plumes commonly detach from the coast and turn to the left, which is the opposite direction of Coriolis influence. Although initial offshore velocity of the buoyant plumes was ∼50 cm/s and was influenced by river discharge inertia (i.e., the direct momentum of the river flux) and buoyancy, subsequent advection of the plumes was largely observed in an alongshore direction and dominated by local winds. Due to the multiple day upwelling wind conditions that commonly follow discharge events, plumes were observed to flow from their respective river mouths to down-coast waters at rates of 20–40 km/d. Lastly, we note that suspended-sediment concentration and beam-attenuation were poorly correlated with plume salinity across and within the sampled plumes (mean r2=0.12 and 0.25, respectively), while colored dissolved organic matter (CDOM) fluorescence was well correlated (mean r2=0.56), suggesting that CDOM may serve as a good tracer of the discharged freshwater in subsequent remote sensing and monitoring efforts of plumes.

  5. Ohio River backwater flood-inundation maps for the Saline and Wabash Rivers in southern Illinois

    Science.gov (United States)

    Murphy, Elizabeth A.; Sharpe, Jennifer B.; Soong, David T.

    2012-01-01

    Digital flood-inundation maps for the Saline and Wabash Rivers referenced to elevations on the Ohio River in southern Illinois were created by the U.S. Geological Survey (USGS). The inundation maps, accessible through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Ohio River at Old Shawneetown, Illinois-Kentucky (station number 03381700). Current gage height and flow conditions at this USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?03381700. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That NWS forecasted peak-stage information, also shown on the Ohio River at Old Shawneetown inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, eight water-surface elevations were mapped at 5-foot (ft) intervals referenced to the streamgage datum ranging from just above the NWS Action Stage (31 ft) to above the maximum historical gage height (66 ft). The elevations of the water surfaces were compared to a Digital Elevation Model (DEM) by using a Geographic Information System (GIS) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage heights from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  6. DOE's environmental restoration program for the Clinch River and Watts Bar Reservoir

    International Nuclear Information System (INIS)

    Kimmel, B.

    1992-01-01

    Operations and waste disposal activities at the Y-12 Plant, the K-25 Site,and the Oak Ridge National Laboratory (ORNL) on the U.S. Department of Energy's Oak Ridge Reservation (ORR) have introduced a variety of contaminants (radionuclides, metals, and organic compounds) into off-site surface waters since the early 1940s, The Clinch River and Watts Bar Reservoir are located downstream from the ORR. A comprehensive remedial investigation (the Clinch River Remedial Investigation) of off-site surface water contamination at Oak Ridge is now being conducted in compliance with the Resource Conservation and Recovery Act and Comprehensive Environmental Response, Compensation, and Liability Act requirements. The objectives of the Clinch River Remedial Investigation (CRRI) are to: (1) define the nature and extent of off-site surface water contamination, (2) quantify the potential risks to human health and the environment associated with off-site contamination, and (3) identify and preliminarily evaluate potential remediation alternatives. The CRRI is being conducted in three phases: (1) scoping studies, in which preassessment studies based on existing data and limited sampling were conducted to preliminarily estimate the nature and extent of the problem; (2) Phase 1, in which limited sampling and risk analyses are conducted to define specifically the distributions of the contaminants of concern and the environmental and human health risks associated with the contamination. These phases allow a progressive focusing of assessment efforts on specific contaminants, pathways, and sites contributing to risk and on the evaluation of potential remediation alternatives. A brief overview of the Clinch River RI is presented, followed by a description of on going efforts to achieve control of contaminated sediments located in the White Oak Creek Embayment

  7. Protocols for Monitoring Habitat Restoration Projects in the Lower Columbia River and Estuary

    Energy Technology Data Exchange (ETDEWEB)

    Roegner, G. Curtis; Diefenderfer, Heida L.; Borde, Amy B.; Thom, Ronald M.; Dawley, Earl M.; Whiting, Allan H.; Zimmerman, Shon A.; Johnson, Gary E.

    2008-04-25

    Protocols for monitoring salmon habitat restoration projects are essential for the U.S. Army Corps of Engineers' environmental efforts in the Columbia River estuary. This manual provides state-of-the science data collection and analysis methods for landscape features, water quality, and fish species composition, among others.

  8. Integrated Status and Effectiveness Monitoring Program - Entiat River Snorkel Surveys, 2006-2007.

    Energy Technology Data Exchange (ETDEWEB)

    Nelle, R.D.

    2007-10-01

    The USFWS Mid-Columbia River Fishery Resource Office conducted snorkel surveys at 11 sites during the summer 2006 survey period and at 15 sites during fall 2006 and winter 2007 survey periods as part of the Integrated Status and Effectiveness Monitoring Program in the Entiat River. A total of 39,898 fish from 14 species/genera and an unknown category were enumerated. Chinook salmon were the overall most common fish observed and comprised 19% of fish enumerated followed by mountain whitefish (18%) and rainbow trout (14%). Day and night surveys were conducted during the summer 2006 period (August), while night surveys were conducted during the fall 2006 (October) and winter 2007 (February/March) surveys. This is second annual progress report to Bonneville Power Administration for the snorkel surveys conducted in the Entiat River as related to long-term effectiveness monitoring of restoration programs in this watershed. The objective of this study is to monitor the fish habitat utilization of planned in-stream restoration efforts in the Entiat River by conducting pre- and post-construction snorkel surveys at selected treatment and control sites.

  9. 2010 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    C. T. Lindsey, A. L. Johnson

    2010-09-30

    This report documents eh status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with CERLA cleanup of National Priorities List waste sites at Hanford. This report contains vegetation monitoring data that were collected in the spring and summer of 2010 from the River Corridor Closure Contract’s revegetation and mitigation areas on the Hanford Site.

  10. Recovery of plutonium from electrorefining anode heels at Savannah River

    International Nuclear Information System (INIS)

    Gray, J.H.; Gray, L.W.; Karraker, D.G.

    1987-03-01

    In a joint effort, the Savannah River Laboratory (SRL), Savannah River Plant (SRP), and the Rocky Flats Plant (RFP) have developed two processes to recover plutonium from electrorefining anode heel residues. Aqueous dissolution of anode heel metal was demonstrated at SRL on a laboratory scale and on a larger pilot scale using either sulfamic acid or nitric acid-hydrazine-fluoride solutions. This direct anode heel metal dissolution requires the use of a geometrically favorable dissolver. The second process developed involves first diluting the plutonium in the anode heel residues by alloying with aluminum. The alloyed anode heel plutonium can then be dissolved using a nitric acid-fluoride-mercury(II) solution in large non-geometrically favorable equipment where nuclear safety is ensured by concentration control

  11. Quantifying Changes in Los Angeles River Breakout Triggered by Sea Level Rise Using a Hydrodynamic Model

    Science.gov (United States)

    Mallakpour, I.; Shakeri Majd, M.; AghaKouchak, A.; Moftakhari, H.; Sadegh, M.; Vahedifard, F.

    2017-12-01

    Sea Level Rise (SLR) has been identified as a global phenomenon that will challenge coastal communities and infrastructures through escalating risk of erosion and subsidence, as well as elevating storm surge heights. Overall, SLR not only increases frequency of future coastal flooding in low-land coastal areas, but also changes flow dynamics in rivers connected to oceans. Changes in flow dynamics (e.g., peaks, flow intensities) can elevate water surface profile locally, leading to river breakout and flooding. Quantifying river breakout provides invaluable information to local authorities when it comes to SLR mitigation and adaptation efforts. Los Angeles River (LAR) which is located in southern part of California is protected with levee systems. The focus of this study is about 18 miles of the river, starting from Pacific Ocean to Downtown Los Angeles, which protects residence and major infrastructures. We use the Hydrologic Engineering Center's River Analysis System (HEC-RAS) to simulate flow and its interactions with coastal water levels. HEC-RAS is capable of simulating flow in one- and two-dimensional systems, resolving Diffusive Wave Equation and Shallow Water Equation, respectively. In this study, the hydraulic model consists of one- and two-dimensional models connected through the LAR's levee system. This approach enables us to identify the onset of river breakout location alongside the LAR. The inflow data incorporated into the model obtained from a gage records and represents a significant event occurred in February 2005. This model utilizes a detail terrain model with 0.3 m LiDAR data. In order to explore effects of SLR associated with future climate changes on LAR and its levee system, two Representative Concentration Pathways (RCP of 4.5 and 8.5) are considered. Based on our RCPs, 24 projected SLRs are computed for future years (2030, 2050, and 2100) for three different quantiles. Our simulation results show SLR, which varies from 0.05 to 2.8 m, causes

  12. [Health assessment of river ecosystem in Haihe River Basin, China].

    Science.gov (United States)

    Hao, Li-Xia; Sun, Ran-Hao; Chen, Li-Ding

    2014-10-01

    With the development of economy, the health of river ecosystem is severely threatened because of the increasing effects of human activities on river ecosystem. In this paper, the authors assessed the river ecosystem health in aspects of chemical integrity and biological integrity, using the criterion in water quality, nutrient, and benthic macroinvertebrates of 73 samples in Haihe River Basin. The research showed that the health condition of river ecosystem in Haihe River Basin was bad overall since the health situation of 72. 6% of the samples was "extremely bad". At the same time, the health situation in Haihe River Basin exhibited obvious regional gathering effect. We also found that the river water quality was closely related to human activities, and the eutrophication trend of water body was evident in Haihe River Basin. The biodiversity of the benthic animal was low and lack of clean species in the basin. The indicators such as ammonia nitrogen, total nitrogen and total phosphorus were the key factors that affected the river ecosystem health in Haihe River Basin, so the government should start to curb the deterioration of river ecosystem health by controlling these nutrients indicators. For river ecosystem health assessment, the multi-factors comprehensive evaluation method was superior to single-factor method.

  13. River habitat assessment for ecological restoration of Wei River Basin, China.

    Science.gov (United States)

    Yang, Tao; Wang, Shuo; Li, Xiaoping; Wu, Ting; Li, Li; Chen, Jia

    2018-04-11

    As an important composition component of river ecosystems, river habitats must undergo quality assessment to potentially provide scientific basis for river ecological restoration. Substrate composition, habitat complexity, bank erosion degree, river meandering degree, human activity intensity, vegetation buffer width, water quality, and water condition were determined as indicators for river habitat assessment. The comprehensive habitat quality index (CHQI) was established for the Wei River Basin. In addition, the indicator values were determined on the basis of a field investigation at 12 national hydrological stations distributed across the Wei, Jing, and Beiluo Rivers. The analytic hierarchy process was used to determine the indicator weights and thus distinguish the relative importance of the assessment indicator system. Results indicated that the average CHQIs for the Wei, Jing, and Beiluo Rivers were 0.417, 0.508, and 0.304, respectively. The river habitat quality for the three rivers was well. As for the whole river basin, the river habitat quality for 25% of the cross section was very well, the other 25% was well, and the 50% remaining was in critical state. The river habitat quality of the Jing River was better than that of the Wei and Beiluo Rivers.

  14. The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Rumsey, C.; Miller, M. P.; Schwarz, G. E.; Susong, D.

    2017-12-01

    Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity (dissolved solids) loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in baseflow, or groundwater discharge to streams, to assess whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate long-term mean annual baseflow discharge and baseflow dissolved solids loads at stream gages (n=69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow. Additionally, a statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams with data from 1987 to 2011 (n=29). About two-thirds (62%) of these streams showed statistically significant decreasing trends in baseflow dissolved solids loads. At the two most downstream sites, Green River at Green River, UT and Colorado River at Cisco, UT, baseflow dissolved solids loads decreased by a combined 780,000 metric tons, which is approximately 65% of the estimated basin-scale decrease in total dissolved solids loads in the UCRB attributed to salinity control efforts. Results indicate that groundwater discharged to streams, and therefore subsurface transport processes, play a large role in delivering dissolved solids to streams in the UCRB. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, changes in land use, and/or climate are

  15. An environmental streamflow assessment for the Santiam River basin, Oregon

    Science.gov (United States)

    Risley, John C.; Wallick, J. Rose; Mangano, Joseph F.; Jones, Krista L.

    2012-01-01

    framework for assessing possible geomorphic and ecological changes in response to river-flow modifications. Suggestions for future biomonitoring and investigations are also provided. This study was one in a series of similar tributary streamflow and geomorphic studies conducted for the Willamette Sustainable Rivers Project. The Sustainable Rivers Project is a national effort by the USACE and The Nature Conservancy to develop environmental flow requirements in regulated river systems.

  16. Beach morphology monitoring in the Elwha River Littoral Cell, 2004-2009

    Science.gov (United States)

    Warrick, Jonathon A.; George, Douglas A.; Stevens, Andrew W.; Eshleman, Jodi; Gelfenbaum, Guy; Kaminsky, George M.; Schwartz, Andrew K.; Bierne, Matt

    2007-01-01

    This report describes the methods used, data collected, and results of the Beach Morphology Monitoring Program in the Elwha River Littoral Cell, starting in 2004. The U.S. Geological Survey and the Washington State Department of Ecology collaborated in the data collection with the support of the local Lower Elwha Klallam Tribe. Beach monitoring efforts consisted of collecting topographic and bathymetric horizontal and vertical position data by using a Real Time Kinematic Differential Global Positioning System (RTK-DGPS). The monitoring program was designed to characterize the littoral system of the Elwha River before the scheduled removal of two large dams in 2012. A primary objective of this work is to quantitatively describe the topography and bathymetry of the Elwha River littoral system so that the effects of dam removal may be quantified. Sediment inputs following dam removal are hypothesized to result in (A) larger amounts of fine sediment grain-sizes entering the littoral system and, (B) a reduction or reversal of coastal erosion.

  17. SAVANNAH RIVER ENVIRONMENTAL REPORT FOR 2006

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A

    2007-08-22

    The ''Savannah River Site Environmental Report for 2006'' (WSRC-TR-2007-00008) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: present summary environmental data that characterize site environmental management performance; confirm compliance with environmental standards and requirements; highlight significant programs and efforts; and assess the impact of SRS operations on the public and the environment.

  18. Rivers, Rockets and Readiness: Army Engineers in the Sunbelt

    Science.gov (United States)

    1979-01-01

    at Proctor Lake. 138 Water sports are enjoyed at Benbrook Lake. 139 The powerhouse at Sam Rayburn Dam and Reservoir. 140 Amistad Dam - a...for the Fort Worth District. Th~ Fort Worth District designed the United States portion of the Amistad Dam--a cooperative effort with Mexico on the...Antonio Resident Office.17 Adding to the workload was the Amistad Dam located on the Rio Grande River about twelve miles above Del Rio, Texas. The

  19. Population trends, bend use relative to available habitat and within-river-bend habitat use of eight indicator species of Missouri and Lower Kansas River benthic fishes: 15 years after baseline assessment

    Science.gov (United States)

    Wildhaber, Mark L.; Yang, Wen-Hsi; Arab, Ali

    2016-01-01

    A baseline assessment of the Missouri River fish community and species-specific habitat use patterns conducted from 1996 to 1998 provided the first comprehensive analysis of Missouri River benthic fish population trends and habitat use in the Missouri and Lower Yellowstone rivers, exclusive of reservoirs, and provided the foundation for the present Pallid Sturgeon Population Assessment Program (PSPAP). Data used in such studies are frequently zero inflated. To address this issue, the zero-inflated Poisson (ZIP) model was applied. This follow-up study is based on PSPAP data collected up to 15 years later along with new understanding of how habitat characteristics among and within bends affect habitat use of fish species targeted by PSPAP, including pallid sturgeon. This work demonstrated that a large-scale, large-river, PSPAP-type monitoring program can be an effective tool for assessing population trends and habitat usage of large-river fish species. Using multiple gears, PSPAP was effective in monitoring shovelnose and pallid sturgeons, sicklefin, shoal and sturgeon chubs, sand shiner, blue sucker and sauger. For all species, the relationship between environmental variables and relative abundance differed, somewhat, among river segments suggesting the importance of the overall conditions of Upper and Middle Missouri River and Lower Missouri and Kansas rivers on the habitat usage patterns exhibited. Shoal and sicklefin chubs exhibited many similar habitat usage patterns; blue sucker and shovelnose sturgeon also shared similar responses. For pallid sturgeon, the primary focus of PSPAP, relative abundance tended to increase in Upper and Middle Missouri River paralleling stocking efforts, whereas no evidence of an increasing relative abundance was found in the Lower Missouri River despite stocking.

  20. Using a food web model to inform the design of river restoration—An example at the Barkley Bear Segment, Methow River, north-central Washington

    Science.gov (United States)

    Benjamin, Joseph R.; Bellmore, J. Ryan; Dombroski, Daniel

    2018-01-29

    With the decline of Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss), habitat restoration actions in freshwater tributaries have been implemented to improve conditions for juveniles. Typically, physical (for example, hydrologic and engineering) based models are used to design restoration alternatives with the assumption that biological responses will be improved with changes to the physical habitat. Biological models rarely are used. Here, we describe simulations of a food web model, the Aquatic Trophic Productivity (ATP) model, to aid in the design of a restoration project in the Methow River, north-central Washington. The ATP model mechanistically links environmental conditions of the stream to the dynamics of river food webs, and can be used to simulate how alternative river restoration designs influence the potential for river reaches to sustain fish production. Four restoration design alternatives were identified that encompassed varying levels of side channel and floodplain reconnection and large wood addition. Our model simulations suggest that design alternatives focused on reconnecting side channels and the adjacent floodplain may provide the greatest increase in fish capacity. These results were robust to a range of discharge and thermal regimes that naturally occur in the Methow River. Our results suggest that biological models, such as the ATP model, can be used during the restoration planning phase to increase the effectiveness of restoration actions. Moreover, the use of multiple modeling efforts, both physical and biological, when evaluating restoration design alternatives provides a better understanding of the potential outcome of restoration actions.

  1. Brief Communication: Mapping river ice using drones and structure from motion

    Science.gov (United States)

    Alfredsen, Knut; Haas, Christian; Tuhtan, Jeffrey A.; Zinke, Peggy

    2018-02-01

    In cold climate regions, the formation and break-up of river ice is important for river morphology, winter water supply, and riparian and instream ecology as well as for hydraulic engineering. Data on river ice is therefore significant, both to understand river ice processes directly and to assess ice effects on other systems. Ice measurement is complicated due to difficult site access, the inherent complexity of ice formations, and the potential danger involved in carrying out on-ice measurements. Remote sensing methods are therefore highly useful, and data from satellite-based sensors and, increasingly, aerial and terrestrial imagery are currently applied. Access to low cost drone systems with quality cameras and structure from motion software opens up a new possibility for mapping complex ice formations. Through this method, a georeferenced surface model can be built and data on ice thickness, spatial distribution, and volume can be extracted without accessing the ice, and with considerably fewer measurement efforts compared to traditional surveying methods. A methodology applied to ice mapping is outlined here, and examples are shown of how to successfully derive quantitative data on ice processes.

  2. Enhancing mud supply from the Lower Missouri River to the Mississippi River Delta USA: Dam bypassing and coastal restoration

    Science.gov (United States)

    Kemp, G. Paul; Day, John W.; Rogers, J. David; Giosan, Liviu; Peyronnin, Natalie

    2016-12-01

    Sand transport to the Mississippi River Delta (MRD) remains sufficient to build wetlands in shallow, sheltered coastal bays fed by engineered diversions on the Mississippi River (MR) and its Atchafalaya River (AR) distributary. But suspended mud (silt & clay) flux to the coast has dropped from a mean of 390 Mt y-1 in the early 1950s, to 100 Mt y-1 since 1970. This fine-grained sediment travels deeper into receiving estuarine basins and plays a critical role in sustaining existing marshes. Virtually all of the 300 Mt y-1 of missing mud once flowed from the Missouri River (MOR) Basin before nearly 100 dams were built as part of the Pick-Sloan water development project. About 100 Mt y-1 is now intercepted by main-stem Upper MOR dams closed in 1953. But the remaining 200 Mt y-1 is trapped by impoundments built on tributaries to the Lower MOR in the 1950s and 1960s. Sediment flux during the post-dam high MOR discharge years of 1973, 1993 and 2011 approached pre-dam levels when tributaries to the Lower MOR, including the Platte and Kansas Rivers, contributed to flood flows. West bank tributaries drain a vast, arid part of the Great Plains, while those entering from the east bank traverse the lowlands of the MOR floodplain. Both provinces are dominated by highly erodible loess soils. Staunching the continued decline in MR fine-grained sediment flux has assumed greater importance now that engineered diversions are being built to reconnect the Lowermost MR to the MRD. Tributary dam bypassing in the Lower MOR basin could increase mud supply to the MRD by 100-200 Mt y-1 within 1-2 decades. Such emergency measures to save the MRD are compatible with objectives of the Missouri River Restoration and Platte River Recovery Programs to restore MOR riparian habitat for endangered species. Rapid mobilization to shunt fine-grained sediments past as many as 50 Lower MOR tributary dams in several U.S. states will undoubtedly require as much regional coordination and funding in the 21st

  3. 76 FR 51887 - Safety Zone; Patuxent River, Patuxent River, MD

    Science.gov (United States)

    2011-08-19

    ...-AA00 Safety Zone; Patuxent River, Patuxent River, MD AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone during the ``NAS Patuxent River... held over certain waters of the Patuxent River adjacent to Patuxent River, Maryland from September 1...

  4. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2007

    International Nuclear Information System (INIS)

    Mamatey, A

    2008-01-01

    The Savannah River Site Environmental Report for 2007 (WSRC-STI-2008-00057) prepared for the US Department of Energy (DOE) according to requirements of DOE Order 231.1A, 'Environment, Safety and Health Reporting', and DOE Order 5400.5, 'Radiation Protection of the Public and Environment'. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; (3) highlight significant programs and efforts; (4) assess the impact of SRS operations on the public and the environment

  5. Savannah River Site Environmental Report for 2004

    International Nuclear Information System (INIS)

    Mamatey, Albert R.

    2005-01-01

    The Savannah River Site Environmental Report for 2004 (WSRC-TR-2005-00005) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, ''Environment, Safety and Health Reporting,'' and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to present summary environmental data that characterize site environmental management performance; confirm compliance with environmental standards and requirements; highlight significant programs and efforts; and assess the impact of SRS operations on the public and the environment

  6. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2007

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A

    2008-08-27

    The Savannah River Site Environmental Report for 2007 (WSRC-STI-2008-00057) prepared for the US Department of Energy (DOE) according to requirements of DOE Order 231.1A, 'Environment, Safety and Health Reporting', and DOE Order 5400.5, 'Radiation Protection of the Public and Environment'. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; (3) highlight significant programs and efforts; (4) assess the impact of SRS operations on the public and the environment.

  7. Water Quality Projects Summary for the Mid-Columbia and Cumberland River Systems

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hadjerioua, Boualem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    Scheduling and operational control of hydropower systems is accompanied with a keen awareness of the management of water use, environmental effects, and policy, especially within the context of strict water rights policy and generation maximization. This is a multi-objective problem for many hydropower systems, including the Cumberland and Mid-Columbia river systems. Though each of these two systems have distinct operational philosophies, hydrologic characteristics, and system dynamics, they both share a responsibility to effectively manage hydropower and the environment, which requires state-of-the art improvements in the approaches and applications for water quality modeling. The Department of Energy and Oak Ridge National Laboratory have developed tools for total dissolved gas (TDG) prediction on the Mid-Columbia River and a decision-support system used for hydropower generation and environmental optimization on the Cumberland River. In conjunction with IIHR - Hydroscience & Engineering, The University of Iowa and University of Colorado s Center for Advanced Decision Support for Water and Environmental Systems (CADSWES), ORNL has managed the development of a TDG predictive methodology at seven dams along the Mid-Columbia River and has enabled the ability to utilize this methodology for optimization of operations at these projects with the commercially available software package Riverware. ORNL has also managed the collaboration with Vanderbilt University and Lipscomb University to develop a state-of-the art method for reducing high-fidelity water quality modeling results into surrogate models which can be used effectively within the context of optimization efforts to maximize generation for a reservoir system based on environmental and policy constraints. The novel contribution of these efforts is the ability to predict water quality conditions with simplified methodologies at the same level of accuracy as more complex and resource intensive computing methods

  8. San Jacinto River oil spill: wetland bioremediation project

    International Nuclear Information System (INIS)

    Mills, M.A.; Bonner, J.S.

    1996-01-01

    Gasoline, diesel and unrefined Arabian light crude oil were accidentally released into the San Jacinto River after a series of pipelines ruptured. Natural removal processes (volatilization, dissolution, weathering), fire, and the spill clean-up effort, removed approximately 95% of the petroleum. The area where residual oil was found was an estuarine wetland on the lower San Jacinto River. Samples were collected from 21 study areas and an evaluation of the varying levels of bioremediation was conducted. Phase one has been completed and involved the evaluation of the natural recovery of oil from the spill. Phase two was still in progress and involved the addition of inorganic nutrients and the alternate electron acceptor to enhance the biodegradation of the petroleum. Results showed that biodegradation was responsible for much of the reduction of certain components in petroleum within the first 150 days. 12 refs., 8 figs

  9. Mapping eutrophication risk from climate change: Future phosphorus concentrations in English rivers.

    Science.gov (United States)

    Charlton, Matthew B; Bowes, Michael J; Hutchins, Michael G; Orr, Harriet G; Soley, Rob; Davison, Paul

    2018-02-01

    Climate change is expected to increase eutrophication risk in rivers yet few studies identify the timescale or spatial extent of such impacts. Phosphorus concentration, considered the primary driver of eutrophication risk in English rivers, may increase through reduced dilution particularly if river flows are lower in summer. Detailed models can indicate change in catchment phosphorus concentrations but targeted support for mitigation measures requires a national scale evaluation of risk. In this study, a load apportionment model is used to describe the current relationship between flow and total reactive phosphorus (TRP) at 115 river sites across England. These relationships are used to estimate TRP concentrations for the 2050s under 11 climate change driven scenarios of future river flows and under scenarios of both current and higher levels of sewage treatment. National maps of change indicate a small but inconsistent increase in annual average TRP concentrations with a greater change in summer. Reducing the TRP concentration of final sewage effluent to 0.5mg/L P for all upstream sewage treatment works was inadequate to meet existing P standards required through the EU Water Framework Directive, indicating that more needs to be done, including efforts to reduce diffuse pollution. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Hydrologic bibliography of the Columbia River basalts in Washington with selected annotations

    International Nuclear Information System (INIS)

    Tanaka, H.; Wildrick, L.; Pearson, B.

    1979-08-01

    The objective of this compilation is to present a comprehensive listing of the published, unpublished, and open file references pertaining to the surface and subsurface hydrology of the Columbia River basalts within the State of Washington and is presented in support of Rockwell's hydrologic data compilation effort for the Basalt Waste Isolation Program. A comprehensive, annotated bibliography of the Pasco Basin (including the Hanford Site) hydrology has been prepared for Rockwell as part of the Pasco Basin hydrology studies. In order to avoid unnecessary duplication, no effort was made to include a complete list of bibliographic references on Hanford in this volume

  11. Foaming in Hanford River Protection Project Waste Treatment Plant LAW Evaporation Processes - FY01 Summary Report

    International Nuclear Information System (INIS)

    Calloway, T.B.

    2002-01-01

    The LAW evaporation processes currently being designed for the Hanford River Protection Project Waste Treatment Plant are subject to foaming. Experimental simulant studies have been conducted in an effort to achieve an effective antifoam agent suitable to mitigate such foaming

  12. Habits and Habitats of Fishes in the Upper Mississippi River

    Science.gov (United States)

    Norwick, R.; Janvrin, J.; Zigler, S.; Kratt, R.

    2011-01-01

    The Upper Mississippi River consists of 26 navigation pools that provide abundant habitat for a host of natural resources, such as fish, migratory waterfowl, non-game birds, deer, beaver, muskrats, snakes, reptiles, frogs, toads, salamanders, and many others. Of all the many different types of animals that depend on the river, fish are the most diverse with over 140 different species. The sport fishery is very diverse with at least 25 species commonly harvested. Fish species, such as walleyes, largemouth bass, bluegills, and crappies are favorites of sport anglers. Others such as common carp, buffalos, and channel catfish, are harvested by commercial anglers and end up on the tables of families all over the country. Still other fishes are important because they provide food for sport or commercial species. The fishery resources in these waters contribute millions of dollars to the economy annually. Overall, the estimate impact of anglers and other recreational users exceeds $1.2 billion on the Upper Mississippi River. The fisheries in the various reaches of the river of often are adversely affected by pollution, urbanization, non-native fishes, navigation, recreational boating, fishing, dredging, and siltation. However, state and federal agencies expend considerable effort and resources to manage fisheries and restore river habitats. This pamphlet was prepared to help you better understand what fishery resources exist, what the requirements of each pecies are, and how man-induced changes that are roposed or might occur could affect them.

  13. Elk River Watershed - Flood Study

    Science.gov (United States)

    Barnes, C. C.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.

    2014-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. Potential flooding from just under 100 (2009 NPRI Reviewed Facility Data Release, Environment Canada) toxic tailings ponds located in Canada increase risk to human safety and the environment. One such geotechnical failure spilt billions of litres of toxic tailings into the Fraser River watershed, British Columbia, when a tailings pond dam breach occurred in August 2014. Damaged and washed out roadways cut access to essential services as seen by the extensive floods that occurred in Saskatchewan and Manitoba in July 2014, and in Southern Alberta in 2013. Recovery efforts from events such as these can be lengthy, and have substantial social and economic impacts both in loss of revenue and cost of repair. The objective of this study is to investigate existing conditions in the Elk River watershed and model potential future hydrological changes that can increase flood risk hazards. By analyzing existing hydrology, meteorology, land cover, land use, economic, and settlement patterns a baseline is established for existing conditions in the Elk River watershed. Coupling the Generate Earth Systems Science (GENESYS) high-resolution spatial hydrometeorological model with flood hazard analysis methodology, high-resolution flood vulnerability base line maps are created using historical climate conditions. Further work in 2015 will examine possible impacts for a range of climate change and land use change scenarios to define changes to future flood risk and vulnerability.

  14. Anoxia stimulates microbially catalyzed metal release from Animas River sediments.

    Science.gov (United States)

    Saup, Casey M; Williams, Kenneth H; Rodríguez-Freire, Lucía; Cerrato, José M; Johnston, Michael D; Wilkins, Michael J

    2017-04-19

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2- -reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.

  15. Anoxia stimulates microbially catalyzed metal release from Animas River sediments

    International Nuclear Information System (INIS)

    Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía; Cerrato, José M.; Johnston, Michael D.; Wilkins, Michael J.

    2017-01-01

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2- reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.

  16. Optimizing Dredge-and-Dump Activities for River Navigability Using a Hydro-Morphodynamic Model

    Directory of Open Access Journals (Sweden)

    Andries J. Paarlberg

    2015-07-01

    Full Text Available Worldwide, significant dredging activities of riverbed sediment are employed to ensure that freight transportation on rivers can continue year-round. Imbalances of sediment budget may produce relevant impacts regarding river morphology and related environmental services. This study shows that hydro-morphodynamic modeling tools can be used to optimize dredge-and-dump activities and, at the same time, mitigate problems deriving from these activities in rivers. As a case study, we focused on dredging activities on the Lower Parana River, Argentina. Navigation on this river is of crucial importance to the economies of the bordering countries, hence, each year significant dredging activities are employed. To estimate dredging loads under different strategies, a 25 km river reach of the Parana River was modeled using the Delft3D-modelling suite by Deltares. The Netherlands, to simulate flow-sediment interactions in a quasi-steady and uncoupled approach. Impacts of dredging activities were explicitly included. Different dredge-and-dump strategies included variations in dredging over-depth (clearance and variations in dumping locations. Our results indicate that dredge-and-dump strategies can be targeted to stimulate natural processes that improve the depth and stability of the navigation channel and to counteract unwanted bed level responses in the long-medium term. A ~40% reduction in dredging effort could be achieved by moving the dredged material to distant locations in the secondary channel rather than dumping to the side of the waterway in the main channel.

  17. Estimating abundance without recaptures of marked pallid sturgeon in the Mississippi River.

    Science.gov (United States)

    Friedenberg, Nicholas A; Hoover, Jan Jeffrey; Boysen, Krista; Killgore, K Jack

    2018-04-01

    Abundance estimates are essential for assessing the viability of populations and the risks posed by alternative management actions. An effort to estimate abundance via a repeated mark-recapture experiment may fail to recapture marked individuals. We devised a method for obtaining lower bounds on abundance in the absence of recaptures for both panmictic and spatially structured populations. The method assumes few enough recaptures were expected to be missed by random chance. The upper Bayesian credible limit on expected recaptures allows probabilistic statements about the minimum number of individuals present in the population. We applied this method to data from a 12-year survey of pallid sturgeon (Scaphirhynchus albus) in the lower and middle Mississippi River (U.S.A.). None of the 241 individuals marked was recaptured in the survey. After accounting for survival and movement, our model-averaged estimate of the total abundance of pallid sturgeon ≥3 years old in the study area had a 1%, 5%, or 25% chance of being <4,600, 7,000, or 15,000, respectively. When we assumed fish were distributed in proportion to survey catch per unit effort, the farthest downstream reach in the survey hosted at least 4.5-15 fish per river kilometer (rkm), whereas the remainder of the reaches in the lower and middle Mississippi River hosted at least 2.6-8.5 fish/rkm for all model variations examined. The lower Mississippi River had an average density of pallid sturgeon ≥3 years old of at least 3.0-9.8 fish/rkm. The choice of Bayesian prior was the largest source of uncertainty we considered but did not alter the order of magnitude of lower bounds. Nil-recapture estimates of abundance are highly uncertain and require careful communication but can deliver insights from experiments that might otherwise be considered a failure. © 2017 Society for Conservation Biology.

  18. Wetland restoration and compliance issues on the Savannah River site

    International Nuclear Information System (INIS)

    Wein, G.R.; McLeod, K.W.; Sharitz, R.R.

    1993-01-01

    Operation of the nuclear production reactors on the Savannah River Site has faced potential conflicts with wetland regulations on several occasions. This paper provides two examples in which regulatory compliance and restoration research have been meshed, providing both compliance and better knowledge to aid future regulatory needs. The decision to restart the L reactor required the mitigation of thermal effluents under Sec. 316 of the Clean Water Act. The National Pollutant Discharge Elimination System, permit for the selected mitigation alternative, a 405-ha once-through cooling reservoir, required the establishment of a balanced biological community (BBC) within the lake. To promote the development of a BBC, the reservoir was seeded with water from an existing BBC (Par Pond) and stocked with fish and had artificial reefs constructed. The US Department of Energy (DOE) also requested that the Savannah River Ecology Laboratory establish littoral/wetland vegetation along the shoreline to provide aquatic and wildlife habitat, shoreline stabilization, and a good faith effort toward the establishment of a BBC. The development of wetland vegetation was deemed important to the successful development of a BBC within L Lake. However, in a similar cooling reservoir system constructed in 1957 (Par Pond), wetland vegetation successfully developed without any planting effort. Other than the good faith effort toward a BBC, there is no reason to assume a littoral/wetland community would not develop of its own accord. However, research conducted at L Lake indicates that the planting of wetland vegetation at L Lake accelerated the process of natural selection over that of areas that were not planted

  19. Changes in river discharge and hydrograph separation in the upper basins of Yangtze and Yellow Rivers on the Tibetan Plateau

    Science.gov (United States)

    Ding, Y.

    2017-12-01

    Systematic changes of river discharge and the concentration-discharge relation were explored to elucidate the response of river discharge to climate change as well as the connectivity of hydrologic and hydrochemical processes using hydrological data during 1956-2015 and chemical data during 2013-2015 at Yanshiping (YSP, 4,538 km2), Tuotuohe (TTH, 15,924 km2) and Zhimenda (ZMD, 137,704 km2) gauging sections in the upper basin of Yangtze River (UBYA), and at Huangheyan (HHY, 20,930 km2), Jimai (JM, 45,019 km2), Jungong (JG, 98,414 km2) and Tangnaihai (TNH, 121,972 km2) gauging sections in the upper basin of Yellow River (UBYE) on the Tibetan Plateau (TP). Results showed that annual discharge in UBYA presents a decreasing trend from 1950s to late 1970s and exhibits an increasing trend since 1970s due to increased temperature and precipitation. However, discharge in UBYE increases from 1950s to 1980s and decrease since late 1980s due to increased temperature and decreased precipitation. Snow/ice meltwater may play an important role on changes in river discharge from the most upper catchments, particularly for periods with increasing temperature, where snow cover, glaciers and frozen soils are widely distributed. Concentration/flux-discharge in discharge was dominated by a well-defined power law relation, with R2 values lower on rising than falling limbs. This finding has important implications for efforts to estimate annual concentrations and export of major solutes from similar catchments in cold regions where only river discharge is available. Concentrations of conservative solutes in discharge resulted from mixing of two end-members at the most upper gauging sections (YSP, TTH and HHY), and three end-members at the lower gauging sections (ZMD, JM, JG and TNH), with relatively constant solute concentrations in end-members. Relationship between the fractional contributions of meltwater and/or precipitation and groundwater and river discharge followed the same relation

  20. Remediating Contaminated Sediments in the Ashtabula Harbor as Part of the Ashtabula River Area of Concern: A Collaboration Success Story

    International Nuclear Information System (INIS)

    Diggs, I.W.; Case, J.L.; Rule, R.W.; Snyder, M.

    2009-01-01

    The U.S. Army Corps of Engineers, Buffalo District (USACE), in close collaboration with the USEPA and members of an Ashtabula, Ohio, stakeholder advocacy group, were able to achieve major success in mitigating ecological impacts from contaminated sediments deposited in the lower Ashtabula River and Ashtabula Harbor after years of effort to obtain the federal funding needed to do so. The river and harbor were subject to unregulated discharges of hazardous chemicals, heavy metals, and low-level radiological contaminants from decades of operations by a variety of industrial, manufacturing, processing and production activities located near or adjacent to the river and harbor areas. Conditions in the ecosystem in and around the lower portion of the river deteriorated to the point that it was designated a Great Lakes Area of Concern (AOC) in 1983. The advocacy group known as the Ashtabula River Partnership (ARP), facilitated through efforts by both USACE and USEPA, developed an innovative plan to remediate the Ashtabula River AOC by conducting a two-phase project, completed with combined funding authorized under the Great Lakes Legacy Act (GLLA) of 2002, and Section 312(a) of the Water Resources Development Act (WRDA) of 1990. Removal of nearly 527,000 m 3 of contaminated sediments from the AOC would significantly reduce the contaminant source term and produce favorable conditions for re-establishing ecosystem balance. This would also be the first project in the nation completed by USACE under its authority to perform environmental dredging covered by WRDA Section 312(a). (authors)

  1. River, delta and coastal morphological response accounting for biological dynamics

    Science.gov (United States)

    Goldsmith, W.; Bernardi, D.; Schippa, L.

    2015-03-01

    Management and construction can increase resilience in the face of climate change, and benefits can be enhanced through integration of biogenic materials including shells and vegetation. Rivers and coastal landforms are dynamic systems that respond to intentional and unintended manipulation of critical factors, often with unforeseen and/or undesirable resulting effects. River management strategies have impacts that include deltas and coastal areas which are increasingly vulnerable to climate change with reference to sea level rise and storm intensity. Whereas conventional assessment and analysis of rivers and coasts has relied on modelling of hydrology, hydraulics and sediment transport, incorporating additional biological factors can offer more comprehensive, beneficial and realistic alternatives. Suitable modelling tools can provide improved decision support. The question has been whether current models can effectively address biological responses with suitable reliability and efficiency. Since morphodynamic evolution exhibits its effects on a large timescale, the choice of mathematical model is not trivial and depends upon the availability of data, as well as the spatial extent, timelines and computation effort desired. The ultimate goal of the work is to set up a conveniently simplified river morphodynamic model, coupled with a biological dynamics plant population model able to predict the long-term evolution of large alluvial river systems managed through bioengineering. This paper presents the first step of the work related to the application of the model accounting for stationary vegetation condition. Sensitivity analysis has been performed on the main hydraulic, sedimentology, and biological parameters. The model has been applied to significant river training in Europe, Asia and North America, and comparative analysis has been used to validate analytical solutions. Data gaps and further areas for investigation are identified.

  2. Dissemination of satellite-based river discharge and flood data

    Science.gov (United States)

    Kettner, A. J.; Brakenridge, G. R.; van Praag, E.; de Groeve, T.; Slayback, D. A.; Cohen, S.

    2014-12-01

    In collaboration with NASA Goddard Spaceflight Center and the European Commission Joint Research Centre, the Dartmouth Flood Observatory (DFO) daily measures and distributes: 1) river discharges, and 2) near real-time flood extents with a global coverage. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations', and observed time series cover 1998 to the present. The advantages over in-situ gauged discharges are: a) easy access to remote or due to political reasons isolated locations, b) relatively low maintenance costs to maintain a continuous observational record, and c) the capability to obtain measurements during floods, hazardous conditions that often impair or destroy in-situ stations. Two MODIS instruments aboard the NASA Terra and Aqua satellites provide global flood extent coverage at a spatial resolution of 250m. Cloud cover hampers flood extent detection; therefore we ingest 6 images (the Terra and Aqua images of each day, for three days), in combination with a cloud shadow filter, to provide daily global flood extent updates. The Flood Observatory has always made it a high priority to visualize and share its data and products through its website. Recent collaborative efforts with e.g. GeoSUR have enhanced accessibility of DFO data. A web map service has been implemented to automatically disseminate geo-referenced flood extent products into client-side GIS software. For example, for Latin America and the Caribbean region, the GeoSUR portal now displays current flood extent maps, which can be integrated and visualized with other relevant geographical data. Furthermore, the flood state of satellite-observed river discharge sites are displayed through the portal as well. Additional efforts include implementing Open Geospatial Consortium (OGC) standards to incorporate Water Markup Language (WaterML) data exchange mechanisms to further facilitate the distribution of the satellite

  3. Overview of the issues surrounding thermal discharges in the Des Plaines River

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    This review effort was undertaken to clarify and, if possible, quantify the issues surrounding the thermal input into the lower Des Plaines River from the Commonwealth Edison Joliet Electrical Generation Facility. The central issue is whether or not a reduction of the thermal discharge from the facility would produce beneficial environmental effects. This issue is clouded due to the fact of a number of environmental problems. These problems include: the river water quality, sediment quality, and barge traffic impacts. These variables, coupled with the uncertain future stream volume and conflicting data, prevent any simplistic conclusions from being drawn. Thus, any short-term study can only result in an overview of the situation.

  4. Walla Walla River Fish Passage Operations Program, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-02-01

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2004-2005 project year, there were 590 adult summer steelhead, 31 summer steelhead kelts (Oncorhynchus mykiss), 70 adult bull trout (Salvelinus confluentus); 80 adult and 1 jack spring Chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 13, 2004, and June 16, 2005. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by ODFW in order to enumerate fish passage. Of the total, 143 adult summer steelhead and 15 summer steelhead kelts were enumerated at the west ladder at Nursery Bridge Dam during the video efforts between February 4 and May 23, 2005. Operation of the Little Walla Walla River

  5. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes

    Science.gov (United States)

    Hauer, F. Richard; Locke, Harvey; Dreitz, Victoria; Hebblewhite, Mark; Lowe, Winsor; Muhlfeld, Clint C.; Nelson, Cara; Proctor, Michael F.; Rood, Stewart B.

    2016-01-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologicaltering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.

  6. Comparison of cardiovascular response to combined static-dynamic effort, postprandial dynamic effort and dynamic effort alone in patients with chronic ischemic heart disease

    International Nuclear Information System (INIS)

    Hung, J.; McKillip, J.; Savin, W.; Magder, S.; Kraus, R.; Houston, N.; Goris, M.; Haskell, W.; DeBusk, R.

    1982-01-01

    The cardiovascular responses to combined static-dynamic effort, postprandial dynamic effort and dynamic effort alone were evaluated by upright bicycle ergometry during equilibrium-gated blood pool scintigraphy in 24 men, mean age 59 +/- 8 years, with chronic ischemic heart disease. Combined static-dynamic effort and the postprandial state elicited a peak cardiovascular response similar to that of dynamic effort alone. Heart rate, intraarterial systolic and diastolic pressures, rate-pressure product and ejection fraction were similar for the three test conditions at the onset of ischemia and at peak effort. The prevalence and extent of exercise-induced ischemic left ventricular dysfunction, ST-segment depression, angina pectoris and ventricular ectopic activity were also similar during the three test conditions. Direct and indirect measurements of systolic and diastolic blood pressure were highly correlated. The onset of ischemic ST-segment depression and angina pectoris correlated as strongly with heart rate alone as with the rate-pressure product during all three test conditions. The cardiovascular response to combined static-dynamic effort and to postprandial dynamic effort becomes more similar to that of dynamic effort alone as dynamic effort reaches a symptom limit. If significant ischemic and arrhythmic abnormalities are absent during symptom-limited dynamic exercise testing, they are unlikely to appear during combined static-dynamic or postprandial dynamic effort

  7. Salmonid Gamete Preservation in the Snake River Basin, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul

    2002-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. Along with reduced population and genetic variability, the loss of biodiversity means a diminished environmental adaptability. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2001 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2001, a total of 398 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 295 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Grande Ronde chinook salmon captive broodstock program stores 680 cryopreserved samples at the University of Idaho as a long-term archive, half of the total samples. A total of 3,206 cryopreserved samples from Snake River basin steelhead and

  8. Reconnecting fragmented sturgeon populations in North American rivers

    Science.gov (United States)

    Jager, Henriette; Parsley, Michael J.; Cech, Joseph J. Jr.; McLaughlin, R.L.; Forsythe, Patrick S.; Elliott, Robert S.

    2016-01-01

    The majority of large North American rivers are fragmented by dams that interrupt migrations of wide-ranging fishes like sturgeons. Reconnecting habitat is viewed as an important means of protecting sturgeon species in U.S. rivers because these species have lost between 5% and 60% of their historical ranges. Unfortunately, facilities designed to pass other fishes have rarely worked well for sturgeons. The most successful passage facilities were sized appropriately for sturgeons and accommodated bottom-oriented species. For upstream passage, facilities with large entrances, full-depth guidance systems, large lifts, or wide fishways without obstructions or tight turns worked well. However, facilitating upstream migration is only half the battle. Broader recovery for linked sturgeon populations requires safe “round-trip” passage involving multiple dams. The most successful downstream passage facilities included nature-like fishways, large canal bypasses, and bottom-draw sluice gates. We outline an adaptive approach to implementing passage that begins with temporary programs and structures and monitors success both at the scale of individual fish at individual dams and the scale of metapopulations in a river basin. The challenge will be to learn from past efforts and reconnect North American sturgeon populations in a way that promotes range expansion and facilitates population recovery.

  9. Migratory Patterns of Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-flowing River Basin

    Science.gov (United States)

    Eiler, John H.; Evans, Allison N.; Schreck, Carl B.

    2015-01-01

    Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002–2004. Most (97.5%) of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28–40 km d-1) compared to upper basin stocks (52–62 km d-1). Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between “hares” (faster fish becoming slower) and “tortoises” (slow but steady fish) explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation

  10. Fishes of the Taquari-Antas river basin (Patos Lagoon basin, southern Brazil

    Directory of Open Access Journals (Sweden)

    FG. Becker

    Full Text Available The aquatic habitats of the Taquari-Antas river basin (in the Patos Lagoon basin, southern Brazil are under marked environmental transformation because of river damming for hydropower production. In order to provide an information baseline on the fish fauna of the Taquari-Antas basin, we provide a comprehensive survey of fish species based on primary and secondary data. We found 5,299 valid records of fish species in the basin, representing 119 species and 519 sampling sites. There are 13 non-native species, six of which are native to other Neotropical river basins. About 24% of the total native species are still lacking a taxonomic description at the species level. Three native long-distance migratory species were recorded (Leporinus obtusidens, Prochilodus lineatus, Salminus brasiliensis, as well as two potential mid-distance migrators (Parapimelodus nigribarbis and Pimelodus pintado. Although there is only one officially endangered species in the basin (S. brasiliensis, restricted range species (21.7% of total species should be considered in conservation efforts.

  11. Effort in Multitasking: Local and Global Assessment of Effort.

    Science.gov (United States)

    Kiesel, Andrea; Dignath, David

    2017-01-01

    When performing multiple tasks in succession, self-organization of task order might be superior compared to external-controlled task schedules, because self-organization allows optimizing processing modes and thus reduces switch costs, and it increases commitment to task goals. However, self-organization is an additional executive control process that is not required if task order is externally specified and as such it is considered as time-consuming and effortful. To compare self-organized and externally controlled task scheduling, we suggest assessing global subjective and objectives measures of effort in addition to local performance measures. In our new experimental approach, we combined characteristics of dual tasking settings and task switching settings and compared local and global measures of effort in a condition with free choice of task sequence and a condition with cued task sequence. In a multi-tasking environment, participants chose the task order while the task requirement of the not-yet-performed task remained the same. This task preview allowed participants to work on the previously non-chosen items in parallel and resulted in faster responses and fewer errors in task switch trials than in task repetition trials. The free-choice group profited more from this task preview than the cued group when considering local performance measures. Nevertheless, the free-choice group invested more effort than the cued group when considering global measures. Thus, self-organization in task scheduling seems to be effortful even in conditions in which it is beneficiary for task processing. In a second experiment, we reduced the possibility of task preview for the not-yet-performed tasks in order to hinder efficient self-organization. Here neither local nor global measures revealed substantial differences between the free-choice and a cued task sequence condition. Based on the results of both experiments, we suggest that global assessment of effort in addition to

  12. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Science.gov (United States)

    2010-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone of...

  13. 2011 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    West, W. J.; Lucas, J. G.; Gano, K. A.

    2011-11-14

    This report documents the status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup of National Priorities List waste sites at Hanford. This report contains the vegetation monitoring data that was collected in the spring and summer of 2011 from the River Corridor Closure Contractor’s revegetation and mitigation areas on the Hanford Site.

  14. Numerical modelling of river processes: flow and river bed deformation

    NARCIS (Netherlands)

    Tassi, P.A.

    2007-01-01

    The morphology of alluvial river channels is a consequence of complex interaction among a number of constituent physical processes, such as flow, sediment transport and river bed deformation. This is, an alluvial river channel is formed from its own sediment. From time to time, alluvial river

  15. Commercial integration and partnering at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Steele, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Babione, R.A.; Shikashio, L.A.; Wacaster, A.J.; Paterson, A.D. [SCIENTECH, Inc., Idaho Falls, ID (United States)

    1994-06-01

    Savannah River Site (SRS), particularly the Savannah River Technology Center (SRTC) with the experience from the first successful Integrated Technology Demonstration, can provide an excellent foundation for meeting DOE-EM`s objectives with the new DOE-EM five focus area approach. With this in mind, SRTC established an activity to pursue full commercialization of environmental technologies. This report is an assessment of the status of commercialization at SRS and provides recommendations for enhancement as well as some tools critical to implementation. A review was made of the current situation at SRS with regards to taking technology development to commercial fruition. This was done from the perspective of comparing it to known commercialization models and processes. It was found that SRTC already works through many of the steps in these processes. With integration and action-oriented efforts of the inclusion of business and market factors, SRTC could become an aggressive, successful developer of commercialized technologies. Commercial success criteria tools were developed with regards to integrating them with SRTC selection criteria to ensure that all critical factors are covered in technology commercialization project evaluations. Private investors are very clear that their interest lies in funding commercial enterprises, not merely technologies. Mobilizing private capital is critical to real job growth and long-term economic development. Also, potential industry partners were identified that are willing to be involved with SRS` technology applications and regional development efforts. As another important component to success, regional support organizations were reviewed and evaluated.

  16. 33 CFR 117.734 - Navesink River (Swimming River).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navesink River (Swimming River). 117.734 Section 117.734 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Swimming River). The Oceanic Bridge, mile 4.5, shall open on signal; except that, from December 1 through...

  17. THE EXPLORATION OF THE TIETÊ RIVER BY THE COMISSÃO GEOGRÁFICA E GEOLÓGICA (1905: CARTOGRAPHIC ASPECTS

    Directory of Open Access Journals (Sweden)

    Jorge Pimentel Cintra

    Full Text Available This paper studies the cartographic products associated with the Tiete River Exploration Report, (1905 published by the Geographical and Geological Committee of the São Paulo Province. The expedition, from the Bar of the Jacaré-Guassú River to the Paraná River, led to the mapping of the Tietê River, which, along with others, is part of the efforts made by this state agency so that there was no longer a great region called "Unknown hinterland inhabited by Indians" in the official map of the Province of Sao Paulo. The purpose was not only to map, but also to raise the mineral resources, the geology, focused on the types of soil and its agricultural potential, and the navigability of rivers for transporting people and goods. The data obtained are studied (altitudes, longitudes, magnetic declination, surveys paths, equipment used, work methodology and the Cartography produced: General Map, Partial Maps, Profile, Cross Sections and others.

  18. Estimation of inspection effort

    International Nuclear Information System (INIS)

    Mullen, M.F.; Wincek, M.A.

    1979-06-01

    An overview of IAEA inspection activities is presented, and the problem of evaluating the effectiveness of an inspection is discussed. Two models are described - an effort model and an effectiveness model. The effort model breaks the IAEA's inspection effort into components; the amount of effort required for each component is estimated; and the total effort is determined by summing the effort for each component. The effectiveness model quantifies the effectiveness of inspections in terms of probabilities of detection and quantities of material to be detected, if diverted over a specific period. The method is applied to a 200 metric ton per year low-enriched uranium fuel fabrication facility. A description of the model plant is presented, a safeguards approach is outlined, and sampling plans are calculated. The required inspection effort is estimated and the results are compared to IAEA estimates. Some other applications of the method are discussed briefly. Examples are presented which demonstrate how the method might be useful in formulating guidelines for inspection planning and in establishing technical criteria for safeguards implementation

  19. Informed Decision Making Process for Managing Environmental Flows in Small River Basins

    Science.gov (United States)

    Padikkal, S.; Rema, K. P.

    2013-03-01

    Numerous examples exist worldwide of partial or complete alteration to the natural flow regime of river systems as a consequence of large scale water abstraction from upstream reaches. The effects may not be conspicuous in the case of very large rivers, but the ecosystems of smaller rivers or streams may be completely destroyed over a period of time. While restoration of the natural flow regime may not be possible, at present there is increased effort to implement restoration by regulating environmental flow. This study investigates the development of an environmental flow management model at an icon site in the small river basin of Bharathapuzha, west India. To determine optimal environmental flow regimes, a historic flow model based on data assimilated since 1978 indicated a satisfactory minimum flow depth for river ecosystem sustenance is 0.907 m (28.8 m3/s), a value also obtained from the hydraulic model; however, as three of the reservoirs were already operational at this time a flow depth of 0.922 m is considered a more viable estimate. Analysis of daily stream flow in 1997-2006, indicated adequate flow regimes during the monsoons in June-November, but that sections of the river dried out in December-May with alarming water quality conditions near the river mouth. Furthermore, the preferred minimum `dream' flow regime expressed by stakeholders of the region is a water depth of 1.548 m, which exceeds 50 % of the flood discharge in July. Water could potentially be conserved for environmental flow purposes by (1) the de-siltation of existing reservoirs or (2) reducing water spillage in the transfer between river basins. Ultimately environmental flow management of the region requires the establishment of a co-ordinated management body and the regular assimilation of water flow information from which science based decisions are made, to ensure both economic and environmental concerns are adequately addressed.

  20. Savannah River Site Environmental Report for 2004

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, Albert R.

    2005-06-07

    The Savannah River Site Environmental Report for 2004 (WSRC-TR-2005-00005) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, ''Environment, Safety and Health Reporting,'' and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to present summary environmental data that characterize site environmental management performance; confirm compliance with environmental standards and requirements; highlight significant programs and efforts; and assess the impact of SRS operations on the public and the environment.

  1. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2005

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A

    2006-07-18

    The ''Savannah River Site Environmental Report for 2005'' (WSRC-TR-2006-00007) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: present summary environmental data that characterize site environmental management performance; confirm compliance with environmental standards and requirements; highlight significant programs and efforts; and assess the impact of SRS operations on the public and the environment.

  2. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2010

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A.; Dunaway-Ackerman, J.

    2011-08-16

    This report was prepared in accordance with U.S. Department of Energy (DOE) Order 231.1A, 'Environment, Safety and Health Reporting,' to present summary environmental data for the purpose of: (a) characterizing site's environmental management performance; (b) summarizing environmental occurrences and responses reported during the calendar year; (c) describing compliance status with respect to environmental standards and requirements; and (d) highlighting significant site programs and efforts. This report is the principal document that demonstrates compliance with the requirements of DOE Order 5400.5, 'Radiation Protection of the Public and the Environment,' and is a key component of DOE's effort to keep the public informed of environmental conditions at Savannah River Site (SRS). SRS has four primary missions: (1) Environmental Management - Cleaning up the legacy of the Cold War efforts and preparing decommissioned facilities and areas for long-term stewardship; (2) Nuclear Weapons Stockpile Support - Meeting the needs of the U.S. nuclear weapons stockpile through the tritium programs of the National Nuclear Security Administration (NNSA); (3) Nuclear Nonproliferation Support - Meeting the needs of the NNSA's nuclear nonproliferation programs by safely storing and dispositioning excess special nuclear materials; and (4) Research and Development - Supporting the application of science by the Savannah River National Laboratory (SRNL) to meet the needs of SRS, the DOE complex, and other federal agencies During 2010, SRS worked to fulfill these missions and position the site for future operations. SRS continued to work with the South Carolina Department of Health and Environmental Control (SCDHEC), the Environmental Protection Agency (EPA), and the Nuclear Regulatory Commission to find and implement solutions and schedules for waste management and disposition. As part of its mission to clean up the Cold War legacy, SRS will continue

  3. Final Opportunity to Rehabilitate an Urban River as a Water Source for Mexico City

    Science.gov (United States)

    Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A.; Solano-Ortiz, Rosa; Silva, Miguel A.; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos

    2014-01-01

    The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973–2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008–2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City. PMID:25054805

  4. Final opportunity to rehabilitate an urban river as a water source for Mexico City.

    Directory of Open Access Journals (Sweden)

    Marisa Mazari-Hiriart

    Full Text Available The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010, along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012 in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.

  5. Final opportunity to rehabilitate an urban river as a water source for Mexico City.

    Science.gov (United States)

    Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A; Solano-Ortiz, Rosa; Silva, Miguel A; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos

    2014-01-01

    The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.

  6. Snake River Sockeye Salmon Habitat and Limnological Research; 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2002 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake (3) conduct kokanee salmon (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation between stocked juvenile O. nerka and a

  7. Snake River Sockeye Salmon Habitat and Limnological Research; 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-06-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 1991-071-00). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU); The Tribe's long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through their Integrated Fish and Wildlife Program. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2004 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit Lake; (3) reduce the number of mature kokanee salmon spawning in Fishhook Creek; (4) monitor and enumerate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (6) conduct sockeye salmon and kokanee salmon population surveys; (7) evaluate potential competition and predation

  8. Snake River Sockeye Salmon Habitat and Limnological Research; 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Taki, Doug; Kohler, Andre E. (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-01-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition, the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 1991-071-00). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power and Conservation Council Fish and Wildlife Program (NPCCFWP). Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2003 calendar year. Project objectives include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) reduce the number of mature kokanee spawning in Fishhook Creek; (3) monitor sockeye salmon smolt migration from the captive rearing program release of juveniles into Pettit and Alturas lakes; (4) monitor spawning kokanee escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (5) conduct sockeye and kokanee salmon population surveys; (6

  9. Wind River Watershed Restoration: 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.

    2001-09-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  10. Application of hydrometeorological coupled European flood forecasting operational real time system in Yellow River Basin

    Directory of Open Access Journals (Sweden)

    Yi-qi Yan

    2009-12-01

    Full Text Available This study evaluated the application of the European flood forecasting operational real time system (EFFORTS to the Yellow River. An automatic data pre-processing program was developed to provide real-time hydrometeorological data. Various GIS layers were collected and developed to meet the demands of the distributed hydrological model in the EFFORTS. The model parameters were calibrated and validated based on more than ten years of historical hydrometeorological data from the study area. The San-Hua Basin (from the Sanmenxia Reservoir to the Huayuankou Hydrological Station, the most geographically important area of the Yellow River, was chosen as the study area. The analysis indicates that the EFFORTS enhances the work efficiency, extends the flood forecasting lead time, and attains an acceptable level of forecasting accuracy in the San-Hua Basin, with a mean deterministic coefficient at Huayuankou Station, the basin outlet, of 0.90 in calibration and 0.96 in validation. The analysis also shows that the simulation accuracy is better for the southern part than for the northern part of the San-Hua Basin. This implies that, along with the characteristics of the basin and the mechanisms of runoff generation of the hydrological model, the hydrometeorological data play an important role in simulation of hydrological behavior.

  11. Operation of river systems. The Otra river

    International Nuclear Information System (INIS)

    Harby, A.; Vaskinn, K.A.; Wathne, M.; Heggenes, J.; Saltveit, S.J.

    1993-12-01

    The purpose of the project described in this report was to prepare an operative tool for making decisions about the operation of the power system on the river Otra (Norway) with regard to how this operation might affect the various users of the river system. Above all this affects fish, outdoor life and esthetic values. The connection between water quality and volume of discharge has been examined in a sub project. How suitable parts of the river are as habitats for trout has been simulated on a computer. From field investigation it is concluded that near the Steinfoss power station the physical conditions for trout depend on the operation of the river system. Outdoor life is not much affected downstream Vikeland. 11 refs., 22 figs., 2 tabs

  12. River, delta and coastal morphological response accounting for biological dynamics

    Directory of Open Access Journals (Sweden)

    W. Goldsmith

    2015-03-01

    Full Text Available Management and construction can increase resilience in the face of climate change, and benefits can be enhanced through integration of biogenic materials including shells and vegetation. Rivers and coastal landforms are dynamic systems that respond to intentional and unintended manipulation of critical factors, often with unforeseen and/or undesirable resulting effects. River management strategies have impacts that include deltas and coastal areas which are increasingly vulnerable to climate change with reference to sea level rise and storm intensity. Whereas conventional assessment and analysis of rivers and coasts has relied on modelling of hydrology, hydraulics and sediment transport, incorporating additional biological factors can offer more comprehensive, beneficial and realistic alternatives. Suitable modelling tools can provide improved decision support. The question has been whether current models can effectively address biological responses with suitable reliability and efficiency. Since morphodynamic evolution exhibits its effects on a large timescale, the choice of mathematical model is not trivial and depends upon the availability of data, as well as the spatial extent, timelines and computation effort desired. The ultimate goal of the work is to set up a conveniently simplified river morphodynamic model, coupled with a biological dynamics plant population model able to predict the long-term evolution of large alluvial river systems managed through bioengineering. This paper presents the first step of the work related to the application of the model accounting for stationary vegetation condition. Sensitivity analysis has been performed on the main hydraulic, sedimentology, and biological parameters. The model has been applied to significant river training in Europe, Asia and North America, and comparative analysis has been used to validate analytical solutions. Data gaps and further areas for investigation are identified.

  13. Effortful echolalia.

    Science.gov (United States)

    Hadano, K; Nakamura, H; Hamanaka, T

    1998-02-01

    We report three cases of effortful echolalia in patients with cerebral infarction. The clinical picture of speech disturbance is associated with Type 1 Transcortical Motor Aphasia (TCMA, Goldstein, 1915). The patients always spoke nonfluently with loss of speech initiative, dysarthria, dysprosody, agrammatism, and increased effort and were unable to repeat sentences longer than those containing four or six words. In conversation, they first repeated a few words spoken to them, and then produced self initiated speech. The initial repetition as well as the subsequent self initiated speech, which were realized equally laboriously, can be regarded as mitigated echolalia (Pick, 1924). They were always aware of their own echolalia and tried to control it without effect. These cases demonstrate that neither the ability to repeat nor fluent speech are always necessary for echolalia. The possibility that a lesion in the left medial frontal lobe, including the supplementary motor area, plays an important role in effortful echolalia is discussed.

  14. Additional challenges for uncertainty analysis in river engineering

    Science.gov (United States)

    Berends, Koen; Warmink, Jord; Hulscher, Suzanne

    2016-04-01

    The management of rivers for improving safety, shipping and environment requires conscious effort on the part of river managers. River engineers design hydraulic works to tackle various challenges, from increasing flow conveyance to ensuring minimal water depths for environmental flow and inland shipping. Last year saw the completion of such large scale river engineering in the 'Room for the River' programme for the Dutch Rhine River system, in which several dozen of human interventions were built to increase flood safety. Engineering works in rivers are not completed in isolation from society. Rather, their benefits - increased safety, landscaping beauty - and their disadvantages - expropriation, hindrance - directly affect inhabitants. Therefore river managers are required to carefully defend their plans. The effect of engineering works on river dynamics is being evaluated using hydraulic river models. Two-dimensional numerical models based on the shallow water equations provide the predictions necessary to make decisions on designs and future plans. However, like all environmental models, these predictions are subject to uncertainty. In recent years progress has been made in the identification of the main sources of uncertainty for hydraulic river models. Two of the most important sources are boundary conditions and hydraulic roughness (Warmink et al. 2013). The result of these sources of uncertainty is that the identification of single, deterministic prediction model is a non-trivial task. This is this is a well-understood problem in other fields as well - most notably hydrology - and known as equifinality. However, the particular case of human intervention modelling with hydraulic river models compounds the equifinality case. The model that provides the reference baseline situation is usually identified through calibration and afterwards modified for the engineering intervention. This results in two distinct models, the evaluation of which yields the effect of

  15. Migratory Patterns of Wild Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-Flowing River Basin.

    Directory of Open Access Journals (Sweden)

    John H Eiler

    Full Text Available Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002-2004. Most (97.5% of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28-40 km d-1 compared to upper basin stocks (52-62 km d-1. Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between "hares" (faster fish becoming slower and "tortoises" (slow but steady fish explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation

  16. 33 CFR 165.150 - New Haven Harbor, Quinnipiac River, Mill River.

    Science.gov (United States)

    2010-07-01

    ... River, Mill River. 165.150 Section 165.150 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... New Haven Harbor, Quinnipiac River, Mill River. (a) The following is a regulated navigation area: The... 303°T to point D at the west bank of the mouth of the Mill River 41°18′05″ N, 72°54′23″ W thence south...

  17. Sidoarjo mudflow phenomenon and its mitigation efforts

    Science.gov (United States)

    Wibowo, H. T.; Williams, V.

    2009-12-01

    diverted into the Porong River through a mud pump system. Also we continuously monitor changes in eruption behavior and try to anticipate the consequences, particularly after the Ring Dyke (of main vent) collapsed and became useless in controlling the flow. In September 2009 spectacular eruption intensity with kick and wave developed and is continuing. Surface and subsurface investigations continue ceaselessly to try to understand the forces driving the eruption. There are no precedents for mitigation of such a large scale mud volcano in a densely populated area that seems destined to continue for a very long time. This makes all efforts to stop eruption together with the emergency efforts, which have to be conducted simultaneously with recovery and reconstruction efforts that cover all basic needs of people live in the area. This is why BPLS has to develop innovative and creative efforts, mainly by applying the basic principle of learning by doing.

  18. Fish, lower Ivinhema River basin streams, state of Mato Grosso do Sul, Brazil.

    Directory of Open Access Journals (Sweden)

    Súarez, Y. R.

    2008-01-01

    Full Text Available The Ivinhema River basin is one of the main tributaries of the western portion of Paraná River. However,few data are available on the fish communities of its streams. Monthly samples were made in seven streams of the lowerportion of the basin, in the state of Mato Grosso do Sul, using a rectangular sieve 1.2 x 0.8 m, with 2 mm mesh size.Forty-six fish species were found in these streams. The richness estimated according to the bootstrap procedure was 50species. At least two of the captured species were not previously recorded for the upper Paraná basin, indicating theneed of new sampling effort in this region.

  19. Integrated Analysis of Flow, Form, and Function for River Management and Design Testing

    Science.gov (United States)

    Lane, B. A. A.; Pasternack, G. B.; Sandoval Solis, S.

    2017-12-01

    Rivers are highly complex, dynamic systems that support numerous ecosystem functions including transporting sediment, modulating biogeochemical processes, and regulating habitat availability for native species. The extent and timing of these functions is largely controlled by the interplay of hydrologic dynamics (i.e. flow) and the shape and composition of the river corridor (i.e. form). This study applies synthetic channel design to the evaluation of river flow-form-function linkages, with the aim of evaluating these interactions across a range of flows and forms to inform process-driven management efforts with limited data and financial requirements. In an application to California's Mediterranean-montane streams, the interacting roles of channel form, water year type, and hydrologic impairment were evaluated across a suite of ecosystem functions related to hydrogeomorphic processes, aquatic habitat, and riparian habitat. Channel form acted as the dominant control on hydrogeomorphic processes considered, while water year type controlled salmonid habitat functions. Streamflow alteration for hydropower increased redd dewatering risk and altered aquatic habitat availability and riparian recruitment dynamics. Study results highlight critical tradeoffs in ecosystem function performance and emphasize the significance of spatiotemporal diversity of flow and form at multiple scales for maintaining river ecosystem integrity. The approach is broadly applicable and extensible to other systems and ecosystem functions, where findings can be used to characterize complex controls on river ecosystems, assess impacts of proposed flow and form alterations, and inform river restoration strategies.

  20. VICIOUS CIRCULATION OF WATER DEFICIENCY AND WATER POLLUTION – “CANCER” OF THE RIVERS IN THE NORTH OF CHINA.

    Directory of Open Access Journals (Sweden)

    Yang Liankang

    2005-05-01

    Full Text Available The North of China belongs to the basin of the Tarim River ,the Heihe River , the Yellow River , the Huaihe River ,the Haihe River ,the Liaohe River , the Heilongjiang River and other shorter rivers and other indraft areas. The total area of all river basin is about 3,200,000 sq. km., exceeds 3/5 of area of land of 13 provinces , municipalities and autonomous regions of the North of China (5, 220,000 sq. km. .Follow the growth of the economy and the population, lacking of water in the rivers of the northern China is serious,. Since the sixties and seventies of previous century, the blanking has taken place successively in numerous rivers, brought serious influence on the development of the economic, made the society to shake. Afterwards, through certain effort, although the blanking phenomenon is alleviated for the past several years, but the water quality of manyrivers has sharply worsened and was dropped to V, bad V grade in the numerous sections, fromthe situation that the water quality in a great part sections in the main stream was still rather good for past more than 20 years ago. It has become the first killer, influencing the life of river.Therefore, we must summarize the experiences on that the rivers of the northern China, especially the most influential Yellow River, have gone from blanking to resuming flow, we also must control the pollution and proportionate the development of the society and theeconomic, with the water yield and the water quality. These affair have already become task of top priority!

  1. Broadening the regulated-river management paradigm: A case study of the forgotten dead zone hindering Pallid Sturgeon recovery

    Science.gov (United States)

    Guy, Christopher S.; Treanor, Hilary B.; Kappenman, Kevin M.; Scholl, Eric A.; Ilgen, Jason E.; Webb, Molly A. H.

    2015-01-01

    The global proliferation of dams within the last half century has prompted ecologists to understand the effects of regulated rivers on large-river fishes. Currently, much of the effort to mitigate the influence of dams on large-river fishes has been focused on downriver effects, and little attention has been given to upriver effects. Through a combination of field observations and laboratory experiments, we tested the hypothesis that abiotic conditions upriver of the dam are the mechanism for the lack of recruitment in Pallid Sturgeon (Scaphirhynchus albus), an iconic large-river endangered species. Here we show for the first time that anoxic upriver habitat in reservoirs (i.e., the transition zone between the river and reservoir) is responsible for the lack of recruitment in Pallid Sturgeon. The anoxic condition in the transition zone is a function of reduced river velocities and the concentration of fine particulate organic material with high microbial respiration. As predicted, the river upstream of the transition zone was oxic at all sampling locations. Our results indicate that transition zones are an ecological sink for Pallid Sturgeon. We argue that ecologists, engineers, and policy makers need to broaden the regulated-river paradigm to consider upriver and downriver effects of dams equally to comprehensively mitigate altered ecosystems for the benefit of large-river fishes, especially for the Pallid Sturgeon.

  2. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1993.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1994-12-01

    Recovery efforts for the endangered fall chinook salmon necessitates knowledge of the factors limiting the various life history stages. This study attempts to identify those physical and biological factors which affect spawning of the fish in the free-flowing Snake River and their rearing seward migration through Columbia River basin reservoirs. The spawning was generally a November event in 1993, with some activity in late Oct. and early Dec. Spawning habitat availability was assessed by applying hydraulic and habitat models to known fall chinook salmon spawning sites. Juveniles were seined and PIT tagged in the free-flowing Snake River, and in the Columbia River in he Hanford Reach and in McNary Reservoir. Subyearling fish were marked at McNary Dam to relate river flow and migration patterns of juveniles to adult returns. Hydroacoustic surveys were conducted on McNary and John Day reservoirs and in net pens.

  3. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, 1991 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Miller, William H.

    1993-07-01

    This document is the 1991 annual progress report for selected studies of fall chinook salmon Oncorhynchus tshawytscha conducted by the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. In April 1992, Snake River fall chinook salmon were listed as ``threatened`` under the Endangered Species Act. Effective recovery efforts for fall chinook salmon can not be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  4. Snake River Sockeye Salmon Habitat and Limnological Research; 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon Oncorhynchus nerka as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (Council). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2001 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake, fertilization of Pettit and Alturas lakes was suspended for this year; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.

  5. Westinghouse Savannah River Company (WSRC) approach to nuclear facility maintenance

    International Nuclear Information System (INIS)

    Harrison, D.W.

    1991-01-01

    The Savannah River Site (SRS) in South Carolina is a 300+ square mile facility owned by the US Department of Energy (DOE) and operated by Westinghouse Savannah River Company (WSRC), the prime contractor; Bechtel Savannah River, Incorporated (BSRI) is a major subcontractor. The site has used all of the five nuclear reactors and it has the necessary nuclear materials processing facilities, as well as waste management and research facilities. The site has produced materials for the US nuclear arsenal and various isotopes for use in space research and nuclear medicine for more than 30 years. In 1989, WSRC took over as prime contractor, replacing E.I. du Pont de Nemours and Company. At this time, a concentrated effort began to more closely align the operating standards of this site with those accepted by the commercial nuclear industry of the United States. Generally, this meant acceptance of standards of the Institute of Nuclear Power Operations (INPO) for nuclear-related facilities at the site. The subject of this paper is maintenance of nuclear facilities and, therefore, excludes discussion of the maintenance of non-nuclear facilities and equipment

  6. Engineered channel controls limiting spawning habitat rehabilitation success on regulated gravel-bed rivers

    Science.gov (United States)

    Brown, Rocko A.; Pasternack, Gregory B.

    2008-05-01

    In efforts to rehabilitate regulated rivers for ecological benefits, the flow regime has been one of the primary focal points of management strategies. However, channel engineering can impact channel geometry such that hydraulic and geomorphic responses to flow reregulation do not yield the sought for benefits. To illustrate and assess the impacts of structural channel controls and flow reregulation on channel processes and fish habitat quality in multiple life stages, a highly detailed digital elevation model was collected and analyzed for a river reach right below a dam using a suite of hydrologic, hydraulic, geomorphic, and ecological methods. Results showed that, despite flow reregulation to produce a scaled-down natural hydrograph, anthropogenic boundary controls have severely altered geomorphic processes associated with geomorphic self-sustainability and instream habitat availability in the case study. Given the similarity of this stream to many others, we concluded that the potential utility of natural flow regime reinstatement in regulated gravel-bed rivers is conditional on concomitant channel rehabilitation.

  7. Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Miller, William H.

    1994-03-01

    This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  8. Determination of key radionuclides and parameters related to dose from the Columbia River pathway

    International Nuclear Information System (INIS)

    Napier, B.A.

    1993-03-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contributions of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford Site. These scoping calculations may include some radionuclides and pathways that were included in the Phase 1 Columbia River pathway dose evaluations, as well as other potential exposure pathways being evaluated for possible inclusion in future Hanford Environmental Dose Reconstruction Project (HEDR) modeling efforts. This scoping calculation (Calculation 009) examines the contributions of numerous radionuclides to dose via environmental exposures and accumulation in water, fish, and other aquatic biota. Addressed in these calculations are the contributions to effective dose from (1) external exposure to contaminated river water, ( 2) ingestion of contaminated drinking water, and (3) ingestion of contaminated resident Columbia River fish. Additional information on contamination of anadromous fish and waterfowl is provided

  9. UPPER MISSOURI RIVER ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM (EMAP-UMR) IN MONTANA AND NORTH AND SOUTH DAKOTA

    Science.gov (United States)

    In summer 2000, the EPA Office of Research Development's Mid-Continent Ecology Division, in cooperation with EPA Region 8 and States, will begin an EMAP effort on the aquatic resources of the UMR including the river, floodplain and mainstem reservoirs. The objective of this proj...

  10. An environmental DNA assay for detecting Arctic grayling in the upper Missouri River basin, North America

    Science.gov (United States)

    K. J. Carim; J. C. S. Dysthe; Michael Young; Kevin McKelvey; Michael Schwartz

    2016-01-01

    The upper Missouri River basin in the northwestern US contains disjunct Arctic grayling (Thymallus arcticus) populations of conservation concern. To assist efforts aimed at understanding Artic grayling distribution, we developed a quantitative PCR assay to detect the presence of Arctic grayling DNA in environmental samples. The assay amplified low...

  11. Many rivers to cross. Cross border co-operation in river management

    NARCIS (Netherlands)

    Verwijmeren, J.A.; Wiering, M.A.

    2007-01-01

    River basin management is a key concept in contemporary water policy. Since the management of rivers is best designed and implemented at the scale of the river basin, it seems obvious that we should not confine ourselves to administrative or geographical borders. In other words, river basin

  12. Evidence for density-dependent changes in growth, downstream movement, and size of Chinook salmon subyearlings in a large-river landscape

    Science.gov (United States)

    Connor, William P.; Tiffan, Kenneth F.; Plumb, John M.; Moffit, Christine M.

    2013-01-01

    We studied the growth rate, downstream movement, and size of naturally produced fall Chinook Salmon Oncorhynchus tshawytscha subyearlings (age 0) for 20 years in an 8th-order river landscape with regulated riverine upstream rearing areas and an impounded downstream migration corridor. The population transitioned from low to high abundance in association with U.S. Endangered Species Act and other federally mandated recovery efforts. The mean growth rate of parr in the river did not decline with increasing abundance, but during the period of higher abundance the timing of dispersal from riverine habitat into the reservoir averaged 17 d earlier and the average size at the time of downstream dispersal was smaller by 10 mm and 1.8 g. Changes in apparent abundance, measured by catch per unit effort, largely explained the time of dispersal, measured by median day of capture, in riverine habitat. The growth rate of smolts in the reservoir declined from an average of 0.6 to 0.2 g/d between the abundance periods because the reduction in size at reservoir entry was accompanied by a tendency to migrate rather than linger and by increasing concentrations of smolts in the reservoir. The median date of passage through the reservoir was 14 d earlier on average, and average smolt size was smaller by 38 mm and 22.0 g, in accordance with density-dependent behavioral changes reflected by decreased smolt growth. Unexpectedly, smolts during the high-abundance period had begun to reexpress the migration timing and size phenotypes observed before the river was impounded, when abundance was relatively high. Our findings provide evidence for density-dependent phenotypic change in a large river that was influenced by the expansion of a recovery program. Thus, this study shows that efforts to recover native fishes can have detectable effects in large-river landscapes. The outcome of such phenotypic change, which will be an important area of future research, can only be fully judged by

  13. Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River Basin; 1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Suzanne M.; Kern, J. Chris; Carmichael, Richard W. (Oregon Department of Fish and Wildlife, Portland, OR)

    1997-01-01

    This is the second year report of a multi-year project that monitors the outmigration and survival of hatchery and naturally-produced juvenile salmonids in the lower Umatilla River. This project supplements and complements ongoing or completed fisheries projects in the Umatilla River basin. Knowledge gained on outmigration and survival will assist researchers and managers in adapting hatchery practices, flow enhancement strategies, canal operations, and supplementation and enhancement efforts for natural and restored fish populations. The authors also report on tasks related to evaluating juvenile salmonid passage at Three Mile Falls Dam and West Extension Canal.

  14. Evaluation of juvenile salmonid outmigration and survival in the lower Umatilla River basin. Annual report, 1996

    International Nuclear Information System (INIS)

    Knapp, S.M.; Kern, J.C.; Cameron, W.A.; Snedaker, S.M.; Carmichael, R.W.

    1996-01-01

    This is the second year report of a multi-year project that monitors the outmigration and survival of hatchery and naturally-produced juvenile salmonids in the lower Umatilla River. This project supplements and complements ongoing or completed fisheries projects in the Umatilla River basin. Knowledge gained on outmigration and survival will assist researchers and managers in adapting hatchery practices, flow enhancement strategies, canal operations, and supplementation and enhancement efforts for natural and restored fish populations. The authors also report on tasks related to evaluating juvenile salmonid passage at Three Mile Falls Dam and West Extension Canal

  15. Egg deposition by lithophilic-spawning fishes in the Detroit and Saint Clair Rivers, 2005–14

    Science.gov (United States)

    Prichard, Carson G.; Craig, Jaquelyn M.; Roseman, Edward F.; Fischer, Jason L.; Manny, Bruce A.; Kennedy, Gregory W.

    2017-03-14

    A long-term, multiseason, fish egg sampling program conducted annually on the Detroit (2005–14) and Saint Clair (2010–14) Rivers was summarized to identify where productive fish spawning habitat currently exists. Egg mats were placed on the river bottom during the spring and fall at historic spawning areas and candidate fish spawning habitat restoration sites throughout both rivers. Widespread evidence was found of lithophilic spawning by numerous native fish species, including walleye (Sander vitreus), lake whitefish (Coregonus clupeaformis), lake sturgeon (Acipenser fulvescens), suckers (Catostomidae spp.), and trout-perch (Percopsis omiscomaycus). Walleye, lake whitefish, and suckers spp. spawned in nearly every region of each river in all years on both reef and nonreef substrates. Lake sturgeon eggs were collected almost exclusively over constructed reefs. Catch-per-unit effort of walleye, lake whitefish, and sucker eggs was much greater in the Detroit River than in the Saint Clair River, while Saint Clair River sites supported the greatest collections of lake sturgeon eggs. Collections during this study of lake sturgeon eggs on man-made spawning reefs suggest that artificial reefs may be an effective tool for restoring fish populations in the Detroit and Saint Clair Rivers; however, the quick response of lake sturgeon to spawn on newly constructed reefs and the fact that walleye, lake whitefish, and sucker eggs were often collected over substrate with little interstitial space to protect eggs from siltation and predators suggests that lack of suitable spawning habitat may continue to limit reproduction of lithophilic-spawning fish species in the Saint Clair-Detroit River System.

  16. Sustainable power and scenic beauty: The Niagara River Water Diversion Treaty and its relevance today

    International Nuclear Information System (INIS)

    Sedoff, Andrei; Schott, Stephan; Karney, Bryan

    2014-01-01

    Niagara Falls and the Niagara River have always attracted great public interest due to their natural beauty, their enormous potential for electricity generation, their recreational value and as an important ecosystem. There have been simultaneous efforts to preserve this unique natural wonder and harness its power through hydroelectric development projects by both the United States and Canada. This paper explores the evolution of these efforts that culminated with the signing of the 1950 Niagara River Water Diversion Treaty that established minimum water flow rates to protect the “scenic beauty” of the falls, allowing the remaining water to be diverted for power production. We examine the rationale that led to specific water flow restrictions and question to what extent they are relevant today, as water intake capacity on the Canadian side has just been extended by around 25%. We find that current restrictions under the Niagara River Water Treaty (that expired in 2000) are not based on sound scientific evidence and estimate the upper limit of potential foregone benefits from clean electricity generation and greenhouse gas reductions. We identify a number of important issues that emerged in the last decades and that would justify an exploration of new treaty rules. - Highlights: • We examine the history of water diversion at Niagara Falls. • We examine the rationale that led to water flow restrictions over Niagara Falls and its relevance today. • We estimate the opportunity cost of foregone energy generation with the new Canadian intake capacity. • Water flow stipulations were not based on the sound scientific or ecosystem analysis. • A renegotiation of the 1950 Niagara River Water Diversion Treaty is overdue

  17. Characterization of a Flood Event through a Sediment Analysis: The Tescio River Case Study

    Directory of Open Access Journals (Sweden)

    Silvia Di Francesco

    2016-07-01

    Full Text Available This paper presents the hydrological analysis and grain size characteristics of fluvial sediments in a river basin and their combination to characterize a flood event. The overall objective of the research is the development of a practical methodology based on experimental surveys to reconstruct the hydraulic history of ungauged river reaches on the basis of the modifications detected on the riverbed during the dry season. The grain size analysis of fluvial deposits usually requires great technical and economical efforts and traditional sieving based on physical sampling is not appropriate to adequately represent the spatial distribution of sediments in a wide area of a riverbed with a reasonable number of samples. The use of photographic sampling techniques, on the other hand, allows for the quick and effective determination of the grain size distribution, through the use of a digital camera and specific graphical algorithms in large river stretches. A photographic sampling is employed to characterize the riverbed in a 3 km ungauged reach of the Tescio River, a tributary of the Chiascio River, located in central Italy, representative of many rivers in the same geographical area. To this end, the particle size distribution is reconstructed through the analysis of digital pictures of the sediments taken on the riverbed in dry conditions. The sampling has been performed after a flood event of known duration, which allows for the identification of the removal of the armor in one section along the river reach under investigation. The volume and composition of the eroded sediments made it possible to calculate the average flow rate associated with the flood event which caused the erosion, by means of the sediment transport laws and the hydrological analysis of the river basin. A hydraulic analysis of the river stretch under investigation was employed to verify the validity of the proposed procedure.

  18. Kootenai River Focus Watershed Coordination, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Munson, Bob; Munson, Vicki (Kootenai River Network, Libby, MT); Rogers, Rox (US Fish and Wildlife Service, Libby, MT)

    2003-10-01

    The Kootenai River Network Inc. (KRN) was incorporated in Montana in early 1995 with a mission ''to involve stakeholders in the protection and restoration of the chemical, physical and biological integrity of the Kootenai River Basin waters''. The KRN operates with funding from donations, membership dues, private, state and federal grants, and with funding through the Bonneville Power Administration (BPA) for a Focus Watershed Coordinator Program. The Focus Watershed Program is administered to KRN as of October 2001, through a Memorandum of Understanding. Katie Randall resigned her position as Watershed Coordinator in late January 2003 and Munson Consulting was contracted to fill that position through the BPA contract period ending May 30, 2003. To improve communications with in the Kootenai River watershed, the board and staff engaged watershed stakeholders in a full day KRN watershed conference on May 15 and 16 in Bonners Ferry, Idaho. This Annual General Meeting was a tremendous success with over 75 participants representing over 40 citizen groups, tribes and state/provincial/federal agencies from throughout northern Montana and Idaho as well as British Columbia and Alberta. Membership in the KRN increased during the course of the BPA 02/03 grant period. The board of directors grew in numbers during this same time frame and an Advisory Council was formed to assist in transboundary efforts while developing two reorganized KRN committees (Habitat/Restoration/Monitoring (HRM) and Communication/Education/Outreach (CEO)). These committees will serve pivotal roles in communications, outreach, and education about watershed issues, as well as habitat restoration work being accomplished throughout the entire watershed. During this BPA grant period, the KRN has capitalized on the transboundary interest in the Kootenai River watershed. Jim and Laura Duncan of Kimberley, British Columbia, have been instrumental volunteers who have acted as Canadian

  19. Maximum effort in the minimum-effort game

    Czech Academy of Sciences Publication Activity Database

    Engelmann, Dirk; Normann, H.-T.

    2010-01-01

    Roč. 13, č. 3 (2010), s. 249-259 ISSN 1386-4157 Institutional research plan: CEZ:AV0Z70850503 Keywords : minimum-effort game * coordination game * experiments * social capital Subject RIV: AH - Economics Impact factor: 1.868, year: 2010

  20. Large shift in source of fine sediment in the upper Mississippi River

    Science.gov (United States)

    Belmont, P.; Gran, K.B.; Schottler, S.P.; Wilcock, P.R.; Day, S.S.; Jennings, C.; Lauer, J.W.; Viparelli, E.; Willenbring, J.K.; Engstrom, D.R.; Parker, G.

    2011-01-01

    Although sediment is a natural constituent of rivers, excess loading to rivers and streams is a leading cause of impairment and biodiversity loss. Remedial actions require identification of the sources and mechanisms of sediment supply. This task is complicated by the scale and complexity of large watersheds as well as changes in climate and land use that alter the drivers of sediment supply. Previous studies in Lake Pepin, a natural lake on the Mississippi River, indicate that sediment supply to the lake has increased 10-fold over the past 150 years. Herein we combine geochemical fingerprinting and a suite of geomorphic change detection techniques with a sediment mass balance for a tributary watershed to demonstrate that, although the sediment loading remains very large, the dominant source of sediment has shifted from agricultural soil erosion to accelerated erosion of stream banks and bluffs, driven by increased river discharge. Such hydrologic amplification of natural erosion processes calls for a new approach to watershed sediment modeling that explicitly accounts for channel and floodplain dynamics that amplify or dampen landscape processes. Further, this finding illustrates a new challenge in remediating nonpoint sediment pollution and indicates that management efforts must expand from soil erosion to factors contributing to increased water runoff. ?? 2011 American Chemical Society.

  1. Oil spill response planning on the Columbia river estuary

    International Nuclear Information System (INIS)

    Christopherson, S.K.; Slyman, P.M.

    1993-01-01

    The Columbia River Estuary lies along the Washington-Oregon state boundary on the west coast of the United States. The entire area is environmentally very sensitive with numerous large, shallow bays, exposed mud flats, wetland areas, and central channels having maximum currents of three to four knots. These features make the area very difficult to protect from an oil spill. Spill response is further complicated because of the many different state, federal, and local jurisdictions with mandated responsibilities in oil spill response and environmental protection. Under the leadership of the US Coast Guard Marine Safety Office in Portland, Oregon, a steering group was established to guide the development of a response plan for the Columbia River Estuary. A concerted effort was made to include representatives from response organizations, natural resource agencies, and resource users from federal, state, and local governments, and commercial sectors in the planning process. The first draft of an operational response plan was completed the summer of 1992 through a combination of technical workshops, field trips, and small working groups meeting with local communities. The Columbia River Estuary Response Plan prioritizes areas to protect; identifies specific response strategies for protecting these areas; and outlines the Iogistics needed to implement these strategies, including equipment needs, the location of staging areas, and the identification of pre-designed command posts. The local spill response cooperative and oil transportation industry are using the plan to coordinate the purchase of response equipment and the staging of this equipment at numerous locations along the river. The key to success is ensuring that all the groups responding to an event participate in the planning process together. This process has worked well and will serve as a model for response planning for other areas along the Columbia River and coastal areas of Washington and Oregon

  2. Columbia River: Terminal fisheries research project. 1994 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, P.; Miller, M.; Hill, J.

    1996-12-01

    Columbia River terminal fisheries have been conducted in Youngs Bay, Oregon, since the early 1960`s targeting coho salmon produced at the state facility on the North Fork Klaskanine River. In 1977 the Clatsop County Economic Development Council`s (CEDC) Fisheries Project began augmenting the Oregon Department of Fish and Wildlife production efforts. Together ODFW and CEDC smolt releases totaled 5,060,000 coho and 411,300 spring chinook in 1993 with most of the releases from the net pen acclimation program. During 1980-82 fall commercial terminal fisheries were conducted adjacent to the mouth of Big Creek in Oregon. All past terminal fisheries were successful in harvesting surplus hatchery fish with minimal impact on nonlocal weak stocks. In 1993 the Northwest Power Planning Council recommended in its` Strategy for Salmon that terminal fishing sites be identified and developed. The Council called on the Bonneville Power Administration to fund a 10-year study to investigate the feasibility of creating and expanding terminal known stock fisheries in the Columbia River Basin. The findings of the initial year of the study are included in this report. The geographic area considered for study extends from Bonneville Dam to the river mouth. The initial year`s work is the beginning of a 2-year research stage to investigate potential sites, salmon stocks, and methodologies; a second 3-year stage will focus on expansion in Youngs Bay and experimental releases into sites with greatest potential; and a final 5-year phase establishing programs at full capacity at all acceptable sites. After ranking all possible sites using five harvest and five rearing criteria, four sites in Oregon (Tongue Point, Blind Slough, Clifton Channel and Wallace Slough) and three in Washington (Deep River, Steamboat Slough and Cathlamet Channel) were chosen for study.

  3. Malheur River Basin cooperative bull trout/redband trout research project, annual report FY 1999; ANNUAL

    International Nuclear Information System (INIS)

    Schwabe, Lawrence; Tiley, Mark

    2000-01-01

    The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchanan 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99

  4. Scaling up watershed model parameters--Flow and load simulations of the Edisto River Basin

    Science.gov (United States)

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul

    2014-01-01

    The Edisto River is the longest and largest river system completely contained in South Carolina and is one of the longest free flowing blackwater rivers in the United States. The Edisto River basin also has fish-tissue mercury concentrations that are some of the highest recorded in the United States. As part of an effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River basin, analyses and simulations of the hydrology of the Edisto River basin were made with the topography-based hydrological model (TOPMODEL). The potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River basin, was assessed. Scaling up was done in a step-wise process beginning with applying the calibration parameters, meteorological data, and topographic wetness index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made with subsequent simulations culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River basin and updated calibration parameters for some of the TOPMODEL calibration parameters. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the two models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the significant difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variables in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD-H, and LOADEST

  5. [Nutrients Input Characteristics of the Yangtze River and Wangyu River During the "Water Transfers on Lake Taihu from the Yangtze River"].

    Science.gov (United States)

    Pan, Xiao-xue; Ma, Ying-qun; Qin, Yan-wen; Zou, Hua

    2015-08-01

    Overall 20 surface water samples were collected from the Yangtze River, the Wangyu River and the Gonghu Bay (Lake Taihu) to clarify the pollution characteristics of nitrogen and phosphorus during 2 sample stages of "Water Transfers on Lake Taihu from the Yangtze River" in August and December of 2013 respectively. The results showed that the mass concentrations of NO2- -N, NO3- -N, NH4+ -N and TN in the Gonghu Bay were lower than those of the Yangtze River and Wangyu River during the 2 water transfer processes. However, there was higher level of DON content in the Gonghu Bay than that of the Yangtze River and Wangyu River. The percentages of various N species showed that NO3- -N was the major N species in the Yangtze River and Wangyu River during the 2 water transfer processes. TP contents in samples collected from the Yangtze River displayed a constant trend compared with the Wangyu River. However, the percentages of various P species were different with each other during the 2 water transfer processes. Mass concentrations of DON and TP in surface water in August were higher than those in December and the contents of NO3- -N and TDP were lower in August than those in December. In general, NO3- -N and TPP were the main N and P species in Wangyu River from the Yangtze River. NO3- -N, PO4(3-) -P and TPP were the main N and P species in Gonghu Bay from Wangyu River during the 2 water transfer processes.

  6. Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River Basin, Annual Report 2003-2006.

    Energy Technology Data Exchange (ETDEWEB)

    White, Tara

    2007-02-01

    This report summarizes activities conducted by the Oregon Department of Fish and Wildlife's Juvenile Outmigration and Survival M&E project in the Umatilla River subbasin between 2004-2006. Information is used to make informed decisions on hatchery effectiveness, natural production success, passage improvement and flow enhancement strategies. Data collected includes annual estimates of smolt abundance, migration timing, and survival, life history characteristics and productivity status and trends for spring and fall Chinook salmon, coho salmon and summer steelhead. Productivity data provided is the key subbasin scale measure of the effectiveness of salmon and steelhead restoration actions in the Umatilla River. Information is also used for regional planning and recovery efforts of Mid-Columbia River (MCR) ESA-listed summer steelhead. Monitoring is conducted via smolt trapping and PIT-tag interrogation at Three Mile Falls Dam. The Umatilla Juvenile Outmigration and Survival Project was established in 1994 to evaluate the success of management actions and fisheries restoration efforts in the Umatilla River Basin. Project objectives for the 2004-2006 period were to: (1) operate the PIT tag detection system at Three Mile Falls Dam (TMFD), (2) enhance provisional PIT-tag interrogation equipment at the east bank adult fish ladder, (3) monitor the migration timing, abundance and survival of naturally-produced juvenile salmonids and trends in natural production, (4) determine migration parameters and survival of hatchery-produced fish representing various rearing, acclimation and release strategies, (5) evaluate the relative survival between transported and non-transported fish, (6) monitor juvenile life history characteristics and evaluate trends over time, (7) investigate the effects of river, canal, fishway operations and environmental conditions on smolt migration and survival, (8) document the temporal distribution and diversity of resident fish species, and (9

  7. The unionid (Bivalvia) fauna of the Sipsey River in northwestern Alabama, an aquatic hotspot

    Science.gov (United States)

    McCullagh, W. Henry; Williams, James D.; McGregor, Stuart W.; Pierson, J. Malcom; Lydeard, Charles

    2002-01-01

    Recent surveys for unionid bivalves were conducted in the mainstem of the Sipsey River and headwater tributaries (Tombigbee River drainage) during the summer and autumn of 1996-1999. A total of 35 species and 22 genera were found. Museum records from the upper Sipsey, based largely on the efforts of H. H. Smith during 1910-11, raised the total number of recorded unionids in the Sipsey to 42. Smith documented 25 species in the river; however, most of his collections were made in the mid- to upper-Sipsey, which has lower diversity. The three most common recently observed species in descending order of abundance were Quadrula asperata (I. Lea, 1861), Pleurobema decisum (I. Lea, 1831), and Tritogonia verrucosa (Rafinesque, 1820). Federally listed species observed recently include Lampsilis perovalis (Conrad, 1834) (threatened), Medionidus acutissimus (I. Lea, 1831) (threatened), P. decisum (endangered), P. perovatum (Conrad, 1834) (endangered), and Potamilus inflatus (I. Lea, 1831) (threatened). Species not observed recently but recorded in prior surveys include Anodontoides radiatus (Conrad, 1834), Arcidens confragosus (Say, 1829), Plectomerus dombeyanus (Valenciennes, 1827), Q. metanevra (Rafinesque, 1820), Q. stapes (I. Lea, 1831) (federally endangered), P. taitianum (I. Lea, 1834) (federally endangered), and Toxolasma parvus (Barnes, 1823). Many, species are known recently or historically by only five or fewer recorded specimens including: A. radiatus, Elliptio arctata (Conrad, 1834), Ligumia recta (Lamarck, 1819), P. taitianum, P. inflatus, Q. aspera (Lea, 1831), Q. metanevra, Q. stapes, T. parvus, Truncilla donaciformis (I. Lea, 1828), Uniomerus tetralasmus (Say, 1831), Utterbackia imbecillis (Say, 1829), A. confragosus, and P. dombeyanus. Unlike the mussel fauna of most Alabama streams, that of the Sipsey River is still relatively intact in terms of species richness despite impacts from mining, silvicultural, and agricultural activities. A concerted effort

  8. Distribution and abundance of fish populations in the Middle Wabash River

    International Nuclear Information System (INIS)

    Teppen, T.C.; Gammon, J.R.

    1976-01-01

    A field investigation was made of the distribution and abundance of fish within a 161-km portion of the Wabash River to determine effects of heated effluents as well as changes in water quality on ichthyofaunal communities within the river. Twenty-six sampling stations were electrofished, sequentially, four times in 1974 with extended sampling efforts made in the vicinity of two power-generating stations studied since 1967 and 1968. During August an overall rise in river temperature of 4 0 C was observed from upstream to downstream, with several chemical factors also showing slight increases. Although the majority of species populations were influenced either negatively or positively by the gradient of river conditions available to them, the only statistically significant parameters found in the analysis of community structure involved a lower diversity by weight below Terre Haute and a greater abundance of fish above the Cayuga generating station. Decreases occurred downstream in populations of redhorse (Moxostoma sp.), sauger (Stizostedion canadense), longear sunfish (Lepomis megalotis), and gizzard shad (Dorosoma cepedianum), with increases downstream observed in flathead catfish (Pylodictis olivaris), shortnose gar (Lepisosteus platostomus), longnose gar (E. osseus), and bowfin (Amia calva) populations. Carp (Cyprinus carpio) were present in large numbers throughout the study area with a tremendous population increase evident in recent years. Although species associations were variable among the segments, overall community parameters remained relatively unaffected

  9. Application and utility of a low-cost unmanned aerial system to manage and conserve aquatic resources in four Texas rivers

    Science.gov (United States)

    Birdsong, Timothy W.; Bean, Megan; Grabowski, Timothy B.; Hardy, Thomas B.; Heard, Thomas; Holdstock, Derrick; Kollaus, Kristy; Magnelia, Stephan J.; Tolman, Kristina

    2015-01-01

    Low-cost unmanned aerial systems (UAS) have recently gained increasing attention in natural resources management due to their versatility and demonstrated utility in collection of high-resolution, temporally-specific geospatial data. This study applied low-cost UAS to support the geospatial data needs of aquatic resources management projects in four Texas rivers. Specifically, a UAS was used to (1) map invasive salt cedar (multiple species in the genus Tamarix) that have degraded instream habitat conditions in the Pease River, (2) map instream meso-habitats and structural habitat features (e.g., boulders, woody debris) in the South Llano River as a baseline prior to watershed-scale habitat improvements, (3) map enduring pools in the Blanco River during drought conditions to guide smallmouth bass removal efforts, and (4) quantify river use by anglers in the Guadalupe River. These four case studies represent an initial step toward assessing the full range of UAS applications in aquatic resources management, including their ability to offer potential cost savings, time efficiencies, and higher quality data over traditional survey methods.

  10. RiverCare: towards self-sustaining multifunctional rivers

    Science.gov (United States)

    Augustijn, Denie; Schielen, Ralph; Hulscher, Suzanne

    2014-05-01

    Rivers are inherently dynamic water systems involving complex interactions among hydrodynamics, morphology and ecology. In many deltas around the world lowland rivers are intensively managed to meet objectives like safety, navigation, hydropower and water supply. With the increasing pressure of growing population and climate change it will become even more challenging to reach or maintain these objectives and probably also more demanding from a management point of view. In the meantime there is a growing awareness that rivers are natural systems and that, rather than further regulation works, the dynamic natural processes should be better utilized (or restored) to reach the multifunctional objectives. Currently many integrated river management projects are initiated all over the world, in large rivers as well as streams. Examples of large scale projects in the Netherlands are 'Room for the River' (Rhine), the 'Maaswerken' (Meuse), the Deltaprogramme and projects originating from the European Water Framework Directive (WFD). These projects include innovative measures executed never before on this scale and include for example longitudinal training dams, side channels, removal of bank protection, remeandering of streams, dredging/nourishment and floodplain rehabilitation. Although estimates have been made on the effects of these measures for many of the individual projects, the overall effects on the various management objectives remains uncertain, especially if all projects are considered in connection. For all stakeholders with vested interests in the river system it is important to know how that system evolves at intermediate and longer time scales (10 to 100 years) and what the consequences will be for the various river functions. If the total, integrated response of the system can be predicted, the system may be managed in a more effective way, making optimum use of natural processes. In this way, maintenance costs may be reduced, the system remains more natural

  11. Savannah River Site nuclear materials management plan FY 2017-2031

    Energy Technology Data Exchange (ETDEWEB)

    Magoulas, V. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-22

    The purpose of the Nuclear Materials Management Plan (herein referred to as “this Plan”) is to integrate and document the activities required to disposition the legacy and/or surplus Enriched Uranium (EU) and Plutonium (Pu) and other nuclear materials already stored or anticipated to be received by facilities at the Department of Energy (DOE) Savannah River Site (SRS) as well as the activities to support the DOE Tritium mission. It establishes a planning basis for EU and Pu processing operations in Environmental Management Operations (EMO) facilities through the end of their program missions and for the tritium through the National Nuclear Security Administration (NNSA) Defense Programs (DP) facilities. Its development is a joint effort among the Department of Energy - Savannah River (DOE-SR), DOE – Environmental Management (EM), NNSA Office of Material Management and Minimization (M3), NNSA Savannah River Field Office (SRFO), and the Management and Operations (M&O) contractor, Savannah River Nuclear Solutions, LLC (SRNS). Life-cycle program planning for Nuclear Materials Stabilization and Disposition and the Tritium Enterprise may use this Plan as a basis for the development of the nuclear materials disposition scope and schedule. This Plan assumes full funding to accomplish the required project and operations activities. It is recognized that some aspects of this Plan are pre decisional with regard to National Environmental Policy Act (NEPA); in such cases new NEPA actions will be required.

  12. Application of probabilistic risk assessment to nuclear fuel reprocessing at the Savannah River Plant

    International Nuclear Information System (INIS)

    Durant, W.S.

    1980-01-01

    The Savannah River Laboratory has developed an integrated risk assessment methodology that has been applied to systems in the nuclear fuel reprocessing facilities at the Savannah River Plant. The methodology can be applied to several types of design and operational problems. Basically, the analysis is subdivided into individual modules that can be either utilized separately or integrated into an overall risk analysis. Computer codes and computer data banks are utilized extensively to minimize the manual effort. The flow of information begins with a definition of the system to be analyzed followed by an evaluation of sources of fault information, storage of this information in data banks, design analysis and data treatment, risk calculations, and end product options

  13. Incorporating probabilistic seasonal climate forecasts into river management using a risk-based framework

    Science.gov (United States)

    Sojda, Richard S.; Towler, Erin; Roberts, Mike; Rajagopalan, Balaji

    2013-01-01

    [1] Despite the influence of hydroclimate on river ecosystems, most efforts to date have focused on using climate information to predict streamflow for water supply. However, as water demands intensify and river systems are increasingly stressed, research is needed to explicitly integrate climate into streamflow forecasts that are relevant to river ecosystem management. To this end, we present a five step risk-based framework: (1) define risk tolerance, (2) develop a streamflow forecast model, (3) generate climate forecast ensembles, (4) estimate streamflow ensembles and associated risk, and (5) manage for climate risk. The framework is successfully demonstrated for an unregulated watershed in southwest Montana, where the combination of recent drought and water withdrawals has made it challenging to maintain flows needed for healthy fisheries. We put forth a generalized linear modeling (GLM) approach to develop a suite of tools that skillfully model decision-relevant low flow characteristics in terms of climate predictors. Probabilistic precipitation forecasts are used in conjunction with the GLMs, resulting in season-ahead prediction ensembles that provide the full risk profile. These tools are embedded in an end-to-end risk management framework that directly supports proactive fish conservation efforts. Results show that the use of forecasts can be beneficial to planning, especially in wet years, but historical precipitation forecasts are quite conservative (i.e., not very “sharp”). Synthetic forecasts show that a modest “sharpening” can strongly impact risk and improve skill. We emphasize that use in management depends on defining relevant environmental flows and risk tolerance, requiring local stakeholder involvement.

  14. Bathymetric surveys of the Neosho River, Spring River, and Elk River, northeastern Oklahoma and southwestern Missouri, 2016–17

    Science.gov (United States)

    Hunter, Shelby L.; Ashworth, Chad E.; Smith, S. Jerrod

    2017-09-26

    In February 2017, the Grand River Dam Authority filed to relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission. The predominant feature of the Pensacola Hydroelectric Project is Pensacola Dam, which impounds Grand Lake O’ the Cherokees (locally called Grand Lake) in northeastern Oklahoma. Identification of information gaps and assessment of project effects on stakeholders are central aspects of the Federal Energy Regulatory Commission relicensing process. Some upstream stakeholders have expressed concerns about the dynamics of sedimentation and flood flows in the transition zone between major rivers and Grand Lake O’ the Cherokees. To relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission, the hydraulic models for these rivers require high-resolution bathymetric data along the river channels. In support of the Federal Energy Regulatory Commission relicensing process, the U.S. Geological Survey, in cooperation with the Grand River Dam Authority, performed bathymetric surveys of (1) the Neosho River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, (2) the Spring River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, and (3) the Elk River from Noel, Missouri, to the Oklahoma State Highway 10 bridge near Grove, Oklahoma. The Neosho River and Spring River bathymetric surveys were performed from October 26 to December 14, 2016; the Elk River bathymetric survey was performed from February 27 to March 21, 2017. Only areas inundated during those periods were surveyed.The bathymetric surveys covered a total distance of about 76 river miles and a total area of about 5 square miles. Greater than 1.4 million bathymetric-survey data points were used in the computation and interpolation of bathymetric-survey digital elevation models and derived contours at 1-foot (ft) intervals. The minimum bathymetric-survey elevation of the Neosho

  15. Classification of Tropical River Using Chemometrics Technique: Case Study in Pahang River, Malaysia

    International Nuclear Information System (INIS)

    Mohd Khairul Amri Kamarudin; Mohd Ekhwan Toriman; Nur Hishaam Sulaiman

    2015-01-01

    River classification is very important to know the river characteristic in study areas, where this database can help to understand the behaviour of the river. This article discusses about river classification using Chemometrics techniques in mainstream of Pahang River. Based on river survey, GIS and Remote Sensing database, the chemometric analysis techniques have been used to identify the cluster on the Pahang River using Hierarchical Agglomerative Cluster Analysis (HACA). Calibration and validation process using Discriminant Analysis (DA) has been used to confirm the HACA result. Principal Component Analysis (PCA) study to see the strong coefficient where the Pahang River has been classed. The results indicated the main of Pahang River has been classed to three main clusters as upstream, middle stream and downstream. Base on DA analysis, the calibration and validation model shows 100 % convinced. While the PCA indicates there are three variables that have a significant correlation, domination slope with R"2 0.796, L/D ratio with R"2 -0868 and sinuosity with R"2 0.557. Map of the river classification with moving class also was produced. Where the green colour considered in valley erosion zone, yellow in a low terrace of land near the channels and red colour class in flood plain and valley deposition zone. From this result, the basic information can be produced to understand the characteristics of the main Pahang River. This result is important to local authorities to make decisions according to the cluster or guidelines for future study in Pahang River, Malaysia specifically and for Tropical River generally. The research findings are important to local authorities by providing basic data as a guidelines to the integrated river management at Pahang River, and Tropical River in general. (author)

  16. Which lesson can be learnt from a historical contamination analysis of the most polluted river in Europe?

    Energy Technology Data Exchange (ETDEWEB)

    Lofrano, Giusy, E-mail: glofrano@unisa.it [Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132-84084 Fisciano, Salerno (Italy); Institute of Methodologies for Environmental Analysis, National Research Council (CNR IMA), C. da S. Loja Z.I. Tito Scalo, I-85050 Potenza (Italy); Department of Environmental and Civil Engineering, University of Naples “Federico II”, Via Claudio, 21, 80127 Naples (Italy); Libralato, Giovanni [Department of Environmental Sciences, Informatics and Statistics, University Cà Foscari Venice, Campo della Celestia, 2737/B-30122 Venice (Italy); Institute of Marine Sciences, National Research Council (CNR ISMAR), Arsenale Tesa 104, Castello 2737/F-30122, Venice (Italy); Acanfora, Floriana Giuseppina [Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132-84084 Fisciano, Salerno (Italy); Pucci, Luca [Legambiente Campania, Piazza Cavour, 168-80137 Naples (Italy); Carotenuto, Maurizio [Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132-84084 Fisciano, Salerno (Italy)

    2015-08-15

    The Sarno River trend analysis during the last 60 years was traced focusing on the socio-economic and environmental issues. The river, originally worshiped as a god by Romans, is affected by an extreme level of environmental degradation, being sadly reputed as the most polluted river in Europe. This is the “not to be followed” example of the worst way a European river can be managed. Data about water, sediment, soil, biota and air contamination were collected from scientific papers, monitoring surveys, and technical reports depicting a sick river. Originally, the river was reputed as a source of livelihood, now it is considered a direct threat for human health. Wastewater can still flow through the river partially or completely untreated, waste production associated with the manufacture of metal products and leather tanning continues to suffer from the historical inadequacy of regional wastewater treatment plants (WWTPs), associated with the partial or no reuse of effluents. All efforts should be devoted to solving the lack of wastewater and waste management, the gap in land planning, improving the capacity of existing WWTPs also via the construction of new sewer sections, restoring Sarno River minimum vital-flow, keeping to a minimum uncontrolled discharges as well as supporting river contracts. The 2015 goal stated by the Water Framework Directive (2000/60/EC) is still far to be reached. The lesson has not been learnt yet. - Highlights: • Sarno River is far from reaching the 2015 goal of Water Framework Directive. • A full knowledge of the health status of Sarno River was provided. • Poor wastewater management and agricultural pressures as main weaknesses • Restoration of vital flow and river contracts as immediate and low cost solutions.

  17. Which lesson can be learnt from a historical contamination analysis of the most polluted river in Europe?

    International Nuclear Information System (INIS)

    Lofrano, Giusy; Libralato, Giovanni; Acanfora, Floriana Giuseppina; Pucci, Luca; Carotenuto, Maurizio

    2015-01-01

    The Sarno River trend analysis during the last 60 years was traced focusing on the socio-economic and environmental issues. The river, originally worshiped as a god by Romans, is affected by an extreme level of environmental degradation, being sadly reputed as the most polluted river in Europe. This is the “not to be followed” example of the worst way a European river can be managed. Data about water, sediment, soil, biota and air contamination were collected from scientific papers, monitoring surveys, and technical reports depicting a sick river. Originally, the river was reputed as a source of livelihood, now it is considered a direct threat for human health. Wastewater can still flow through the river partially or completely untreated, waste production associated with the manufacture of metal products and leather tanning continues to suffer from the historical inadequacy of regional wastewater treatment plants (WWTPs), associated with the partial or no reuse of effluents. All efforts should be devoted to solving the lack of wastewater and waste management, the gap in land planning, improving the capacity of existing WWTPs also via the construction of new sewer sections, restoring Sarno River minimum vital-flow, keeping to a minimum uncontrolled discharges as well as supporting river contracts. The 2015 goal stated by the Water Framework Directive (2000/60/EC) is still far to be reached. The lesson has not been learnt yet. - Highlights: • Sarno River is far from reaching the 2015 goal of Water Framework Directive. • A full knowledge of the health status of Sarno River was provided. • Poor wastewater management and agricultural pressures as main weaknesses • Restoration of vital flow and river contracts as immediate and low cost solutions

  18. Wide reproductive period of a long-distance migratory fish in a subtropical river, Brazil

    Directory of Open Access Journals (Sweden)

    Evoy Zaniboni-Filho

    2017-03-01

    Full Text Available ABSTRACT Salminus brasiliensis is a potamodromous fish species that occurs in southern South American rivers. In spite of its ecological and economic relevance, information regarding the reproductive biology of S. brasiliensis is still scarce. This study used data from 18 years of continuous sampling in the Upper Uruguay River Basin, analyzing 718 adult fish (307 males, 243 females, 168 undefined captured at different months of the year. The results showed that the reproductive timing for S. brasiliensis is wide in the Upper Uruguay River, with the occurrence of mature fish between the month of August and March and spawned individuals between July and May of the next year. These results were sustained by the increase of gonadal somatic relationship (GSR from August. The reproductive timing of S. brasiliensis in the Upper Uruguay River may start between the middle winter and early spring (from late July to late September, and may extend until the late summer and middle fall (from the middle February to early May. These findings contribute to information on the general biology of S. brasiliensis and provide valuable knowledge to management programs and to conservation efforts of this fisheries resource.

  19. USGS River Ecosystem Modeling: Where Are We, How Did We Get Here, and Where Are We Going?

    Science.gov (United States)

    Hanson, Leanne; Schrock, Robin; Waddle, Terry; Duda, Jeffrey J.; Lellis, Bill

    2009-01-01

    This report developed as an outcome of the USGS River Ecosystem Modeling Work Group, convened on February 11, 2008 as a preconference session to the second USGS Modeling Conference in Orange Beach, Ala. Work Group participants gained an understanding of the types of models currently being applied to river ecosystem studies within the USGS, learned how model outputs are being used by a Federal land management agency, and developed recommendations for advancing the state of the art in river ecosystem modeling within the USGS. During a break-out session, participants restated many of the recommendations developed at the first USGS Modeling Conference in 2006 and in previous USGS needs assessments. All Work Group recommendations require organization and coordination across USGS disciplines and regions, and include (1) enhancing communications, (2) increasing efficiency through better use of current human and technologic resources, and (3) providing a national infrastructure for river ecosystem modeling resources, making it easier to integrate modeling efforts. By implementing these recommendations, the USGS will benefit from enhanced multi-disciplinary, integrated models for river ecosystems that provide valuable risk assessment and decision support tools for adaptive management of natural and managed riverine ecosystems. These tools generate key information that resource managers need and can use in making decisions about river ecosystem resources.

  20. Intensifying waste water clarification in heavy and mining industries for sanitation of rivers in the Katowice district

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, J.; Twardowska, I.

    1976-01-01

    This article presents a detailed account of the state of water pollution in the main and tributary rivers of the heavily populated and industrialized district of Katowice, Poland: Results of surveys in the years 1969 to 1972 are given. Several tables and maps show the degree of water pollution in rivers, the amount to which the values exceed pollution standards, percentage of treated and untreated industrial waste water entering the rivers, the classification of river sections according to their content of suspensions, phenols and salt. Further figures show the effectiveness of water cleaning flocculating agents and of waste water treatment at coking plants. Black coal mining and processing contributes the greater part to pollution of the rivers. Only 54% of mining industry waste water is cleaned mechanically and 3% chemically. The amount of 3,300 t/d of chlorite and sulfate salts is led into the rivers primarily from the Rybnik coal mining area. The clarification of waste water resulting from hydraulic stowing and from flotation processes is described as most problematic. Research efforts are being made at economic desalination and suspension flocculation. In the coking industry waste water is treated in 88% of the plants, but dephenolization takes place in only 50% of the plants. (29 refs.) (In German)

  1. River Corridor Easements

    Data.gov (United States)

    Vermont Center for Geographic Information — A River Corridor Easement (RCE) is an area of conserved land adjacent to a river or stream that was conserved to permanently protect the lateral area the river needs...

  2. Wind River Watershed restoration: 1999 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Connolly, Patrick J.

    2001-01-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey-Columbia River Research Lab (USGS-CRRL), and WA Department of Fish and Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination-Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring-Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment-Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration-Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  3. Compromised Rivers: Understanding Historical Human Impacts on Rivers in the Context of Restoration

    Directory of Open Access Journals (Sweden)

    Ellen Wohl

    2005-12-01

    Full Text Available A river that preserves a simplified and attractive form may nevertheless have lost function. Loss of function in these rivers can occur because hydrologic and geomorphic processes no longer create and maintain the habitat and natural disturbance regimes necessary for ecosystem integrity. Recognition of compromised river function is particularly important in the context of river restoration, in which the public perception of a river's condition often drives the decision to undertake restoration as well as the decision about what type of restoration should be attempted. Determining the degree to which a river has been altered from its reference condition requires a knowledge of historical land use and the associated effects on rivers. Rivers of the Front Range of the Colorado Rocky Mountains in the United States are used to illustrate how historical land uses such as beaver trapping, placer mining, tie drives, flow regulation, and the construction of transportation corridors continue to affect contemporary river characteristics. Ignorance of regional land use and river history can lead to restoration that sets unrealistic goals because it is based on incorrect assumptions about a river's reference condition or about the influence of persistent land-use effects.

  4. Resilience and Water Governance: Adaptive Governance in the Columbia River Basin

    Directory of Open Access Journals (Sweden)

    Barbara A. Cosens

    2012-12-01

    Full Text Available The 1964 Columbia River Treaty between the United States and Canada is currently under review. Under the treaty, the river is jointly operated by the two countries for hydropower and is the largest producer of hydropower in the western hemisphere. In considering the next phase of international river governance, the degree of uncertainty surrounding the drivers of change complicates efforts to predict and manage under traditional approaches that rely on historical ecosystem responses. At the same time, changes in social values have focused attention on ecosystem health, the decline of which has led to the listing of seven salmon and four steelhead populations under the U.S. Endangered Species Act. Although adaptive management is considered one approach to resource management in the face of uncertainty, an early attempt at its implementation in the U.S. portion of the basin failed. We explore these issues in the context of resilience, taking the position that while adaptive management may foster ecological resilience, it is only one factor in the institutional changes needed to foster social-ecological resilience captured in the concept of adaptive governance.

  5. Monitoring and mapping selected riparian habitat along the lower Snake River

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J. L; Tiller, B. L [Pacific Northwest Lab., Richland, WA (United States); Witter, M. [Shannon and Wilson, Inc., Seattle, WA (United States). Geotechnical and Environmental Consultants, Seattle, Washington (United States); Mazaika, R. [Corps of Engineers, Portland, OR (United States)

    1996-01-01

    Studies in this document were initiated to establish baseline information on riparian and wetland habitat conditions at the areas studied under the current reservoir operations on the lower Snake River. Two approaches were used to assess habitat at 28 study sites selected on the four pools on the lower Snake River. These areas all contribute significant riparian habitat along the river, and several of these areas are designated habitat management units. At 14 of the 28 sites, we monitored riparian habitat on three dates during the growing season to quantify vegetation abundance and composition along three transects: soil nutrients, moisture, and pH and water level and pH. A second approach involved identifying any differences in the extent and amount of riparian/wetland habitat currently found at the study areas from that previously documented. We used both ground and boat surveys to map and classify the changes in vegetative cover along the shoreline at the 14 monitoring sites and at 14 additional sites along the lower Snake selected to represent various riparian/wetland habitat conditions. Results of these mapping efforts are compared with maps of cover types previously generated using aerial photography taken in 1987.

  6. Walla Walla River Fish Passage Operations Program, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2004-03-01

    In the late 1990's, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and initiating trap and haul efforts. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2002-2003 project year, there were 545 adult summer steelhead (Oncorhynchus mykiss), 29 adult bull trout (Salvelinus confluentus); 1 adult and 1 jack spring chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway adult trap between January 1 and June 23, 2003. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. Operation of the Little Walla Walla River juvenile trap for trap and haul purposes was not necessary this year. The project transported 21 adult spring chinook from Ringold Springs Hatchery and 281 from Threemile Dam to the South Fork Walla Walla Brood Holding Facility. Of these, 290 were outplanted in August for natural spawning in the basin.

  7. Snake River sockeye salmon habitat and limnological research, annual report 1999

    International Nuclear Information System (INIS)

    Griswold, Robert G.

    2001-01-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding for this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 1999 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity

  8. Occurrence of polycyclic aromatic hydrocarbons in surface sediments of a highly urbanized river system with special reference to energy consumption patterns

    International Nuclear Information System (INIS)

    Zhang Kai; Wang Jizhong; Liang Bo; Zeng, Eddy Y.

    2011-01-01

    Sediment samples collected from downstream of the Dongjiang River, a highly urbanized river network within the Pearl River Delta of South China, were analyzed for 28 polycyclic aromatic hydrocarbons (PAHs). Total concentrations of 28 PAHs, 16 priority PAHs designated by the United States Environmental Protection Agency (USEPA) and the seven carcinogenic PAHs classified by the USEPA ranged from 480 to 4600, 100 to 3400 and 10 to 1700 ng/g dry weight, respectively. Principal component analysis-based stepwise multivariate linear regression showed that sediment PAHs were predominantly derived from coal combustion, refined fossil fuel combustion and oil spills, accounting for 37%, 32% and 23%, respectively, of the total loading. The levels of sediment PAHs remained steady from 2002 to 2008, during which fossil fuel consumption had doubled, probably reflecting efforts to control PAH emissions from fossil fuel combustion. Finally, use of natural gas and liquefied petroleum gas in automobiles should be encouraged to improve environmental quality. - Highlights: → PAHs in sediment showed similar input sources as those in air particles. → Combustion of fossil fuel is the predominant source for sediment PAHs. → Local efforts to control PAHs emissions from fossil fuel combustion were effective. → Promotion of natural gas and liquefied petroleum gas can reduce emissions of PAHs. - Occurrence of PAHs in surface sediments from a highly urbanized river system is assessed in relation to energy consumption patterns.

  9. Review of revised Klamath River Total Maximum Daily Load models from Link River Dam to Keno Dam, Oregon

    Science.gov (United States)

    Rounds, Stewart A.; Sullivan, Annett B.

    2013-01-01

    -living organic matter was decreased, which resulted in lower inputs of total phosphorus and nitrogen. Total phosphorus inputs were less than 0.03 mg/L, and although the inputs were derived from selected results of the UKL TMDL model, these concentrations seem too low to be representative of a historically eutrophic system surrounded by extensive wetlands, peat soils, and a groundwater system high in phosphorus. The draft TMDL states that the upstream boundary conditions are the greatest source of uncertainty, greater than any uncertainty associated with the models. Efforts to improve existing models of algal growth and nutrient cycling in UKL, therefore, would provide a substantial benefit to downstream modeling efforts on the Klamath River. Although many improvements were made in revising the Klamath River TMDL models, some issues and uncertainties remain. Several errors in the model source code remain, but do not affect model results for this application as long as certain options and rates are not changed; future users of these models should be aware of these issues. Although the distribution of dissolved and particulate organic matter was modified for the natural conditions scenario, that distribution was not changed for the current conditions scenarios. Recent data on that distribution and the likely rates of organic matter decomposition could be used to improve these models in the future. Nitrate predictions at Keno (Highway 66) still are too high for the current conditions scenarios; future efforts should re-evaluate the model’s denitrification rates and the release rate of ammonia from anoxic sediments. Possibly the most important of the remaining issues are tied to the two-state (healthy/unhealthy) hypothesis for the algae population that was coded into the model. Some of the rates and conversion functions could be refined to make them more acceptable; currently, the published literature does not support the concept of moderately low dissolved-oxygen concentrations as

  10. Snake River Fall Chinook Salmon life history investigations

    Science.gov (United States)

    Erhardt, John M.; Bickford, Brad; Hemingway, Rulon J.; Rhodes, Tobyn N.; Tiffan, Kenneth F.

    2017-01-01

    Columbia and Yakima rivers where abundance was higher (e.g., Tabor et al. 1993; Fritts and Pearsons 2004). We speculate that predation on subyearlings by Smallmouth Bass in the Snake River may have increased in recent years for several reasons. Since their ESA listing, recovery measures implemented for Snake River Fall Chinook salmon have resulted in a large increase in the juvenile population (Connor et al. 2013). Considering that subyearlings probably now make up a larger portion of the forage fish population, it is plausible they should make up a large portion of Smallmouth Bass diets. Second, migrating subyearlings delay downstream movement in the transition zones of the Clearwater River and Snake River for varying lengths of time (Tiffan et al. 2010), which increases their exposure and vulnerability to predators. Spatial overlap in locations of Smallmouth Bass and subyearlings that died during migration provides support for this (Tiffan et al. 2010). Finally, the later outmigration of subyearlings from the Clearwater River results in their presence in Lower Granite Reservoir during the warmest summer months when predation rates of Smallmouth Bass should be highest. In 2016, we focused our efforts on Smallmouth Bass predation in Lower Granite Reservoir downstream of the transition zones and the confluence area where we worked during 2012–2015. Similar to past years, our first objective was to quantify Smallmouth Bass consumption rates of subyearlings, determine relative bass abundance, and describe bass diets. In addition, Tiffan et al. (2016a) posited that predation risk to subyearlings may be higher in shoreline habitats that are more suitable for Smallmouth Bass and lower in shoreline habitats that are more suitable for subyearlings. To test this hypothesis, our second objective examines the relationship between Smallmouth Bass predation of subyearlings and habitat suitability.

  11. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole [Pacific Northwest National Laboratory

    2008-03-17

    This document is the first annual report for the study titled 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River'. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program. The goal of the 2007-2009 Tidal Freshwater Monitoring Study is to answer the following questions: In what types of habitats within the tidal freshwater area of the lower Columbia River and estuary (LCRE; Figure 1) are yearling and subyearling salmonids found, when are they present, and under what environmental conditions?1 And, what is the ecological importance2 of shallow (0-5 m) tidal freshwater habitats to the recovery of Upper Columbia River spring Chinook salmon and steelhead and Snake River fall Chinook salmon? Research in 2007 focused mainly on the first question, with fish stock identification data providing some indication of Chinook salmon presence at the variety of habitat types sampled. The objectives and sub-objectives for the 2007 study were as follows: (1) Habitat and Fish Community Characteristics-Provide basic data on habitat and fish community characteristics for yearling and subyearling salmonids at selected sites in the tidal freshwater reach in the vicinity of the Sandy River delta. (1a) Characterize vegetation assemblage percent cover, conventional water quality, substrate composition, and beach slope at each of six sampling sites in various tidal freshwater habitat types. (1b

  12. Transient simulation of groundwater levels within a sandbar of the Colorado River, Marble Canyon, Arizona, 2004

    Science.gov (United States)

    Sabol, Thomas A.; Springer, Abraham E.

    2013-01-01

    Seepage erosion and mass failure of emergent sandy deposits along the Colorado River in Grand Canyon National Park, Arizona, are a function of the elevation of groundwater in the sandbar, fluctuations in river stage, the exfiltration of water from the bar face, and the slope of the bar face. In this study, a generalized three-dimensional numerical model was developed to predict the time-varying groundwater level, within the bar face region of a freshly deposited eddy sandbar, as a function of river stage. Model verification from two transient simulations demonstrates the ability of the model to predict groundwater levels within the onshore portion of the sandbar face across a range of conditions. Use of this generalized model is applicable across a range of typical eddy sandbar deposits in diverse settings. The ability to predict the groundwater level at the onshore end of the sandbar face is essential for both physical and numerical modeling efforts focusing on the erosion and mass failure of eddy sandbars downstream of Glen Canyon Dam along the Colorado River.

  13. Geomorphology and river dynamics of the lower Copper River, Alaska

    Science.gov (United States)

    Brabets, Timothy P.; Conaway, Jeffrey S.

    2009-01-01

    Located in south-central Alaska, the Copper River drains an area of more than 24,000 square miles. The average annual flow of the river near its mouth is 63,600 cubic feet per second, but is highly variable between winter and summer. In the winter, flow averages approximately 11,700 cubic feet per second, and in the summer, due to snowmelt, rainfall, and glacial melt, flow averages approximately 113,000 cubic feet per second, an order of magnitude higher. About 15 miles upstream of its mouth, the Copper River flows past the face of Childs Glacier and enters a large, broad, delta. The Copper River Highway traverses this flood plain, and in 2008, 11 bridges were located along this section of the highway. The bridges cross several parts of the Copper River and in recent years, the changing course of the river has seriously damaged some of the bridges.Analysis of aerial photography from 1991, 1996, 2002, 2006, and 2007 indicates the eastward migration of a channel of the Copper River that has resulted in damage to the Copper River Highway near Mile 43.5. Migration of another channel in the flood plain has resulted in damage to the approach of Bridge 339. As a verification of channel change, flow measurements were made at bridges along the Copper River Highway in 2005–07. Analysis of the flow measurements indicate that the total flow of the Copper River has shifted from approximately 50 percent passing through the bridges at Mile 27, near the western edge of the flood plain, and 50 percent passing through the bridges at Mile 36–37 to approximately 5 percent passing through the bridges at Mile 27 and 95 percent through the bridges at Mile 36–37 during average flow periods.The U.S. Geological Survey’s Multi-Dimensional Surface-Water Modeling System was used to simulate water-surface elevation and velocity, and to compute bed shear stress at two areas where the Copper River is affecting the Copper River Highway. After calibration, the model was used to examine the

  14. Spatial and temporal trends of freshwater mussel assemblages in the Meramec River Basin, Missouri, USA

    Science.gov (United States)

    Hinck, Jo Ellen; McMurray, Stephen E.; Roberts, Andrew D.; Barnhart, M. Christopher; Ingersoll, Christopher G.; Wang, Ning; Augspurger, Tom

    2012-01-01

    The Meramec River basin in east-central Missouri has one of the most diverse unionoid mussel faunas in the central United States with >40 species identified. Data were analyzed from historical surveys to test whether diversity and abundance of mussels in the Meramec River basin (Big, Bourbeuse, and Meramec rivers, representing >400 river miles) decreased between 1978 and 1997. We found that over 20y, species richness and diversity decreased significantly in the Bourbeuse and Meramec rivers but not in the Big River. Most species were found at fewer sites and in lower numbers in 1997 than in 1978. Federally endangered species and Missouri Species of Conservation Concern with the most severe temporal declines were Alasmidonta viridis, Arcidens confragosus, Elliptio crassidens, Epioblasma triquetra, Fusconaia ebena, Lampsilis abrupta, Lampsilis brittsi, and Simpsonaias ambigua. Averaged across all species, mussels were generally being extirpated from historical sampling sites more rapidly than colonization was occurring. An exception was one reach of the Meramec River between river miles 28.4 and 59.5, where mussel abundance and diversity were greater than in other reaches and where colonization of Margaritiferidae, Lampsilini, and Quadrulini exceeded extirpation. The exact reasons mussel diversity and abundance have remained robust in this 30- mile reach is uncertain, but the reach is associated with increased gradients, few long pools, and vertical rock faces, all of which are preferable for mussels. Complete loss of mussel communities at eight sites (16%) with relatively diverse historical assemblages was attributed to physical habitat changes including bank erosion, unstable substrate, and sedimentation. Mussel conservation efforts, including restoring and protecting riparian habitats, limiting the effects of in-stream sand and gravel mining, monitoring and controlling invasive species, and protecting water quality, may be warranted in the Meramec River basin.

  15. Water quality assessment of a small peri-urban river using low and high frequency monitoring.

    Science.gov (United States)

    Ivanovsky, A; Criquet, J; Dumoulin, D; Alary, C; Prygiel, J; Duponchel, L; Billon, G

    2016-05-18

    The biogeochemical behaviors of small rivers that pass through suburban areas are difficult to understand because of the multi-origin inputs that can modify their behavior. In this context, a monitoring strategy has been designed for the Marque River, located in Lille Metropolitan area of northern France, that includes both low-frequency monitoring over a one-year period (monthly sampling) and high frequency monitoring (measurements every 10 minutes) in spring and summer. Several environmental and chemical parameters are evaluated including rainfall events, river flow, temperature, dissolved oxygen, turbidity, conductivity, nutritive salts and dissolved organic matter. Our results from the Marque River show that (i) it is impacted by both urban and agricultural inputs, and as a consequence, the concentrations of phosphate and inorganic nitrogen have degraded the water quality; (ii) the classic photosynthesis/respiration processes are disrupted by the inputs of organic matter and nutritive salts; (iii) during dry periods, the urban sewage inputs (treated or not) are more important during the day, as indicated by higher river flows and maximal concentrations of ammonium; (iv) phosphate concentrations depend on oxygen contents in the river; (v) high nutrient concentrations result in eutrophication of the Marque River with lower pH and oxygen concentrations in summer. During rainfalls, additional inputs of ammonium, biodegradable organic matter as well as sediment resuspension result in anoxic events; and finally (vi) concentrations of nitrate are approximately constant over the year, except in winter when higher inputs can be recorded. Having better identified the processes responsible for the observed water quality, a more informed remediation effort can be put forward to move this suburban river to a good status of water quality.

  16. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1995-1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rien, Thomas A.; Beiningen, Kirk T. (Oregon Department of Fish and Wildlife, Portland, OR)

    1997-07-01

    This project began in July 1986 and is a cooperative effort of federal, state, and tribal fisheries entities to determine (1) the status and habitat requirements, and (2) effects of mitigative measures on productivity of white sturgeon populations in the lower Colombia and Snake rivers.

  17. Respiratory effort from the photoplethysmogram.

    Science.gov (United States)

    Addison, Paul S

    2017-03-01

    The potential for a simple, non-invasive measure of respiratory effort based on the pulse oximeter signal - the photoplethysmogram or 'pleth' - was investigated in a pilot study. Several parameters were developed based on a variety of manifestations of respiratory effort in the signal, including modulation changes in amplitude, baseline, frequency and pulse transit times, as well as distinct baseline signal shifts. Thirteen candidate parameters were investigated using data from healthy volunteers. Each volunteer underwent a series of controlled respiratory effort maneuvers at various set flow resistances and respiratory rates. Six oximeter probes were tested at various body sites. In all, over three thousand pleth-based effort-airway pressure (EP) curves were generated across the various airway constrictions, respiratory efforts, respiratory rates, subjects, probe sites, and the candidate parameters considered. Regression analysis was performed to determine the existence of positive monotonic relationships between the respiratory effort parameters and resulting airway pressures. Six of the candidate parameters investigated exhibited a distinct positive relationship (poximeter probe and an ECG (P2E-Effort) and the other using two pulse oximeter probes placed at different peripheral body sites (P2-Effort); and baseline shifts in heart rate, (BL-HR-Effort). In conclusion, a clear monotonic relationship was found between several pleth-based parameters and imposed respiratory loadings at the mouth across a range of respiratory rates and flow constrictions. The results suggest that the pleth may provide a measure of changing upper airway dynamics indicative of the effort to breathe. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  18. River basin administration

    Science.gov (United States)

    Management of international rivers and their basins is the focus of the Centre for Comparative Studies on (International) River Basin Administration, recently established at Delft University of Technology in the Netherlands. Water pollution, sludge, and conflicting interests in the use of water in upstream and downstream parts of a river basin will be addressed by studying groundwater and consumption of water in the whole catchment area of a river.Important aspects of river management are administrative and policy aspects. The Centre will focus on policy, law, planning, and organization, including transboundary cooperation, posing standards, integrated environmental planning on regional scale and environmental impact assessments.

  19. Savannah River Site Environmental Report for 2003

    International Nuclear Information System (INIS)

    A. MAMATEY

    2003-01-01

    The ''Savannah River Site Environmental Report for 2003'' (WSRC-TR-2004-00015) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; (3) highlight significant programs and efforts; and (4) assess the impact of SRS operations on the public and the environment. This year's report reflects a continuing effort (begun in 2001) to streamline the document and thereby increase its cost effectiveness--without omitting valuable technical data. To that end each author will continue to work toward presenting results in summary fashion, focusing on historical trends. Complete data tables again are included on the CD inside the back cover of the report. The CD also features an electronic version of the report; an appendix of site, environmental sampling location, dose, and groundwater maps; and complete 2003 reports from a number of other SRS organizations

  20. A Reconnaissance for Emerging Contaminants in the South Branch Potomac River, Cacapon River, and Williams River Basins, West Virginia, April-October 2004

    Science.gov (United States)

    Chambers, Douglas B.; Leiker, Thomas J.

    2006-01-01

    /L. Water samples were collected from 7 stream sites and analyzed for arsenic species, including roxarsone. Arsenate was detected in samples from 6 of the 7 stream samples, in concentrations ranging from 0.3 to 0.5 ?g/L. Additionally, the analysis of smallmouth bass blood plasma for potential EDCs indicated the presence of several compounds including some found in the passive sampler extracts, specifically BDE 47 and BDE 99. Data from this reconnaissance will help to focus efforts for further studies of the occurrence of emerging contaminants, EDCs, and intersex in smallmouth bass in these Potomac River tributaries.

  1. GIS Framework for Large River Geomorphic Classification to Aid in the Evaluation of Flow-Ecology Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Christopher R.; Arntzen, Evan V.; Richmond, Marshall C.; McManamay, R. A.; Hanrahan, Timothy P.; Rakowski, Cynthia L.

    2013-02-01

    Assessing the environmental benefits of proposed flow modification to large rivers provides invaluable insight into future hydropower project operations and relicensing activities. Providing a means to quantitatively define flow-ecology relationships is integral in establishing flow regimes that are mutually beneficial to power production and ecological needs. To compliment this effort an opportunity to create versatile tools that can be applied to broad geographic areas has been presented. In particular, integration with efforts standardized within the ecological limits of hydrologic alteration (ELOHA) is highly advantageous (Poff et al. 2010). This paper presents a geographic information system (GIS) framework for large river classification that houses a base geomorphic classification that is both flexible and accurate, allowing for full integration with other hydrologic models focused on addressing ELOHA efforts. A case study is also provided that integrates publically available National Hydrography Dataset Plus Version 2 (NHDPlusV2) data, Modular Aquatic Simulation System two-dimensional (MASS2) hydraulic data, and field collected data into the framework to produce a suite of flow-ecology related outputs. The case study objective was to establish areas of optimal juvenile salmonid rearing habitat under varying flow regimes throughout an impounded portion of the lower Snake River, USA (Figure 1) as an indicator to determine sites where the potential exists to create additional shallow water habitat. Additionally, an alternative hydrologic classification useable throughout the contiguous United States which can be coupled with the geomorphic aspect of this framework is also presented. This framework provides the user with the ability to integrate hydrologic and ecologic data into the base geomorphic aspect of this framework within a geographic information system (GIS) to output spatiotemporally variable flow-ecology relationship scenarios.

  2. Observations of Lower Mississippi River Estuarine Dynamics: Effects of the Salt Wedge on Sediment Deposition

    Science.gov (United States)

    Ramirez, M. T.; Allison, M. A.

    2017-12-01

    The lowermost Mississippi River is subject to salt-wedge estuarine conditions during seasonally low flow, when seaward flow is unable to overcome density stratification. Previous studies in the Mississippi River salt wedge have shown the deposition of a fine sediment layer accumulating several mm/day beneath the reach where the salt wedge is present. Field studies were conducted during low flow in 2012-2015 utilizing ADCP, CTD, LISST, and physical samples to observe the physics of the salt wedge reach and to calculate rates and character of sediment trapping beneath the salt wedge. The field observations were summarized using a two-layer box-model representation of the reach to calculate water and sediment budgets entering, exiting, and stored within the reach. The salt wedge reach was found to be net depositional at rates up to 1.8 mm/day. The mechanism for transferring sediment mass from the downstream-flowing fluvial layer to the upstream-flowing marine layer appears to be flocculation, evidenced in LISST data by a spike in sediment particle diameters at the halocline. Applying reach-averaged rates of sediment trapping to a time-integrated model of salt-wedge position, we calculated annual totals ranging from 0.025 to 2.2 million tons of sediment deposited beneath the salt wedge, depending on salt-wedge persistence and upstream extent. Most years this seasonal deposit is remobilized during spring flood following the low-flow estuarine season, which may affect the timing of sediment delivery to the Gulf of Mexico, as well as particulate organic carbon, whose transport trajectory mirrors that of mineral sediment. These results are also relevant to ongoing dredging efforts necessary to maintain the economically-important navigation pathway through the lower Mississippi River, as well as planned efforts to use Mississippi River sedimentary resources to build land in the degrading Louisiana deltaic coast.

  3. Columbia River System Operation Review final environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1995-11-01

    The Columbia River System Operation Review (SOR) is being conducted jointly by the US Army Corps of Engineers, the Bureau of Reclamation, and the Bonneville Power Administration. This summary of the SOR story begins where the Draft EIS summary left off. It is divided into seven parts, each of which reports some aspect of the study's outcome: Part 1 is a history. The SOR was not a simple study on any level, and to understand the EIS alternatives, some background is necessary. Part 2 reports the major findings of the technical analysis of alternative system operating strategies, and presents the agencies' Preferred Alternative. Part 3 explains actions the agencies may take with respect to the Columbia River Regional Forum, the Pacific Northwest Coordination Agreement, and the Canadian Entitlement Allocation Agreements. Part 4 presents the Purpose and Need, elements at the core of any Federal EIS. It includes a map showing the Columbia River Basin and information on the affected Federal projects. Part 5 describes the substantial public participation and outreach that occurred during the SOR, and Part 6 summarizes efforts to incorporate the Tribal perspective into the study. Part 7 describes other activities that will be taking place in the next few years, which are related to and build upon the SOR

  4. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China

    Energy Technology Data Exchange (ETDEWEB)

    Lijun, Zhou [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ying Guangguo, E-mail: guang-guo.ying@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Jianliang, Zhao [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Jifeng, Yang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chemistry and Chemical Engineering Department, Hunan University of Arts and Science, Changde 415000 (China); Li, Wang; Bin, Yang; Shan, Liu [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2011-07-15

    The occurrence of four classes of 17 commonly used antibiotics (including fluoroquinolones, tetracycline, sulfonamides, and macrolides) was investigated in the sediments of the Yellow River, Hai River and Liao River in northern China by using rapid resolution liquid chromatography-tandem mass spectrometry. Higher concentrations were detected for most antibiotics in the sediments of the Hai River than in the sediments of the other rivers. Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline in the three rivers were most frequently detected with concentrations up to 5770, 1290, 653 and 652 ng/g, respectively. High frequencies and concentrations of the detected antibiotics were often found in the downstream of large cities and areas influenced by feedlot and fish ponds. Good fitted linear regression equations between antibiotic concentration and sediment physicochemical properties (TOC, texture and pH) were also found, indicating that sediment properties are important factors influencing the distribution of antibiotics in the sediment of rivers. - Highlights: > Presence of four classes of commonly used antibiotics in the river sediments. > Higher concentrations in the Hai River than in the Liao River and Yellow River. > Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline most frequently detected. > High antibiotic concentrations often found in the downstream of large cities. > River sediments are an important reservoir of antibiotics. - Higher concentrations of selected antibiotics were determined in the sediments of the Hai River than in the Liao River and Yellow River.

  5. River engineering

    NARCIS (Netherlands)

    De Vries, M.

    1993-01-01

    One dimension models - basic eauations, analytical models, numberical models. One dimensional models -suspended load, roughness and resistance of river beds. Solving river problems - tools, flood mitigation, bank protection.

  6. Spatial patterns of aquatic habitat richness in the Upper Mississippi River floodplain, USA

    Science.gov (United States)

    De Jager, Nathan R.; Rohweder, Jason J.

    2012-01-01

    Interactions among hydrology and geomorphology create shifting mosaics of aquatic habitat patches in large river floodplains (e.g., main and side channels, floodplain lakes, and shallow backwater areas) and the connectivity among these habitat patches underpins high levels of biotic diversity and productivity. However, the diversity and connectivity among the habitats of most floodplain rivers have been negatively impacted by hydrologic and structural modifications that support commercial navigation and control flooding. We therefore tested the hypothesis that the rate of increase in patch richness (# of types) with increasing scale reflects anthropogenic modifications to habitat diversity and connectivity in a large floodplain river, the Upper Mississippi River (UMR). To do this, we calculated the number of aquatic habitat patch types within neighborhoods surrounding each of the ≈19 million 5-m aquatic pixels of the UMR for multiple neighborhood sizes (1–100 ha). For all of the 87 river-reach focal areas we examined, changes in habitat richness (R) with increasing neighborhood length (L, # pixels) were characterized by a fractal-like power function R = Lz (R2 > 0.92 (P z) measures the rate of increase in habitat richness with neighborhood size and is related to a fractal dimension. Variation in z reflected fundamental changes to spatial patterns of aquatic habitat richness in this river system. With only a few exceptions, z exceeded the river-wide average of 0.18 in focal areas where side channels, contiguous floodplain lakes, and contiguous shallow-water areas exceeded 5%, 5%, and 10% of the floodplain respectively. In contrast, z was always less than 0.18 for focal areas where impounded water exceeded 40% of floodplain area. Our results suggest that rehabilitation efforts that target areas with <5% of the floodplain in side channels, <5% in floodplain lakes, and/or <10% in shallow-water areas could improve habitat diversity across multiple scales in the UMR.

  7. A coupled modelling effort to study the fate of contaminated sediments downstream of the Coles Hill deposit, Virginia, USA

    Directory of Open Access Journals (Sweden)

    C. F. Castro-Bolinaga

    2015-03-01

    Full Text Available This paper presents the preliminary results of a coupled modelling effort to study the fate of tailings (radioactive waste-by product downstream of the Coles Hill uranium deposit located in Virginia, USA. The implementation of the overall modelling process includes a one-dimensional hydraulic model to qualitatively characterize the sediment transport process under severe flooding conditions downstream of the potential mining site, a two-dimensional ANSYS Fluent model to simulate the release of tailings from a containment cell located partially above the local ground surface into the nearby streams, and a one-dimensional finite-volume sediment transport model to examine the propagation of a tailings sediment pulse in the river network located downstream. The findings of this investigation aim to assist in estimating the potential impacts that tailings would have if they were transported into rivers and reservoirs located downstream of the Coles Hill deposit that serve as municipal drinking water supplies.

  8. Snake River Sockeye Salmon Captive Broodstock Program Hatchery Element : Project Progress Report 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Dan J.; Heindel, Jeff A.; Green, Daniel G.; Kline, Paul A.

    2008-12-17

    Numbers of Snake River sockeye salmon Oncorhynchus nerka have declined dramatically in recent years. In Idaho, only the lakes of the upper Salmon River (Sawtooth Valley) remain as potential sources of production (Figure 1). Historically, five Sawtooth Valley lakes (Redfish, Alturas, Pettit, Stanley, and Yellowbelly) supported sockeye salmon (Bjornn et al. 1968; Chapman et al. 1990). Currently, only Redfish Lake receives a remnant anadromous run. On April 2, 1990, the National Oceanic and Atmospheric Administration Fisheries Service (NOAA - formerly National Marine Fisheries Service) received a petition from the Shoshone-Bannock Tribes (SBT) to list Snake River sockeye salmon as endangered under the United States Endangered Species Act (ESA) of 1973. On November 20, 1991, NOAA declared Snake River sockeye salmon endangered. In 1991, the SBT, along with the Idaho Department of Fish & Game (IDFG), initiated the Snake River Sockeye Salmon Sawtooth Valley Project (Sawtooth Valley Project) with funding from the Bonneville Power Administration (BPA). The goal of this program is to conserve genetic resources and to rebuild Snake River sockeye salmon populations in Idaho. Coordination of this effort is carried out under the guidance of the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC), a team of biologists representing the agencies involved in the recovery and management of Snake River sockeye salmon. National Oceanic and Atmospheric Administration Fisheries Service ESA Permit Nos. 1120, 1124, and 1481 authorize IDFG to conduct scientific research on listed Snake River sockeye salmon. Initial steps to recover the species involved the establishment of captive broodstocks at the Eagle Fish Hatchery in Idaho and at NOAA facilities in Washington State (for a review, see Flagg 1993; Johnson 1993; Flagg and McAuley 1994; Kline 1994; Johnson and Pravecek 1995; Kline and Younk 1995; Flagg et al. 1996; Johnson and Pravecek 1996; Kline and Lamansky 1997; Pravecek and

  9. Cognitive effort: A neuroeconomic approach

    Science.gov (United States)

    Braver, Todd S.

    2015-01-01

    Cognitive effort has been implicated in numerous theories regarding normal and aberrant behavior and the physiological response to engagement with demanding tasks. Yet, despite broad interest, no unifying, operational definition of cognitive effort itself has been proposed. Here, we argue that the most intuitive and epistemologically valuable treatment is in terms of effort-based decision-making, and advocate a neuroeconomics-focused research strategy. We first outline psychological and neuroscientific theories of cognitive effort. Then we describe the benefits of a neuroeconomic research strategy, highlighting how it affords greater inferential traction than do traditional markers of cognitive effort, including self-reports and physiologic markers of autonomic arousal. Finally, we sketch a future series of studies that can leverage the full potential of the neuroeconomic approach toward understanding the cognitive and neural mechanisms that give rise to phenomenal, subjective cognitive effort. PMID:25673005

  10. Columbia River pathway report: phase I of the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report summarizes the river-pathway portion of the first phase of the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project is estimating radiation doses that could have been received by the public from the Department of Energy's Hanford Site, in southeastern Washington State. Phase 1 of the river-pathway dose reconstruction effort sought to determine whether dose estimates could be calculated for populations in the area from above the Hanford Site at Priest Rapids Dam to below the site at McNary Dam from January 1964 to December 1966. Of the potential sources of radionuclides from the river, fish consumption was the most important. Doses from drinking water were lower at Pasco than at Richland and lower at Kennewick than at Pasco. The median values of preliminary dose estimates calculated by HEDR are similar to independent, previously published estimates of average doses to Richland residents. Later phases of the HEDR Project will address dose estimates for periods other than 1964--1966 and for populations downstream of McNary Dam. 17 refs., 19 figs., 1 tab.

  11. Planning the development of the Mekong river basin

    Energy Technology Data Exchange (ETDEWEB)

    Chomchai, P [Mekong Secretariat, Bangkok (Thailand)

    1992-10-01

    In planning to develop the vast potential of the Mekong river in Southeast Asia, a number of institutional aspects need to be addressed, and the sometimes diverging interests of the riparian countries need to be carefully balanced. The Mekong river is an extremely valuable natural resource: its potential for irrigation, hydropower, navigation, fisheries and related development is more than adequate to raise significantly the standards of living of the people of the lower Mekong basin and in the riparian countries outside the river's catchment area. The Mekong's catchment area of 795 000 km[sup 2] encompasses parts of China and Myanmar, the whole of Laos and Cambodia, one third of Thailand and one fifth of Viet Nam. The population of the Mekong basin is around 100 million, about half of whom live in the lower basin. It could be said that these impoverished inhabitants of the basin depend significantly on the Mekong for an improvement in their livelihood, and this places a heavy responsibility on those involved in developing its water resources. The Mekong Committee, since its establishment in 1957 and in its present interim status since 1977, is dedicated to the co-ordinated development of the basin's resources, on the basis of reasonable and equitable sharing between the riparian states as stated in the Committee's declaration of principles. With the establishment of the Mekon Committee, serious efforts have been made aimed at rational management of water resources use. (author).

  12. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Scott R.; Tuell, Michael A. (Nez Perce Tribe, Department of Fishereis Resource Management, Lapwai, ID)

    2003-03-01

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 2000 annual report covers the fourth year of sampling of this multi-year study. In 2000 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon rivers. The Snake River was sampled between Lower Granite Dam (rkm 174) and the mouth of the Salmon River (rkm 303), and the Salmon River was sampled from its mouth upstream to Hammer Creek (rkm 84). A total of 53,277 hours of setline effort and 630 hours of hook-and-line effort was employed in 2000. A total of 538 white sturgeon were captured and tagged in the Snake River and 25 in the Salmon River. Since 1997, 32.8 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 48 cm to 271 cm and averaged 107 cm. In the Salmon River, white sturgeon ranged in total length from 103 cm to 227 cm and averaged 163 cm. Using the Jolly-Seber open population estimator, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,725 fish, with a 95% confidence interval of 1,668-5,783. A total of 10 white sturgeon were fitted with radio-tags. The movement of these fish ranged from 54.7 km (34 miles) downstream to 78.8 km (49 miles) upstream; however, 43.6 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Differences were detected in the length frequency distributions of

  13. Trace elements and radionuclides in the Connecticut River and Amazon River estuary

    International Nuclear Information System (INIS)

    Dion, E.P.

    1983-01-01

    The Connecticut River, its estuary, and the Amazon River estuary were studied to elucidate some of the processes which control river water chemistry and the flux of elements to the sea. The approach taken was to identify inputs to the Connecticut River and to investigate geochemical processes which modify the dissolved load. The form and quantity of nuclides which are in turn supplied to the estuary are altered by processes unique to that transition zone to the ocean. The Connecticut River estuary was sampled on a seasonal basis to investigate the role of the estuary in controlling the flux of elements to the sea. The knowledge gained from the Connecticut River study was applied to the quantitatively more significant Amazon River estuary. There a variety of samples were analyzed to understand the processes controlling the single greatest flux of elements to the Atlantic Ocean. The results indicate that estimates of the total flux of nuclides to the oceans can best be calculated based on groundwater inputs. Unless significant repositories for nuclides exist in the river-estuarine system, the groundwater flux of dissolved nuclides is that which will eventually be delivered to the ocean despite the reactions which were shown to occur in both rivers and estuaries. 153 references, 63 figures, 28 tables

  14. Contribution of River Mouth Reach to Sediment Load of the Yangtze River

    Directory of Open Access Journals (Sweden)

    C. Wang

    2015-01-01

    Full Text Available This paper examined the sediment gain and loss in the river mouth reach of the Yangtze River by considering sediment load from the local tributaries, erosion/accretion of the river course, impacts of sand mining, and water extraction. A quantitative estimation of the contribution of the river mouth reach to the sediment load of the Yangtze River was conducted before and after impoundment of the Three Gorges Dam (TGD in 2003. The results showed that a net sediment load loss of 1.78 million ton/yr (Mt/yr occurred from 1965 to 2002 in the study area. The contribution of this reach to the sediment discharge into the sea is not as high as what was expected before the TGD. With impoundment of the TGD, channel deposition (29.90 Mt/yr and a net sediment loss of 30.89 Mt/yr occurred in the river mouth reach from 2003 to 2012. The river mouth reach has acted as a sink but not a source of sediment since impoundment of the TGD, which has exacerbated the decrease in sediment load. Technologies should be advanced to measure changes in river channel morphology, as well as in water and sediment discharges at the river mouth reach.

  15. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China

    International Nuclear Information System (INIS)

    Zhou Lijun; Ying Guangguo; Zhao Jianliang; Yang Jifeng; Wang Li; Yang Bin; Liu Shan

    2011-01-01

    The occurrence of four classes of 17 commonly used antibiotics (including fluoroquinolones, tetracycline, sulfonamides, and macrolides) was investigated in the sediments of the Yellow River, Hai River and Liao River in northern China by using rapid resolution liquid chromatography-tandem mass spectrometry. Higher concentrations were detected for most antibiotics in the sediments of the Hai River than in the sediments of the other rivers. Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline in the three rivers were most frequently detected with concentrations up to 5770, 1290, 653 and 652 ng/g, respectively. High frequencies and concentrations of the detected antibiotics were often found in the downstream of large cities and areas influenced by feedlot and fish ponds. Good fitted linear regression equations between antibiotic concentration and sediment physicochemical properties (TOC, texture and pH) were also found, indicating that sediment properties are important factors influencing the distribution of antibiotics in the sediment of rivers. - Highlights: → Presence of four classes of commonly used antibiotics in the river sediments. → Higher concentrations in the Hai River than in the Liao River and Yellow River. → Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline most frequently detected. → High antibiotic concentrations often found in the downstream of large cities. → River sediments are an important reservoir of antibiotics. - Higher concentrations of selected antibiotics were determined in the sediments of the Hai River than in the Liao River and Yellow River.

  16. Ecological quality assessment of rivers and integrated catchment management in England and Wales

    Directory of Open Access Journals (Sweden)

    Paul LOGAN

    2001-09-01

    Full Text Available This paper deals with the ecological assessment of river quality and its relationship to integrated catchment management. The concept of catchment or river basin management has been a basic management tool in England and Wales since 1990; it is now being enshrined in the Water Framework Directive. Historically the statutory and operational drivers in the UK have lead to the development of distinctly different approaches to the management of water quality, water resources (quantity and physical river structure. More recently a proactive approach to the sustainable use of water promulgated in the Local Environment Agency Plans has also dealt with the three management aspects in some isolation although greater effort has been made to present the issues in an integrated manner. The Water Framework Directive calls for further integration in river basin plans and associated programmes of measures. In the paper the three approaches are described and considered in light of the requirements of the Water Framework Directive. Water Quality classification and objective setting has been based on information from the survey of benthic macro-invertebrates. The Biological Monitoring Working Party Score and the predictive software River Invertebrate Prediction and Classification System (RIVPACS have been used to set site-specific targets for management purposes. RIVPACS includes a reference database of minimally impacted sites for comparison with the observed data. This approach is in line with the requirements of the directive. Physical river structure work has been based on monitoring of in-river and river corridor characteristics. The River Habitat System (RHS has also developed a reference database but is less well developed in terms of its predictive ability. The use of ecological information in Water Resource management has taken a different approach based on the concept of differential ecological sensitivity to the hydrological regime within the river. In

  17. Salmonid Gamete Preservation in the Snake River Basin : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul A. [Nez Perce Tribe. Dept. of Fisheries Resource Management, Lapwai, ID (US)

    2001-06-01

    a long-term archive, half of the total samples. A total of 2,420 cryopreserved samples from Snake River basin steelhead and spring and summer chinook salmon, from 1992 through 2000, are stored in two independent locations at the University of Idaho and Washington State University. Two large freezer tanks are located at each university, each of which holds approximately 25% of the cryopreserved sperm. One tank at each university is considered long-term archival storage, while the other is short-term. Fertility trials were conducted at each university to test the viability of the cryopreserved chinook salmon sperm. The experiments on the 2000 frozen and thawed sperm at both universities found a fertility rate of 60-70%. This document also summarizes 1999-2000 steelhead genetic analysis report. The results of mitochondrial, nuclear DNA and microsatellite analysis found differences and shared haplotypes between the stocks of fish sampled for cryopreservation. Recommendations for future gene banking efforts include the need for establishment of a regional genome resource bank, a greater emphasis on cryopreserving wild fish, continued fertility trials, exploring field cryopreservation and genetic analysis on all fish represented in the germplasm repository.

  18. Savannah River Site Environmental Report For 2008

    International Nuclear Information System (INIS)

    Mamatey, A.

    2009-01-01

    The Savannah River Site Environmental Report for 2008 (SRNS-STI-2009-00190) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, 'Environment, Safety and Health Reporting,' and DOE Order 5400.5, 'Radiation Protection of the Public and Environment.' The annual SRS Environmental Report has been produced for more than 50 years. Several hundred copies are distributed each year to government officials, universities, public libraries, environmental and civic groups, news media, and interested individuals. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; and (3) highlight significant programs and efforts

  19. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    Science.gov (United States)

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  20. Hydrogeological investigations of river bed clogging at a river bank filtration site along the River Warta, Poland

    Directory of Open Access Journals (Sweden)

    Przybyłek Jan

    2017-12-01

    Full Text Available River bank filtration (RBF is a system that enriches groundwater resources by induced infiltration of river water to an aquifer. Problematic during operation of RBF systems is the deterioration of infiltration effectiveness caused by river bed clogging. This situation was observed in the Krajkowo well field which supplies fresh water to the city of Poznań (Poland during and after the long hydrological drought between the years 1989 and 1992. The present note discusses results of specific hydrogeological research which included drilling of a net of boreholes to a depth of 10 m below river bottom (for sediment sampling as well as for hydrogeological measurements, analyses of grain size distribution and relative density studies. The results obtained have allowed the recognition of the origin of the clogging processes, as well as the documentation of the clogged parts of the river bottom designated for unclogging activities.

  1. Effort rights-based management

    DEFF Research Database (Denmark)

    Squires, Dale; Maunder, Mark; Allen, Robin

    2017-01-01

    Effort rights-based fisheries management (RBM) is less widely used than catch rights, whether for groups or individuals. Because RBM on catch or effort necessarily requires a total allowable catch (TAC) or total allowable effort (TAE), RBM is discussed in conjunction with issues in assessing fish...... populations and providing TACs or TAEs. Both approaches have advantages and disadvantages, and there are trade-offs between the two approaches. In a narrow economic sense, catch rights are superior because of the type of incentives created, but once the costs of research to improve stock assessments...

  2. Investing in river health.

    Science.gov (United States)

    Bennett, J

    2002-01-01

    Rivers provide society with numerous returns. These relate to both the passive and extractive uses of the resources embodied in river environments. Some returns are manifest in the form of financial gains whilst others are non-monetary. For instance, rivers are a source of monetary income for those who harvest their fish. The water flowing in rivers is extracted for drinking and to water crops and livestock that in turn yield monetary profits. However, rivers are also the source of non-monetary values arising from biological diversity. People who use them for recreation (picnicking, swimming, boating) also receive non-monetary returns. The use of rivers to yield these returns has had negative consequences. With extraction for financial return has come diminished water quantity and quality. The result has been a diminished capacity of rivers to yield (non-extractive) environmental returns and to continue to provide extractive values. A river is like any other asset. With use, the value of an asset depreciates because its productivity declines. In order to maintain the productive capacity of their assets, managers put aside from their profits depreciation reserves that can be invested in the repair or replacement of those assets. Society now faces a situation in which its river assets have depreciated in terms of their capacity to provide monetary and non-monetary returns. An investment in river "repair" is required. But, investment means that society gives up something now in order to achieve some benefit in the future. Society thus has to grapple wih the choice between investing in river health and other investments--such as in hospitals, schools, defence etc. - as well as between investing in river health and current consumption--such as on clothes, food, cars etc. A commonly used aid for investment decision making in the public sector is benefit cost analysis. However, its usefulness in tackling the river investment problem is restricted because it requires all

  3. Modern comprehensive approach to monitor the morphodynamic evolution of a restored river corridor

    Directory of Open Access Journals (Sweden)

    N. Pasquale

    2011-04-01

    Full Text Available River restoration has become a common measure to repair anthropogenically-induced alteration of fluvial ecosystems. The inherent complexity of ecohydrologic systems leads to limitations in understanding the response of such systems to restoration over time. Therefore, a significant effort has been dedicated in the recent years worldwide to document the efficiency of restoration actions and to produce new effective guidelines that may help overcoming existing deficiencies. At the same time little attention was paid to illustrate the reasons and the use of certain monitoring and experimental techniques in spite of others, or in relation to the specific ecohydrologic process being investigated. The purpose of this paper is to enrich efforts in this direction by presenting the framework of experimental activities and the related experimental setup that we designed and installed in order to accomplish some of the research tasks of the multidisciplinary scientific project RECORD (Restored Corridor Dynamics. Therein, we studied the morphodynamic evolution of the restored reach of the River Thur near Niederneunforn (Switzerland, also in relation to the role of pioneer vegetation roots in stabilizing the alluvial sediment. In this work we describe the methodology chosen for monitoring the river morphodynamics, the dynamics of riparian and of in-bed vegetation and their mutual interactions, as well as the need of complementing such observations with experiments and with the hydraulic modeling of the site. We also discuss how the designed installation and the experiments integrate with the needs of other research groups within the project, in particular providing data for a number of investigations thereby including surface water and groundwater interactions, soil moisture and vegetation dynamics.

  4. Estuarine Habitats for Juvenile Salmon in the Tidally-Influenced Lower Columbia River and Estuary : Reporting Period September 15, 2008 through May 31, 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, António M. [Oregon Health & Science University, Science and Technology Center for Coastal Margin Observation and Prediction

    2009-08-02

    This work focuses on the numerical modeling of Columbia River estuarine circulation and associated modeling-supported analyses conducted as an integral part of a multi-disciplinary and multi-institutional effort led by NOAA's Northwest Fisheries Science Center. The overall effort is aimed at: (1) retrospective analyses to reconstruct historic bathymetric features and assess effects of climate and river flow on the extent and distribution of shallow water, wetland and tidal-floodplain habitats; (2) computer simulations using a 3-dimensional numerical model to evaluate the sensitivity of salmon rearing opportunities to various historical modifications affecting the estuary (including channel changes, flow regulation, and diking of tidal wetlands and floodplains); (3) observational studies of present and historic food web sources supporting selected life histories of juvenile salmon as determined by stable isotope, microchemistry, and parasitology techniques; and (4) experimental studies in Grays River in collaboration with Columbia River Estuary Study Taskforce (CREST) and the Columbia Land Trust (CLT) to assess effects of multiple tidal wetland restoration projects on various life histories of juvenile salmon and to compare responses to observed habitat-use patterns in the mainstem estuary. From the above observations, experiments, and additional modeling simulations, the effort will also (5) examine effects of alternative flow-management and habitat-restoration scenarios on habitat opportunity and the estuary's productive capacity for juvenile salmon. The underlying modeling system is part of the SATURN1coastal-margin observatory [1]. SATURN relies on 3D numerical models [2, 3] to systematically simulate and understand baroclinic circulation in the Columbia River estuary-plume-shelf system [4-7] (Fig. 1). Multi-year simulation databases of circulation are produced as an integral part of SATURN, and have multiple applications in understanding estuary

  5. Commanders Responsibilities in the Operations Process During the 1864 Red River Expedition

    Science.gov (United States)

    2015-05-21

    South.9 In an open letter to the people of Louisiana, Banks extended an invitation to hold open elections for not only a state governor but also...either side of the river near Alexandria, collecting and bailing all available cotton.54 In an effort to legitimize the seizure of the cotton by...claiming it as Confederate Army property, rather than civilian, sailors stenciled CSA on the bails , which later came to mean “Cotton Stealing Association

  6. Flowing with Rivers

    Science.gov (United States)

    Anderson, Heather

    2004-01-01

    This article describes a lesson in which students compare how artists have depicted rivers in paintings, using different styles, compositions, subject matter, colors, and techniques. They create a watercolor landscape that includes a river. Students can learn about rivers by studying them on site, through environmental study, and through works of…

  7. Renewal or rehabilitation of urban river and stream corridors

    Directory of Open Access Journals (Sweden)

    Matjaž Mikoš

    2001-01-01

    Full Text Available Analyses of the morphological state of urban streams and rivers in the Municipality of Ljubljana and research concerning the hydrographical network show that the condition of their morphological preservation is alarming. Efforts put in the new spatial development concept, guidelines and proposals for urban rehabilitation are therefore also an opportunity for rehabilitation measures on the municipal hydrographical network. Adequate care should be given to their improved morphological state even because of the recently adopted European framework water directive (annex 5, that after a certain period demands such a status of surface water in signatory countries.

  8. Development of river flood model in lower reach of urbanized river basin

    Science.gov (United States)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in

  9. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    Directory of Open Access Journals (Sweden)

    Yuekui Ding

    2015-09-01

    Full Text Available We applied a river habitat quality (RHQ assessment method to the Hai River Basin (HRB; an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m; lower coverage of riparian vegetation (≤40%; artificial land use patterns (public and industrial land; frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3; single flow channels; and rare aquatic plants (≤1 category. At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01 and urban land (r = 0.998; p < 0.05; and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01. Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56; caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated.

  10. 78 FR 41689 - Safety Zone; Skagit River Bridge, Skagit River, Mount Vernon, WA

    Science.gov (United States)

    2013-07-11

    ... submerged automobiles and floating bridge debris in the Skagit River. Following the initial response and...-AA00 Safety Zone; Skagit River Bridge, Skagit River, Mount Vernon, WA AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a safety zone around the Skagit River Bridge...

  11. Methow and Columbia Rivers studies: summary of data collection, comparison of database structure and habitat protocols, and impact of additional PIT tag interrogation systems to survival estimates, 2008-2012

    Science.gov (United States)

    Martens, Kyle D.; Tibbits, Wesley T.; Watson, Grace A.; Newsom, Michael A.; Connolly, Patrick J.

    2014-01-01

    The U.S. Geological Survey (USGS) received funding from the Bureau of Reclamation (Reclamation) to provide monitoring and evaluation on the effectiveness of stream restoration efforts by Reclamation in the Methow River watershed. This monitoring and evaluation program is designed to partially fulfill Reclamation’s part of the 2008 Biological Opinion for the Federal Columbia River Power System that includes a Reasonable and Prudent Alternative (RPA) to protect listed salmon and steelhead across their life cycle. The target species in the Methow River for the restoration effort include Upper Columbia River (UCR) spring Chinook salmon (Oncorhynchus tshawytscha), UCR steelhead (Oncorhynchus mykiss), and bull trout (Salvelinus confluentus), which are listed as threatened or endangered under the Endangered Species Act. Since 2004, the USGS has completed two projects of monitoring and evaluation in the Methow River watershed. The first project focused on the evaluation of barrier removal and steelhead recolonization in Beaver Creek with Libby and Gold Creeks acting as controls. The majority of this work was completed by 2008, although some monitoring continued through 2012. The second project (2008–2012) evaluated the use and productivity of the middle Methow River reach (rkm 65–80) before the onset of multiple off-channel restoration projects planned by the Reclamation and Yakama Nation. The upper Methow River (upstream of rkm 80) and Chewuch River serve as reference reaches and the Methow River downstream of the Twisp River (downstream of rkm 65) serves as a control reach. Restoration of the M2 reach was initiated in 2012 and will be followed by a multi-year, intensive post-evaluation period. This report is comprised of three chapters covering different aspects of the work completed by the USGS. The first chapter is a review of data collection that documents the methods used and summarizes the work done by the USGS from 2008 through 2012. This data summary was

  12. Hydrological River Drought Analysis (Case Study: Lake Urmia Basin Rivers

    Directory of Open Access Journals (Sweden)

    Mohammad Nazeri Tahrudi

    2017-02-01

    Full Text Available Introduction: Drought from the hydrological viewpoint is a continuation of the meteorological drought that cause of the lack of surface water such as rivers, lakes, reservoirs and groundwater resources. This analysis, which is generally on the surface streams, reservoirs, lakes and groundwater, takes place as hydrological drought considered and studied. So the data on the quantity of flow of the rivers in this study is of fundamental importance. This data are included, level, flow, river flow is no term (5. Overall the hydrological drought studies are focused on annual discharges, maximum annual discharge or minimum discharge period. The most importance of this analysis is periodically during the course of the analysis remains a certain threshold and subthresholdrunoff volume fraction has created. In situations where water for irrigation or water of a river without any reservoir, is not adequate, the minimum flow analysis, the most important factor to be considered (4. The aim of this study is evaluatingthe statistical distributions of drought volume rivers data from the Urmia Lake’s rivers and its return period. Materials and Methods: Urmia Lake is a biggest and saltiest continued lake in Iran. The Lake Urmia basin is one of the most important basins in Iran region which is located in the North West of Iran. With an extent of 52700 square kilometers and an area equivalent to 3.21% of the total area of the country, This basin is located between the circuit of 35 degrees 40 minutes to 38 degrees 29 minutes north latitude and the meridian of 44 degrees 13 minutes to 47 degrees 53 minutes east longitude. In this study used the daily discharge data (m3s-1 of Urmia Lake Rivers. Extraction of river drought volume The drought durations were extracted from the daily discharge of 13 studied stations. The first mean year was calculated for each 365 days using the Eq 1 (14. (1 (For i=1,2,3,…,365 That Ki is aith mean year, Yijis ith day discharge in jth

  13. Which offers more scope to suppress river phytoplankton blooms: reducing nutrient pollution or riparian shading?

    Science.gov (United States)

    Hutchins, M G; Johnson, A C; Deflandre-Vlandas, A; Comber, S; Posen, P; Boorman, D

    2010-10-01

    River flow and quality data, including chlorophyll-a as a surrogate for river phytoplankton biomass, were collated for the River Ouse catchment in NE England, which according to established criteria is a largely unpolluted network. Against these data, a daily river quality model (QUESTOR) was setup and successfully tested. Following a review, a river quality classification scheme based on phytoplankton biomass was proposed. Based on climate change predictions the model indicated that a shift from present day oligotrophic/mesotrophic conditions to a mesotrophic/eutrophic system could occur by 2080. Management options were evaluated to mitigate against this predicted decline in quality. Reducing nutrient pollution was found to be less effective at suppressing phytoplankton growth than the less costly option of establishing riparian shading. In the Swale tributary, ongoing efforts to reduce phosphorus loads in sewage treatment works will only reduce peak (95th percentile) phytoplankton by 11%, whereas a reduction of 44% is possible if riparian tree cover is also implemented. Likewise, in the Ure, whilst reducing nitrate loads by curtailing agriculture in the headwaters may bring about a 10% reduction, riparian shading would instead reduce levels by 47%. Such modelling studies are somewhat limited by insufficient field data but offer a potentially very valuable tool to assess the most cost-effective methods of tackling effects of eutrophication. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Feasibility of estimate sediment yield in the non-sediment monitoring station area - A case study of Alishan River watershed,Taiwan

    Science.gov (United States)

    Chang, ChiaChi; Chan, HsunChuan; Jia, YaFei; Zhang, YaoXin

    2017-04-01

    Due to the steep topography, frail geology and concentrated rainfall in wet season, slope disaster occurred frequently in Taiwan. In addition, heavy rainfall induced landslides in upper watersheds. The sediment yield on the slopeland affects the sediment transport in the river. Sediment deposits on the river bed reduce the river cross section and change the flow direction. Furthermore, it generates risks to residents' lives and property in the downstream. The Taiwanese government has been devoting increasing efforts on the sedimentary management issues and on reduction in disaster occurrence. However, due to the limited information on the environmental conditions in the upper stream, it is difficult to set up the sedimentary monitoring equipment. This study used the upper stream of the Qingshuei River, the Alishan River, as a study area. In August 2009, Typhoon Morakot caused the sedimentation of midstream and downstream river courses in the Alishan River. Because there is no any sediment monitoring stations within the Alishan River watershed, the sediment yield values are hard to determine. The objective of this study is to establish a method to analyze the event-landslide sediment transport in the river on the upper watershed. This study numerically investigated the sediment transport in the Alishan River by using the KINEROS 2 model developed by the United States Department of Agriculture and the CCHE1D model developed by the National Center for Computational Hydroscience and Engineering. The simulated results represent the morphology changes in the Alishan River during the typhoon events. The results consist of a critical strategy reference for the sedimentary management for the Alishan River watershed.

  15. The Charles River, Eastern Massachusetts: Scientific Information in Support of Environmental Restoration

    Science.gov (United States)

    Weiskel, Peter K.

    2007-01-01

    Human activity has profoundly altered the Charles River and its watershed over the past 375 years. Restoration of environmental quality in the watershed has become a high priority for private- and public-sector organizations across the region. The U.S. Environmental Protection Agency and the Massachusetts Executive Office of Environmental Affairs worked together to coordinate the efforts of the various organizations. One result of this initiative has been a series of scientific studies that provide critical information concerning some of the major hydrologic and ecological concerns in the watershed. These studies have focused upon: * Streamflows - Limited aquifer storage, growing water demands, and the spread of impervious surfaces are some of the factors exacerbating low summer streamflows in headwater areas of the watershed. Coordinated management of withdrawals, wastewater returns, and stormwater runoff could substantially increase low streamflows in the summer. Innovative approaches to flood control, including preservation of upstream wetland storage capacity and construction of a specially designed dam at the river mouth, have greatly reduced flooding in the lower part of the watershed in recent decades. * Water quality - Since the mid-1990s, the bacterial quality of the Charles River has improved markedly, because discharges from combined sewer overflows and the number of illicit sewer connections to municipal storm drains have been reduced. Improved management of stormwater runoff will likely be required, however, for full attainment of State and Federal water-quality standards. Phosphorus inputs from a variety of sources remain an important water-quality problem. * Fish communities and habitat quality - The Charles River watershed supports a varied fish community of about 20 resident and migratory species. Habitat conditions for fish and other aquatic species have improved in many parts of the river system in recent years. However, serious challenges remain

  16. Wind River Watershed Restoration Project; Underwood Conservation District, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    White, Jim

    2004-02-01

    The goal of the Wind River project is to preserve, protect and restore Wind River steelhead. In March, 1998, the National Marine Fisheries Service listed the steelhead of the lower Columbia as 'threatened' under the Endangered Species Act. In 1997, the Washington Department of Fish and Wildlife rated the status of the Wind River summer run steelhead as critical. Due to the status of this stock, the Wind River summer steelhead have the highest priority for recovery and restoration in the state of Washington's Lower Columbia Steelhead Conservation Initiative. The Wind River Project includes four cooperating agencies. Those are the Underwood Conservation District (UCD), United States Geological Service (USGS), US Forest Service (USFS), and Washington State Department of Fish & Wildlife (WDFW). Tasks include monitoring steelhead populations (USGS and WDFW), Coordinating a Watershed Committee and Technical Advisory Group (UCD), evaluating physical habitat conditions (USFS and UCD), assessing watershed health (all), reducing road sediments sources (USFS), rehabilitating riparian corridors, floodplains, and channel geometry (UCD, USFS), evaluate removal of Hemlock Dam (USFS), and promote local watershed stewardship (UCD, USFS). UCD's major efforts have included coordination of the Wind River Watershed Committee and Technical Advisory Committee (TAC), water temperature and water chemistry monitoring, riparian habitat improvement projects, and educational activities. Our coordination work enables the local Watershed Committee and TAC to function and provide essential input to Agencies, and our habitat improvement work focuses on riparian revegetation. Water chemistry and temperature data collection provide information for monitoring watershed conditions and fish habitat, and are comparable with data gathered in previous years. Water chemistry information collected on Trout Creek should, with 2 years data, determine whether pH levels make conditions

  17. 75 FR 51945 - Safety Zone; Potomac River, St. Mary's River, St. Inigoes, MD

    Science.gov (United States)

    2010-08-24

    ...-AA00 Safety Zone; Potomac River, St. Mary's River, St. Inigoes, MD AGENCY: Coast Guard, DHS. ACTION... of the St. Mary's River, a tributary of the Potomac River. This action is necessary to provide for.... Navy helicopter located near St. Inigoes, Maryland. This safety zone is intended to protect the...

  18. Juvenile salmonid monitoring in the White Salmon River, Washington, post-Condit Dam removal, 2016

    Science.gov (United States)

    Jezorek, Ian G.; Hardiman, Jill M.

    2017-06-23

    2010, though age-1 and older O. mykiss abundance was similar. In Rattlesnake Creek, age-0 O. mykiss abundance during 2016 slightly exceeded the mean abundance from 2001 through 2005, although age-1 and older O. mykiss abundance was lower than from 2001 through 2005. These sampling efforts also provided the opportunity to collect genetic samples to investigate parental and stock origin, although funding to analyze the samples was not part of this grant. Juvenile salmonid sampling efforts during 2016 have shown that natural spawning produced steelhead and coho smolts and that coho were colonizing some tributaries. The 2016 efforts also provided the first post-dam juvenile abundance estimates. We hope to continue monitoring to better understand abundance trends, distribution, and life history patterns of recolonizing salmonids in the White Salmon River to assess efficacy of natural recolonization and to inform management decisions.

  19. Low level radioactive waste disposal/treatment technology overview: Savannah River site

    International Nuclear Information System (INIS)

    Sturm, H.F. Jr.

    1987-01-01

    The Savannah River Site will begin operation of several low-level waste disposal/treatment facilities during the next five years, including a new low-level solid waste disposal facility, a low-level liquid effluent treatment facility, and a low-level liquid waste solidification process. Closure of a radioactive hazardous waste burial ground will also be completed. Technical efforts directed toward waste volume reduction include compaction, incineration, waste avoidance, and clean waste segregation. This paper summarizes new technology being developed and implemented. 11 refs., 1 fig

  20. Denitrification in the Mississippi River network controlled by flow through river bedforms

    Science.gov (United States)

    Gomez-Velez, Jesus D.; Harvey, Judson W.; Cardenas, M. Bayani; Kiel, Brian

    2015-01-01

    Increasing nitrogen concentrations in the world’s major rivers have led to over-fertilization of sensitive downstream waters1, 2, 3, 4. Flow through channel bed and bank sediments acts to remove riverine nitrogen through microbe-mediated denitrification reactions5, 6, 7, 8, 9, 10. However, little is understood about where in the channel network this biophysical process is most efficient, why certain channels are more effective nitrogen reactors, and how management practices can enhance the removal of nitrogen in regions where water circulates through sediment and mixes with groundwater - hyporheic zones8, 11, 12. Here we present numerical simulations of hyporheic flow and denitrification throughout the Mississippi River network using a hydrogeomorphic model. We find that vertical exchange with sediments beneath the riverbed in hyporheic zones, driven by submerged bedforms, has denitrification potential that far exceeds lateral hyporheic exchange with sediments alongside river channels, driven by river bars and meandering banks. We propose that geomorphic differences along river corridors can explain why denitrification efficiency varies between basins in the Mississippi River network. Our findings suggest that promoting the development of permeable bedforms at the streambed - and thus vertical hyporheic exchange - would be more effective at enhancing river denitrification in large river basins than promoting lateral exchange through induced channel meandering. 

  1. Kootenai River White Sturgeon Investigations; White Sturgeon Spawning and Recruitment Evaluation, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rust, Pete; Wakkinen, Virginia (Idaho Department of Fish and Game, Boise, ID)

    2005-06-01

    The objective of this research was to determine the environmental requirements for successful spawning and recruitment of the Kootenai River white sturgeon Acipenser transmontanus population. Annual tasks include monitoring and evaluating the various life stages of Kootenai River white sturgeon. Sampling for adult Kootenai River white sturgeon in 2003 began in March and continued through April. Eighty-one adult white sturgeon were captured with 3,576 hours of angling and set-lining effort in the Kootenai River. Discharge from Libby Dam and river stage at Bonners Ferry in 2003 peaked in May and early June. Flows remained above 500 m{sup 3}/s throughout June, decreased rapidly through mid July, and increased back to near 500 m{sup 3}/s after mid July and through mid August. By late August, flows had decreased to below 400 m{sup 3}/s. We monitored the movements of 24 adult sturgeon in Kootenay Lake, British Columbia (BC) and the Kootenai River from March 15, 2003 to August 31, 2003. Some of the fish were radio or sonic tagged in previous years. Twelve adult white sturgeon were moved upstream to the Hemlock Bar reach (rkm 260.0) and released as part of the Set and Jet Program. Transmitters were attached to seven of these fish, and their movements were monitored from the time of release until they moved downstream of Bonners Ferry. Eight additional radio-tagged white sturgeon adults were located in the traditional spawning reach (rkm 228-240) during May and June. Sampling with artificial substrate mats began May 21, 2003 and ended June 30, 2003. We sampled 717 mat d (a mat d is one 24 h set) during white sturgeon spawning. Three white sturgeon eggs were collected near Shortys Island on June 3, 2003, and five eggs were collected from the Hemlock Bar reach on June 5, 2003. Prejuvenile sampling began June 17, 2003 and continued until July 31, 2003. Sampling occurred primarily at Ambush Rock (rkm 244.0) in an attempt to document any recruitment that might have occurred from

  2. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Tuell, Michael A.; Everett, Scott R. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2003-03-01

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 1999 annual report covers the third year of sampling of this multi-year study. In 1999 white sturgeon were captured, marked and population data were collected in the Snake and Salmon rivers. A total of 33,943 hours of setline effort and 2,112 hours of hook-and-line effort was employed in 1999. A total of 289 white sturgeon were captured and tagged in the Snake River and 29 in the Salmon River. Since 1997, 11.1 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 27 cm to 261 cm and averaged 110 cm. In the Salmon River, white sturgeon ranged in total length from 98 cm to 244 cm and averaged 183.5 cm. Using the Jolly-Seber model, the abundance of white sturgeon < 60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 1,823 fish, with a 95% confidence interval of 1,052-4,221. A total of 15 white sturgeon were fitted with radio-tags. The movement of these fish ranged from 6.4 km (4 miles) downstream to 13.7 km (8.5 miles) upstream; however, 83.6 percent of the detected movement was less than 0.8 kilometers (0.5 miles). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P < 0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River

  3. 78 FR 28492 - Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor...

    Science.gov (United States)

    2013-05-15

    ...-AA08 Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor... establishing a special local regulation on the waters of the Wando River, Cooper River, and Charleston Harbor... rulemaking (NPRM) entitled, ``Special Local Regulation; Low Country Splash, Wando River, Cooper River, and...

  4. Lower Columbia River and Estuary Habitat Monitoring Study, 2011 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Borde, Amy B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kaufmann, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cullinan, Valerie I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zimmerman, Shon A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thom, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wright, Cynthia L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-03-01

    The Ecosystem Monitoring Program is a collaborative effort between the Lower Columbia River Estuary Partnership (LCREP), University of Washington, Wetland Ecosystem Team (UW), US Geological Survey, Water Science Center (USGS), National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NOAA-Fisheries, hereafter NOAA), and Pacific Northwest National Laboratory, Marine Sciences Laboratory (PNNL). The goal of the program is to conduct emergent wetland monitoring aimed at characterizing salmonid habitats in the lower Columbia River and estuary (LCRE) from the mouth of the estuary to Bonneville Dam (Figure 1). This is an ecosystem based monitoring program focused on evaluating status and trends in habitat and reducing uncertainties regarding these ecosystems to ultimately improve the survival of juvenile salmonids through the LCRE. This project comprehensively assesses habitat, fish, food web, and abiotic conditions in the lower river, focusing on shallow water and vegetated habitats used by juvenile salmonids for feeding, rearing and refugia. The information is intended to be used to guide management actions associated with species recovery, particularly that of threatened and endangered salmonids. PNNL’s role in this multi-year study is to monitor the habitat structure (e.g., vegetation, topography, channel morphology, and sediment type) as well as hydrologic patterns.

  5. The costs of uncoordinated infrastructure management in multi-reservoir river basins

    International Nuclear Information System (INIS)

    Jeuland, Marc; Baker, Justin; Bartlett, Ryan; Lacombe, Guillaume

    2014-01-01

    Though there are surprisingly few estimates of the economic benefits of coordinated infrastructure development and operations in international river basins, there is a widespread belief that improved cooperation is beneficial for managing water scarcity and variability. Hydro-economic optimization models are commonly-used for identifying efficient allocation of water across time and space, but such models typically assume full coordination. In the real world, investment and operational decisions for specific projects are often made without full consideration of potential downstream impacts. This paper describes a tractable methodology for evaluating the economic benefits of infrastructure coordination. We demonstrate its application over a range of water availability scenarios in a catchment of the Mekong located in Lao PDR, the Nam Ngum River Basin. Results from this basin suggest that coordination improves system net benefits from irrigation and hydropower by approximately 3–12% (or US$12-53 million/yr) assuming moderate levels of flood control, and that the magnitude of coordination benefits generally increases with the level of water availability and with inflow variability. Similar analyses would be useful for developing a systematic understanding of the factors that increase the costs of non-cooperation in river basin systems worldwide, and would likely help to improve targeting of efforts to stimulate complicated negotiations over water resources. (paper)

  6. Balancing hydropower production and river bed incision in operating a run-of-river hydropower scheme along the River Po

    Science.gov (United States)

    Denaro, Simona; Dinh, Quang; Bizzi, Simone; Bernardi, Dario; Pavan, Sara; Castelletti, Andrea; Schippa, Leonardo; Soncini-Sessa, Rodolfo

    2013-04-01

    Water management through dams and reservoirs is worldwide necessary to support key human-related activities ranging from hydropower production to water allocation, and flood risk mitigation. Reservoir operations are commonly planned in order to maximize these objectives. However reservoirs strongly influence river geomorphic processes causing sediment deficit downstream, altering the flow regime, leading, often, to process of river bed incision: for instance the variations of river cross sections over few years can notably affect hydropower production, flood mitigation, water supply strategies and eco-hydrological processes of the freshwater ecosystem. The river Po (a major Italian river) has experienced severe bed incision in the last decades. For this reason infrastructure stability has been negatively affected, and capacity to derive water decreased, navigation, fishing and tourism are suffering economic damages, not to mention the impact on the environment. Our case study analyzes the management of Isola Serafini hydropower plant located on the main Po river course. The plant has a major impact to the geomorphic river processes downstream, affecting sediment supply, connectivity (stopping sediment upstream the dam) and transport capacity (altering the flow regime). Current operation policy aims at maximizing hydropower production neglecting the effects in term of geomorphic processes. A new improved policy should also consider controlling downstream river bed incision. The aim of this research is to find suitable modeling framework to identify an operating policy for Isola Serafini reservoir able to provide an optimal trade-off between these two conflicting objectives: hydropower production and river bed incision downstream. A multi-objective simulation-based optimization framework is adopted. The operating policy is parameterized as a piecewise linear function and the parameters optimized using an interactive response surface approach. Global and local

  7. 76 FR 71342 - Proposed CERCLA Administrative Cost Recovery Settlement; River Forest Dry Cleaners Site, River...

    Science.gov (United States)

    2011-11-17

    ... Settlement; River Forest Dry Cleaners Site, River Forest, Cook County, IL AGENCY: Environmental Protection... response costs concerning the River Forest Dry Cleaners site in River Forest, Cook County, Illinois with... code: C-14J, Chicago, Illinois 60604. Comments should reference the River Forest Dry Cleaners Site...

  8. Rivers running deep : complex flow and morphology in the Mahakam River, Indonesia

    NARCIS (Netherlands)

    Vermeulen, B.

    2014-01-01

    Rivers in tropical regions often challenge our geomorphological understanding of fluvial systems. Hairpin bends, natural scours, bifurcate meander bends, tie channels and embayments in the river bank are a few examples of features ubiquitous in tropical rivers. Existing observation techniques

  9. Production and efficiency of large wildland fire suppression effort: A stochastic frontier analysis.

    Science.gov (United States)

    Katuwal, Hari; Calkin, David E; Hand, Michael S

    2016-01-15

    This study examines the production and efficiency of wildland fire suppression effort. We estimate the effectiveness of suppression resource inputs to produce controlled fire lines that contain large wildland fires using stochastic frontier analysis. Determinants of inefficiency are identified and the effects of these determinants on the daily production of controlled fire line are examined. Results indicate that the use of bulldozers and fire engines increase the production of controlled fire line, while firefighter crews do not tend to contribute to controlled fire line production. Production of controlled fire line is more efficient if it occurs along natural or built breaks, such as rivers and roads, and within areas previously burned by wildfires. However, results also indicate that productivity and efficiency of the controlled fire line are sensitive to weather, landscape and fire characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Exploring Controls on Sinuousity, Terraces and River Capture in the Upper Dajia River, Taiwan

    Science.gov (United States)

    Belliveau, L. C.; Ouimet, W. B.; Chan, Y. C.; Byrne, T. B.

    2015-12-01

    Taiwan is one of the most tectonically active regions in the world and is prone to landslides due to steep topography, large earthquakes and frequent typhoons. Landslides often affect and alter the river valleys beneath them, producing knickpoints on longitudinal river profiles, segmenting valleys into mixed bedrock-alluvial rivers and affecting river incision for tens to thousands of years. This study investigates the origin and evolution of complex channel morphologies, terraces and river capture along a 20km stretch of the Upper Da-Jia River in the Heping area of Taiwan. Through GIS analysis and field studies, we explore controls on river channel sinuousity, terrace development and river capture in relation to tectonic and climatic forcing, rock erodibility and landslides. High channel sinuousity is proposed as the result of a coupling between bank erosion and landslides. We discuss three types of landslide-induced meanders and increased sinuousity: (a) depositional-push meanders, (b) failure-zone erosional meanders, and (c) complex-erosional meanders. We also investigate spatial variation in channel morphology (slope, width) and the distribution and heights of river terraces within the Upper Da-Jia watershed associated with periods of widespread valley filling from landslide activity. Examples of river capture provide further evidence of the dynamic interactions between river incision, landslides and associated changes in channel morphology and terrace development within steep rapidly uplift, eroding and evolving mountain belts.

  11. River restoration - Malaysian/DID perspective

    International Nuclear Information System (INIS)

    Ahmad Darus

    2006-01-01

    Initially the river improvement works in Malaysia was weighted on flood control to convey a certain design flood with the lined and channelized rivers. But in late 2003 did has makes the approaches that conservation and improvement of natural function of river, i.e. river environment and eco-system should be incorporated inside the planning and design process. Generally, river restoration will focus on four approaches that will improve water quality, which is improving the quality of stormwater entering the river, maximizing the quantity of the urban river riparian corridor, stabilizing the riverbank, and improving the habitat within the river. This paper outlined the appropriate method of enhancing impairment of water quality from human activities effluent and others effluent. (Author)

  12. Integrated river basin management of Južna Morava River

    Directory of Open Access Journals (Sweden)

    Borisavljević Ana

    2012-01-01

    Full Text Available In the last decade in particular, Serbia encountered the problems of drinking water supply, which influenced the perception of professional public about the water crisis but also started more intensive work on water resource perseverance as well as the implementation of European Water Directive. One of the main demands of the Directive focuses on integrated river basin management (IRBM, which is a complex and a large task. The need to collect data on water quality and quantity, specific and key issues of water management in Južna Morava river basin, pressures on river ecosystem, flood risks and erosion problems, cross-border issues, socioeconomic processes, agricultural development as well as protected areas, and also to give the measures for solving problems and pressures recognized in the basin, is undisputable. This paper focuses on detailed analysis of specific pressures on river ecosystem and composition of recommendations for integrated management of Južna Morava river basin as cross-border river basin, taking into the account European experiences in IRBM. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Istraživanje klimatskih promena na životnu sredinu - praćenje uticaja, adaptacija i ublažavanje, podprojekat br. 9: Učestalost bujičnih poplava, degradacija zemljišta i voda kao posledica globalnih promena

  13. Comparative Assessment Of Coastal Tourism Potentials Of Selected Areas In Rivers State Nigeria

    Directory of Open Access Journals (Sweden)

    Obinwanne

    2015-08-01

    Full Text Available ABSTRACT The study examined coastal tourism potentials in Rivers State with emphasis on Opobo Bonny and Port Harcourt to determine the area that has comparative advantage for tourism development to optimally utilize resources. The study was conducted in Bonny Opobo and Port Harcourt of River State Nigeria. The area occupies the land close to the Atlantic Ocean within 60km radius from the coast. A survey design was adopted for the study. The instruments used were observation checklist and interview schedule. The instruments were tested for validity and reliability using five experts drawn from the field. The data collected were analyzed using ethnographic description method of analysis to answer research questions. The natural attractions found include mangrove forest sacred forests sacred rivers lakes beaches fishing rivers natural sources of drinking water and sanctuary. The cultural heritage resources were historical monument shrines museums different cultural festivals cultural materials and slave port. The man-made attractions were recreational park zoological garden and tourism village. It was found that there were more tourism potentials in Port Harcourt study site more than Bonny and Opobo sites and therefore Port Harcourt has comparative advantage over Bonny and Opobo for tourism development. Therefore efforts should be made and scarce resources utilized towards developing those coastal areas with best potentials and comparative advantage over others.

  14. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

    1980-05-30

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  15. 78 FR 18277 - Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor...

    Science.gov (United States)

    2013-03-26

    ...-AA08 Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor... proposes to issue a special local regulation on the waters of the Wando River, Cooper River, and Charleston... Country Splash is scheduled to take place on the waters of the Wando River, Cooper River, and Charleston...

  16. Measuring river from the cloud - River width algorithm development on Google Earth Engine

    Science.gov (United States)

    Yang, X.; Pavelsky, T.; Allen, G. H.; Donchyts, G.

    2017-12-01

    Rivers are some of the most dynamic features of the terrestrial land surface. They help distribute freshwater, nutrients, sediment, and they are also responsible for some of the greatest natural hazards. Despite their importance, our understanding of river behavior is limited at the global scale, in part because we do not have a river observational dataset that spans both time and space. Remote sensing data represent a rich, largely untapped resource for observing river dynamics. In particular, publicly accessible archives of satellite optical imagery, which date back to the 1970s, can be used to study the planview morphodynamics of rivers at the global scale. Here we present an image processing algorithm developed using the Google Earth Engine cloud-based platform, that can automatically extracts river centerlines and widths from Landsat 5, 7, and 8 scenes at 30 m resolution. Our algorithm makes use of the latest monthly global surface water history dataset and an existing Global River Width from Landsat (GRWL) dataset to efficiently extract river masks from each Landsat scene. Then a combination of distance transform and skeletonization techniques are used to extract river centerlines. Finally, our algorithm calculates wetted river width at each centerline pixel perpendicular to its local centerline direction. We validated this algorithm using in situ data estimated from 16 USGS gauge stations (N=1781). We find that 92% of the width differences are within 60 m (i.e. the minimum length of 2 Landsat pixels). Leveraging Earth Engine's infrastructure of collocated data and processing power, our goal is to use this algorithm to reconstruct the morphodynamic history of rivers globally by processing over 100,000 Landsat 5 scenes, covering from 1984 to 2013.

  17. Present day design challenges exemplified by the Clinch River Breeder Reactor Plant

    International Nuclear Information System (INIS)

    Dickson, P.W. Jr.; Anderson, C.A. Jr.

    1976-01-01

    The present day design challenges faced by the Clinch River Breeder Reactor Plant engineer result from two causes. The first cause is aspiration to achieve a design that will operate at conditions which are desirable for future LMFBRs in order for them to achieve low power costs and good breeding. The second cause is the licensing impact. Although licensing the CRBRP won't eliminate future licensing effort, many licensing questions will have been resolved and precedents set for the future LMFBR industry

  18. Detecting Long-term Trend of Water Quality Indices of Dong-gang River, Taiwan Using Quantile Regression

    Science.gov (United States)

    Yang, D.; Shiau, J.

    2013-12-01

    upstrean Hing-she station raise vivestok Sing-She stations are that ammonia on a upward trend, BOD5 no significant change in trend, DO, and SS is on the rise, river pollution index (RPI) a slight downward trend. Dong-gang River Basin , but the progress of sewer construction in slow. To reduce pollation in this river effort shoul be made regulatory reform on livestock waste control and acceleration of sewer construction. Keywords: quantile regression analysis, BOD5, RPI

  19. Assessment of Savannah River borosilicate glass in the repository environment

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Wicks, G.G.; Bibler, N.E.

    1982-04-01

    Since 1973, borosilicate glass has been studied as a matrix for the immobilization of high-level radioactive waste generated at the Savannah River Plant (SRP). In 1977, efforts began to develop and test the large-scale equipment necessary to convert the alkaline waste slurries at SRP into a durable borosilicate glass. A process has now been developed for the proposed Defense Waste Processing Facility (DWPF) which will annually produce approximately 500 canisters of SRP waste glass which will be stored on an interim basis on the Savannah River site. Current national policy calls for the permanent disposal of high-level waste in deep geologic repositories. In the repository environment, SRP waste glass will eventually be exposed to such stresses as lithostatic or hydrostatic pressures, radiation fields, and self-heating due to radioactive decay. In addition, producing and handling each canister of glass will also expose the glass to thermal and mechanical stresses. An important objective of the extensive glass characterization and testing programs of the Savannah River Laboratory (SRL) has been to determine how these stresses affect the performance of SRP waste glass. The results of these programs indicate that: these stresses will not significantly affect the performance of borosilicate glass containing SRP waste; and SRP waste glass will effectively immobilize hazardous radionuclides in the repository environment

  20. 78 FR 17087 - Special Local Regulation; New River Raft Race, New River; Fort Lauderdale, FL

    Science.gov (United States)

    2013-03-20

    ...-AA08 Special Local Regulation; New River Raft Race, New River; Fort Lauderdale, FL AGENCY: Coast Guard... on the New River in Fort Lauderdale, Florida during the Rotary Club of Fort Lauderdale New River Raft... States during the Rotary Club of Fort Lauderdale New River Raft Race. On March 23, 2013, Fort Lauderdale...

  1. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    Science.gov (United States)

    Malison, Rachel L; Kuzishchin, Kirill V; Stanford, Jack A

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3-12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99-1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically

  2. Water quantity and quality optimization modeling of dams operation based on SWAT in Wenyu River Catchment, China.

    Science.gov (United States)

    Zhang, Yongyong; Xia, Jun; Chen, Junfeng; Zhang, Minghua

    2011-02-01

    Water quantity and quality joint operation is a new mode in the present dams' operation research. It has become a hot topic in governmental efforts toward integrated basin improvement. This paper coupled a water quantity and quality joint operation model (QCmode) and genetic algorithm with Soil and Water Assessment Tool (SWAT). Together, these tools were used to explore a reasonable operation of dams and floodgates at the basin scale. Wenyu River Catchment, a key area in Beijing, was selected as the case study. Results showed that the coupled water quantity and quality model of Wenyu River Catchment more realistically simulates the process of water quantity and quality control by dams and floodgates. This integrated model provides the foundation for research of water quantity and quality optimization on dam operation in Wenyu River Catchment. The results of this modeling also suggest that current water quality of Wenyu River will improve following the implementation of the optimized operation of the main dams and floodgates. By pollution control and water quantity and quality joint operation of dams and floodgates, water quality of Wenyu river will change significantly, and the available water resources will increase by 134%, 32%, 17%, and 82% at the downstream sites of Sha River Reservoir, Lutong Floodgate, Xinpu Floodgate, and Weigou Floodgate, respectively. The water quantity and quality joint operation of dams will play an active role in improving water quality and water use efficiency in Wenyu River Basin. The research will provide the technical support for water pollution control and ecological restoration in Wenyu River Catchment and could be applied to other basins with large number of dams. Its application to the Wenyu River Catchment has a great significance for the sustainable economic development of Beijing City.

  3. Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-

    Science.gov (United States)

    Kogure, K.

    2013-12-01

    Human activities in river basin affect river water quality as water discharges into river with pollutant after we use it. By detecting pollutants source, pathway, and influential factor of human activities, it will be possible to consider proper river basin management. In this study, material flow analysis was done first and then nutrient emission modeling by MONERIS was conducted. So as to clarify land use contribution and climate condition, comparison of Japanese and European river basin area has been made. The model MONERIS (MOdelling Nutrient Emissions in RIver Systems; Behrendt et al., 2000) was applied to estimate the nutrient emissions in the Danube river basin by point sources and various diffuse pathways. Work for the Mur River Basin in Austria was already carried out by the Institute of Water Quality, Resources and Waste Management at the Vienna University of Technology. This study treats data collection, modelling for the Tone River in Japan, and comparative analysis for these two river basins. The estimation of the nutrient emissions was carried out for 11 different sub catchment areas covering the Tone River Basin for the time period 2000 to 2006. TN emissions into the Tone river basin were 51 kt/y. 67% was via ground water and dominant for all sub catchments. Urban area was also important emission pathway. Human effect is observed in urban structure and agricultural activity. Water supply and sewer system make urban water cycle with pipeline structure. Excess evapotranspiration in arable land is also influential in water cycle. As share of arable land is 37% and there provides agricultural products, it is thought that N emission from agricultural activity is main pollution source. Assumption case of 10% N surplus was simulated and the result was 99% identical to the actual. Even though N surplus reduction does not show drastic impact on N emission, it is of importance to reduce excess of fertilization and to encourage effective agricultural activity

  4. Flood of August 24–25, 2016, Upper Iowa River and Turkey River, northeastern Iowa

    Science.gov (United States)

    Linhart, S. Mike; O'Shea, Padraic S.

    2018-02-05

    Major flooding occurred August 24–25, 2016, in the Upper Iowa River Basin and Turkey River Basin in northeastern Iowa following severe thunderstorm activity over the region. About 8 inches of rain were recorded for the 24-hour period ending at 4 p.m., August 24, at Decorah, Iowa, and about 6 inches of rain were recorded for the 24-hour period ending at 7 a.m., August 24, at Cresco, Iowa, about 14 miles northwest of Spillville, Iowa. A maximum peak-of-record discharge of 38,000 cubic feet per second in the Upper Iowa River at streamgage 05388250 Upper Iowa River near Dorchester, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at six locations along the Upper Iowa River between State Highway 26 near the mouth at the Mississippi River and State Highway 76 about 3.5 miles south of Dorchester, Iowa, a distance of 15 river miles. Along the profiled reach of the Turkey River, a maximum peak-of-record discharge of 15,300 cubic feet per second at streamgage 05411600 Turkey River at Spillville, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 1–2 percent. A maximum peak discharge of 35,700 cubic feet per second occurred on August 25, 2016, along the profiled reach of the Turkey River at streamgage 05411850 Turkey River near Eldorado, Iowa, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at 11 locations along the Turkey River between County Road B64 in Elgin and 220th Street, located about 4.5 miles northwest of Spillville, Iowa, a distance of 58 river miles. The high-water marks were used to develop flood profiles for the Upper Iowa River and Turkey River.

  5. Tamarix transpiration along a semiarid river has negligible impact on water resources

    Science.gov (United States)

    McDonald, Alyson K.; Wilcox, Bradford P.; Moore, Georgianne W.; Hart, Charles R.; Sheng, Zhuping; Owens, M. Keith

    2015-07-01

    The proliferation of saltcedar (Tamarix spp.) along regulated rivers in the western United States has transformed riparian plant communities. It is commonly assumed that transpiration by these alien plants has led to large losses of water that would otherwise contribute to streamflow. Control of saltcedar, therefore, has been considered a viable strategy for conserving water and increasing streamflow in these regions. In an effort to better understand the linkage between transpiration by saltcedar and streamflow, we monitored transpiration, stream stage, and groundwater elevations within a saltcedar stand along the Pecos River during June 2004. Transpiration, as determined by sap flow measurements, exhibited a strong diel pattern; stream stage did not. Diel fluctuations in groundwater levels were observed, but only in one well, which was located in the center of the saltcedar stand. In that well, the correlation between maximal transpiration and minimal groundwater elevation was weak (R2 = 0.16). No effects of transpiration were detected in other wells within the saltcedar stand, nor in the stream stage. The primary reason, we believe, is that the saltcedar stand along this reach of the Pecos River has relatively low sapwood area and a limited spatial extent resulting in very low transpiration compared with the stream discharge. Our results are important because they provide a mechanistic explanation for the lack of increase in streamflow following large-scale control of invasive trees along semiarid rivers.

  6. An Evaluation of River Health for the Weihe River in Shaanxi Province, China

    Directory of Open Access Journals (Sweden)

    Jinxi Song

    2015-01-01

    Full Text Available Excessive socioeconomic activities in the Weihe River region have caused severe ecosystem degradation, and the call for the recovery and maintenance of the river health has drawn great attention. Based on the connotation of river health, previous research findings, and status quo of the Weihe River ecosystem, in this study, we developed a novel health evaluation index system to quantitatively determine the health of the Weihe River in Shaanxi Province. The river in the study area was divided into five reaches based on the five hydrological gauging stations, and appropriate evaluation indices for each river section were selected according to the ecological environmental functions of that section. A hybrid approach integrating analytic hierarchy process (AHP and a fuzzy synthetic evaluation method was applied to measure the river health. The results show that Linjiancun-Weijiabao reach and Weijiabao-Xianyang reach are in the “moderate” level of health and Lintong-Huaxian reach and downstream of Huaxian reach are in the “poor” health rating, whereas Xianyang-Lintong reach is in the “sick” rating. Moreover, the most sensitive factors were determined, respectively, for each reach from upper stream to lower stream in the study area.

  7. Dopamine and Effort-Based Decision Making

    Directory of Open Access Journals (Sweden)

    Irma Triasih Kurniawan

    2011-06-01

    Full Text Available Motivational theories of choice focus on the influence of goal values and strength of reinforcement to explain behavior. By contrast relatively little is known concerning how the cost of an action, such as effort expended, contributes to a decision to act. Effort-based decision making addresses how we make an action choice based on an integration of action and goal values. Here we review behavioral and neurobiological data regarding the representation of effort as action cost, and how this impacts on decision making. Although organisms expend effort to obtain a desired reward there is a striking sensitivity to the amount of effort required, such that the net preference for an action decreases as effort cost increases. We discuss the contribution of the neurotransmitter dopamine (DA towards overcoming response costs and in enhancing an animal’s motivation towards effortful actions. We also consider the contribution of brain structures, including the basal ganglia (BG and anterior cingulate cortex (ACC, in the internal generation of action involving a translation of reward expectation into effortful action.

  8. Savannah River Site Environmental Report for 2003

    Energy Technology Data Exchange (ETDEWEB)

    A. MAMATEY

    2003-01-01

    The ''Savannah River Site Environmental Report for 2003'' (WSRC-TR-2004-00015) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; (3) highlight significant programs and efforts; and (4) assess the impact of SRS operations on the public and the environment. This year's report reflects a continuing effort (begun in 2001) to streamline the document and thereby increase its cost effectiveness--without omitting valuable technical data. To that end each author will continue to work toward presenting results in summary fashion, focusing on historical trends. Complete data tables again are included on the CD inside the back cover of the report. The CD also features an electronic version of the report; an appendix of site, environmental sampling location, dose, and groundwater maps; and complete 2003 reports from a number of other SRS organizations.

  9. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2008

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A.

    2009-09-15

    The Savannah River Site Environmental Report for 2008 (SRNS-STI-2009-00190) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, 'Environment, Safety and Health Reporting,' and DOE Order 5400.5, 'Radiation Protection of the Public and Environment.' The annual SRS Environmental Report has been produced for more than 50 years. Several hundred copies are distributed each year to government officials, universities, public libraries, environmental and civic groups, news media, and interested individuals. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; and (3) highlight significant programs and efforts.

  10. Commanders’ Responsibilities in the Operations Process During the 1864 Red River Expedition

    Science.gov (United States)

    2015-05-21

    South.9 In an open letter to the people of Louisiana, Banks extended an invitation to hold open elections for not only a state governor but also...either side of the river near Alexandria, collecting and bailing all available cotton.54 In an effort to legitimize the seizure of the cotton by...claiming it as Confederate Army property, rather than civilian, sailors stenciled CSA on the bails , which later came to mean “Cotton Stealing Association

  11. Facility siting as a decision process at the Savannah River Site

    International Nuclear Information System (INIS)

    Wike, L.D.

    1995-01-01

    Site selection for new facilities at Savannah River Site (SRS) historically has been a process dependent only upon specific requirements of the facility. While this approach is normally well suited to engineering and operational concerns, it can have serious deficiencies in the modern era of regulatory oversight and compliance requirements. There are many issues related to the site selection for a facility that are not directly related to engineering or operational requirements; such environmental concerns can cause large schedule delays and budget impact,s thereby slowing or stopping the progress of a project. Some of the many concerns in locating a facility include: waste site avoidance, National Environmental Policy Act requirements, Clean Water Act, Clean Air Act, wetlands conservation, US Army Corps of Engineers considerations, US Fish and Wildlife Service statutes including threatened and endangered species issues, and State of South Carolina regulations, especially those of the Department of Health and Environmental Control. In addition, there are SRS restrictions on research areas set aside for National Environmental Research Park (NERP), Savannah River Ecology Laboratory, Savannah River Forest Station, University of South Carolina Institute of Archaeology and Anthropology, Southeastern Forest Experimental Station, and Savannah River Technology Center (SRTC) programs. As with facility operational needs, all of these siting considerations do not have equal importance. The purpose of this document is to review recent site selection exercises conducted for a variety of proposed facilities, develop the logic and basis for the methods employed, and standardize the process and terminology for future site selection efforts

  12. Reliability Centered Maintenance for Savannah River Site's interim waste management facilities

    International Nuclear Information System (INIS)

    Hauer, K.A.; Wilson, J.F.

    1992-01-01

    The application of Reliability Centered Maintenance (RCM) has been shown to be an effective means to optimize maintenance programs or to establish new programs. The key to success of any RCM program is to customize the methodology to meet the specific needs of the implementing organization. This paper discusses how RCM is being used to establish the preventive maintenance program and how the resulting system data is being used to support the Technical Baseline reconstitution effort for the interim Waste Management Division of Westinghouse Savannah River Company (WSRC)

  13. River nomads

    DEFF Research Database (Denmark)

    2016-01-01

    sail on the Niger River between Nigeria and Mali. Crossing villages, borders and cultures, they stop only to rest by setting up camp on riverbanks or host villages. In River Nomads, we join the nomadic Kebbawa fishermen on one of their yearly crossing, experiencing their relatively adventurous...

  14. River Piracy

    Indian Academy of Sciences (India)

    There was this highly venerated river Saraswati flowing through. Haryana, Marwar and Bahawalpur in Uttarapath and emptying itself in the Gulf ofKachchh, which has been described in glowing terms by the Rigveda. "Breaking through the mountain barrier", this "swift-flowing tempestuous river surpasses in majesty and.

  15. Clinch River Environmental Restoration Program

    International Nuclear Information System (INIS)

    Cook, R.B.

    1992-01-01

    This report consists of tables and listings from the results of the Phase I data gathering activities of the Clinch River Environmental Restoration Program (CR-ERP). The table of contents outlines the presentation of the material and has been annotated to indicate the key fields used to order the printing of each data table. Definitions of selected column headings are provided. Sample collection information is shown first and then more specific information for each matrix type is presented. The analytical results have been reviewed by independent validators and the qualifiers shown are the results of their efforts. No data that were rejected by the validation process are included in this listing. Only results of routine samples are listed; quality control sample results were excluded. All data, both detected and nondetected values, were used to calculated the summary table values. However, only Detected values are given on the analyte specific listings

  16. Modelling nonpoint source pollution of MUDA river basin using GIS (Geographic Information System)

    International Nuclear Information System (INIS)

    Nyon Yong Chik; Taher Buyong

    2000-01-01

    The management of our rivers is under increasing pressure to conserve and sustain as it remains the focus of human civilization and subjected to increasing demand from man and its activities. Integrated river basin management represents comprehensive form of terrestrial water resources management while GIS is a promising tool to be used in the management strategy. In efforts to display the true capabilities of GIS in analysing nonpoint source pollution (NPS), an assessment of NPS was carried out at MUDA river basin using Arc View 3.0 Spatial Analyst. Expected Mean Concentration (EMC) which is associated with land use was used to predict the amount of pollutants constituents. A runoff grid was then processed to model the flow domain. Finally, the modelling of the pollutant loads downstreams towards the basin outlet is achieved by flow direction and accumulation analysis of the product of EMC and runoff grid. A user interface was programmed to display each application data theme via a pop-up window. In addition, users will be able to enter EMG values for the corresponding land use through an application dialog developed in Visual Basic. (Author)

  17. The Navruz Project: Transboundary Monitoring for Radionuclides and Metals in Central Asia Rivers. Data Report

    Energy Technology Data Exchange (ETDEWEB)

    Passell, Howard D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barber, David S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Betsill, J. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlefield, Adriane C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mohagheghi, Amir H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shanks, Sonoya T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yuldashev, Bekhzad [Inst. of Nuclear Physics, Tashkent (Uzbekistan); Saalikhbaev, Umar [Inst. of Nuclear Physics, Tashkent (Uzbekistan); Radyuk, Raisa [Inst. of Nuclear Physics, Tashkent (Uzbekistan); Djuraev, Akram [Tajik Academy of Sciences, Dushanbe (Tajikistan); Djuraev, Anwar [Tajik Academy of Sciences, Dushanbe (Tajikistan); Vasilev, Ivan [Inst. of Physics, Bishkek (Kyrgyzstan); Tolongutov, Bajgabyl [Inst. of Physics, Bishkek (Kyrgyzstan); Valentina, Alekhina [Inst. of Physics, Bishkek (Kyrgyzstan); Solodukhin, Vladimir [Inst. of Nuclear Physics, Almaty (Kazakhstan); Pozniak, Victor [Inst. of Nuclear Physics, Almaty (Kazakhstan)

    2003-04-01

    The Navruz Project is a cooperative, transboundary, river monitoring project involving rivers and institutions in Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan, and facilitated by Sandia National Laboratories in the U.S. The Navruz Project focuses on waterborne radionuclides and metals because of their importance to public health and nuclear materials proliferation concerns in the region. The Project also collects data on basic water quality parameters. Data obtained in this project are shared among all participating countries and the public through a world-wide web site (http://www.cmc.sandia.org/Central/centralasia.html), and are available for use in further studies and in regional transboundary water resource management efforts. This report includes graphs showing selected data from the Fall 2000 and Spring 2001 sampling seasons. These data include all parameters grouped into six regions, including main rivers and some tributaries in the Amu Darya and Syr Darya river systems. This report also assembles all data (in tabular form) generated by the project from Fall 2000 through Fall 2001. This report comes as the second part of a planned three-part reporting process. The first report is the Sampling and Analysis Plan and Operational Manual, SAND 2002-0484. This is the second report.

  18. Development of pan-Arctic database for river chemistry

    Science.gov (United States)

    McClelland, J.W.; Holmes, R.M.; Peterson, B.J.; Amon, R.; Brabets, T.; Cooper, L.; Gibson, J.; Gordeev, V.V.; Guay, C.; Milburn, D.; Staples, R.; Raymond, P.A.; Shiklomanov, I.; Striegl, Robert G.; Zhulidov, A.; Gurtovaya, T.; Zimov, S.

    2008-01-01

    More than 10% of all continental runoff flows into the Arctic Ocean. This runoff is a dominant feature of the Arctic Ocean with respect to water column structure and circulation. Yet understanding of the chemical characteristics of runoff from the pan-Arctic watershed is surprisingly limited. The Pan- Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments ( PARTNERS) project was initiated in 2002 to help remedy this deficit, and an extraordinary data set has emerged over the past few years as a result of the effort. This data set is publicly available through the Cooperative Arctic Data and Information Service (CADIS) of the Arctic Observing Network (AON). Details about data access are provided below.

  19. Cohesive Sedimentary Processes on River-Dominated Deltas: New Perspectives from the Mississippi River Delta Front, Gulf of Mexico

    Science.gov (United States)

    Bentley, S. J.; Keller, G. P.; Obelcz, J.; Maloney, J. M.; Xu, K.; Georgiou, I. Y.; Miner, M. D.

    2016-12-01

    On river deltas dominated by proximal sediment accumulation (Mississippi, Huang He, others), the delta front region is commonly dominated by rapid accumulation of cohesive fluvial sediments, and mass-wasting processes that remobilize recently deposited sediments. Mass transport is preconditioned in sediments by high water content, biogenic gas production, over steepening, and is commonly triggered by strong wave loading and other processes. This understanding is based on extensive field studies in the 1970's and 80's. Recent studies of the Mississippi River Delta Front are yielding new perspectives on these processes, in a time of anthropogenically reduced sediment loads, rising sea level, and catastrophic deltaic land loss. We have synthesized many industry data sets collected since ca. 1980, and conducted new pilot field and modeling studies of sedimentary and morphodynamic processes. These efforts have yielded several key findings that diverge from historical understanding of this dynamic setting. First, delta distributary mouths have ceased seaward progradation, ending patterns that have been documented since the 18th century. Second, despite reduced sediment supply, offshore mass transport continues, yielding vertical displacements at rates of 1 m/y. This displacement is apparently forced by wave loading from storm events of near-annual return period, rather than major hurricanes that have been the focus of most previous studies. Third, core analysis indicates that this vertical displacement is occurring along failure planes >3 m in the seabed, rather than in more recently deposited sediments closer to the sediment-water interface. These seabed morphodynamics have the potential to destabilize both nearshore navigation infrastructure, and seabed hydrocarbon infrastructure offshore. As well, these findings raise more questions regarding the future seabed evolution offshore of major river deltas, in response to anthropogenic and climatic forcing.

  20. Integrated Status and Effectiveness Monitoring Program - Entiat River Snorkel Surveys and Rotary Screw Trap, 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Nelle, R.D.

    2008-01-01

    The USFWS Mid-Columbia River Fishery Resource Office conducted snorkel surveys at 24 sites during the summer and fall periods of 2006 survey periods as part of the Integrated Status and Effectiveness Monitoring Program in the Entiat River. A total of 37,938 fish from 15 species/genera and an unknown category were enumerated. Chinook salmon were the overall most common fish observed and comprised 15% of fish enumerated followed by rainbow trout (10%) and mountain whitefish (7%). Day surveys were conducted during the summer period 2007 (August), while night surveys were conducted during the fall 2007 (October) surveys. The USFWS Mid-Columbia River Fishery Resource Office (MCFRO) operated two rotary screw traps on the Entiat River as part of the Integrated Status and Effectiveness Monitoring Program (ISEMP) program from August through November of 2007. Along with the smolt traps, juvenile emigrants were also captured at remote locations throughout the Entiat watershed and its major tributary, the Mad River. A total of 999 wild Oncorhynchus mykiss and 5,107 wild run O. tshawytscha were PIT tagged during the study period. Rotary screw trap efficiencies averaged 22.3% for juvenile O. tshawytscha and 9.0% for juvenile O. mykiss. Rotary screw traps operated 7 days a week and remote capture operations were conducted when flow and temperature regimes permitted. This is third annual progress report to Bonneville Power Administration for the snorkel surveys conducted in the Entiat River as related to long-term effectiveness monitoring of restoration programs in this watershed. The objective of this study is to monitor the fish habitat utilization of planned in-stream restoration efforts in the Entiat River by conducting pre- and post-construction snorkel surveys at selected treatment and control sites.

  1. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J. (US Geological Survey, Columbia River Research Laboratory, Western Fisheries Research Center, Cook, WA)

    2003-12-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the second year of at least a three-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  2. EFFORTS TO IMPROVE WELFARE BASED ON AQUACULTURE TOWARDS THE COMMUNITY ECONOMIC DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Yunikewaty

    2018-04-01

    Full Text Available This study aims to produce a continuous improvement model of river basin community welfare by applying the moral values of the society culture. The subject of research is the community of the river Kahayan River Palangkaraya. Based on the results of research can be concluded that the aquaculture based eco-business activities can be done by applying the moral values of the river society culture, so that all economic activities do not damage the environment. The Kahayan River has a high economic potential for the people living around it. However, the current condition has been greatly reduced due to various obstacles encountered, including environmental damage in the upper river, due to refinery plantation companies (accompanied by high levels of pesticide use and chemical fertilizers and intensive cultivation, illegal gold mining, deforestation, illegal use of poison while fishing, industrial and household waste disposal into the Kahayan river.

  3. River flow controls on tides an tide-mean water level profiles in a tidel freshwater river

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.

    2013-01-01

    [1] Tidal rivers feature oscillatory and steady gradients in the water surface, controlled by interactions between river flow and tides. The river discharge attenuates the tidal motion, and tidal motion increases tidal-mean friction in the river, which may act as a barrier to the river discharge.

  4. Mattagami River Lake sturgeon entrainment : Little Long generating station facilities

    International Nuclear Information System (INIS)

    Seyler, J.; Evers, J.; McKinley, S.; Evans, R.R.; Prevost, G.; Carson, R.; Phoenix, D.

    1996-01-01

    This project and publication is the result of a collaborative effort by other Large River Ecosystem Unit of Northeast Science (NEST), Ontario Hydro in Kapuskasing, and the New Post First Nation in Cochrane, Ontario, designed to investigate potential solutions to minimize or eliminate the problem of trapped lake sturgeon in the Adam Creek Diversion. The Adam Creek Dam is used to divert excess water from the Mattagami River hydroelectric complex which consists of the Little Long, Smoky Falls, Harmon and Kipling generating stations. The lake sturgeon entrainment problem in the area was discovered in 1990. Potential solutions to the problem include the redirection of flows to mainstream, the placement of a rope barrier, electrical deterrents, physical/electrical guidance systems, sound deterrents, gate modifications, and the continued relocation of fish. The advantages and disadvantages of each of these potential solutions are discussed. Results of the analysis indicated that perceptual and physical barriers have the greatest potential to minimize lake sturgeon entrainment in Adam Creek. 25 refs., 2 tabs., 3 figs., 6 appendices

  5. Savannah River Site radioiodine atmospheric releases and offsite maximum doses

    International Nuclear Information System (INIS)

    Marter, W.L.

    1990-01-01

    Radioisotopes of iodine have been released to the atmosphere from the Savannah River Site since 1955. The releases, mostly from the 200-F and 200-H Chemical Separations areas, consist of the isotopes, I-129 and 1-131. Small amounts of 1-131 and 1-133 have also been released from reactor facilities and the Savannah River Laboratory. This reference memorandum was issued to summarize our current knowledge of releases of radioiodines and resultant maximum offsite doses. This memorandum supplements the reference memorandum by providing more detailed supporting technical information. Doses reported in this memorandum from consumption of the milk containing the highest I-131 concentration following the 1961 1-131 release incident are about 1% higher than reported in the reference memorandum. This is the result of using unrounded 1-131 concentrations of I-131 in milk in this memo. It is emphasized here that this technical report does not constitute a dose reconstruction in the same sense as the dose reconstruction effort currently underway at Hanford. This report uses existing published data for radioiodine releases and existing transport and dosimetry models

  6. Remote sensing of tamarisk beetle (Diorhabda carinulata) impacts along 412 km of the Colorado River in the Grand Canyon, Arizona, USA

    Science.gov (United States)

    Bedford, Ashton; Sankey, Temuulen T.; Sankey, Joel B.; Durning, Laura E.C.; Ralston, Barbara

    2018-01-01

    Tamarisk (Tamarix spp.) is an invasive plant species that is rapidly expanding along arid and semi-arid rivers in the western United States. A biocontrol agent, tamarisk beetle (Diorhabda carinulata), was released in 2001 in California, Colorado, Utah, and Texas. In 2009, the tamarisk beetle was found further south than anticipated in the Colorado River ecosystem within the Grand Canyon National Park and Glen Canyon National Recreation Area. Our objectives were to classify tamarisk stands along 412 km of the Colorado River from the Glen Canyon Dam through the Grand Canyon National Park using 2009 aerial, high spatial resolution multispectral imagery, and then quantify tamarisk beetle impacts by comparing the pre-beetle images from 2009 with 2013 post-beetle images. We classified tamarisk presence in 2009 using the Mahalanobis Distance method with a total of 2500 training samples, and assessed the classification accuracy with an independent set of 7858 samples across 49 image quads. A total of 214 ha of tamarisk were detected in 2009 along the Colorado River, where each image quad, on average, included an 8.4 km segment of the river. Tamarisk detection accuracies varied across the 49 image quads, but the combined overall accuracy across the entire study region was 74%. Using the Normalized Difference Vegetation Index (NDVI) from 2009 and 2013 with a region-specific ratio of >1.5 decline between the two image dates (2009NDVI/2013NDVI), we detected tamarisk defoliation due to beetle herbivory. The total beetle-impacted tamarisk area was 32 ha across the study region, where tamarisk defoliation ranged 1–86% at the local levels. Our tamarisk classification can aid long-term efforts to monitor the spread and impact of the beetle along the river and the eventual mortality of tamarisk due to beetle impacts. Identifying areas of tamarisk defoliation is a useful ecological indicator for managers to plan restoration and tamarisk removal efforts.

  7. 77 FR 67563 - Regulated Navigation Area-New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl...

    Science.gov (United States)

    2012-11-13

    ... 1625-AA11 Regulated Navigation Area--New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT... Haven Harbor, Quinnipiac River and Mill River. The current RNA pertains only to the operation of tugs...) entitled Regulated Navigation Area--New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl...

  8. 77 FR 23120 - Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount...

    Science.gov (United States)

    2012-04-18

    ...-AA08 Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount... establishing special local regulations on the waters of the Wando River and Cooper River in Mount Pleasant... River and Cooper River along the shoreline of Mount Pleasant, South Carolina. The Lowcountry Splash...

  9. Application of ELJ to create and maintain side channels in a dynamic gravel bed river

    Science.gov (United States)

    Crabbe, E.; Crowe Curran, J.; Ockelford, A.

    2017-12-01

    Braided and anastomosing rivers create and maintain a large amount of side channel habitat. Unfortunately, many rivers that were once multi-channel rivers have been constrained to single thread channels as a consequence of land use changes that occurred in the 19th and 20th centuries or earlier. An increasingly common management goal today is the re-creation of self-maintaining side and tributary habitat through as natural means as possible. This work examines the geomorphic history of one such channel and the success of recent rehabilitation efforts. Our case study comes from the South Fork Nooksack River in the Cascades Range in Washington State. The Nooksack River is a gravel and sand bed channel with a snowmelt dominated hydrograph. Engineered log jams (ELJ) have been employed to direct flow into side and chute channels with the larger goals of increasing overall channel complexity and salmon spawning opportunities. ELJs have been constructed on the channel since the 2000s, and the ELJs in the study reaches range in age up to 10 years. The size and design of individual jams within the reach vary, enabling a comparison between jam types. ELJs are evaluated for their ability to maintain gravel bar locations and open tributary channels through the snowmelt season over the reach scale. Additional goals of trapping wood onto the jams and existing bars, stabilizing channel banks, and allowing for the growth of bar vegetation are also examined.

  10. United States Department of Agriculture Forest Service 1996 annual report wetlands research related to the Pen Branch restoration effort on the Savannah River site

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.A. [Westinghouse Savannah River Company, Aiken, SC (United States); Kolka, R.K. [USDA Forest Service, Charleston, SC (United States); Trettin, C.C. [USDA Forest Service, Charleston, SC (United States)

    1997-01-01

    This report documents the role of the USDA Forest Service and their collaborators (SRTC, SREL, and several universities) in wetlands monitoring and research on the Savannah River Site. This report describes the rationales, methods, and results (when available) of these studies and summarizes and integrates the available information through 1996.

  11. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    was also evaluated on the riparian scale, with appropriate landscape variables analyzed within riparian buffers around each stream or river channel. Included in the overall watershed assessment are field habitat surveys and analyses of the physical and hydrological characteristics of primary chum and fall Chinook salmon spawning areas and spawning habitat availability and use. This assessment is a significant step in a comprehensive program to ensure the survival and recovery of Columbia River chum salmon in its most productive system and builds on existing recovery planning efforts for these ESA-listed salmonids within the Grays River and the lower Columbia River. This assessment also provides a basis for the recovery of other fish species in the Grays River, including coho salmon, winter steelhead, coastal cutthroat trout, and Pacific lamprey.

  12. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    was also evaluated on the riparian scale, with appropriate landscape variables analyzed within riparian buffers around each stream or river channel. Included in the overall watershed assessment are field habitat surveys and analyses of the physical and hydrological characteristics of primary chum and fall Chinook salmon spawning areas and spawning habitat availability and use. This assessment is a significant step in a comprehensive program to ensure the survival and recovery of Columbia River chum salmon in its most productive system and builds on existing recovery planning efforts for these ESA-listed salmonids within the Grays River and the lower Columbia River. This assessment also provides a basis for the recovery of other fish species in the Grays River, including coho salmon, winter steelhead, coastal cutthroat trout, and Pacific lamprey.

  13. Trace elements and radionuclides in the Connecticut River and Amazon River estuary

    International Nuclear Information System (INIS)

    Dion, E.P.

    1983-01-01

    The Connecticut River, its estuary and the Amazon River plume were studied to elucidate processes which control the flux of nuclides to the sea. Major ions (Ca, Mg, Na, Cl, Bicarbonate) and selected trace elements (Ra, Ba, Cu, Si) are introduced to the Connecticut River in proportion to the total dissolved load of various groundwaters. Si, Ra, and Ba are subject to removal from solution by seasonal diatom productivity; whereas the other groundwater-derived elements are found in proportion to TDS both time and space. These nuclides are released in the estuary when a portion of the Ra, Ba, and Si in riverine biogenic detritus is trapped in salt marshes and coves bordering the estuary where it redissolves and is exported to the main river channel at ebb tide. In the Amazon River estuary, the Ra and Ba are released in mid-salinity waters. Ra and Ba together with Si are subsequently removed by diatom productivity as reflected in increased Ra and Ba in the suspended particles and depleted dissolved nuclide concentrations in samples from the high productivity zone. In both the Connecticut River system and the Amazon River plume, Cu behaves conservatively; whereas the fates of Fe and Al are linked to soil-derived humic acids. Trace elements in Amazon plume sediments are found simply in proportion to the percentage of fine-grained size materials, despite low Th-228/Ra-228 mean residence times in the plume and the presence of Cs-137 in the sediment column. Estimates of the total flux of nuclides to the oceans can best be calculated on a mass balance basis using groundwater inputs. Unless significant repositories for nuclides exist in the river-estuarine system, the groundwater flux of dissolved nuclides is net flux to the ocean despite the reactions which occur in both rivers and estuaries

  14. Managing River Resources: A Case Study Of The Damodar River, India

    Science.gov (United States)

    Bhattacharyya, K.

    2008-12-01

    The Damodar River, a subsystem of the Ganga has always been a flood-prone river. Recorded flood history of the endemic flood prone river can be traced from 1730 onwards. People as well as governments through out the centuries have dealt with the caprices of this vital water resource using different strategies. At one level, the river has been controlled using structures such as embankments, weir, dams and barrage. In the post-independent period, a high powered organization known as the Damodar Valley Corporation (DVC), modeled on the Tennessee Valley Authority (TVA) came into existence on 7th July 1948. Since the completion of the reservoirs the Lower Damodar has become a 'reservoir channel' and is now identified by control structures or cultural features or man made indicators. Man-induced hydrographs below control points during post-dam period (1959-2007) show decreased monsoon discharge, and reduced peak discharge. In pre-dam period (1933-1956) return period of floods of bankfull stage of 7080 m3/s had a recurrence interval of 2 years. In post-dam period the return period for the bankfull stage has been increased to 14 years. The Damodar River peak discharge during pre-dam period for various return periods are much greater than the post-dam flows for the same return periods. Despite flood moderation by the DVC dams, floods visited the river demonstrating that the lower valley is still vulnerable to sudden floods. Contemporary riverbed consists of series of alluvial bars or islands, locally known as mana or char lands which are used as a resource base mostly by Bengali refugees. At another level, people have shown great resourcefulness in living with and adjusting to the floods and dams while living on the alluvial bars. People previously used river resources in the form of silt only but now the semi-fluid or flexible resource has been exploited into a permanent resource in the form of productive sandbars. Valuable long-term data from multiple sources has been

  15. 77 FR 47331 - Regulated Navigation Area-New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl...

    Science.gov (United States)

    2012-08-08

    ...-AA11 Regulated Navigation Area--New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl... navigable waters of New Haven Harbor, Quinnipiac River and Mill River. The current RNA pertains only to the..., Quinnipiac River, and Mill River RNA. The proposed amendment would give the Captain of the Port Sector Long...

  16. Fluvial geomorphology and suspended-sediment transport during construction of the Roanoke River Flood Reduction Project in Roanoke, Virginia, 2005–2012

    Science.gov (United States)

    Jastram, John D.; Krstolic, Jennifer L.; Moyer, Douglas; Hyer, Kenneth

    2015-09-30

    Beginning in 2005, after decades of planning, the U.S. Army Corps of Engineers (USACE) undertook a major construction effort to reduce the effects of flooding on the city of Roanoke, Virginia—the Roanoke River Flood Reduction Project (RRFRP). Prompted by concerns about the potential for RRFRP construction-induced geomorphological instability and sediment liberation and the detrimental effects these responses could have on the endangered Roanoke logperch (Percina rex), the U.S. Geological Survey (USGS) partnered with the USACE to provide a real-time warning network and a long-term monitoring program to evaluate geomorphological change and sediment transport in the affected river reach. Geomorphological change and suspended-sediment transport are highly interdependent and cumulatively provide a detailed understanding of the sedimentary response, or lack thereof, of the Roanoke River to construction of the RRFRP.

  17. Fractionation of rare earth elements in the Mississippi River estuary and river sediments

    Science.gov (United States)

    Adebayo, S. B.; Johannesson, K. H.

    2017-12-01

    This study presents the first set of data on the fractionation of rare earth elements (REE) in the mixing zone between the Mississippi River and the Gulf of Mexico, as well as the fractionation of REE in the operationally defined fractions of Mississippi River sediments. This subject is particularly important because the Mississippi river is one of the world's major rivers, and contributes a substantial amount of water and sediment to the ocean. Hence, it is a major source of trace elements to the oceans. The geochemistry of the REE in natural systems is principally important because of their unique chemical properties, which prompt their application as tracers of mass transportation in modern and paleo-ocean environments. Another important consideration is the growth in the demand and utilization of REE in the green energy and technology industries, which has the potential to bring about a change in the background levels of these trace elements in the environment. The results of this study show a heavy REE enrichment of both the Mississippi River water and the more saline waters of the mixing zone. Our data demonstrate that coagulation and removal of REE in the low salinity region of the estuary is more pronounced among the Light REE ( 35% for Nd) compared to the Heavy REE. Remarkably, our data also indicate that REE removal in the Mississippi River estuary is significantly less than that observed in other estuaries, including the Amazon River system. We propose that the high pH/alkalinity of the Mississippi River is responsible for the greater stability of REE in the Mississippi River estuary. The results of sequential extraction of river sediments reveal different Sm/Nd ratios for the various fractions, which we submit implies different 143Nd/144Nd ratios of the labile fractions of the sediments. The possible impact of such hypothesized different Nd isotope signatures of labile fractions of the river sediments on Gulf of Mexico seawater is under investigation.

  18. River and river-related drainage area parameters for site investigation program

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, P.; Brunberg, A.K. [Uppsala Univ. (Sweden). Dept. of Limnology; Brydsten, L. [Umeaa Univ. (Sweden). Dept. of Ecology and Environmental Science

    2001-05-01

    In this paper, a number of parameters of importance to a determination of the function of running waters as transport channels for material from the continents to the sea are presented. We have assumed that retention mechanisms of material in the river and in the riparian zone will be covered by special investigations but tried to create a platform for such investigations by quantification of the extension of different main habitats. The choice of parameters has been made so that also the nature conservation value of the river can be preliminary established, and includes a general description of the river type and the inherent ecosystem. The material links directly to that presented in a previous report concerning site investigation programmes for lakes. The parameters have been divided into five groups: 1) The location of the object relative important gradients in the surrounding nature; 2) The river catchment area and its major constituents; 3) The river morphometry; 4) The river ecosystem; 5) Human-induced damages to the river ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area, represent parameters that can be used to establish the rarity and representativity of the system, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the river morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of key habitats in the system. The fourth group, the ecosystem of the river, includes physical, chemical and biological parameters required for determination of the influence from the terrestrial ecosystem of the catchment area, nutrient status, distribution of different habitats, and presence of fish in the system. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and

  19. River and river-related drainage area parameters for site investigation program

    International Nuclear Information System (INIS)

    Blomqvist, P.; Brunberg, A.K.; Brydsten, L.

    2001-05-01

    In this paper, a number of parameters of importance to a determination of the function of running waters as transport channels for material from the continents to the sea are presented. We have assumed that retention mechanisms of material in the river and in the riparian zone will be covered by special investigations but tried to create a platform for such investigations by quantification of the extension of different main habitats. The choice of parameters has been made so that also the nature conservation value of the river can be preliminary established, and includes a general description of the river type and the inherent ecosystem. The material links directly to that presented in a previous report concerning site investigation programmes for lakes. The parameters have been divided into five groups: 1) The location of the object relative important gradients in the surrounding nature; 2) The river catchment area and its major constituents; 3) The river morphometry; 4) The river ecosystem; 5) Human-induced damages to the river ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area, represent parameters that can be used to establish the rarity and representativity of the system, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the river morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of key habitats in the system. The fourth group, the ecosystem of the river, includes physical, chemical and biological parameters required for determination of the influence from the terrestrial ecosystem of the catchment area, nutrient status, distribution of different habitats, and presence of fish in the system. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and

  20. Evaluation of Mineral Deposits Along the Little Wind River, Riverton, WY, Processing Site

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Sam [Navarro Research and Engineering, Oak Ridge, TN (United States); Dam, Wiliam [US Department of Energy, Washington, DC (United States). Office of Legacy Management

    2014-12-01

    In 2012, the U.S.Department of Energy (DOE) began reassessing the former Riverton, Wyoming, Processing Site area for potential contaminant sources impacting groundwater. A flood in 2010 along the Little Wind River resulted in increases in groundwater contamination (DOE 2013).This investigation is a small part of continued efforts by DOE and other stakeholders to update human health and ecological risk assessments, to make a comprehensive examination of all exposure pathways to ensure that the site remains protective through established institutional controls. During field inspections at the Riverton Site in 2013, a white evaporitic mineral deposit was identified along the bank of the Little Wind River within the discharge zone of the groundwater contamination plume. In December 2013, Savannah River National Laboratory (SRNL) personnel collected a sample for analysis by X-ray fluorescence (Figure 1 shows the type of material sampled). The sample had a uranium concentration of approximately 64 to 73 parts per million. Although the uranium in this mineral deposit is within the expected range for evaporatic minerals in the western United States (SRNL 2014), DOE determined that additional assessment of the mineral deposit was warranted. In response to the initial collection and analysis of a sample of the mineral deposit, DOE developed a work plan (Work Plan to Sample Mineral Deposits Along the Little Wind River, Riverton, Wyoming, Processing Site [DOE 2014]) to further define the extent of these mineral deposits and the concentration of the associated contaminants (Appendix A). The work plan addressed field reconnaissance, mapping, sampling, and the assessment of risk associated with the mineral deposits adjacent to the Little Wind River.

  1. 78 FR 22423 - Drawbridge Operation Regulations; Taunton River, Fall River and Somerset, MA

    Science.gov (United States)

    2013-04-16

    ... Operation Regulations; Taunton River, Fall River and Somerset, MA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulation. SUMMARY: The Coast Guard is issuing a temporary deviation from the regulation governing the operation of the Brightman Street Bridge across the Taunton River...

  2. Control of safety and risk management software at the Savannah River Site

    International Nuclear Information System (INIS)

    Ades, M.J.; Toffer, H.; Crowe, R.D.

    1992-01-01

    As a part of its Reactor Operations Improvement Program at the Savannah River Site (SRS), Westinghouse Savannah River Company (WSRC), in cooperation with the Westinghouse Hanford Company, has developed and implemented software quality assurance (SQA) for computer codes essential to the safety and reliability of reactor operations. This effort includes the use of quality standards and attendant procedures developed for and applied to computer codes used in safety and risk management analyses. The certification process that was recently implemented is in compliance with site wide and departmental SQA requirements. Certification consists of preparing a specific verification and validation (V and V) plan, a configuration control plan, and user qualifications. Applicable documentation is reviewed to determine compliance with V and V and configuration control action items. The results of this review are documented and serve as a baseline for additional certification activities. Resource commitment and schedules are drawn up for each individual code to complete certification in accordance with SQA requirements

  3. Indigenous Engagement in Tropical River Research in Australia: The TRaCK Program

    Directory of Open Access Journals (Sweden)

    Sue E. Jackson

    2015-05-01

    Full Text Available The literature on scientific-Indigenous ecological knowledge collaborations rarely analyses programmatic efforts undertaken by multi-disciplinary research groups over very large geographic scales. The TRaCK (Tropical Rivers and Coastal Knowledge research program was established to provide the science and knowledge needed by governments, industries, and communities to sustainably manage northern Australia’s rivers and estuaries. A number of policies and procedures were developed to ensure that the needs of Indigenous people of the multi-jurisdictional region were addressed and to enhance the benefits they might derive from participating in the research. An overarching Indigenous Engagement Strategy undergirded the program’s engagement activities, providing guidance on matters relating to the protection of intellectual property, negotiation of research agreements, remuneration for Indigenous expertise, and communications standards. This article reviews the achievements and shortcomings of the TRaCK experience of Indigenous engagement and highlights lessons for researchers and research organisations contemplating applied environmental science initiatives of this scale and scope.

  4. River Restoration by Dam Removal: Assessing Riverine Re-Connectivity Across New England

    Science.gov (United States)

    Magilligan, F. J.; Nislow, K. H.; Graber, B.; Sneddon, C.; Fox, C.; Martin, E.

    2014-12-01

    The impacts of dams in New England are especially acute as it possesses one of the highest densities of dams in the US, with the NID documenting more than 4,000 dams, and state agency records indicating that >14,000 dams are peppered throughout the landscape. This large number of dams contributes to pervasive watershed fragmentation, threatening the ecological integrity of rivers and streams, and in the case of old, poorly maintained structures, posing a risk to lives and property. These concerns have generated active dam removal efforts throughout New England. To best capture the geomorphic, hydrologic, and potential ecological effects of dam removal at a regional level, we have compiled a dataset of 127 removed dams in New England, which includes information about structural characteristics, georectified locations, and key watershed attributes (including basin size, distance to next upstream obstacle, and number of free-flowing river kms opened up). Our specific research questions address (1) what is the spatial distribution of removed dams and how does this pattern relate to stated management goals of restoring critical habitat for native resident freshwater and diadromous fish, (2) what are the structural or management commonalities in dam types that have been removed, and (3) what has been the incremental addition of free-flowing river length? Rather than reflecting an overall management prioritization strategy, results indicate that dam removals are characterized more by opportunistic removals. For example, despite a regional emphasis on diadromous fish protection and restoration, most removals are inland rather than coastal settings. Most of the removed dams were small (~ 45% 2,300 river kms over the past several decades, with implication for both resident and diadromous fish, and with many removals located in mid-sized rivers that are a key link between upstream and downstream/coastal aquatic ecosystems.

  5. The Influence of Water Conservancy Projects on River Network Connectivity, A Case of Luanhe River Basin

    Science.gov (United States)

    Li, Z.; Li, C.

    2017-12-01

    Connectivity is one of the most important characteristics of a river, which is derived from the natural water cycle and determine the renewability of river water. The water conservancy project can change the connectivity of natural river networks, and directly threaten the health and stability of the river ecosystem. Based on the method of Dendritic Connectivity Index (DCI), the impacts from sluices and dams on the connectivity of river network are deeply discussed herein. DCI quantitatively evaluate the connectivity of river networks based on the number of water conservancy facilities, the connectivity of fish and geographical location. The results show that the number of water conservancy facilities and their location in the river basin have a great influence on the connectivity of the river network. With the increase of the number of sluices and dams, DCI is decreasing gradually, but its decreasing range is becoming smaller and smaller. The dam located in the middle of the river network cuts the upper and lower parts of the whole river network, and destroys the connectivity of the river network more seriously. Therefore, this method can be widely applied to the comparison of different alternatives during planning of river basins and then provide a reference for the site selection and design of the water conservancy project and facility concerned.

  6. Urban river design and aesthetics: A river restoration case study from the UK

    OpenAIRE

    Prior, Jonathan

    2016-01-01

    This paper analyses the restoration of an urbanized section of the River Skerne where it flows through a suburb of Darlington, England; a project which was one of the first comprehensive urban river restorations undertaken in the UK. It is shown how aesthetic values were central to the identification of the River Skerne as a site for restoration, the production of restoration objectives, and a design vision of urban river renewal via restoration. Secondly, the means by which these aesthetic v...

  7. DOE ORDER 435.1, IMPLEMENTATION AND COMPLIANCE DECLARATION AT THE SAVANNAH RIVER SITE AND ACROSS THE DOE COMPLEX IN CONTRAST TO CURRENT PUSHBACK EFFORTS FROM THE ''TOP-TO-BOTTOM'' REVIEW

    International Nuclear Information System (INIS)

    GOLDSTON, WELFORD T.; SMITH, WINCHESTER IV.

    2003-01-01

    DOE issued Order 435.1, ''Radioactive Waste Management,'' on July 9, 1999 for immediate implementation. The requirements for Low Level Mixed, Transuranic, and High Level Waste have been completely rewritten. The entire DOE complex has been struggling with how to implement these new requirements within the one year required timeframe. This paper will chronicle the implementation strategy and actual results of the work to carry out that strategy at the Savannah River Site. DOE-SR and the site contractors worked closely together to implement each of the new requirements across the SRS, crossing many barriers and providing innovative solutions to the many problems that surfaced throughout the year. The results are that SRS declared compliance with all of the requirements of the Order within the prescribed timeframe. The challenge included all waste types in SRS facilities and programs that handle LLW, MLLW, TRU, and HLW. This paper will describe the implementation details for development of Radioactive Waste Management Basis for each facility, Identification of Wastes with No Path to Disposal, Waste Incidental to Reprocessing Determinations, Low Level Waste 90-Day Staging and One Year Limits for Storage Programs, to name a few of the requirements that were addressed by the SRS 435.1 Implementation Team. This paper will trace the implementation, problems (both technical and administrative), and the current pushback efforts associated with the DOE ''Top-to-Bottom'' review

  8. Distribution, Health, and Development of Larval and Juvenile Lost River and Shortnose Suckers in the Williamson River Delta Restoration Project and Upper Klamath Lake, Oregon: 2008 Annual Data Summary

    Science.gov (United States)

    Burdick, Summer M.; Ottinger, Christopher; Brown, Daniel T.; VanderKooi, Scott P.; Robertson, Laura; Iwanowicz, Deborah

    2009-01-01

    Federally endangered Lost River sucker Deltistes luxatus and shortnose sucker Chasmistes brevirostris were once abundant throughout their range but populations have declined; they have been extirpated from several lakes, and may no longer reproduce in others. Poor recruitment into the adult spawning populations is one of several reasons cited for the decline and lack of recovery of these species, and may be the consequence of high mortality during juvenile life stages. High larval and juvenile sucker mortality may be exacerbated by an insufficient quantity of suitable rearing habitat. Within Upper Klamath Lake, a lack of marshes also may allow larval suckers to be swept from suitable rearing areas downstream into the seasonally anoxic waters of the Keno Reservoir. The Nature Conservancy (TNC) flooded about 3,600 acres to the north of the Williamson River mouth (Tulana Unit) in October 2007, and about 1,400 acres to the south and east of the Williamson River mouth (Goose Bay Unit) a year later, to retain larval suckers in Upper Klamath Lake, create nursery habitat for suckers, and improve water quality. In collaboration with TNC, the Bureau of Reclamation, and Oregon State University, we began a long-term collaborative research and monitoring program in 2008 to assess the effects of the Williamson River Delta restoration on the early life-history stages of Lost River and shortnose suckers. Our approach includes two equally important aspects. One component is to describe habitat use and colonization processes by larval and juvenile suckers and non-sucker fish species. The second is to evaluate the effects of the restored habitat on the health and condition of juvenile suckers. This report contains a summary of the first year of data collected as a part of this monitoring effort.

  9. Snake River sockeye salmon habitat and limnological research, annual report 1998

    International Nuclear Information System (INIS)

    Lewis, Bert

    2000-01-01

    In March of 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an inter-agency effort to save the Redfish Lake stock of O. nerka from extinction. This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the calendar year of 1998. Project objectives included; (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka released from the captive rearing program into Pettit and Alturas lakes; (2) fertilize Redfish, Pettit, and Alturas lakes; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) control the number of spawning kokanee in Fishhook Creek; (6) evaluate potential competition and predation between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity. Results by objective are summarized

  10. Potential relationships between the river discharge and the precipitation in the Jinsha River basin, China

    Science.gov (United States)

    Wang, Gaoxu; Zeng, Xiaofan; Zhao, Na; He, Qifang; Bai, Yiran; Zhang, Ruoyu

    2018-02-01

    The relationships between the river discharge and the precipitation in the Jinsha River basin are discussed in this study. In addition, the future precipitation trend from 2011-2050 and its potential influence on the river discharge are analysed by applying the CCLM-modelled precipitation. According to the observed river discharge and precipitation, the annual river discharge at the two main hydrological stations displays good correlations with the annual precipitation in the Jinsha River basin. The predicted future precipitation tends to change similarly as the change that occurred during the observation period, whereas the monthly distributions over a year could be more uneven, which is unfavourable for water resources management.

  11. 76 FR 25545 - Safety Zone; Blue Crab Festival Fireworks Display, Little River, Little River, SC

    Science.gov (United States)

    2011-05-05

    ...-AA00 Safety Zone; Blue Crab Festival Fireworks Display, Little River, Little River, SC AGENCY: Coast... zone on the waters of Little River in Little River, South Carolina during the Blue Crab Festival... this rule because the Coast Guard did not receive notice of the Blue Crab Festival Fireworks Display...

  12. Nike (Awaous melanocephalus) Fishery and Mercury Contamination in the Estuary of BoneBolango River

    OpenAIRE

    Aziz Salam; Femy M Sahami; Citra Panigoro

    2016-01-01

    Nike fish (Awaous melanocephalus) is a tiny-kind of fish harvested lunar-monthly in the estuary of BoneBolango River in the City of Gorontalo. The fishing activity is showing steady increase recently as the commodity finds its way to the international market. Fishermen are putting more efforts by escalating the catching capacity of their gears. Meanwhile, mercury used by the artisanal and small-scale gold mining (ASGM) in the headwaters for amalgamation put another aspect to the A...

  13. Hydraulic characteristics of the New River in the New River Gorge National River, West Virginia

    Science.gov (United States)

    Wiley, J.B.; Appel, David H.

    1989-01-01

    Traveltime, dispersion, water-surface and streambed profiles, and cross-section data were collected for use in application of flow and solute-transport models to the New River in the New River Gorge National River, West Virginia. Dye clouds subjected to increasing and decreasing flow rates (unsteady flow) showed that increasing flows shorten the cloud and decreasing flows lengthen the cloud. After the flow rate was changed and the flow was again steady, traveltime and dispersion characteristics were determined by the new rate of flow. Seven stage/streamflow relations identified the general changes of stream geometry throughout the study reach. Channel cross sections were estimated for model input. Low water and streambed profiles were developed from surveyed water surface elevations and water depths. (USGS)

  14. Mapping Ecological Processes and Ecosystem Services for Prioritizing Restoration Efforts in a Semi-arid Mediterranean River Basin

    Science.gov (United States)

    Trabucchi, Mattia; O'Farrell, Patrick J.; Notivol, Eduardo; Comín, Francisco A.

    2014-06-01

    Semi-arid Mediterranean regions are highly susceptible to desertification processes which can reduce the benefits that people obtain from healthy ecosystems and thus threaten human wellbeing. The European Union Biodiversity Strategy to 2020 recognizes the need to incorporate ecosystem services into land-use management, conservation, and restoration actions. The inclusion of ecosystem services into restoration actions and plans is an emerging area of research, and there are few documented approaches and guidelines on how to undertake such an exercise. This paper responds to this need, and we demonstrate an approach for identifying both key ecosystem services provisioning areas and the spatial relationship between ecological processes and services. A degraded semi-arid Mediterranean river basin in north east Spain was used as a case study area. We show that the quantification and mapping of services are the first step required for both optimizing and targeting of specific local areas for restoration. Additionally, we provide guidelines for restoration planning at a watershed scale; establishing priorities for improving the delivery of ecosystem services at this scale; and prioritizing the sub-watersheds for restoration based on their potential for delivering a combination of key ecosystem services for the entire basin.

  15. Mapping ecological processes and ecosystem services for prioritizing restoration efforts in a semi-arid Mediterranean river basin.

    Science.gov (United States)

    Trabucchi, Mattia; O'Farrell, Patrick J; Notivol, Eduardo; Comín, Francisco A

    2014-06-01

    Semi-arid Mediterranean regions are highly susceptible to desertification processes which can reduce the benefits that people obtain from healthy ecosystems and thus threaten human wellbeing. The European Union Biodiversity Strategy to 2020 recognizes the need to incorporate ecosystem services into land-use management, conservation, and restoration actions. The inclusion of ecosystem services into restoration actions and plans is an emerging area of research, and there are few documented approaches and guidelines on how to undertake such an exercise. This paper responds to this need, and we demonstrate an approach for identifying both key ecosystem services provisioning areas and the spatial relationship between ecological processes and services. A degraded semi-arid Mediterranean river basin in north east Spain was used as a case study area. We show that the quantification and mapping of services are the first step required for both optimizing and targeting of specific local areas for restoration. Additionally, we provide guidelines for restoration planning at a watershed scale; establishing priorities for improving the delivery of ecosystem services at this scale; and prioritizing the sub-watersheds for restoration based on their potential for delivering a combination of key ecosystem services for the entire basin.

  16. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    International Nuclear Information System (INIS)

    Paller, M.

    1992-01-01

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70 degrees C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams ampersand Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS

  17. Down to the River

    DEFF Research Database (Denmark)

    Wessels, Josepha Ivanka

    2015-01-01

    Currently there is no coherent or sustainable water cooperation among the five states—Israel, Jordan, Lebanon, Palestinian territories and Syria—that share the Jordan River. Why do people not cooperate on sustainable river basin management, even if it seems the most rational course from the persp......Currently there is no coherent or sustainable water cooperation among the five states—Israel, Jordan, Lebanon, Palestinian territories and Syria—that share the Jordan River. Why do people not cooperate on sustainable river basin management, even if it seems the most rational course from...

  18. Effects of urbanization on river morphology of the Talar River, Mazandarn Province, Iran

    NARCIS (Netherlands)

    Yousefi, Saleh; Moradi, Hamid Reza; Keesstra, Saskia; Pourghasemi, Hamid Reza; Navratil, Oldrich; Hooke, Janet

    2017-01-01

    In the present study, we investigate the effects of urbanization growth on river morphology in the downstream part of Talar River, east of Mazandaran Province, Iran. Morphological and morphometric parameters in 10 equal sub-reaches were defined along a 11.5 km reach of the Talar River after land

  19. Incentive Design and Mis-Allocated Effort

    OpenAIRE

    Schnedler, Wendelin

    2013-01-01

    Incentives often distort behavior: they induce agents to exert effort but this effort is not employed optimally. This paper proposes a theory of incentive design allowing for such distorted behavior. At the heart of the theory is a trade-off between getting the agent to exert effort and ensuring that this effort is used well. The theory covers various moral-hazard models, ranging from traditional single-task to multi-task models. It also provides -for the first time- a formalization and proof...

  20. Distribution, source identification, and ecological risk assessment of heavy metals in wetland soils of a river-reservoir system.

    Science.gov (United States)

    Jiang, Xiaoliang; Xiong, Ziqian; Liu, Hui; Liu, Guihua; Liu, Wenzhi

    2017-01-01

    The majority of rivers in the world have been dammed, and over 45,000 large reservoirs have been constructed for multiple purposes. Riparian and reservoir shorelines are the two most important wetland types in a dammed river. To date, few studies have concerned the heavy metal pollution in wetland soils of these river-reservoir systems. In this study, we measured the concentrations of ten heavy metals (Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, and Zn) in surface soils collected from riparian and reservoir shorelines along the Han River in different seasons. Our results found that the Co, Cu, and Ni concentrations in riparian wetlands were significantly lower than those in reservoir shorelines. In riparian wetlands, only soil Sr concentration significantly increased after summer and autumn submergence. Multivariate statistical analyses demonstrated that Ba and Cd might originate from industrial and mining sources, whereas Sr and Mn predominantly originated from natural rock weathering. The ecological risk assessment analysis indicated that both riparian and reservoir shorelines along the Han River in China exhibited a moderate ecological risk in soil heavy metals. The upper Han River basin is the water resource area of China's Middle Route of the South-to-North Water Transfer Project. Therefore, to control the contamination of heavy metals in wetland soils, more efforts should be focused on reducing the discharge of mining and industrial pollutants into the riparian and reservoir shorelines.

  1. Uranium in river water

    International Nuclear Information System (INIS)

    Palmer, M.R.; Edmond, J.M.

    1993-01-01

    The concentration of dissolved uranium has been determined in over 250 river waters from the Orinoco, Amazon, and Ganges basins. Uranium concentrations are largely determined by dissolution of limestones, although weathering of black shales represents an important additional source in some basins. In shield terrains the level of dissolved U is transport limited. Data from the Amazon indicate that floodplains do not represent a significant source of U in river waters. In addition, the authors have determined dissolved U levels in forty rivers from around the world and coupled these data with previous measurements to obtain an estimate for the global flux of dissolved U to the oceans. The average concentration of U in river waters is 1.3 nmol/kg, but this value is biased by very high levels observed in the Ganges-Brahmaputra and Yellow rivers. When these river systems are excluded from the budget, the global average falls to 0.78 nmol/kg. The global riverine U flux lies in the range of 3-6 x 10 7 mol/yr. The major uncertainty that restricts the accuracy of this estimate (and that of all other dissolved riverine fluxes) is the difficulty in obtaining representative samples from rivers which show large seasonal and annual variations in runoff and dissolved load

  2. River meander modeling of the Wabash River near the Interstate 64 Bridge near Grayville, Illinois

    Science.gov (United States)

    Lant, Jeremiah G.; Boldt, Justin A.

    2018-01-16

    Natural river channels continually evolve and change shape over time. As a result, channel evolution or migration can cause problems for bridge structures that are fixed in the flood plain. A once-stable bridge structure that was uninfluenced by a river’s shape could be encroached upon by a migrating river channel. The potential effect of the actively meandering Wabash River on the Interstate 64 Bridge at the border with Indiana near Grayville, Illinois, was studied using a river migration model called RVR Meander. RVR Meander is a toolbox that can be used to model river channel meander migration with physically based bank erosion methods. This study assesses the Wabash River meandering processes through predictive modeling of natural meandering over the next 100 years, climate change effects through increased river flows, and bank protection measures near the Interstate 64 Bridge.

  3. Health risks from radionuclides released into the Clinch River

    International Nuclear Information System (INIS)

    Thomas, B.A.; Hoffman, F.O.; Miller, L.F.

    1999-01-01

    The purpose of this work is to estimate off-site radiation doses and health risks (with uncertainties) associated with the release of radionuclides from the X-10 site. Following an initial screening analysis, the exposure pathways of interest included fish ingestion, drinking water ingestion, the ingestion of milk and meat, and external exposure from shoreline sediment. Four representative locations along the Clinch River, from the White Oak Creek Embayment to the city of Kingston, were chosen. The demography of the lower Clinch River supplied information dealing with land use that aided in the determination of sites on which to focus efforts. The locations that proved to be the most significant included Jones Island at Clinch River Mile (CRM) 20.5, Grassy Creek and K-25 (CRM 14), Kingston Steam Plant (CRM 3.5), and the city of Kingston (CRM 0). These areas of interest have historically been and are still primarily agricultural and residential areas. Reference individuals were determined with respect to the pathways involved. The primary radionuclides of interest released from the X-10 facility into the Clinch River via White Oak Creek were identified in the initial screening analysis as 137 Cs, 90 Sr, 60 Co, 106 Ru, 144 Ce, 131 I, 95 Zr, and 95 Nb. Of these radionuclides, 137 Cs, 60 Co, 106 Ru, 90 Sr, 144 Ce, 95 Zr, and 95 Nb were evaluated for their contribution to the external exposure pathway. This study utilized an object-oriented modeling software package that provides an alternative to the spreadsheet, providing graphical influence diagrams to show qualitative structure of models, hierarchical models to organize complicated models into manageable modules, and intelligent arrays with the power to scale up simple models to handle large problems. The doses and risks estimated in this study are not significant enough to cause a detectable increase in health effects in the population. In most cases, the organ does are well below the limits of epidemiological

  4. Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Efforts, US Geological Survey Report, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M. Brady; Connolly, Patrick J.; Jezorek, Ian G. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

    2006-06-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attended to three main objectives of the Rattlesnake Creek project. The first objective was to characterize stream and riparian habitat conditions. This effort included measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective was to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the fourth year of a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  5. Instream Flows Incremental Methodology :Kootenai River, Montana : Final Report 1990-2000.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Greg; Skaar, Don; Dalbey, Steve (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2002-11-01

    Regulated rivers such as the Kootenai River below Libby Dam often exhibit hydrographs and water fluctuation levels that are atypical when compared to non-regulated rivers. These flow regimes are often different conditions than those which native fish species evolved with, and can be important limiting factors in some systems. Fluctuating discharge levels can change the quantity and quality of aquatic habitat for fish. The instream flow incremental methodology (IFIM) is a tool that can help water managers evaluate different discharges in terms of their effects on available habitat for a particular fish species. The U.S. Fish and Wildlife Service developed the IFIM (Bovee 1982) to quantify changes in aquatic habitat with changes in instream flow (Waite and Barnhart 1992; Baldridge and Amos 1981; Gore and Judy 1981; Irvine et al. 1987). IFIM modeling uses hydraulic computer models to relate changes in discharge to changes in the physical parameters such as water depth, current velocity and substrate particle size, within the aquatic environment. Habitat utilization curves are developed to describe the physical habitat most needed, preferred or tolerated for a selected species at various life stages (Bovee and Cochnauer 1977; Raleigh et al. 1984). Through the use of physical habitat simulation computer models, hydraulic and physical variables are simulated for differing flows, and the amount of usable habitat is predicted for the selected species and life stages. The Kootenai River IFIM project was first initiated in 1990, with the collection of habitat utilization and physical hydraulic data through 1996. The physical habitat simulation computer modeling was completed from 1996 through 2000 with the assistance from Thomas Payne and Associates. This report summarizes the results of these efforts.

  6. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; Annual Progress Report, April 2007 - March 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Mallette, Christine [Oregon Department of Fish and Wildlife

    2009-07-28

    We report on our progress from April 2007 through March 2008 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), Columbia River Inter-Tribal Fish Commission (CRITFC; Report C), and Montana State University (MSU; Report D). This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

  7. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam of...

  8. Estimation of total Effort and Effort Elapsed in Each Step of Software Development Using Optimal Bayesian Belief Network

    Directory of Open Access Journals (Sweden)

    Fatemeh Zare Baghiabad

    2017-09-01

    Full Text Available Accuracy in estimating the needed effort for software development caused software effort estimation to be a challenging issue. Beside estimation of total effort, determining the effort elapsed in each software development step is very important because any mistakes in enterprise resource planning can lead to project failure. In this paper, a Bayesian belief network was proposed based on effective components and software development process. In this model, the feedback loops are considered between development steps provided that the return rates are different for each project. Different return rates help us determine the percentages of the elapsed effort in each software development step, distinctively. Moreover, the error measurement resulted from optimized effort estimation and the optimal coefficients to modify the model are sought. The results of the comparison between the proposed model and other models showed that the model has the capability to highly accurately estimate the total effort (with the marginal error of about 0.114 and to estimate the effort elapsed in each software development step.

  9. Landuse Types within Channel Corridor and River Channel Morphology of River Ona, Ibadan, Nigeria

    Directory of Open Access Journals (Sweden)

    Olutoyin Fashae

    2017-12-01

    Full Text Available The importance of river a corridor warrants a well thought out and balanced management approach because it helps in improving or maintaining water quality, protecting wetlands, etc. Hence, this study seeks to identify major landuse types within the River Ona Corridor; examine the impact of these landuse types within the River Ona corridor on its channel morphology and understand the risk being posed by these landuse types. The study is designed by selecting two reaches of six times the average width from each of the four major landuse types that exist along the river corridor. This study revealed that along the downstream section of Eleyele Dam of River Ona, natural forest stabilizes river channel banks, thereby presenting a narrow and shallow width and depth respectively but the widest of all is found at the agricultural zones.

  10. History of river regulation of the Noce River (NE Italy) and related bio-morphodynamic responses

    Science.gov (United States)

    Serlet, Alyssa; Scorpio, Vittoria; Mastronunzio, Marco; Proto, Matteo; Zen, Simone; Zolezzi, Guido; Bertoldi, Walter; Comiti, Francesco; Prà, Elena Dai; Surian, Nicola; Gurnell, Angela

    2016-04-01

    The Noce River is a hydropower-regulated Alpine stream in Northern-East Italy and a major tributary of the Adige River, the second longest Italian river. The objective of the research is to investigate the response of the lower course of the Noce to two main stages of hydromorphological regulation; channelization/ diversion and, one century later, hydropower regulation. This research uses a historical reconstruction to link the geomorphic response with natural and human-induced factors by identifying morphological and vegetation features from historical maps and airborne photogrammetry and implementing a quantitative analysis of the river response to channelization and flow / sediment supply regulation related to hydropower development. A descriptive overview is presented. The concept of evolutionary trajectory is integrated with predictions from morphodynamic theories for river bars that allow increased insight to investigate the river response to a complex sequence of regulatory events such as development of bars, islands and riparian vegetation. Until the mid-19th century the river had a multi-thread channel pattern. Thereafter (1852) the river was straightened and diverted. Upstream of Mezzolombardo village the river was constrained between embankments of approximately 100 m width while downstream they are of approximately 50 m width. Since channelization some interesting geomorphic changes have appeared in the river e.g. the appearance of alternate bars in the channel. In 1926 there was a breach in the right bank of the downstream part that resulted in a multi-thread river reach which can be viewed as a recovery to the earlier multi-thread pattern. After the 1950's the flow and sediment supply became strongly regulated by hydropower development. The analysis of aerial images reveals that the multi-thread reach became progressively stabilized by vegetation development over the bars, though signs of some dynamics can still be recognizable today, despite the

  11. Molybdenum, vanadium, and uranium weathering in small mountainous rivers and rivers draining high-standing islands

    Science.gov (United States)

    Gardner, Christopher B.; Carey, Anne E.; Lyons, W. Berry; Goldsmith, Steven T.; McAdams, Brandon C.; Trierweiler, Annette M.

    2017-12-01

    Rivers draining high standing islands (HSIs) and small mountainous rivers (SMRs) are known to have extremely high sediment fluxes, and can also have high chemical weathering yields, which makes them potentially important contributors to the global riverine elemental flux to the ocean. This work reports on the riverine concentrations, ocean flux, and weathering yields of Molybdenum (Mo), Vanadium (V), and Uranium (U) in a large number of small but geochemically important rivers using 338 river samples from ten lithologically-diverse regions. These redox-sensitive elements are used extensively to infer paleo-redox conditions in the ocean, and Mo and V are also important rock-derived micronutrients used by microorganisms in nitrogen fixation. Unlike in large river systems, in which dissolved Mo has been attributed predominately to pyrite dissolution, Mo concentrations in these rivers did not correlate with sulfate concentrations. V was found to correlate strongly with Si in terrains dominated by silicate rocks, but this trend was not observed in primarily sedimentary regions. Many rivers exhibited much higher V/Si ratios than larger rivers, and rivers draining young Quaternary volcanic rocks in Nicaragua had much higher dissolved V concentrations (mean = 1306 nM) than previously-studied rivers. U concentrations were generally well below the global average with the exception of rivers draining primarily sedimentary lithologies containing carbonates and shales. Fluxes of U and Mo from igneous terrains of intermediate composition are lower than the global average, while fluxes of V from these regions are higher, and up to two orders of magnitude higher in the Nicaragua rivers. Weathering yields of Mo and V in most regions are above the global mean, despite lower than average concentrations measured in some of those systems, indicating that the chemical weathering of these elements are higher in these SMR watersheds than larger drainages. In regions of active boundaries

  12. Water-quality conditions and suspended-sediment transport in the Wilson and Trask Rivers, northwestern Oregon, water years 2012–14

    Science.gov (United States)

    Sobieszczyk, Steven; Bragg, Heather M.; Uhrich, Mark A.

    2015-07-28

    In October 2011, the U.S. Geological Survey began investigating and monitoring water-quality conditions and suspended-sediment transport in the Wilson and Trask Rivers, northwestern Oregon. Water temperature, specific conductance, turbidity, and dissolved oxygen were measured every 15–30 minutes in both streams using real-time instream water-quality monitors. In conjunction with the monitoring effort, suspended-sediment samples were collected and analyzed to model the amount of suspended sediment being transported by each river. Over the course of the 3-year study, which ended in September 2014, nearly 600,000 tons (t) of suspended-sediment material entered Tillamook Bay from these two tributaries. 

  13. Return to the river: strategies for salmon restoration in the Columbia River Basin.

    Science.gov (United States)

    Richard N. Williams; Jack A. Standford; James A. Lichatowich; William J. Liss; Charles C. Coutant; Willis E. McConnaha; Richard R. Whitney; Phillip R. Mundy; Peter A. Bisson; Madison S. Powell

    2006-01-01

    The Columbia River today is a great "organic machine" (White 1995) that dominates the economy of the Pacific Northwest. Even though natural attributes remain—for example, salmon production in Washington State's Hanford Reach, the only unimpounded reach of the mainstem Columbia River—the Columbia and Snake River mainstems are dominated...

  14. Biological surveys on the Savannah River in the vicinity of the Savannah River Plant (1951-1976)

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, R. A.

    1982-04-01

    In 1951, the Academy of Natural Sciences of Philadelphia was contracted by the Savannah River Plant to initiate a long-term monitoring program in the Savannah River. The purpose of this program was to determine the effect of the Savannah River Plant on the Savannah River aquatic ecosystem. The data from this monitoring program have been computerized by the Savannah River Laboratory, and are summarized in this report. During the period from 1951-1976, 16 major surveys were conducted by the Academy in the Savannah River. Water chemistry analyses were made, and all major biological communities were sampled qualitatively during the spring and fall of each survey year. In addition, quantitative diatom data have been collected quarterly since 1953. Major changes in the Savannah River basin, in the Savannah River Plant's activities, and in the Academy sampling patterns are discussed to provide a historical overview of the biomonitoring program. Appendices include a complete taxonomic listing of species collected from the Savannah River, and summaries of the entire biological and physicochemical data base.

  15. Proximate and Ultimate Limiting Nutrients in the Mississippi River Plume: Implications for Hypoxia Reduction Through Nutrient Management

    Science.gov (United States)

    Fennel, K.; Laurent, A.

    2016-02-01

    A large hypoxic area (15,000 km2 on average) forms every summer over the Texas-Louisiana shelf in the northern Gulf of Mexico due to decay of organic matter that is primarily derived from nutrient inputs from the Mississippi/Atchafalaya River System. Efforts are underway to reduce the extent of hypoxic conditions through nutrient management in the watershed; for example, an interagency Hypoxia Task Force is developing Action Plans with input from various stakeholders that set out targets for hypoxia reduction. An open question is by how much nutrient loads would have to be decreased in order to produce the desired reductions in hypoxia and when these would be measurable over natural variability. We have performed a large number of multi-year nutrient load reduction scenarios with a regional biogeochemical model for the region. The model is based on the Regional Ocean Modeling System (ROMS), explicitly includes nitrogen (N) and phosphorus (P) species as inorganic nutrients, and has been shown to realistically reproduce the key processes responsible for hypoxia generation. We have quantified the effects of differential reductions in river N and P loads on hypoxic extent. An assessment of the effects of N versus P reductions is important because, thus far, nutrient management efforts have focused on N, yet P is known to limit primary production in spring and early summer. A debate is ongoing as to whether targets for P reductions should be set and whether nutrient reduction efforts should focus solely on P, which results primarily from urban and industrial point sources and is uncoupled from agricultural fertilizer application. Our results strongly indicate that N is the `ultimate' limiting nutrient to primary production determining the areal extent and duration of hypoxic conditions in a cumulative sense, while P is temporarily limiting in spring. Although reductions in river P load would decrease hypoxic extent in early summer, they would have a much smaller effect

  16. River Corridors (Jan 2, 2015)

    Data.gov (United States)

    Vermont Center for Geographic Information — River corridors are delineated to provide for the least erosive meandering and floodplain geometry toward which a river will evolve over time. River corridor maps...

  17. Development of flood-inundation maps for the Mississippi River in Saint Paul, Minnesota

    Science.gov (United States)

    Czuba, Christiana R.; Fallon, James D.; Lewis, Corby R.; Cooper, Diane F.

    2014-01-01

    Digital flood-inundation maps for a 6.3-mile reach of the Mississippi River in Saint Paul, Minnesota, were developed through a multi-agency effort by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and in collaboration with the National Weather Service. The inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the National Weather Service Advanced Hydrologic Prediction Service site at http://water.weather.gov/ahps/inundation.php, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgage at the Mississippi River at Saint Paul (05331000). The National Weather Service forecasted peak-stage information at the streamgage may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the Mississippi River by means of a one-dimensional step-backwater model. The hydraulic model was calibrated using the most recent stage-discharge relation at the Robert Street location (rating curve number 38.0) of the Mississippi River at Saint Paul (streamgage 05331000), as well as an approximate water-surface elevation-discharge relation at the Mississippi River at South Saint Paul (U.S. Army Corps of Engineers streamgage SSPM5). The model also was verified against observed high-water marks from the recent 2011 flood event and the water-surface profile from existing flood insurance studies. The hydraulic model was then used to determine 25 water-surface profiles for flood stages at 1-foot intervals ranging from approximately bankfull stage to greater than the highest recorded stage at streamgage 05331000. The simulated water-surface profiles were then combined with a geographic information system digital elevation model, derived from high-resolution topography

  18. Patterns of Diel Variation in Nitrate Concentrations in the Potomac River

    Science.gov (United States)

    Burns, D. A.; Miller, M. P.; Pellerin, B. A.; Capel, P. D.

    2015-12-01

    The Potomac River is the second largest source of nitrogen to Chesapeake Bay, where reducing nutrient loads has been a focus of efforts to improve estuarine trophic status. Two years of high frequency sensor measurements of nitrate (NO3-) concentrations in the Upper Potomac River at the Little Falls gage were analyzed to quantify seasonal variation in the magnitude and timing of the apparent loss of NO3- from the water column that results from diel-driven processes. In addition to broad seasonal and flow-driven variation in NO3- concentrations, clear diel patterns were evident in the river, especially during low flow conditions that follow stormflow by several days. Diel variation was about 0.01 mg N/L in winter and 0.02 to 0.03 mg N/L in summer with intermediate values during spring and fall. This variation was equivalent to 10% occurred during some summer days. Maximum diel concentrations occurred during mid- to late-morning in most seasons, with the most repeatable patterns in summer and wider variation in timing during fall and winter. Diel NO3- loss diminished loads by about 0.6% in winter and 1.3% in summer, and diel-driven processes were minor compared to estimates of total in-stream NO3- loss that averaged about one-third of the inferred groundwater NO3- contribution to the river network. The magnitude of diel NO3- variation was more strongly related to metrics based on water temperature and discharge than to metrics based on photosynthetically active radiation. Despite the fairly low diminishment of NO3- loads attributable to diel variation, estimates of diel NO3- uptake were fairly high compared to published values from smaller streams and rivers. The diel NO3- patterns observed in the Potomac River are consistent with photosynthesis of periphyton as a principal driver which may be linked to denitrification through the release of labile carbon. The extent to which these diel patterns are related to measures of aquatic metabolism are unknown as is the role

  19. Mental and physical effort affect vigilance differently

    NARCIS (Netherlands)

    Smit, A.S.; Eling, P.A.T.M.; Hopman, M.T.E.; Coenen, A.M.L.

    2005-01-01

    Both physical and mental effort are thought to affect vigilance. Mental effort is known for its vigilance declining effects, but the effects of physical effort are less clear. This study investigated whether these two forms of effort affect the EEG and subjective alertness differently. Participants

  20. Mental and physical effort affect vigilance differently.

    NARCIS (Netherlands)

    Smit, A.S.; Eling, P.A.T.M.; Hopman, M.T.E.; Coenen, A.M.L.

    2005-01-01

    Both physical and mental effort are thought to affect vigilance. Mental effort is known for its vigilance declining effects, but the effects of physical effort are less clear. This study investigated whether these two forms of effort affect the EEG and subjective alertness differently. Participants

  1. Benchmarking wide swath altimetry-based river discharge estimation algorithms for the Ganges river system

    Science.gov (United States)

    Bonnema, Matthew G.; Sikder, Safat; Hossain, Faisal; Durand, Michael; Gleason, Colin J.; Bjerklie, David M.

    2016-04-01

    The objective of this study is to compare the effectiveness of three algorithms that estimate discharge from remotely sensed observables (river width, water surface height, and water surface slope) in anticipation of the forthcoming NASA/CNES Surface Water and Ocean Topography (SWOT) mission. SWOT promises to provide these measurements simultaneously, and the river discharge algorithms included here are designed to work with these data. Two algorithms were built around Manning's equation, the Metropolis Manning (MetroMan) method, and the Mean Flow and Geomorphology (MFG) method, and one approach uses hydraulic geometry to estimate discharge, the at-many-stations hydraulic geometry (AMHG) method. A well-calibrated and ground-truthed hydrodynamic model of the Ganges river system (HEC-RAS) was used as reference for three rivers from the Ganges River Delta: the main stem of Ganges, the Arial-Khan, and the Mohananda Rivers. The high seasonal variability of these rivers due to the Monsoon presented a unique opportunity to thoroughly assess the discharge algorithms in light of typical monsoon regime rivers. It was found that the MFG method provides the most accurate discharge estimations in most cases, with an average relative root-mean-squared error (RRMSE) across all three reaches of 35.5%. It is followed closely by the Metropolis Manning algorithm, with an average RRMSE of 51.5%. However, the MFG method's reliance on knowledge of prior river discharge limits its application on ungauged rivers. In terms of input data requirement at ungauged regions with no prior records, the Metropolis Manning algorithm provides a more practical alternative over a region that is lacking in historical observations as the algorithm requires less ancillary data. The AMHG algorithm, while requiring the least prior river data, provided the least accurate discharge measurements with an average wet and dry season RRMSE of 79.8% and 119.1%, respectively, across all rivers studied. This poor

  2. Towards Biological Restoration of Tehran Megalopolis River Valleys- Case Study: Farahzad River

    Science.gov (United States)

    Samadi, Nafishe; Oveis Torabi, Seyed; Akhani, Hossein

    2017-04-01

    Towards biological restoration of Tehran megalopolis river-valleys: case study Farahzad river 1Nafiseh Samadi, 2OveisTorabi, 3Hossein Akhani 1Mahsab Shargh Company, Tehran ,Iran, nafiseh19@gmail.com 2 Mahsab Shargh Company, Tehran ,Iran, weg@tna-co.com 3Department of Plant Sciences, Halophytes and C4 Research Laboratory, School of Biology, College of Sciences, University of Tehran, PO Box 14155-6455, Tehran, Iran, akhani@khayam.ut.ac.ir Tehran is located in northcentral parts of Iran on the alluvium of southern Alborz Mountains. Seven rivers originated from the highlands of N Tehran run inside and around the city. Many of these river valleys have been deformed by a variety of urban utilizations such as garden, building, canal, park, autobahn etc. Tehran with more than eight million populations suffered from adverse environmental conditions such as pollution and scarcity of natural habitats for recreational activities. Ecological restoration of altered river valleys of Tehran is one of the priorities of Tehran municipality started as a pilot project in Farahzad river. Intensive disturbance, conversion into various urban utilization, illegal building construction, waste water release into the river, garbage accumulation, artificial park constructions and domination of invasive species have largely altered the river. Parts of the river located in Pardisan Nature Park was studied before its complete deformation into a modern park. The riparian vegetation consisted of Tamarix ramosissima and Salix acmophylla shrubs with large number of aquatic and palustric plants. The norther parts of the river still contain semi-natural vegetation which change into patchy and intensive degraded habitats towards its southern parts. In northern parts of valley there are old gardens of Morus alba and Juglans regia, and planted trees such as Plataneus oreientalis and Acer negundo. Salix acmophylla, Fraxinus excelsior and Celtis caucasica are native species growing on river margin or

  3. Low-effort thought promotes political conservatism.

    Science.gov (United States)

    Eidelman, Scott; Crandall, Christian S; Goodman, Jeffrey A; Blanchar, John C

    2012-06-01

    The authors test the hypothesis that low-effort thought promotes political conservatism. In Study 1, alcohol intoxication was measured among bar patrons; as blood alcohol level increased, so did political conservatism (controlling for sex, education, and political identification). In Study 2, participants under cognitive load reported more conservative attitudes than their no-load counterparts. In Study 3, time pressure increased participants' endorsement of conservative terms. In Study 4, participants considering political terms in a cursory manner endorsed conservative terms more than those asked to cogitate; an indicator of effortful thought (recognition memory) partially mediated the relationship between processing effort and conservatism. Together these data suggest that political conservatism may be a process consequence of low-effort thought; when effortful, deliberate thought is disengaged, endorsement of conservative ideology increases.

  4. Global relationships in river hydromorphology

    Science.gov (United States)

    Pavelsky, T.; Lion, C.; Allen, G. H.; Durand, M. T.; Schumann, G.; Beighley, E.; Yang, X.

    2017-12-01

    Since the widespread adoption of digital elevation models (DEMs) in the 1980s, most global and continental-scale analysis of river flow characteristics has been focused on measurements derived from DEMs such as drainage area, elevation, and slope. These variables (especially drainage area) have been related to other quantities of interest such as river width, depth, and velocity via empirical relationships that often take the form of power laws. More recently, a number of groups have developed more direct measurements of river location and some aspects of planform geometry from optical satellite imagery on regional, continental, and global scales. However, these satellite-derived datasets often lack many of the qualities that make DEM=derived datasets attractive, including robust network topology. Here, we present analysis of a dataset that combines the Global River Widths from Landsat (GRWL) database of river location, width, and braiding index with a river database extracted from the Shuttle Radar Topography Mission DEM and the HydroSHEDS dataset. Using these combined tools, we present a dataset that includes measurements of river width, slope, braiding index, upstream drainage area, and other variables. The dataset is available everywhere that both datasets are available, which includes all continental areas south of 60N with rivers sufficiently large to be observed with Landsat imagery. We use the dataset to examine patterns and frequencies of river form across continental and global scales as well as global relationships among variables including width, slope, and drainage area. The results demonstrate the complex relationships among different dimensions of river hydromorphology at the global scale.

  5. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

    1981-11-17

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  6. Goal striving strategies and effort mobilization: When implementation intentions reduce effort-related cardiac activity during task performance.

    Science.gov (United States)

    Freydefont, Laure; Gollwitzer, Peter M; Oettingen, Gabriele

    2016-09-01

    Two experiments investigate the influence of goal and implementation intentions on effort mobilization during task performance. Although numerous studies have demonstrated the beneficial effects of setting goals and making plans on performance, the effects of goals and plans on effort-related cardiac activity and especially the cardiac preejection period (PEP) during goal striving have not yet been addressed. According to the Motivational Intensity Theory, participants should increase effort mobilization proportionally to task difficulty as long as success is possible and justified. Forming goals and making plans should allow for reduced effort mobilization when participants perform an easy task. However, when the task is difficult, goals and plans should differ in their effect on effort mobilization. Participants who set goals should disengage, whereas participants who made if-then plans should stay in the field showing high effort mobilization during task performance. As expected, using an easy task in Experiment 1, we observed a lower cardiac PEP in both the implementation intention and the goal intention condition than in the control condition. In Experiment 2, we varied task difficulty and demonstrated that while participants with a mere goal intention disengaged from difficult tasks, participants with an implementation intention increased effort mobilization proportionally with task difficulty. These findings demonstrate the influence of goal striving strategies (i.e., mere goals vs. if-then plans) on effort mobilization during task performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Assessing impact of urbanization on river water quality in the Pearl River Delta Economic Zone, China.

    Science.gov (United States)

    Ouyang, Tingping; Zhu, Zhaoyu; Kuang, Yaoqiu

    2006-09-01

    The Pearl River Delta Economic Zone is one of the most developed regions in China. It has been undergoing a rapid urbanization since the reformation and opening of China in 1978. This process plays a significant impact on the urban environment, particularly river water quality. The main goal of this present study is to assess the impact of urban activities especially urbanization on river water quality for the study area. Some Landsat TM images from 2000 were used to map the areas for different pollution levels of urban river sections for the study area. In addition, an improved equalized synthetic pollution index method was utilized to assess the field analytical results. The results indicate that there is a positive correlation between the rapidity of urbanization and the pollution levels of urban river water. Compared to the rural river water, urban river water was polluted more seriously. During the urban development process, urbanization and urban activities had a significant negative impact on the river water quality.

  8. Design of a naturalized flow regime—An example from the Lower Missouri River, USA

    Science.gov (United States)

    Jacobson, Robert B.; Galat, David L.

    2008-01-01

    into a collaborative management exercise. Although the 2005 collaborative effort failed to reach a consensus among stakeholders on a naturalized flow regime, the process was successful in pilot-testing a design approach; it helped focus scienctific efforts on key knowledge gaps; and it demonstrated the potential for collaborations among scientists, stakeholders, and managers in river management decision making.

  9. Water temperature profiles for reaches of the Raging River during summer baseflow, King County, western Washington, July 2015

    Science.gov (United States)

    Gendaszek, Andrew S.; Opatz, Chad C.

    2016-03-22

    Re-introducing wood into rivers where it was historically removed is one approach to improving habitat conditions in rivers of the Pacific Northwest. The Raging River drainage basin, which flows into the Snoqualmie River at Fall City, western Washington, was largely logged during the 20th century and wood was removed from its channel. To improve habitat conditions for several species of anadromous salmonids that spawn and rear in the Raging River, King County Department of Transportation placed untethered log jams in a 250-meter reach where wood was historically removed. The U.S. Geological Survey measured longitudinal profiles of near-streambed temperature during summer baseflow along 1,026 meters of channel upstream, downstream, and within the area of wood placements. These measurements were part of an effort by King County to monitor the geomorphic and biological responses to these wood placements. Near-streambed temperatures averaged over about 1-meter intervals were measured with a fiber‑optic distributed temperature sensor every 30 minutes for 7 days between July 7 and 13, 2015. Vertical temperature profiles were measured coincident with the longitudinal temperature profile at four locations at 0 centimeters (cm) (at the streambed), and 35 and 70 cm beneath the streambed to document thermal dynamics of the hyporheic zone and surface water in the study reach.

  10. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam: Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1997-1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L. (Oregon Department of Fish and Wildlife, Portland, OR)

    1999-02-01

    The authors report on their progress from April 1997 through March 1998 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), National Marine Fisheries Service (NMFS; Report D), U.S. Fish and Wildlife Service (USFWS; Report E), and Columbia River Inter-Tribal Fish Commission (CRITFC; Report F). This is a multi-year study with many objectives requiring more than one year to complete. Therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of the work from April 1997 through March 1998 listed.

  11. On geo-basis of river regulation——A case study for the middle reaches of the Yangtze River

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    From the point of view that people have to obey the river’s geo-attributes in the river regulation, the definition and the meaning of the geo-attributes of a river are discussed. The geo-basis of the river regulation of the middle reaches of the Yangtze River is expounded in five aspects, including the structural geomorphology environment of flood storage and discharge, the distribution characteristics of subsidence and the sedimentation areas of Dongting Basin, the history evolution of Jianghan Basin, the function of Jianghan Basin and Dongting Basin as the flood water detention areas of Jingjiang River reach in ancient time, and the geological characteristic of Jingjiang River reach. Based on the geo-attributes of the middle reaches of the Yangtze River, some ideas about the middle reach regulation of the Yangtze River are put forward: to process the interchange between the lakes and diked marsh areas in Dongting Basin, to canal the new river route as the flood diversion channel of Jingjiang River reach with the paleo river, to recover the function of Jianghan Basin as flood detention area of the middle reaches. And we should take into consideration the geo-environment of the whole Yangtze River in the river regulation of middle reaches.

  12. Climatic control of Mississippi River flood hazard amplified by river engineering

    Science.gov (United States)

    Munoz, Samuel E.; Giosan, Liviu; Therrell, Matthew D.; Remo, Jonathan W. F.; Shen, Zhixiong; Sullivan, Richard M.; Wiman, Charlotte; O’Donnell, Michelle; Donnelly, Jeffrey P.

    2018-04-01

    Over the past century, many of the world’s major rivers have been modified for the purposes of flood mitigation, power generation and commercial navigation. Engineering modifications to the Mississippi River system have altered the river’s sediment levels and channel morphology, but the influence of these modifications on flood hazard is debated. Detecting and attributing changes in river discharge is challenging because instrumental streamflow records are often too short to evaluate the range of natural hydrological variability before the establishment of flood mitigation infrastructure. Here we show that multi-decadal trends of flood hazard on the lower Mississippi River are strongly modulated by dynamical modes of climate variability, particularly the El Niño–Southern Oscillation and the Atlantic Multidecadal Oscillation, but that the artificial channelization (confinement to a straightened channel) has greatly amplified flood magnitudes over the past century. Our results, based on a multi-proxy reconstruction of flood frequency and magnitude spanning the past 500 years, reveal that the magnitude of the 100-year flood (a flood with a 1 per cent chance of being exceeded in any year) has increased by 20 per cent over those five centuries, with about 75 per cent of this increase attributed to river engineering. We conclude that the interaction of human alterations to the Mississippi River system with dynamical modes of climate variability has elevated the current flood hazard to levels that are unprecedented within the past five centuries.

  13. Peace on the River? Social-Ecological Restoration and Large Dam Removal in the Klamath Basin, USA

    Directory of Open Access Journals (Sweden)

    Hannah Gosnell

    2010-06-01

    Full Text Available This paper aims to explain the multiple factors that contributed to a 2010 agreement to remove four large dams along the Klamath river in California and Oregon and initiate a comprehensive social-ecological restoration effort that will benefit Indian tribes, the endangered fish on which they depend, irrigated agriculture, and local economies in the river basin. We suggest that the legal framework, including the tribal trust responsibility, the Endangered Species Act, and the Federal Power Act, combined with an innovative approach to negotiation that allowed for collaboration and compromise, created a space for divergent interests to come together and forge a legally and politically viable solution to a suite of social and environmental problems. Improved social relations between formerly antagonistic Indian tribes and non-tribal farmers and ranchers, which came about due to a number of local collaborative processes during the early 2000s, were critical to the success of this effort. Overall, we suggest that recent events in the Klamath basin are indicative of a significant power shift taking place between tribal and non-tribal interests as tribes gain access to decision-making processes regarding tribal trust resources and develop capacity to participate in the development of complex restoration strategies.

  14. Integration of CERCLA and RCRA requirements at the Radioactive Waste Burial Grounds, Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Hoffman, W.D.; Wyatt, D.E.

    1992-01-01

    The purpose of this paper to is present the comprehensive approach being taken at the Savannah River Site (SRS) to consolidate regulatory documents, characterization and assessment activities for 3 contiguous waste management facilities. These facilities cover 7.12 x 10 5 m 2 (194 acres) and include an Old Radioactive Waste Burial Ground, a Low Level Radioactive Waste Disposal Facility, and a closed Mixed Waste Management Facility. Each of these facilities include one or more operable units including solvent tanks, transuranic waste storage pads, research lysimeters and experimental confinement disposal vaults. All of these facilities have differing submittal dates for regulatory documents but similar and continuous environmental problems. The characterization and risk assessment require simultaneous efforts for all facilities to adequately define the nature and extent of past, present and future environmental impact. Current data indicates that contaminant plumes in both soil and water are comingled, interspersed and possibly exist internally within the contiguous facilities, requiring a combined investigative effort. This paper describes the combination of regulatory documents leading to this comprehensive and integrative approach for burial ground characterization at the Savannah River Site

  15. Effort, anhedonia, and function in schizophrenia: reduced effort allocation predicts amotivation and functional impairment.

    Science.gov (United States)

    Barch, Deanna M; Treadway, Michael T; Schoen, Nathan

    2014-05-01

    One of the most debilitating aspects of schizophrenia is an apparent interest in or ability to exert effort for rewards. Such "negative symptoms" may prevent individuals from obtaining potentially beneficial outcomes in educational, occupational, or social domains. In animal models, dopamine abnormalities decrease willingness to work for rewards, implicating dopamine (DA) function as a candidate substrate for negative symptoms given that schizophrenia involves dysregulation of the dopamine system. We used the effort-expenditure for rewards task (EEfRT) to assess the degree to which individuals with schizophrenia were wiling to exert increased effort for either larger magnitude rewards or for rewards that were more probable. Fifty-nine individuals with schizophrenia and 39 demographically similar controls performed the EEfRT task, which involves making choices between "easy" and "hard" tasks to earn potential rewards. Individuals with schizophrenia showed less of an increase in effort allocation as either reward magnitude or probability increased. In controls, the frequency of choosing the hard task in high reward magnitude and probability conditions was negatively correlated with depression severity and anhedonia. In schizophrenia, fewer hard task choices were associated with more severe negative symptoms and worse community and work function as assessed by a caretaker. Consistent with patterns of disrupted dopamine functioning observed in animal models of schizophrenia, these results suggest that 1 mechanism contributing to impaired function and motivational drive in schizophrenia may be a reduced allocation of greater effort for higher magnitude or higher probability rewards.

  16. Shutdown of the River Water System at the Savannah River Site: Draft environmental impact statement

    International Nuclear Information System (INIS)

    1996-11-01

    This environmental impact statement (EIS) evaluates alternative approaches to and environmental impacts of shutting down the River Water System at the Savannah River Site (SRS). Five production reactors were operated at the site.to support these facilities, the River Water System was constructed to provide cooling water to pass through heat exchangers to absorb heat from the reactor core in each of the five reactor areas (C, K, L, P, and R). The DOE Savannah River Strategic Plan directs the SRS to find ways to reduce operating costs and to determine what site infrastructure it must maintain and what infrastructure is surplus. The River Water System has been identified as a potential surplus facility. Three alternatives to reduce the River Water System operating costs are evaluated in this EIS. In addition to the No-Action Alternative, which consists of continuing to operate the River Water System, this EIS examines one alternative (the Preferred Alternative) to shut down and maintain the River Water System in a standby condition until DOE determines that a standby condition is no longer necessary, and one alternative to shut down and deactivate the River Water System. The document provides background information and introduces the River Water System at the SRS; sets forth the purpose and need for DOE action; describes the alternatives DOE is considering; describes the environment at the SRS and in the surrounding area potentially affected by the alternatives addressed and provides a detailed assessment of the potential environmental impacts of the alternatives; and identifies regulatory requirements and evaluates their applicability to the alternatives considered

  17. Remote-Sensing Hydraulic Characterization of Channel Habitat Units in a Tropical Montane River: Bladen River, Belize

    Directory of Open Access Journals (Sweden)

    Sarah Praskievicz

    2017-12-01

    Full Text Available The physical characteristics of river systems exert significant control on the habitat for aquatic species, including the distribution of in-stream channel habitat units. Most previous studies on channel habitat units have focused on midlatitude rivers, which differ in several substantive ways from tropical rivers. Field delineation of channel habitat units is especially challenging in tropical rivers, many of which are remote and difficult to access. Here, we developed an approach for delineating channel habitat units based on a combination of field measurements, remote sensing, and hydraulic modeling, and applied it to a 4.1-km segment of the Bladen River in southern Belize. We found that the most prevalent channel habitat unit on the study segment was runs, followed by pools and riffles. Average spacing of channel habitat units was up to twice as high on the study segment than the typical values reported for midlatitude rivers, possibly because of high erosion rates in the tropical environment. The approach developed here can be applied to other rivers to build understanding of the controls on and spatial distribution of channel habitat units on tropical rivers and to support river management and conservation goals.

  18. Phenomena and characteristics of barrier river reaches in the middle and lower Yangtze River, China

    Science.gov (United States)

    You, Xingying; Tang, Jinwu

    2017-06-01

    Alluvial river self-adjustment describes the mechanism whereby a river that was originally in an equilibrium state of sediment transport encounters some disturbance that destroys the balance and results in responses such as riverbed deformation. A systematic study of historical and recent aerial photographs and topographic maps in the Middle and Lower Reaches of the Yangtze River (MLYR) shows that river self-adjustment has the distinguishing feature of transferring from upstream to downstream, which may affect flood safety, waterway morphology, bank stability, and aquatic environmental safety over relatively long reaches downstream. As a result, it is necessary to take measures to control or block this transfer. Using the relationship of the occurrence time of channel adjustments between the upstream and downstream, 34 single-thread river reaches in the MLYR were classified into four types: corresponding, basically corresponding, basically not corresponding, not corresponding. The latter two types, because of their ability to prevent upstream channel adjustment from transferring downstream, are called barrier river reaches in this study. Statistics indicate that barrier river reaches are generally single thread and slightly curved, with a narrow and deep cross-sectional morphology, and without flow deflecting nodes in the upper and middle parts of reaches. Moreover, in the MLYR, barrier river reaches have a hydrogeometric coefficient of {}1.2‱, a silty clay content of the concave bank {>}{9.5}%, and a median diameter of the bed sediment {>}{0.158} mm. The barrier river reach mechanism lies in that can effectively centralise the planimetric position of the main stream from different upstream directions, meaning that no matter how the upper channel adjusts, the main stream shows little change, providing relatively stable inflow conditions for the lower reaches. Regarding river regulation, it is necessary to optimise the benefits of barrier river reaches; long river

  19. Bank Erosion, Mass Wasting, Water Clarity, Bathymetry and a Sediment Budget Along the Dam-Regulated Lower Roanoke River, North Carolina

    Science.gov (United States)

    Schenk, Edward R.; Hupp, Cliff R.; Richter, Jean M.; Kroes, Daniel E.

    2010-01-01

    Dam construction and its impact on downstream fluvial processes may substantially alter ambient bank stability, floodplain inundation patterns, and channel morphology. Most of the world's largest rivers have been dammed, which has prompted management efforts to mitigate dam effects. Three high dams (completed between 1953 and 1963) occur along the Piedmont portion of the Roanoke River, North Carolina; just downstream, the lower part of the river flows across largely unconsolidated Coastal Plain deposits. To document bank erosion rates along the lower Roanoke River, more than 700 bank erosion pins were installed along 124 bank transects. Additionally, discrete measurements of channel bathymetry, water clarity, and presence or absence of mass wasting were documented along the entire 153-kilometer-long study reach. Amounts of bank erosion in combination with prior estimates of floodplain deposition were used to develop a bank erosion and floodplain deposition sediment budget for the lower river. Present bank erosion rates are relatively high [mean 42 milimeters per year (mm/yr)] and are greatest along the middle reaches (mean 60 mm/yr) and on lower parts of the bank on all reaches. Erosion rates were likely higher along upstream reaches than present erosion rates such that erosion rate maxima have migrated downstream. Mass wasting and water clarity also peak along the middle reaches.

  20. Bank storage buffers rivers from saline regional groundwater: an example from the Avon River Australia

    Science.gov (United States)

    Gilfedder, Benjamin; Hofmann, Harald; Cartwrighta, Ian

    2014-05-01

    Groundwater-surface water interactions are often conceptually and numerically modeled as a two component system: a groundwater system connected to a stream, river or lake. However, transient storage zones such as hyporheic exchange, bank storage, parafluvial flow and flood plain storage complicate the two component model by delaying the release of flood water from the catchment. Bank storage occurs when high river levels associated with flood water reverses the hydraulic gradient between surface water and groundwater. River water flows into the riparian zone, where it is stored until the flood water recede. The water held in the banks then drains back into the river over time scales ranging from days to months as the hydraulic gradient returns to pre-flood levels. If the frequency and amplitude of flood events is high enough, water held in bank storage can potentially perpetually remain between the regional groundwater system and the river. In this work we focus on the role of bank storage in buffering river salinity levels against saline regional groundwater on lowland sections of the Avon River, Victoria, Australia. We hypothesize that the frequency and magnitude of floods will strongly influence the salinity of the stream water as banks fill and drain. A bore transect (5 bores) was installed perpendicular to the river and were instrumented with head and electrical conductivity loggers measuring for two years. We also installed a continuous 222Rn system in one bore. This data was augmented with long-term monthly EC from the river. During high rainfall events very fresh flood waters from the headwaters infiltrated into the gravel river banks leading to a dilution in EC and 222Rn in the bores. Following the events the fresh water drained back into the river as head gradients reversed. However the bank water salinities remained ~10x lower than regional groundwater levels during most of the time series, and only slightly above river water. During 2012 SE Australia

  1. The investigation of sediment processes in rivers by means of the Acoustic Doppler Profiler

    Directory of Open Access Journals (Sweden)

    M. Guerrero

    2014-09-01

    Full Text Available The measurement of sediment processes at the scale of a river cross-section is desirable for the evaluation of many issues related to river hydro-morphodynamics, such as the calibration and validation of numerical models for predicting the climate change impacts on water resources and efforts of maintenance of the navigation channel and other hydraulic works. Suspended- and bed-load have traditionally been measured by cumbersome techniques that are difficult to apply in large rivers. The acoustics for the investigation of small-scale sedimentological processes gained acceptance in the marine community because of its ability to simultaneously profile sediment concentration and size distribution, non-intrusively, and with high temporal and spatial resolution. The application of these methods in true riverine case studies presents additional difficulties, mainly related to water depths and stream currents that limit sound propagation into water and challenge the instruments deployment, especially during floods. This article introduces the motivations for using the ADCP for sediment processes investigation other than for flow discharge measurement, summarizes the developed methods and indicates future desirable improvements. In addition, an application on the Po River in Italy is presented, focusing on the calibration of the existing software by means of ADCP recordings. The calibrated model will assist in planning the dredging activities to maintain the navigation channel and the intake of a pump station for irrigation that is periodically obstructed with a sandbar.

  2. Restoration strategies for river floodplains along large lowland rivers in Europe

    NARCIS (Netherlands)

    Buijse, A.D.; Coops, H.; Staras, M.; Jans, L.H.; Van Geest, G.J.; Grift, R.E.; Ibelings, B.W.; Oosterberg, W.; Roozen, F.C.J.M.

    2002-01-01

    1. Most temperate rivers are heavily regulated and characterised by incised channels, aggradated floodplains and modified hydroperiods. As a consequence, former extensive aquatic /terrestrial transition zones lack most of their basic ecological functions. 2. Along large rivers in Europe and North

  3. Restoration strategies for river floodplains along large lowland rivers in Europe

    NARCIS (Netherlands)

    Buijse, A.D.; Coops, H.; Staras, M.; Jans, L.H.; Geest, van G.; Grift, R.E.; Ibelings, B.W.; Oosterberg, W.; Roozen, F.C.J.M.

    2002-01-01

    1. Most temperate rivers are heavily regulated and characterised by incised channels, aggradated floodplains and modified hydroperiods. As a consequence, former extensive aquatic/terrestrial transition zones lack most of their basic ecological functions. 2. Along large rivers in Europe and North

  4. Flood-inundation maps for the Wabash River at Lafayette, Indiana

    Science.gov (United States)

    Kim, Moon H.

    2018-05-10

    from light detection and ranging to delineate the area flooded at each water level. The availability of these maps, along with internet information regarding current stage from the USGS streamgage 03335500, Wabash River at Lafayette, Ind., and forecasted high-flow stages from the NWS AHPS, will provide emergency management personnel and residents with information that is critical for flood-response activities such as evacuations and road closures, and for postflood recovery efforts.

  5. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kern, J. Chris; Ward, David L.; Farr, Ruth A. (Oregon Department of Fish and Wildlife)

    2002-02-01

    We report on our progress from April 2000 through March 2001 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), Columbia River Inter-Tribal Fish Commission (CRITFC; Report D), the U.S. Fish and Wildlife Service (USFWS; Report E), and Oregon State University (OSU; Report F). This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of our work from April 2000 through March 2001 are listed.

  6. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam, 1999-2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L. (Oregon Department of Fish and Wildlife, Portland, OR)

    2001-04-01

    We report on our progress from April 1999 through March 2000 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), Columbia River Inter-Tribal Fish Commission (CRITFC; Report D), and the U.S. Fish and Wildlife Service (USFWS; Report E). This is a multi-year study with many objectives requiring more than one year to complete. Therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of our work from April 1999 through March 2000 are given.

  7. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 1998-1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L.

    2000-12-01

    The authors report on their progress from April 1998 through March 1999 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), U.S. Fish and Wildlife Service (USFWS; Report D), Columbia River Inter-Tribal Fish Commission (CRITFC; Report E), and the University of Idaho (UI; Report F). This is a multi-year study with many objectives requiring more than one year to complete. Therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of our work from April 1998 through March 1999 are given.

  8. Kootenai River white sturgeon investigations. Chapter 1: Kootenai River white sturgeon spawning and recruitment evaluation; Annual report, January 1--December 31, 1996

    International Nuclear Information System (INIS)

    Paragamian, V.L.; Kruse, G.; Wakkinen, V.

    1997-09-01

    Test flows for Kootenai River white sturgeon Acipenser transmontanus spawning, scheduled for June 1996, were postponed until July. However, an estimated 126% snow pack and unusually heavy precipitation created conditions for sturgeon spawning that were similar to those occurring before construction of Libby Dam. Discharge in the Kootenai River at Bonners Ferry rose to nearly 1,204 m 3 /s (42,500 cfs) during May and water temperature ranged from 5.8 C to 8.4 C (42 F to 47 F). Migration of adult white sturgeon into spawning areas occurred in late May during a rising hydrograph. Discharge and water temperature were rising and had reached approximately 1,077 m 3 /s (38,000 cfs) and 8 C (46 F). Discharge at Bonners Ferry peaked at about 1,397 m 3 /s (49,300 cfs) on June 5. A total of 348 eggs (and one egg shell) were collected with 106,787 h of mat effort during the flow events. The first white sturgeon eggs were collected on June 8 and continued through June 30. Staging of eggs and back-calculating to spawning dates indicated there were at least 18 spawning episodes between June 6 and June 25. Discharge on June 6 was 1,196 m 3 /s (42,200 cfs) and decreased steadily to 850 m 3 /s (30,000 cfs) by June 26. Although sturgeon spawned in the same reach of river that they had during 1994 and 1995, the majority of eggs were found significantly (P = 0.0001) farther upstream than 1994 and 1995 and this in turn may be related to elevation of Kootenay Lake

  9. Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.

    Science.gov (United States)

    Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram

    2017-08-19

    Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.

  10. Quality-oriented efforts in IPD, - a framework

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup

    1998-01-01

    It is generally expected that modern quality efforts like TQM and ISO9000 should deliver a sufficient framework for quality efforts in industrial companies. Our findings in Danish industry shows a fragmented picture of islands of efforts and a weak understanding of basic quality concepts between...... designers. The paper propose a framework for quality efforts, illustrated by simple metaphors....

  11. Snake River sockeye salmon captive broodstock program hatchery element, Annual Progress Report: January 1, 1998 - December 31, 1998

    International Nuclear Information System (INIS)

    Kline A, Paul; Heindel A, Jeff

    1999-01-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and NMFS initiated efforts to conserve and rebuild populations in Idaho. Captive broodstock program activities conducted between January 1, 1998 and December 31, 1998, are presented in this report

  12. Purus River suspended sediment variability and contributions to the Amazon River from satellite data (2000-2015)

    Science.gov (United States)

    Santos, Andre Luis Martinelli Real dos; Martinez, Jean Michel; Filizola, Naziano Pantoja; Armijos, Elisa; Alves, Luna Gripp Simões

    2018-01-01

    The Purus River is one of the major tributaries of Solimões River in Brazil, draining an area of 370,091 km2 and stretching over 2765 km. Unlike those of the other main tributaries of the Amazon River, the Purus River's sediment discharge is poorly characterized. In this study, as an alternative to the logistic difficulties and considering high monitoring costs, we report an experiment where field measurement data and 2700 satellite (MODIS) images are combined to retrieve both seasonal and interannual dynamics in terms of the Purus river sediment discharge near its confluence with the Solimões River. Field radiometric and hydrologic measurements were acquired during 18 sampling trips, including 115 surface water samples and 61 river discharge measurements. Remote sensing reflectance gave important results in the red and infrared levels. They were very well correlated with suspended sediment concentration. The values of R2 are greater than 0.8 (red band) and 0.9 (NIR band). A retrieval algorithm based on the reflectance in both the red and the infrared was calibrated using the water samples collected for the determination of the surface-suspended sediment concentration (SSS). The algorithm was used to calculate 16 years of SSS time series with MODIS images at the Purus River near its confluence with the Solimões River. Results from satellite data correlated with in situ SSS values validate the use of satellite data to be used as a tool to monitor SSS in the Purus River. We evidenced a very short and intense sediment discharge pulse with 55% of the annual sediment budget discharged during the months of January and February. Using river discharge records, we calculated the mean annual sediment discharge of the Purus River at about of 17 Mt·yr-1.

  13. Learning Environment and Student Effort

    Science.gov (United States)

    Hopland, Arnt O.; Nyhus, Ole Henning

    2016-01-01

    Purpose: The purpose of this paper is to explore the relationship between satisfaction with learning environment and student effort, both in class and with homework assignments. Design/methodology/approach: The authors use data from a nationwide and compulsory survey to analyze the relationship between learning environment and student effort. The…

  14. Lowland river systems - processes, form and function

    DEFF Research Database (Denmark)

    Pedersen, M. L.; Kronvang, B.; Sand-Jensen, K.

    2006-01-01

    Present day river valleys and rivers are not as dynamic and variable as they used to be. We will here describe the development and characteristics of rivers and their valleys and explain the background to the physical changes in river networks and channel forms from spring to the sea. We seek...... to answer two fundamental questions: How has anthropogenic disturbance of rivers changed the fundamental form and physical processes in river valleys? Can we use our understanding of fl uvial patterns to restore the dynamic nature of channelised rivers and drained fl oodplains in river valleys?...

  15. Simulation of the Lower Walker River Basin hydrologic system, west-central Nevada, using PRMS and MODFLOW models

    Science.gov (United States)

    Allander, Kip K.; Niswonger, Richard G.; Jeton, Anne E.

    2014-01-01

    Walker Lake is a terminal lake in west-central Nevada with almost all outflow occurring through evaporation. Diversions from Walker River since the early 1900s have contributed to a substantial reduction in flow entering Walker Lake. As a result, the lake is receding, and salt concentrations have increased to a level in which Oncorhynchus clarkii henshawi (Lahontan Cutthroat trout) are no longer present, and the lake ecosystem is threatened. Consequently, there is a concerted effort to restore the Walker Lake ecosystem and fishery to a level that is more sustainable. However, Walker Lake is interlinked with the lower Walker River and adjacent groundwater system which makes it difficult to understand the full effect of upstream water-management actions on the overall hydrologic system including the lake level, volume, and dissolved-solids concentrations of Walker Lake. To understand the effects of water-management actions on the lower Walker River Basin hydrologic system, a watershed model and groundwater flow model have been developed by the U.S. Geological Survey in cooperation with the Bureau of Reclamation and the National Fish and Wildlife Foundation.

  16. Groundwater Inputs to Rivers: Hydrological, Biogeochemical and Ecological Effects Inferred by Environmental Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Stellato, L. [Centre for Isotopic Research on Cultural and Environmental heritage (CIRCE), Seconda Universita degli Studi di Napoli, Caserta (Italy); Newman, B. D. [Isotope Hydrology Section, International Atomic Energy Agency, Vienna (Austria)

    2013-05-15

    In an effort to improve river management, numerous studies over the past two decades have supported the concept that river water and groundwater need to be considered together, as part of a hydrologic continuum. In particular, studies of the interface between surface water and groundwater (the hyporheic zone) have seen the tight collaboration of catchment hydrologists and stream ecologists in order to elucidate processes affecting stream functioning. Groundwater and surface waters interact at different spatial and temporal scales depending on system hydrology and geomorphology, which in turn influence nutrient cycling and in-stream ecology in relation to climatic, geologic, biotic and anthropogenic factors. In this paper, groundwater inputs to rivers are explored from two different and complementary perspectives: the hydrogeological, describing the generally acknowledged mechanisms of streamflow generation and the main factors controlling stream-aquifer interactions, and the ecologic, describing the processes occurring at the hyporheical and the riparian zones and their possible effects on stream functioning and on nutrient cycling, also taking into consideration the impact of human activities. Groundwater inflows to rivers can be important controls on hot moment/hot spot type biogeochemical behaviors. A description of the common methods used to assess these processes is provided emphasizing tracer methods (including physical, chemical and isotopic). In particular, naturally occurring isotopes are useful tools to identify stream discharge components, biogeochemical processes involved in nutrient cycling (such as N and P dynamics), nutrient sources and transport to rivers, and subsurface storage zones and residence times of hyporheic water. Several studies which have employed isotope techniques to clarify the processes occurring when groundwater enters the river,are reported in this chapter, with a view to highlighting both the advantages and limitations of these

  17. Proximate versus ultimate limiting nutrients in the Mississippi River Plume and Implications for Hypoxia Reductions through Nutrient Management

    Science.gov (United States)

    Fennel, Katja; Laurent, Arnaud

    2016-04-01

    A large hypoxic area (15,000 km2 on average) forms every summer over the Texas-Louisiana shelf in the northern Gulf of Mexico due to decay of organic matter that is primarily derived from nutrient inputs from the Mississippi/Atchafalaya River System. Efforts are underway to reduce the extent of hypoxic conditions through nutrient management in the watershed; for example, an interagency Hypoxia Task Force is developing Action Plans with input from various stakeholders that set out targets for hypoxia reduction. An open question is how far nutrient loads would have to be decreased in order to produce the desired reductions in hypoxia and when these would be measurable given significant natural variability. We have simulated a large number of multi-year nutrient load reduction scenarios with a regional biogeochemical model for the region. The model is based on the Regional Ocean Modeling System (ROMS), explicitly includes nitrogen (N) and phosphorus (P) species as inorganic nutrients, and has been shown to realistically reproduce the key processes responsible for hypoxia generation. We have quantified the effects of differential reductions in river N and P loads on hypoxic extent. An assessment of the effects of N versus P reductions is important because, thus far, nutrient management efforts have focused on N, yet P is known to limit primary production in spring and early summer. A debate is ongoing as to whether targets for P reductions should be set and whether nutrient reduction efforts should focus solely on P, which results primarily from urban and industrial point sources and is uncoupled from agricultural fertilizer application. Our results strongly indicate that N is the 'ultimate' limiting nutrient to primary production determining the areal extent and duration of hypoxic conditions in a cumulative sense, while P is temporarily limiting in spring. Although reductions in river P load would decrease hypoxic extent in early summer, they would have a much

  18. Kootenai River Focus Watershed Coordination, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, Gretchen (Kootenai River Network, Libby, MT)

    2002-07-01

    stream table education--at every opportunity. We continue to seek ideas to guide us as we grow. We want to enlarge that sense of ownership that the river does indeed run through it, and belongs to us all. Through a continued and common effort, we hope to carry forward the good work and the momentum that underscores our intent. We are proud to report our accomplishments of this past year because they reflect our renewed sense of purpose. In alliance with diverse citizen groups, individuals, business, industry and tribal and government water resource management agencies, we strive to continue to protect and restore the beauty and integrity that is the Kootenai River watershed.

  19. Reliability Centered Maintenance for Savannah River Site's interim waste management facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hauer, K.A. (Westinghouse Savannah River Co., Aiken, SC (United States)); Wilson, J.F. (PRC, Inc. (US))

    1992-01-01

    The application of Reliability Centered Maintenance (RCM) has been shown to be an effective means to optimize maintenance programs or to establish new programs. The key to success of any RCM program is to customize the methodology to meet the specific needs of the implementing organization. This paper discusses how RCM is being used to establish the preventive maintenance program and how the resulting system data is being used to support the Technical Baseline reconstitution effort for the interim Waste Management Division of Westinghouse Savannah River Company (WSRC).

  20. Concentrations, loads, and sources of polychlorinated biphenyls, Neponset River and Neponset River Estuary, eastern Massachusetts

    Science.gov (United States)

    Breault, Robert F.

    2011-01-01

    Polychlorinated biphenyls (PCBs) are known to contaminate the Neponset River, which flows through parts of Boston, Massachusetts, and empties into the Neponset River Estuary, an important fish-spawning area. The river is dammed and impassable to fish. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Fish and Game, Division of Ecological Restoration, Riverways Program, collected, analyzed, and interpreted PCB data from bottom-sediment, water, and (or) fish-tissue samples in 2002, 2004-2006. Samples from the Neponset River and Neponset River Estuary were analyzed for 209 PCB congeners, PCB homologs, and Aroclors. In order to better assess the overall health quality of river-bottom sediments, sediment samples were also tested for concentrations of 31 elements. PCB concentrations measured in the top layers of bottom sediment ranged from 28 nanograms per gram (ng/g) just upstream of the Mother Brook confluence to 24,900 ng/g measured in Mother Brook. Concentrations of elements in bottom sediment were generally higher than background concentrations and higher than levels considered toxic to benthic organisms according to freshwater sediment-quality guidelines defined by the U.S. Environmental Protection Agency. Concentrations of dissolved PCBs in water samples collected from the Neponset River (May 13, 2005 to April 28, 2006) averaged about 9.2 nanograms per liter (ng/L) (annual average of monthly values); however, during the months of August (about 16.5 ng/L) and September (about 15.6 ng/L), dissolved PCB concentrations were greater than 14 ng/L, the U.S. Environmental Protection Agency's freshwater continuous chronic criterion for aquatic organisms. Concentrations of PCBs in white sucker (fillets and whole fish) were all greater than 2,000 ng/g wet wt, the U.S. Environmental Protection Agency's guideline for safe consumption of fish: PCB concentrations measured in fish-tissue samples collected from the Tileston and Hollingsworth and

  1. Measuring Paleolandscape Relief in Alluvial River Systems from the Stratigraphic Record

    Science.gov (United States)

    Hajek, E. A.; Trampush, S. M.; Chamberlin, E.; Greenberg, E.

    2017-12-01

    Aggradational alluvial river systems sometimes generate relief in the vicinity of their channel belts (i.e. alluvial ridges) and it has been proposed that this process may define important thresholds in river avulsion. The compensation scale can be used to estimate the maximum relief across a landscape and can be connected to the maximum scale of autogenic organization in experimental and numerical systems. Here we use the compensation scale - measured from outcrops of Upper Cretaceous and Paleogene fluvial deposits - to estimate the maximum relief that characterized ancient fluvial landscapes. In some cases, the compensation scale significantly exceeds the maximum channel depth observed in a deposit, suggesting that aggradational alluvial systems organize to sustain more relief than might be expected by looking only in the immediate vicinity of the active channel belt. Instead, these results indicate that in some systems, positive topographic relief generated by multiple alluvial ridge complexes and/or large-scale fan features may be associated with landscape-scale autogenic organization of channel networks that spans multiple cycles of channel avulsion. We compare channel and floodplain sedimentation patterns among the studied ancient fluvial systems in an effort to determine whether avulsion style, channel migration, or floodplain conditions influenced the maximum autogenic relief of ancient landscapes. Our results emphasize that alluvial channel networks may be organized at much larger spatial and temporal scales than previously realized and provide an avenue for understanding which types of river systems are likely to exhibit the largest range of autogenic dynamics.

  2. Effort-Based Decision-Making in Schizophrenia.

    Science.gov (United States)

    Culbreth, Adam J; Moran, Erin K; Barch, Deanna M

    2018-08-01

    Motivational impairment has long been associated with schizophrenia but the underlying mechanisms are not clearly understood. Recently, a small but growing literature has suggested that aberrant effort-based decision-making may be a potential contributory mechanism for motivational impairments in psychosis. Specifically, multiple reports have consistently demonstrated that individuals with schizophrenia are less willing than healthy controls to expend effort to obtain rewards. Further, this effort-based decision-making deficit has been shown to correlate with severity of negative symptoms and level of functioning, in many but not all studies. In the current review, we summarize this literature and discuss several factors that may underlie aberrant effort-based decision-making in schizophrenia.

  3. Effort Estimation in BPMS Migration

    Directory of Open Access Journals (Sweden)

    Christopher Drews

    2018-04-01

    Full Text Available Usually Business Process Management Systems (BPMS are highly integrated in the IT of organizations and are at the core of their business. Thus, migrating from one BPMS solution to another is not a common task. However, there are forces that are pushing organizations to perform this step, e.g. maintenance costs of legacy BPMS or the need for additional functionality. Before the actual migration, the risk and the effort must be evaluated. This work provides a framework for effort estimation regarding the technical aspects of BPMS migration. The framework provides questions for BPMS comparison and an effort evaluation schema. The applicability of the framework is evaluated based on a simplified BPMS migration scenario.

  4. River-tide dynamics : Exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary

    NARCIS (Netherlands)

    Guo, L.; Van der Wegen, M.; Jay, D.A.; Matte, P.; Wang, Z.B.; Roelvink, J.A.; He, Q.

    2015-01-01

    River-tide dynamics remain poorly understood, in part because conventional harmonic analysis (HA) does not cope effectively with nonstationary signals. To explore nonstationary behavior of river tides and the modulation effects of river discharge, this work analyzes tidal signals in the Yangtze

  5. 77 FR 23658 - Six Rivers National Forest, Gasquet Ranger District, California, The Smith River National...

    Science.gov (United States)

    2012-04-20

    ... National Forest, Gasquet Ranger District, California, The Smith River National Recreation Area [email protected] . Please insure that ``Smith River NRA Restoration and Motorized Travel Management'' occurs... UARs totaling 80 miles. The project encompasses the Smith River NRA and Gasquet Ranger District...

  6. River Diversions and Shoaling

    National Research Council Canada - National Science Library

    Letter, Jr., Joseph V; Pinkard, Jr., C. F; Raphelt, Nolan K

    2008-01-01

    This Coastal and Hydraulics Engineering Technical Note describes the current knowledge of the potential impacts of river diversions on channel morphology, especially induced sedimentation in the river channel...

  7. Lower Red River Meadow Restoration Project : Biennial Report 1996-97.

    Energy Technology Data Exchange (ETDEWEB)

    LRK Communications; Wildlife Habitat Institute; Pocket Water, Inc.

    2003-07-01

    The Red River has been straightened and the riparian vegetation corridor eliminated in several reaches within the watershed. The river responded by incision resulting in over-steepened banks, increased sedimentation, elevated water temperatures, depressed groundwater levels, reduced floodplain function, and degraded fish habitat. The Lower Red River Meadow Restoration Project is a multi-phase ecosystem enhancement effort that restores natural physical and biological processes and functions to stabilize the stream channel and establish high quality habitats for fish and wildlife. A natural channel restoration philosophy guides the design and on the ground activities, allowing the channel to evolve into a state of dynamic equilibrium. Two years of planning, two years of restoration in Phases I and II, and one year post-restoration monitoring are complete. By excavating new bends and reconnecting historic meanders, Phase I and II channel realignment increased channel length by 3,060 feet, decreased channel gradient by 25 percent, and increased sinuosity from 1.7 to 2.3. Cross-sectional shapes and point bars were modified to maintain deep pool habitat at low flow and to reconnect the meadow floodplain. Improved soil moisture conditions will help sustain the 31,500 native riparian plantings reestablished within these two phases. Overall, short-term restoration performance was successful. Analyses of long-term parameters document either post-restoration baseline conditions or early stages of evolution toward desired conditions. An adaptive management strategy has helped to improve restoration designs, methods, and monitoring. Lessons learned are being transferred to a variety of audiences to advance the knowledge of ecological restoration and wise management of watersheds.

  8. Walla Walla River Fish Passage Operations Program, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, James P. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2004-12-01

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2003-2004 project year, there were 379 adult summer steelhead (Oncorhynchus mykiss), 36 adult bull trout (Salvelinus confluentus); 108 adult and 3 jack spring chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 21, 2003, and June 30, 2004. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by the WWBNPME project in order to radio tag spring chinook adults. A total of 2 adult summer steelhead, 4 bull trout, and 23 adult spring chinook were enumerated at the west ladder at Nursery Bridge Dam during the trapping operations between May 6 and May 23, 2004. Operation of the Little Walla Walla

  9. Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary and Their Implications for Managing River Flows and Restoring Estuarine Habitat, Physical Sciences Component, Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Jay, David A. [Portland State University

    2009-08-03

    Long-term changes and fluctuations in river flow, water properties, tides, and sediment transport in the Columbia River and its estuary have had a profound effect on Columbia River salmonids and their habitat. Understanding the river-flow, temperature, tidal, and sediment-supply regimes of the Lower Columbia River (LCR) and how they interact with habitat is, therefore, critical to development of system management and restoration strategies. It is also useful to separate management and climate impacts on hydrologic properties and habitat. This contract, part of a larger project led by the National Oceanic and Atmospheric Administration (NOAA), consists of three work elements, one with five tasks. The first work element relates to reconstruction of historic conditions in a broad sense. The second and third elements consist, respectively, of participation in project-wide integration efforts, and reporting. This report focuses on the five tasks within the historic reconstruction work element. It in part satisfies the reporting requirement, and it forms the basis for our participation in the project integration effort. The first task consists of several topics related to historic changes in river stage and tide. Within this task, the chart datum levels of 14 historic bathymetric surveys completed before definition of Columbia River Datum (CRD) were related to CRD, to enable analysis of these surveys by other project scientists. We have also modeled tidal datums and properties (lower low water or LLW, higher high water or HHW, mean water level or MWL, and greater diurnal tidal range or GDTR) as a function of river flow and tidal range at Astoria. These calculations have been carried for 10 year intervals (1940-date) for 21 stations, though most stations have data for only a few time intervals. Longer-term analyses involve the records at Astoria (1925-date) and Vancouver (1902-date). Water levels for any given river flow have decreased substantially (0.3-1.8 m, depending

  10. Seasonal Variations and Yearly Trend Evaluations of Sedimentation Loads: A Case Study at Chalok River, Terengganu, Malaysia

    Directory of Open Access Journals (Sweden)

    Aida Soraya Shamsuddin

    2014-01-01

    Full Text Available The aims of this study were to determine the relationship between seasonal variations (wet and dry periods on sedimentation loads and to identify the yearly trend of sedimentation loads at Chalok River, Terengganu, Malaysia from 2003 to 2008. It was found that wet and dry periods influenced the transportation of suspended sediment into the river significantly. The highest suspended sediment loads at Chalok River occurred during the wet period when the intensity of rainfall is high. Besides, the rainfall, water level, stream flow and suspended sediment loads also were analysed using Spearman correlation to identify their relationships. The results showed significant positive relationship between suspended sediment loads with rainfall (r = 0.664, p< 0.05, water level (r = 0.923, p< 0.05 and stream flow (r = 0.919, p< 0.05. Multiple linear regressions revealed 63% of high suspended sediment loads at Chalok River can be explained by rainfall, water level and stream flow. The trends of rainfall, water level, stream flow and suspended sediment loads were analysed by using Mann-Kendall trend test where the results showed that there is a significant increasing trend for suspended sediment loads but no significant increase trend for rainfall, water level and stream flow over the studied periods. It is evident that the evaluations conducted in this study are useful in providing better understanding and reliable conclusion on the basis of seasonal variations and other environmental variables that affect the sedimentations loads in the river. Such effort provides holistic information for effective and wise management policy of river basin management in the future.

  11. Bank retreat of a meandering river reach case study : River Irwell

    NARCIS (Netherlands)

    Duran, R.; Beevers, L.; Crosato, A.; Wright, N.G.

    2009-01-01

    Lack of data is often considered a limitation when undertaking morphological studies. This research deals with the morphological study of a small river experiencing bank erosion for which only limited data are available. A reach of the meandering gravel-bed river Irwell (United Kingdom) is taken as

  12. Flood-inundation maps for the East Fork White River at Columbus, Indiana

    Science.gov (United States)

    Lombard, Pamela J.

    2013-01-01

    Digital flood-inundation maps for a 5.4-mile reach of the East Fork White River at Columbus, Indiana, from where the Flatrock and Driftwood Rivers combine to make up East Fork White River to just upstream of the confluence of Clifty Creek with the East Fork White River, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at USGS streamgage 03364000, East Fork White River at Columbus, Indiana. Current conditions at the USGS streamgage may be obtained on the Internet from the USGS National Water Information System (http://waterdata.usgs.gov/in/nwis/uv/?site_no=03364000&agency_cd=USGS&). The National Weather Service (NWS) forecasts flood hydrographs for the East Fork White River at Columbus, Indiana at their Advanced Hydrologic Prediction Service (AHPS) flood warning system Website (http://water.weather.gov/ahps/), that may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at USGS streamgage 03364000, East Fork White River at Columbus, Indiana. The calibrated hydraulic model was then used to determine 15 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data), having a 0.37-ft vertical accuracy and a 1.02 ft

  13. Walla Walla River Fish Passage Operations Program, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Brian C. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR); Duke, Bill B. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2004-02-01

    In the late 1990's, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow measures, and initiating trap and haul efforts. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adult and juvenile salmonids in the basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2000-2001 project year, there were 624 summer steelhead (Oncorhynchus mykiss), 24 bull trout (Salvelinus confluentus), and 47 spring chinook (O. tshawytscha) counted at the Nursery Bridge Dam adult trap between December 27, 2000 and June 7, 2001. The Little Walla Walla River juvenile trap was not operated this year. The project transported 1600 adult spring chinook from Ringold Springs Hatchery to the South Fork Walla Walla Brood Holding Facility and outplanted 1156 for natural spawning in the basin. The project also provided equipment for transportation of juveniles captured during the construction fish salvage at Nursery Bridge Dam.

  14. Water allocation assessment in low flow river under data scarce conditions: a study of hydrological simulation in Mediterranean basin.

    Science.gov (United States)

    Bangash, Rubab F; Passuello, Ana; Hammond, Michael; Schuhmacher, Marta

    2012-12-01

    River Francolí is a small river in Catalonia (northeastern Spain) with an average annual low flow (~2 m(3)/s). The purpose of the River Francolí watershed assessments is to support and inform region-wide planning efforts from the perspective of water protection, climate change and water allocation. In this study, a hydrological model of the Francolí River watershed was developed for use as a tool for watershed planning, water resource assessment, and ultimately, water allocation purposes using hydrological data from 2002 to 2006 inclusive. The modeling package selected for this application is DHI's MIKE BASIN. This model is a strategic scale water resource management simulation model, which includes modeling of both land surface and subsurface hydrological processes. Topographic, land use, hydrological, rainfall, and meteorological data were used to develop the model segmentation and input. Due to the unavailability of required catchment runoff data, the NAM rainfall-runoff model was used to calculate runoff of all the sub-watersheds. The results reveal a potential pressure on the availability of groundwater and surface water in the lower part of River Francolí as was expected by the IPCC for Mediterranean river basins. The study also revealed that due to the complex hydrological regime existing in the study area and data scarcity, a comprehensive physically based method was required to better represent the interaction between groundwater and surface water. The combined ArcGIS/MIKE BASIN models appear as a useful tool to assess the hydrological cycle and to better understand water allocation to different sectors in the Francolí River watershed. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Are two systemic fish assemblage sampling programmes on the upper Mississippi River telling us the same thing?

    Science.gov (United States)

    Dukerschein, J.T.; Bartels, A.D.; Ickes, B.S.; Pearson, M.S.

    2013-01-01

    We applied an Index of Biotic Integrity (IBI) used on Wisconsin/Minnesota waters of the upper Mississippi River (UMR) to compare data from two systemic sampling programmes. Ability to use data from multiple sampling programmes could extend spatial and temporal coverage of river assessment and monitoring efforts. We normalized for effort and tested fish community data collected by the Environmental Monitoring and Assessment Program-Great Rivers Ecosystems (EMAP-GRE) 2004–2006 and the Long Term Resource Monitoring Program (LTRMP) 1993–2006. Each programme used daytime electrofishing along main channel borders but with some methodological and design differences. EMAP-GRE, designed for baseline and, eventually, compliance monitoring, used a probabilistic, continuous design. LTRMP, designed primarily for baseline and trend monitoring, used a stratified random design in five discrete study reaches. Analysis of similarity indicated no significant difference between EMAP-GRE and LTRMP IBI scores (n=238; Global R= 0.052; significance level=0.972). Both datasets distinguished clear differences only between 'Fair' and 'Poor' condition categories, potentially supporting a 'pass–fail' assessment strategy. Thirteen years of LTRMP data demonstrated stable IBI scores through time in four of five reaches sampled. LTRMP and EMAPGRE IBI scores correlated along the UMR's upstream to downstream gradient (df [3, 25]; F=1.61; p=0.22). A decline in IBI scores from upstream to downstream was consistent with UMR fish community studies and a previous, empirically modelled human disturbance gradient. Comparability between EMAP-GRE (best upstream to downstream coverage) and LTRMP data (best coverage over time and across the floodplain) supports a next step of developing and testing a systemic, multi-metric fish index on the UMR that both approaches could inform.

  16. Evaluating the Effects of Dam Construction on the Morphological Changes of Downstream Meandering Rivers (Case Study: Karkheh River

    Directory of Open Access Journals (Sweden)

    A. Liaghat

    2017-04-01

    Full Text Available The establishment of stability in rivers is dependent on a variety of factors, and yet the established stability can be interrupted at any moment or time. One factor that can strongly disrupt the stability of rivers is the construction of dams. For this study, the identification and evaluation of morphological changes occurring to the Karkheh River, before and after the construction of the Karkheh Dam, along with determining the degree of changes to the width and length of the downstream meanders of the river, have been performed with the assistance of satellite images and by applying the CCHE2D hydrodynamic model. Results show that under natural circumstances the width of the riverbed increases downstream parallel to the decrease in the slope angle of the river. The average width of the river was reduced from 273 meters to 60 meters after dam construction. This 78% decrease in river width has made available 21 hectares of land across the river bank per kilometer length of the river. In the studied area, the average thalweg migration of the river is approximately 340 meters, while the minimum and maximum of river migration measured 53 and 768 meters, respectively. Evaluations reveal that nearly 56% of the migrations pertain to the western side of the river, while over 59% of these migrations take place outside the previous riverbed. By average, each year, the lateral migration rate of the river is 34 meters in the studied area which signifies the relevant instability of the region.

  17. Dopamine, behavioral economics, and effort

    Directory of Open Access Journals (Sweden)

    John D Salamone

    2009-09-01

    Full Text Available Abstract. There are numerous problems with the hypothesis that brain dopamine (DA systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders.

  18. What makes a reach movement effortful? Physical effort discounting supports common minimization principles in decision making and motor control.

    Directory of Open Access Journals (Sweden)

    Pierre Morel

    2017-06-01

    Full Text Available When deciding between alternative options, a rational agent chooses on the basis of the desirability of each outcome, including associated costs. As different options typically result in different actions, the effort associated with each action is an essential cost parameter. How do humans discount physical effort when deciding between movements? We used an action-selection task to characterize how subjective effort depends on the parameters of arm transport movements and controlled for potential confounding factors such as delay discounting and performance. First, by repeatedly asking subjects to choose between 2 arm movements of different amplitudes or durations, performed against different levels of force, we identified parameter combinations that subjects experienced as identical in effort (isoeffort curves. Movements with a long duration were judged more effortful than short-duration movements against the same force, while movement amplitudes did not influence effort. Biomechanics of the movements also affected effort, as movements towards the body midline were preferred to movements away from it. Second, by introducing movement repetitions, we further determined that the cost function for choosing between effortful movements had a quadratic relationship with force, while choices were made on the basis of the logarithm of these costs. Our results show that effort-based action selection during reaching cannot easily be explained by metabolic costs. Instead, force-loaded reaches, a widely occurring natural behavior, imposed an effort cost for decision making similar to cost functions in motor control. Our results thereby support the idea that motor control and economic choice are governed by partly overlapping optimization principles.

  19. "I put in effort, therefore I am passionate": Investigating the path from effort to passion in entrepreneurship

    OpenAIRE

    Gielnik, Michael Marcus; Spitzmuller, Matthias; Schmitt, Antje; Klemann, Katharina; Frese, Michael

    2015-01-01

    Most theoretical frameworks in entrepreneurship emphasize that entrepreneurial passion drives entrepreneurial effort. We hypothesize that the reverse effect is also true, and investigate changes in passion as an outcome of effort. Based on theories of self-regulation and self-perception, we hypothesize that making new venture progress and free choice are two factors that help to explain why and under which conditions entrepreneurial effort affects entrepreneurial passion. We undertook two stu...

  20. Floods of July 23-26, 2010, in the Little Maquoketa River and Maquoketa River Basins, Northeast Iowa

    Science.gov (United States)

    Eash, David A.

    2012-01-01

    Minor flooding occurred July 23, 2010, in the Little Maquoketa River Basin and major flooding occurred July 23–26, 2010, in the Maquoketa River Basin in northeast Iowa following severe thunderstorm activity over the region during July 22–24. A breach of the Lake Delhi Dam on July 24 aggravated flooding on the Maquoketa River. Rain gages at Manchester and Strawberry Point, Iowa, recorded 72-hour-rainfall amounts of 7.33 and 12.23 inches, respectively, on July 24. The majority of the rainfall occurred during a 48-hour period. Within the Little Maquoketa River Basin, a peak-discharge estimate of 19,000 cubic feet per second (annual flood-probability estimate of 4 to 10 percent) at the discontinued 05414500 Little Maquoketa River near Durango, Iowa streamgage on July 23 is the sixth largest flood on record. Within the Maquoketa River Basin, peak discharges of 26,600 cubic feet per second (annual flood-probability estimate of 0.2 to 1 percent) at the 05416900 Maquoketa River at Manchester, Iowa streamgage on July 24, and of 25,000 cubic feet per second (annual flood-probability estimate of 1 to 2 percent) at the 05418400 North Fork Maquoketa River near Fulton, Iowa streamgage on July 24 are the largest floods on record for these sites. A peak discharge affected by the Lake Delhi Dam breach on July 24 at the 05418500 Maquoketa River near Maquoketa, Iowa streamgage, located downstream of Lake Delhi, of 46,000 cubic feet per second on July 26 is the third highest on record. High-water marks were measured at five locations along the Little Maquoketa and North Fork Little Maquoketa Rivers between U.S. Highway 52 near Dubuque and County Road Y21 near Rickardsville, a distance of 19 river miles. Highwater marks were measured at 28 locations along the Maquoketa River between U.S. Highway 52 near Green Island and State Highway 187 near Arlington, a distance of 142 river miles. High-water marks were measured at 13 locations along the North Fork Maquoketa River between