Energy Technology Data Exchange (ETDEWEB)
Chun, K. H.; Whang, Y. D.; Yoon, H. Y.; Kim, H. C
2003-07-01
The objective of the present report is to select and develop a turbulence model that will be implemented in TASS-3D code for 3-D heat and fluid analysis on the integral reactor, SMART-P primary coolant system. The turbulence model was selected with the consideration on the economy, accuracy, theorization and applicability for the complex three dimensional flow, natural convection and the high Reynolds number turbulent flow of SMART-P.On the models investigated in this present study, the standard {kappa}-{epsilon} model of high Reynolds model, the {kappa}-{epsilon}-{upsilon}{sup 2} model and ERRSM of low Reynolds model were selected out of them finally. The {kappa}-{epsilon}-{upsilon}{sup 2} model was selected as the applicable turbulence model for three dimensional flow analysis of SMART-P. The problem of original {kappa}-{epsilon}-{upsilon}{sup 2} model is the amplification of the pressure strain rate in the log region. The amplification is caused by Elliptic Relaxation Equation(ERE). The present model approaches inhomogeneous for the source term of the ERE to reduce the pressure-strain amplification. The source term was decomposed into homogeneous part and inhomogeneous part and derived as a form of variable coefficients of the ERE. The pressure strain and dissipation terms were fully coupled with the source term of the ERE. The pressure diffusion was modified to treat the boundary conditions indirectly and the pressure strain of the inhomogeneous correction ERE was noticeably decreased in both log layer and outer layer. The results of the inhomogeneous correction {kappa}-{epsilon}-{upsilon}{sup 2} model showed a good agreement with DNS results for channel flows and estimated improved results on the turbulent components in comparison with other models.
Energy Technology Data Exchange (ETDEWEB)
Millan Barrera, Cecia; Ramirez Leon, Hermilo [Instituto Mexicano de Tecnologia del Agua, Jiutepec, Morelos (Mexico)
2001-12-01
A numerical analysis is applied to a flow in an open channel and deformed by a three dimensional obstacle. The proposed model solves the 3-D Navier-Stokes equations, to which a {kappa}-{epsilon} turbulence model is coupled. The numerical analysis was constructed using a finite difference formulation for time evaluation purposed and staggered cells for space evaluation. The main goal of the present work was to study the turbulent structures and patterns of the flow due to an obstacle at the bottom of the channel plate. Our results are according to those found in the related literature. Flow patterns allow establishing the generation of turbulent structures by means of a comparison between this study and a most recent related work that evaluates the vorticity of the flow. [Spanish] Se reportan los resultados obtenidos, mediante simulaciones numericas, del movimiento del flujo en un canal con superficie libre y un obstaculo en el fondo. El sistema ecuaciones utilizado resuelve las ecuaciones de Navier-Stokes en tres dimensiones, al cual se le acoplo un modelo de turbulencia tipo {kappa}-{epsilon}. La solucion se obtiene numericamente utilizando un esquema en diferencias finitas para la evaluacion temporal de las variables y una celda escalonada para la evaluacion espacial de las mismas. El objetivo del modelo es estudiar los patrones de flujo y las estructuras turbulentas que se generan debido a la presencia del obstaculo. El estudio se realizo para un flujo en tres dimensiones. Los resultados son satisfactorios, ya que muestran concordancia con otros estudios numericos y experimentales encontrados en la literatura.
Comparison of two turbulence models in simulating an axisymmetric jet evolving into a tank
Energy Technology Data Exchange (ETDEWEB)
Kendil, F Zidouni [Nuclear research Center of Birine, Ain-Oussara (Algeria); Danciu, D-V; Lucas, D [Institute of Safety Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Salah, A Bousbia [Theoretical and Applied Fluid Mechanics Laboratory, Faculty of Physics - USTHB, Algiers (Algeria); Mataoui, A, E-mail: zidounifaiza@yahoo.fr, E-mail: d.danciu@hzdr.de [Department of mechanical and Nuclear Engineering University of Pisa-2, Pisa (Italy)
2011-12-22
Experiments and computational fluid dynamics (CFD) simulations have been carried out to investigate a turbulent water jet plunging into a tank filled with the same liquid. To avoid air bubble entrainment which may be caused by surface instabilities, the free falling length of the jet is set to zero. For both impinging region and recirculation zone, measurements are made using Particle Image Velocimetry (PIV). Instantaneous- and time-averaged velocity fields are obtained. Numerical data is obtained on the basis of both {kappa} - {epsilon} and SSG (Speziale, Sarkar and Gatski) of Reynolds Stresses Turbulent Model (RSM) in three dimensional frame and compared to experimental results via the axial velocity and turbulent kinetic energy. For axial distances lower than 5cm from the jet impact point, the axial velocity matches well the measurements, using both models. A progressive difference is found near the jet for higher axial distances from the jet impact point. Nevertheless, the turbulence kinetic energy agrees very well with the measurements when applying the SSG-RSM model for the lower part of the tank, whereas it is underestimated in the upper region. Inversely, the {kappa} - {epsilon} model shows better results in the upper part of the water tank and underestimates results for the lower part of the water tank. From the overall results, it can be concluded that, for single phase flow, the {kappa} - {epsilon} model describes well the average axial velocity, whereas the turbulence kinetic energy is better represented by the SSG-RSM model.
Lee, J.
1994-01-01
A generalized flow solver using an implicit Lower-upper (LU) diagonal decomposition based numerical technique has been coupled with three low-Reynolds number kappa-epsilon models for analysis of problems with engineering applications. The feasibility of using the LU technique to obtain efficient solutions to supersonic problems using the kappa-epsilon model has been demonstrated. The flow solver is then used to explore limitations and convergence characteristics of several popular two equation turbulence models. Several changes to the LU solver have been made to improve the efficiency of turbulent flow predictions. In general, the low-Reynolds number kappa-epsilon models are easier to implement than the models with wall-functions, but require much finer near-wall grid to accurately resolve the physics. The three kappa-epsilon models use different approaches to characterize the near wall regions of the flow. Therefore, the limitations imposed by the near wall characteristics have been carefully resolved. The convergence characteristics of a particular model using a given numerical technique are also an important, but most often overlooked, aspect of turbulence model predictions. It is found that some convergence characteristics could be sacrificed for more accurate near-wall prediction. However, even this gain in accuracy is not sufficient to model the effects of an external pressure gradient imposed by a shock-wave/ boundary-layer interaction. Additional work on turbulence models, especially for compressibility, is required since the solutions obtained with base line turbulence are in only reasonable agreement with the experimental data for the viscous interaction problems.
Energy Technology Data Exchange (ETDEWEB)
Zhang Shijie [Tsinghua University, Beijing (China). School of Architecture; Yuan Xin; Ye Dajun [Tsinghua University, Beijing (China). Dept. of Thermal Engineering
2001-07-01
Numerical simulations of the turbulent flow fields at stall conditions are presented for the NREL (National Renewable Energy Laboratory) S809 airfoil. The flow is modelled as compressible, viscous, steady/unsteady and turbulent. Four two-equation turbulence models (isotropic {kappa}-{epsilon} and q-{omega} models, anisotropic {kappa}-{epsilon} and -{omega} models), are applied to close the Reynolds-averaged Navier-Stokes equations, respectively. The governing equations are integrated in time by a new LU-type implicit scheme. To accurately model the convection terms in the mean-flow and turbulence model equations, a modified fourth-order high resolution MUSCL TVD scheme is incorporated. The large-scale separated flow fields and their losses at the stall and post-stall conditions are analyzed for the NREL S809 airfoil at various angles of attack ({alpha}) from 0 to 70 degrees. The numerical results show excellent to fairly good agreement with the experimental data. The feasibility of the present numerical method and the influence of the four turbulence models are also investigated. (author)
Wang, Chi R.; Yeh, Frederick C.
1987-01-01
A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.
DEFF Research Database (Denmark)
Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens
2011-01-01
term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence...
Turbulent flow simulation of the NREL S809 airfoil
Energy Technology Data Exchange (ETDEWEB)
Guerri, Ouahiba; Bouhadef, Khadidja; Harhad, Ameziane
2006-05-15
Numerical computations are carried out for the NREL S809 airfoil. The flow is modelled using an unsteady incompressible Reynolds Averaged Navier-Stokes solver. Two turbulence models (SST {kappa}/{omega}of Menter and RNG {kappa}/{epsilon}) are applied to close the RANS equations. All computations are performed assuming fully turbulent flow. The flow field is analyzed at various angles of attack from 0 to 20 degrees. Lift and drag forces are obtained from the computations by integrating the pressure and shear stress over the blade surface. The performance of the two turbulence models is compared and the influence of the free stream turbulence intensity is checked. The results confirm the satisfactory performance of the SST {kappa}/{omega} model of Menter for modelling turbulent flow around airfoils. (author)
Numerical modeling of turbulent combustion and flame spread
Energy Technology Data Exchange (ETDEWEB)
Yan Zhenghua
1999-01-01
Theoretical models have been developed to address several important aspects of numerical modeling of turbulent combustion and flame spread. The developed models include a pyrolysis model for charring and non-charring solid materials, a fast narrow band radiation property evaluation model (FASTNB) and a turbulence model for buoyant flow and flame. In the pyrolysis model, a completely new algorithm has been proposed, where a moving dual mesh concept was developed and implemented. With this new concept, it provides proper spatial resolution for both temperature and density and automatically considers the regression of the surface of the non-charring solid material during its pyrolysis. It is simple, very efficient and applicable to both charring and non-charring materials. FASTNB speeds up significantly the evaluation of narrow band spectral radiation properties and thus provides a potential of applying narrow band model in numerical simulations of practical turbulent combustion. The turbulence model was developed to improve the consideration of buoyancy effect on turbulence and turbulent transport. It was found to be simple, promising and numerically stable. It has been tested against both plane and axisymmetric thermal plumes and an axisymmetric buoyant diffusion flame. When compared with the widely used standard buoyancy-modified {kappa} - {epsilon} model, it gives significant improvement on numerical results. These developed models have been fully incorporated into CFD (Computational Fluid Dynamics) code and coupled with other CFD sub-models, including the DT (Discrete Transfer) radiation model, EDC (Eddy Dissipation Concept) combustion model, flamelet combustion model, various soot models and transpired wall function. Comprehensive numerical simulations have been carried out to study soot formation and oxidation in turbulent buoyant diffusion flames, flame heat transfer and flame spread in fires. The gas temperature and velocity, soot volume fraction, wall
On the freestream matching condition for stagnation point turbulent flows
Speziale, C. G.
1989-01-01
The problem of plane stagnation point flow with freestream turbulence is examined from a basic theoretical standpoint. It is argued that the singularity which arises from the standard kappa-epsilon model is not due to a defect in the model but results from the use of an inconsistent freestream boundary condition. The inconsistency lies in the implementation of a production equals dissipation equilibrium hypothesis in conjunction with a freestream mean velocity field that corresponds to homogeneous plane strain - a turbulent flow which does not reach such a simple equilibrium. Consequently, the adjustment that has been made in the constants of the epsilon-transport equation to eliminate this singularity is not self-consistent since it is tantamount to artificially imposing an equilibrium structure on a turbulent flow which is known not to have one.
Modeling of turbulent chemical reaction
Chen, J.-Y.
1995-01-01
Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.
Stochastic modelling of turbulence
DEFF Research Database (Denmark)
Sørensen, Emil Hedevang Lohse
previously been shown to be closely connected to the energy dissipation. The incorporation of the small scale dynamics into the spatial model opens the door to a fully fledged stochastic model of turbulence. Concerning the interaction of wind and wind turbine, a new method is proposed to extract wind turbine...
Turbulence modelling; Modelisation de la turbulence isotherme
Energy Technology Data Exchange (ETDEWEB)
Laurence, D. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)
1997-12-31
This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-{epsilon} two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the `standard` (R{sub ij}-{epsilon}) Reynolds tensions transport model and introduces more recent models called `feasible`. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author). 37 refs.
Energy Technology Data Exchange (ETDEWEB)
Rahman, M.; Rautaheimo, P.; Siikonen, T.
1997-12-31
A numerical investigation is carried out to predict the turbulent fluid flow and heat transfer characteristics of two-dimensional single and three impinging slot jets. Two low-Reynolds-number {kappa}-{epsilon} models, namely the classical model of Chien and the explicit algebraic stress model of Gatski and Speziale, are considered in the simulation. A cell-centered finite-volume scheme combined with an artificial compressibility approach is employed to solve the flow equations, using a diagonally dominant alternating direction implicit (DDADI) time integration method. A fully upwinded second order spatial differencing is adopted to approximate the convective terms. Roe`s damping term is used to calculate the flux on the cell face. A multigrid method is utilized for the acceleration of convergence. On average, the heat transfer coefficients predicted by both models show good agreement with the experimental results. (orig.) 17 refs.
Behaviour of turbulence models near a turbulent/non-turbulent interface revisited
International Nuclear Information System (INIS)
Ferrey, P.; Aupoix, B.
2006-01-01
The behaviour of turbulence models near a turbulent/non-turbulent interface is investigated. The analysis holds as well for two-equation as for Reynolds stress turbulence models using Daly and Harlow diffusion model. The behaviour near the interface is shown not to be a power law, as usually considered, but a more complex parametric solution. Why previous works seemed to numerically confirm the power law solution is explained. Constraints for turbulence modelling, i.e., for ensuring that models have a good behaviour near a turbulent/non-turbulent interface so that the solution is not sensitive to small turbulence levels imposed in the irrotational flow, are drawn
Workshop on Engineering Turbulence Modeling
Povinelli, Louis A. (Editor); Liou, W. W. (Editor); Shabbir, A. (Editor); Shih, T.-H. (Editor)
1992-01-01
Discussed here is the future direction of various levels of engineering turbulence modeling related to computational fluid dynamics (CFD) computations for propulsion. For each level of computation, there are a few turbulence models which represent the state-of-the-art for that level. However, it is important to know their capabilities as well as their deficiencies in order to help engineers select and implement the appropriate models in their real world engineering calculations. This will also help turbulence modelers perceive the future directions for improving turbulence models. The focus is on one-point closure models (i.e., from algebraic models to higher order moment closure schemes and partial differential equation methods) which can be applied to CFD computations. However, other schemes helpful in developing one-point closure models, are also discussed.
Modeling Compressed Turbulence with BHR
Israel, Daniel
2011-11-01
Turbulence undergoing compression or expansion occurs in systems ranging from internal combustion engines to supernovae. One common feature in many of these systems is the presence of multiple reacting species. Direct numerical simulation data is available for the single-fluid, low turbulent Mach number case. Wu, et al. (1985) compared their DNS results to several Reynolds-averaged Navier-Stokes models. They also proposed a three-equation k - ɛ - τ model, in conjunction with a Reynolds-stress model. Subsequent researchers have proposed alternative corrections to the standard k - ɛ formulation. Here we investigate three variants of the BHR model (Besnard, 1992). BHR is a model for multi-species variable-density turbulence. The three variants are the linear eddy-viscosity, algebraic-stress, and full Reynolds-stress formulations. We then examine the predictions of the model for the fluctuating density field for the case of variable-density turbulence.
Stochastic Subspace Modelling of Turbulence
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Pedersen, B. J.; Nielsen, Søren R.K.
2009-01-01
positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order......, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.......Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper...
Advancements in engineering turbulence modeling
Shih, T.-H.
1991-01-01
Some new developments in two-equation models and second order closure models are presented. Two-equation models (k-epsilon models) have been widely used in computational fluid dynamics (CFD) for engineering problems. Most of low-Reynolds number two-equation models contain some wall-distance damping functions to account for the effect of wall on turbulence. However, this often causes the confusion and difficulties in computing flows with complex geometry and also needs an ad hoc treatment near the separation and reattachment points. A set of modified two-equation models is proposed to remove the aforementioned shortcomings. The calculations using various two-equation models are compared with direct numerical simulations of channel flow and flat boundary layers. Development of a second order closure model is also discussed with emphasis on the modeling of pressure related correlation terms and dissipation rates in the second moment equations. All the existing models poorly predict the normal stresses near the wall and fail to predict the 3-D effect of mean flow on the turbulence (e.g. decrease in the shear stress caused by the cross flow in the boundary layer). The newly developed second order near-wall turbulence model is described and is capable of capturing the near-wall behavior of turbulence as well as the effect of 3-D mean flow on the turbulence.
Structure and modeling of turbulence
International Nuclear Information System (INIS)
Novikov, E.A.
1995-01-01
The open-quotes vortex stringsclose quotes scale l s ∼ LRe -3/10 (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scale motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES)
Toy models of developed turbulence
Directory of Open Access Journals (Sweden)
M.Hnatich
2005-01-01
Full Text Available We have investigated the advection of a passive scalar quantity by incompressible helical turbulent flow within the framework of extended Kraichnan model. Turbulent fluctuations of velocity field are assumed to have the Gaussian statistics with zero mean and defined noise with finite time-correlation. Actual calculations have been done up to two-loop approximation within the framework of field-theoretic renormalization group approach. It turned out that space parity violation (helicity of turbulent environment does not affect anomalous scaling which is a peculiar attribute of the corresponding model without helicity. However, stability of asymptotic regimes, where anomalous scaling takes place, strongly depends on the amount of helicity. Moreover, helicity gives rise to the turbulent diffusivity, which has been calculated in one-loop approximation.
Modeling of Turbulent Swirling Flows
Shih, Tsan-Hsing; Zhu, Jiang; Liou, William; Chen, Kuo-Huey; Liu, Nan-Suey; Lumley, John L.
1997-01-01
Aircraft engine combustors generally involve turbulent swirling flows in order to enhance fuel-air mixing and flame stabilization. It has long been recognized that eddy viscosity turbulence models are unable to appropriately model swirling flows. Therefore, it has been suggested that, for the modeling of these flows, a second order closure scheme should be considered because of its ability in the modeling of rotational and curvature effects. However, this scheme will require solution of many complicated second moment transport equations (six Reynolds stresses plus other scalar fluxes and variances), which is a difficult task for any CFD implementations. Also, this scheme will require a large amount of computer resources for a general combustor swirling flow. This report is devoted to the development of a cubic Reynolds stress-strain model for turbulent swirling flows, and was inspired by the work of Launder's group at UMIST. Using this type of model, one only needs to solve two turbulence equations, one for the turbulent kinetic energy k and the other for the dissipation rate epsilon. The cubic model developed in this report is based on a general Reynolds stress-strain relationship. Two flows have been chosen for model evaluation. One is a fully developed rotating pipe flow, and the other is a more complex flow with swirl and recirculation.
Turbulence models in supersonic flows
International Nuclear Information System (INIS)
Shirani, E.; Ahmadikia, H.; Talebi, S.
2001-05-01
The aim of this paper is to evaluate five different turbulence models when used in rather complicated two-dimensional and axisymmetric supersonic flows. They are Baldwin-Lomax, k-l, k-ε, k-ω and k-ζ turbulence models. The compressibility effects, axisymmetric correction terms and some modifications for transition region are used and tested in the models. Two computer codes based on the control volume approach and two flux-splitting methods. Roe and Van Leer, are developed. The codes are used to simulate supersonic mixing layers, flow behind axisymmetric body, under expanded jet, and flow over hollow cylinder flare. The results are compared with experimental data and behavior of the turbulence models is examined. It is shown that both k-l and k-ζ models produce very good results. It is also shown that the compressibility correction in the model is required to obtain more accurate results. (author)
PDF turbulence modeling and DNS
Hsu, A. T.
1992-01-01
The problem of time discontinuity (or jump condition) in the coalescence/dispersion (C/D) mixing model is addressed in probability density function (pdf). A C/D mixing model continuous in time is introduced. With the continuous mixing model, the process of chemical reaction can be fully coupled with mixing. In the case of homogeneous turbulence decay, the new model predicts a pdf very close to a Gaussian distribution, with finite higher moments also close to that of a Gaussian distribution. Results from the continuous mixing model are compared with both experimental data and numerical results from conventional C/D models. The effect of Coriolis forces on compressible homogeneous turbulence is studied using direct numerical simulation (DNS). The numerical method used in this study is an eight order compact difference scheme. Contrary to the conclusions reached by previous DNS studies on incompressible isotropic turbulence, the present results show that the Coriolis force increases the dissipation rate of turbulent kinetic energy, and that anisotropy develops as the Coriolis force increases. The Taylor-Proudman theory does apply since the derivatives in the direction of the rotation axis vanishes rapidly. A closer analysis reveals that the dissipation rate of the incompressible component of the turbulent kinetic energy indeed decreases with a higher rotation rate, consistent with incompressible flow simulations (Bardina), while the dissipation rate of the compressible part increases; the net gain is positive. Inertial waves are observed in the simulation results.
Application of some turbulence models
International Nuclear Information System (INIS)
Ushijima, Sho; Kato, Masanobu; Fujimoto, Ken; Moriya, Shoichi
1985-01-01
In order to predict numerically the thermal stratification and the thermal striping phenomena in pool-type FBRs, it is necessary to simulate adequately various turbulence properties of flows with good turbulence models. This report presents numerical simulations of two dimensional isothermal steady flows in a rectangular plenum using three types of turbulence models. Three models are general k-ε model and two Reynolds stress models. The agreements of these results are examined and the properties of these models are compared. The main results are summarized as follows. (1) Concerning the mean velocity distributions, although a little differences exist, all results of three models agree with experimental values. (2) It can be found that non-isotropy of normal Reynolds stresses (u' 2 , v' 2 ) distributions is qwite well simulated by two Reynolds stress models, but not adequately by k-ε model, shear Reynolds stress (-u', v') distribations of three models have little differences and agree good with experiments. (3) Balances of the various terms of Reynolds stress equations are examined. Comparing the results obtained by analyses and those of previous experiments, both distributions show qualitative agreements. (author)
Turbulence modelling for incompressible flows
International Nuclear Information System (INIS)
Rodi, W.
1985-12-01
EUROMECH colloquium 180 was held at Karlsruhe from 4-6 July, 1984, with the aim of bringing together specialists working in the area of turbulence modelling and of reviewing the state-of-the-art in this field. 44 scientists from 12 countries participated and 28 papers were presented. The meeting started with a review of the performance of two-equation turbulence models employing transport equations for both the velocity and the length scale of turbulence. These models are now generally well established, but it was found that their application to certain flow situations remains problematic. The modelling assumptions involved in Reynolds stress-equation models were reviewed next, and new assumptions were proposed. It was generally agreed that, as computing power increases, these more complex models will become more popular also for practical applications. The increase in computing power also allows more and more to resolve the viscous sublayer with low Reynolds numbers models, and the capabilities and problems of these models were discussed. In this connection, special aspects of boundary layer calculations were also discussed, namely those associated with 3D boundary layers, converging and diverging flow and slightly detached boundary layers. The complex physical phenomena prevalent in situations under the influence of buoyancy and rotation were reviewed, and several papers were presented on models for simulating these effects. (orig./HP) [de
Computational fluid dynamics (CFD) modelling of coal/biomass co-firing in pulverised fuel boilers
Energy Technology Data Exchange (ETDEWEB)
Moghtaderi, B.; Meesri, C. [University of Newcastle, Callaghan, NSW (Australia). CRC for Coal in Sustainable Development, Dept. of Chemical Engineering
2002-07-01
The present study is concerned with computational fluid dynamics (CFD) modelling of coal/biomass blends co-fired under conditions pertinent to pulverised fuel (PF) boilers. The attention is particularly focused on the near burner zone to examine the impact of biomass on the flame geometry and temperature. The predictions are obtained by numerical solution of the conservation equations for the gas and particle phases. The gas phase is solved in the Eulerian domain using steady-state time-averaged Navier-Stokes equations while the solution of the particle phase is obtained from a series of Lagrangian particle tracking equations. Turbulence is modelled using the {kappa}-{epsilon} and Reynolds Stress models. The comparison between the predictions and experimental measurement reported in the literature resulted in a good agreement. Other influences of biomass co-firing are observed for fuel devolatilisation and burnout. 19 refs., 6 figs.
PDF Modeling of Turbulent Combustion
National Research Council Canada - National Science Library
Pope, Stephen B
2006-01-01
.... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...
Model for Simulation Atmospheric Turbulence
DEFF Research Database (Denmark)
Lundtang Petersen, Erik
1976-01-01
A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance...... eigenfunctions and estimates of the distributions of the corresponding expansion coefficients. The simulation method utilizes the eigenfunction expansion procedure to produce preliminary time histories of the three velocity components simultaneously. As a final step, a spectral shaping procedure is then applied....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....
Shell Models of Superfluid Turbulence
International Nuclear Information System (INIS)
Wacks, Daniel H; Barenghi, Carlo F
2011-01-01
Superfluid helium consists of two inter-penetrating fluids, a viscous normal fluid and an inviscid superfluid, coupled by a mutual friction. We develop a two-fluid shell model to study superfluid turbulence and investigate the energy spectra and the balance of fluxes between the two fluids in a steady state. At sufficiently low temperatures a 'bottle-neck' develops at high wavenumbers suggesting the need for a further dissipative effect, such as the Kelvin wave cascade.
Multifractal Modeling of Turbulent Mixing
Samiee, Mehdi; Zayernouri, Mohsen; Meerschaert, Mark M.
2017-11-01
Stochastic processes in random media are emerging as interesting tools for modeling anomalous transport phenomena. Applications include intermittent passive scalar transport with background noise in turbulent flows, which are observed in atmospheric boundary layers, turbulent mixing in reactive flows, and long-range dependent flow fields in disordered/fractal environments. In this work, we propose a nonlocal scalar transport equation involving the fractional Laplacian, where the corresponding fractional index is linked to the multifractal structure of the nonlinear passive scalar power spectrum. This work was supported by the AFOSR Young Investigator Program (YIP) award (FA9550-17-1-0150) and partially by MURI/ARO (W911NF-15-1-0562).
Collaborative testing of turbulence models
Bradshaw, P.
1992-12-01
This project, funded by AFOSR, ARO, NASA, and ONR, was run by the writer with Profs. Brian E. Launder, University of Manchester, England, and John L. Lumley, Cornell University. Statistical data on turbulent flows, from lab. experiments and simulations, were circulated to modelers throughout the world. This is the first large-scale project of its kind to use simulation data. The modelers returned their predictions to Stanford, for distribution to all modelers and to additional participants ('experimenters')--over 100 in all. The object was to obtain a consensus on the capabilities of present-day turbulence models and identify which types most deserve future support. This was not completely achieved, mainly because not enough modelers could produce results for enough test cases within the duration of the project. However, a clear picture of the capabilities of various modeling groups has appeared, and the interaction has been helpful to the modelers. The results support the view that Reynolds-stress transport models are the most accurate.
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
Energy Technology Data Exchange (ETDEWEB)
Hurtado, F. J.; Kaiser, A. S.; Zamora, B.; Lucas, M.; Viedma, A.
2008-07-01
A thermodynamic analysis for solar chimney power plant has been carried out by numerical simulation. A numerical model has been developed using the general purpose code Fluent to study heat transfer and convective flow within the chimney power plant. The {kappa}-{epsilon} turbulence model has been employed. A heat transfer, mass flow and power production numerical analysis has been carried out on different hours during the day, assuming steady state conditions. The numeric values obtained are 10% different from experimental measures. Once model has been validated, a numeric study about flow within power plant, heat transfer and mass flow has been carry out, and the non-dimensional parameters obtained have been compared with studies about free convection. (Author)
Exploiting similarity in turbulent shear flows for turbulence modeling
Robinson, David F.; Harris, Julius E.; Hassan, H. A.
1992-01-01
It is well known that current k-epsilon models cannot predict the flow over a flat plate and its wake. In an effort to address this issue and other issues associated with turbulence closure, a new approach for turbulence modeling is proposed which exploits similarities in the flow field. Thus, if we consider the flow over a flat plate and its wake, then in addition to taking advantage of the log-law region, we can exploit the fact that the flow becomes self-similar in the far wake. This latter behavior makes it possible to cast the governing equations as a set of total differential equations. Solutions of this set and comparison with measured shear stress and velocity profiles yields the desired set of model constants. Such a set is, in general, different from other sets of model constants. The rational for such an approach is that if we can correctly model the flow over a flat plate and its far wake, then we can have a better chance of predicting the behavior in between. It is to be noted that the approach does not appeal, in any way, to the decay of homogeneous turbulence. This is because the asymptotic behavior of the flow under consideration is not representative of the decay of homogeneous turbulence.
Exploiting similarity in turbulent shear flows for turbulence modeling
Robinson, David F.; Harris, Julius E.; Hassan, H. A.
1992-12-01
It is well known that current k-epsilon models cannot predict the flow over a flat plate and its wake. In an effort to address this issue and other issues associated with turbulence closure, a new approach for turbulence modeling is proposed which exploits similarities in the flow field. Thus, if we consider the flow over a flat plate and its wake, then in addition to taking advantage of the log-law region, we can exploit the fact that the flow becomes self-similar in the far wake. This latter behavior makes it possible to cast the governing equations as a set of total differential equations. Solutions of this set and comparison with measured shear stress and velocity profiles yields the desired set of model constants. Such a set is, in general, different from other sets of model constants. The rational for such an approach is that if we can correctly model the flow over a flat plate and its far wake, then we can have a better chance of predicting the behavior in between. It is to be noted that the approach does not appeal, in any way, to the decay of homogeneous turbulence. This is because the asymptotic behavior of the flow under consideration is not representative of the decay of homogeneous turbulence.
Stochastic models for turbulent reacting flows
Energy Technology Data Exchange (ETDEWEB)
Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.
Comparison of turbulent particle dispersion models in turbulent shear flows
Directory of Open Access Journals (Sweden)
S. Laín
2007-09-01
Full Text Available This work compares the performance of two Lagrangian turbulent particle dispersion models: the standard model (e.g., that presented in Sommerfeld et al. (1993, in which the fluctuating fluid velocity experienced by the particle is composed of two components, one correlated with the previous time step and a second one randomly sampled from a Wiener process, and the model proposed by Minier and Peirano (2001, which is based on the PDF approach and performs closure at the level of acceleration of the fluid experienced by the particle. Formulation of a Langevin equation model for the increments of fluid velocity seen by the particle allows capturing some underlying physics of particle dispersion in general turbulent flows while keeping the mathematical manipulation of the stochastic model simple, thereby avoiding some pitfalls and simplifying the derivation of macroscopic relations. The performance of both dispersion models is tested in the configurations of grid-generated turbulence (Wells and Stock (1983 experiments, simple shear flow (Hyland et al., 1999 and confined axisymmetric jet flow laden with solids (Hishida and Maeda (1987 experiments.
Turbulence models development and engineering applications
International Nuclear Information System (INIS)
Groetzbach, G.; Ammann, T.; Dorr, B.; Hiltner, I.; Hofmann, S.; Kampczyk, M.; Kimhi, Y.; Seiter, C.; Woerner, M.; Alef, M.; Hennemuth, A.
1995-01-01
The FLUTAN code is used for analyzing the decay heat removal in new reactor concepts. The turbulence models applied in FLUTAN are improved by the development of the TURBIT code. TURBIT serves for a numerical simulation of turbulent channel flow. (orig.)
Progress in modeling hypersonic turbulent boundary layers
Zeman, Otto
1993-01-01
A good knowledge of the turbulence structure, wall heat transfer, and friction in turbulent boundary layers (TBL) at high speeds is required for the design of hypersonic air breathing airplanes and reentry space vehicles. This work reports on recent progress in the modeling of high speed TBL flows. The specific research goal described here is the development of a second order closure model for zero pressure gradient TBL's for the range of Mach numbers up to hypersonic speeds with arbitrary wall cooling requirements.
Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows
Energy Technology Data Exchange (ETDEWEB)
Magnussen, B F [The Norwegian Univ. of Science and Technology, Trondheim (Norway)
1998-12-31
The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.
Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows
Energy Technology Data Exchange (ETDEWEB)
Magnussen, B.F. [The Norwegian Univ. of Science and Technology, Trondheim (Norway)
1997-12-31
The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.
Efficient Turbulence Modeling for CFD Wake Simulations
DEFF Research Database (Denmark)
van der Laan, Paul
Wind turbine wakes can cause 10-20% annual energy losses in wind farms, and wake turbulence can decrease the lifetime of wind turbine blades. One way of estimating these effects is the use of computational fluid dynamics (CFD) to simulate wind turbines wakes in the atmospheric boundary layer. Since...... this flow is in the high Reynolds number regime, it is mainly dictated by turbulence. As a result, the turbulence modeling in CFD dominates the wake characteristics, especially in Reynolds-averaged Navier-Stokes (RANS). The present work is dedicated to study and develop RANS-based turbulence models...... verified with a grid dependency study. With respect to the standard k-ε EVM, the k-ε- fp EVM compares better with measurements of the velocity deficit, especially in the near wake, which translates to improved power deficits of the first wind turbines in a row. When the CFD metholody is applied to a large...
Gyrofluid Modeling of Turbulent, Kinetic Physics
Despain, Kate Marie
2011-12-01
Gyrofluid models to describe plasma turbulence combine the advantages of fluid models, such as lower dimensionality and well-developed intuition, with those of gyrokinetics models, such as finite Larmor radius (FLR) effects. This allows gyrofluid models to be more tractable computationally while still capturing much of the physics related to the FLR of the particles. We present a gyrofluid model derived to capture the behavior of slow solar wind turbulence and describe the computer code developed to implement the model. In addition, we describe the modifications we made to a gyrofluid model and code that simulate plasma turbulence in tokamak geometries. Specifically, we describe a nonlinear phase mixing phenomenon, part of the E x B term, that was previously missing from the model. An inherently FLR effect, it plays an important role in predicting turbulent heat flux and diffusivity levels for the plasma. We demonstrate this importance by comparing results from the updated code to studies done previously by gyrofluid and gyrokinetic codes. We further explain what would be necessary to couple the updated gyrofluid code, gryffin, to a turbulent transport code, thus allowing gryffin to play a role in predicting profiles for fusion devices such as ITER and to explore novel fusion configurations. Such a coupling would require the use of Graphical Processing Units (GPUs) to make the modeling process fast enough to be viable. Consequently, we also describe our experience with GPU computing and demonstrate that we are poised to complete a gryffin port to this innovative architecture.
Advances in fluid modeling and turbulence measurements
International Nuclear Information System (INIS)
Wada, Akira; Ninokata, Hisashi; Tanaka, Nobukazu
2002-01-01
The context of this book consists of four fields: Environmental Fluid Mechanics; Industrial Fluid Mechanics; Fundamentals of Fluid Mechanics; and Turbulence Measurements. Environmental Fluid Mechanics includes free surface flows in channels, rivers, seas, and estuaries. It also discusses wind engineering issues, ocean circulation model and dispersion problems in atmospheric, water and ground water environments. In Industrial Fluid Mechanics, fluid phenomena in energy exchanges, modeling of turbulent two- or multi-phase flows, swirling flows, flows in combustors, variable density flows and reacting flows, flows in turbo-machines, pumps and piping systems, and fluid-structure interaction are discussed. In Fundamentals of Fluid Mechanics, progress in modeling turbulent flows and heat/mass transfers, computational fluid dynamics/numerical techniques, parallel computing algorithms, applications of chaos/fractal theory in turbulence are reported. In Turbulence Measurements, experimental studies of turbulent flows, experimental and post-processing techniques, quantitative and qualitative flow visualization techniques are discussed. Separate abstracts were presented for 15 of the papers in this issue. The remaining 89 were considered outside the subject scope of INIS. (J.P.N.)
A mathematical model of turbulence for turbulent boundary layers
International Nuclear Information System (INIS)
Pereira Filho, H.D.V.
1977-01-01
Equations to the so called Reynolds stress-tensor (kinetic turbulent energy) and dissipation rate are developed and a turbulence flux approximation used. Our ideia here is to use those equations in order to develop an economical and fast numeircal procedure for computation of turbulent boundary layer. (author) [pt
Philosophies and fallacies in turbulence modeling
Spalart, Philippe R.
2015-04-01
We present a set of positions, likely to be controversial, on turbulence modeling for the Reynolds-Averaged Navier Stokes (RANS) equations. The paper has three themes. First is what we call the "fundamental paradox" of turbulence modeling, between the local character of the Partial Differential Equations strongly favored by CFD methods and the nonlocal physical nature of turbulence. Second, we oppose two philosophies. The "Systematic" philosophy attempts to model the exact transport equations for the Reynolds stresses or possibly higher moments term by term, gradually relegating the Closure Problem to higher moments and invoking the "Principle of Receding Influence" (although rarely formulating it). In contrast, the "Openly Empirical" philosophy produces models which satisfy strict constraints such as Galilean invariance, but lack an explicit connection with terms in the exact turbulence equations. The prime example is the eddy-viscosity assumption. Third, we explain a series of what we perceive as fallacies, many of them widely held and by senior observers, in turbulence knowledge, leading to turbulence models. We divide them into "hard" fallacies for which a short mathematical argument demonstrates that a particular statement is wrong or meaningless, and "soft" fallacies for which approximate physical arguments can be opposed, but we contend that a clear debate is overdue and wishful thinking has been involved. Some fallacies appear to be "intermediate." An example in the hard class is the supposed isotropy of the diagonal Reynolds stresses. Examples in the soft class are the need to match the decay rate of isotropic turbulence, and the value of realizability in a model. Our hope is to help the direct effort in this field away from simplistic and hopeless lines of work, and to foster debates.
Physics Based Modeling of Compressible Turbulance
2016-11-07
AFRL-AFOSR-VA-TR-2016-0345 PHYSICS -BASED MODELING OF COMPRESSIBLE TURBULENCE PARVIZ MOIN LELAND STANFORD JUNIOR UNIV CA Final Report 09/13/2016...on the AFOSR project (FA9550-11-1-0111) entitled: Physics based modeling of compressible turbulence. The period of performance was, June 15, 2011...by ANSI Std. Z39.18 Page 1 of 2FORM SF 298 11/10/2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll PHYSICS -BASED MODELING OF COMPRESSIBLE
Some Recent Developments in Turbulence Closure Modeling
Durbin, Paul A.
2018-01-01
Turbulence closure models are central to a good deal of applied computational fluid dynamical analysis. Closure modeling endures as a productive area of research. This review covers recent developments in elliptic relaxation and elliptic blending models, unified rotation and curvature corrections, transition prediction, hybrid simulation, and data-driven methods. The focus is on closure models in which transport equations are solved for scalar variables, such as the turbulent kinetic energy, a timescale, or a measure of anisotropy. Algebraic constitutive representations are reviewed for their role in relating scalar closures to the Reynolds stress tensor. Seamless and nonzonal methods, which invoke a single closure model, are reviewed, especially detached eddy simulation (DES) and adaptive DES. Other topics surveyed include data-driven modeling and intermittency and laminar fluctuation models for transition prediction. The review concludes with an outlook.
Chaotic Lagrangian models for turbulent relative dispersion.
Lacorata, Guglielmo; Vulpiani, Angelo
2017-04-01
A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.
Analysis of a turbulent buoyant confined jet modeled using realizable k-ε model
El-Amin, Mohamed; Sun, Shuyu; Heidemann, Wolfgang; Mü ller-Steinhagen, Hans M.
2010-01-01
Through this paper, analyses of components of the unheated/heated turbulent confined jet are introduced and some models to describe them are developed. Turbulence realizable k-ε model is used to model the turbulence of this problem. Numerical
The Research of Optical Turbulence Model in Underwater Imaging System
Directory of Open Access Journals (Sweden)
Liying Sun
2014-01-01
Full Text Available In order to research the effect of turbulence on underwater imaging system and image restoration, the underwater turbulence model is simulated by computer fluid dynamics. This model is obtained in different underwater turbulence intensity, which contains the pressure data that influences refractive index distribution. When the pressure value is conversed to refractive index, the refractive index distribution can be received with the refraction formula. In the condition of same turbulent intensity, the distribution of refractive index presents gradient in the whole region, with disorder and mutations in the local region. With the turbulence intensity increase, the holistic variation of the refractive index in the image is larger, and the refractive index change more tempestuously in the local region. All the above are illustrated by the simulation results with he ray tracing method and turbulent refractive index model. According to different turbulence intensity analysis, it is proved that turbulence causes image distortion and increases noise.
John Lumley's Contributions to Turbulence Modeling
Pope, Stephen
2015-11-01
We recall the contributions that John Lumley made to turbulence modeling in the 1970s and 1980s. In these early days, computer power was feeble by today's standards, and eddy-viscosity models were prevalent in CFD. Lumley recognized, however, that second-moment closures represent the simplest level at which the physics of turbulent flows can reasonably be represented. This is especially true when the velocity field is coupled to scalar fields through buoyancy, as in the atmosphere and oceans. While Lumley was not the first to propose second-moment closures, he can be credited with establishing the rational approach to constructing such closures. This includes the application of various invariance principles and tensor representation theorems, imposing the constraints imposed by realizability, and of course appealing to experimental data in simple, canonical flows. These techniques are now well-accepted and have found application far beyond second-moment closures.
Structure-Based Turbulence Model
National Research Council Canada - National Science Library
Reynolds, W
2000-01-01
.... Maire carried out this work as part of his Phi) research. During the award period we began to explore ways to simplify the structure-based modeling so that it could be used in repetitive engineering calculations...
Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code
Energy Technology Data Exchange (ETDEWEB)
Banas, A.O.; Carver, M.B. [Chalk River Laboratories (Canada); Unrau, D. [Univ. of Toronto (Canada)
1995-09-01
This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.
Achieving fast reconnection in resistive MHD models via turbulent means
Directory of Open Access Journals (Sweden)
G. Lapenta
2012-04-01
Full Text Available Astrophysical fluids are generally turbulent and this preexisting turbulence must be taken into account for models of magnetic reconnection in astrophysical, solar or heliospheric environments. In addition, reconnection itself induces turbulence which provides an important feedback on the reconnection process. In this paper we discuss both the theoretical model and numerical evidence that magnetic reconnection becomes fast in the approximation of resistive MHD. We consider the relation between the Lazarian and Vishniac turbulent reconnection theory and Lapenta's numerical experiments testifying of the spontaneous onset of turbulent reconnection in systems which are initially laminar.
Flapping model of scalar mixing in turbulence
International Nuclear Information System (INIS)
Kerstein, A.R.
1991-01-01
Motivated by the fluctuating plume model of turbulent mixing downstream of a point source, a flapping model is formulated for application to other configurations. For the scalar mixing layer, simple expressions for single-point scalar fluctuation statistics are obtained that agree with measurements. For a spatially homogeneous scalar mixing field, the family of probability density functions previously derived using mapping closure is reproduced. It is inferred that single-point scalar statistics may depend primarily on large-scale flapping motions in many cases of interest, and thus that multipoint statistics may be the principal indicators of finer-scale mixing effects
Continuum methods of physical modeling continuum mechanics, dimensional analysis, turbulence
Hutter, Kolumban
2004-01-01
The book unifies classical continuum mechanics and turbulence modeling, i.e. the same fundamental concepts are used to derive model equations for material behaviour and turbulence closure and complements these with methods of dimensional analysis. The intention is to equip the reader with the ability to understand the complex nonlinear modeling in material behaviour and turbulence closure as well as to derive or invent his own models. Examples are mostly taken from environmental physics and geophysics.
Multigrid solution of incompressible turbulent flows by using two-equation turbulence models
Energy Technology Data Exchange (ETDEWEB)
Zheng, X.; Liu, C. [Front Range Scientific Computations, Inc., Denver, CO (United States); Sung, C.H. [David Taylor Model Basin, Bethesda, MD (United States)
1996-12-31
Most of practical flows are turbulent. From the interest of engineering applications, simulation of realistic flows is usually done through solution of Reynolds-averaged Navier-Stokes equations and turbulence model equations. It has been widely accepted that turbulence modeling plays a very important role in numerical simulation of practical flow problem, particularly when the accuracy is of great concern. Among the most used turbulence models today, two-equation models appear to be favored for the reason that they are more general than algebraic models and affordable with current available computer resources. However, investigators using two-equation models seem to have been more concerned with the solution of N-S equations. Less attention is paid to the solution method for the turbulence model equations. In most cases, the turbulence model equations are loosely coupled with N-S equations, multigrid acceleration is only applied to the solution of N-S equations due to perhaps the fact the turbulence model equations are source-term dominant and very stiff in sublayer region.
Multi-time, multi-scale correlation functions in turbulence and in turbulent models
Biferale, L.; Boffetta, G.; Celani, A.; Toschi, F.
1999-01-01
A multifractal-like representation for multi-time, multi-scale velocity correlation in turbulence and dynamical turbulent models is proposed. The importance of subleading contributions to time correlations is highlighted. The fulfillment of the dynamical constraints due to the equations of motion is
Macro-scale turbulence modelling for flows in porous media
International Nuclear Information System (INIS)
Pinson, F.
2006-03-01
- This work deals with the macroscopic modeling of turbulence in porous media. It concerns heat exchangers, nuclear reactors as well as urban flows, etc. The objective of this study is to describe in an homogenized way, by the mean of a spatial average operator, turbulent flows in a solid matrix. In addition to this first operator, the use of a statistical average operator permits to handle the pseudo-aleatory character of turbulence. The successive application of both operators allows us to derive the balance equations of the kind of flows under study. Two major issues are then highlighted, the modeling of dispersion induced by the solid matrix and the turbulence modeling at a macroscopic scale (Reynolds tensor and turbulent dispersion). To this aim, we lean on the local modeling of turbulence and more precisely on the k - ε RANS models. The methodology of dispersion study, derived thanks to the volume averaging theory, is extended to turbulent flows. Its application includes the simulation, at a microscopic scale, of turbulent flows within a representative elementary volume of the porous media. Applied to channel flows, this analysis shows that even within the turbulent regime, dispersion remains one of the dominating phenomena within the macro-scale modeling framework. A two-scale analysis of the flow allows us to understand the dominating role of the drag force in the kinetic energy transfers between scales. Transfers between the mean part and the turbulent part of the flow are formally derived. This description significantly improves our understanding of the issue of macroscopic modeling of turbulence and leads us to define the sub-filter production and the wake dissipation. A f - f - w >f model is derived. It is based on three balance equations for the turbulent kinetic energy, the viscous dissipation and the wake dissipation. Furthermore, a dynamical predictor for the friction coefficient is proposed. This model is then successfully applied to the study of
Low dimensional modeling of wall turbulence
Aubry, Nadine
2015-11-01
In this talk we will review the original low dimensional dynamical model of the wall region of a turbulent boundary layer [Aubry, Holmes, Lumley and Stone, Journal of Fluid Dynamics 192, 1988] and discuss its impact on the field of fluid dynamics. We will also invite a few researchers who would like to make brief comments on the influence Lumley had on their research paths. In collaboration with Philip Holmes, Program in Applied and Computational Mathematics and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ.
A computer model for dispersed fluid-solid turbulent flows
International Nuclear Information System (INIS)
Liu, C.H.; Tulig, T.J.
1985-01-01
A computer model is being developed to simulate two-phase turbulent flow phenomena in fluids containing finely dispersed solids. The model is based on a dual-continuum picture of the individual phases and an extension of a two-equation turbulence closure theory. The resulting set of nonlinear partial differential equations are solved using a finite difference procedure with special treatment to promote convergence. The model has been checked against a number of idealized flow problems with known solutions. The authors are currently comparing model predictions with measurements to determine a proper set of turbulence parameters needed for simulating two-phase turbulent flows
Kolmogorov Behavior of Near-Wall Turbulence and Its Application in Turbulence Modeling
Shih, Tsan-Hsing; Lumley, John L.
1992-01-01
The near-wall behavior of turbulence is re-examined in a way different from that proposed by Hanjalic and Launder and followers. It is shown that at a certain distance from the wall, all energetic large eddies will reduce to Kolmogorov eddies (the smallest eddies in turbulence). All the important wall parameters, such as friction velocity, viscous length scale, and mean strain rate at the wall, are characterized by Kolmogorov microscales. According to this Kolmogorov behavior of near-wall turbulence, the turbulence quantities, such as turbulent kinetic energy, dissipation rate, etc. at the location where the large eddies become Kolmogorov eddies, can be estimated by using both direct numerical simulation (DNS) data and asymptotic analysis of near-wall turbulence. This information will provide useful boundary conditions for the turbulent transport equations. As an example, the concept is incorporated in the standard k-epsilon model which is then applied to channel and boundary flows. Using appropriate boundary conditions (based on Kolmogorov behavior of near-wall turbulence), there is no need for any wall-modification to the k-epsilon equations (including model constants). Results compare very well with the DNS and experimental data.
The Selection of Turbulence Models for Prediction of Room Airflow
DEFF Research Database (Denmark)
Nielsen, Peter V.
This paper discusses the use of different turbulence models and their advantages in given situations. As an example, it is shown that a simple zero-equation model can be used for the prediction of special situations as flow with a low level of turbulence. A zero-equation model with compensation...
Nicolleau, FCGA; Redondo, J-M
2012-01-01
This book contains a collection of the main contributions from the first five workshops held by Ercoftac Special Interest Group on Synthetic Turbulence Models (SIG42. It is intended as an illustration of the sig's activities and of the latest developments in the field. This volume investigates the use of Kinematic Simulation (KS) and other synthetic turbulence models for the particular application to environmental flows. This volume offers the best syntheses on the research status in KS, which is widely used in various domains, including Lagrangian aspects in turbulence mixing/stirring, partic
Turbulence modeling of natural convection in enclosures: A review
International Nuclear Information System (INIS)
Choi, Seok Ki; Kim, Seong O
2012-01-01
In this paper a review of recent developments of turbulence models for natural convection in enclosures is presented. The emphasis is placed on the effect of the treatments of Reynolds stress and turbulent heat flux on the stability and accuracy of the solution for natural convection in enclosures. The turbulence models considered in the preset study are the two-layer k -ε model, the shear stress transport (SST) model, the elliptic-relaxation (V2-f) model and the elliptic-blending second-moment closure (EBM). Three different treatments of the turbulent heat flux are the generalized gradient diffusion hypothesis (GGDH), the algebraic flux model (AFM) and the differential flux model (DFM). The mathematical formulation of the above turbulence models and their solution method are presented. Evaluation of turbulence models are performed for turbulent natural convection in a 1:5 rectangular cavity ( Ra = 4.3x10 10 ) and in a square cavity with conducting top and bottom walls ( Ra =1.58x10 9 ) and the Rayleigh-Benard convection ( Ra = 2x10 6 ∼ Ra =10 9 ). The relative performances of turbulence models are examined and their successes and shortcomings are addressed
A weakened cascade model for turbulence in astrophysical plasmas
International Nuclear Information System (INIS)
Howes, G. G.; TenBarge, J. M.; Dorland, W.
2011-01-01
A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.
On specification of initial conditions in turbulence models
Energy Technology Data Exchange (ETDEWEB)
Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory
2010-12-01
Recent research has shown that initial conditions have a significant influence on the evolution of a flow towards turbulence. This important finding offers a unique opportunity for turbulence control, but also raises the question of how to properly specify initial conditions in turbulence models. We study this problem in the context of the Rayleigh-Taylor instability. The Rayleigh-Taylor instability is an interfacial fluid instability that leads to turbulence and turbulent mixing. It occurs when a light fluid is accelerated in to a heavy fluid because of misalignment between density and pressure gradients. The Rayleigh-Taylor instability plays a key role in a wide variety of natural and man-made flows ranging from supernovae to the implosion phase of Inertial Confinement Fusion (ICF). Our approach consists of providing the turbulence models with a predicted profile of its key variables at the appropriate time in accordance to the initial conditions of the problem.
Modelling and prediction of non-stationary optical turbulence behaviour
Doelman, N.J.; Osborn, J.
2016-01-01
There is a strong need to model the temporal fluctuations in turbulence parameters, for instance for scheduling, simulation and prediction purposes. This paper aims at modelling the dynamic behaviour of the turbulence coherence length r0, utilising measurement data from the Stereo-SCIDAR instrument
Turbulence theories and modelling of fluids and plasmas
Energy Technology Data Exchange (ETDEWEB)
Yoshizawa, Akira; Yokoi, Nobumitsu [Institute of Industrial Science, Univ. of Tokyo, Tokyo (Japan); Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)
2001-04-01
Theoretical and heuristic modelling methods are reviewed for studying turbulence phenomena of fluids and plasmas. Emphasis is put on understanding of effects on turbulent characteristics due to inhomogeneities of field and plasma parameters. The similarity and dissimilarity between the methods for fluids and plasmas are sought in order to shed light on the properties that are shared or not by fluid and plasma turbulence. (author)
Mathematical and numerical foundations of turbulence models and applications
Chacón Rebollo, Tomás
2014-01-01
With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering, and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation, and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics,...
Numerical Investigation of Turbulence Models for a Superlaminar Journal Bearing
Directory of Open Access Journals (Sweden)
Aoshuang Ding
2018-01-01
Full Text Available With rotating machineries working at high speeds, oil flow in bearings becomes superlaminar. Under superlaminar conditions, flow exhibits between laminar and fully developed turbulence. In this study, superlaminar oil flow in an oil-lubricated tilting-pad journal bearing is analyzed through computational fluid dynamics (CFD. A three-dimensional bearing model is established. CFD results from the laminar model and 14 turbulence models are compared with experimental findings. The laminar simulation results of pad-side pressure are inconsistent with the experimental data. Thus, the turbulence effects on superlaminar flow should be considered. The simulated temperature and pressure distributions from the classical fully developed turbulence models cannot correctly fit the experimental data. As such, turbulence models should be corrected for superlaminar flow. However, several corrections, such as transition correction, are unsuitable. Among all the flow models, the SST model with low-Re correction exhibits the best pressure distribution and turbulence viscosity ratio. Velocity profile analysis confirms that a buffer layer plays an important role in the superlaminar boundary layer. Classical fully developed turbulence models cannot accurately predict the buffer layer, but this problem can be resolved by initiating an appropriate low-Re correction. Therefore, the SST model with low-Re correction yields suitable results for superlaminar flows in bearings.
Interaction between combustion and turbulence in modelling of emissions
International Nuclear Information System (INIS)
Oksanen, A.; Maeki-Mantila, E.
1996-01-01
The aim of the work was to study the combustion models taking into account the coupling between gas phase reactions and turbulence the modelling of emissions, especially of nitric oxide, when temperature and species concentrations are fluctuating by turbulence. The principal tools to model turbulent gas phase combustion were methods based on the probability density function (pdf) with β and γ-distributions the practice of which can take into consideration the stochastic nature of turbulence and, on the other hand, the models which also include the effect turbulence on the reaction rates in the flames e.g. the Eddy Dissipation Model (EDM), the Eddy Dissipation Concept (EDC), the kinetic mod and the combinations of those ones, respectively. Besides these models effect of the different turbulence models (standard, RNG and CHENKIM k-ε models) on the combustion phenomena, especially on the formation emissions was also studied. Same kind of modelling has been done by the teams in the Special Interest Group of ERCOFTAC (European Research Community On Flow Turbulence And Combustion) under the title of Aerodynamics and Steady State Combustion Chambers and Furnaces (A.S.C.F.) with which we have co-operated during some years with success. (author)
Energy Technology Data Exchange (ETDEWEB)
Groetzbach, G.; Ammann, T.; Dorr, B.; Hiltner, I.; Hofmann, S.; Kampczyk, M.; Kimhi, Y.; Seiter, C.; Woerner, M.; Alef, M.; Hennemuth, A.
1995-08-01
The FLUTAN code is used for analyzing the decay heat removal in new reactor concepts. The turbulence models applied in FLUTAN are improved by the development of the TURBIT code. TURBIT serves for a numerical simulation of turbulent channel flow. (orig.)
Status of Turbulence Modeling for Hypersonic Propulsion Flowpaths
Georgiadis, Nicholas J.; Yoder, Dennis A.; Vyas, Manan A.; Engblom, William A.
2012-01-01
This report provides an assessment of current turbulent flow calculation methods for hypersonic propulsion flowpaths, particularly the scramjet engine. Emphasis is placed on Reynolds-averaged Navier-Stokes (RANS) methods, but some discussion of newer meth- ods such as Large Eddy Simulation (LES) is also provided. The report is organized by considering technical issues throughout the scramjet-powered vehicle flowpath including laminar-to-turbulent boundary layer transition, shock wave / turbulent boundary layer interactions, scalar transport modeling (specifically the significance of turbulent Prandtl and Schmidt numbers) and compressible mixing. Unit problems are primarily used to conduct the assessment. In the combustor, results from calculations of a direct connect supersonic combustion experiment are also used to address the effects of turbulence model selection and in particular settings for the turbulent Prandtl and Schmidt numbers. It is concluded that RANS turbulence modeling shortfalls are still a major limitation to the accuracy of hypersonic propulsion simulations, whether considering individual components or an overall system. Newer methods such as LES-based techniques may be promising, but are not yet at a maturity to be used routinely by the hypersonic propulsion community. The need for fundamental experiments to provide data for turbulence model development and validation is discussed.
Natural Convection Analysis with Various Turbulent Models Using FLUENT
International Nuclear Information System (INIS)
Park, Yu Sun
2007-01-01
The buoyancy driven convective flow fields are steady circulatory flows which were made between surfaces maintained at two fixed temperatures. They are ubiquitous in nature and play an important role in many engineering applications. Especially, in last decades, natural convection in a close loop or cavity becomes the main issue in the molecular biology for the polymerase chain reaction (PCR). Application of a natural convection can reduce the costs and efforts remarkably. This paper focuses on the sensitivity study of turbulence analysis using CFD for a natural convection in a closed rectangular cavity. Using commercial CFD code, FLUENT, various turbulent models were applied to the turbulent flow. Results from each CFD model will be compared each other in the viewpoints of flow characteristics. This work will suggest the best turbulent model of CFD for analyzing turbulent flows of the natural convection in an enclosure system
Turbulent Combustion Modeling Advances, New Trends and Perspectives
Echekki, Tarek
2011-01-01
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book ...
Advances in engineering turbulence modeling. [computational fluid dynamics
Shih, T.-H.
1992-01-01
Some new developments in two equation models and second order closure models are presented. In this paper, modified two equation models are proposed to remove shortcomings such as computing flows over complex geometries and the ad hoc treatment near the separation and reattachment points. The calculations using various two equation models are compared with direct numerical solutions of channel flows and flat plate boundary layers. Development of second order closure models will also be discussed with emphasis on the modeling of pressure related correlation terms and dissipation rates in the second moment equations. All existing models poorly predict the normal stresses near the wall and fail to predict the three dimensional effect of mean flow on the turbulence. The newly developed second order near-wall turbulence model to be described in this paper is capable of capturing the near-wall behavior of turbulence as well as the effect of three dimension mean flow on the turbulence.
Modelling of structural effects on chemical reactions in turbulent flows
Energy Technology Data Exchange (ETDEWEB)
Gammelsaeter, H.R.
1997-12-31
Turbulence-chemistry interactions are analysed using algebraic moment closure for the chemical reaction term. The coupling between turbulence and chemical length and time scales generate a complex interaction process. This interaction process is called structural effects in this work. The structural effects are shown to take place on all scales between the largest scale of turbulence and the scales of the molecular motions. The set of equations describing turbulent correlations involved in turbulent reacting flows are derived. Interactions are shown schematically using interaction charts. Algebraic equations for the turbulent correlations in the reaction rate are given using the interaction charts to include the most significant couplings. In the frame of fundamental combustion physics, the structural effects appearing on the small scales of turbulence are proposed modelled using a discrete spectrum of turbulent scales. The well-known problem of averaging the Arrhenius law, the specific reaction rate, is proposed solved using a presumed single variable probability density function and a sub scale model for the reaction volume. Although some uncertainties are expected, the principles are addressed. Fast chemistry modelling is shown to be consistent in the frame of algebraic moment closure when the turbulence-chemistry interaction is accounted for in the turbulent diffusion. The modelling proposed in this thesis is compared with experimental data for an laboratory methane flame and advanced probability density function modelling. The results show promising features. Finally it is shown a comparison with full scale measurements for an industrial burner. All features of the burner are captured with the model. 41 refs., 33 figs.
Models for turbulent flows with variable density and combustion
International Nuclear Information System (INIS)
Jones, W.P.
1980-01-01
Models for transport processes and combustion in turbulent flows are outlined with emphasis on the situation where the fuel and air are injected separately. Attention is restricted to relatively simple flames. The flows investigated are high Reynolds number, single-phase, turbulent high-temperature flames in which radiative heat transfer can be considered negligible. Attention is given to the lower order closure models, algebraic stress and flux models, the k-epsilon turbulence model, the diffusion flame approximation, and finite rate reaction mechanisms
Progress in wall turbulence 2 understanding and modelling
Jimenez, Javier; Marusic, Ivan
2016-01-01
This is the proceedings of the ERCOFTAC Workshop on Progress in Wall Turbulence: Understanding and Modelling, that was held in Lille, France from June 18 to 20, 2014. The workshop brought together world specialists of near wall turbulence and stimulated exchanges between them around up-to-date theories, experiments, simulations and numerical models. This book contains a coherent collection of recent results on near wall turbulence including theory, new experiments, DNS, and modeling with RANS, LES.The fact that both physical understanding and modeling by different approaches are addressed by the best specialists in a single workshop is original.
Hamiltonian and Thermodynamic Modeling of Quantum Turbulence
Grmela, Miroslav
2010-10-01
The state variables in the novel model introduced in this paper are the fields playing this role in the classical Landau-Tisza model and additional fields of mass, entropy (or temperature), superfluid velocity, and gradient of the superfluid velocity, all depending on the position vector and another tree dimensional vector labeling the scale, describing the small-scale structure developed in 4He superfluid experiencing turbulent motion. The fluxes of mass, momentum, energy, and entropy in the position space as well as the fluxes of energy and entropy in scales, appear in the time evolution equations as explicit functions of the state variables and of their conjugates. The fundamental thermodynamic relation relating the fields to their conjugates is left in this paper undetermined. The GENERIC structure of the equations serves two purposes: (i) it guarantees that solutions to the governing equations, independently of the choice of the fundamental thermodynamic relation, agree with the observed compatibility with thermodynamics, and (ii) it is used as a guide in the construction of the novel model.
Modeling of turbulent bubbly flows; Modelisation des ecoulements turbulents a bulles
Energy Technology Data Exchange (ETDEWEB)
Bellakhal, Ghazi
2005-03-15
The two-phase flows involve interfacial interactions which modify significantly the structure of the mean and fluctuating flow fields. The design of the two-fluid models adapted to industrial flows requires the taking into account of the effect of these interactions in the closure relations adopted. The work developed in this thesis concerns the development of first order two-fluid models deduced by reduction of second order closures. The adopted reasoning, based on the principle of decomposition of the Reynolds stress tensor into two statistically independent contributions turbulent and pseudo-turbulent parts, allows to preserve the physical contents of the second order relations closure. Analysis of the turbulence structure in two basic flows: homogeneous bubbly flows uniform and with a constant shear allows to deduce a formulation of the two-phase turbulent viscosity involving the characteristic scales of bubbly turbulence, as well as an analytical description of modification of the homogeneous turbulence structure induced by the bubbles presence. The Eulerian two-fluid model was then generalized with the case of the inhomogeneous flows with low void fractions. The numerical results obtained by the application of this model integrated in the computer code MELODIF in the case of free sheared turbulent bubbly flow of wake showed a satisfactory agreement with the experimental data and made it possible to analyze the modification of the characteristic scales of such flow by the interfacial interactions. The two-fluid first order model is generalized finally with the case of high void fractions bubbly flows where the hydrodynamic interactions between the bubbles are not negligible any more. (author)
Interaction between combustion and turbulence in modelling of emissions
International Nuclear Information System (INIS)
Oksanen, A.; Maeki-Mantila, E.
1995-01-01
The aim of the work is to study the combustion models which are taking into account the coupling between gas phase chemistry and turbulence in the modelling of emissions, especially of nitric oxide, when temperature and species concentrating are fluctuating by turbulence. The principal tools to model turbulent gas phase combustion are the probability density function (pdf) and the other models which are taking into consideration the effect of turbulence on the chemical reactions in flames. Such other models to use in the modelling are many e.g. Eddy Dissipation Model (EDM), Eddy Dissipation Concept (EDC), Eddy Dissipation Kinetic model (EDK), Eddy Break Up model (EBU), kinetic models and the combinations of those ones, respectively. Besides these models the effect of the different turbulence models on the formation of emissions will be also studied. Same kind of modelling has been done also by the teams in the Special Interest Group of ERCOFTAC (European Research Community On Flow Turbulence And Combustion) under the name of Aerodynamics and Steady State Combustion Chambers and Furnaces (A.S.C.F.). Combustion measurements are also tried to do if only the practical conditions take it possible. (author)
Modeling molecular mixing in a spatially inhomogeneous turbulent flow
Meyer, Daniel W.; Deb, Rajdeep
2012-02-01
Simulations of spatially inhomogeneous turbulent mixing in decaying grid turbulence with a joint velocity-concentration probability density function (PDF) method were conducted. The inert mixing scenario involves three streams with different compositions. The mixing model of Meyer ["A new particle interaction mixing model for turbulent dispersion and turbulent reactive flows," Phys. Fluids 22(3), 035103 (2010)], the interaction by exchange with the mean (IEM) model and its velocity-conditional variant, i.e., the IECM model, were applied. For reference, the direct numerical simulation data provided by Sawford and de Bruyn Kops ["Direct numerical simulation and lagrangian modeling of joint scalar statistics in ternary mixing," Phys. Fluids 20(9), 095106 (2008)] was used. It was found that velocity conditioning is essential to obtain accurate concentration PDF predictions. Moreover, the model of Meyer provides significantly better results compared to the IECM model at comparable computational expense.
Modeling Scramjet Flows with Variable Turbulent Prandtl and Schmidt Numbers
Xiao, X.; Hassan, H. A.; Baurle, R. A.
2006-01-01
A complete turbulence model, where the turbulent Prandtl and Schmidt numbers are calculated as part of the solution and where averages involving chemical source terms are modeled, is presented. The ability of avoiding the use of assumed or evolution Probability Distribution Functions (PDF's) results in a highly efficient algorithm for reacting flows. The predictions of the model are compared with two sets of experiments involving supersonic mixing and one involving supersonic combustion. The results demonstrate the need for consideration of turbulence/chemistry interactions in supersonic combustion. In general, good agreement with experiment is indicated.
Turbulent Spot Pressure Fluctuation Wave Packet Model
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.
Single-Phase Bundle Flows Including Macroscopic Turbulence Model
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung Jun; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Yoon, Seok Jong; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of)
2016-05-15
To deal with various thermal hydraulic phenomena due to rapid change of fluid properties when an accident happens, securing mechanistic approaches as much as possible may reduce the uncertainty arising from improper applications of the experimental models. In this study, the turbulence mixing model, which is well defined in the subchannel analysis code such as VIPRE, COBRA, and MATRA by experiments, is replaced by a macroscopic k-e turbulence model, which represents the aspect of mathematical derivation. The performance of CUPID with macroscopic turbulence model is validated against several bundle experiments: CNEN 4x4 and PNL 7x7 rod bundle tests. In this study, the macroscopic k-e model has been validated for the application to subchannel analysis. It has been implemented in the CUPID code and validated against CNEN 4x4 and PNL 7x7 rod bundle tests. The results showed that the macroscopic k-e turbulence model can estimate the experiments properly.
A model for reaction rates in turbulent reacting flows
Chinitz, W.; Evans, J. S.
1984-01-01
To account for the turbulent temperature and species-concentration fluctuations, a model is presented on the effects of chemical reaction rates in computer analyses of turbulent reacting flows. The model results in two parameters which multiply the terms in the reaction-rate equations. For these two parameters, graphs are presented as functions of the mean values and intensity of the turbulent fluctuations of the temperature and species concentrations. These graphs will facilitate incorporation of the model into existing computer programs which describe turbulent reacting flows. When the model was used in a two-dimensional parabolic-flow computer code to predict the behavior of an experimental, supersonic hydrogen jet burning in air, some improvement in agreement with the experimental data was obtained in the far field in the region near the jet centerline. Recommendations are included for further improvement of the model and for additional comparisons with experimental data.
A new energy transfer model for turbulent free shear flow
Liou, William W.-W.
1992-01-01
A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.
[Statistical modeling studies of turbulent reacting flows
International Nuclear Information System (INIS)
Dwyer, H.A.
1987-01-01
This paper discusses the study of turbulent wall shear flows, and we feel that this problem is both more difficult and a better challenge for the new methods we are developing. Turbulent wall flows have a wide variety of length and time scales which interact with the transport processes to produce very large fluxes of mass, heat, and momentum. At the present time we have completed the first calculation of a wall diffusion flame, and we have begun a velocity PDF calculation for the flat plate boundary layer. A summary of the various activities is contained in this report
A turbulent two-phase flow model for nebula flows
International Nuclear Information System (INIS)
Champney, J.M.; Cuzzi, J.N.
1990-01-01
A new and very efficient turbulent two-phase flow numericaly model is described to analyze the environment of a protoplanetary nebula at a stage prior to the formation of planets. Focus is on settling processes of dust particles in flattened gaseous nebulae. The model employs a perturbation technique to improve the accuracy of the numerical simulations of such flows where small variations of physical quantities occur over large distance ranges. The particles are allowed to be diffused by gas turbulence in addition to settling under gravity. Their diffusion coefficients is related to the gas turbulent viscosity by the non-dimensional Schmidt number. The gas turbulent viscosity is determined by the means of the eddy viscosity hypothesis that assumes the Reynolds stress tensor proportional to the mean strain rate tensor. Zero- and two-equation turbulence models are employed. Modeling assumptions are detailed and discussed. The numerical model is shown to reproduce an existing analytical solution for the settling process of particles in an inviscid nebula. Results of nebula flows are presented taking into account turbulence effects of nebula flows. Diffusion processes are found to control the settling of particles. 24 refs
Energy Technology Data Exchange (ETDEWEB)
Rogel-Ramirez, A [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: ARogelR@iingen.unam.mx
2008-10-15
This paper contains the description of a bidimensional Computational Fluid Dynamics (CFD), model Developer to simulate the flow and reaction in a stratified downdraft biomass gasifier, whereby Eulerian conservation equations are solved for particle and gas phase components, velocities and specific enthalpies. The model is based on the PHOENICS package and represents a tool which can be used in gasifier analysis and design. Contributions of chemical kinetics and the mixing rate using the EBU approach are considered in the gas phase global homogeneous reactions. The harmonic blending of chemical kinetics and mass transfer effects, determine the global heterogeneous reactions between char and O{sub 2}, CO{sub 2} and H{sub 2}O. The turbulence effect in the gas phase is accounted by the standard {kappa}-{epsilon} approach. The model provides information of the producer gas composition, velocities and temperature at the outlet, and allows different operating parameters and feed properties to be changed. Finally, a comparison with experimental data available in literature was done, which showed satisfactory agreement from a qualitative point of view, though further validation is required. [Spanish] Este estudio describe un modelo numerico bidimensional, basado en Dinamica de Fluidos Computacional (CFD), desarrollado para simular el flujo y las reacciones que ocurren en un gasificador estratificado de flujos paralelos, en el que se resuelven ecuaciones de conservacion Eulerianas para los componentes de la fase gaseosa, la fase solida, velocidades y entalpias especificas. El modelo esta basado en el codigo PHOENICS y representa una herramienta que puede ser utilizada en el analisis y diseno de gasificadores. En las reacciones globales homogeneas se consideran las contribuciones de la cinetica quimica y la rapidez de mezclado, usando el modelo Eddy Brake-UP (EBU). La medida harmonica de la cinetica quimica y la transferencia de masa, determinan las velocidades globales de
Modelling and simulation of turbulence and heat transfer in wall-bounded flows
Popovac, M.
2006-01-01
At present it is widely accepted that there is no universal turbulence model, i.e. no turbulence model can give acceptably good predictions for all turbulent flows that are found in nature or engineering. Every turbulence model is based on certain assumptions, and hence it is aimed at certain type
Validation of turbulence models for LMFBR outlet plenum flows
International Nuclear Information System (INIS)
Chen, Y.B.; Golay, M.W.
1977-01-01
Small scale experiments involving water flows are used to provide mean flow and turbulence field data for LMFBR outlet plenum flows. Measurements are performed at Reynolds number (Re) values of 33000 and 70000 in a 1/15 - scale FFTF geometry and at Re = 35000 in a 3/80-scale CRBR geometry. The experimental behavior is predicted using two different two-equation turbulence model computer programs, TEACH-T and VARR-II. It is found that the qualitative nature of the flow field within the plenum depends strongly upon the distribution of the mean inlet flow field, importantly also upon the degree of inlet turbulence, and also upon the turbulent momentum exchange model used in the calculations. In the FFTF geometry, the TEACH-T predictions agree well with the experiments. 7 refs
Stochastic model of Rayleigh-Taylor turbulent mixing
International Nuclear Information System (INIS)
Abarzhi, S.I.; Cadjan, M.; Fedotov, S.
2007-01-01
We propose a stochastic model to describe the random character of the dissipation process in Rayleigh-Taylor turbulent mixing. The parameter alpha, used conventionally to characterize the mixing growth-rate, is not a universal constant and is very sensitive to the statistical properties of the dissipation. The ratio between the rates of momentum loss and momentum gain is the statistic invariant and a robust parameter to diagnose with or without turbulent diffusion accounted for
Numerical modeling of flow and pollutant dispersion in street canyons with tree planting
Energy Technology Data Exchange (ETDEWEB)
Balczo, Marton [Budapest Univ. of Technology and Economics (Hungary). Theodore von Karman Wind Tunnel Lab.; Gromke, Christof; Ruck, Bodo [Karlsruhe Univ. (Germany). Lab. of Building- and Environmental Aerodynamics
2009-04-15
Numerical simulations of the impact of tree planting on airflow and traffic pollutant dispersion in urban street canyons have been performed using the commercial CFD (Computational Fluid Dynamics) code MISKAM. A {kappa}-{epsilon} turbulence model including additional terms for the treatment of vegetation, has been employed to close the Reynolds-averaged-Navier-Stokes (RANS) equations. The numerical results were compared to wind tunnel data. In the case of the investigated wind direction perpendicular to the street axis, the presence of trees lead to increased pollutant concentrations inside the canyon. Concentrations increased strongly on the upstream side of the canyon, while on the downstream side a small concentration decrease could be observed. Lower flow velocities and higher pollutant concentrations were found in the numerical simulations when directly compared to the experimental results. However, the impact of tree planting on airflow and concentration fields when compared to the treeless street canyon as a reference configuration were simulated quite well, meaning that relative changes were similar in the wind tunnel investigations and numerical computations. This feature qualifies MISKAM for use as a tool for assessing the impacts of vegetation on local air quality. (orig.)
Numerical modeling of condensation from vapor-gas mixtures for forced down flow inside a tube
Energy Technology Data Exchange (ETDEWEB)
Yuann, R Y [Taiwan Power Company, Taipei (Taiwan, Province of China); Schrock, V E [Univ. of California, Berkeley, CA (United States); Chen, Xiang
1995-09-01
Laminar film condensation is the dominant heat transfer mode inside tubes. In the present paper direct numerical simulation of the detailed transport process within the steam-gas core flow and in the condensate film is carried out. The problem was posed as an axisymmetric two dimensional (r, z) gas phase inside an annular condensate film flow with an assumed smooth interface. The fundamental conservation equations were written for mass, momentum, species concentration and energy in the gaseous phase with effective diffusion parameters characterizing the turbulent region. The low Reynolds number two equation {kappa}-{epsilon} model was employed to determine the eddy diffusion coefficients. The liquid film was described by similar formulation without the gas species equation. An empirical correlation was employed to correct for the effect of film waviness on the interfacial shear. A computer code named COAPIT (Condensation Analysis Program Inside Tube) was developed to implement numerical solution of the fundamental equations. The equations were solved by a marching technique working downstream from the entrance of the condensing section. COAPIT was benchmarked against experimental data and overall reasonable agreement was found for the key parameters such as heat transfer coefficient and tube inner wall temperature. The predicted axial development of radial profiles of velocity, composition and temperature and occurrence of metastable vapor add insight to the physical phenomena.
On the Conditioning of Machine-Learning-Assisted Turbulence Modeling
Wu, Jinlong; Sun, Rui; Wang, Qiqi; Xiao, Heng
2017-11-01
Recently, several researchers have demonstrated that machine learning techniques can be used to improve the RANS modeled Reynolds stress by training on available database of high fidelity simulations. However, obtaining improved mean velocity field remains an unsolved challenge, restricting the predictive capability of current machine-learning-assisted turbulence modeling approaches. In this work we define a condition number to evaluate the model conditioning of data-driven turbulence modeling approaches, and propose a stability-oriented machine learning framework to model Reynolds stress. Two canonical flows, the flow in a square duct and the flow over periodic hills, are investigated to demonstrate the predictive capability of the proposed framework. The satisfactory prediction performance of mean velocity field for both flows demonstrates the predictive capability of the proposed framework for machine-learning-assisted turbulence modeling. With showing the capability of improving the prediction of mean flow field, the proposed stability-oriented machine learning framework bridges the gap between the existing machine-learning-assisted turbulence modeling approaches and the demand of predictive capability of turbulence models in real applications.
Tempered fractional time series model for turbulence in geophysical flows
Meerschaert, Mark M.; Sabzikar, Farzad; Phanikumar, Mantha S.; Zeleke, Aklilu
2014-09-01
We propose a new time series model for velocity data in turbulent flows. The new model employs tempered fractional calculus to extend the classical 5/3 spectral model of Kolmogorov. Application to wind speed and water velocity in a large lake are presented, to demonstrate the practical utility of the model.
Tempered fractional time series model for turbulence in geophysical flows
International Nuclear Information System (INIS)
Meerschaert, Mark M; Sabzikar, Farzad; Phanikumar, Mantha S; Zeleke, Aklilu
2014-01-01
We propose a new time series model for velocity data in turbulent flows. The new model employs tempered fractional calculus to extend the classical 5/3 spectral model of Kolmogorov. Application to wind speed and water velocity in a large lake are presented, to demonstrate the practical utility of the model. (paper)
Alpha-modeling strategy for LES of turbulent mixing
Geurts, Bernard J.; Holm, Darryl D.; Drikakis, D.; Geurts, B.J.
2002-01-01
The α-modeling strategy is followed to derive a new subgrid parameterization of the turbulent stress tensor in large-eddy simulation (LES). The LES-α modeling yields an explicitly filtered subgrid parameterization which contains the filtered nonlinear gradient model as well as a model which
Analysis of the K-epsilon turbulence model
International Nuclear Information System (INIS)
Mohammadi, B.; Pironneau, O.
1993-12-01
This book is aimed at applied mathematicians interested in numerical simulation of turbulent flows. The book is centered around the k - ε model but it also deals with other models such as subgrid scale models, one equation models and Reynolds Stress models. The reader is expected to have some knowledge of numerical methods for fluids and, if possible, some understanding of fluid mechanics, the partial differential equations used and their variational formulations. This book presents the k - ε method for turbulence in a language familiar to applied mathematicians, stripped bare of all the technicalities of turbulence theory. The model is justified from a mathematical standpoint rather than from a physical one. The numerical algorithms are investigated and some theoretical and numerical results presented. This book should prove an invaluable tool for those studying a subject that is still controversial but very useful for industrial applications. (authors). 71 figs., 200 refs
Stochastic scalar mixing models accounting for turbulent frequency multiscale fluctuations
International Nuclear Information System (INIS)
Soulard, Olivier; Sabel'nikov, Vladimir; Gorokhovski, Michael
2004-01-01
Two new scalar micromixing models accounting for a turbulent frequency scale distribution are investigated. These models were derived by Sabel'nikov and Gorokhovski [Second International Symposium on Turbulence and Shear FLow Phenomena, Royal Institute of technology (KTH), Stockholm, Sweden, June 27-29, 2001] using a multiscale extension of the classical interaction by exchange with the mean (IEM) and Langevin models. They are, respectively, called Extended IEM (EIEM) and Extended Langevin (ELM) models. The EIEM and ELM models are tested against DNS results in the case of the decay of a homogeneous scalar field in homogeneous turbulence. This comparison leads to a reformulation of the law governing the mixing frequency distribution. Finally, the asymptotic behaviour of the modeled PDF is discussed
Log-Normal Turbulence Dissipation in Global Ocean Models
Pearson, Brodie; Fox-Kemper, Baylor
2018-03-01
Data from turbulent numerical simulations of the global ocean demonstrate that the dissipation of kinetic energy obeys a nearly log-normal distribution even at large horizontal scales O (10 km ) . As the horizontal scales of resolved turbulence are larger than the ocean is deep, the Kolmogorov-Yaglom theory for intermittency in 3D homogeneous, isotropic turbulence cannot apply; instead, the down-scale potential enstrophy cascade of quasigeostrophic turbulence should. Yet, energy dissipation obeys approximate log-normality—robustly across depths, seasons, regions, and subgrid schemes. The distribution parameters, skewness and kurtosis, show small systematic departures from log-normality with depth and subgrid friction schemes. Log-normality suggests that a few high-dissipation locations dominate the integrated energy and enstrophy budgets, which should be taken into account when making inferences from simplified models and inferring global energy budgets from sparse observations.
Turbulence Modeling and Computation of Turbine Aerodynamics and Heat Transfer
Lakshminarayana, B.; Luo, J.
1996-01-01
The objective of the present research is to develop improved turbulence models for the computation of complex flows through turbomachinery passages, including the effects of streamline curvature, heat transfer and secondary flows. Advanced turbulence models are crucial for accurate prediction of rocket engine flows, due to existance of very large extra strain rates, such as strong streamline curvature. Numerical simulation of the turbulent flows in strongly curved ducts, including two 180-deg ducts, one 90-deg duct and a strongly concave curved turbulent boundary layer have been carried out with Reynolds stress models (RSM) and algebraic Reynolds stress models (ARSM). An improved near-wall pressure-strain correlation has been developed for capturing the anisotropy of turbulence in the concave region. A comparative study of two modes of transition in gas turbine, the by-pass transition and the separation-induced transition, has been carried out with several representative low-Reynolds number (LRN) k-epsilon models. Effects of blade surface pressure gradient, freestream turbulence and Reynolds number on the blade boundary layer development, and particularly the inception of transition are examined in detail. The present study indicates that the turbine blade transition, in the presence of high freestream turbulence, is predicted well with LRN k-epsilon models employed. The three-dimensional Navier-Stokes procedure developed by the present authors has been used to compute the three-dimensional viscous flow through the turbine nozzle passage of a single stage turbine. A low Reynolds number k-epsilon model and a zonal k-epsilon/ARSM (algebraic Reynolds stress model) are utilized for turbulence closure. An assessment of the performance of the turbulence models has been carried out. The two models are found to provide similar predictions for the mean flow parameters, although slight improvement in the prediction of some secondary flow quantities has been obtained by the
Hydrodynamics of Bubble Columns: Turbulence and Population Balance Model
Directory of Open Access Journals (Sweden)
Camila Braga Vieira
2018-03-01
Full Text Available This paper presents an in-depth numerical analysis on the hydrodynamics of a bubble column. As in previous works on the subject, the focus here is on three important parameters characterizing the flow: interfacial forces, turbulence and inlet superficial Gas Velocity (UG. The bubble size distribution is taken into account by the use of the Quadrature Method of Moments (QMOM model in a two-phase Euler-Euler approach using the open-source Computational Fluid Dynamics (CFD code OpenFOAM (Open Field Operation and Manipulation. The interfacial forces accounted for in all the simulations presented here are drag, lift and virtual mass. For the turbulence analysis in the water phase, three versions of the Reynolds Averaged Navier-Stokes (RANS k-ε turbulence model are examined: namely, the standard, modified and mixture variants. The lift force proves to be of major importance for a trustworthy prediction of the gas volume fraction profiles for all the (superficial gas velocities tested. Concerning the turbulence, the mixture k-ε model is seen to provide higher values of the turbulent kinetic energy dissipation rate in comparison to the other models, and this clearly affects the prediction of the gas volume fraction in the bulk region, and the bubble-size distribution. In general, the modified k-ε model proves to be a good compromise between modeling simplicity and accuracy in the study of bubble columns of the kind undertaken here.
Center for modeling of turbulence and transition: Research briefs, 1995
1995-10-01
This research brief contains the progress reports of the research staff of the Center for Modeling of Turbulence and Transition (CMOTT) from July 1993 to July 1995. It also constitutes a progress report to the Institute of Computational Mechanics in Propulsion located at the Ohio Aerospace Institute and the Lewis Research Center. CMOTT has been in existence for about four years. In the first three years, its main activities were to develop and validate turbulence and combustion models for propulsion systems, in an effort to remove the deficiencies of existing models. Three workshops on computational turbulence modeling were held at LeRC (1991, 1993, 1994). At present, CMOTT is integrating the CMOTT developed/improved models into CFD tools which can be used by the propulsion systems community. This activity has resulted in an increased collaboration with the Lewis CFD researchers.
Strained spiral vortex model for turbulent fine structure
Lundgren, T. S.
1982-01-01
A model for the intermittent fine structure of high Reynolds number turbulence is proposed. The model consists of slender axially strained spiral vortex solutions of the Navier-Stokes equation. The tightening of the spiral turns by the differential rotation of the induced swirling velocity produces a cascade of velocity fluctuations to smaller scale. The Kolmogorov energy spectrum is a result of this model.
Numerical modeling of buoyancy-driven turbulent flows in enclosures
International Nuclear Information System (INIS)
Hsieh, K.J.; Lien, F.S.
2004-01-01
Modeling turbulent natural convection in enclosures with differentially heated vertical walls is numerically challenging, in particular, when low-Reynolds-number (low-Re) models are adopted. When the turbulence level in the core region of cavity is low, most low-Re models, particular those showing good performance for bypass transitional flows, tend to relaminarize the flow and, as a consequence, significantly underpredict the near-wall turbulence intensities and boundary-layer thickness. Another challenge associated with low-turbulence buoyancy-driven flows in enclosures is its inherent unsteadiness, which can pose convergence problems when a steady Reynolds-averaged Navier-Stokes (RANS) equation is solved. In the present study, an unsteady RANS approach in conjunction with the low-Re k-ε model of Lien and Leschziner [Int. J. Comput. Fluid Dyn. 12 (1999) 1] is initially adopted and the predicted flow field is found effectively relaminarized. To overcome this difficulty, likely caused by the low-Re functions in the ε-equation, the two-layer approach is attempted, in which ε is prescribed algebraically using the one-equation k-l model of Wolfshtein [Int. J. Heat Mass Transfer 12 (1969) 301]. The two-layer approach combined with a quadratic stress-strain relation gives overall the best performance in terms of mean velocities, temperature and turbulence quantities
Development of multidimensional two-fluid model code ACE-3D for evaluation of constitutive equations
Energy Technology Data Exchange (ETDEWEB)
Ohnuki, Akira; Akimoto, Hajime [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kamo, Hideki
1996-11-01
In order to perform design calculations for a passive safety reactor with good accuracy by a multidimensional two-fluid model, we developed an analysis code, ACE-3D, which can apply for evaluation of constitutive equations. The developed code has the following features: 1. The basic equations are based on 3-dimensional two-fluid model and the orthogonal or the cylindrical coordinate system can be selected. The fluid system is air-water or steam-water. 2. The basic equations are formulated by the finite-difference scheme of staggered mesh. The convection term is formulated by an upwind scheme and the diffusion term by a center-difference scheme. 3. Semi-implicit numerical scheme is adopted and the mass and the energy equations are treated equally in convergent steps for Jacobi equations. 4. The interfacial stress term consists of drag force, life force, turbulent dispersion force, wall force and virtual mass force. 5. A {kappa}-{epsilon} turbulent model for bubbly flow is incorporated as the turbulent model. The predictive capability of ACE-3D has been verified using a data-base for bubbly flow in a small-scale vertical pipe. In future, the constitutive equations will be improved with a data-base in a large vertical pipe developed in our laboratory and we have a plan to construct a reliable analytical tool through the improvement work, the progress of calculational speed with vector and parallel processing, the assessments for phase change terms and so on. This report describes the outline for the basic equations and the finite-difference equations in ACE-3D code and also the outline for the program structure. Besides, the results for the assessments of ACE-3D code for the small-scale pipe are summarized. (author)
Approximate deconvolution models of turbulence analysis, phenomenology and numerical analysis
Layton, William J
2012-01-01
This volume presents a mathematical development of a recent approach to the modeling and simulation of turbulent flows based on methods for the approximate solution of inverse problems. The resulting Approximate Deconvolution Models or ADMs have some advantages over more commonly used turbulence models – as well as some disadvantages. Our goal in this book is to provide a clear and complete mathematical development of ADMs, while pointing out the difficulties that remain. In order to do so, we present the analytical theory of ADMs, along with its connections, motivations and complements in the phenomenology of and algorithms for ADMs.
A minimal model of self-sustaining turbulence
International Nuclear Information System (INIS)
Thomas, Vaughan L.; Gayme, Dennice F.; Farrell, Brian F.; Ioannou, Petros J.
2015-01-01
In this work, we examine the turbulence maintained in a Restricted Nonlinear (RNL) model of plane Couette flow. This model is a computationally efficient approximation of the second order statistical state dynamics obtained by partitioning the flow into a streamwise averaged mean flow and perturbations about that mean, a closure referred to herein as the RNL ∞ model. The RNL model investigated here employs a single member of the infinite ensemble that comprises the covariance of the RNL ∞ dynamics. The RNL system has previously been shown to support self-sustaining turbulence with a mean flow and structural features that are consistent with direct numerical simulations (DNS). Regardless of the number of streamwise Fourier components used in the simulation, the RNL system’s self-sustaining turbulent state is supported by a small number of streamwise varying modes. Remarkably, further truncation of the RNL system’s support to as few as one streamwise varying mode can suffice to sustain the turbulent state. The close correspondence between RNL simulations and DNS that has been previously demonstrated along with the results presented here suggest that the fundamental mechanisms underlying wall-turbulence can be analyzed using these highly simplified RNL systems
The lagRST Model: A Turbulence Model for Non-Equilibrium Flows
Lillard, Randolph P.; Oliver, A. Brandon; Olsen, Michael E.; Blaisdell, Gregory A.; Lyrintzis, Anastasios S.
2011-01-01
This study presents a new class of turbulence model designed for wall bounded, high Reynolds number flows with separation. The model addresses deficiencies seen in the modeling of nonequilibrium turbulent flows. These flows generally have variable adverse pressure gradients which cause the turbulent quantities to react at a finite rate to changes in the mean flow quantities. This "lag" in the response of the turbulent quantities can t be modeled by most standard turbulence models, which are designed to model equilibrium turbulent boundary layers. The model presented uses a standard 2-equation model as the baseline for turbulent equilibrium calculations, but adds transport equations to account directly for non-equilibrium effects in the Reynolds Stress Tensor (RST) that are seen in large pressure gradients involving shock waves and separation. Comparisons are made to several standard turbulence modeling validation cases, including an incompressible boundary layer (both neutral and adverse pressure gradients), an incompressible mixing layer and a transonic bump flow. In addition, a hypersonic Shock Wave Turbulent Boundary Layer Interaction with separation is assessed along with a transonic capsule flow. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWTBLI flows assessed. Separation predictions are not as good as the baseline models, but the over prediction of the peak heat flux downstream of the reattachment shock that plagues many models is reduced.
On the problem of turbulent arcs modelling
International Nuclear Information System (INIS)
Yas'ko, O.I.
1998-01-01
A new hypothesis is proposed which considers mass as a charge which produces a special field during its movement likewise the electric charge creates magnetic one. This approach throws new light on vortexes formation since interaction of moving mass with the considered field exerts swirling effect. Some aspects of turbulence in flows near walls and in blown electric arc discharge were considered to validate the hypothesis in the cases of cold and high-temperature flows. The theoretical results are found to comply with experiment well. (author)
Numerical schemes for one-point closure turbulence models
International Nuclear Information System (INIS)
Larcher, Aurelien
2010-01-01
First-order Reynolds Averaged Navier-Stokes (RANS) turbulence models are studied in this thesis. These latter consist of the Navier-Stokes equations, supplemented with a system of balance equations describing the evolution of characteristic scalar quantities called 'turbulent scales'. In so doing, the contribution of the turbulent agitation to the momentum can be determined by adding a diffusive coefficient (called 'turbulent viscosity') in the Navier-Stokes equations, such that it is defined as a function of the turbulent scales. The numerical analysis problems, which are studied in this dissertation, are treated in the frame of a fractional step algorithm, consisting of an approximation on regular meshes of the Navier-Stokes equations by the nonconforming Crouzeix-Raviart finite elements, and a set of scalar convection-diffusion balance equations discretized by the standard finite volume method. A monotone numerical scheme based on the standard finite volume method is proposed so as to ensure that the turbulent scales, like the turbulent kinetic energy (k) and its dissipation rate (ε), remain positive in the case of the standard k - ε model, as well as the k - ε RNG and the extended k - ε - ν 2 models. The convergence of the proposed numerical scheme is then studied on a system composed of the incompressible Stokes equations and a steady convection-diffusion equation, which are both coupled by the viscosities and the turbulent production term. This reduced model allows to deal with the main difficulty encountered in the analysis of such problems: the definition of the turbulent production term leads to consider a class of convection-diffusion problems with an irregular right-hand side belonging to L 1 . Finally, to step towards the unsteady problem, the convergence of the finite volume scheme for a model convection-diffusion equation with L 1 data is proved. The a priori estimates on the solution and on its time derivative are obtained in discrete norms, for
Turbulence Modeling of Flows with Extensive Crossflow Separation
Directory of Open Access Journals (Sweden)
Argyris G. Panaras
2015-07-01
Full Text Available The reasons for the difficulty in simulating accurately strong 3-D shock wave/turbulent boundary layer interactions (SBLIs and high-alpha flows with classical turbulence models are investigated. These flows are characterized by the appearance of strong crossflow separation. In view of recent additional evidence, a previously published flow analysis, which attributes the poor performance of classical turbulence models to the observed laminarization of the separation domain, is reexamined. According to this analysis, the longitudinal vortices into which the separated boundary layer rolls up in this type of separated flow, transfer external inviscid air into the part of the separation adjacent to the wall, decreasing its turbulence. It is demonstrated that linear models based on the Boussinesq equation provide solutions of moderate accuracy, while non-linear ones and others that consider the particular structure of the flow are more efficient. Published and new Reynolds Averaged Navier–Stokes (RANS simulations are reviewed, as well as results from a recent Large Eddy Simulation (LES study, which indicate that in calculations characterized by sufficient accuracy the turbulent kinetic energy of the reverse flow inside the separation vortices is very low, i.e., the flow is almost laminar there.
A new turbulence-based model for sand transport
Mayaud, Jerome; Wiggs, Giles; Bailey, Richard
2016-04-01
Knowledge of the changing rate of sediment flux in space and time is essential for quantifying surface erosion and deposition in desert landscapes. While many aeolian studies have relied on time-averaged parameters such as wind velocity (U) and wind shear velocity (u*) to determine sediment flux, there is increasing evidence that high-frequency turbulence is an important driving force behind the entrainment and transport of sand. However, turbulence has yet to be incorporated into a functional sand transport model that can be used for predictive purposes. In this study we present a new transport model (the 'turbulence model') that accounts for high-frequency variations in the horizontal (u) and vertical (w) components of wind flow. The turbulence model is fitted to wind velocity and sediment transport data from a field experiment undertaken in Namibia's Skeleton Coast National Park, and its performance at three temporal resolutions (10 Hz, 1 Hz, 1 min) is compared to two existing models that rely on time-averaged wind velocity data (Radok, 1977; Dong et al., 2003). The validity of the three models is analysed under a variety of saltation conditions, using a 2-hour (1 Hz measurement resolution) dataset from the Skeleton Coast and a 5-hour (1 min measurement resolution) dataset from the southwestern Kalahari Desert. The turbulence model is shown to outperform the Radok and Dong models when predicting total saltation count over the three experimental periods. For all temporal resolutions presented in this study (10 Hz-10 min), the turbulence model predicted total saltation count to within at least 0.34%, whereas the Radok and Dong models over- or underestimated total count by up to 5.50% and 20.53% respectively. The strong performance of the turbulence model can be attributed to a lag in mass flux response built into its formulation, which can be adapted depending on the temporal resolution of investigation. This accounts for the inherent lag within the physical
Decaying and kicked turbulence in a shell model
DEFF Research Database (Denmark)
Hooghoudt, Jan Otto; Lohse, Detlef; Toschi, Federico
2001-01-01
Decaying and periodically kicked turbulence are analyzed within the Gledzer–Ohkitani–Yamada shell model, to allow for sufficiently large scaling regimes. Energy is transferred towards the small scales in intermittent bursts. Nevertheless, mean field arguments are sufficient to account for the ens......Decaying and periodically kicked turbulence are analyzed within the Gledzer–Ohkitani–Yamada shell model, to allow for sufficiently large scaling regimes. Energy is transferred towards the small scales in intermittent bursts. Nevertheless, mean field arguments are sufficient to account...
On turbulence models for rod bundle flow computations
International Nuclear Information System (INIS)
Hazi, Gabor
2005-01-01
In commercial computational fluid dynamics codes there is more than one turbulence model built in. It is the user responsibility to choose one of those models, suitable for the problem studied. In the last decade, several computations were presented using computational fluid dynamics for the simulation of various problems of the nuclear industry. A common feature in a number of those simulations is that they were performed using the standard k-ε turbulence model without justifying the choice of the model. The simulation results were rarely satisfactory. In this paper, we shall consider the flow in a fuel rod bundle as a case study and discuss why the application of the standard k-ε model fails to give reasonable results in this situation. We also show that a turbulence model based on the Reynolds stress transport equations can provide qualitatively correct results. Generally, our aim is pedagogical, we would like to call the readers attention to the fact that turbulence models have to be selected based on theoretical considerations and/or adequate information obtained from measurements
A unified wall function for compressible turbulence modelling
Ong, K. C.; Chan, A.
2018-05-01
Turbulence modelling near the wall often requires a high mesh density clustered around the wall and the first cells adjacent to the wall to be placed in the viscous sublayer. As a result, the numerical stability is constrained by the smallest cell size and hence requires high computational overhead. In the present study, a unified wall function is developed which is valid for viscous sublayer, buffer sublayer and inertial sublayer, as well as including effects of compressibility, heat transfer and pressure gradient. The resulting wall function applies to compressible turbulence modelling for both isothermal and adiabatic wall boundary conditions with the non-zero pressure gradient. Two simple wall function algorithms are implemented for practical computation of isothermal and adiabatic wall boundary conditions. The numerical results show that the wall function evaluates the wall shear stress and turbulent quantities of wall adjacent cells at wide range of non-dimensional wall distance and alleviate the number and size of cells required.
Sensitivity study of CFD turbulent models for natural convection analysis
International Nuclear Information System (INIS)
Yu sun, Park
2007-01-01
The buoyancy driven convective flow fields are steady circulatory flows which were made between surfaces maintained at two fixed temperatures. They are ubiquitous in nature and play an important role in many engineering applications. Application of a natural convection can reduce the costs and efforts remarkably. This paper focuses on the sensitivity study of turbulence analysis using CFD (Computational Fluid Dynamics) for a natural convection in a closed rectangular cavity. Using commercial CFD code, FLUENT and various turbulent models were applied to the turbulent flow. Results from each CFD model will be compared each other in the viewpoints of grid resolution and flow characteristics. It has been showed that: -) obtaining general flow characteristics is possible with relatively coarse grid; -) there is no significant difference between results from finer grid resolutions than grid with y + + is defined as y + = ρ*u*y/μ, u being the wall friction velocity, y being the normal distance from the center of the cell to the wall, ρ and μ being respectively the fluid density and the fluid viscosity; -) the K-ε models show a different flow characteristic from K-ω models or from the Reynolds Stress Model (RSM); and -) the y + parameter is crucial for the selection of the appropriate turbulence model to apply within the simulation
Constructive modelling of structural turbulence: computational experiment
Energy Technology Data Exchange (ETDEWEB)
Belotserkovskii, O M; Oparin, A M; Troshkin, O V [Institute for Computer Aided Design, Russian Academy of Sciences, Vtoraya Brestskaya st., 19/18, Moscow, 123056 (Russian Federation); Chechetkin, V M [Keldysh Institute for Applied Mathematics, Russian Academy of Sciences, Miusskaya sq., 4, Moscow, 125047 (Russian Federation)], E-mail: o.bel@icad.org.ru, E-mail: a.oparin@icad.org.ru, E-mail: troshkin@icad.org.ru, E-mail: chech@gin@keldysh.ru
2008-12-15
Constructively, the analysis of the phenomenon of turbulence must and can be performed through direct numerical simulations of mechanics supposed to be inherent to secondary flows. This one reveals itself through such instances as large vortices, structural instabilities, vortex cascades and principal modes discussed in this paper. Like fragments of a puzzle, they speak of a motion ordered with its own nuts and bolts, however chaotic it appears at first sight. This opens an opportunity for a multi-oriented approach of which a prime ideology seems to be a rational combination of grid, spectral and statistical methods. An attempt is made to bring together the above instances and produce an alternative point of view on the phenomenon in question when based on the main laws of conservation.
Description of group-theoretical model of developed turbulence
International Nuclear Information System (INIS)
Saveliev, V L; Gorokhovski, M A
2008-01-01
We propose to associate the phenomenon of stationary turbulence with the special self-similar solutions of the Euler equations. These solutions represent the linear superposition of eigenfields of spatial symmetry subgroup generators and imply their dependence on time through the parameter of the symmetry transformation only. From this model, it follows that for developed turbulent process, changing the scale of averaging (filtering) of the velocity field is equivalent to composition of scaling, translation and rotation transformations. We call this property a renormalization-group invariance of filtered turbulent fields. The renormalization group invariance provides an opportunity to transform the averaged Navier-Stokes equation over a small scale (inner threshold of the turbulence) to larger scales by simple scaling. From the methodological point of view, it is significant to note that the turbulent viscosity term appeared not as a result of averaging of the nonlinear term in the Navier-Stokes equation, but from the molecular viscosity term with the help of renormalization group transformation.
Gaussian free turbulence: structures and relaxation in plasma models
International Nuclear Information System (INIS)
Gruzinov, A.V.
1993-01-01
Free-turbulent relaxation in two-dimensional MHD, the degenerate Hasegawa-Mima equation and a two-dimensional microtearing model are studied. The Gibbs distributions of these three systems can be completely analyzed, due to the special structure of their invariants and due to the existence of ultraviolet catastrophe. The free-turbulent field is seen to be a sum of a certain coherent structure (statistical attractor) and Gaussian random noise. Two-dimensional current layers are shown to be statistical attractors in 2D MHD. (author)
Energy Technology Data Exchange (ETDEWEB)
Gammon, M.; Shalchi, A., E-mail: andreasm4@yahoo.com [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)
2017-10-01
In several astrophysical applications one needs analytical forms of cosmic-ray diffusion parameters. Some examples are studies of diffusive shock acceleration and solar modulation. In the current article we explore perpendicular diffusion based on the unified nonlinear transport theory. While we focused on magnetostatic turbulence in Paper I, we included the effect of dynamical turbulence in Paper II of the series. In the latter paper we assumed that the temporal correlation time does not depend on the wavenumber. More realistic models have been proposed in the past, such as the so-called damping model of dynamical turbulence. In the present paper we derive analytical forms for the perpendicular diffusion coefficient of energetic particles in two-component turbulence for this type of time-dependent turbulence. We present new formulas for the perpendicular diffusion coefficient and we derive a condition for which the magnetostatic result is recovered.
Duvvuri, Subrahmanyam; McKeon, Beverley
2017-03-13
Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Group-kinetic theory and modeling of atmospheric turbulence
Tchen, C. M.
1989-01-01
A group kinetic method is developed for analyzing eddy transport properties and relaxation to equilibrium. The purpose is to derive the spectral structure of turbulence in incompressible and compressible media. Of particular interest are: direct and inverse cascade, boundary layer turbulence, Rossby wave turbulence, two phase turbulence; compressible turbulence, and soliton turbulence. Soliton turbulence can be found in large scale turbulence, turbulence connected with surface gravity waves and nonlinear propagation of acoustical and optical waves. By letting the pressure gradient represent the elementary interaction among fluid elements and by raising the Navier-Stokes equation to higher dimensionality, the master equation was obtained for the description of the microdynamical state of turbulence.
Li, Chunggang; Tsubokura, Makoto; Wang, Weihsiang
2017-11-01
The automatic dissipation adjustment (ADA) model based on truncated Navier-Stokes equations is utilized to investigate the feasibility of using implicit large eddy simulation (ILES) with ADA model on the transition in natural convection. Due to the high Rayleigh number coming from the larger temperature difference (300K), Roe scheme modified for low Mach numbers coordinating ADA model is used to resolve the complicated flow field. Based on the qualitative agreement of the comparisons with DNS and experimental results and the capability of numerically predicating a -3 decay law for the temporal power spectrum of the temperature fluctuation, this study thus validates the feasibility of ILES with ADA model on turbulent natural convection. With the advantages of ease of implementation because no explicit modeling terms are needed and nearly free of tuning parameters, ADA model offers to become a promising tool for turbulent thermal convection. Part of the results is obtained using the K computer at the RIKEN Advanced Institute for Computational Science (Proposal number hp160232).
A marketing mix model for a complex and turbulent environment
Directory of Open Access Journals (Sweden)
R. B. Mason
2007-12-01
Full Text Available Purpose: This paper is based on the proposition that the choice of marketing tactics is determined, or at least significantly influenced, by the nature of the companys external environment. It aims to illustrate the type of marketing mix tactics that are suggested for a complex and turbulent environment when marketing and the environment are viewed through a chaos and complexity theory lens. Design/Methodology/Approach: Since chaos and complexity theories are proposed as a good means of understanding the dynamics of complex and turbulent markets, a comprehensive review and analysis of literature on the marketing mix and marketing tactics from a chaos and complexity viewpoint was conducted. From this literature review, a marketing mix model was conceptualised. Findings: A marketing mix model considered appropriate for success in complex and turbulent environments was developed. In such environments, the literature suggests destabilising marketing activities are more effective, whereas stabilising type activities are more effective in simple, stable environments. Therefore the model proposes predominantly destabilising type tactics as appropriate for a complex and turbulent environment such as is currently being experienced in South Africa. Implications: This paper is of benefit to marketers by emphasising a new way to consider the future marketing activities of their companies. How this model can assist marketers and suggestions for research to develop and apply this model are provided. It is hoped that the model suggested will form the basis of empirical research to test its applicability in the turbulent South African environment. Originality/Value: Since businesses and markets are complex adaptive systems, using complexity theory to understand how to cope in complex, turbulent environments is necessary, but has not been widely researched. In fact, most chaos and complexity theory work in marketing has concentrated on marketing strategy, with
Fluid model of the magnetic presheath in a turbulent plasma
International Nuclear Information System (INIS)
Stanojevic, M; Duhovnik, J; Jelic, N; Kendl, A; Kuhn, S
2005-01-01
A fluid model of the magnetic presheath in a turbulent boundary plasma is presented. Turbulent transport corrections of the classical three-dimensional fluid transport equations, which can be used to study magnetic presheaths in various geometries, are derived by means of the ensemble averaging procedure from the statistical theory of plasma turbulence. Then, the magnetic presheath in front of an infinite plane surface is analysed in detail. The linearized planar magnetic presheath equations are applied to the plasma-presheath-magnetic-presheath boundary (i.e. the magnetic presheath edge), whereas the original non-linear planar magnetic presheath equations are used for the entire magnetic presheath, allowing for various sets of experimentally relevant free model parameters to be applied. Important new results of this study are, among others, new expressions for the fluid Bohm criterion at the Debye sheath edge and for the ion flux density perpendicular to the wall. These new results, which exhibit corrections due to the turbulent charged particle transport, can qualitatively explain the fact that whenever the angle between the magnetic field and the wall is very small (i.e. several degrees) or zero, electric currents, measured by Langmuir probes in the boundary regions of nuclear fusion devices and in various low-temperature plasmas, are anomalously enhanced in comparison with those expected or predicted by other theoretical models
Studies of turbulent round jets through experimentation, simulation, and modeling
Keedy, Ryan
This thesis studies the physics of the turbulent round jet. In particular, it focuses on three different problems that have the turbulent round jet as their base flow. The first part of this thesis examines a compressible turbulent round jet at its sonic condition. We investigate the shearing effect such a jet has when impinging on a solid surface that is perpendicular to the flow direction. We report on experiments to evaluate the jet's ability to remove different types of explosive particles from a glass surface. Theoretical analysis revealed trends and enabled modeling to improve the predictability of particle removal for various jet conditions. The second part of thesis aims at developing a non-intrusive measurement technique for free-shear turbulent flows in nature. Most turbulent jet investigations in the literature, both in the laboratory and in the field, required specialized intrusive instrumentation and/or complex optical setups. There are many situations in naturally-occurring flows where the environment may prove too hostile or remote for existing instrumentation. We have developed a methodology for analyzing video of the exterior of a naturally-occurring flow and calculating the flow velocity. We found that the presence of viscosity gradients affects the velocity analysis. While these effects produce consistent, predictable changes, we became interested in the mechanism by which the viscosity gradients affect the mixing and development of the turbulent round jet. We conducted a stability analysis of the axisymmetric jet when a viscosity gradient is present. Finally, the third problem addressed in this thesis is the growth of liquid droplets by condensation in a turbulent round jet. A vapor-saturated turbulent jet issues into a cold, dry environment. The resulting mixing produces highly inhomogeneous regions of supersaturation, where droplets grow and evaporate. Non-linear interactions between the droplet growth rate and the supersaturation field make
Dogan, Eda; Hearst, R Jason; Ganapathisubramani, Bharathram
2017-03-13
A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to 'simulate' high Reynolds number wall-turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Energy Technology Data Exchange (ETDEWEB)
Takeda, K [Kawasaki Steel Corp., Tokyo (Japan); Lockwood, F
1996-06-01
For the calculation of pulverized coal combustion in a blast furnace blow pipe and tuyere, a model was built for the evaluation of the movement and dispersion of particles in a packed bed by use of a stochastic approach. In the stochastic particle trajectory calculation taking into consideration the impact of fluctuations in gas turbulence, interaction distance between particles and eddies and interaction time have to be determined, in addition to fluctuations in gas flow velocity (to be determined by measuring the instantaneous flow velocity in a normal distribution generated according to random numbers). The eddy life was determined using Shuen`s formula on the premise that the particle-eddy interaction occurs within the calculated life or the transit time, whichever is shorter. As for the turbulence energy {kappa}, it was determined by the {kappa}-{epsilon} model for the free space and by the {kappa}-Lm(mixing length) model for the packed bed. From the average of a multiplicity of particles in the experiment, such time average specific values as the average density and flow velocity vectors of particles in the space, and particle trajectories, were calculated, which proved to agree with values from experiments. Once in the packed bed, the pulverized coal underwent a sudden deceleration due to its interaction with particles in the packed bed, and the pulverized coal flow near the central axis was rapidly diffused in the packed bed. This model is expected to find its use in the study of pulverized coal combustion in the blast furnace. 18 refs., 12 figs., 2 tabs.
Numerical prediction of an axisymmetric turbulent mixing layer using two turbulence models
Johnson, Richard W.
1992-01-01
Nuclear power, once considered and then rejected (in the U. S.) for application to space vehicle propulsion, is being reconsidered for powering space rockets, especially for interplanetary travel. The gas core reactor, a high risk, high payoff nuclear engine concept, is one that was considered in the 1960s and 70s. As envisioned then, the gas core reactor would consist of a heavy, slow moving core of fissioning uranium vapor surrounded by a fast moving outer stream of hydrogen propellant. Satisfactory operation of such a configuration would require stable nuclear reaction kinetics to occur simultaneously with a stable, coflowing, probably turbulent fluid system having a dense inner stream and a light outer stream. The present study examines the behavior of two turbulence models in numerically simulating an idealized version of the above coflowing fluid system. The two models are the standard k˜ɛ model and a thin shear algebraic stress model (ASM). The idealized flow system can be described as an axisymmetric mixing layer of constant density. Predictions for the radial distribution of the mean streamwise velocity and shear stress for several axial stations are compared with experiment. Results for the k˜ɛe predictions are broadly satisfactory while those for the ASM are distinctly poorer.
Stochastic models of edge turbulent transport in the thermonuclear reactors
International Nuclear Information System (INIS)
Volchenkov, Dima
2005-01-01
Two-dimensional stochastic model of turbulent transport in the scrape-off layer (SOL) of thermonuclear reactors is considered. Convective instability arisen in the system with respect to perturbations reveals itself in the strong outward bursts of particle density propagating ballistically across the SOL. The criterion of stability for the fluctuations of particle density is formulated. A possibility to stabilize the system depends upon the certain type of plasma waves interactions and the certain scenario of turbulence. A bias of limiter surface would provide a fairly good insulation of chamber walls excepting for the resonant cases. Pdf of the particle flux for the large magnitudes of flux events is modeled with a simple discrete time toy model of I-dimensional random walks concluding at the boundary. The spectra of wandering times feature the pdf of particle flux in the model and qualitatively reproduce the experimental statistics of transport events
Validating modeled turbulent heat fluxes across large freshwater surfaces
Lofgren, B. M.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Fitzpatrick, L.; Blanken, P.; Spence, C.; Lenters, J. D.; Xiao, C.; Charusambot, U.
2017-12-01
Turbulent fluxes of latent and sensible heat are important physical processes that influence the energy and water budgets of the Great Lakes. Validation and improvement of bulk flux algorithms to simulate these turbulent heat fluxes are critical for accurate prediction of hydrodynamics, water levels, weather, and climate over the region. Here we consider five heat flux algorithms from several model systems; the Finite-Volume Community Ocean Model, the Weather Research and Forecasting model, and the Large Lake Thermodynamics Model, which are used in research and operational environments and concentrate on different aspects of the Great Lakes' physical system, but interface at the lake surface. The heat flux algorithms were isolated from each model and driven by meteorological data from over-lake stations in the Great Lakes Evaporation Network. The simulation results were compared with eddy covariance flux measurements at the same stations. All models show the capacity to the seasonal cycle of the turbulent heat fluxes. Overall, the Coupled Ocean Atmosphere Response Experiment algorithm in FVCOM has the best agreement with eddy covariance measurements. Simulations with the other four algorithms are overall improved by updating the parameterization of roughness length scales of temperature and humidity. Agreement between modelled and observed fluxes notably varied with geographical locations of the stations. For example, at the Long Point station in Lake Erie, observed fluxes are likely influenced by the upwind land surface while the simulations do not take account of the land surface influence, and therefore the agreement is worse in general.
Turbulence modeling for Francis turbine water passages simulation
International Nuclear Information System (INIS)
Maruzewski, P; Munch, C; Mombelli, H P; Avellan, F; Hayashi, H; Yamaishi, K; Hashii, T; Sugow, Y
2010-01-01
The applications of Computational Fluid Dynamics, CFD, to hydraulic machines life require the ability to handle turbulent flows and to take into account the effects of turbulence on the mean flow. Nowadays, Direct Numerical Simulation, DNS, is still not a good candidate for hydraulic machines simulations due to an expensive computational time consuming. Large Eddy Simulation, LES, even, is of the same category of DNS, could be an alternative whereby only the small scale turbulent fluctuations are modeled and the larger scale fluctuations are computed directly. Nevertheless, the Reynolds-Averaged Navier-Stokes, RANS, model have become the widespread standard base for numerous hydraulic machine design procedures. However, for many applications involving wall-bounded flows and attached boundary layers, various hybrid combinations of LES and RANS are being considered, such as Detached Eddy Simulation, DES, whereby the RANS approximation is kept in the regions where the boundary layers are attached to the solid walls. Furthermore, the accuracy of CFD simulations is highly dependent on the grid quality, in terms of grid uniformity in complex configurations. Moreover any successful structured and unstructured CFD codes have to offer a wide range to the variety of classic RANS model to hybrid complex model. The aim of this study is to compare the behavior of turbulent simulations for both structured and unstructured grids topology with two different CFD codes which used the same Francis turbine. Hence, the study is intended to outline the encountered discrepancy for predicting the wake of turbine blades by using either the standard k-ε model, or the standard k-ε model or the SST shear stress model in a steady CFD simulation. Finally, comparisons are made with experimental data from the EPFL Laboratory for Hydraulic Machines reduced scale model measurements.
The Turbulent Interstellar Medium: Insights and Questions from Numerical Models
Mac Low, Mordecai-Mark; de Avillez, Miguel A.; Korpi, Maarit J.
2003-01-01
"The purpose of numerical models is not numbers but insight." (Hamming) In the spirit of this adage, and of Don Cox's approach to scientific speaking, we discuss the questions that the latest generation of numerical models of the interstellar medium raise, at least for us. The energy source for the interstellar turbulence is still under discussion. We review the argument for supernovae dominating in star forming regions. Magnetorotational instability has been suggested as a way of coupling di...
Turbulence modeling for Francis turbine water passages simulation
Energy Technology Data Exchange (ETDEWEB)
Maruzewski, P; Munch, C; Mombelli, H P; Avellan, F [Ecole polytechnique federale de Lausanne, Laboratory of Hydraulic Machines Avenue de Cour 33 bis, CH-1007 Lausanne (Switzerland); Hayashi, H; Yamaishi, K; Hashii, T; Sugow, Y, E-mail: pierre.maruzewski@epfl.c [Nippon KOEI Power Systems, 1-22 Doukyu, Aza, Morijyuku, Sukagawa, Fukushima Pref. 962-8508 (Japan)
2010-08-15
The applications of Computational Fluid Dynamics, CFD, to hydraulic machines life require the ability to handle turbulent flows and to take into account the effects of turbulence on the mean flow. Nowadays, Direct Numerical Simulation, DNS, is still not a good candidate for hydraulic machines simulations due to an expensive computational time consuming. Large Eddy Simulation, LES, even, is of the same category of DNS, could be an alternative whereby only the small scale turbulent fluctuations are modeled and the larger scale fluctuations are computed directly. Nevertheless, the Reynolds-Averaged Navier-Stokes, RANS, model have become the widespread standard base for numerous hydraulic machine design procedures. However, for many applications involving wall-bounded flows and attached boundary layers, various hybrid combinations of LES and RANS are being considered, such as Detached Eddy Simulation, DES, whereby the RANS approximation is kept in the regions where the boundary layers are attached to the solid walls. Furthermore, the accuracy of CFD simulations is highly dependent on the grid quality, in terms of grid uniformity in complex configurations. Moreover any successful structured and unstructured CFD codes have to offer a wide range to the variety of classic RANS model to hybrid complex model. The aim of this study is to compare the behavior of turbulent simulations for both structured and unstructured grids topology with two different CFD codes which used the same Francis turbine. Hence, the study is intended to outline the encountered discrepancy for predicting the wake of turbine blades by using either the standard k-{epsilon} model, or the standard k-{epsilon} model or the SST shear stress model in a steady CFD simulation. Finally, comparisons are made with experimental data from the EPFL Laboratory for Hydraulic Machines reduced scale model measurements.
MODELING OF AN AIRPLANE WING MOMENTS INDUCED BY ATMOSPHERIC TURBULENCE
Directory of Open Access Journals (Sweden)
Anna Antonova
2014-07-01
Full Text Available We have used Diederich’s theory of wingspan average correlation functions to obtain analytical expressions for the local spectral density of aircraft wing moments induced by horizontal and vertical wind gusts. We have assumed that the correlation functions of atmospheric turbulence belong to the Bullen family which includes both partial cases of known Dryden’s model as well as von Karman’s model.
Turbulence modeling for Francis turbine water passages simulation
Maruzewski, P.; Hayashi, H.; Munch, C.; Yamaishi, K.; Hashii, T.; Mombelli, H. P.; Sugow, Y.; Avellan, F.
2010-08-01
The applications of Computational Fluid Dynamics, CFD, to hydraulic machines life require the ability to handle turbulent flows and to take into account the effects of turbulence on the mean flow. Nowadays, Direct Numerical Simulation, DNS, is still not a good candidate for hydraulic machines simulations due to an expensive computational time consuming. Large Eddy Simulation, LES, even, is of the same category of DNS, could be an alternative whereby only the small scale turbulent fluctuations are modeled and the larger scale fluctuations are computed directly. Nevertheless, the Reynolds-Averaged Navier-Stokes, RANS, model have become the widespread standard base for numerous hydraulic machine design procedures. However, for many applications involving wall-bounded flows and attached boundary layers, various hybrid combinations of LES and RANS are being considered, such as Detached Eddy Simulation, DES, whereby the RANS approximation is kept in the regions where the boundary layers are attached to the solid walls. Furthermore, the accuracy of CFD simulations is highly dependent on the grid quality, in terms of grid uniformity in complex configurations. Moreover any successful structured and unstructured CFD codes have to offer a wide range to the variety of classic RANS model to hybrid complex model. The aim of this study is to compare the behavior of turbulent simulations for both structured and unstructured grids topology with two different CFD codes which used the same Francis turbine. Hence, the study is intended to outline the encountered discrepancy for predicting the wake of turbine blades by using either the standard k-epsilon model, or the standard k-epsilon model or the SST shear stress model in a steady CFD simulation. Finally, comparisons are made with experimental data from the EPFL Laboratory for Hydraulic Machines reduced scale model measurements.
BOOK REVIEW: Plasma and Fluid Turbulence: Theory and Modelling
Yoshizawa, A.; Itoh, S. I.; Itoh, K.
2003-03-01
The area of turbulence has been covered by many books over the years. This has, of course, mainly been fluid turbulence, while the area of plasma turbulence has been treated much less. This book by Yoshizawa et al covers both plasma and fluid turbulence, in a way that does justice to both areas at the same time as cross-disciplinary aspects are illuminated. The book should be useful to physicists working in both areas partly because it examines fundamental aspects in a pedagogical way, partly because it is up to date and partly because of the cross-disciplinary aspects which enrich both areas. It is written as an advanced textbook. The reader should have previous knowledge of at least one of the areas and also some background in statistical physics. The book starts with the very important and highly up to date area of structure formation which is relevant both to fluids and plasmas. Here, pipe flow of fluids is treated as an introduction to the area, then follows discussion of the generation of magnetic fields by turbulent motion in stellar objects and stucture formation in plasmas confined by a magnetic field. Also the concept of bifurcation is introduced. This part builds up knowledge from the simple fluid case to the problems of magnetic confinement of plasmas in a very pedagogical way. It continues by introducing the fundamentals of fluid turbulence. This is done very systematically and concepts useful for industrial applications like the K-e method and several ways of heuristic modelling are introduced. Also the two dimensional vortex equation, which is also relevant to magnetized plasmas is introduced. In chapter 5 the statistical theory of turbulence is treated. It starts with a very nice and easy to understand example of renormalization of a simple nonlinear equation where the exact solution is known. It introduces the method of partial renormalization, Greens functions and the direct interaction approximation (DIA). The book then continues with an
Relevant criteria for testing the quality of turbulence models
DEFF Research Database (Denmark)
Frandsen, Sten Tronæs; Ejsing Jørgensen, Hans; Sørensen, J.D.
2007-01-01
Seeking relevant criteria for testing the quality of turbulence models, the scale of turbulence and the gust factor have been estimated from data and compared with predictions from first-order models of these two quantities. It is found that the mean of the measured length scales is approx. 10......% smaller than the IEC model, for wind turbine hub height levels. The mean is only marginally dependent on trends in time series. It is also found that the coefficient of variation of the measured length scales is about 50%. 3sec and 10sec pre-averaging of wind speed data are relevant for MW-size wind...... turbines when seeking wind characteristics that correspond to one blade and the entire rotor, respectively. For heights exceeding 50-60m the gust factor increases with wind speed. For heights larger the 60-80m, present assumptions on the value of the gust factor are significantly conservative, both for 3...
Kaplan, Michael L.; Lux, Kevin M.; Cetola, Jeffrey D.; Huffman, Allan W.; Riordan, Allen J.; Slusser, Sarah W.; Lin, Yuh-Lang; Charney, Joseph J.; Waight, Kenneth T.
2004-01-01
Real-time prediction of environments predisposed to producing moderate-severe aviation turbulence is studied. We describe the numerical model and its postprocessing system designed for said prediction of environments predisposed to severe aviation turbulence as well as presenting numerous examples of its utility. The numerical model is MASS version 5.13, which is integrated over three different grid matrices in real time on a university work station in support of NASA Langley Research Center s B-757 turbulence research flight missions. The postprocessing system includes several turbulence-related products, including four turbulence forecasting indices, winds, streamlines, turbulence kinetic energy, and Richardson numbers. Additionally, there are convective products including precipitation, cloud height, cloud mass fluxes, lifted index, and K-index. Furthermore, soundings, sounding parameters, and Froude number plots are also provided. The horizontal cross-section plot products are provided from 16 000 to 46 000 ft in 2000-ft intervals. Products are available every 3 hours at the 60- and 30-km grid interval and every 1.5 hours at the 15-km grid interval. The model is initialized from the NWS ETA analyses and integrated two times a day.
Isothermal CFD-model of Peirce-Smith converting process
Energy Technology Data Exchange (ETDEWEB)
Vaarno, J.; Pitkaelae, J.; Ahokainen, T.; Jokilaakso, A.
1997-12-31
The Peirce-Smith converter has been a dominating copper and nickel matte refining process since 1905. Due to extremely difficult process conditions, very little measured data has been available for studying interactions of the gas injection and molten sulphide matte. Detailed information on fluid dynamics of the gas injection is needed in solving gas injection related problems like refractory wear, accretion growth and tuyere blockage as well as optimising the efficiency of momentum and mass transfer created by the gas jets. A commercial CFD-code PHOENICS was used to solve isothermal flow field of gas and liquid in a Peirce-Smith converter. An Euler-Euler based algorithm was chosen for modelling fluid dynamics and evaluating controlling forces of a submerged gas injection generally. Predictions were made with a {kappa}-{epsilon} turbulence model in the body fitted co-ordinate system. The model has been verified with a 1/4 scale water model, and a parametric study with the mathematical model of submerged gas injection was made for the PS-process and the ladle injection processes. Limits of the modelling technique used were recognised, but calculated results indicates that the present model predicts the general flow field with reasonable accuracy and it can be used as input for more detailed mathematical models of gas plumes. Predicted bubble distribution, pattern of the flow field and magnitude of flow velocities were also used to evaluate scaling factors of physical models and general flow conditions of an industrial PS-converter. (orig.) 28 refs.
PDF modeling of turbulent flows on unstructured grids
Bakosi, Jozsef
In probability density function (PDF) methods of turbulent flows, the joint PDF of several flow variables is computed by numerically integrating a system of stochastic differential equations for Lagrangian particles. Because the technique solves a transport equation for the PDF of the velocity and scalars, a mathematically exact treatment of advection, viscous effects and arbitrarily complex chemical reactions is possible; these processes are treated without closure assumptions. A set of algorithms is proposed to provide an efficient solution of the PDF transport equation modeling the joint PDF of turbulent velocity, frequency and concentration of a passive scalar in geometrically complex configurations. An unstructured Eulerian grid is employed to extract Eulerian statistics, to solve for quantities represented at fixed locations of the domain and to track particles. All three aspects regarding the grid make use of the finite element method. Compared to hybrid methods, the current methodology is stand-alone, therefore it is consistent both numerically and at the level of turbulence closure without the use of consistency conditions. Since both the turbulent velocity and scalar concentration fields are represented in a stochastic way, the method allows for a direct and close interaction between these fields, which is beneficial in computing accurate scalar statistics. Boundary conditions implemented along solid bodies are of the free-slip and no-slip type without the need for ghost elements. Boundary layers at no-slip boundaries are either fully resolved down to the viscous sublayer, explicitly modeling the high anisotropy and inhomogeneity of the low-Reynolds-number wall region without damping or wall-functions or specified via logarithmic wall-functions. As in moment closures and large eddy simulation, these wall-treatments provide the usual trade-off between resolution and computational cost as required by the given application. Particular attention is focused on
Modelling the optical turbulence boiling and its effect on finite-exposure differential image motion
Berdja, A.; Borgnino, J.
2007-07-01
It is usually accepted that whenever dealing with astronomical observation through the atmosphere, the optical turbulence temporal evolution can be sufficiently described with the so-called frozen turbulence hypothesis. In this model, turbulence is supposed to be equivalent to a series of solid phase screens that slide horizontally in front of the observation field of view. Experimental evidence shows, however, that an additional physical process must be taken into account when describing the temporal behaviour of the optical turbulence. In fact, while translating above the observer, turbulence undergoes a proper temporal evolution and affects differently the astronomical and, more specifically, the astrometric observations. The proper temporal evolution of the turbulence-induced optical turbulence observable quantities is here called the optical turbulence boiling. We are proposing through this paper a theoretical approach to the modelling of the optical turbulence temporal evolution when the turbulent layer horizontal translation and the optical turbulence boiling are both involved. The model we propose, as a working hypothesis though, has a direct relevance to differential astrometry because of its explicit dependence upon the optical turbulence temporal evolution. It can also be generalized to other techniques of high angular resolution astronomical observation through the atmospheric turbulence.
Neural network modeling for near wall turbulent flow
International Nuclear Information System (INIS)
Milano, Michele; Koumoutsakos, Petros
2002-01-01
A neural network methodology is developed in order to reconstruct the near wall field in a turbulent flow by exploiting flow fields provided by direct numerical simulations. The results obtained from the neural network methodology are compared with the results obtained from prediction and reconstruction using proper orthogonal decomposition (POD). Using the property that the POD is equivalent to a specific linear neural network, a nonlinear neural network extension is presented. It is shown that for a relatively small additional computational cost nonlinear neural networks provide us with improved reconstruction and prediction capabilities for the near wall velocity fields. Based on these results advantages and drawbacks of both approaches are discussed with an outlook toward the development of near wall models for turbulence modeling and control
Computational Modeling of Turbulent Spray Combustion
Ma, L.
2016-01-01
The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight,
Comment paper: Workshop on Engineering Turbulence Modeling
Spalart, P. R.
1992-01-01
The speaker for this paper describes and evaluates a k-epsilon model for calculating Samuel-Joubert flow. He proceeds to present both Boeing's and his positions on the state-of-the-art in this area and future goals. Finally, presented is a one equation mathematical model for calculating Samuel-Joubert flow. All results are presented in viewgraph format.
Intermittency in MHD turbulence and coronal nanoflares modelling
Directory of Open Access Journals (Sweden)
P. Veltri
2005-01-01
Full Text Available High resolution numerical simulations, solar wind data analysis, and measurements at the edges of laboratory plasma devices have allowed for a huge progress in our understanding of MHD turbulence. The high resolution of solar wind measurements has allowed to characterize the intermittency observed at small scales. We are now able to set up a consistent and convincing view of the main properties of MHD turbulence, which in turn constitutes an extremely efficient tool in understanding the behaviour of turbulent plasmas, like those in solar corona, where in situ observations are not available. Using this knowledge a model to describe injection, due to foot-point motions, storage and dissipation of MHD turbulence in coronal loops, is built where we assume strong longitudinal magnetic field, low beta and high aspect ratio, which allows us to use the set of reduced MHD equations (RMHD. The model is based on a shell technique in the wave vector space orthogonal to the strong magnetic field, while the dependence on the longitudinal coordinate is preserved. Numerical simulations show that injected energy is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. Due to the strong longitudinal magnetic field, dissipative structures propagate along the loop, with the typical speed of the Alfvén waves. The statistical analysis on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics. Moreover the recent observations of non thermal velocity measurements during flare occurrence are well described by the numerical results of the simulation model. All these results naturally emerge from the model dynamical evolution without any need of an ad-hoc hypothesis.
MHD turbulence models for the reversed field pinch
International Nuclear Information System (INIS)
Gimblett, C.G.; Watkins, M.L.
1976-01-01
A kinematic model which describes the effect of isotropic, non-mirror symmetric turbulence on a mean magnetic field is used to examine the temporal behaviour of magnetic field in high beta pinch experiments. Solutions to the model can indicate the formation of a steady-state, force-free configuration that corresponds to the state of lowest magnetic energy and the reversal of the toroidal magnetic field at the plasma boundary in accordance with experimental observations on toroidal pinches such as ZETA and HBTX. This model neglects both the dynamic interaction between fluid and field and the associated anisotropy. These effects are examined in a further model. (author)
Application of two-equation turbulence models to turbulent gas flow heated by a high heat flux
International Nuclear Information System (INIS)
Kawamura, Hiroshi
1978-01-01
Heat transfer in heated turbulent gas flow is analyzed using two-equation turbulence models. Four kinds of two-equation models are examined; that is, k-epsilon model by Jones-Launder, k-w model by Wilcox-Traci, k-kL model by Rotta, k-ω model by Saffman-Wilcox. The results are compared with more than ten experiments by seven authors. The k-kL model proposed originally by Rotta and modified by the present author is found to give relatively the best results. It well predicts the decrease in the heat transfer coefficient found in the heated turbulent gas flow; however, it fails to predict the laminarization due to a strong heating. (author)
Towards CFD modeling of turbulent pipeline material transportation
Shahirpour, Amir; Herzog, Nicoleta; Egbers, Cristoph
2013-04-01
Safe and financially efficient pipeline transportation of carbon dioxide is a critical issue in the developing field of the CCS Technology. In this part of the process, carbon dioxide is transported via pipes with diameter of 1.5 m and entry pressure of 150 bar, with Reynolds number of 107 and viscosity of 8×10(-5) Pa.s as dense fluid [1]. Presence of large and small scale structures in the pipeline, high Reynolds numbers at which CO2 should be transferred, and 3 dimensional turbulence caused by local geometrical modifications, increase the importance of simulation of turbulent material transport through the individual components of the CO2 chain process. In this study, incompressible turbulent channel flow and pipe flow have been modeled using OpenFoam, an open source CFD software. In the first step, simulation of a turbulent channel flow has been considered using LES for shear Reynolds number of 395. A simple geometry has been chosen with cyclic fluid inlet and outlet boundary conditions to simulate a fully developed flow. The mesh is gradually refined towards the wall to provide values close enough to the wall for the wall coordinate (y+). Grid resolution study has been conducted for One-Equation model. The accuracy of the results is analyzed with respect to the grid smoothness in order to reach an optimized resolution for carrying out the next simulations. Furthermore, three LES models, One-Equation, Smagorinsky and Dynamic Smagorinsky are applied for the grid resolution of (60 × 100 × 80) in (x, y, z) directions. The results are then validated with reference to the DNS carried out by Moser et al.[2] for the similar geometry using logarithmic velocity profile (U+) and Reynolds stress tensor components. In the second step the similar flow is modeled using Reynolds averaged method. Several RANS models, like K-epsilon and Launder-Reece-Rodi are applied and validated against DNS and LES results in a similar fashion. In the most recent step, it has been intended
Energy Technology Data Exchange (ETDEWEB)
Toutant, A
2006-12-15
The complex interactions between interfaces and turbulence strongly impact the flow properties. Unfortunately, Direct Numerical Simulations (DNS) have to entail a number of degrees of freedom proportional to the third power of the Reynolds number to correctly describe the flow behaviour. This extremely hard constraint makes it impossible to use DNS for industrial applications. Our strategy consists in using and improving DNS method in order to develop the Interfaces and Sub-grid Scales concept. ISS is a two-phase equivalent to the single-phase Large Eddy Simulation (LES) concept. The challenge of ISS is to integrate the two-way coupling phenomenon into sub-grid models. Applying a space filter, we have exhibited correlations or sub-grid terms that require closures. We have shown that, in two-phase flows, the presence of a discontinuity leads to specific sub-grid terms. Comparing the maximum of the norm of the sub-grid terms with the maximum of the norm of the advection tensor, we have found that sub-grid terms related to interfacial forces and viscous effect are negligible. Consequently, in the momentum balance, only the sub-grid terms related to inertia have to be closed. Thanks to a priori tests performed on several DNS data, we demonstrate that the scale similarity hypothesis, reinterpreted near discontinuity, provides sub-grid models that take into account the two-way coupling phenomenon. These models correspond to the first step of our work. Indeed, in this step, interfaces are smooth and, interactions between interfaces and turbulence occur in a transition zone where each physical variable varies sharply but continuously. The next challenge has been to determine the jump conditions across the sharp equivalent interface corresponding to the sub-grid models of the transition zone. We have used the matched asymptotic expansion method to obtain the jump conditions. The first tests on the velocity of the sharp equivalent interface are very promising (author)
Turbulence modeling and surface heat transfer in a stagnation flow region
Wang, C. R.; Yeh, F. C.
1987-01-01
Analysis for the turbulent flow field and the effect of freestream turbulence on the surface heat transfer rate of a stagnation flow is presented. The emphasis is on modeling and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow.
Lattice Boltzmann model for three-dimensional decaying homogeneous isotropic turbulence
International Nuclear Information System (INIS)
Xu Hui; Tao Wenquan; Zhang Yan
2009-01-01
We implement a lattice Boltzmann method (LBM) for decaying homogeneous isotropic turbulence based on an analogous Galerkin filter and focus on the fundamental statistical isotropic property. This regularized method is constructed based on orthogonal Hermite polynomial space. For decaying homogeneous isotropic turbulence, this regularized method can simulate the isotropic property very well. Numerical studies demonstrate that the novel regularized LBM is a promising approximation of turbulent fluid flows, which paves the way for coupling various turbulent models with LBM
Energy Technology Data Exchange (ETDEWEB)
Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2014-06-10
We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are
Subgrid Modeling of AGN-driven Turbulence in Galaxy Clusters
Scannapieco, Evan; Brüggen, Marcus
2008-10-01
Hot, underdense bubbles powered by active galactic nuclei (AGNs) are likely to play a key role in halting catastrophic cooling in the centers of cool-core galaxy clusters. We present three-dimensional simulations that capture the evolution of such bubbles, using an adaptive mesh hydrodynamic code, FLASH3, to which we have added a subgrid model of turbulence and mixing. While pure hydro simulations indicate that AGN bubbles are disrupted into resolution-dependent pockets of underdense gas, proper modeling of subgrid turbulence indicates that this is a poor approximation to a turbulent cascade that continues far beyond the resolution limit. Instead, Rayleigh-Taylor instabilities act to effectively mix the heated region with its surroundings, while at the same time preserving it as a coherent structure, consistent with observations. Thus, bubbles are transformed into hot clouds of mixed material as they move outward in the hydrostatic intracluster medium (ICM), much as large airbursts lead to a distinctive "mushroom cloud" structure as they rise in the hydrostatic atmosphere of Earth. Properly capturing the evolution of such clouds has important implications for many ICM properties. In particular, it significantly changes the impact of AGNs on the distribution of entropy and metals in cool-core clusters such as Perseus.
Eigenspace perturbations for structural uncertainty estimation of turbulence closure models
Jofre, Lluis; Mishra, Aashwin; Iaccarino, Gianluca
2017-11-01
With the present state of computational resources, a purely numerical resolution of turbulent flows encountered in engineering applications is not viable. Consequently, investigations into turbulence rely on various degrees of modeling. Archetypal amongst these variable resolution approaches would be RANS models in two-equation closures, and subgrid-scale models in LES. However, owing to the simplifications introduced during model formulation, the fidelity of all such models is limited, and therefore the explicit quantification of the predictive uncertainty is essential. In such scenario, the ideal uncertainty estimation procedure must be agnostic to modeling resolution, methodology, and the nature or level of the model filter. The procedure should be able to give reliable prediction intervals for different Quantities of Interest, over varied flows and flow conditions, and at diametric levels of modeling resolution. In this talk, we present and substantiate the Eigenspace perturbation framework as an uncertainty estimation paradigm that meets these criteria. Commencing from a broad overview, we outline the details of this framework at different modeling resolution. Thence, using benchmark flows, along with engineering problems, the efficacy of this procedure is established. This research was partially supported by NNSA under the Predictive Science Academic Alliance Program (PSAAP) II, and by DARPA under the Enabling Quantification of Uncertainty in Physical Systems (EQUiPS) project (technical monitor: Dr Fariba Fahroo).
Gyrofluid turbulence models with kinetic effects
International Nuclear Information System (INIS)
Dorland, W.; Hammett, G.W.
1992-12-01
Nonlinear gyrofluid equations are derived by taking moments of the nonlinear, electrostatic gyrokinetic equation. The principal model presented includes evolution equations for the guiding center n, u parallel, T parallel, and T perpendicular along with an equation expressing the quasineutrality constraint. Additional evolution equations for higher moments are derived which may be used if greater accuracy is desired. The moment hierarchy is closed with a Landau-damping model which is equivalent to a multi-pole approximation to the plasma dispersion function, extended to include finite Larmor radius effects. In particular, new dissipative, nonlinear terms are found which model the perpendicular phase-mixing of the distribution function along contours of constant electrostatic potential. These ''FLR phase-mixing'' terms introduce a hyperviscosity-like damping ∝ k perpendicular 2 |Φ rvec k rvec k x rvec k'| which should provide a physics-based damping mechanism at high k perpendicular ρ which is potentially as important as the usual polarization drift nonlinearity. The moments are taken in guiding center space to pick up the correct nonlinear FLR terms and the gyroaveraging of the shear. The equations are solved with a nonlinear, three dimensional initial value code. Linear results are presented, showing excellent agreement with linear gyrokinetic theory
Implementation of Dryden Continuous Turbulence Model into Simulink for LSA-02 Flight Test Simulation
Ichwanul Hakim, Teuku Mohd; Arifianto, Ony
2018-04-01
Turbulence is a movement of air on small scale in the atmosphere that caused by instabilities of pressure and temperature distribution. Turbulence model is integrated into flight mechanical model as an atmospheric disturbance. Common turbulence model used in flight mechanical model are Dryden and Von Karman model. In this minor research, only Dryden continuous turbulence model were made. Dryden continuous turbulence model has been implemented, it refers to the military specification MIL-HDBK-1797. The model was implemented into Matlab Simulink. The model will be integrated with flight mechanical model to observe response of the aircraft when it is flight through turbulence field. The turbulence model is characterized by multiplying the filter which are generated from power spectral density with band-limited Gaussian white noise input. In order to ensure that the model provide a good result, model verification has been done by comparing the implemented model with the similar model that is provided in aerospace blockset. The result shows that there are some difference for 2 linear velocities (vg and wg), and 3 angular rate (pg, qg and rg). The difference is instantly caused by different determination of turbulence scale length which is used in aerospace blockset. With the adjustment of turbulence length in the implemented model, both model result the similar output.
Modelling thermal radiation in buoyant turbulent diffusion flames
Consalvi, J. L.; Demarco, R.; Fuentes, A.
2012-10-01
This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.
Stochastic transport models for mixing in variable-density turbulence
Bakosi, J.; Ristorcelli, J. R.
2011-11-01
In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.
Coarse Grained Transport Model for Neutrals in Turbulent SOL Plasmas
Energy Technology Data Exchange (ETDEWEB)
Marandet, Y.; Mekkaoui, A.; Genesio, P.; Rosato, J.; Capes, H.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R., E-mail: yannick.marandet@univ-amu.fr [PIIM, CNRS/Aix-Marseille University, Marseille (France); Reiter, D.; Boerner, P. [IEK4, FZJ, Juelich (Germany)
2012-09-15
Full text: Edge plasmas of magnetic fusion devices exhibit strong intermittent turbulence, which governs perpendicular transport of particles and heat. Turbulent fluxes result from the coarse graining procedure used to derive the transport equation, which entails time averaging of the underlying equations governing the turbulent evolution of the electron and ion fluids. In previous works, we have pointed out that this averaging is not carried out on the Boltzmann equation that describes the transport of neutral particles (atoms, molecules) in current edge code suites (such as SOLPS). Since fluctuations in the far SOL are of order unity, calculating the transport of neutral particles, hence the source terms in plasma fluid equations, in the average plasma background might lead to misleading results. In particular, retaining the effects of fluctuations could affect the estimation of the importance of main chamber recycling, hence first wall sputtering by charge exchange atoms, as well as main chamber impurity contamination and transport. In this contribution, we obtain an exact coarse-grained equation for the average neutral density, assuming that density fluctuations are described by multivariate Gamma statistics. This equation is a scattering free Boltzmann equation, where the ionization rate has been renormalized to account for fluctuations. The coarse grained transport model for neutrals has been implemented in the EIRENE code, and applications in 2D geometry with ITER relevant plasma parameters are presented. Our results open the way for the implementation of the effects of turbulent fluctuations on the transport of neutral particles in coupled plasma/neutral edge codes like B2-EIRENE. (author)
Modeling Turbulent Combustion for Variable Prandtl and Schmidt Number
Hassan, H. A.
2004-01-01
This report consists of two abstracts submitted for possible presentation at the AIAA Aerospace Science Meeting to be held in January 2005. Since the submittal of these abstracts we are continuing refinement of the model coefficients derived for the case of a variable Turbulent Prandtl number. The test cases being investigated are a Mach 9.2 flow over a degree ramp and a Mach 8.2 3-D calculation of crossing shocks. We have developed an axisymmetric code for treating axisymmetric flows. In addition the variable Schmidt number formulation was incorporated in the code and we are in the process of determining the model constants.
Turbulence and Self-Organization Modeling Astrophysical Objects
Marov, Mikhail Ya
2013-01-01
This book focuses on the development of continuum models of natural turbulent media. It provides a theoretical approach to the solutions of different problems related to the formation, structure and evolution of astrophysical and geophysical objects. A stochastic modeling approach is used in the mathematical treatment of these problems, which reflects self-organization processes in open dissipative systems. The authors also consider examples of ordering for various objects in space throughout their evolutionary processes. This volume is aimed at graduate students and researchers in the fields of mechanics, astrophysics, geophysics, planetary and space science.
Necessity for non-standard models of interstellar turbulence. The 'Champagne bottle' model
Energy Technology Data Exchange (ETDEWEB)
Bonazzola, S; Celnikier, L M; Chevreton, M [Observatoire de Paris, Section de Meudon, 92 (France)
1978-01-01
A complete treatment of interstellar pulsar scintillation by the Physically Thin Screen phase changing model allows one to obtain better agreement with observation and thereby extract new information about the turbulence structure of the interstellar plasma.
On the necessity for non-standard models of interstellar turbulence. The 'Champagne bottle' model
International Nuclear Information System (INIS)
Bonazzola, S.; Celnikier, L.M.; Chevreton, M.
1978-01-01
A complete treatment of interstellar pulsar scintillation by the Physically Thin Screen phase changing model allows one to obtain better agreement with observation and thereby extract new information about the turbulence structure of the interstellar plasma
Assessment of realizability constraints in v2-f turbulence models
International Nuclear Information System (INIS)
Sveningsson, A.; Davidson, L.
2004-01-01
The use of the realizability constraint in v 2 -f turbulence models is assessed by computing a stator vane passage flow. In this flow the stagnation region is large and it is shown that the time scale bound suggested by [Int. J. Heat Fluid Flow 17 (1995) 89] is well suited to prevent unphysical growth of turbulence kinetic energy. However, this constraint causes numerical instabilities when used in the equation for the relaxation parameter, f. It is also shown that the standard use of the realizability constraint in the v 2 -f model is inconsistent and some modifications are suggested. These changes of the v 2 -f model are examined and shown to have negligible effect on the overall performance of the v 2 -f model. In this work two different versions of the v 2 -f model are investigated and the results obtained are compared with experimental data. The model on a form similar to that originally suggested by Durbin (e.g. [AIAA J. 33 (1995) 659]) produced the overall best agreement with stator vane heat transfer data
Hendrickson, Kelli; Yue, Dick
2016-11-01
This work presents the development and a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flow in the near wake region of a transom stern. This complex, three-dimensional flow includes three regions with distinctly different flow behavior: (i) the convergent corner waves that originate from the body and collide on the ship center plane; (ii) the "rooster tail" that forms from the collision; and (iii) the diverging wave train. The characteristics of these regions involve violent free-surface flows and breaking waves with significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. Utilizing datasets from high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM), we develop explicit algebraic turbulent mass flux closure models that incorporate the most relevant physical processes. Performance of these models in predicting the turbulent mass flux in all three regions of the wake will be presented. Office of Naval Research.
An algebraic stress/flux model for two-phase turbulent flow
International Nuclear Information System (INIS)
Kumar, R.
1995-12-01
An algebraic stress model (ASM) for turbulent Reynolds stress and a flux model for turbulent heat flux are proposed for two-phase bubbly and slug flows. These mathematical models are derived from the two-phase transport equations for Reynolds stress and turbulent heat flux, and provide C μ , a turbulent constant which defines the level of eddy viscosity, as a function of the interfacial terms. These models also include the effect of heat transfer. When the interfacial drag terms and the interfacial momentum transfer terms are absent, the model reduces to a single-phase model used in the literature
PDF modelling and particle-turbulence interaction of turbulent spray flames
Beishuizen, N.A.
2008-01-01
Turbulent spray flames can be found in many applications, such as Diesel engines, rocket engines and power plants. The many practical applications are a motivation to investigate the physical phenomena occurring in turbulent spray flames in detail in order to be able to understand, predict and
Gasdynamic Model of Turbulent Combustion in TNT Explosions
Energy Technology Data Exchange (ETDEWEB)
Kuhl, A L; Bell, J B; Beckner, V E
2010-01-08
A model is proposed to simulate turbulent combustion in confined TNT explosions. It is based on: (i) the multi-component gasdynamic conservation laws, (ii) a fast-chemistry model for TNT-air combustion, (iii) a thermodynamic model for frozen reactants and equilibrium products, (iv) a high-order Godunov scheme providing a non-diffusive solution of the governing equations, and (v) an ILES approach whereby adaptive mesh refinement is used to capture the energy bearing scales of the turbulence on the grid. Three-dimensional numerical simulations of explosion fields from 1.5-g PETN/TNT charges were performed. Explosions in six different chambers were studied: three calorimeters (volumes of 6.6-l, 21.2-l and 40.5-l with L/D = 1), and three tunnels (L/D = 3.8, 4.65 and 12.5 with volumes of 6.3-l) - to investigate the influence of chamber volume and geometry on the combustion process. Predicted pressures histories were quite similar to measured pressure histories for all cases studied. Experimentally, mass fraction of products, Y{sub p}{sup exp}, reached a peak value of 88% at an excess air ratio of twice stoichiometric, and then decayed with increasing air dilution; mass fractions Y{sub p}{sup calc} computed from the numerical simulations followed similar trends. Based on this agreement, we conclude that the dominant effect that controls the rate of TNT combustion with air is the turbulent mixing rate; the ILES approach along with the fast-chemistry model used here adequately captures this effect.
Turbulent diffusion modelling for windflow and dispersion analysis
International Nuclear Information System (INIS)
Bartzis, J.G.
1988-01-01
The need for simple but reliable models for turbulent diffusion for windflow and atmospheric dispersion analysis is a necessity today if one takes into consideration the relatively high demand in computer time and costs for such an analysis, arising mainly from the often large solution domains needed, the terrain complexity and the transient nature of the phenomena. In the accident consequence assessment often there is a need for a relatively large number of cases to be analysed increasing further the computer time and costs. Within the framework of searching for relatively simple and universal eddy viscosity/diffusivity models, a new three dimensional non isotropic model is proposed applicable to any domain complexity and any atmospheric stability conditions. The model utilizes the transport equation for turbulent kinetic energy but introduces a new approach in effective length scale estimation based on the flow global characteristics and local atmospheric stability. The model is discussed in detail and predictions are given for flow field and boundary layer thickness. The results are compared with experimental data with satisfactory results
A Galilean and tensorial invariant k-epsilon model for near wall turbulence
Yang, Z.; Shih, T. H.
1993-01-01
A k-epsilon model is proposed for wall bounded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation rate equation is reformulated using this time scale and no singularity exists at the wall. A new parameter R = k/S(nu) is introduced to characterize the damping function in the eddy viscosity. This parameter is determined by local properties of both the mean and the turbulent flow fields and is free from any geometry parameter. The proposed model is then Galilean and tensorial invariant. The model constants used are the same as in the high Reynolds number Standard k-epsilon Model. Thus, the proposed model will also be suitable for flows far from the wall. Turbulent channel flows and turbulent boundary layer flows with and without pressure gradients are calculated. Comparisons with the data from direct numerical simulations and experiments show that the model predictions are excellent for turbulent channel flows and turbulent boundary layers with favorable pressure gradients, good for turbulent boundary layers with zero pressure gradients, and fair for turbulent boundary layer with adverse pressure gradients.
International Nuclear Information System (INIS)
Eliassen, Lene; Andersen, Søren
2016-01-01
The wind turbine design standards recommend two different methods to generate turbulent wind for design load analysis, the Kaimal spectra combined with an exponential coherence function and the Mann turbulence model. The two turbulence models can give very different estimates of fatigue life, especially for offshore floating wind turbines. In this study the spatial distributions of the two turbulence models are investigated using Proper Orthogonal Decomposition, which is used to characterize large coherent structures. The main focus has been on the structures that contain the most energy, which are the lowest POD modes. The Mann turbulence model generates coherent structures that stretches in the horizontal direction for the longitudinal component, while the structures found in the Kaimal model are more random in their shape. These differences in the coherent structures at lower frequencies for the two turbulence models can be the reason for differences in fatigue life estimates for wind turbines. (paper)
Non-Equilibrium Turbulence and Two-Equation Modeling
Rubinstein, Robert
2011-01-01
Two-equation turbulence models are analyzed from the perspective of spectral closure theories. Kolmogorov theory provides useful information for models, but it is limited to equilibrium conditions in which the energy spectrum has relaxed to a steady state consistent with the forcing at large scales; it does not describe transient evolution between such states. Transient evolution is necessarily through nonequilibrium states, which can only be found from a theory of turbulence evolution, such as one provided by a spectral closure. When the departure from equilibrium is small, perturbation theory can be used to approximate the evolution by a two-equation model. The perturbation theory also gives explicit conditions under which this model can be valid, and when it will fail. Implications of the non-equilibrium corrections for the classic Tennekes-Lumley balance in the dissipation rate equation are drawn: it is possible to establish both the cancellation of the leading order Re1/2 divergent contributions to vortex stretching and enstrophy destruction, and the existence of a nonzero difference which is finite in the limit of infinite Reynolds number.
Transition and Turbulence Modeling for Blunt-Body Wake Flows
Nance, Robert P.; Horvath, Thomas J.; Hassan, H. A.
1997-01-01
This study attempts t o improve the modeling and computational prediction of high- speed transitional wake flows. The recently developed kappa - zeta (Enstrophy) turbulence model is coupled with a newly developed transition prediction method and implemented in an implicit flow solver well-suited to hypersonic flows. In this model, transition onset is determined as part of the solution. Results obtained using the new model for a 70- deg blunted cone/sting geometry demonstrate better agreement with experimental heat- transfer measurements when compared to laminar calculations as well as solutions using the kappa - omega model. Results are also presented for the situation where transition onset is preselected. It is shown that, in this case, results are quite sensitive to location of the transition point.
Analytical model spectrum for electrostatic turbulence in tokamaks
International Nuclear Information System (INIS)
Fiedler-Ferrari, N.; Misguich, J.H.
1990-04-01
In this work we present an analytical model spectrum, for three-dimensional electrostatic turbulence (homogeneous, stationary and locally isotropic in the plane perpendicular to the magnetic field), constructed by using experimental results from TFR and TEXT Tokamaks, and satisfying basic symmetry and parity conditions. The proposed spectrum seems to be tractable for explicit analytical calculations of transport processes, and consistent with experimental data. Additional experimental measurements in the bulk plasma remain however necessary in order to determine some unknown spectral properties of parallel propagation
Edge turbulence and transport: Text and ATF modeling
International Nuclear Information System (INIS)
Ritz, C.P.; Rhodes, T.L.; Lin, H.; Rowan, W.L.; Bengtson, R.; Wootton, A.J.; Diamond, P.H.; Ware, A.S.; Thayer, D.R.
1990-01-01
We present experimental results on edge turbulence and transport from the tokamak TEXT and the torsatron ATF. The measured electrostatic fluctuations can explain the edge transport of particles and energy. Certain drive (radiation) and stabilizing (velocity shear) terms are suggested by the results. The experimental fluctuation levels and spectral widths can be reproduced by considering the nonlinear evolution of the reduced MHD equations, incorporating a thermal drive from line radiation. In the tokamak limit (with toroidal electric field) the model corresponds to the resistivity gradient mode, while in the currentless torsatron or stellarator limit it corresponds to a thermally driven drift wave
Stochastic Models for Laser Propagation in Atmospheric Turbulence.
Leland, Robert Patton
In this dissertation, stochastic models for laser propagation in atmospheric turbulence are considered. A review of the existing literature on laser propagation in the atmosphere and white noise theory is presented, with a view toward relating the white noise integral and Ito integral approaches. The laser beam intensity is considered as the solution to a random Schroedinger equation, or forward scattering equation. This model is formulated in a Hilbert space context as an abstract bilinear system with a multiplicative white noise input, as in the literature. The model is also modeled in the Banach space of Fresnel class functions to allow the plane wave case and the application of path integrals. Approximate solutions to the Schroedinger equation of the Trotter-Kato product form are shown to converge for each white noise sample path. The product forms are shown to be physical random variables, allowing an Ito integral representation. The corresponding Ito integrals are shown to converge in mean square, providing a white noise basis for the Stratonovich correction term associated with this equation. Product form solutions for Ornstein -Uhlenbeck process inputs were shown to converge in mean square as the input bandwidth was expanded. A digital simulation of laser propagation in strong turbulence was used to study properties of the beam. Empirical distributions for the irradiance function were estimated from simulated data, and the log-normal and Rice-Nakagami distributions predicted by the classical perturbation methods were seen to be inadequate. A gamma distribution fit the simulated irradiance distribution well in the vicinity of the boresight. Statistics of the beam were seen to converge rapidly as the bandwidth of an Ornstein-Uhlenbeck process was expanded to its white noise limit. Individual trajectories of the beam were presented to illustrate the distortion and bending of the beam due to turbulence. Feynman path integrals were used to calculate an
Modeling of Atmospheric Turbulence Effect on Terrestrial FSO Link
Directory of Open Access Journals (Sweden)
A. Prokes
2009-04-01
Full Text Available Atmospheric turbulence results in many effects causing fluctuation in the received optical power. Terrestrial laser beam communication is affected above all by scintillations. The paper deals with modeling the influence of scintillation on link performance, using the modified Rytov theory. The probability of correct signal detection in direct detection system in dependence on many parameters such as link distance, power link margin, refractive-index structure parameter, etc. is discussed and different approaches to the evaluation of scintillation effect are compared. The simulations are performed for a horizontal-path propagation of the Gaussian-beam wave.
DEFF Research Database (Denmark)
Fuhrman, David R.; Fredsøe, Jørgen; Sumer, B. Mutlu
2009-01-01
measurements for steady streaming induced by a skewed free stream velocity signal is also provided. We then simulate a series of experiments involving oscillatory flow in a convergent-divergent smooth tunnel, and a good match with respect to bed shear stresses and streaming velocities is achieved......A numerical model solving incompressible Reynolds-averaged Navier-Stokes equations, combined with a two-equation k-omega turbulence closure, is used to study converging-diverging effects from a sloping bed on turbulent (oscillatory) wave boundary layers. Bed shear stresses from the numerical model....... The streaming is conceptually explained using analogies from steady converging and diffuser flows. A parametric study is undertaken to assess both the peak and time-averaged bed shear stresses in converging and diverging half periods under rough-turbulent conditions. The results are presented as friction factor...
Bayesian uncertainty analysis with applications to turbulence modeling
International Nuclear Information System (INIS)
Cheung, Sai Hung; Oliver, Todd A.; Prudencio, Ernesto E.; Prudhomme, Serge; Moser, Robert D.
2011-01-01
In this paper, we apply Bayesian uncertainty quantification techniques to the processes of calibrating complex mathematical models and predicting quantities of interest (QoI's) with such models. These techniques also enable the systematic comparison of competing model classes. The processes of calibration and comparison constitute the building blocks of a larger validation process, the goal of which is to accept or reject a given mathematical model for the prediction of a particular QoI for a particular scenario. In this work, we take the first step in this process by applying the methodology to the analysis of the Spalart-Allmaras turbulence model in the context of incompressible, boundary layer flows. Three competing model classes based on the Spalart-Allmaras model are formulated, calibrated against experimental data, and used to issue a prediction with quantified uncertainty. The model classes are compared in terms of their posterior probabilities and their prediction of QoI's. The model posterior probability represents the relative plausibility of a model class given the data. Thus, it incorporates the model's ability to fit experimental observations. Alternatively, comparing models using the predicted QoI connects the process to the needs of decision makers that use the results of the model. We show that by using both the model plausibility and predicted QoI, one has the opportunity to reject some model classes after calibration, before subjecting the remaining classes to additional validation challenges.
National Research Council Canada - National Science Library
Calhoon, W. H; Kenzakowski, D. C
2000-01-01
... components and missile defense systems. Current engineering level models neglect turbulent-chemistry interactions and typically underpredict the intensity of plume afterburning and afterburning burnout...
Entropic multirelaxation lattice Boltzmann models for turbulent flows
Bösch, Fabian; Chikatamarla, Shyam S.; Karlin, Ilya V.
2015-10-01
We present three-dimensional realizations of a class of lattice Boltzmann models introduced recently by the authors [I. V. Karlin, F. Bösch, and S. S. Chikatamarla, Phys. Rev. E 90, 031302(R) (2014), 10.1103/PhysRevE.90.031302] and review the role of the entropic stabilizer. Both coarse- and fine-grid simulations are addressed for the Kida vortex flow benchmark. We show that the outstanding numerical stability and performance is independent of a particular choice of the moment representation for high-Reynolds-number flows. We report accurate results for low-order moments for homogeneous isotropic decaying turbulence and second-order grid convergence for most assessed statistical quantities. It is demonstrated that all the three-dimensional lattice Boltzmann realizations considered herein converge to the familiar lattice Bhatnagar-Gross-Krook model when the resolution is increased. Moreover, thanks to the dynamic nature of the entropic stabilizer, the present model features less compressibility effects and maintains correct energy and enstrophy dissipation. The explicit and efficient nature of the present lattice Boltzmann method renders it a promising candidate for both engineering and scientific purposes for highly turbulent flows.
Mathematical model for the calculation of internal turbulent flow
International Nuclear Information System (INIS)
Nicolau, V. de P.; Valle Pereira Filho, H. do
1981-01-01
The Navier-Stokes and the turbulent kinetic energy equations for the incompressible, turbulent and fully developed pipe flow, were solved by a finite difference procedure. The distributions of the mean velocity, turbulent shear stress and turbulent kinetic energy were obtained at different Reynolds numbers. Those numerical results were compared with experimental data and the agreement was good in whole cross section of the flow. (Author) [pt
PROSPECTS OF DESIGNING FLEXIBLE BUSINESS MODEL IN TURBULENT TIMES
Directory of Open Access Journals (Sweden)
Amalia DUTU
2014-06-01
Full Text Available The present study aims to analyze the current global context to capture the characteristics of the new type of volatile and turbulent business environment in which companies must operate nowdays and to bring some propositions in order to guide managers in designing or redesigning business models to achieve flexibility. The central message of this paper, that is a point of view one, is that, nowdays but also in the future, business models that are based on strategic, organizational and operational flexibility and on reaction speed will be those who will provide the greatest capacity to respond to change. Even if the international theory provides a multiple perspective analysis of business model concept, still how it can be achieved such flexibility remains an open issue in the academic debate, but also in the practice of companies. Thus, the paper contains some propositions in order to guide managers in the process of designing or redesigning the business model.
International Nuclear Information System (INIS)
Lee, Gong Hee; Bang, Young Seok; Woo, Sweng Woong
2012-01-01
The moderator thermal flow in the CANDU calandria is generally complex and highly turbulent because of the interaction of the buoyancy force with the inlet jet inertia. In this study, the prediction performance of turbulence models for the accurate analysis of the moderator thermal flow are assessed by comparing the results calculated with various types of turbulence models in the commercial flow solver FLUENT with experimental data for the test vessel at Sheridan Park Engineering Laboratory (SPEL). Through this comparative study of turbulence models, it is concluded that turbulence models that include the source term to consider the effects of buoyancy on the turbulent flow should be used for the reliable prediction of the moderator thermal flow inside the CANDU calandria
Improved model of quasi-particle turbulence (with applications to Alfven and drift wave turbulence)
International Nuclear Information System (INIS)
Mendonca, J. T.; Hizanidis, K.
2011-01-01
We consider the classical problem of wave stability and dispersion in a turbulent plasma background. We adopt a kinetic description for the quasi-particle turbulence. We describe an improved theoretical approach, which goes beyond the geometric optics approximation and retains the recoil effects associated with the emission and absorption of low frequency waves by nearly resonant quasi-particles. We illustrate the present approach by considering two particular examples. One is the excitation of zonal flows by drift wave turbulence or driftons. The other is the coupling between ion acoustic waves and Alfven wave turbulence, eventually leading to saturation of Alfven wave growth. Both examples are relevant to anomalous transport in magnetic fusion devices. Connection with previous results is established. We show that these results are recovered in the geometric optics approximation.
Theoretical models for MHD turbulence in the solar wind
International Nuclear Information System (INIS)
Veltri, P.; Malara, F.
1997-01-01
The in situ measurements of velocity, magnetic field, density and temperature fluctuations performed in the solar wind have greatly improved our knowledge of MDH turbulence not only from the point of view of space physics but also from the more general point of view of plasma physics. These fluctuations which extend over a wide range of frequencies (about 5 decades), a fact which seems to be the signature of turbulent nonlinear energy cascade, display, mainly in the trailing edge of high-speed streams, a number of features characteristic of a self-organized situation: i) a high degree of correlation between magnetic and velocity field fluctuations, ii) a very low level of fluctuations in mass density and magnetic-field intensity, iii) a considerable anisotropy revealed by minimum variance analysis of the magnetic-field correlation tensor. Many fundamental processes in plasma physics, which were largely unknown or not understood before their observations in the solar wind, have been explained, by building up analytical models or performing numerical simulations. We discuss the most recent analytical theories and numerical simulations and outline the limits implicit in any analysis which consider the low-frequency solar-wind fluctuations as a superposition of linear modes. The characterization of low-frequency fluctuations during Alfvenic periods, which results from the models discussed, is finally presented
Gauge turbulence, topological defect dynamics, and condensation in Higgs models
International Nuclear Information System (INIS)
Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.; Sexty, Dénes
2014-01-01
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates
Gauge turbulence, topological defect dynamics, and condensation in Higgs models
Energy Technology Data Exchange (ETDEWEB)
Gasenzer, Thomas [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany); McLerran, Larry [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, China Central Normal University, Wuhan (China); Pawlowski, Jan M.; Sexty, Dénes [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany)
2014-10-15
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.
Scalar flux modeling in turbulent flames using iterative deconvolution
Nikolaou, Z. M.; Cant, R. S.; Vervisch, L.
2018-04-01
In the context of large eddy simulations, deconvolution is an attractive alternative for modeling the unclosed terms appearing in the filtered governing equations. Such methods have been used in a number of studies for non-reacting and incompressible flows; however, their application in reacting flows is limited in comparison. Deconvolution methods originate from clearly defined operations, and in theory they can be used in order to model any unclosed term in the filtered equations including the scalar flux. In this study, an iterative deconvolution algorithm is used in order to provide a closure for the scalar flux term in a turbulent premixed flame by explicitly filtering the deconvoluted fields. The assessment of the method is conducted a priori using a three-dimensional direct numerical simulation database of a turbulent freely propagating premixed flame in a canonical configuration. In contrast to most classical a priori studies, the assessment is more stringent as it is performed on a much coarser mesh which is constructed using the filtered fields as obtained from the direct simulations. For the conditions tested in this study, deconvolution is found to provide good estimates both of the scalar flux and of its divergence.
Phenomenological modeling of turbulence in Z-pinch implosions
International Nuclear Information System (INIS)
Thornhill, J.W.; Whitney, K.G.; Deeney, C.; LePell, P.D.
1994-01-01
A phenomenological investigation into the effects of magnetohydrodynamic (MHD) turbulence on the initial stagnation dynamics of aluminum wire array and argon gas puff Z-pinch implosions is performed. The increases that turbulence produces in the plasma viscosity, heat conductivity, and electrical resistivity are modeled by using multipliers for these quantities in one-dimensional (1-D) MHD calculations. The major effect of these increases is to soften the 1-D implosions by decreasing the densities that are achieved on axis at stagnation. As a consequence, a set of multipliers can be found that reasonably duplicates the average electron temperatures, ion densities, and mass of the K-shell emission region that were measured at stagnation for a variety of Physics International aluminum wire array and argon gas puff experiments. It is determined that the dependence of these measured quantities on the multipliers is weak once a level of enhancement is reached, where agreement between calculations and experiments is attained. The scaling of K-shell yield with load mass for a fixed implosion velocity is then reexamined, and the minimum load mass needed to efficiently produce K-shell emission by thermalization of kinetic energy is calculated for aluminum and argon using this phenomenological soft implosion modeling. The results show an upward shift in the minimum mass by a factor of 6 when compared to the original nonturbulent hard implosion calculations
Comparative study of turbulence model performance for axisymmetric sudden expansion flow
Energy Technology Data Exchange (ETDEWEB)
Bae, Youngmin; Kim, Young In; Kim, Keung Koo; Yoon, Juhyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-10-15
In this study, the performance of turbulence models in predicting the turbulent flow in an axisymmetric sudden expansion with an expansion ratio of 4 is assessed for a Reynolds number of 5.6 Χ 10{sup 4}. The comparisons show that the standard k-ε and RSM models provide the best agreement with the experimental data, whereas the standard k-ω model gives poor predictions. Owing to its computational efficiency, the Reynolds Averaged Navier-Stokes (RANS) approach has been widely used for the prediction of turbulent flows and associated pressure losses in a variety of internal flow systems such as a diffuser, orifice, converging nozzle, and pipes with sudden expansion. However, the lack of a general turbulence model often leads to limited applications of a RANS approach, i. e., the accuracy and validity of solutions obtained from RANS equations vary with the turbulence model, flow regime, near-wall treatment, and configuration of the problem. In light of the foregoing, a large amount of turbulence research has been conducted to assess the performance of existing turbulence models for different flow fields. In this paper, the turbulent flow in an axisymmetric sudden expansion is numerically investigated for a Reynolds number of 5.6 Χ 10{sup 4}, with the aim of examining the performance of several turbulence models.
Comparative study of turbulence model performance for axisymmetric sudden expansion flow
International Nuclear Information System (INIS)
Bae, Youngmin; Kim, Young In; Kim, Keung Koo; Yoon, Juhyeon
2013-01-01
In this study, the performance of turbulence models in predicting the turbulent flow in an axisymmetric sudden expansion with an expansion ratio of 4 is assessed for a Reynolds number of 5.6 Χ 10 4 . The comparisons show that the standard k-ε and RSM models provide the best agreement with the experimental data, whereas the standard k-ω model gives poor predictions. Owing to its computational efficiency, the Reynolds Averaged Navier-Stokes (RANS) approach has been widely used for the prediction of turbulent flows and associated pressure losses in a variety of internal flow systems such as a diffuser, orifice, converging nozzle, and pipes with sudden expansion. However, the lack of a general turbulence model often leads to limited applications of a RANS approach, i. e., the accuracy and validity of solutions obtained from RANS equations vary with the turbulence model, flow regime, near-wall treatment, and configuration of the problem. In light of the foregoing, a large amount of turbulence research has been conducted to assess the performance of existing turbulence models for different flow fields. In this paper, the turbulent flow in an axisymmetric sudden expansion is numerically investigated for a Reynolds number of 5.6 Χ 10 4 , with the aim of examining the performance of several turbulence models
Energy Technology Data Exchange (ETDEWEB)
1987-08-01
The large eddy concept in turbulent modeling and techniques for direct simulation are discussed. A review of turbulence modeling is presented along with physical and numerical aspects and applications. A closure model for turbulent flows is presented and routes to chaos by quasi-periodicity are discussed. Theoretical aspects of transition to turbulence by space/time intermittency are covered. The application to interpretation of experimental results of fractal dimensions and connection of spatial temporal chaos are reviewed. Simulation of hydrodynamic flow by using cellular automata is discussed.
A mathematical model for turbulent incompressible flows through mixing grids
International Nuclear Information System (INIS)
Allaire, G.
1989-01-01
A mathematical model is proposed for the computation of turbulent incompressible flows through mixing grids. This model is obtained as follows: in a three-dimentional-domain we represent a mixing grid by small identical wings of size ε 2 periodically distributed at the nodes of a plane regular mesh of size ε, and we consider incompressible Navier-Stokes equations with a no-slip condition on the wings. Using an appropriate homogenization process we pass to the limit when ε tends to zero and we obtain a Brinkman equation, i.e. a Navier-Stokes equation plus a zero-order term for the velocity, in a homogeneous domain without anymore wings. The interest of this model is that the spatial discretization is simpler in a homogeneous domain, and, moreover, the new term, which expresses the grid's mixing effect, can be evaluated with a local computation around a single wing
Stability of model flocks in turbulent-like flow
International Nuclear Information System (INIS)
Khurana, Nidhi; Ouellette, Nicholas T
2013-01-01
We report numerical simulations of a simple model of flocking particles in the presence of an uncertain background environment. We consider two types of environmental perturbations: random noise applied separately to each particle, and spatiotemporally correlated ‘noise’ provided by a turbulent-like flow field. The effects of these two types of noise are very different; surprisingly, the applied flow field tends to destroy the global order of the flocking model even for vanishingly small flow amplitudes. Local order, however, is preserved in smaller sub-flocks, although their composition changes dynamically. Our results suggest that realistic perturbations must be considered in assessing the stability of models of collective animal behavior, and that random noise is not a sufficient proxy. (paper)
International Nuclear Information System (INIS)
Maroteaux, Fadila; Pommier, Pierre-Lin
2013-01-01
Highlights: ► Turbulent time evolution is introduced in stochastic modeling approach. ► The particles number is optimized trough a restricted initial distribution. ► The initial distribution amplitude is modeled by magnitude of turbulence field. -- Abstract: Homogenous Charge Compression Ignition (HCCI) engine technology is known as an alternative to reduce NO x and particulate matter (PM) emissions. As shown by several experimental studies published in the literature, the ideally homogeneous mixture charge becomes stratified in composition and temperature, and turbulent mixing is found to play an important role in controlling the combustion progress. In a previous study, an IEM model (Interaction by Exchange with the Mean) has been used to describe the micromixing in a stochastic reactor model that simulates the HCCI process. The IEM model is a deterministic model, based on the principle that the scalar value approaches the mean value over the entire volume with a characteristic mixing time. In this previous model, the turbulent time scale was treated as a fixed parameter. The present study focuses on the development of a micro-mixing time model, in order to take into account the physical phenomena it stands for. For that purpose, a (k–ε) model is used to express this micro-mixing time model. The turbulence model used here is based on zero dimensional energy cascade applied during the compression and the expansion cycle; mean kinetic energy is converted to turbulent kinetic energy. Turbulent kinetic energy is converted to heat through viscous dissipation. Besides, in this study a relation to calculate the initial heterogeneities amplitude is proposed. The comparison of simulation results against experimental data shows overall satisfactory agreement at variable turbulent time scale
Interchange turbulence model for the edge plasma in SOLEDGE2D-EIRENE
Energy Technology Data Exchange (ETDEWEB)
Bufferand, H.; Marandet, Y. [Aix-Marseille Universite, CNRS, PIIM, Marseille (France); Ciraolo, G.; Ghendrih, P.; Bucalossi, J.; Fedorczak, N.; Gunn, J.; Tamain, P. [CEA, IRFM, Saint-Paul-Lez-Durance (France); Colin, C.; Galassi, D.; Leybros, R.; Serre, E. [Aix-Marseille Universite, CNRS, M2P2, Marseille (France)
2016-08-15
Cross-field transport in edge tokamak plasmas is known to be dominated by turbulent transport. A dedicated effort has been made to simulate this turbulent transport from first principle models but the numerical cost to run these simulations on the ITER scale remains prohibitive. Edge plasma transport study relies mostly nowadays on so-called transport codes where the turbulent transport is taken into account using effective ad-hoc diffusion coefficients. In this contribution, we propose to introduce a transport equation for the turbulence intensity in SOLEDGE2D-EIRENE to describe the interchange turbulence properties. Going beyond the empirical diffusive model, this system automatically generates profiles for the turbulent transport and hence reduces the number of degrees of freedom for edge plasma transport codes. We draw inspiration from the k-epsilon model widely used in the neutral fluid community. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Modelling of turbulence and combustion for simulation of gas explosions in complex geometries
Energy Technology Data Exchange (ETDEWEB)
Arntzen, Bjoern Johan
1998-12-31
This thesis analyses and presents new models for turbulent reactive flows for CFD (Computational Fluid Dynamics) simulation of gas explosions in complex geometries like offshore modules. The course of a gas explosion in a complex geometry is largely determined by the development of turbulence and the accompanying increased combustion rate. To be able to model the process it is necessary to use a CFD code as a starting point, provided with a suitable turbulence and combustion model. The modelling and calculations are done in a three-dimensional finite volume CFD code, where complex geometries are represented by a porosity concept, which gives porosity on the grid cell faces, depending on what is inside the cell. The turbulent flow field is modelled with a k-{epsilon} turbulence model. Subgrid models are used for production of turbulence from geometry not fully resolved on the grid. Results from laser doppler anemometry measurements around obstructions in steady and transient flows have been analysed and the turbulence models have been improved to handle transient, subgrid and reactive flows. The combustion is modelled with a burning velocity model and a flame model which incorporates the burning velocity into the code. Two different flame models have been developed: SIF (Simple Interface Flame model), which treats the flame as an interface between reactants and products, and the {beta}-model where the reaction zone is resolved with about three grid cells. The flame normally starts with a quasi laminar burning velocity, due to flame instabilities, modelled as a function of flame radius and laminar burning velocity. As the flow field becomes turbulent, the flame uses a turbulent burning velocity model based on experimental data and dependent on turbulence parameters and laminar burning velocity. The laminar burning velocity is modelled as a function of gas mixture, equivalence ratio, pressure and temperature in reactant. Simulations agree well with experiments. 139
Spectrally-consistent regularization modeling of turbulent natural convection flows
International Nuclear Information System (INIS)
Trias, F Xavier; Gorobets, Andrey; Oliva, Assensi; Verstappen, Roel
2012-01-01
The incompressible Navier-Stokes equations constitute an excellent mathematical modelization of turbulence. Unfortunately, attempts at performing direct simulations are limited to relatively low-Reynolds numbers because of the almost numberless small scales produced by the non-linear convective term. Alternatively, a dynamically less complex formulation is proposed here. Namely, regularizations of the Navier-Stokes equations that preserve the symmetry and conservation properties exactly. To do so, both convective and diffusive terms are altered in the same vein. In this way, the convective production of small scales is effectively restrained whereas the modified diffusive term introduces a hyperviscosity effect and consequently enhances the destruction of small scales. In practice, the only additional ingredient is a self-adjoint linear filter whose local filter length is determined from the requirement that vortex-stretching must stop at the smallest grid scale. In the present work, the performance of the above-mentioned recent improvements is assessed through application to turbulent natural convection flows by means of comparison with DNS reference data.
Review of turbulence modelling for numerical simulation of nuclear reactor thermal-hydraulics
International Nuclear Information System (INIS)
Bernard, J.P.; Haapalehto, T.
1996-01-01
The report deals with the modelling of turbulent flows in nuclear reactor thermal-hydraulic applications. The goal is to give tools and knowledge about turbulent flows and their modelling in practical applications for engineers, and especially nuclear engineers. The emphasize is on the theory of turbulence, the existing different turbulence models, the state-of-art of turbulence in research centres, the available models in the commercial code CFD-FLOW3D, and the latest applications of turbulence modelling in nuclear reactor thermal-hydraulics. It turns out that it is difficult to elaborate an universal turbulence model and each model has its advantages and drawbacks in each application. However, the increasing power of computers can permit the emergence of new methods of turbulence modelling such as Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) which open new horizons in this field. These latter methods are beginning to be available in commercial codes and are used in different nuclear applications such as 3-D modelling of the nuclear reactor cores and the steam generators. (orig.) (22 refs.)
Numerical simulation of stratified flows with different k-ε turbulence models
International Nuclear Information System (INIS)
Dagestad, S.
1991-01-01
The thesis comprises the numerical simulation of stratified flows with different k-ε models. When using the k-ε model, two equations are solved to describe the turbulence. The k-equation represents the turbulent kinetic energy of the turbulence and the ε-equation is the turbulent dissipation. Different k-ε models predict stratified flows differently. The standard k-ε model leads to higher turbulent mixing than the low-Reynolds model does. For lower Froude numbers, F 0 , this effect becomes enhanced. Buoyancy extension of the k-ε model also leads to less vertical mixing in cases with strong stratification. When the stratification increases, buoyancy-extension becomes larger influence. The turbulent Prandtl number effects have large impact on the transport of heat and the development of the flow. Two different formulae which express the turbulent Prandtl effects have been tested. For unstably stratified flows, the rapid mixing and three-dimensionality of the flow can in fact be computed using a k-ε model when buoyancy-extended is employed. The turbulent heat transfer and thus turbulent production in unstable stratified flows depends strongly upon the turbulent Prandtl number effect. The main conclusions are: Stable stratified flows should be computed with a buoyancy-extended low-Reynolds k-ε model; Unstable stratified flows should be computed with a buoyancy-extended standard k-ε model; The turbulent Prandtl number effects should be included in the computations; Buoyancy-extension has lead to more correct description of the physics for all of the investigated flows. 78 refs., 128 figs., 17 tabs
Interstellar turbulence model : A self-consistent coupling of plasma and neutral fluids
International Nuclear Information System (INIS)
Shaikh, Dastgeer; Zank, Gary P.; Pogorelov, Nikolai
2006-01-01
We present results of a preliminary investigation of interstellar turbulence based on a self-consistent two-dimensional fluid simulation model. Our model describes a partially ionized magnetofluid interstellar medium (ISM) that couples a neutral hydrogen fluid to a plasma through charge exchange interactions and assumes that the ISM turbulent correlation scales are much bigger than the shock characteristic length-scales, but smaller than the charge exchange mean free path length-scales. The shocks have no influence on the ISM turbulent fluctuations. We find that nonlinear interactions in coupled plasma-neutral ISM turbulence are influenced substantially by charge exchange processes
Subgrid models for mass and thermal diffusion in turbulent mixing
Energy Technology Data Exchange (ETDEWEB)
Sharp, David H [Los Alamos National Laboratory; Lim, Hyunkyung [STONY BROOK UNIV; Li, Xiao - Lin [STONY BROOK UNIV; Gilmm, James G [STONY BROOK UNIV
2008-01-01
We are concerned with the chaotic flow fields of turbulent mixing. Chaotic flow is found in an extreme form in multiply shocked Richtmyer-Meshkov unstable flows. The goal of a converged simulation for this problem is twofold: to obtain converged solutions for macro solution features, such as the trajectories of the principal shock waves, mixing zone edges, and mean densities and velocities within each phase, and also for such micro solution features as the joint probability distributions of the temperature and species concentration. We introduce parameterized subgrid models of mass and thermal diffusion, to define large eddy simulations (LES) that replicate the micro features observed in the direct numerical simulation (DNS). The Schmidt numbers and Prandtl numbers are chosen to represent typical liquid, gas and plasma parameter values. Our main result is to explore the variation of the Schmidt, Prandtl and Reynolds numbers by three orders of magnitude, and the mesh by a factor of 8 per linear dimension (up to 3200 cells per dimension), to allow exploration of both DNS and LES regimes and verification of the simulations for both macro and micro observables. We find mesh convergence for key properties describing the molecular level of mixing, including chemical reaction rates between the distinct fluid species. We find results nearly independent of Reynolds number for Re 300, 6000, 600K . Methodologically, the results are also new. In common with the shock capturing community, we allow and maintain sharp solution gradients, and we enhance these gradients through use of front tracking. In common with the turbulence modeling community, we include subgrid scale models with no adjustable parameters for LES. To the authors' knowledge, these two methodologies have not been previously combined. In contrast to both of these methodologies, our use of Front Tracking, with DNS or LES resolution of the momentum equation at or near the Kolmogorov scale, but without
International Nuclear Information System (INIS)
Donnelly, R.J.
1988-01-01
Most flows of fluids, in nature and in technology, are turbulent. Since much of the energy expended by machines and devices that involve fluid flows is spent in overcoming drag caused by turbulence, there is a strong motivation to understand the phenomena. Surprisingly, the peculiar, quantum-mechanical form of turbulence that can form in superfluid helium may turn out to be much simpler to understand that the classical turbulence that forms in normal fluids. It now seems that the study of superfluid turbulence may provide simplified model systems for studying some forms of classical turbulence. There are also practical motivations for studying superfluid turbulence. For example, superfuid helium is often used as a coolant in superconducting machinery. Superfluid turbulence is the primary impediment to the transfer of heat by superfluid helium; an understanding of the phenomena may make it possible to design more efficient methods of refrigeration for superconducting devices. 8 figs
A Lagrangian dynamic subgrid-scale model turbulence
Meneveau, C.; Lund, T. S.; Cabot, W.
1994-01-01
A new formulation of the dynamic subgrid-scale model is tested in which the error associated with the Germano identity is minimized over flow pathlines rather than over directions of statistical homogeneity. This procedure allows the application of the dynamic model with averaging to flows in complex geometries that do not possess homogeneous directions. The characteristic Lagrangian time scale over which the averaging is performed is chosen such that the model is purely dissipative, guaranteeing numerical stability when coupled with the Smagorinsky model. The formulation is tested successfully in forced and decaying isotropic turbulence and in fully developed and transitional channel flow. In homogeneous flows, the results are similar to those of the volume-averaged dynamic model, while in channel flow, the predictions are superior to those of the plane-averaged dynamic model. The relationship between the averaged terms in the model and vortical structures (worms) that appear in the LES is investigated. Computational overhead is kept small (about 10 percent above the CPU requirements of the volume or plane-averaged dynamic model) by using an approximate scheme to advance the Lagrangian tracking through first-order Euler time integration and linear interpolation in space.
Modeling water droplet condensation and evaporation in DNS of turbulent channel flow
Russo, E.; Kuerten, J.G.M.; Geld, van der C.W.M.; Geurts, B.J.
2011-01-01
In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an
Modeling water droplet condensation and evaporation in DNS of turbulent channel flow
Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.
In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an
Befrui, Bizhan A.
1995-01-01
This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.
MODELLING OF TURBULENT WAKE FOR TWO WIND TURBINES
Directory of Open Access Journals (Sweden)
Arina S. Kryuchkova
2018-01-01
Full Text Available The construction of several large wind farms (The Ulyanovsk region, the Republic of Adygea, the Kaliningrad region, the North of the Russian Federation is planned on the territory of the Russian Federation in 2018–2020. The tasks, connected with the design of new wind farms, are currently important. One of the possible direction in the design is connected with mathematical modeling. Large eddy method (eddy-resolving simulation, developed within the Computational Fluid Dynamics, allows to reproduce unsteady structure of the flow in details and define various integrated characteristics for wind turbines. The mathematical model included the main equations of continuity and momentum equations for incompressible viscous flow. The large-scale vortex structures were calculated by means of integration the filtered equations. The calculation was carried out using lagrangian dynamic Smagorinsky’s model to define turbulent subgrid viscosity. The parallelepiped-shaped numerical domain and 3 different unstructured meshes (with 2,4,8 million cells were used for numerical simulation.The geometrical parameters of wind turbine were set proceeding to open sources for BlindTest 2–4 project from Internet. All physical values were defined at the center of computational cell. The approximation of items in the equations was performed with the second order of accuracy for time and space. The equations for coupling of velocity, pressure were solved by means of iterative algorithm PIMPLE. The total quantity of the calculated physical values at each time step was equal 18. So, the resources of a high performance computer were required. As a result of flow simulation in the wake for two three-bladed wind turbines the average and instantaneous values of velocity, pressure, subgrid kinetic energy, turbulent viscosity, components of stress tensor were calculated. The received results qualitatively matching the known results of experiment and numerical simulation testify
Unconfined deflagrative explosions without turbulence: experiments and model
International Nuclear Information System (INIS)
Lannoy, A.
1989-01-01
This paper reviews laboratory, balloon and open field experiments which have been performed to study the deflagration regime in free air. In a first part, are considered different models available to estimate deflagrative unconfined explosions effects, without turbulence. Then, a description is given of the known performed tests, which indicate the effective scale of various experiments, their operating conditions and the type of measurements carried out. Results are presented and discussed. The influence on the explosion force of different parameters (fuel concentration gradients, flammable mixture shape and size, ignition energy) is estimated. The overall conclusion of this survey is that flammable mixtures drifting over open field and ignited, will burn with low flame speed and consequently will generate very weak pressure effects [fr
Turbulence model for melt pool natural convection heat transfer
International Nuclear Information System (INIS)
Kelkar, K.M.; Patankar, S.V.
1994-01-01
Under severe reactor accident scenarios, pools of molten core material may form in the reactor core or in the hemispherically shaped lower plenum of the reactor vessel. Such molten pools are internally heated due to the radioactive decay heat that gives rise to buoyant flows in the molten pool. The flow in such pools is strongly influenced by the turbulent mixing because the expected Rayleigh numbers under accidents scenarios are very high. The variation of the local heat flux over the boundaries of the molten pools are important in determining the subsequent melt progression behavior. This study reports results of an ongoing effort towards providing a well validated mathematical model for the prediction of buoyant flow and heat transfer in internally heated pool under conditions expected in severe accident scenarios
The Modelling of Particle Resuspension in a Turbulent Boundary Layer
International Nuclear Information System (INIS)
Zhang, Fan
2011-01-01
The work presented concerns the way small particles attached to a surface are resuspended when exposed to a turbulent flow. Of particular concern to this work is the remobilization of radioactive particles as a consequence of potential nuclear accidents. In this particular case the focus is on small particles, < 5 microns in diameter, where the principal force holding such particles onto a surface arises from van der Waals inter-molecular forces. Given its suitable treatment of the microphysics of small particles, it was decided here to aim to develop improved versions of the Rock'n'Roll (R'n'R) model; the R'n'R model is based on a statistical approach to resuspension involving the rocking and rolling of a particle about surface asperities induced by the moments of the fluctuating drag forces acting on the particle close to the surface. Firstly, a force (moment) balance model has been modified by including the distribution of the aerodynamic force instead of considering only its mean value. The R'n'R model is significantly improved by using realistic statistical fluctuations of both the stream-wise fluid velocity and acceleration close to the wall obtained from Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) of turbulent channel flow; in the standard model a major assumption is that these obey a Gaussian distribution. The flow conditions are translated into the moments of the drag force acting on the particle attached to the surface. In so doing the influence of highly non-Gaussian forces on the resuspension rate has been examined along with the sensitivity of the fluctuation statistics to LES and DNS. As a result of the analysis of our DNS/LES data 3 distinct features of the modified R'n'R model have emerged as playing an important part in the resuspension. The first is the typical forcing frequency due to the turbulent aerodynamic drag forces acting on the particle attached to a surface. The second is the value of the ratio of the root
International Nuclear Information System (INIS)
Jayaraju, S.T.; Sathiah, P.; Roelofs, F.; Dehbi, A.
2015-01-01
Highlights: • Near-wall modeling uncertainties in the RANS particle transport and deposition are addressed in a turbulent duct flow. • Discrete Random Walk (DRW) model and Continuous Random Walk (CRW) model performances are tested. • Several near-wall anisotropic model accuracy is assessed. • Numerous sensitivity studies are performed to recommend a robust, well-validated near-wall model for accurate particle deposition predictions. - Abstract: Dust accumulation in the primary system of a (V)HTR is identified as one of the foremost concerns during a potential accident. Several numerical efforts have focused on the use of RANS methodology to better understand the complex phenomena of fluid–particle interaction at various flow conditions. In the present work, several uncertainties relating to the near-wall modeling of particle transport and deposition are addressed for the RANS approach. The validation analyses are performed in a fully developed turbulent duct flow setup. A standard k − ε turbulence model with enhanced wall treatment is used for modeling the turbulence. For the Lagrangian phase, the performance of a continuous random walk (CRW) model and a discrete random walk (DRW) model for the particle transport and deposition are assessed. For wall bounded flows, it is generally seen that accounting for near wall anisotropy is important to accurately predict particle deposition. The various near-wall correlations available in the literature are either derived from the DNS data or from the experimental data. A thorough investigation into various near-wall correlations and their applicability for accurate particle deposition predictions are assessed. The main outcome of the present work is a well validated turbulence model with optimal near-wall modeling which provides realistic particle deposition predictions
A reduced model for ion temperature gradient turbulent transport in helical plasmas
International Nuclear Information System (INIS)
Nunami, M.; Watanabe, T.-H.; Sugama, H.
2013-07-01
A novel reduced model for ion temperature gradient (ITG) turbulent transport in helical plasmas is presented. The model enables one to predict nonlinear gyrokinetic simulation results from linear gyrokinetic analyses. It is shown from nonlinear gyrokinetic simulations of the ITG turbulence in helical plasmas that the transport coefficient can be expressed as a function of the turbulent fluctuation level and the averaged zonal flow amplitude. Then, the reduced model for the turbulent ion heat diffusivity is derived by representing the nonlinear turbulent fluctuations and zonal flow amplitude in terms of the linear growth rate of the ITG instability and the linear response of the zonal flow potentials. It is confirmed that the reduced transport model results are in good agreement with those from nonlinear gyrokinetic simulations for high ion temperature plasmas in the Large Helical Device. (author)
Numerical study of corner separation in a linear compressor cascade using various turbulence models
Directory of Open Access Journals (Sweden)
Liu Yangwei
2016-06-01
Full Text Available Three-dimensional corner separation is a common phenomenon that significantly affects compressor performance. Turbulence model is still a weakness for RANS method on predicting corner separation flow accurately. In the present study, numerical study of corner separation in a linear highly loaded prescribed velocity distribution (PVD compressor cascade has been investigated using seven frequently used turbulence models. The seven turbulence models include Spalart–Allmaras model, standard k–ɛ model, realizable k–ɛ model, standard k–ω model, shear stress transport k–ω model, v2–f model and Reynolds stress model. The results of these turbulence models have been compared and analyzed in detail with available experimental data. It is found the standard k–ɛ model, realizable k–ɛ model, v2–f model and Reynolds stress model can provide reasonable results for predicting three dimensional corner separation in the compressor cascade. The Spalart–Allmaras model, standard k–ω model and shear stress transport k–ω model overestimate corner separation region at incidence of 0°. The turbulence characteristics are discussed and turbulence anisotropy is observed to be stronger in the corner separating region.
Comparison of different turbulence models in open channels with smooth-rough bedforms
International Nuclear Information System (INIS)
Ghani, U.
2013-01-01
The turbulence models play an important role in all types of computational fluid dynamics based numerical modelling. There is no universal turbulence model which can be applied in all the scenarios. Therefore, if a suitable closure model is used in a simulation work, only then the successful numerical modelling will be achieved. This paper presents the evaluation of three turbulence models in numerical modelling of open channel flows having beds comprising of two parallel strips, one being smooth and the other one being rough. The roughness on the rough side of the channel was created with the help of gravels. The turbulence models tested for their suitability in this case were Reynolds stress model, k-model and RNG based k-model. A structured mesh was used in this simulation work. Grid independence test was also conducted in the simulation. The evaluation of the turbulence models was made through the primary velocity contours and secondary velocity vectors over the cross section of the channel. It was revealed that Reynolds stress model simulated the flow behaviour successfully and results obtained through this model matched very closely to that of the experimental data whereas k-model and RNG based k-model failed to reproduce the flow field successfully. These results will be helpful for CFD (Computational Fluid Dynamics) modellers in correct selection of the turbulence model in these types of channels. (author)
The Modelling of Particle Resuspension in a Turbulent Boundary Layer
Energy Technology Data Exchange (ETDEWEB)
Zhang, Fan
2011-10-20
The work presented concerns the way small particles attached to a surface are resuspended when exposed to a turbulent flow. Of particular concern to this work is the remobilization of radioactive particles as a consequence of potential nuclear accidents. In this particular case the focus is on small particles, < 5 microns in diameter, where the principal force holding such particles onto a surface arises from van der Waals inter-molecular forces. Given its suitable treatment of the microphysics of small particles, it was decided here to aim to develop improved versions of the Rock'n'Roll (R'n'R) model; the R'n'R model is based on a statistical approach to resuspension involving the rocking and rolling of a particle about surface asperities induced by the moments of the fluctuating drag forces acting on the particle close to the surface. Firstly, a force (moment) balance model has been modified by including the distribution of the aerodynamic force instead of considering only its mean value. The R'n'R model is significantly improved by using realistic statistical fluctuations of both the stream-wise fluid velocity and acceleration close to the wall obtained from Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) of turbulent channel flow; in the standard model a major assumption is that these obey a Gaussian distribution. The flow conditions are translated into the moments of the drag force acting on the particle attached to the surface. In so doing the influence of highly non-Gaussian forces on the resuspension rate has been examined along with the sensitivity of the fluctuation statistics to LES and DNS. As a result of the analysis of our DNS/LES data 3 distinct features of the modified R'n'R model have emerged as playing an important part in the resuspension. The first is the typical forcing frequency due to the turbulent aerodynamic drag forces acting on the particle attached to a surface. The
Energy Technology Data Exchange (ETDEWEB)
Mueller, C; Kremer, H [Ruhr-Universitaet Bochum, Lehrstuhl fuer Energieanlagentechnik, Bochum (Germany); Kilpinen, P; Hupa, M [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group
1998-12-31
The detailed modelling of turbulent reactive flows with CFD-codes is a major challenge in combustion science. One method of combining highly developed turbulence models and detailed chemistry in CFD-codes is the application of reactor based turbulence chemistry interaction models. In this work the influence of different reactor concepts on methane and NO{sub x} chemistry in turbulent reactive flows was investigated. Besides the classical reactor approaches, a plug flow reactor (PFR) and a perfectly stirred reactor (PSR), the Eddy-Dissipation Combustion Model (EDX) and the Eddy Dissipation Concept (EDC) were included. Based on a detailed reaction scheme and a simplified 2-step mechanism studies were performed in a simplified computational grid consisting of 5 cells. The investigations cover a temperature range from 1273 K to 1673 K and consider fuel-rich and fuel-lean gas mixtures as well as turbulent and highly turbulent flow conditions. All test cases investigated in this study showed a strong influence of the reactor residence time on the species conversion processes. Due to this characteristic strong deviations were found for the species trends resulting from the different reactor approaches. However, this influence was only concentrated on the `near burner region` and after 4-5 cells hardly any deviation and residence time dependence could be found. The importance of the residence time dependence increased when the species conversion was accelerated as it is the case for overstoichiometric combustion conditions and increased temperatures. The study focused furthermore on the fine structure in the EDC. Unlike the classical approach this part of the cell was modelled as a PFR instead of a PSR. For high temperature conditions there was hardly any difference between both reactor types. However, decreasing the temperature led to obvious deviations. Finally, the effect of the selective species transport between the cells on the conversion process was investigated
Energy Technology Data Exchange (ETDEWEB)
Mueller, C.; Kremer, H. [Ruhr-Universitaet Bochum, Lehrstuhl fuer Energieanlagentechnik, Bochum (Germany); Kilpinen, P.; Hupa, M. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group
1997-12-31
The detailed modelling of turbulent reactive flows with CFD-codes is a major challenge in combustion science. One method of combining highly developed turbulence models and detailed chemistry in CFD-codes is the application of reactor based turbulence chemistry interaction models. In this work the influence of different reactor concepts on methane and NO{sub x} chemistry in turbulent reactive flows was investigated. Besides the classical reactor approaches, a plug flow reactor (PFR) and a perfectly stirred reactor (PSR), the Eddy-Dissipation Combustion Model (EDX) and the Eddy Dissipation Concept (EDC) were included. Based on a detailed reaction scheme and a simplified 2-step mechanism studies were performed in a simplified computational grid consisting of 5 cells. The investigations cover a temperature range from 1273 K to 1673 K and consider fuel-rich and fuel-lean gas mixtures as well as turbulent and highly turbulent flow conditions. All test cases investigated in this study showed a strong influence of the reactor residence time on the species conversion processes. Due to this characteristic strong deviations were found for the species trends resulting from the different reactor approaches. However, this influence was only concentrated on the `near burner region` and after 4-5 cells hardly any deviation and residence time dependence could be found. The importance of the residence time dependence increased when the species conversion was accelerated as it is the case for overstoichiometric combustion conditions and increased temperatures. The study focused furthermore on the fine structure in the EDC. Unlike the classical approach this part of the cell was modelled as a PFR instead of a PSR. For high temperature conditions there was hardly any difference between both reactor types. However, decreasing the temperature led to obvious deviations. Finally, the effect of the selective species transport between the cells on the conversion process was investigated
Tian, Lin-Lin; Zhao, Ning; Song, Yi-Lei; Zhu, Chun-Ling
2018-05-01
This work is devoted to perform systematic sensitivity analysis of different turbulence models and various inflow boundary conditions in predicting the wake flow behind a horizontal axis wind turbine represented by an actuator disc (AD). The tested turbulence models are the standard k-𝜀 model and the Reynolds Stress Model (RSM). A single wind turbine immersed in both uniform flows and in modeled atmospheric boundary layer (ABL) flows is studied. Simulation results are validated against the field experimental data in terms of wake velocity and turbulence intensity.
Development of a three-dimensional local scale atmospheric model with turbulence closure model
International Nuclear Information System (INIS)
Yamazawa, Hiromi
1989-05-01
Through the study to improve SPEEDI's capability, a three-dimensional numerical atmospheric model PHYSIC (Prognostic HYdroStatic model Including turbulence Closure model) was developed to apply it to the transport and diffusion evaluation over complex terrains. The detailed description of the atmospheric model was given. This model consists of five prognostic equations; the momentum equations of horizontal components with the so-called Boussinesq and hydrostatic assumptions, the conservation equations of heat, turbulence kinetic energy and turbulence length scale. The coordinate system used is the terrain following z * coordinate system which allows the existence of complex terrain. The minute formula of the turbulence closure calculation, the surface layer process, the ground surface heat budget, and the atmospheric and solar radiation were also presented. The time integration method used in this model is the Alternating Direction Implicit (A.D.I.) method with a vertically and horizontally staggered grid system. The memory storage needed to execute this model with 31 x 31 x 16 grid points, five layers in soil and double precision variables is about 5.3 MBytes. The CPU time is about 2.2 x 10 -5 s per one step per one grid point with a vector processor FACOM VP-100. (author)
Energy Technology Data Exchange (ETDEWEB)
Oksanen, A.; Maeki-Mantila, E. [Tampere Univ. of Technology (Finland). Thermal Engineering
1996-12-01
The aim of the work was to study the combustion models taking into account the coupling between gas phase reactions and turbulence the modelling of emissions, especially of nitric oxide, when temperature and species concentrations are fluctuating by turbulence. The principal tools to model turbulent gas phase combustion were methods based on the probability density function (pdf) with {beta} and {gamma}-distributions the practice of which can take into consideration the stochastic nature of turbulence and, on the other hand, the models which also include the effect turbulence on the reaction rates in the flames e.g. the Eddy Dissipation Model (EDM), the Eddy Dissipation Concept (EDC), the kinetic mod and the combinations of those ones, respectively. Besides these models effect of the different turbulence models (standard, RNG and CHENKIM k-{epsilon} models) on the combustion phenomena, especially on the formation emissions was also studied. Same kind of modelling has been done by the teams in the Special Interest Group of ERCOFTAC (European Research Community On Flow Turbulence And Combustion) under the title of Aerodynamics and Steady State Combustion Chambers and Furnaces (A.S.C.F.) with which we have co-operated during some years with success. (author)
Subgrid models for mass and thermal diffusion in turbulent mixing
International Nuclear Information System (INIS)
Lim, H; Yu, Y; Glimm, J; Li, X-L; Sharp, D H
2010-01-01
We propose a new method for the large eddy simulation (LES) of turbulent mixing flows. The method yields convergent probability distribution functions (PDFs) for temperature and concentration and a chemical reaction rate when applied to reshocked Richtmyer-Meshkov (RM) unstable flows. Because such a mesh convergence is an unusual and perhaps original capability for LES of RM flows, we review previous validation studies of the principal components of the algorithm. The components are (i) a front tracking code, FronTier, to control numerical mass diffusion and (ii) dynamic subgrid scale (SGS) models to compensate for unresolved scales in the LES. We also review the relevant code comparison studies. We compare our results to a simple model based on 1D diffusion, taking place in the geometry defined statistically by the interface (the 50% isoconcentration surface between the two fluids). Several conclusions important to physics could be drawn from our study. We model chemical reactions with no closure approximations beyond those in the LES of the fluid variables itself, and as with dynamic SGS models, these closures contain no adjustable parameters. The chemical reaction rate is specified by the joint PDF for temperature and concentration. We observe a bimodal distribution for the PDF and we observe significant dependence on fluid transport parameters.
Litchford, Ron J.; Jeng, San-Mou
1992-01-01
The performance of a recently introduced statistical transport model for turbulent particle dispersion is studied here for rigid particles injected into a round turbulent jet. Both uniform and isosceles triangle pdfs are used. The statistical sensitivity to parcel pdf shape is demonstrated.
A turbulent mixing Reynolds stress model fitted to match linear interaction analysis predictions
International Nuclear Information System (INIS)
Griffond, J; Soulard, O; Souffland, D
2010-01-01
To predict the evolution of turbulent mixing zones developing in shock tube experiments with different gases, a turbulence model must be able to reliably evaluate the production due to the shock-turbulence interaction. In the limit of homogeneous weak turbulence, 'linear interaction analysis' (LIA) can be applied. This theory relies on Kovasznay's decomposition and allows the computation of waves transmitted or produced at the shock front. With assumptions about the composition of the upstream turbulent mixture, one can connect the second-order moments downstream from the shock front to those upstream through a transfer matrix, depending on shock strength. The purpose of this work is to provide a turbulence model that matches LIA results for the shock-turbulent mixture interaction. Reynolds stress models (RSMs) with additional equations for the density-velocity correlation and the density variance are considered here. The turbulent states upstream and downstream from the shock front calculated with these models can also be related through a transfer matrix, provided that the numerical implementation is based on a pseudo-pressure formulation. Then, the RSM should be modified in such a way that its transfer matrix matches the LIA one. Using the pseudo-pressure to introduce ad hoc production terms, we are able to obtain a close agreement between LIA and RSM matrices for any shock strength and thus improve the capabilities of the RSM.
On two-dimensionalization of three-dimensional turbulence in shell models
DEFF Research Database (Denmark)
Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.
2010-01-01
Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell m......-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case....
Group-theoretical model of developed turbulence and renormalization of the Navier-Stokes equation.
Saveliev, V L; Gorokhovski, M A
2005-07-01
On the basis of the Euler equation and its symmetry properties, this paper proposes a model of stationary homogeneous developed turbulence. A regularized averaging formula for the product of two fields is obtained. An equation for the averaged turbulent velocity field is derived from the Navier-Stokes equation by renormalization-group transformation.
Stratified turbulent Bunsen flames : flame surface analysis and flame surface density modelling
Ramaekers, W.J.S.; Oijen, van J.A.; Goey, de L.P.H.
2012-01-01
In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold
International Nuclear Information System (INIS)
Boudjemadi, R.
1996-03-01
The main objectives of this thesis are the direct numerical simulation of natural convection in a vertical differentially heated slot and the improvements of second-order turbulence modelling. A three-dimensional direct numerical simulation code has been developed in order to gain a better understanding of turbulence properties in natural convection flows. This code has been validated in several physical configurations: non-stratified natural convection flows (conduction solution), stratified natural convection flows (double boundary layer solution), transitional and turbulent Poiseuille flows. For the conduction solution, the turbulent regime was reached at a Rayleigh number of 1*10 5 and 5.4*10 5 . A detailed analysis of these results has revealed the principal qualities of the available models but has also pointed our their shortcomings. This data base has been used in order to improve the triple correlations transport models and to select the turbulent time scales suitable for such flows. (author). 122 refs., figs., tabs., 4 appends
A dynamic globalization model for large eddy simulation of complex turbulent flow
Energy Technology Data Exchange (ETDEWEB)
Choi, Hae Cheon; Park, No Ma; Kim, Jin Seok [Seoul National Univ., Seoul (Korea, Republic of)
2005-07-01
A dynamic subgrid-scale model is proposed for large eddy simulation of turbulent flows in complex geometry. The eddy viscosity model by Vreman [Phys. Fluids, 16, 3670 (2004)] is considered as a base model. A priori tests with the original Vreman model show that it predicts the correct profile of subgrid-scale dissipation in turbulent channel flow but the optimal model coefficient is far from universal. Dynamic procedures of determining the model coefficient are proposed based on the 'global equilibrium' between the subgrid-scale dissipation and viscous dissipation. An important feature of the proposed procedures is that the model coefficient determined is globally constant in space but varies only in time. Large eddy simulations with the present dynamic model are conducted for forced isotropic turbulence, turbulent channel flow and flow over a sphere, showing excellent agreements with previous results.
Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz G.
2014-01-01
, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model
A comparative study of turbulence models for dissolved air flotation flow analysis
International Nuclear Information System (INIS)
Park, Min A; Lee, Kyun Ho; Chung, Jae Dong; Seo, Seung Ho
2015-01-01
The dissolved air flotation (DAF) system is a water treatment process that removes contaminants by attaching micro bubbles to them, causing them to float to the water surface. In the present study, two-phase flow of air-water mixture is simulated to investigate changes in the internal flow analysis of DAF systems caused by using different turbulence models. Internal micro bubble distribution, velocity, and computation time are compared between several turbulence models for a given DAF geometry and condition. As a result, it is observed that the standard κ-ε model, which has been frequently used in previous research, predicts somewhat different behavior than other turbulence models
Development of bubble-induced turbulence model for advanced two-fluid model
International Nuclear Information System (INIS)
Hosoi, Hideaki; Yoshida, Hiroyuki
2011-01-01
A two-fluid model can simulate two-phase flow by computational cost less than detailed two-phase flow simulation method such as interface tracking method. The two-fluid model is therefore useful for thermal hydraulic analysis in the large-scale domain such as rod bundles. However, since the two-fluid model includes a lot of constitutive equations verified by use of experimental results, it has problems that the result of analyses depends on accuracy of the constitutive equations. To solve these problems, an advanced two-fluid model has been developed by Japan Atomic Energy Agency. In this model, interface tracking method is combined with two-fluid model to accurately predict large interface structure behavior. Liquid clusters and bubbles larger than a computational cell are calculated using the interface tracking method, and those smaller than the cell are simulated by the two-fluid model. The constitutive equations to evaluate the effects of small bubbles or droplets on two-phase flow are also required in the advanced two-fluid model, just as with the conventional two-fluid model. However, the dependency of small bubbles and droplets on two-phase flow characteristics is relatively small, and fewer experimental results are required to verify the characteristics of large interface structures. Turbulent dispersion force model is one of the most important constitutive equations for the advanced two-fluid model. The turbulent dispersion force model has been developed by many researchers for the conventional two-fluid model. However, existing models implicitly include the effects of large bubbles and the deformation of bubbles, and are unfortunately not applicable to the advanced two-fluid model. In the previous study, the authors suggested the turbulent dispersion force model based on the analogy of Brownian motion. And the authors improved the turbulent dispersion force model in consideration of bubble-induced turbulence to improve the analysis results for small
Modelling of turbulent combustion in the blast furnace raceway
Energy Technology Data Exchange (ETDEWEB)
Karvinen, R; Maekiranta, R [Tampere Univ. (Finland). Energy and Process Engineering
1997-12-31
The phenomena concerning coke-gas -suspension and simultaneous combustion of solid coke particles and residual fuel oil in a blast furnace raceway are modelled. The flow field of suspension is predicted by using the two fluid model, which is based on the Eulerian method, in the Phoenics code. The standard k-e -model of turbulence is used. Pyrolysis of oil droplets is calculated with the own coded subroutine, which is based on the Lagrangian approach. Gas phase reaction rate is assumed to be controlled by chemical kinetics. Radiative heat transfer is calculated by using the six-flux method. Heterogenous surface reactions are used for the coke particles. Calculations without coke combustion show that due to a poor mixing in the hot blast, pyrolysis gases of residual fuel oil have not time enough to react with oxygen. It is obvious that if combustion of coke particles is taken into account, the oxygen content in the blast decreases to such a level, that unburnt pyrolysis gases can flow out of the raceway causing problems. The distribution of coke void fraction has been succeeded to predict in the raceway domain. Coke particles fall from the upper part of the raceway to the hot blast forming locally high concentrations, which affect very strongly the oxygen distribution of the hot blast. (orig.) SULA 2 Research Programme; 10 refs.
Modelling of turbulent combustion in the blast furnace raceway
Energy Technology Data Exchange (ETDEWEB)
Karvinen, R.; Maekiranta, R. [Tampere Univ. (Finland). Energy and Process Engineering
1996-12-31
The phenomena concerning coke-gas -suspension and simultaneous combustion of solid coke particles and residual fuel oil in a blast furnace raceway are modelled. The flow field of suspension is predicted by using the two fluid model, which is based on the Eulerian method, in the Phoenics code. The standard k-e -model of turbulence is used. Pyrolysis of oil droplets is calculated with the own coded subroutine, which is based on the Lagrangian approach. Gas phase reaction rate is assumed to be controlled by chemical kinetics. Radiative heat transfer is calculated by using the six-flux method. Heterogenous surface reactions are used for the coke particles. Calculations without coke combustion show that due to a poor mixing in the hot blast, pyrolysis gases of residual fuel oil have not time enough to react with oxygen. It is obvious that if combustion of coke particles is taken into account, the oxygen content in the blast decreases to such a level, that unburnt pyrolysis gases can flow out of the raceway causing problems. The distribution of coke void fraction has been succeeded to predict in the raceway domain. Coke particles fall from the upper part of the raceway to the hot blast forming locally high concentrations, which affect very strongly the oxygen distribution of the hot blast. (orig.) SULA 2 Research Programme; 10 refs.
International Nuclear Information System (INIS)
Groetzbach, G.
2007-12-01
Computational Fluid Dynamics (CFD) programs have a wide application field in reactor technique, like to diverse flow types which have to be considered in Accelerator Driven nuclear reactor Systems (ADS). This requires turbulence models for the momentum and heat transfer with very different capabilities. The physical demands on the models are elaborated for selected transport mechanisms, the status quo of the modelling is discussed, and it is investigated which capabilities are offered by the market dominating commercial CFD codes. One topic of the discussion is on the already earlier achieved knowledge on the distinct anisotropy of the turbulent momentum and heat transport near walls. It is shown that this is relevant in channel flows with inhomogeneous wall conditions. The related consequences for the turbulence modelling are discussed. The second topic is the turbulent heat transport in buoyancy influenced flows. The only turbulence model for heat transfer which is available in the large commercial CFD-codes is based on the Reynolds analogy. This means, it is required to prescribe suitable turbulent Prandtl number distributions. There exist many correlations for channel flows, but they are seldom used in practical applications. Here, a correlation is deduced for the local turbulent Prandtl number which accounts for many parameters, like wall distance, molecular Prandtl number of the fluid, wall roughness and local shear stress, thermal wall condition, etc. so that it can be applied to most ADS typical heat transporting channel flows. The spatial dependence is discussed. It is shown that it is essential for reliable temperature calculations to get accurate turbulent Prandtl numbers especially near walls. If thermal wall functions are applied, then the correlation for the turbulent Prandtl number has to be consistent with the wall functions to avoid unphysical discretisation dependences. In using Direct Numerical Simulation (DNS) data for horizontal fluid layers it
Energy Technology Data Exchange (ETDEWEB)
Liu, Houlin; Wang, Yong; Liu, Dongxi; Yuan, Shouqi; Wang, Jian [Jiangsu University, Zhenjiang (China)
2013-09-15
Various approaches have been developed for numerical predictions of unsteady cavitating turbulent flows. To verify the influence of a turbulence model on the simulation of unsteady attached sheet-cavitating flows in centrifugal pumps, two modified RNG k-ε models (DCM and FBM) are implemented in ANSYS-CFX 13.0 by second development technology, so as to compare three widespread turbulence models in the same platform. The simulation has been executed and compared to experimental results for three different flow coefficients. For four operating conditions, qualitative comparisons are carried out between experimental and numerical cavitation patterns, which are visualized by a high-speed camera and depicted as isosurfaces of vapor volume fraction α{sub v} = 0.1, respectively. The comparison results indicate that, for the development of the sheet attached cavities on the suction side of the impeller blades, the numerical results with different turbulence models are very close to each other and overestimate the experiment ones slightly. However, compared to the cavitation performance experimental curves, the numerical results have obvious difference: the prediction precision with the FBM is higher than the other two turbulence models. In addition, the loading distributions around the blade section at midspan are analyzed in detail. The research results suggest that, for numerical prediction of cavitating flows in centrifugal pumps, the turbulence model has little influence on the development of cavitation bubbles, but the advanced turbulence model can significantly improve the prediction precision of head coefficients and critical cavitation numbers.
Epps, Brenden; Cushman-Roisin, Benoit
2017-11-01
Fluid turbulence is an outstanding unsolved problem in classical physics, despite 120+ years of sustained effort. Given this history, we assert that a new mathematical framework is needed to make a transformative breakthrough. This talk offers one such framework, based upon kinetic theory tied to the statistics of turbulent transport. Starting from the Boltzmann equation and ``Lévy α-stable distributions'', we derive a turbulence model that expresses the turbulent stresses in the form of a fractional derivative, where the fractional order is tied to the transport behavior of the flow. Initial results are presented herein, for the cases of Couette-Poiseuille flow and 2D boundary layers. Among other results, our model is able to reproduce the logarithmic Law of the Wall in shear turbulence.
Energy Technology Data Exchange (ETDEWEB)
Shojaeefard, M.H.; Pirnia, A.; Fallahian, M.A. [Iran University of Science and Technology, School of Mechanical Engineering, Tehran (Iran, Islamic Republic of); Tahani, M. [Iran University of Science and Technology, School of Mechanical Engineering, Tehran (Iran, Islamic Republic of); University of Tehran, Faculty of New Science and Technology, Tehran (Iran, Islamic Republic of)
2012-06-15
In this study the effects of induced jet at trailing edge of a two dimensional airfoil on its boundary layer shape, separation over surface and turbulent parameters behind trailing edge are numerically investigated and compared against a previous experimental data. After proving independency of results from mesh size and obtaining the required mesh size, different turbulent models are examined and RNG k-epsilon model is chosen because of good agreement with experimental data in velocity and turbulent intensity variations. A comparison between ordinary and jet induced cases, regarding numerical data, is made. The results showed that because of low number of measurement points in experimental study, turbulent intensity extremes are not captured. While in numerical study, these values and their positions are well calculated and exact variation of turbulent intensity is acquired. Also a study in effect of jet at high angles of attack is done and the results showed the ability of jet in controlling separation and reducing wake region. (orig.)
Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces
Wang, Chi R.
2005-01-01
This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one
Analysis of a turbulent buoyant confined jet modeled using realizable k-ε model
El-Amin, Mohamed
2010-06-13
Through this paper, analyses of components of the unheated/heated turbulent confined jet are introduced and some models to describe them are developed. Turbulence realizable k-ε model is used to model the turbulence of this problem. Numerical simulations of 2D axisymmetric vertical hot water confined jet into a cylindrical tank have been done. Solutions are obtained for unsteady flow while velocity, pressure, temperature and turbulence distributions inside the water tank are analyzed. For seeking verification, an experiment was conducted for measuring of the temperature of the same system, and comparison between the measured and simulated temperature shows a good agreement. Using the simulated results, some models are developed to describe axial velocity, centerline velocity, radial velocity, dynamic pressure, mass flux, momentum flux and buoyancy flux for both unheated (non-buoyant) and heated (buoyant) jet. Finally, the dynamics of the heated jet in terms of the plume function which is a universal quantity and the source parameter are studied and therefore the maximum velocity can be predicted theoretically. © 2010 Springer-Verlag.
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-12-31
This workshop on turbulent viscosity models and on their experimental validation was organized by the `convection` section of the French society of thermal engineers. From the 9 papers presented during this workshop, 8 deal with the modeling of turbulent flows inside combustion chambers, turbo-machineries or in other energy-related applications, and have been selected for ETDE. (J.S.)
Energy Technology Data Exchange (ETDEWEB)
Chen, Fei, E-mail: chenfei@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); North China University of Water Resources and Electric Power, Zhengzhou, Henan 450011 (China); Huai, Xiulan, E-mail: hxl@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Cai, Jun, E-mail: caijun@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Xunfeng, E-mail: lixunfeng@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Meng, Ruixue, E-mail: mengruixue@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China)
2013-04-15
Highlights: ► We examine the applicability of various Pr{sub t} models into the simulation of LBE flow. ► Reynolds analogy suitable for conventional fluids cannot accurately simulate the heat transfer characteristics of LBE flow. ► The different Pr{sub t} model should be selected for the different thermal boundary condition of LBE flow. -- Abstract: With the proposal of Accelerator Driven Sub-critical System (ADS) together with liquid lead-bismuth eutectic (LBE) as coolant for both reactor and spallation target, the use of accurate heat transfer correlation and reliable turbulent-Prandtl-number model of LBE in turbulent flows is essential when designing ADS components of primary loop and heat exchanger of secondary loop. Unlike conventional fluids, there is not an acknowledged turbulent-Prandtl-number model for LBE flows. This paper reviews and assesses the existing turbulent-Pandtl-number models and various heat transfer correlations in circular tubes. Computational fluid dynamics (CFD) analysis is employed to evaluate the applicability of various turbulent-Prandtl-number models for LBE in the circular tube under boundary conditions of constant heat flux and constant wall temperature. Based on the assessment of turbulent-Prandtl-number models, the reliable turbulent-Prandtl-number models are recommended for CFD applications to LBE flows under boundary conditions of constant heat flux and constant wall temperature. The present study indicates that turbulent Prandtl number has a significant difference in turbulent LBE flow between constant-heat-flux and constant-wall-temperature boundary conditions.
Modeling local extinction in turbulent combustion using an embedding method
Knaus, Robert; Pantano, Carlos
2012-11-01
Local regions of extinction in diffusion flames, called ``flame holes,'' can reduce the efficiency of combustion and increase the production of certain pollutants. At sufficiently high speeds, a flame may also be lifted from the rim of the burner to a downstream location that may be stable. These two phenomena share a common underlying mechanism of propagation related to edge-flame dynamics where chemistry and fluid mechanics are equally important. We present a formulation that describes the formation, propagation, and growth of flames holes on the stoichiometric surface using edge flame dynamics. The boundary separating the flame from the quenched region is modeled using a progress variable defined on the moving stoichiometric surface that is embedded in the three-dimensional space using an extension algorithm. This Cartesian problem is solved using a high-order finite-volume WENO method extended to this nonconservative problem. This algorithm can track the dynamics of flame holes in a turbulent reacting-shear layer and model flame liftoff without requiring full chemistry calculations.
Energy Technology Data Exchange (ETDEWEB)
Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory
2010-01-01
We present our progress toward setting initial conditions in variable density turbulence models. In particular, we concentrate our efforts on the BHR turbulence model for turbulent Rayleigh-Taylor instability. Our approach is to predict profiles of relevant parameters before the fully turbulent regime and use them as initial conditions for the turbulence model. We use an idealized model of the mixing between two interpenetrating fluids to define the initial profiles for the turbulence model parameters. Velocities and volume fractions used in the idealized mixing model are obtained respectively from a set of ordinary differential equations modeling the growth of the Rayleigh-Taylor instability and from an idealization of the density profile in the mixing layer. A comparison between predicted initial profiles for the turbulence model parameters and initial profiles of the parameters obtained from low Atwood number three dimensional simulations show reasonable agreement.
Energy Technology Data Exchange (ETDEWEB)
Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory
2010-01-01
We present our progress toward setting initial conditions in variable density turbulence models. In particular, we concentrate our efforts on the BHR turbulence model for turbulent Rayleigh-Taylor instability. Our approach is to predict profiles of relevant variables before fully turbulent regime and use them as initial conditions for the turbulence model. We use an idealized model of mixing between two interpenetrating fluids to define the initial profiles for the turbulence model variables. Velocities and volume fractions used in the idealized mixing model are obtained respectively from a set of ordinary differential equations modeling the growth of the Rayleigh-Taylor instability and from an idealization of the density profile in the mixing layer. A comparison between predicted profiles for the turbulence model variables and profiles of the variables obtained from low Atwood number three dimensional simulations show reasonable agreement.
Energy Technology Data Exchange (ETDEWEB)
Dano, C.
2003-01-15
The objective of this thesis is to evaluate k-e, k-l and k-w low Reynolds two equation turbulence models for. A quadratic nonlinear k-l model is also implemented in this study. We analyze the two equation turbulence models capacity to predict the turbomachinery flows and the wakes. We are interested more particularly in the unsteady three dimensional configuration with rotor-stator interactions. A Gaussian distribution reproduces the upstream wake. This analysis is carried out in term of prediction quality but also in term of numerical behavior. Turbines and compressors configurations are tested. (author)
Comparison between 2D turbulence model ESEL and experimental data from AUG and COMPASS tokamaks
DEFF Research Database (Denmark)
Ondac, Peter; Horacek, Jan; Seidl, Jakub
2015-01-01
In this article we have used the 2D fluid turbulence numerical model, ESEL, to simulate turbulent transport in edge tokamak plasma. Basic plasma parameters from the ASDEX Upgrade and COMPASS tokamaks are used as input for the model, and the output is compared with experimental observations obtain...... for an extension of the ESEL model from 2D to 3D to fully resolve the parallel dynamics, and the coupling from the plasma to the sheath....
An Investigation of a Hybrid Mixing Timescale Model for PDF Simulations of Turbulent Premixed Flames
Zhou, Hua; Kuron, Mike; Ren, Zhuyin; Lu, Tianfeng; Chen, Jacqueline H.
2016-11-01
Transported probability density function (TPDF) method features the generality for all combustion regimes, which is attractive for turbulent combustion simulations. However, the modeling of micromixing due to molecular diffusion is still considered to be a primary challenge for TPDF method, especially in turbulent premixed flames. Recently, a hybrid mixing rate model for TPDF simulations of turbulent premixed flames has been proposed, which recovers the correct mixing rates in the limits of flamelet regime and broken reaction zone regime while at the same time aims to properly account for the transition in between. In this work, this model is employed in TPDF simulations of turbulent premixed methane-air slot burner flames. The model performance is assessed by comparing the results from both direct numerical simulation (DNS) and conventional constant mechanical-to-scalar mixing rate model. This work is Granted by NSFC 51476087 and 91441202.
Energy Technology Data Exchange (ETDEWEB)
B. A. Kashiwa; W. B. VanderHeyden
2000-12-01
A formalism for developing multiphase turbulence models is introduced by analogy to the phenomenological method used for single-phase turbulence. A sample model developed using the formalism is given in detail. The procedure begins with ensemble averaging of the exact conservation equations, with closure accomplished by using a combination of analytical and experimental results from the literature. The resulting model is applicable to a wide range of common multiphase flows including gas-solid, liquid-solid and gas-liquid (bubbly) flows. The model is positioned for ready extension to three-phase turbulence, or for use in two-phase turbulence in which one phase is accounted for in multiple size classes, representing polydispersivity. The formalism is expected to suggest directions toward a more fundamentally based theory, similar to the way that early work in single-phase turbulence has led to the spectral theory. The approach is unique in that a portion of the total energy decay rate is ascribed to each phase, as is dictated by the exact averaged equations, and results in a transport equation for energy decay rate associated with each phase. What follows is a straightforward definition of a turbulent viscosity for each phase, and accounts for the effect of exchange of fluctuational energy among phases on the turbulent shear viscosity. The model also accounts for the effect of slip momentum transfer among the phases on the production of turbulence kinetic energy and on the tensor character of the Reynolds stress. Collisional effects, when appropriate, are included by superposition. The model reduces to a standard form in limit of a single, pure material, and is expected to do a credible job of describing multiphase turbulent flows in a wide variety of regimes using a single set of coefficients.
Vortex dynamics and Lagrangian statistics in a model for active turbulence.
James, Martin; Wilczek, Michael
2018-02-14
Cellular suspensions such as dense bacterial flows exhibit a turbulence-like phase under certain conditions. We study this phenomenon of "active turbulence" statistically by using numerical tools. Following Wensink et al. (Proc. Natl. Acad. Sci. U.S.A. 109, 14308 (2012)), we model active turbulence by means of a generalized Navier-Stokes equation. Two-point velocity statistics of active turbulence, both in the Eulerian and the Lagrangian frame, is explored. We characterize the scale-dependent features of two-point statistics in this system. Furthermore, we extend this statistical study with measurements of vortex dynamics in this system. Our observations suggest that the large-scale statistics of active turbulence is close to Gaussian with sub-Gaussian tails.
Transition Heat Transfer Modeling Based on the Characteristics of Turbulent Spots
Simon, Fred; Boyle, Robert
1998-01-01
While turbulence models are being developed which show promise for simulating the transition region on a turbine blade or vane, it is believed that the best approach with the greatest potential for practical use is the use of models which incorporate the physics of turbulent spots present in the transition region. This type of modeling results in the prediction of transition region intermittency which when incorporated in turbulence models give a good to excellent prediction of the transition region heat transfer. Some models are presented which show how turbulent spot characteristics and behavior can be employed to predict the effect of pressure gradient and Mach number on the transition region. The models predict the spot formation rate which is needed, in addition to the transition onset location, in the Narasimha concentrated breakdown intermittency equation. A simplified approach is taken for modeling turbulent spot growth and interaction in the transition region which utilizes the turbulent spot variables governing transition length and spot generation rate. The models are expressed in terms of spot spreading angle, dimensionless spot velocity, dimensionless spot area, disturbance frequency and Mach number. The models are used in conjunction with a computer code to predict the effects of pressure gradient and Mach number on the transition region and compared with VKI experimental turbine data.
Numerical Analysis of Turbulent Combustion in a Model Swirl Gas Turbine Combustor
Directory of Open Access Journals (Sweden)
Ali Cemal Benim
2016-01-01
Full Text Available Turbulent reacting flows in a generic swirl gas turbine combustor are investigated numerically. Turbulence is modelled by a URANS formulation in combination with the SST turbulence model, as the basic modelling approach. For comparison, URANS is applied also in combination with the RSM turbulence model to one of the investigated cases. For this case, LES is also used for turbulence modelling. For modelling turbulence-chemistry interaction, a laminar flamelet model is used, which is based on the mixture fraction and the reaction progress variable. This model is implemented in the open source CFD code OpenFOAM, which has been used as the basis for the present investigation. For validation purposes, predictions are compared with the measurements for a natural gas flame with external flue gas recirculation. A good agreement with the experimental data is observed. Subsequently, the numerical study is extended to syngas, for comparing its combustion behavior with that of natural gas. Here, the analysis is carried out for cases without external flue gas recirculation. The computational model is observed to provide a fair prediction of the experimental data and predict the increased flashback propensity of syngas.
Investigation of coolant mixing in WWER-440/213 RPV with improved turbulence model
International Nuclear Information System (INIS)
Kiss, B.; Aszodi, A.
2011-01-01
A detailed and complex RPV model of WWER-440/213 type reactor was developed in Budapest University of Technology and Economics Institute of Nuclear Techniques in the previous years. This model contains the main structural elements as inlet and outlet nozzles, guide baffles of hydro-accumulators coolant, alignment drifts, perforated plates, brake- and guide tube chamber and simplified core. With the new vessel model a series of parameter studies were performed considering turbulence models, discretization schemes, and modeling methods with ANSYS CFX. In the course of parameter studies the coolant mixing was investigated in the RPV. The coolant flow was 'traced' with different scalar concentration at the inlet nozzles and its distribution was calculated at the core bottom. The simulation results were compared with PAKS NPP measured mixing factors data (available from FLOMIX project. Based on the comparison the SST turbulence model was chosen for the further simulations, which unifies the advantages of two-equation (kω and kε) models. The most widely used turbulence models are Reynolds-averaged Navier-Stokes models that are based on time-averaging of the equations. Time-averaging filters out all turbulent scales from the simulation, and the effect of turbulence on the mean flow is then re-introduced through appropriate modeling assumptions. Because of this characteristic of SST turbulence model a decision was made in year 2011 to investigate the coolant mixing with improved turbulence model as well. The hybrid SAS-SST turbulence model was chosen, which is capable of resolving large scale turbulent structures without the time and grid-scale resolution restrictions of LES, often allowing the use of existing grids created for Reynolds-averaged Navier-Stokes simulations. As a first step the coolant mixing was investigated in the downcomer only. Eddies are occurred after the loop connection because of the steep flow direction change. This turbulent, vertiginous flow was
Modeling variable density turbulence in the wake of an air-entraining transom stern
Hendrickson, Kelli; Yue, Dick
2015-11-01
This work presents a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flows in the near wake region of a transom stern. This three-dimensional flow is comprised of convergent corner waves that originate from the body and collide on the ship center plane forming the ``rooster tail'' that then widens to form the divergent wave train. These violent free-surface flows and breaking waves are characterized by significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) ~ 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. To whit, this work utilizes high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM) to capture the turbulence and large scale air entrainment. Analysis of the simulation results across and along the wake for the TMF budget and turbulent anisotropy provide the physical basis of the development of multiphase turbulence closure models. Performance of isotropic and anisotropic turbulent mass flux closure models will be presented. Sponsored by the Office of Naval Research.
Experiments and CFD Modelling of Turbulent Mass Transfer in a Mixing Channel
DEFF Research Database (Denmark)
Hjertager Osenbroch, Lene Kristin; Hjertager, Bjørn H.; Solberg, Tron
2006-01-01
. Three different flow cases are studied. The 2D numerical predictions of the mixing channel show that none of the k-ε turbulence models tested is suitable for the flow cases studied here. The turbulent Schmidt number is reduced to obtain a better agreement between measured and predicted mean......Experiments are carried out for passive mixing in order to obtain local mean and turbulent velocities and concentrations. The mixing takes place in a square channel with two inlets separated by a block. A combined PIV/PLIF technique is used to obtain instantaneous velocity and concentration fields...... and fluctuating concentrations. The multi-peak presumed PDF mixing model is tested....
A simple recipe for modeling reaction-rate in flows with turbulent-combustion
Girimaji, Sharath S.
1991-01-01
A computationally viable scheme to account for chemical reaction in turbulent flows is presented. The multivariate beta-pdf model for multiple scalar mixing forms the basis of this scheme. Using the model scalar joint pdf and a general form of the instantaneous reaction-rate, the unclosed chemical reaction terms are expressed as simple functions of scalar means and the turbulent scalar energy. The calculation procedure requires that the mean scalar equations and only one other transport equation - for the turbulent scalar energy - be solved.
CFD simulations in the nuclear containment using the DES turbulence models
International Nuclear Information System (INIS)
Ding, Peng; Chen, Meilan; Li, Wanai; Liu, Yulan; Wang, Biao
2015-01-01
Highlights: • The k-ε based DES model is used in the nuclear containment simulation. • The comparison of results between different turbulent models is obtained. • The superiority of DES models is analyzed. • The computational efficiency with the DES turbulence models is explained. - Abstract: Different species of gases would be released into the containment and cause unpredicted disasters during the nuclear severe accidents. It is important to accurately predict the transportation and stratification phenomena of these gas mixtures. CFD simulations of these thermal hydraulic issues in nuclear containment are investigated in this paper. The main work is to study the influence of turbulence model on the calculation of gas transportation and heat transfer. The k-ε based DES and other frequently used turbulence models are used in the steam and helium release simulation in THAI series experiment. This paper will show the superiority of the DES turbulence model in terms of computational efficiency and accuracy with the experimental results, and analyze the necessities of DES model to simulate the large-scale containment flows with both laminar and turbulence regions
CFD simulations in the nuclear containment using the DES turbulence models
Energy Technology Data Exchange (ETDEWEB)
Ding, Peng [School of Engineering, Sun Yat-Sen University, Guangzhou (China); Chen, Meilan [China Nuclear Power Technology Research Institute, Shenzhen (China); Li, Wanai, E-mail: liwai@mail.sysu.edu.cn [Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University, Guangzhou (China); Liu, Yulan [School of Engineering, Sun Yat-Sen University, Guangzhou (China); Wang, Biao [Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University, Guangzhou (China)
2015-06-15
Highlights: • The k-ε based DES model is used in the nuclear containment simulation. • The comparison of results between different turbulent models is obtained. • The superiority of DES models is analyzed. • The computational efficiency with the DES turbulence models is explained. - Abstract: Different species of gases would be released into the containment and cause unpredicted disasters during the nuclear severe accidents. It is important to accurately predict the transportation and stratification phenomena of these gas mixtures. CFD simulations of these thermal hydraulic issues in nuclear containment are investigated in this paper. The main work is to study the influence of turbulence model on the calculation of gas transportation and heat transfer. The k-ε based DES and other frequently used turbulence models are used in the steam and helium release simulation in THAI series experiment. This paper will show the superiority of the DES turbulence model in terms of computational efficiency and accuracy with the experimental results, and analyze the necessities of DES model to simulate the large-scale containment flows with both laminar and turbulence regions.
Oubei, Hassan M.; Zedini, Emna; Elafandy, Rami T.; Kammoun, Abla; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S.
2017-01-01
Recent advances in underwater wireless optical communications necessitate a better understanding of the underwater channel. We propose the Weibull model to characterize the fading of salinity induced turbulent underwater wireless optical channels
Turbulent Scalar Transport Model Validation for High Speed Propulsive Flows, Phase I
National Aeronautics and Space Administration — This effort entails the validation of a RANS turbulent scalar transport model (SFM) for high speed propulsive flows, using new experimental data sets and...
An Investigation of a Hybrid Mixing Model for PDF Simulations of Turbulent Premixed Flames
Zhou, Hua; Li, Shan; Wang, Hu; Ren, Zhuyin
2015-11-01
Predictive simulations of turbulent premixed flames over a wide range of Damköhler numbers in the framework of Probability Density Function (PDF) method still remain challenging due to the deficiency in current micro-mixing models. In this work, a hybrid micro-mixing model, valid in both the flamelet regime and broken reaction zone regime, is proposed. A priori testing of this model is first performed by examining the conditional scalar dissipation rate and conditional scalar diffusion in a 3-D direct numerical simulation dataset of a temporally evolving turbulent slot jet flame of lean premixed H2-air in the thin reaction zone regime. Then, this new model is applied to PDF simulations of the Piloted Premixed Jet Burner (PPJB) flames, which are a set of highly shear turbulent premixed flames and feature strong turbulence-chemistry interaction at high Reynolds and Karlovitz numbers. Supported by NSFC 51476087 and NSFC 91441202.
Turbulence Models: Data from Other Experiments: FAITH Hill 3-D Separated Flow
National Aeronautics and Space Administration — Exp: FAITH Hill 3-D Separated Flow. This web page provides data from experiments that may be useful for the validation of turbulence models. This resource is...
An implicit turbulence model for low-Mach Roe scheme using truncated Navier-Stokes equations
Li, Chung-Gang; Tsubokura, Makoto
2017-09-01
The original Roe scheme is well-known to be unsuitable in simulations of turbulence because the dissipation that develops is unsatisfactory. Simulations of turbulent channel flow for Reτ = 180 show that, with the 'low-Mach-fix for Roe' (LMRoe) proposed by Rieper [J. Comput. Phys. 230 (2011) 5263-5287], the Roe dissipation term potentially equates the simulation to an implicit large eddy simulation (ILES) at low Mach number. Thus inspired, a new implicit turbulence model for low Mach numbers is proposed that controls the Roe dissipation term appropriately. Referred to as the automatic dissipation adjustment (ADA) model, the method of solution follows procedures developed previously for the truncated Navier-Stokes (TNS) equations and, without tuning of parameters, uses the energy ratio as a criterion to automatically adjust the upwind dissipation. Turbulent channel flow at two different Reynold numbers and the Taylor-Green vortex were performed to validate the ADA model. In simulations of turbulent channel flow for Reτ = 180 at Mach number of 0.05 using the ADA model, the mean velocity and turbulence intensities are in excellent agreement with DNS results. With Reτ = 950 at Mach number of 0.1, the result is also consistent with DNS results, indicating that the ADA model is also reliable at higher Reynolds numbers. In simulations of the Taylor-Green vortex at Re = 3000, the kinetic energy is consistent with the power law of decaying turbulence with -1.2 exponents for both LMRoe with and without the ADA model. However, with the ADA model, the dissipation rate can be significantly improved near the dissipation peak region and the peak duration can be also more accurately captured. With a firm basis in TNS theory, applicability at higher Reynolds number, and ease in implementation as no extra terms are needed, the ADA model offers to become a promising tool for turbulence modeling.
Incompressible Turbulent Flow Simulation Using the κ-ɛ Model and Upwind Schemes
Directory of Open Access Journals (Sweden)
V. G. Ferreira
2007-01-01
Full Text Available In the computation of turbulent flows via turbulence modeling, the treatment of the convective terms is a key issue. In the present work, we present a numerical technique for simulating two-dimensional incompressible turbulent flows. In particular, the performance of the high Reynolds κ-ɛ model and a new high-order upwind scheme (adaptative QUICKEST by Kaibara et al. (2005 is assessed for 2D confined and free-surface incompressible turbulent flows. The model equations are solved with the fractional-step projection method in primitive variables. Solutions are obtained by using an adaptation of the front tracking GENSMAC (Tomé and McKee (1994 methodology for calculating fluid flows at high Reynolds numbers. The calculations are performed by using the 2D version of the Freeflow simulation system (Castello et al. (2000. A specific way of implementing wall functions is also tested and assessed. The numerical procedure is tested by solving three fluid flow problems, namely, turbulent flow over a backward-facing step, turbulent boundary layer over a flat plate under zero-pressure gradients, and a turbulent free jet impinging onto a flat surface. The numerical method is then applied to solve the flow of a horizontal jet penetrating a quiescent fluid from an entry port beneath the free surface.
Ruan, S; Swaminathan, Nedunchezhian; Darbyshire, O
2014-01-01
This study focuses on the modelling of turbulent lifted jet flames using flamelets and presumed PDF approach with interests on both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes to the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction, Z, and progress ...
Bakosi, J.; Franzese, P.; Boybeyi, Z.
2010-01-01
Dispersion of a passive scalar from concentrated sources in fully developed turbulent channel flow is studied with the probability density function (PDF) method. The joint PDF of velocity, turbulent frequency and scalar concentration is represented by a large number of Lagrangian particles. A stochastic near-wall PDF model combines the generalized Langevin model of Haworth & Pope with Durbin's method of elliptic relaxation to provide a mathematically exact treatment of convective and viscous ...
Parametrization of turbulence models using 3DVAR data assimilation in laboratory conditions
Olbert, A. I.; Nash, S.; Ragnoli, E.; Hartnett, M.
2013-12-01
In this research the 3DVAR data assimilation scheme is implemented in the numerical model DIVAST in order to optimize the performance of the numerical model by selecting an appropriate turbulence scheme and tuning its parameters. Two turbulence closure schemes: the Prandtl mixing length model and the two-equation k-ɛ model were incorporated into DIVAST and examined with respect to their universality of application, complexity of solutions, computational efficiency and numerical stability. A square harbour with one symmetrical entrance subject to tide-induced flows was selected to investigate the structure of turbulent flows. The experimental part of the research was conducted in a tidal basin. A significant advantage of such laboratory experiment is a fully controlled environment where domain setup and forcing are user-defined. The research shows that the Prandtl mixing length model and the two-equation k-ɛ model, with default parameterization predefined according to literature recommendations, overestimate eddy viscosity which in turn results in a significant underestimation of velocity magnitudes in the harbour. The data assimilation of the model-predicted velocity and laboratory observations significantly improves model predictions for both turbulence models by adjusting modelled flows in the harbour to match de-errored observations. Such analysis gives an optimal solution based on which numerical model parameters can be estimated. The process of turbulence model optimization by reparameterization and tuning towards optimal state led to new constants that may be potentially applied to complex turbulent flows, such as rapidly developing flows or recirculating flows. This research further demonstrates how 3DVAR can be utilized to identify and quantify shortcomings of the numerical model and consequently to improve forecasting by correct parameterization of the turbulence models. Such improvements may greatly benefit physical oceanography in terms of
Comparison of PDF and Moment Closure Methods in the Modeling of Turbulent Reacting Flows
Norris, Andrew T.; Hsu, Andrew T.
1994-01-01
In modeling turbulent reactive flows, Probability Density Function (PDF) methods have an advantage over the more traditional moment closure schemes in that the PDF formulation treats the chemical reaction source terms exactly, while moment closure methods are required to model the mean reaction rate. The common model used is the laminar chemistry approximation, where the effects of turbulence on the reaction are assumed negligible. For flows with low turbulence levels and fast chemistry, the difference between the two methods can be expected to be small. However for flows with finite rate chemistry and high turbulence levels, significant errors can be expected in the moment closure method. In this paper, the ability of the PDF method and the moment closure scheme to accurately model a turbulent reacting flow is tested. To accomplish this, both schemes were used to model a CO/H2/N2- air piloted diffusion flame near extinction. Identical thermochemistry, turbulence models, initial conditions and boundary conditions are employed to ensure a consistent comparison can be made. The results of the two methods are compared to experimental data as well as to each other. The comparison reveals that the PDF method provides good agreement with the experimental data, while the moment closure scheme incorrectly shows a broad, laminar-like flame structure.
Modeling of turbulent flows in porous media and at the interface with a free fluid medium
International Nuclear Information System (INIS)
Chandesris, M.
2006-12-01
This work deals with the numerical simulation of turbulent flows in the whole nuclear reactor core, using multi-scale approaches. First, a macroscopic turbulence model is built, based on a porous media approach, to describe the flow in the fuel assemblies part of the nuclear core. Then, we study the jump conditions that have to be applied at a free fluid/porous interface. A thorough analytical study is carried out for laminar flows. This study allows to answer some fundamental questions about the physical meaning of the jump conditions, the values of the jump parameters and the location of the interface. Using these results, jump conditions for turbulent flows are proposed. The model is then applied to the simulation of a turbulent flow in a simplified model of a reactor core. (author)
Modified k-l model and its ability to simulate supersonic axisymmetric turbulent flows
International Nuclear Information System (INIS)
Ahmadikia, H.; Shirani, E.
2001-05-01
The k-l turbulence model is a promising two-equation model. In this paper, the k and l model equations were derived from k-kl incompressible and one-equation turbulent models. Then the model was modified for compressible and transitional flows, and was applied to simulate supersonic axisymmetric flows over Hollow cylinder flare an hyperboloid flare bodies. The results were compared with the results obtained for the same flows experimentally as well as k-ε, k-ω and Baldwin-Lomax models. It was shown that the k-l model produces good results compared with experimental data and numerical data obtained when other turbulence models were used. It gives better results than k-ω and k-ε models in some cases. (author)
One-dimensional Turbulence Models of Type I X-ray Bursts
Energy Technology Data Exchange (ETDEWEB)
Hou, Chen [Univ. of Minnesota, Minneapolis, MN (United States)
2016-01-06
Type I X-ray bursts are caused by thermonuclear explosions occurring on the surface of an accreting neutron star in a binary star system. Observations and simulations of these phenomena are of great importance for understanding the fundamental properties of neutron stars and dense matter because the equation of state for cold dense matter can be constrained by the mass-radius relationship of neutron stars. During the bursts, turbulence plays a key role in mixing the fuels and driving the unstable nuclear burning process. This dissertation presents one-dimensional models of photospheric radius expansion bursts with a new approach to simulate turbulent advection. Compared with the traditional mixing length theory, the one-dimensional turbulence (ODT) model represents turbulent motions by a sequence of maps that are generated according to a stochastic process. The light curves I obtained with the ODT models are in good agreement with those of the KEPLER model in which the mixing length theory and various diffusive processes are applied. The abundance comparison, however, indicates that the differences in turbulent regions and turbulent diffusivities result in more ^{12}C survival during the bursts in the ODT models, which can make a difference in the superbursts phenomena triggered by unstable carbon burning.
One-dimensional Turbulence Models of Type I X-ray Bursts
International Nuclear Information System (INIS)
Hou, Chen
2016-01-01
Type I X-ray bursts are caused by thermonuclear explosions occurring on the surface of an accreting neutron star in a binary star system. Observations and simulations of these phenomena are of great importance for understanding the fundamental properties of neutron stars and dense matter because the equation of state for cold dense matter can be constrained by the mass-radius relationship of neutron stars. During the bursts, turbulence plays a key role in mixing the fuels and driving the unstable nuclear burning process. This dissertation presents one-dimensional models of photospheric radius expansion bursts with a new approach to simulate turbulent advection. Compared with the traditional mixing length theory, the one-dimensional turbulence (ODT) model represents turbulent motions by a sequence of maps that are generated according to a stochastic process. The light curves I obtained with the ODT models are in good agreement with those of the KEPLER model in which the mixing length theory and various diffusive processes are applied. The abundance comparison, however, indicates that the differences in turbulent regions and turbulent diffusivities result in more 12 C survival during the bursts in the ODT models, which can make a difference in the superbursts phenomena triggered by unstable carbon burning.
Two-phase wall function for modeling of turbulent boundary layer in subcooled boiling flow
International Nuclear Information System (INIS)
Bostjan Koncar; Borut Mavko; Yassin A Hassan
2005-01-01
Full text of publication follows: The heat transfer and phase-change mechanisms in the subcooled flow boiling are governed mainly by local multidimensional mechanisms near the heated wall, where bubbles are generated. The structure of such 'wall boiling flow' is inherently non-homogeneous and is further influenced by the two-phase flow turbulence, phase-change effects in the bulk, interfacial forces and bubble interactions (collisions, coalescence, break-up). In this work the effect of two-phase flow turbulence on the development of subcooled boiling flow is considered. Recently, the modeling of two-phase flow turbulence has been extensively investigated. A notable progress has been made towards deriving reliable models for description of turbulent behaviour of continuous (liquid) and dispersed phase (bubbles) in the bulk flow. However, there is a lack of investigation considering the modeling of two-phase flow boundary layer. In most Eulerian two-fluid models standard single-phase wall functions are used for description of turbulent boundary layer of continuous phase. That might be a good approximation at adiabatic flows, but their use for boundary layers with high concentration of dispersed phase is questionable. In this work, the turbulent boundary layer near the heated wall will be modeled with the so-called 'two-phase' wall function, which is based on the assumption of additional turbulence due to bubble-induced stirring in the boundary layer. In the two-phase turbulent boundary layer the wall function coefficients strongly depend on the void fraction. Moreover, in the turbulent boundary layer with nucleating bubbles, the bubble size variation also has a significant impact on the liquid phase. As a basis, the wall function of Troshko and Hassan (2001), developed for adiabatic bubbly flows will be used. The simulations will be performed by a general-purpose CFD code CFX-4.4 using additional models provided by authors. The results will be compared to the boiling
The modelling of direct chemical kinetic effects in turbulent flames
Energy Technology Data Exchange (ETDEWEB)
Lindstet, R.P. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Mechanical Engineering
2000-06-01
Combustion chemistry-related effects have traditionally been of secondary importance in the design of gas turbine combustors. However, the need to deal with issues such as flame stability, relight and pollutant emissions has served to bring chemical kinetics and the coupling of finite rate chemistry with turbulent flow fields to the centre of combustor design. Indeed, improved cycle efficiency and more stringent environmental legislation, as defined by the ICAO, are current key motivators in combustor design. Furthermore, lean premixed prevaporized (LPP) combustion systems, increasingly used for power generation, often operate close to the lean blow-off limit and are prone to extinction/reignition type phenomena. Thus, current key design issues require that direct chemical kinetic effects be accounted for accurately in any simulation procedure. The transported probability density function (PDF) approach uniquely offers the potential of facilitating the accurate modelling of such effects. The present paper thus assesses the ability of this technique to model kinetically controlled phenomena, such as carbon monoxide emissions and flame blow-off, through the application of a transported PDF method closed at the joint scalar level. The closure for the velocity field is at the second moment level, and a key feature of the present work is the use of comprehensive chemical kinetic mechanisms. The latter are derived from recent work by Lindstedt and co-workers that has resulted in a compact 141 reactions and 28 species mechanism for LNG combustion. The systematically reduced form used here features 14 independent C/H/O scalars, with the remaining species incorporated via steady state approximations. Computations have been performed for hydrogen/carbon dioxide and methane flames. The former (high Reynolds number) flames permit an assessment of the modelling of flame blow-off, and the methane flame has been selected to obtain an indication of the influence of differential
Spectral Cascade-Transport Turbulence Model Development for Two-Phase Flows
Brown, Cameron Scott
Turbulence modeling remains a challenging problem in nuclear reactor applications, particularly for the turbulent multiphase flow conditions in nuclear reactor subchannels. Understanding the fundamental physics of turbulent multiphase flows is crucial for the improvement and further development of multiphase flow models used in reactor operation and safety calculations. Reactor calculations with Reynolds-averaged Navier-Stokes (RANS) approach continue to become viable tools for reactor analysis. The on-going increase in available computational resources allows for turbulence models that are more complex than the traditional two-equation models to become practical choices for nuclear reactor computational fluid dynamic (CFD) and multiphase computational fluid dynamic (M-CFD) simulations. Similarly, increased computational capabilities continue to allow for higher Reynolds numbers and more complex geometries to be evaluated using direct numerical simulation (DNS), thus providing more validation and verification data for turbulence model development. Spectral turbulence models are a promising approach to M-CFD simulations. These models resolve mean flow parameters as well as the turbulent kinetic energy spectrum, reproducing more physical details of the turbulence than traditional two-equation type models. Previously, work performed by other researchers on a spectral cascade-transport model has shown that the model behaves well for single and bubbly twophase decay of isotropic turbulence, single and two-phase uniform shear flow, and single-phase flow in a channel without resolving the near-wall boundary layer for relatively low Reynolds number. Spectral models are great candidates for multiphase RANS modeling since bubble source terms can be modeled as contributions to specific turbulence scales. This work focuses on the improvement and further development of the spectral cascadetransport model (SCTM) to become a three-dimensional (3D) turbulence model for use in M
New Models for Velocity/Pressure-Gradient Correlations in Turbulent Boundary Layers
Poroseva, Svetlana; Murman, Scott
2014-11-01
To improve the performance of Reynolds-Averaged Navier-Stokes (RANS) turbulence models, one has to improve the accuracy of models for three physical processes: turbulent diffusion, interaction of turbulent pressure and velocity fluctuation fields, and dissipative processes. The accuracy of modeling the turbulent diffusion depends on the order of a statistical closure chosen as a basis for a RANS model. When the Gram-Charlier series expansions for the velocity correlations are used to close the set of RANS equations, no assumption on Gaussian turbulence is invoked and no unknown model coefficients are introduced into the modeled equations. In such a way, this closure procedure reduces the modeling uncertainty of fourth-order RANS (FORANS) closures. Experimental and direct numerical simulation data confirmed the validity of using the Gram-Charlier series expansions in various flows including boundary layers. We will address modeling the velocity/pressure-gradient correlations. New linear models will be introduced for the second- and higher-order correlations applicable to two-dimensional incompressible wall-bounded flows. Results of models' validation with DNS data in a channel flow and in a zero-pressure gradient boundary layer over a flat plate will be demonstrated. A part of the material is based upon work supported by NASA under award NNX12AJ61A.
Numerical modeling of normal turbulent plane jet impingement on solid wall
Energy Technology Data Exchange (ETDEWEB)
Guo, C.Y.; Maxwell, W.H.C.
1984-10-01
Attention is given to a numerical turbulence model for the impingement of a well developed normal plane jet on a solid wall, by means of which it is possible to express different jet impingement geometries in terms of different boundary conditions. Examples of these jets include those issuing from VTOL aircraft, chemical combustors, etc. The two-equation, turbulent kinetic energy-turbulent dissipation rate model is combined with the continuity equation and the transport equation of vorticity, using an iterative finite difference technique in the computations. Peak levels of turbulent kinetic energy occur not only in the impingement zone, but also in the intermingling zone between the edges of the free jet and the wall jet. 20 references.
Directory of Open Access Journals (Sweden)
Pablo D. Mininni
2012-01-01
Full Text Available In the context of tackling the ill-posed inverse problem of motion estimation from image sequences, we propose to introduce prior knowledge on flow regularity given by turbulence statistical models. Prior regularity is formalised using turbulence power laws describing statistically self-similar structure of motion increments across scales. The motion estimation method minimises the error of an image observation model while constraining second-order structure function to behave as a power law within a prescribed range. Thanks to a Bayesian modelling framework, the motion estimation method is able to jointly infer the most likely power law directly from image data. The method is assessed on velocity fields of 2-D or quasi-2-D flows. Estimation accuracy is first evaluated on a synthetic image sequence of homogeneous and isotropic 2-D turbulence. Results obtained with the approach based on physics of fluids outperform state-of-the-art. Then, the method analyses atmospheric turbulence using a real meteorological image sequence. Selecting the most likely power law model enables the recovery of physical quantities, which are of major interest for turbulence atmospheric characterisation. In particular, from meteorological images we are able to estimate energy and enstrophy fluxes of turbulent cascades, which are in agreement with previous in situ measurements.
Modeling the Emission from Turbulent Relativistic Jets in Active ...
Indian Academy of Sciences (India)
2014-07-12
Jul 12, 2014 ... Victoria Calafut1,2,∗ & Paul J. Wiita1. 1Department of Physics, The College of New Jersey, 2000 Pennington Road .... The paper is structured as follows. ..... values of the maximum value of the turbulent velocity, vt, as illustrated in the last ... light-year provides a fundamental timestep of ≃9 days for v0 = 0.1c.
Numerical modeling of fine particle fractal aggregates in turbulent flow
Directory of Open Access Journals (Sweden)
Cao Feifeng
2015-01-01
Full Text Available A method for prediction of fine particle transport in a turbulent flow is proposed, the interaction between particles and fluid is studied numerically, and fractal agglomerate of fine particles is analyzed using Taylor-expansion moment method. The paper provides a better understanding of fine particle dynamics in the evolved flows.
PECASE - Multi-Scale Experiments and Modeling in Wall Turbulence
2014-12-23
transition to turbulence in pipe flow have been characterized by the creation of puffs and slugs [Wygnanski and Champagne , 1973]. Puffs have been identified...Fluid Mech., 568:55–76, 2006. I. J. Wygnanski and F. H. Champagne . On transition in a pipe. Part 1: The origin of puffs and slugs and the flow in a
A variable turbulent Prandtl and Schmidt number model study for scramjet applications
Keistler, Patrick
A turbulence model that allows for the calculation of the variable turbulent Prandtl (Prt) and Schmidt (Sct) numbers as part of the solution is presented. The model also accounts for the interactions between turbulence and chemistry by modeling the corresponding terms. Four equations are added to the baseline k-zeta turbulence model: two equations for enthalpy variance and its dissipation rate to calculate the turbulent diffusivity, and two equations for the concentrations variance and its dissipation rate to calculate the turbulent diffusion coefficient. The underlying turbulence model already accounts for compressibility effects. The variable Prt /Sct turbulence model is validated and tuned by simulating a wide variety of experiments. Included in the experiments are two-dimensional, axisymmetric, and three-dimensional mixing and combustion cases. The combustion cases involved either hydrogen and air, or hydrogen, ethylene, and air. Two chemical kinetic models are employed for each of these situations. For the hydrogen and air cases, a seven species/seven reaction model where the reaction rates are temperature dependent and a nine species/nineteen reaction model where the reaction rates are dependent on both pressure and temperature are used. For the cases involving ethylene, a 15 species/44 reaction reduced model that is both pressure and temperature dependent is used, along with a 22 species/18 global reaction reduced model that makes use of the quasi-steady-state approximation. In general, fair to good agreement is indicated for all simulated experiments. The turbulence/chemistry interaction terms are found to have a significant impact on flame location for the two-dimensional combustion case, with excellent experimental agreement when the terms are included. In most cases, the hydrogen chemical mechanisms behave nearly identically, but for one case, the pressure dependent model would not auto-ignite at the same conditions as the experiment and the other
Hoffie, Andreas Frank
Large eddy simulation (LES) combined with the one-dimensional turbulence (ODT) model is used to simulate spatially developing turbulent reacting shear layers with high heat release and high Reynolds numbers. The LES-ODT results are compared to results from direct numerical simulations (DNS), for model development and validation purposes. The LES-ODT approach is based on LES solutions for momentum and pressure on a coarse grid and solutions for momentum and reactive scalars on a fine, one-dimensional, but three-dimensionally coupled ODT subgrid, which is embedded into the LES computational domain. Although one-dimensional, all three velocity components are transported along the ODT domain. The low-dimensional spatial and temporal resolution of the subgrid scales describe a new modeling paradigm, referred to as autonomous microstructure evolution (AME) models, which resolve the multiscale nature of turbulence down to the Kolmogorv scales. While this new concept aims to mimic the turbulent cascade and to reduce the number of input parameters, AME enables also regime-independent combustion modeling, capable to simulate multiphysics problems simultaneously. The LES as well as the one-dimensional transport equations are solved using an incompressible, low Mach number approximation, however the effects of heat release are accounted for through variable density computed by the ideal gas equation of state, based on temperature variations. The computations are carried out on a three-dimensional structured mesh, which is stretched in the transverse direction. While the LES momentum equation is integrated with a third-order Runge-Kutta time-integration, the time integration at the ODT level is accomplished with an explicit Forward-Euler method. Spatial finite-difference schemes of third (LES) and first (ODT) order are utilized and a fully consistent fractional-step method at the LES level is used. Turbulence closure at the LES level is achieved by utilizing the Smagorinsky
Energy Technology Data Exchange (ETDEWEB)
McDonough, J.M.; Menguc, M.P.; Mukerji, S.; Swabb, S.; Manickavasagam, S.; Ghosal, S.
1995-12-31
In this paper, we introduce a methodology to characterize soot volume fraction fluctuations in turbulent diffusion flames via chaotic maps. The approach is based on the hypothesis that the fluctuations of properties in turbulent flames is deterministic in nature, rather than statistical. Out objective is to develop models to mimic these fluctuations. The models will be used eventually in comprehensive algorithms to study the true physics of turbulent flames and the interaction of turbulence with radiation. To this extent, we measured the time series of soot scattering coefficient in an ethylene diffusion flame from light scattering experiments. Following this, corresponding power spectra and delay maps were calculated. It was shown that if the data were averaged, the characteristics of the fluctuations were almost completely washed out. The psds from experiments were successfully modeled using a series of logistic maps.
Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi
2018-04-01
A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.
A Hybrid Monte Carlo importance sampling of rare events in Turbulence and in Turbulent Models
Margazoglou, Georgios; Biferale, Luca; Grauer, Rainer; Jansen, Karl; Mesterhazy, David; Rosenow, Tillmann; Tripiccione, Raffaele
2017-11-01
Extreme and rare events is a challenging topic in the field of turbulence. Trying to investigate those instances through the use of traditional numerical tools turns to be a notorious task, as they fail to systematically sample the fluctuations around them. On the other hand, we propose that an importance sampling Monte Carlo method can selectively highlight extreme events in remote areas of the phase space and induce their occurrence. We present a brand new computational approach, based on the path integral formulation of stochastic dynamics, and employ an accelerated Hybrid Monte Carlo (HMC) algorithm for this purpose. Through the paradigm of stochastic one-dimensional Burgers' equation, subjected to a random noise that is white-in-time and power-law correlated in Fourier space, we will prove our concept and benchmark our results with standard CFD methods. Furthermore, we will present our first results of constrained sampling around saddle-point instanton configurations (optimal fluctuations). The research leading to these results has received funding from the EU Horizon 2020 research and innovation programme under Grant Agreement No. 642069, and from the EU Seventh Framework Programme (FP7/2007-2013) under ERC Grant Agreement No. 339032.
Multi-scale viscosity model of turbulence for fully-developed channel flows
International Nuclear Information System (INIS)
Kriventsev, V.; Yamaguchi, A.; Ninokata, H.
2001-01-01
The full text follows. Multi-Scale Viscosity (MSV) model is proposed for estimation of the Reynolds stresses in turbulent fully-developed flow in a straight channel of an arbitrary shape. We assume that flow in an ''ideal'' channel is always stable, i.e. laminar, but turbulence is developing process of external perturbations cased by wall roughness and other factors. We also assume that real flows are always affected by perturbations of every scale lower than the size of the channel. And the turbulence is generated in form of internal, or ''turbulent'' viscosity increase to preserve stability of ''disturbed'' flow. The main idea of MSV can be expressed in the following phenomenological rule: A local deformation of axial velocity can generate the turbulence with the intensity that keeps the value of local turbulent Reynolds number below some critical value. Here, the local turbulent Reynolds number is defined as a product of value of axial velocity deformation for a given scale and generic length of this scale divided by accumulated value of laminar and turbulent viscosity of lower scales. In MSV, the only empirical parameter is the critical Reynolds number that is estimated to be around 100. It corresponds for the largest scale which is hydraulic diameter of the channel and, therefore represents the regular Reynolds number. Thus, the value Re=100 corresponds to conditions when turbulent flow can appear in case of ''significant'' (comparable with size of channel) velocity disturbance in boundary and/or initial conditions for velocity. Of course, most of real flows in channels with relatively smooth walls remain laminar for this small Reynolds number because of absence of such ''significant'' perturbations. MSV model has been applied to the fully-developed turbulent flows in straight channels such as a circular tube and annular channel. Friction factor and velocity profiles predicted with MSV are in a very good agreement with numerous experimental data. Position of
A study of key features of the RAE atmospheric turbulence model
Jewell, W. F.; Heffley, R. K.
1978-01-01
A complex atmospheric turbulence model for use in aircraft simulation is analyzed in terms of its temporal, spectral, and statistical characteristics. First, a direct comparison was made between cases of the RAE model and the more conventional Dryden turbulence model. Next the control parameters of the RAE model were systematically varied and the effects noted. The RAE model was found to possess a high degree of flexibility in its characteristics, but the individual control parameters are cross-coupled in terms of their effect on various measures of intensity, bandwidth, and probability distribution.
International Nuclear Information System (INIS)
Liu, J T; Zuo, Z G; Liu, S H; Wu, Y L
2014-01-01
In this paper, a new nonlinear k-ε turbulence model based on RNG k-ε turbulence model and Wilcox's k-ω turbulence model was proposed to simulate the unsteady flow and to predict the pressure fluctuation through a model pump turbine for engineering application. Calculations on a curved rectangular duct proved that the nonlinear k-ε turbulence model is applicable for high pressure gradient flows and large curvature flows. The numerically predicted relative pressure amplitude (peak to peak) in time domain to the pump turbine head at no load condition is very close to the experimental data. It is indicated that the prediction of the pressure fluctuation is valid by the present nonlinear k-ε method. The high pressure fluctuation in this area is the main issue for pump turbine design, especially at high head condition
Application of low Reynolds number k-{epsilon} turbulence models to the study of turbulent wall jets
Energy Technology Data Exchange (ETDEWEB)
Kechiche, Jamel; Mhiri, Hatem [Laboratoire de Mecanique des Fluides et Thermique, Ecole Nationale d' Ingenieurs de Monastir, route de Ouardanine, 5000, Monastir (Tunisia); Le Palec, Georges; Bournot, Philippe [Institut de Mecanique de Marseille, 60, rue Joliot-Curie, Technopole de Chateau-Gombert, 13453 cedex 13, Marseille (France)
2004-02-01
In this work, we use closure models called ''low Reynolds number k-{epsilon} models'', which are self-adapting ones using different damping functions, in order to explore the computed behavior of a turbulent plane two-dimensional wall jets. In this study, the jet may be either isothermal or submitted to various wall boundary conditions (uniform temperature or a uniform heat flux) in forced convection regime. A finite difference method, using a staggered grid, is employed to solve the coupled governing equations with the inlet and the boundary conditions. The predictions of the various low Reynolds number k-{epsilon} models with standard or modified C{sub {mu}} adopted in this work were presented and compared with measurements and numerical results found in the literature. (authors)
Rumsey, Christopher L.
2009-01-01
In current practice, it is often difficult to draw firm conclusions about turbulence model accuracy when performing multi-code CFD studies ostensibly using the same model because of inconsistencies in model formulation or implementation in different codes. This paper describes an effort to improve the consistency, verification, and validation of turbulence models within the aerospace community through a website database of verification and validation cases. Some of the variants of two widely-used turbulence models are described, and two independent computer codes (one structured and one unstructured) are used in conjunction with two specific versions of these models to demonstrate consistency with grid refinement for several representative problems. Naming conventions, implementation consistency, and thorough grid resolution studies are key factors necessary for success.
On the TFNS Subgrid Models for Liquid-Fueled Turbulent Combustion
Liu, Nan-Suey; Wey, Thomas
2014-01-01
This paper describes the time-filtered Navier-Stokes (TFNS) approach capable of capturing unsteady flow structures important for turbulent mixing in the combustion chamber and two different subgrid models used to emulate the major processes occurring in the turbulence-chemistry interaction. These two subgrid models are termed as LEM-like model and EUPDF-like model (Eulerian probability density function), respectively. Two-phase turbulent combustion in a single-element lean-direct-injection (LDI) combustor is calculated by employing the TFNS/LEM-like approach as well as the TFNS/EUPDF-like approach. Results obtained from the TFNS approach employing these two different subgrid models are compared with each other, along with the experimental data, followed by more detailed comparison between the results of an updated calculation using the TFNS/LEM-like model and the experimental data.
Reynolds-Averaged Navier-Stokes Modeling of Turbulent Free Shear Layers
Schilling, Oleg
2017-11-01
Turbulent mixing of gases in free shear layers is simulated using a weighted essentially nonoscillatory implementation of ɛ- and L-based Reynolds-averaged Navier-Stokes models. Specifically, the air/air shear layer with velocity ratio 0.6 studied experimentally by Bell and Mehta (1990) is modeled. The detailed predictions of turbulent kinetic energy dissipation rate and lengthscale models are compared to one another, and to the experimental data. The role of analytical, self-similar solutions for model calibration and physical insights is also discussed. It is shown that turbulent lengthscale-based models are unable to predict both the growth parameter (spreading rate) and turbulent kinetic energy normalized by the square of the velocity difference of the streams. The terms in the K, ɛ, and L equation budgets are compared between the models, and it is shown that the production and destruction mechanisms are substantially different in the ɛ and L equations. Application of the turbulence models to the Brown and Roshko (1974) experiments with streams having various velocity and density ratios is also briefly discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
International Nuclear Information System (INIS)
Wu, Yuqian; Zhang, Yixin; Wang, Qiu; Hu, Zhengda
2016-01-01
For Gaussian beams with three different partially coherent models, including Gaussian-Schell model (GSM), Laguerre-Gaussian Schell-model (LGSM) and Bessel-Gaussian Schell-model (BGSM) beams propagating through a biological turbulent tissue, the expression of the spatial coherence radius of a spherical wave propagating in a turbulent biological tissue, and the average intensity and beam spreading for GSM, LGSM and BGSM beams are derived based on the fractal model of power spectrum of refractive-index variations in biological tissue. Effects of partially coherent model and parameters of biological turbulence on such beams are studied in numerical simulations. Our results reveal that the spreading of GSM beams is smaller than LGSM and BGSM beams on the same conditions, and the beam with larger source coherence width has smaller beam spreading than that with smaller coherence width. The results are useful for any applications involved light beam propagation through tissues, especially the cases where the average intensity and spreading properties of the light should be taken into account to evaluate the system performance and investigations in the structures of biological tissue. - Highlights: • Spatial coherence radius of a spherical wave propagating in a turbulent biological tissue is developed. • Expressions of average intensity and beam spreading for GSM, LGSM and BGSM beams in a turbulent biological tissue are derived. • The contrast for the three partially coherent model beams is shown in numerical simulations. • The results are useful for any applications involved light beam propagation through tissues.
Energy Technology Data Exchange (ETDEWEB)
Merci, Bart [Department of Flow, Heat and Combustion Mechanics, Ghent University-UGent, Ghent (Belgium); Roekaerts, Dirk [Department of Multi-Scale Physics, Delft University of Technology, Delft (Netherlands); Naud, Bertrand [CIEMAT, Madrid (Spain); Pope, Stephen B. [Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY (United States)
2006-07-15
Numerical simulation results are presented for turbulent jet diffusion flames with various levels of turbulence-chemistry interaction, stabilized behind a bluff body (Sydney Flames HM1-3). Interaction between turbulence and combustion is modeled with the transported joint-scalar PDF approach. The mass density function transport equation is solved in a Lagrangian manner. A second-moment-closure turbulence model is applied to obtain accurate mean flow and turbulent mixing fields. The behavior of two micromixing models is discussed: the Euclidean minimum spanning tree model and the modified Curl coalescence dispersion model. The impact of the micromixing model choice on the results in physical space is small, although some influence becomes visible as the amount of local extinction increases. Scatter plots and profiles of conditional means and variances of thermochemical quantities, conditioned on the mixture fraction, are discussed both within and downstream of the recirculation region. A distinction is made between local extinction and incomplete combustion, based on the CO species mass fraction. The differences in qualitative behavior between the micromixing models are explained and quantitative comparison to experimental data is made. (author)
New time scale based k-epsilon model for near-wall turbulence
Yang, Z.; Shih, T. H.
1993-01-01
A k-epsilon model is proposed for wall bonded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using this time scale and no singularity exists at the wall. The damping function used in the eddy viscosity is chosen to be a function of R(sub y) = (k(sup 1/2)y)/v instead of y(+). Hence, the model could be used for flows with separation. The model constants used are the same as in the high Reynolds number standard k-epsilon model. Thus, the proposed model will be also suitable for flows far from the wall. Turbulent channel flows at different Reynolds numbers and turbulent boundary layer flows with and without pressure gradient are calculated. Results show that the model predictions are in good agreement with direct numerical simulation and experimental data.
International Nuclear Information System (INIS)
Liu, Yangwei; Lu, Lipeng; Fang, Le; Gao, Feng
2011-01-01
The correlation between the velocity helicity and the energy backscatter is proved in a DNS case of 256 3 -grid homogeneous isotropic decaying turbulence. The helicity is then proposed to be employed to improve turbulence models and SGS models. Then Spalart-Allmaras turbulence model (SA) is modified with the helicity to take account of the energy backscatter, which is significant in the region of corner separation in compressors. By comparing the numerical results with experiments, it can be concluded that the modification for SA model with helicity can appropriately represent the energy backscatter, and greatly improves the predictive accuracy for simulating the corner separation flow in compressors. -- Highlights: → We study the relativity between the velocity helicity and the energy backscatter. → Spalart-Allmaras turbulence model is modified with the velocity helicity. → The modified model is employed to simulate corner separation in compressor cascade. → The modification can greatly improve the accuracy for predicting corner separation. → The helicity can represent the energy backscatter in turbulence and SGS models.
A non-local shell model of hydrodynamic and magnetohydrodynamic turbulence
Energy Technology Data Exchange (ETDEWEB)
Plunian, F [Laboratoire de Geophysique Interne et Tectonophysique, CNRS, Universite Joseph Fourier, Maison des Geosciences, BP 53, 38041 Grenoble Cedex 9 (France); Stepanov, R [Institute of Continuous Media Mechanics, Korolyov 1, 614013 Perm (Russian Federation)
2007-08-15
We derive a new shell model of magnetohydrodynamic (MHD) turbulence in which the energy transfers are not necessarily local. Like the original MHD equations, the model conserves the total energy, magnetic helicity, cross-helicity and volume in phase space (Liouville's theorem) apart from the effects of external forcing, viscous dissipation and magnetic diffusion. The model of hydrodynamic (HD) turbulence is derived from the MHD model setting the magnetic field to zero. In that case the conserved quantities are the kinetic energy and the kinetic helicity. In addition to a statistically stationary state with a Kolmogorov spectrum, the HD model exhibits multiscaling. The anomalous scaling exponents are found to depend on a free parameter {alpha} that measures the non-locality degree of the model. In freely decaying turbulence, the infra-red spectrum also depends on {alpha}. Comparison with theory suggests using {alpha} = -5/2. In MHD turbulence, we investigate the fully developed turbulent dynamo for a wide range of magnetic Prandtl numbers in both kinematic and dynamic cases. Both local and non-local energy transfers are clearly identified.
Tian, Ran; Dai, Xiaoye; Wang, Dabiao; Shi, Lin
2018-06-01
In order to improve the prediction performance of the numerical simulations for heat transfer of supercritical pressure fluids, a variable turbulent Prandtl number (Prt) model for vertical upward flow at supercritical pressures was developed in this study. The effects of Prt on the numerical simulation were analyzed, especially for the heat transfer deterioration conditions. Based on the analyses, the turbulent Prandtl number was modeled as a function of the turbulent viscosity ratio and molecular Prandtl number. The model was evaluated using experimental heat transfer data of CO2, water and Freon. The wall temperatures, including the heat transfer deterioration cases, were more accurately predicted by this model than by traditional numerical calculations with a constant Prt. By analyzing the predicted results with and without the variable Prt model, it was found that the predicted velocity distribution and turbulent mixing characteristics with the variable Prt model are quite different from that predicted by a constant Prt. When heat transfer deterioration occurs, the radial velocity profile deviates from the log-law profile and the restrained turbulent mixing then leads to the deteriorated heat transfer.
Energy Technology Data Exchange (ETDEWEB)
Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Laviéville, Jérôme; Mimouni, Stéphane; Guingo, Mathieu; Baudry, Cyril
2016-04-01
Highlights: • NEPTUNE-CFD is used to model two-phase PTS. • k-ε model did produce some satisfactory results but also highlights some weaknesses. • A more advanced turbulence model has been developed, validated and applied for PTS. • Coupled with LIM, the first results confirmed the increased accuracy of the approach. - Abstract: Nuclear power plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential pressurized thermal shock (PTS) – characterized by a rapid cooling of the internal Reactor Pressure Vessel (RPV) surface. In this context, NEPTUNE-CFD is used to model two-phase PTS and give an assessment on the structural integrity of the RPV. The first available choice was to use standard first order turbulence model (k-ε) to model high-Reynolds number flows encountered in Pressurized Water Reactor (PWR) primary circuits. In a first attempt, the use of k-ε model did produce some satisfactory results in terms of condensation rate and temperature field distribution on integral experiments, but also highlights some weaknesses in the way to model highly anisotropic turbulence. One way to improve the turbulence prediction – and consequently the temperature field distribution – is to opt for more advanced Reynolds Stress turbulence Model. After various verification and validation steps on separated effects cases – co-current air/steam-water stratified flows in rectangular channels, water jet impingements on water pool free surfaces – this Reynolds Stress turbulence Model (R{sub ij}-ε SSG) has been applied for the first time to thermal free surface flows under industrial conditions on COSI and TOPFLOW-PTS experiments. Coupled with the Large Interface Model, the first results confirmed the adequacy and increased accuracy of the approach in an industrial context.
Zheng, Guo; Wang, Jue; Wang, Lin; Zhou, Muchun; Xin, Yu; Song, Minmin
2017-11-15
The general formulae for second-order moments of Schell-model beams with various correlation functions in atmospheric turbulence are derived and validated by the Bessel-Gaussian Schell-model beams and cosine-Gaussian-correlated Schell-model beams. Our finding shows that the second-order moments of partially coherent Schell-model beams are related to the second-order partial derivatives of source spectral degree of coherence at the origin. The formulae we provide are much more convenient to analyze and research propagation problems in turbulence.
CFD modeling of heat transfer performance of MgO-water nanofluid under turbulent flow
Davarnejad, Reza; Jamshidzadeh, Maryam
2015-01-01
In this paper, Computational fluid dynamics (CFD) modeling of turbulent heat transfer behavior of Magnesium Oxide-water nanofluid in a circular tube was studied. The modeling was two dimensional under k–ε turbulence model. The base fluid was pure water and the volume fraction of nanoparticles in the base fluid was 0.0625%, 0.125%, 0.25%, 0.5% and 1%. The applied Reynolds number range was 3000–19000. Three individual models including single phase, Volume of Fluid (VOF) and mixture were used. T...
DEFF Research Database (Denmark)
Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.
2017-01-01
A spectral tensor model is presented for turbulent fluctuations of wind velocity components and temperature, assuming uniform vertical gradients in mean temperature and mean wind speed. The model is built upon rapid distortion theory (RDT) following studies by Mann and by Hanazaki and Hunt, using...... the eddy lifetime parameterization of Mann to make the model stationary. The buoyant spectral tensor model is driven via five parameters: the viscous dissipation rate epsilon, length scale of energy-containing eddies L, a turbulence anisotropy parameter Gamma, gradient Richardson number (Ri) representing...
DEFF Research Database (Denmark)
Bertagnolio, Franck; Fischer, Andreas; Zhu, Wei Jun
2014-01-01
The modeling of the surface pressure spectrum beneath a turbulent boundary layer is investigated, focusing on the case of airfoil flows and associated trailing edge noise prediction using the so-called TNO model. This type of flow is characterized by the presence of an adverse pressure gradient...... along the airfoil chord. It is shown that discrepancies between measurements and results from the TNO model increase as the pressure gradient increases. The original model is modified by introducing anisotropy in the definition of the turbulent vertical velocity spectrum across the boundary layer...
Sapsis, Themistoklis P; Majda, Andrew J
2013-08-20
A framework for low-order predictive statistical modeling and uncertainty quantification in turbulent dynamical systems is developed here. These reduced-order, modified quasilinear Gaussian (ROMQG) algorithms apply to turbulent dynamical systems in which there is significant linear instability or linear nonnormal dynamics in the unperturbed system and energy-conserving nonlinear interactions that transfer energy from the unstable modes to the stable modes where dissipation occurs, resulting in a statistical steady state; such turbulent dynamical systems are ubiquitous in geophysical and engineering turbulence. The ROMQG method involves constructing a low-order, nonlinear, dynamical system for the mean and covariance statistics in the reduced subspace that has the unperturbed statistics as a stable fixed point and optimally incorporates the indirect effect of non-Gaussian third-order statistics for the unperturbed system in a systematic calibration stage. This calibration procedure is achieved through information involving only the mean and covariance statistics for the unperturbed equilibrium. The performance of the ROMQG algorithm is assessed on two stringent test cases: the 40-mode Lorenz 96 model mimicking midlatitude atmospheric turbulence and two-layer baroclinic models for high-latitude ocean turbulence with over 125,000 degrees of freedom. In the Lorenz 96 model, the ROMQG algorithm with just a single mode captures the transient response to random or deterministic forcing. For the baroclinic ocean turbulence models, the inexpensive ROMQG algorithm with 252 modes, less than 0.2% of the total, captures the nonlinear response of the energy, the heat flux, and even the one-dimensional energy and heat flux spectra.
First steps towards modeling of ion-driven turbulence in Wendelstein 7-X
Warmer, F.; Xanthopoulos, P.; Proll, J. H. E.; Beidler, C. D.; Turkin, Y.; Wolf, R. C.
2018-01-01
Due to foreseen improvement of neoclassical confinement in optimised stellarators—like the newly commissioned Wendelstein 7-X (W7-X) experiment in Greifswald, Germany—it is expected that turbulence will significantly contribute to the heat and particle transport, thus posing a limit to the performance of such devices. In order to develop discharge scenarios, it is thus necessary to develop a model which could reliably capture the basic characteristics of turbulence and try to predict the levels thereof. The outcome will not only be affordable, using only a fraction of the computational cost which is normally required for repetitive direct turbulence simulations, but would also highlight important physics. In this model, we seek to describe the ion heat flux caused by ion temperature gradient (ITG) micro-turbulence, which, in certain heating scenarios, can be a strong source of free energy. With the aid of a relatively small number of state-of-the-art nonlinear gyrokinetic simulations, an initial critical gradient model (CGM) is devised, with the aim to replace an empirical model, stemming from observations in prior stellarator experiments. The novel CGM, in its present form, encapsulates all available knowledge about ion-driven 3D turbulence to date, also allowing for further important extensions, towards an accurate interpretation and prediction of the ‘anomalous’ transport. The CGM depends on the stiffness of the ITG turbulence scaling in W7-X, and implicitly includes the nonlinear zonal flow response. It is shown that the CGM is suitable for a 1D framework turbulence modeling.
Performance evaluation of RANS-based turbulence models in simulating a honeycomb heat sink
Subasi, Abdussamet; Ozsipahi, Mustafa; Sahin, Bayram; Gunes, Hasan
2017-07-01
As well-known, there is not a universal turbulence model that can be used to model all engineering problems. There are specific applications for each turbulence model that make it appropriate to use, and it is vital to select an appropriate model and wall function combination that matches the physics of the problem considered. Therefore, in this study, performance of six well-known Reynolds-Averaged Navier-Stokes ( RANS) based turbulence models which are the Standard k {{-}} ɛ, the Renormalized Group k- ɛ, the Realizable k- ɛ, the Reynolds Stress Model, the k- ω and the Shear Stress Transport k- ω and accompanying wall functions which are the standard, the non-equilibrium and the enhanced are evaluated via 3D simulation of a honeycomb heat sink. The CutCell method is used to generate grid for the part including heat sink called test section while a hexahedral mesh is employed to discretize to inlet and outlet sections. A grid convergence study is conducted for verification process while experimental data and well-known correlations are used to validate the numerical results. Prediction of pressure drop along the test section, mean base plate temperature of the heat sink and temperature at the test section outlet are regarded as a measure of the performance of employed models and wall functions. The results indicate that selection of turbulence models and wall functions has a great influence on the results and, therefore, need to be selected carefully. Hydraulic and thermal characteristics of the honeycomb heat sink can be determined in a reasonable accuracy using RANS- based turbulence models provided that a suitable turbulence model and wall function combination is selected.
Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows
Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel
2017-11-01
We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.
On a turbulent wall model to predict hemolysis numerically in medical devices
Lee, Seunghun; Chang, Minwook; Kang, Seongwon; Hur, Nahmkeon; Kim, Wonjung
2017-11-01
Analyzing degradation of red blood cells is very important for medical devices with blood flows. The blood shear stress has been recognized as the most dominant factor for hemolysis in medical devices. Compared to laminar flows, turbulent flows have higher shear stress values in the regions near the wall. In case of predicting hemolysis numerically, this phenomenon can require a very fine mesh and large computational resources. In order to resolve this issue, the purpose of this study is to develop a turbulent wall model to predict the hemolysis more efficiently. In order to decrease the numerical error of hemolysis prediction in a coarse grid resolution, we divided the computational domain into two regions and applied different approaches to each region. In the near-wall region with a steep velocity gradient, an analytic approach using modeled velocity profile is applied to reduce a numerical error to allow a coarse grid resolution. We adopt the Van Driest law as a model for the mean velocity profile. In a region far from the wall, a regular numerical discretization is applied. The proposed turbulent wall model is evaluated for a few turbulent flows inside a cannula and centrifugal pumps. The results present that the proposed turbulent wall model for hemolysis improves the computational efficiency significantly for engineering applications. Corresponding author.
Review Article: Advances in modeling of bed particle entrainment sheared by turbulent flow
Dey, Subhasish; Ali, Sk Zeeshan
2018-06-01
Bed particle entrainment by turbulent wall-shear flow is a key topic of interest in hydrodynamics because it plays a major role to govern the planetary morphodynamics. In this paper, the state-of-the-art review of the essential mechanisms governing the bed particle entrainment by turbulent wall-shear flow and their mathematical modeling is presented. The paper starts with the appraisal of the earlier multifaceted ideas in modeling the particle entrainment highlighting the rolling, sliding, and lifting modes of entrainment. Then, various modeling approaches of bed particle entrainment, such as deterministic, stochastic, and spatiotemporal approaches, are critically analyzed. The modeling criteria of particle entrainment are distinguished for hydraulically smooth, transitional, and rough flow regimes. In this context, the responses of particle size, particle exposure, and packing condition to the near-bed turbulent flow that shears the particles to entrain are discussed. From the modern experimental outcomes, the conceptual mechanism of particle entrainment from the viewpoint of near-bed turbulent coherent structures is delineated. As the latest advancement of the subject, the paper sheds light on the origin of the primitive empirical formulations of bed particle entrainment deriving the scaling laws of threshold flow velocity of bed particle motion from the perspective of the phenomenological theory of turbulence. Besides, a model framework that provides a new look on the bed particle entrainment phenomenon stemming from the stochastic-cum-spatiotemporal approach is introduced. Finally, the future scope of research is articulated with open questions.
The structure concept in the description of mixing turbulence: the 2SFK model
International Nuclear Information System (INIS)
Llor, A.; Poujade, O.; Lardjane, N.
2009-01-01
To meet our modelling needs on turbulent flows produced by gravitational instabilities (of Rayleigh-Taylor or Richtmyer-Meshkov type), we have developed an original approach, designated as 2SFK for '2-structure, 2-fluid, 2-turbulent'. We provide the physical elements, theoretical, experimental, and numerical, which support this choice. A full description being out of question here, we give the principles of the model derivation, which hinges around an averaging conditioned by presence functions of the large structures in the flow, and discuss its distinctive properties compared to usual 'single-fluid' models. Numerical 1-dimension results on elementary flows illustrate the satisfactory behaviour of the model. All along this article, emphasis is given on the peculiar characteristics of turbulence in the Rayleigh-Taylor flow (possibly under variable acceleration): energy balance, characteristic size of large eddies, directed transport, enhanced diffusion, etc. (authors)
Asymptotic stability of spectral-based PDF modeling for homogeneous turbulent flows
Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca
2015-11-01
Engineering models of turbulence, based on one-point statistics, neglect spectral information inherent in a turbulence field. It is well known, however, that the evolution of turbulence is dictated by a complex interplay between the spectral modes of velocity. For example, for homogeneous turbulence, the pressure-rate-of-strain depends on the integrated energy spectrum weighted by components of the wave vectors. The Interacting Particle Representation Model (IPRM) (Kassinos & Reynolds, 1996) and the Velocity/Wave-Vector PDF model (Van Slooten & Pope, 1997) emulate spectral information in an attempt to improve the modeling of turbulence. We investigate the evolution and asymptotic stability of the IPRM using three different approaches. The first approach considers the Lagrangian evolution of individual realizations (idealized as particles) of the stochastic process defined by the IPRM. The second solves Lagrangian evolution equations for clusters of realizations conditional on a given wave vector. The third evolves the solution of the Eulerian conditional PDF corresponding to the aforementioned clusters. This last method avoids issues related to discrete particle noise and slow convergence associated with Lagrangian particle-based simulations.
Energy Technology Data Exchange (ETDEWEB)
Lilleberg, Bjorn
2011-07-01
This thesis investigates turbulent reacting lean premixed flows with detailed treatment of the chemistry. First, the fundamental equations which govern laminar and turbulent reacting flows are presented. A perfectly stirred reactor numerical code is developed to investigate the role of unmixedness and chemical kinetics in driving combustion instabilities. This includes both global single-step and detailed chemical kinetic mechanisms. The single-step mechanisms predict to some degree a similar behavior as the detailed mechanisms. However, it is shown that simple mechanisms can by themselves introduce instabilities. Magnussens Eddy Dissipation Concept (EDC) for turbulent combustion is implemented in the open source CFD toolbox OpenFOAM R for treatment of both fast and detailed chemistry. RANS turbulence models account for the turbulent compressible flow. A database of pre-calculated chemical time scales, which contains the influence of chemical kinetics, is coupled to EDC with fast chemistry to account for local extinction in both diffusion and premixed flames. Results are compared to fast and detailed chemistry calculations. The inclusion of the database shows significantly better results than the fast chemistry calculations while having a comparably small computational cost. Numerical simulations of four piloted lean premixed jet flames falling into the 'well stirred reactor/broken reaction zones' regime, with strong finite-rate chemistry effects, are performed. Measured and predicted scalars compare well for the two jets with the lowest velocities. The two jets with the highest velocities experience extinction and reignition, and the simulations are able to capture the decrease and increase of the OH mass fractions, but the peak values are higher than in the experiments. Also numerical simulations of a lean premixed lifted jet flame with high sensitivity to turbulence modeling and chemical kinetics are performed. Limitations of the applied turbulence and
Comparison of Turbulence Models in Simulation of Flow in Small-Size Centrifugal Compressor
Directory of Open Access Journals (Sweden)
B. B. Novickii
2015-01-01
Full Text Available The aim of the work is the choice of turbulence model for the closure of the Reynoldsaveraged Navier-Stokes equations for calculation of the characteristics of small-size centrifugal compressor. To this were built three-dimensional sectors (as the compressor axisymmetric blade impeller and the diffuser of the centrifugal compressor on the basis of which they were created two grid models. The dimension of the grid model for the calculation models of turbulence komega and SST was 1.4 million. Elements and the dimensionless parameter y + does not exceed 2. turbulence model family k-epsilon model grid was also 1.4 million. Elements, and the dimensionless parameter y + was greater than 20, which corresponds to recommended values. The next part of the work was the task of boundary conditions required for the correct ca lculation. When the impeller inlet pawned pressure working fluid and the total temperature at the outlet and the gas flow rate through the stage. On the side faces sectors pawned boundary cond ition «Periodic», allowing everything except the wheel, but only axisymmetric part, which significantly reduces the required computational time and resources. Accounting clearance in addition to the meridional geometry construction additionally taken into account boundary condition «Counter Rotating Wall», which allows you to leave the domain in the rotating disc fixed coa ting.The next step was to analyze the results of these calculations, which showed that the turbulence model k-epsilon and RNG does not show the velocity vectors in the boundary layer, and "pushes" the flow from the blade using wall functions. At the core of the flow turbulence model k-omega shown for the undisturbed flow, which is not typical for the compressor working on predpompazhnom mode. For viscous gas diffuser vane for turbulence models SST, k-omega, RNG k-epsilon and has a similar character.The paper compares the characteristics of pressure centrifugal compressor
Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models
International Nuclear Information System (INIS)
Jošt, D; Škerlavaj, A; Lipej, A
2012-01-01
Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.
Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models
Jošt, D.; Škerlavaj, A.; Lipej, A.
2012-11-01
Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.
Comparative analysis of turbulence models for flow simulation around a vertical axis wind turbine
Energy Technology Data Exchange (ETDEWEB)
Roy, S.; Saha, U.K. [Indian Institute of Technology Guwahati, Dept. of Mechanical Engineering, Guwahati (India)
2012-07-01
An unsteady computational investigation of the static torque characteristics of a drag based vertical axis wind turbine (VAWT) has been carried out using the finite volume based computational fluid dynamics (CFD) software package Fluent 6.3. A comparative study among the various turbulence models was conducted in order to predict the flow over the turbine at static condition and the results are validated with the available experimental results. CFD simulations were carried out at different turbine angular positions between 0 deg.-360 deg. in steps of 15 deg.. Results have shown that due to high static pressure on the returning blade of the turbine, the net static torque is negative at angular positions of 105 deg.-150 deg.. The realizable k-{epsilon} turbulent model has shown a better simulation capability over the other turbulent models for the analysis of static torque characteristics of the drag based VAWT. (Author)
Model of wind shear conditional on turbulence and its impact on wind turbine loads
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.
2015-01-01
proposed for flat terrain and that can significantly decrease the uncertainty associated with fatigue load predictions for wind turbines with large rotors. An essential contribution is the conditioning of wind shear on the 90% quantile of wind turbulence, such that the appropriate magnitude of the design...... fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over...... is most pronounced on the blade flap loads. It is further shown that under moderate wind turbulence, the wind shear exponents may be over-specified in the design standards, and a reduction of wind shear exponent based on the present measurements can contribute to reduced fatigue damage equivalent loads...
Transported PDF Modeling of Nonpremixed Turbulent CO/H-2/N-2 Jet Flames
Energy Technology Data Exchange (ETDEWEB)
Zhao, xinyu; Haworth, D. C.; Huckaby, E. David
2012-01-01
Turbulent CO/H{sub 2}/N{sub 2} (“syngas”) flames are simulated using a transported composition probability density function (PDF) method. A consistent hybrid Lagrangian particle/Eulerian mesh algorithm is used to solve the modeled PDF transport equation. The model includes standard k–ϵ turbulence, gradient transport for scalars, and Euclidean minimum spanning tree (EMST) mixing. Sensitivities of model results to variations in the turbulence model, the treatment of radiation heat transfer, the choice of chemical mechanism, and the PDF mixing model are explored. A baseline model reproduces the measured mean and rms temperature, major species, and minor species profiles reasonably well, and captures the scaling that is observed in the experiments. Both our results and the literature suggest that further improvements can be realized with adjustments in the turbulence model, the radiation heat transfer model, and the chemical mechanism. Although radiation effects are relatively small in these flames, consideration of radiation is important for accurate NO prediction. Chemical mechanisms that have been developed specifically for fuels with high concentrations of CO and H{sub 2} perform better than a methane mechanism that was not designed for this purpose. It is important to account explicitly for turbulence–chemistry interactions, although the details of the mixing model do not make a large difference in the results, within reasonable limits.
A structure-based model for the transport of passive scalars in homogeneous turbulent flows
International Nuclear Information System (INIS)
Panagiotou, C.F.; Kassinos, S.C.
2016-01-01
Highlights: • The Interacting Particle Representation Model (IPRM) is extended for passive scalar transport. • We develop a structure-based set of scale equations for the scalar field and couple them to the IPRM. • The complete model is evaluated for several cases of homogeneous deformation with good results. • We outline steps for coupling the new scalar scales to the Algebraic Structure-Based Model (ASBM). - Abstract: A structure-based model has been constructed, for the first time, for the study of passive scalar transport in turbulent flows. The scalar variance and the large-scale scalar gradient variance are proposed as the two turbulence scales needed for closure of the scalar equations in the framework of the Interacting Particle Representation Model (IPRM). The scalar dissipation rate is modeled in terms of the scalar variance and the large-scale enstrophy of the velocity field. Model parameters are defined by matching the decay rates in freely isotropic turbulence. The model is validated for a large number of cases of deformation in both fixed and rotating frames, showing encouraging results. The model shows good agreement with DNS results for the case of pure shear flow in the presence of either transverse or streamwise mean scalar gradient, while it correctly predicts the presence of direct cascade for the passive scalar variance in two dimensional isotropic turbulence.
Numerical vs. turbulent diffusion in geophysical flow modelling
International Nuclear Information System (INIS)
D'Isidoro, M.; Maurizi, A.; Tampieri, F.
2008-01-01
Numerical advection schemes induce the spreading of passive tracers from localized sources. The effects of changing resolution and Courant number are investigated using the WAF advection scheme, which leads to a sub-diffusive process. The spreading rate from an instantaneous source is compared with the physical diffusion necessary to simulate unresolved turbulent motions. The time at which the physical diffusion process overpowers the numerical spreading is estimated, and is shown to reduce as the resolution increases, and to increase as the wind velocity increases.
Meneveau, Charles; Yang, Yunke; Perlman, Eric; Wan, Minpin; Burns, Randal; Szalay, Alex; Chen, Shiyi; Eyink, Gregory
2008-11-01
A public database system archiving a direct numerical simulation (DNS) data set of isotropic, forced turbulence is used for studying basic turbulence dynamics. The data set consists of the DNS output on 1024-cubed spatial points and 1024 time-samples spanning about one large-scale turn-over timescale. This complete space-time history of turbulence is accessible to users remotely through an interface that is based on the Web-services model (see http://turbulence.pha.jhu.edu). Users may write and execute analysis programs on their host computers, while the programs make subroutine-like calls that request desired parts of the data over the network. The architecture of the database is briefly explained, as are some of the new functions such as Lagrangian particle tracking and spatial box-filtering. These tools are used to evaluate and compare subgrid stresses and models.
RANS Modeling of Stably Stratified Turbulent Boundary Layer Flows in OpenFOAM®
Directory of Open Access Journals (Sweden)
Wilson Jordan M.
2015-01-01
Full Text Available Quantifying mixing processes relating to the transport of heat, momentum, and scalar quantities of stably stratified turbulent geophysical flows remains a substantial task. In a stably stratified flow, such as the stable atmospheric boundary layer (SABL, buoyancy forces have a significant impact on the flow characteristics. This study investigates constant and stability-dependent turbulent Prandtl number (Prt formulations linking the turbulent viscosity (νt and diffusivity (κt for modeling applications of boundary layer flows. Numerical simulations of plane Couette flow and pressure-driven channel flow are performed using the Reynolds-averaged Navier-Stokes (RANS framework with the standard k-ε turbulence model. Results are compared with DNS data to evaluate model efficacy for predicting mean velocity and density fields. In channel flow simulations, a Prandtl number formulation for wall-bounded flows is introduced to alleviate overmixing of the mean density field. This research reveals that appropriate specification of Prt can improve predictions of stably stratified turbulent boundary layer flows.
Impact of Langmuir Turbulence on Upper Ocean Response to Hurricane Edouard: Model and Observations
Blair, A.; Ginis, I.; Hara, T.; Ulhorn, E.
2017-12-01
Tropical cyclone intensity is strongly affected by the air-sea heat flux beneath the storm. When strong storm winds enhance upper ocean turbulent mixing and entrainment of colder water from below the thermocline, the resulting sea surface temperature cooling may reduce the heat flux to the storm and weaken the storm. Recent studies suggest that this upper ocean turbulence is strongly affected by different sea states (Langmuir turbulence), which are highly complex and variable in tropical cyclone conditions. In this study, the upper ocean response under Hurricane Edouard (2014) is investigated using a coupled ocean-wave model with and without an explicit sea state dependent Langmuir turbulence parameterization. The results are compared with in situ observations of sea surface temperature and mixed layer depth from AXBTs, as well as satellite sea surface temperature observations. Overall, the model results of mixed layer deepening and sea surface temperature cooling under and behind the storm are consistent with observations. The model results show that the effects of sea state dependent Langmuir turbulence can be significant, particularly on the mixed layer depth evolution. Although available observations are not sufficient to confirm such effects, some observed trends suggest that the sea state dependent parameterization might be more accurate than the traditional (sea state independent) parameterization.
A study on the dependency between turbulent models and mesh configurations of CFD codes
International Nuclear Information System (INIS)
Bang, Jungjin; Heo, Yujin; Jerng, Dong-Wook
2015-01-01
This paper focuses on the analysis of the behavior of hydrogen mixing and hydrogen stratification, using the GOTHIC code and the CFD code. Specifically, we examined the mesh sensitivity and how the turbulence model affects hydrogen stratification or hydrogen mixing, depending on the mesh configuration. In this work, sensitivity analyses for the meshes and the turbulence models were conducted for missing and stratification phenomena. During severe accidents in a nuclear power plants, the generation of hydrogen may occur and this will complicate the atmospheric condition of the containment by causing stratification of air, steam, and hydrogen. This could significantly impact containment integrity analyses, as hydrogen could be accumulated in local region. From this need arises the importance of research about stratification of gases in the containment. Two computation fluid dynamics code, i.e. GOTHIC and STAR-CCM+ were adopted and the computational results were benchmarked against the experimental data from PANDA facility. The main findings observed through the present work can be summarized as follows: 1) In the case of the GOTHIC code, it was observed that the aspect ratio of the mesh was found more important than the mesh size. Also, if the number of the mesh is over 3,000, the effects of the turbulence models were marginal. 2) For STAR-CCM+, the tendency is quite different from the GOTHIC code. That is, the effects of the turbulence models were small for fewer number of the mesh, however, as the number of mesh increases, the effects of the turbulence models becomes significant. Another observation is that away from the injection orifice, the role of the turbulence models tended to be important due to the nature of mixing process and inducted jet stream
A study on the dependency between turbulent models and mesh configurations of CFD codes
Energy Technology Data Exchange (ETDEWEB)
Bang, Jungjin; Heo, Yujin; Jerng, Dong-Wook [CAU, Seoul (Korea, Republic of)
2015-10-15
This paper focuses on the analysis of the behavior of hydrogen mixing and hydrogen stratification, using the GOTHIC code and the CFD code. Specifically, we examined the mesh sensitivity and how the turbulence model affects hydrogen stratification or hydrogen mixing, depending on the mesh configuration. In this work, sensitivity analyses for the meshes and the turbulence models were conducted for missing and stratification phenomena. During severe accidents in a nuclear power plants, the generation of hydrogen may occur and this will complicate the atmospheric condition of the containment by causing stratification of air, steam, and hydrogen. This could significantly impact containment integrity analyses, as hydrogen could be accumulated in local region. From this need arises the importance of research about stratification of gases in the containment. Two computation fluid dynamics code, i.e. GOTHIC and STAR-CCM+ were adopted and the computational results were benchmarked against the experimental data from PANDA facility. The main findings observed through the present work can be summarized as follows: 1) In the case of the GOTHIC code, it was observed that the aspect ratio of the mesh was found more important than the mesh size. Also, if the number of the mesh is over 3,000, the effects of the turbulence models were marginal. 2) For STAR-CCM+, the tendency is quite different from the GOTHIC code. That is, the effects of the turbulence models were small for fewer number of the mesh, however, as the number of mesh increases, the effects of the turbulence models becomes significant. Another observation is that away from the injection orifice, the role of the turbulence models tended to be important due to the nature of mixing process and inducted jet stream.
Madadi-Kandjani, E.; Fox, R. O.; Passalacqua, A.
2017-06-01
An extended quadrature method of moments using the β kernel density function (β -EQMOM) is used to approximate solutions to the evolution equation for univariate and bivariate composition probability distribution functions (PDFs) of a passive scalar for binary and ternary mixing. The key element of interest is the molecular mixing term, which is described using the Fokker-Planck (FP) molecular mixing model. The direct numerical simulations (DNSs) of Eswaran and Pope ["Direct numerical simulations of the turbulent mixing of a passive scalar," Phys. Fluids 31, 506 (1988)] and the amplitude mapping closure (AMC) of Pope ["Mapping closures for turbulent mixing and reaction," Theor. Comput. Fluid Dyn. 2, 255 (1991)] are taken as reference solutions to establish the accuracy of the FP model in the case of binary mixing. The DNSs of Juneja and Pope ["A DNS study of turbulent mixing of two passive scalars," Phys. Fluids 8, 2161 (1996)] are used to validate the results obtained for ternary mixing. Simulations are performed with both the conditional scalar dissipation rate (CSDR) proposed by Fox [Computational Methods for Turbulent Reacting Flows (Cambridge University Press, 2003)] and the CSDR from AMC, with the scalar dissipation rate provided as input and obtained from the DNS. Using scalar moments up to fourth order, the ability of the FP model to capture the evolution of the shape of the PDF, important in turbulent mixing problems, is demonstrated. Compared to the widely used assumed β -PDF model [S. S. Girimaji, "Assumed β-pdf model for turbulent mixing: Validation and extension to multiple scalar mixing," Combust. Sci. Technol. 78, 177 (1991)], the β -EQMOM solution to the FP model more accurately describes the initial mixing process with a relatively small increase in computational cost.
Universal model of finite Reynolds number turbulent flow in channels and pipes
L'vov, V.S.; Procaccia, I.; Rudenko, O.
2008-01-01
In this Letter, we suggest a simple and physically transparent analytical model of pressure driven turbulent wall-bounded flows at high but finite Reynolds numbers Re. The model provides an accurate quantitative description of the profiles of the mean-velocity and Reynolds stresses (second order
Elliptic blending model : A new near-wall Reynolds-stress turbulence closure
Manceau, R.; Hanjali?, K.
2001-01-01
A new approach to modeling the effects of a solid wall in one-point second-moment (Reynolds-stress) turbulence closures is presented. The model is based on the relaxation of an inhomogeneous (near-wall) formulation of the pressure–strain tensor towards the chosen conventional homogeneous
Oubei, Hassan M.
2017-12-13
Recent advances in underwater wireless optical communications necessitate a better understanding of the underwater channel. We propose the Weibull model to characterize the fading of salinity induced turbulent underwater wireless optical channels. The model shows an excellent agreement with the measured data under all channel conditions.
International Nuclear Information System (INIS)
Tanahashi, Takahiko; Miyoshi, Ichiro; Ara, Kuniaki; Ohira, Hiroaki
2004-08-01
Investigation of magnetohydrodynamic (MHD) turbulent model with Large Eddy Simulation (LES) method was started in FY15 to evaluate MHD turbulent behavior on the conditions of high Reynolds numbers and high magnetic Reynolds numbers. In FY15, the proposed Subgrid Scale (SGS) model for magnetic fields generated by direct current was formulated with GSMAC-FEM (Generalized Simplified Marker and Cell method for Finite Element Method) and the characteristic behavior of MHD turbulence studied theoretically. A Direct Numerical Simulation (DNS) method was also developed to verify the theoretical study and construct and advanced SGS model. The last purpose of this study is to analyze the realistic Electromagnetic Pump. In order to understand basic concept, analyses of small-scale Electromagnetic Pump was started with A-φ method. The following results were obtained from these studies: (1) Homogeneous turbulent flows in a conducting fluid which were exposed to uniform magnetic fields were examined through the Direct Numerical Simulation and the characteristics of energy distribution were shown in the MHD turbulence at low magnetic Reynolds numbers. (2) For the analysis of the realistic Electromagnetic Pump, the parallel scheme based on GSMAC-FEM was constructed. Effectiveness of the scheme for large-scale calculation was shown through the benchmark problem, three dimensional cavity flow. (3) A new Balancing Tensor Diffusivity (BTD) formulation for the magnetic fields was proposed in this study and the proposed SGS model in previous study was formulated with GSMAC-FEM. The FEM scheme for MHD turbulence at high magnetic Reynolds number was verified through homogeneous MHD turbulence. (4) An A-φ method formulated with GSMAC-FEM was applied to the analysis of small-scale Electromagnetic pump. The basic concepts for the analysis with B method were obtained through the results. (author)
Detonability of turbulent white dwarf plasma: Hydrodynamical models at low densities
Fenn, Daniel
The origins of Type Ia supernovae (SNe Ia) remain an unsolved problem of contemporary astrophysics. Decades of research indicate that these supernovae arise from thermonuclear runaway in the degenerate material of white dwarf stars; however, the mechanism of these explosions is unknown. Also, it is unclear what are the progenitors of these objects. These missing elements are vital components of the initial conditions of supernova explosions, and are essential to understanding these events. A requirement of any successful SN Ia model is that a sufficient portion of the white dwarf plasma must be brought under conditions conducive to explosive burning. Our aim is to identify the conditions required to trigger detonations in turbulent, carbon-rich degenerate plasma at low densities. We study this problem by modeling the hydrodynamic evolution of a turbulent region filled with a carbon/oxygen mixture at a density, temperature, and Mach number characteristic of conditions found in the 0.8+1.2 solar mass (CO0812) model discussed by Fenn et al. (2016). We probe the ignition conditions for different degrees of compressibility in turbulent driving. We assess the probability of successful detonations based on characteristics of the identified ignition kernels, using Eulerian and Lagrangian statistics of turbulent flow. We found that material with very short ignition times is abundant in the case that turbulence is driven compressively. This material forms contiguous structures that persist over many ignition time scales, and that we identify as prospective detonation kernels. Detailed analysis of the kernels revealed that their central regions are densely filled with material characterized by short ignition times and contain the minimum mass required for self-sustained detonations to form. It is conceivable that ignition kernels will be formed for lower compressibility in the turbulent driving. However, we found no detonation kernels in models driven 87.5 percent
A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence
Kibbey, Timothy P.
2014-01-01
A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.
International Nuclear Information System (INIS)
Barsamian, H.R.; Hassan, Y.A.
1996-01-01
Turbulence is one of the most commonly occurring phenomena of engineering interest in the field of fluid mechanics. Since most flows are turbulent, there is a significant payoff for improved predictive models of turbulence. One area of concern is the turbulent buffeting forces experienced by the tubes in steam generators of nuclear power plants. Although the Navier-Stokes equations are able to describe turbulent flow fields, the large number of scales of turbulence limit practical flow field calculations with current computing power. The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (Smagorinsky, 1963) (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization
Computational model for turbulent flow around a grid spacer with mixing vane
International Nuclear Information System (INIS)
Tsutomu Ikeno; Takeo Kajishima
2005-01-01
Turbulent mixing coefficient and pressure drop are important factors in subchannel analysis to predict onset of DNB. However, universal correlations are difficult since these factors are significantly affected by the geometry of subchannel and a grid spacer with mixing vane. Therefore, we propose a computational model to estimate these factors. Computational model: To represent the effect of geometry of grid spacer in computational model, we applied a large eddy simulation (LES) technique in couple with an improved immersed-boundary method. In our previous work (Ikeno, et al., NURETH-10), detailed properties of turbulence in subchannel were successfully investigated by developing the immersed boundary method in LES. In this study, additional improvements are given: new one-equation dynamic sub-grid scale (SGS) model is introduced to account for the complex geometry without any artificial modification; the higher order accuracy is maintained by consistent treatment for boundary conditions for velocity and pressure. NUMERICAL TEST AND DISCUSSION: Turbulent mixing coefficient and pressure drop are affected strongly by the arrangement and inclination of mixing vane. Therefore, computations are carried out for each of convolute and periodic arrangements, and for each of 30 degree and 20 degree inclinations. The difference in turbulent mixing coefficient due to these factors is reasonably predicted by our method. (An example of this numerical test is shown in Fig. 1.) Turbulent flow of the problem includes unsteady separation behind the mixing vane and vortex shedding in downstream. Anisotropic distribution of turbulent stress is also appeared in rod gap. Therefore, our computational model has advantage for assessing the influence of arrangement and inclination of mixing vane. By coarser computational mesh, one can screen several candidates for spacer design. Then, by finer mesh, more quantitative analysis is possible. By such a scheme, we believe this method is useful
A Generalized turbulent dispersion model for bubbly flow numerical simulation in NEPTUNE-CFD
Energy Technology Data Exchange (ETDEWEB)
Laviéville, Jérôme, E-mail: Jerome-marcel.lavieville@edf.fr; Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Guingo, Mathieu, E-mail: mathieu.guingo@edf.fr; Baudry, Cyril, E-mail: Cyril.baudry@edf.fr; Mimouni, Stéphane, E-mail: stephane.mimouni@edf.fr
2017-02-15
The NEPTUNE-CFD code, based upon an Eulerian multi-fluid model, is developed within the framework of the NEPTUNE project, financially supported by EDF (Electricité de France), CEA (Commissariat à l’Energie Atomique et aux Energies Alternatives), IRSN (Institut de Radioprotection et de Sûreté Nucléaire) and AREVA-NP. NEPTUNE-CFD is mainly focused on Nuclear Safety applications involving two-phase water-steam flows, like two-phase Pressurized Shock (PTS) and Departure from Nucleate Boiling (DNB). Many of these applications involve bubbly flows, particularly, for application to flows in PWR fuel assemblies, including studies related to DNB. Considering a very usual model for interfacial forces acting on bubbles, including drag, virtual mass and lift forces, the turbulent dispersion force is often added to moderate the lift effect in orthogonal directions to the main flow and get the right dispersion shape. This paper presents a formal derivation of this force, considering on the one hand, the fluctuating part of drag and virtual mass, and on the other hand, Turbulent Pressure derivation obtained by comparison between Lagrangian and Eulerian description of bubbles motion. An extension of the Tchen’s theory is used to express the turbulent kinetic energy of bubbles and the two-fluid turbulent covariance tensor in terms of liquid turbulent velocities and time scale. The model obtained by this way, called Generalized Turbulent Dispersion Model (GTD), does not require any user parameter. The model is validated against Liu & Bankoff air-water experiment, Arizona State University (ASU) experiment, DEBORA experiment and Texas A&M University (TAMU) boiling flow experiments.
Directory of Open Access Journals (Sweden)
Sanghyeon Kim
2017-06-01
Full Text Available In this study, cavitation flow of hydrofoils is numerically investigated to characterize the effects of turbulence models on cavitation-flow patterns and the corresponding radiated sound waves. The two distinct flow conditions are considered by varying the mean flow velocity and angle of attack, which are categorized under the experimentally observed unstable or stable cavitation flows. To consider the phase interchanges between the vapor and the liquid, the flow fields around the hydrofoil are analyzed by solving the unsteady compressible Reynolds-averaged Navier–Stokes equations coupled with a mass-transfer model, also referred to as the cavitation model. In the numerical solver, a preconditioning algorithm with dual-time stepping techniques is employed in generalized curvilinear coordinates. The following three types of turbulence models are employed: the laminar-flow model, standard k − ε turbulent model, and filter-based model. Hydro-acoustic field formed by the cavitation flow of the hydrofoil is predicted by applying the Ffowcs Williams and Hawkings equation to the predicted flow field. From the predicted results, the effects of the turbulences on the cavitation flow pattern and radiated flow noise are quantitatively assessed in terms of the void fraction, sound-pressure-propagation directivities, and spectrum.
Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows
Schaefer, John; West, Thomas; Hosder, Serhat; Rumsey, Christopher; Carlson, Jan-Renee; Kleb, William
2015-01-01
The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-w Model, and the Menter Shear-Stress Trans- port Model. The FUN3D code developed by NASA Langley Research Center was used as the flow solver. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. This study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows.
Stochastic modelling of turbulent combustion for design optimization of gas turbine combustors
Mehanna Ismail, Mohammed Ali
The present work covers the development and the implementation of an efficient algorithm for the design optimization of gas turbine combustors. The purpose is to explore the possibilities and indicate constructive suggestions for optimization techniques as alternative methods for designing gas turbine combustors. The algorithm is general to the extent that no constraints are imposed on the combustion phenomena or on the combustor configuration. The optimization problem is broken down into two elementary problems: the first is the optimum search algorithm, and the second is the turbulent combustion model used to determine the combustor performance parameters. These performance parameters constitute the objective and physical constraints in the optimization problem formulation. The examination of both turbulent combustion phenomena and the gas turbine design process suggests that the turbulent combustion model represents a crucial part of the optimization algorithm. The basic requirements needed for a turbulent combustion model to be successfully used in a practical optimization algorithm are discussed. In principle, the combustion model should comply with the conflicting requirements of high fidelity, robustness and computational efficiency. To that end, the problem of turbulent combustion is discussed and the current state of the art of turbulent combustion modelling is reviewed. According to this review, turbulent combustion models based on the composition PDF transport equation are found to be good candidates for application in the present context. However, these models are computationally expensive. To overcome this difficulty, two different models based on the composition PDF transport equation were developed: an improved Lagrangian Monte Carlo composition PDF algorithm and the generalized stochastic reactor model. Improvements in the Lagrangian Monte Carlo composition PDF model performance and its computational efficiency were achieved through the
Flock, Mario; Nelson, Richard P.; Turner, Neal J.; Bertrang, Gesa H.-M.; Carrasco-González, Carlos; Henning, Thomas; Lyra, Wladimir; Teague, Richard
2017-12-01
Planets are born in protostellar disks, which are now observed with enough resolution to address questions about internal gas flows. Magnetic forces are possibly drivers of the flows, but ionization state estimates suggest that much of the gas mass decouples from magnetic fields. Thus, hydrodynamical instabilities could play a major role. We investigate disk dynamics under conditions typical for a T Tauri system, using global 3D radiation-hydrodynamics simulations with embedded particles and a resolution of 70 cells per scale height. Stellar irradiation heating is included with realistic dust opacities. The disk starts in joint radiative balance and hydrostatic equilibrium. The vertical shear instability (VSI) develops into turbulence that persists up to at least 1600 inner orbits (143 outer orbits). Turbulent speeds are a few percent of the local sound speed at the midplane, increasing to 20%, or 100 m s-1, in the corona. These are consistent with recent upper limits on turbulent speeds from optically thin and thick molecular line observations of TW Hya and HD 163296. The predominantly vertical motions induced by the VSI efficiently lift particles upward. Grains 0.1 and 1 mm in size achieve scale heights greater than expected in isotropic turbulence. We conclude that while kinematic constraints from molecular line emission do not directly discriminate between magnetic and nonmagnetic disk models, the small dust scale heights measured in HL Tau and HD 163296 favor turbulent magnetic models, which reach lower ratios of the vertical kinetic energy density to the accretion stress.
Hydrodynamical model of anisotropic, polarized turbulent superfluids. I: constraints for the fluxes
Mongiovì, Maria Stella; Restuccia, Liliana
2018-02-01
This work is the first of a series of papers devoted to the study of the influence of the anisotropy and polarization of the tangle of quantized vortex lines in superfluid turbulence. A thermodynamical model of inhomogeneous superfluid turbulence previously formulated is here extended, to take into consideration also these effects. The model chooses as thermodynamic state vector the density, the velocity, the energy density, the heat flux, and a complete vorticity tensor field, including its symmetric traceless part and its antisymmetric part. The relations which constrain the constitutive quantities are deduced from the second principle of thermodynamics using the Liu procedure. The results show that the presence of anisotropy and polarization in the vortex tangle affects in a substantial way the dynamics of the heat flux, and allow us to give a physical interpretation of the vorticity tensor here introduced, and to better describe the internal structure of a turbulent superfluid.
Turbulence modeling for flows around convex features giving rapid eddy distortion
International Nuclear Information System (INIS)
Tucker, P.G.; Liu, Y.
2007-01-01
Reynolds averaged Navier-Stokes model performances in the stagnation and wake regions for turbulent flows with relatively large Lagrangian length scales (generally larger than the scale of geometrical features) approaching small cylinders (both square and circular) is explored. The effective cylinder (or wire) diameter based Reynolds number, Re W ≤ 2.5 x 10 3 . The following turbulence models are considered: a mixing-length; standard Spalart and Allmaras (SA) and streamline curvature (and rotation) corrected SA (SARC); Secundov's ν t -92; Secundov et al.'s two equation ν t -L; Wolfshtein's k-l model; the Explicit Algebraic Stress Model (EASM) of Abid et al.; the cubic model of Craft et al.; various linear k-ε models including those with wall distance based damping functions; Menter SST, k-ω and Spalding's LVEL model. The use of differential equation distance functions (Poisson and Hamilton-Jacobi equation based) for palliative turbulence modeling purposes is explored. The performance of SA with these distance functions is also considered in the sharp convex geometry region of an airfoil trailing edge. For the cylinder, with Re W ∼ 2.5 x 10 3 the mixing length and k-l models give strong turbulence production in the wake region. However, in agreement with eddy viscosity estimates, the LVEL and Secundov ν t -92 models show relatively little cylinder influence on turbulence. On the other hand, two equation models (as does the one equation SA) suggest the cylinder gives a strong turbulence deficit in the wake region. Also, for SA, an order or magnitude cylinder diameter decrease from Re W = 2500 to 250 surprisingly strengthens the cylinder's disruptive influence. Importantly, results for Re W W = 250 i.e. no matter how small the cylinder/wire its influence does not, as it should, vanish. Similar tests for the Launder-Sharma k-ε, Menter SST and k-ω show, in accordance with physical reality, the cylinder's influence diminishing albeit slowly with size. Results
Cloud-turbulence interactions: Sensitivity of a general circulation model to closure assumptions
International Nuclear Information System (INIS)
Brinkop, S.; Roeckner, E.
1993-01-01
Several approaches to parameterize the turbulent transport of momentum, heat, water vapour and cloud water for use in a general circulation model (GCM) have been tested in one-dimensional and three-dimensional model simulations. The schemes differ with respect to their closure assumptions (conventional eddy diffusivity model versus turbulent kinetic energy closure) and also regarding their treatment of cloud-turbulence interactions. The basis properties of these parameterizations are discussed first in column simulations of a stratocumulus-topped atmospheric boundary layer (ABL) under a strong subsidence inversion during the KONTROL experiment in the North Sea. It is found that the K-models tend to decouple the cloud layer from the adjacent layers because the turbulent activity is calculated from local variables. The higher-order scheme performs better in this respect because internally generated turbulence can be transported up and down through the action of turbulent diffusion. Thus, the TKE-scheme provides not only a better link between the cloud and the sub-cloud layer but also between the cloud and the inversion as a result of cloud-top entrainment. In the stratocumulus case study, where the cloud is confined by a pronounced subsidence inversion, increased entrainment favours cloud dilution through enhanced evaporation of cloud droplets. In the GCM study, however, additional cloud-top entrainment supports cloud formation because indirect cloud generating processes are promoted through efficient ventilation of the ABL, such as the enhanced moisture supply by surface evaporation and the increased depth of the ABL. As a result, tropical convection is more vigorous, the hydrological cycle is intensified, the whole troposphere becomes warmer and moister in general and the cloudiness in the upper part of the ABL is increased. (orig.)
Inner-outer predictive wall model for wall-bounded turbulence in hypersonic flow
Martin, M. Pino; Helm, Clara M.
2017-11-01
The inner-outer predictive wall model of Mathis et al. is modified for hypersonic turbulent boundary layers. The model is based on a modulation of the energized motions in the inner layer by large scale momentum fluctuations in the logarithmic layer. Using direct numerical simulation (DNS) data of turbulent boundary layers with free stream Mach number 3 to 10, it is shown that the variation of the fluid properties in the compressible flows leads to large Reynolds number (Re) effects in the outer layer and facilitate the modulation observed in high Re incompressible flows. The modulation effect by the large scale increases with increasing free-stream Mach number. The model is extended to include spanwise and wall-normal velocity fluctuations and is generalized through Morkovin scaling. Temperature fluctuations are modeled using an appropriate Reynolds Analogy. Density fluctuations are calculated using an equation of state and a scaling with Mach number. DNS data are used to obtain the universal signal and parameters. The model is tested by using the universal signal to reproduce the flow conditions of Mach 3 and Mach 7 turbulent boundary layer DNS data and comparing turbulence statistics between the modeled flow and the DNS data. This work is supported by the Air Force Office of Scientific Research under Grant FA9550-17-1-0104.
Near-Wall Turbulence Modelling of Rotating and Curved Shear Flows
Energy Technology Data Exchange (ETDEWEB)
Pettersson, Bjoern Anders
1997-12-31
This thesis deals with verification and refinement of turbulence models within the framework of the Reynolds-averaged approach. It pays special attention to modelling the near-wall region, where the turbulence is strongly non-homogeneous and anisotropic. It also studies in detail the effects associated with an imposed rotation of the reference frame or streamline curvature. The objective with near-wall turbulence closure modelling is to formulate a set of equations governing single point turbulence statistics, which can be solved in the region of the flow which extends to the wall. This is in contrast to the commonly adopted wall-function approach in which the wall-boundary conditions are replaced by matching conditions in the logarithmic region. The near-wall models allow more flexibility by not requiring any such universal behaviour. Assessment of the novel elliptic relaxation approach to model the proximity of a solid boundary reveals an encouraging potential used in conjunction with second-moment and eddy-viscosity closures. The most natural level of closure modelling to predict flows affected by streamline curvatures or an imposed rotation of the reference frame is at the second-moment closure (SMC) level. Although SMCs naturally accounts for the effects of system rotation, the usual application of a scalar dissipation rate equation is shown to require ad hoc corrections in some cases in order to give good results. The elliptic relaxation approach is also used in conjunction with non-linear pressure-strain models and very encouraging results are obtained for rotating flows. Rotational induced secondary motions are vital to predicting the effects of system rotation. Some severe weaknesses of non-linear pressure-strain models are also indicated. Finally, a modelling methodology for anisotropic dissipation in nearly homogeneous turbulence are proposed. 84 refs., 56 figs., 16 tabs.
Hernandez Perez, F.E.; Yuen, F.T.C.; Groth, C.P.T.; Gülder, O.L.
2011-01-01
Large-eddy simulations (LES) of a turbulent premixed Bunsen flame were carried out with three subfilter-scale (SFS) modelling approaches for turbulent premixed combustion. One approach is based on the artificially thickened flame and power-law flame wrinkling models, the second approach is based on
Modeling turbulent/chemistry interactions using assumed pdf methods
Gaffney, R. L, Jr.; White, J. A.; Girimaji, S. S.; Drummond, J. P.
1992-01-01
Two assumed probability density functions (pdfs) are employed for computing the effect of temperature fluctuations on chemical reaction. The pdfs assumed for this purpose are the Gaussian and the beta densities of the first kind. The pdfs are first used in a parametric study to determine the influence of temperature fluctuations on the mean reaction-rate coefficients. Results indicate that temperature fluctuations significantly affect the magnitude of the mean reaction-rate coefficients of some reactions depending on the mean temperature and the intensity of the fluctuations. The pdfs are then tested on a high-speed turbulent reacting mixing layer. Results clearly show a decrease in the ignition delay time due to increases in the magnitude of most of the mean reaction rate coefficients.
International Nuclear Information System (INIS)
Jarnicki, R.; Sobiesiak, A.
2002-01-01
In order to solve the averaged conservation equations for turbulent reacting flow one is faced with a task of specifying the averaged chemical reaction rate. This is due to turbulence influence on the mean reaction rates that appear in the species concentration Reynolds-averaged equation. In order to investigate the Partially Stirred Reactor (PaSR) combustion model capabilities, a CFD modeling using KIVA3V Code with the PaSR model of two very different combustion processes, was performed. Experimental results were compared with modeling
Soot and Spectral Radiation Modeling for a High-Pressure Turbulent Spray Flame
Energy Technology Data Exchange (ETDEWEB)
Ferreryo-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Modest, Michael F [University of California Merced (United States)
2017-04-26
Simulations are performed of a transient high-pressure turbulent n-dodecane spray flame under engine-relevant conditions. An unsteady RANS formulation is used, with detailed chemistry, a semi-empirical two-equation soot model, and a particle-based transported composition probability density function (PDF) method to account for unresolved turbulent fluctuations in composition and temperature. Results from the PDF model are compared with those from a locally well-stirred reactor (WSR) model to quantify the effects of turbulence-chemistry-soot interactions. Computed liquid and vapor penetration versus time, ignition delay, and flame lift-off height are in good agreement with experiment, and relatively small differences are seen between the WSR and PDF models for these global quantities. Computed soot levels and spatial soot distributions from the WSR and PDF models show large differences, with PDF results being in better agreement with experimental measurements. An uncoupled photon Monte Carlo method with line-by-line spectral resolution is used to compute the spectral intensity distribution of the radiation leaving the flame. This provides new insight into the relative importance of molecular gas radiation versus soot radiation, and the importance of turbulent fluctuations on radiative heat transfer.
Fairhall, Chris; Garcia-Mayoral, Ricardo
2017-11-01
We present results from direct numerical simulations of turbulent flows over superhydrophobic surfaces. We assess the validity of simulations where the surface is modelled as homogeneous slip lengths, comparing them to simulations where the surface texture is resolved. Our results show that once the coherent flow induced by the texture is removed from the velocity fields, the remaining flow sees the surface as homogeneous. We then investigate how the overlying turbulence is modified by the presence of surface texture. For small textures, we show that turbulence is shifted closer to the wall due to the presence of slip, but otherwise remains essentially unmodified. For larger textures, the texture interacts with the turbulent lengthscales, thereby modifying the overlying turbulence. We also show that the saturation of the effect of the spanwise slip length (Fukagata et al. 2006, Busse & Sandham 2012, Seo & Mani 2016), which is drag increasing, is caused by the impermeability imposed at the surface. This work was supported by the Engineering and Physical Sciences Research Council.
CFD evaluation of turbulence model on heat transfer in 5 × 5 rod bundles
International Nuclear Information System (INIS)
Chao Yanmeng; Yang Lixin; Zhang Yuxiang; Pang Zhengzheng
2014-01-01
Different turbulence models may lead to different results when analyzing fuel assemblies using computational fluid dynamics (CFD) method. In this paper, a 5 × 5 rod bundle model was built to analyze the relationship between flow and heat transfer. The pressure drop and Nu were calculated using ANSYS CFX. Three factors evaluating swirling flow and cross-flow were used to analyze the inner relationship between flow field and heat transfer. The performances of various turbulence models, including eddy viscosity model and Reynold stress model, were evaluated. The comparison between numerical and similar experimental results indicates that Reynold stress model is more appropriate for modeling flow features and heat transfer in spacer grids discussed in this paper. (authors)
Turbulent Bubbly Flow in a Vertical Pipe Computed By an Eddy-Resolving Reynolds Stress Model
2014-09-19
the numerical code OpenFOAM R©. 1 Introduction Turbulent bubbly flows are encountered in many industrially relevant applications, such as chemical in...performed using the OpenFOAM -2.2.2 computational code utilizing a cell- center-based finite volume method on an unstructured numerical grid. The...the mean Courant number is always below 0.4. The utilized turbulence models were implemented into the so-called twoPhaseEulerFoam solver in OpenFOAM , to
Applicability of eddy viscosity turbulence models in low specific speed centrifugal pump
International Nuclear Information System (INIS)
Wang, Y; Wang, W J
2012-01-01
The accuracy of numerical simulation determines the performance prediction whether to be successful or not in the research of centrifugal pump. In order to study the applicability of different turbulence models in the low specific speed centrifugal pump, the object was based on XST45-200 stamping and welding centrifugal pump. Five different kinds of standards which are k-ε model, RNG k-ε model, Realizable k-ε model, Standard k-ω model and SST k-ω model are adopted in steady numerical simulations of the centrifugal pump flow fields. Then, inner and outside characteristics of the centrifugal pump were gotten .And it also provides the calculation of pressure distribution using different turbulence models in the five conditions. Lastly, the performance curves of head, power and efficiency are compared with the test. The results show a good agreement between five kinds of turbulence models and tests obtained in small flow and design condition. In large flow, the standard k-ε model is worse than the other four, which is larger than the tested head with a relative deviation of 47.9% and efficiency with 50%.The calculation accuracy which used RNG k-ε model is highest. SST k-ω model takes the second place. Standard k-ω model can be used for the numerical simulation in the low specific speed centrifugal pump.
Sogukpinar, Haci; Bozkurt, Ismail
2018-02-01
In this paper, aerodynamic calculations of NACA 4 series airfoil of 0012 are performed by using Finite-Volume Method and obtained results are compared with experimental data to correlate the numerical accuracy of CFD approximation. Then other airfoils are simulated with k-ɛ, k-w Spalart-Allmaras and SST model. The governing equations are the Reynolds-Averaged-Navier-Stokes (RANS) equations. The performance of different airfoils (NACA 0008, 0009, 0010, 0012, 0015, 0018, 0021, 0024) at different angle of attack are investigated and compared with most used turbulence models for industrial applications. According to the results of the comparison of numerical calculations and experimental data, k-w and SST models are considered to be closest to experimental results for the calculation of the lift coefficient.
Assessment of turbulence models for pulsatile flow inside a heart pump.
Al-Azawy, Mohammed G; Turan, A; Revell, A
2016-02-01
Computational fluid dynamics (CFD) is applied to study the unsteady flow inside a pulsatile pump left ventricular assist device, in order to assess the sensitivity to a range of commonly used turbulence models. Levels of strain and wall shear stress are directly relevant to the evaluation of risk from haemolysis and thrombosis, and thus understanding the sensitivity to these turbulence models is important in the assessment of uncertainty in CFD predictions. The study focuses on a positive displacement or pulsatile pump, and the CFD model includes valves and moving pusher plate. An unstructured dynamic layering method was employed to capture this cyclic motion, and valves were simulated in their fully open position to mimic the natural scenario, with in/outflow triggered at control planes away from the valves. Six turbulence models have been used, comprising three relevant to the low Reynolds number nature of this flow and three more intended to investigate different transport effects. In the first group, we consider the shear stress transport (SST) [Formula: see text] model in both its standard and transition-sensitive forms, and the 'laminar' model in which no turbulence model is used. In the second group, we compare the one equation Spalart-Almaras model, the standard two equation [Formula: see text] and the full Reynolds stress model (RSM). Following evaluation of spatial and temporal resolution requirements, results are compared with available experimental data. The model was operated at a systolic duration of 40% of the pumping cycle and a pumping rate of 86 BPM (beats per minute). Contrary to reasonable preconception, the 'transition' model, calibrated to incorporate additional physical modelling specifically for these flow conditions, was not noticeably superior to the standard form of the model. Indeed, observations of turbulent viscosity ratio reveal that the transition model initiates a premature increase of turbulence in this flow, when compared with
Simulation with Different Turbulence Models in an Annex 20 Benchmark Test using Star-CCM+
DEFF Research Database (Denmark)
Le Dreau, Jerome; Heiselberg, Per; Nielsen, Peter V.
The purpose of this investigation is to compare the different flow patterns obtained for the 2D isothermal test case defined in Annex 20 (1990) using different turbulence models. The different results are compared with the existing experimental data. Similar study has already been performed by Rong...
Numerical modeling of turbulent jet diffusion flames in the atmospheric surface layer
Hernández, J.; Crespo, A.; Duijm, N.J.
1995-01-01
The evolution of turbulent jet diffusion flames of natural gas in air is predicted using a finite-volume procedure for solving the flow equations. The model is three dimensional, elliptic and based on the conserved-scalar approach and the laminar flamelet concept. A laminar flamelet prescription for
Validation of a LES turbulence modeling approach on a steady engine head flow
Huijnen, V.; Somers, L.M.T.; Baert, R.S.G.; Goey, de L.P.H.; Dias, V.
2005-01-01
The application of the LES turbulence modeling approach in the Kiva-environment is validated on a complex geometry. Results for the steady flow in a realistic geometry of a production type heavy-duty diesel engine head with 120 mm cylinder bore are presented. The bulk Reynolds number is Reb = 1 fl
Mathematical, physical and numerical principles essential for models of turbulent mixing
Energy Technology Data Exchange (ETDEWEB)
Sharp, David Howland [Los Alamos National Laboratory; Lim, Hyunkyung [STONY BROOK UNIV; Yu, Yan [STONY BROOK UNIV; Glimm, James G [STONY BROOK UNIV
2009-01-01
We propose mathematical, physical and numerical principles which are important for the modeling of turbulent mixing, especially the classical and well studied Rayleigh-Taylor and Richtmyer-Meshkov instabilities which involve acceleration driven mixing of a fluid discontinuity layer, by a steady accerleration or an impulsive force.
Mathematical modeling of turbulent stratified flows. Application of liquid metal fast breeders
Energy Technology Data Exchange (ETDEWEB)
Villand, M; Grand, D [CEA-Service des Transferts Thermiques, Grenoble (France)
1983-07-01
Mathematical model of turbulent stratified flow was proposed under the following assumptions: Newtonian fluid; incompressible fluid; coupling between temperature and momentum fields according to Boussinesq approximation; two-dimensional invariance for translation or rotation; coordinates cartesian or curvilinear. Solutions obtained by the proposed method are presented.
Applications of Turbulence Models for Transport of Dissolved Pollutants and Particles
DEFF Research Database (Denmark)
Petersen, Ole
The present report concerns itself with numerical models of turbulent transport and mixing, with emphasis on the description of the mixing processes which occur in recipients and tanks. Consequently a part of the report is dedicated to a discussion of flows where differences in density play...
Model for transversal turbulent mixing in axial flow in rod bundles
International Nuclear Information System (INIS)
Carajilescov, P.
1990-01-01
The present work consists in the development of a model for the transversal eddy diffusivity to account for the effect of turbulent thermal mixing in axial flows in rod bundles. The results were compared to existing correlations that are currently being used in reactor thermalhydraulic analysis and considered satisfactory. (author)
International Nuclear Information System (INIS)
Patil, Sunil; Tafti, Danesh
2012-01-01
Highlights: ► Large eddy simulation. ► Wall layer modeling. ► Synthetic inlet turbulence. ► Swirl flows. - Abstract: Large eddy simulations of complex high Reynolds number flows are carried out with the near wall region being modeled with a zonal two layer model. A novel formulation for solving the turbulent boundary layer equation for the effective tangential velocity in a generalized co-ordinate system is presented and applied in the near wall zonal treatment. This formulation reduces the computational time in the inner layer significantly compared to the conventional two layer formulations present in the literature and is most suitable for complex geometries involving body fitted structured and unstructured meshes. The cost effectiveness and accuracy of the proposed wall model, used with the synthetic eddy method (SEM) to generate inlet turbulence, is investigated in turbulent channel flow, flow over a backward facing step, and confined swirling flows at moderately high Reynolds numbers. Predictions are compared with available DNS, experimental LDV data, as well as wall resolved LES. In all cases, there is at least an order of magnitude reduction in computational cost with no significant loss in prediction accuracy.
A New Eulerian Model for Turbulent Evaporating Sprays in Recirculating Flows
Wittig, S.; Hallmann, M.; Scheurlen, M.; Schmehl, R.
1993-01-01
A new Eulerian model for the computation of turbulent evaporating sprays in recirculating flows is derived. It comprises droplet heating and evaporation processes by solving separate transport equations for the droplet's temperature and diameter. Full coupling of the droplet and the gaseous phase is
External intermittency prediction using AMR solutions of RANS turbulence and transported PDF models
Olivieri, D. A.; Fairweather, M.; Falle, S. A. E. G.
2011-12-01
External intermittency in turbulent round jets is predicted using a Reynolds-averaged Navier-Stokes modelling approach coupled to solutions of the transported probability density function (pdf) equation for scalar variables. Solutions to the descriptive equations are obtained using a finite-volume method, combined with an adaptive mesh refinement algorithm, applied in both physical and compositional space. This method contrasts with conventional approaches to solving the transported pdf equation which generally employ Monte Carlo techniques. Intermittency-modified eddy viscosity and second-moment turbulence closures are used to accommodate the effects of intermittency on the flow field, with the influence of intermittency also included, through modifications to the mixing model, in the transported pdf equation. Predictions of the overall model are compared with experimental data on the velocity and scalar fields in a round jet, as well as against measurements of intermittency profiles and scalar pdfs in a number of flows, with good agreement obtained. For the cases considered, predictions based on the second-moment turbulence closure are clearly superior, although both turbulence models give realistic predictions of the bimodal scalar pdfs observed experimentally.
Turbulent swirling flow in a model of a uniflow-scavenged two-stroke engine
DEFF Research Database (Denmark)
Ingvorsen, Kristian Mark; Meyer, Knud Erik; Walther, Jens Honore
2013-01-01
The turbulent and swirling flow of a uniflow-scavenged two-stroke engine cylinder is investigated using a scale model with a static geometry and a transparent cylinder. The swirl is generated by 30 equally spaced ports with angles of 0°, 10°, 20°, and 30°. A detailed characterization of the flow...
Shape Optimization for Navier-Stokes Equations with Algebraic Turbulence Model: Existence Analysis
Czech Academy of Sciences Publication Activity Database
Bulíček, M.; Haslinger, J.; Málek, J.; Stebel, Jan
2009-01-01
Roč. 60, č. 2 (2009), s. 185-212 ISSN 0095-4616 R&D Projects: GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : optimal shape design * paper machine headbox * incompressible non-Newtonian fluid * algebraic turbulence model * outflow boundary condition Subject RIV: BA - General Mathematics Impact factor: 0.757, year: 2009
On the modelling of turbulent heat and mass transfer for the computation of buoyancy affected flows
International Nuclear Information System (INIS)
Viollet, P.-L.
1981-02-01
The k - epsilon eddy viscosity turbulence model is applied to simple test cases of buoyant flows. Vertical as horizontal stable flows are nearly well represented by the computation, and in unstable flows the mixing is underpredicted. The general agreement is good enough for allowing application to thermal-fluid engineering problems
Kozaka, Orçun E.; Özkan, Gökhan; Özdemir, Bedii I.
2004-01-01
Turbulent structure of flow behind a model car is investigated with local velocity measurements with emphasis on large structures and their relevance to aerodynamic forces. Results show that two counter-rotating helical vortices, which are formed within the inner wake region, play a key role in determining the flux of kinetic energy. The turbulence is generated within the outermost shear layers due to the instabilities, which also seem to be the basic drive for these relatively organized structures. The measured terms of the turbulent kinetic energy production, which are only part of the full expression, indicate that vortex centres act similar to the manifolds draining the energy in the streamwise direction. As the approach velocity increases, the streamwise convection becomes the dominant means of turbulent transport and, thus, the acquisition of turbulence by relatively non-turbulent flow around the wake region is suppressed.
International Nuclear Information System (INIS)
Colin-Bellot, Clothilde
2015-01-01
The possibility to produce power by using magnetically confined fusion is a scientific and technological challenge. The perspective of ITER conveys strong signals to intensify modeling effort on magnetized fusion plasmas. The success of the fusion operation is conditioned by the quality of plasma confinement in the core of the reactor and by the control of plasma exhaust on the wall. Both phenomena are related to turbulent cross-field transport that is at the heart of the notion of magnetic confinement studies, particle and heat losses. The study of edge phenomena is therefore complicated by a particularly complex magnetic geometry.This calls for an improvement of our capacity to develop numerical tools able to reproduce turbulent transport properties reliable to predict particle and energy fluxes on the plasma facing components. This thesis introduces the TOKAM3X fluid model to simulate edge plasma turbulence. A special focus is made on the code Verification and the Validation. It is a necessary step before using a code as a predictive tool. Then new insights on physical properties of the edge plasma turbulence are explored. In particular, the poloidal asymmetries induced by turbulence and observed experimentally in the Low-Field-Side of the devices are investigated in details. Great care is dedicated to the reproduction of the MISTRAL base case which consists in changing the magnetic configuration and observing the impact on parallel flows in the poloidal plane. The simulations recover experimental measurements and provide new insights on the effect of the plasma-wall contact position location on the turbulent features, which were not accessible in experiments. (author) [fr
International Nuclear Information System (INIS)
Mitani, Akira; Tsubota, Makoto
2006-01-01
The energy spectrum of decaying quantum turbulence at T=0 obeys Kolmogorov's law. In addition to this, recent studies revealed that the vortex-length distribution (VLD), meaning the size distribution of the vortices, in decaying Kolmogorov quantum turbulence also obeys a power law. This power-law VLD suggests that the decaying turbulence has scale-free structure in real space. Unfortunately, however, there has been no practical study that answers the following important question: why can quantum turbulence acquire a scale-free VLD? We propose here a model to study the origin of the power law of the VLD from a generic point of view. The nature of quantized vortices allows one to describe the decay of quantum turbulence with a simple model that is similar to the Barabasi-Albert model, which explains the scale-invariance structure of large networks. We show here that such a model can reproduce the power law of the VLD well
International Nuclear Information System (INIS)
Colli, A.N.; Bisang, J.M.
2011-01-01
Highlights: · The type of turbulence promoters has a strong influence on the hydrodynamics. · The dispersion model is appropriate for expanded plastic turbulence promoters. · The dispersion model is appropriate for glass beads turbulence promoters. - Abstract: The hydrodynamic behaviour of electrochemical reactors with parallel plate electrodes is experimentally studied using the stimulus-response method either with an empty reactor or with different turbulence promoters. Theoretical results which are in accordance with the analytical and numerical resolution of the dispersion model for a closed system are compared with the classical relationships of the normalized outlet concentration for open systems and the validity range of the equations is discussed. The experimental results were well correlated with the dispersion model using glass beads or expanded plastic meshes as turbulence promoters, which have shown the most advantageous performance. The Peclet number was higher than 63. The dispersion coefficient was found to increase linearly with flow velocity in these cases.
Energy Technology Data Exchange (ETDEWEB)
Reinhardt, B.; Duhamel, Ph.; Cordonnier, A. [FCB Centre de Recherches, 59 - Lille (France); Florent, P. [LAMIH/LMFE, 59 - Valenciennes (France)
1997-12-31
The cyclones used in cement industry generally have a diameter of 4 to 6 m. However, tests on cyclones bigger than 4 m can hardly be performed and thus, it is important to study the influence of the size of the apparatus on the development of the generated vortex. A study of the structure and characteristics of the suspension inside a cyclone has been carried out. The results of the characterization of two cyclones (400 and 800 mm diameter) running without load are presented first in order to study the vortex behaviour. In parallel with this experimental study, a numerical study has been carried out and a calculation code called CYCLOP has been developed. The code, the equations of the gas flow inside the cyclone and the modifications given to the turbulent model are presented. (J.S.) 4 refs.
Energy Technology Data Exchange (ETDEWEB)
Pinson, F
2006-03-15
- This work deals with the macroscopic modeling of turbulence in porous media. It concerns heat exchangers, nuclear reactors as well as urban flows, etc. The objective of this study is to describe in an homogenized way, by the mean of a spatial average operator, turbulent flows in a solid matrix. In addition to this first operator, the use of a statistical average operator permits to handle the pseudo-aleatory character of turbulence. The successive application of both operators allows us to derive the balance equations of the kind of flows under study. Two major issues are then highlighted, the modeling of dispersion induced by the solid matrix and the turbulence modeling at a macroscopic scale (Reynolds tensor and turbulent dispersion). To this aim, we lean on the local modeling of turbulence and more precisely on the k - {epsilon} RANS models. The methodology of dispersion study, derived thanks to the volume averaging theory, is extended to turbulent flows. Its application includes the simulation, at a microscopic scale, of turbulent flows within a representative elementary volume of the porous media. Applied to channel flows, this analysis shows that even within the turbulent regime, dispersion remains one of the dominating phenomena within the macro-scale modeling framework. A two-scale analysis of the flow allows us to understand the dominating role of the drag force in the kinetic energy transfers between scales. Transfers between the mean part and the turbulent part of the flow are formally derived. This description significantly improves our understanding of the issue of macroscopic modeling of turbulence and leads us to define the sub-filter production and the wake dissipation. A
International Nuclear Information System (INIS)
Laurence, D.
1997-01-01
The k-ε model and Reynolds stress transport model are set out in a few words. Limitations of models are shown, particularly for turbulence generation in the turbulent viscosity context, and, more generally, the uncertainties and miscellaneous changes made to the dissipation equation. The performances of models are then compared, using results of the three latest ERCOFTA/IAHR workshops. It is shown that algebraic constraints which can be derived exactly by assuming asymptotic limits (rapid distortion, homogeneous shear at infinite time, 2D turbulence) have inhibited a better tuning of the models for real life flow where these limits are not encountered. A more pragmatic approach could be taken by allowing the constants to be functions of invariant parameters. But these functions, making the models non-linear, can lead to bifurcations or instability. One essential parameter is the distance to the wall, which recent models have tried to eliminate, although this parameter appears indirectly through the Poisson equation for the fluctuating pressure. A possible indirect model is the elliptic relaxation. Progress was recently achieved in near-wall low Re modelling, but these advances do not always result in benefits to industry since only the 'wall function' approaches can be used in the high Re, 3D flows that we need to study. With the knowledge gained from near-wall modelling, it might be profitable to revisit the 'wall functions' devised 20 years ago. (author)
Presumed PDF modeling of microjet assisted CH4–H2/air turbulent flames
International Nuclear Information System (INIS)
Chouaieb, Sirine; Kriaa, Wassim; Mhiri, Hatem; Bournot, Philippe
2016-01-01
Highlights: • Microjet assisted CH 4 –H 2 /air turbulent flames are numerically investigated. • Temperature, species and soot are well predicted by the Presumed PDF model. • An inner flame is identified due to the microjet presence. • The addition of hydrogen to the microjet assisted flames enhances mixing. • Soot emission is reduced by 36% for a 10% enriched microjet assisted flame. - Abstract: The characteristics of microjet assisted CH 4 –H 2 /air flames in a turbulent mode are numerically investigated. Simulations are performed using the Computational Fluid Dynamics code Fluent. The Presumed PDF and the Discrete Ordinates models are considered respectively for combustion and radiation modeling. The k–ε Realizable model is adopted as a turbulence closure model. The Tesner model is used to calculate soot particle quantities. In the first part of this paper, the Presumed PDF model is compared to the Eddy Dissipation model and to slow chemistry combustion models from literature. Results show that the Presumed PDF model predicts correctly thermal and species fields, as well as soot formation. The effect of hydrogen enrichment on CH 4 /air confined flames under the addition of an air microjet is investigated in the second part of this work. The found results show that an inner flame was identified due to the air microjet for the CH 4 –H 2 /air flames. Moreover, the increase of hydrogen percentage in the fuel mixture leads to mixing enhancement and consequently to considerable soot emission reduction.
National Research Council Canada - National Science Library
Auvermann, Harry
2001-01-01
The objective of one portion of the Army Research Laboratory program on acoustic propagation on the battlefield is to develop an advanced method of accounting for the effects of anisotropic inhomogeneous turbulence...
International Nuclear Information System (INIS)
Thiele, R.; Ma, W.; Anglart, H.
2011-01-01
Despite many advances in computational fluid dynamics (CFD), heat transfer modeling and validation of code for liquid metal flows needs to be improved. This contribution aims to provide validation of several turbulence models implemented in OpenFOAM. 6 different low Reynolds number and 3 high Reynolds number turbulence models have been validated against experimental data for 3 different Reynolds numbers. The results show that most models are able to predict the temperature profile tendencies and that especially the k-ω-SST by Menter has good predictive capabilities. However, all turbulence models show deteriorating capabilities with decreasing Reynolds numbers. (author)
Numerical modeling of soot formation in a turbulent C2H4/air diffusion flame
Directory of Open Access Journals (Sweden)
Manedhar Reddy Busupally
2016-06-01
Full Text Available Soot formation in a lifted C2H4-Air turbulent diffusion flame is studied using two different paths for soot nucleation and oxidation; by a 2D axisymmetric RANS simulation using ANSYS FLUENT 15.0. The turbulence-chemistry interactions are modeled using two different approaches: steady laminar flamelet approach and flamelet-generated manifold. Chemical mechanism is represented by POLIMI to study the effect of species concentration on soot formation. P1 approximation is employed to approximate the radiative transfer equation into truncated series expansion in spherical harmonics while the weighted sum of gray gases is invoked to model the absorption coefficient while the soot model accounts for nucleation, coagulation, surface growth, and oxidation. The first route for nucleation considers acetylene concentration as a linear function of soot nucleation rate, whereas the second route considers two and three ring aromatic species as function of nucleation rate. Equilibrium-based and instantaneous approach has been used to estimate the OH concentration for soot oxidation. Lee and Fenimore-Jones soot oxidation models are studied to shed light on the effect of OH on soot oxidation. Moreover, the soot-radiation interactions are also included in terms of absorption coefficient of soot. Furthermore, the soot-turbulence interactions have been invoked using a temperature/mixture fraction-based single variable PDF. Both the turbulence-chemistry interaction models are able to accurately predict the flame liftoff height, and for accurate prediction of flame length, radiative heat loss should be accounted in an accurate way. The soot-turbulence interactions are found sensitive to the PDF used in present study.
Validation of unsteady flamelet models for non-premixed turbulent combustion with intermittency
International Nuclear Information System (INIS)
Bourlioux, A.; Volkov, O.
2003-01-01
Flamelets play an important role as subgrid models in large eddy simulations of turbulent flames: they are based on a one-dimensional steady asymptotic solution for the flame. The focus of the present study is to validate their use when unsteadiness and multidimensional effects are present, as to be expected for turbulent flows. To shortcut the prohibitively expansive step of solving the complete Navier-Stokes equations in the turbulent regime, a synthetic turbulent-like flow field is specified, which allows for extensive yet affordable simulations and analysis. The flow field consists of a simple steady horizontal shear with a time-periodic vertical sweep. Despite the simplicity of the flow field, the passive scalar response displays qualitatively many characteristics observed in experiments with fully turbulent flow, in particular, in terms of the strong departure from Gaussianity of its probability distribution function. The same set-up is utilized for the reactive case in order to generate challenging conditions to test the robustness of unsteady versions of the laminar flamelet models. We analyze the asymptotic behavior of the models for a large range of Damkoehler and Peclet numbers in the presence of intermittency and confirm for those demanding test-cases the good performance of the models that had been observed for less-demanding one-dimensional test-cases with smooth time behavior. In particular, the performance of the models is quite satisfactory in the intermediate regimes where neither the very fast nor the very slow chemistry asymptotic approximation would be appropriate. (author)
Varotsos, G. K.; Nistazakis, H. E.; Petkovic, M. I.; Djordjevic, G. T.; Tombras, G. S.
2017-11-01
Over the last years terrestrial free-space optical (FSO) communication systems have demonstrated an increasing scientific and commercial interest in response to the growing demands for ultra high bandwidth, cost-effective and secure wireless data transmissions. However, due the signal propagation through the atmosphere, the performance of such links depends strongly on the atmospheric conditions such as weather phenomena and turbulence effect. Additionally, their operation is affected significantly by the pointing errors effect which is caused by the misalignment of the optical beam between the transmitter and the receiver. In order to address this significant performance degradation, several statistical models have been proposed, while particular attention has been also given to diversity methods. Here, the turbulence-induced fading of the received optical signal irradiance is studied through the M (alaga) distribution, which is an accurate model suitable for weak to strong turbulence conditions and unifies most of the well-known, previously emerged models. Thus, taking into account the atmospheric turbulence conditions along with the pointing errors effect with nonzero boresight and the modulation technique that is used, we derive mathematical expressions for the estimation of the average bit error rate performance for SIMO FSO links. Finally, proper numerical results are given to verify our derived expressions and Monte Carlo simulations are also provided to further validate the accuracy of the analysis proposed and the obtained mathematical expressions.
Attempt to model the edge turbulence of a tokamak as a random superposition of eddies
Energy Technology Data Exchange (ETDEWEB)
Endler, M; Theimer, G; Weinlich, M; Carlson, A; Giannone, L.; Niedermeyer, H; Rudyj, A [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)
1993-12-31
Turbulence is considered to be the most likely origin of the anomalous transport in tokamaks. Although the main interest is focussed on the bulk plasma, transport in the scrape-off layer is very important for reactor design. For this reason extensive experimental investigations of the edge turbulence were performed on the ASDEX divertor tokamak. Langmuir probe arrays were used in the floating potential mode and in the ion saturation mode to measure the poloidal distribution of density and plasma potential fluctuations neglecting temperature fluctuations. Density fluctuations integrated radially over the boundary layer were derived from H{sub {alpha}}-measurements. Data from up to 16 channels were sampled with a frequency of 1 MHz during time windows of 1 s. Often one parameter like the plasma density or the radial probe position were scanned during this interval. It is impossible to derive physical mechanisms directly from these statistical observations. We draw general conclusions about the physics involved from the entity of observations and propose a set of basic effects to include in a theoretical model. Being still unable to solve the complex nonlinear problem of the fully developed turbulence exactly we attempt to describe the turbulence with a simple non-self-consistent statistical model. This allows to derive plausible physical interpretations of several features of the statistical functions and may be used as a guide-line for the development of a manageable theoretical model. (author) 6 refs., 3 figs.
Direct numerical simulation of turbulent combustion: fundamental insights towards predictive models
International Nuclear Information System (INIS)
Hawkes, Evatt R; Sankaran, Ramanan; Sutherland, James C; Chen, Jacqueline H
2005-01-01
The advancement of our basic understanding of turbulent combustion processes and the development of physics-based predictive tools for design and optimization of the next generation of combustion devices are strategic areas of research for the development of a secure, environmentally sound energy infrastructure. In direct numerical simulation (DNS) approaches, all scales of the reacting flow problem are resolved. However, because of the magnitude of this task, DNS of practical high Reynolds number turbulent hydrocarbon flames is out of reach of even terascale computing. For the foreseeable future, the approach to this complex multi-scale problem is to employ distinct but synergistic approaches to tackle smaller sub-ranges of the complete problem, which then require models for the small scale interactions. With full access to the spatially and temporally resolved fields, DNS can play a major role in the development of these models and in the development of fundamental understanding of the micro-physics of turbulence-chemistry interactions. Two examples, from simulations performed at terascale Office of Science computing facilities, are presented to illustrate the role of DNS in delivering new insights to advance the predictive capability of models. Results are presented from new three-dimensional DNS with detailed chemistry of turbulent non-premixed jet flames, revealing the differences between mixing of passive and reacting scalars, and determining an optimal lower dimensional representation of the full thermochemical state space
Prediction of stably stratified homogeneous shear flows with second-order turbulence models
International Nuclear Information System (INIS)
Pereira, J C F; Rocha, J M P
2010-01-01
The present study investigated the role of pressure-correlation second-order turbulence modelling schemes on the predicted behaviour of stably stratified homogeneous vertical-sheared turbulence. The pressure-correlation terms were modelled with a nonlinear formulation (Craft 1991), which was compared with a linear pressure-strain model and the 'isotropization of production' model for the pressure-scalar correlation. Two additional modelling issues were investigated: the influence of the buoyancy term in the kinetic energy dissipation rate equation and the time scale in the thermal production term in the scalar variance dissipation equation. The predicted effects of increasing the Richardson number on turbulence characteristics were compared against a comprehensive set of direct numerical simulation databases. The linear models provide a broadly satisfactory description of the major effects of the Richardson number on stratified shear flow. The buoyancy term in the dissipation equation of the turbulent kinetic energy generates excessively low levels of dissipation. For moderate and large Richardson numbers, the term yields unrealistic linear oscillations in the shear and buoyancy production terms, and therefore should be dropped in this flow (or at least their coefficient c ε3 should be substantially reduced from its standard value). The mechanical dissipation time scale provides marginal improvements in comparison to the scalar time scale in the production. The observed inaccuracy of the linear model in predicting the magnitude of the effects on the velocity anisotropy was demonstrated to be attributed mainly to the defective behaviour of the pressure-correlation model, especially for stronger stratification. The turbulence closure embodying a nonlinear formulation for the pressure-correlations and specific versions of the dissipation equations failed to predict the tendency of the flow to anisotropy with increasing stratification. By isolating the effects of the
A simple dynamic subgrid-scale model for LES of particle-laden turbulence
Park, George Ilhwan; Bassenne, Maxime; Urzay, Javier; Moin, Parviz
2017-04-01
In this study, a dynamic model for large-eddy simulations is proposed in order to describe the motion of small inertial particles in turbulent flows. The model is simple, involves no significant computational overhead, contains no adjustable parameters, and is flexible enough to be deployed in any type of flow solvers and grids, including unstructured setups. The approach is based on the use of elliptic differential filters to model the subgrid-scale velocity. The only model parameter, which is related to the nominal filter width, is determined dynamically by imposing consistency constraints on the estimated subgrid energetics. The performance of the model is tested in large-eddy simulations of homogeneous-isotropic turbulence laden with particles, where improved agreement with direct numerical simulation results is observed in the dispersed-phase statistics, including particle acceleration, local carrier-phase velocity, and preferential-concentration metrics.
A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization
DEFF Research Database (Denmark)
Luo, Hao; Lu, Bona; Zhang, Jingyuan
2017-01-01
The EMMS/bubbling drag model takes the effects of meso-scale structures (i.e. bubbles) into modeling of drag coefficient and thus improves coarse-grid simulation of bubbling and turbulent fluidized beds. However, its dependence on grid size has not been fully investigated. In this article, we adopt...... a two-step scheme to extend the EMMS/bubbling model to the sub-grid level. Thus the heterogeneity index, HD, which accounts for the hydrodynamic disparity between homogeneous and heterogeneous fluidization, can be correlated as a function of both local voidage and slip velocity. Simulations over...... a periodic domain show the new drag model is less sensitive to grid size because of the additional dependence on local slip velocity. When applying the new drag model to simulations of realistic bubbling and turbulent fluidized beds, we find grid-independent results are easier to obtain for high...
Comparison of turbulence models for numerical calculation of airflow in an annex 20 room
DEFF Research Database (Denmark)
Voigt, Lars P. K.
2000-01-01
The report deals with 2-D numerical calculation of room airflow in an isothermal annex 20 room. The report documents the ability of the flow solver EllipSys2D to give results in good agreement with measurements for the specified test case. The flow solver is a finite volume code solving the Reyno.......Applying theory for a two-dimensional wall jet, measurements are compared with calculated values of the turbulent kinetic energy....... the Reynolds Averaged Navier Stokes equations.Five two-equation turbulence models were tested. These are the standard k-epsilon model, the low-Reynolds number k-epison model by Launder & Sharma, the k-omega model by Wilcox, the k-omega baseline (BSL) model by Menter and the k-omega Shear Stress Transport (SST...
Klewicki, J C; Chini, G P; Gibson, J F
2017-03-13
Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier-Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Klewicki, J. C.; Chini, G. P.; Gibson, J. F.
2017-01-01
Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier–Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167585
Energy Technology Data Exchange (ETDEWEB)
Schumann, U
1973-10-01
Thesis. Submitted to Technische Hochschule, Karlsruhe (West Germany). A numerical difference scheme is described to simulate threedimensional, time- dependent, turbulent flows of incompressible fluids at high Reynolds numbers in a plane channel and in concertric annuli. Starting from the results of Deardorff, the NavierStokes equations, averaged over grid volumes, are integrated. For description of the subgrid scale motion a novel model has been developed which takes into account strongly inhomogeneous turbulence and grid volumes of unequal side lengths. The premises used in the model are described and discussed. Stability criteria are established for this method and for similar difference schemes. For computation of the pressure field the appropriate Poisson's equation is solved accurately, except for rounding errors, by Fast Fourier Transform. The procedure implemented in the TURBIT-1 program is used to simulate turbulent flows in a plane channel and an annulus of 5: 1 ratio of radii. For both types of flow, different cases are realized with a maximum number of grid volumes of 65536. For rather small grid volume numbers the numerical results are in good agreement with experimental values. Especially the velocity profile and the mean velocity fluctuations are computed with significantly better accuracy than in earlier, direct simulations. The energy --length-scale model and the pressurestrain correlation are used as examples to show that the method may be used successfully to evaluate the parameters of turbulence models. Earlier results are reviewed and proposals for future research are made. (auth)
Scaling and interaction of self-similar modes in models of high Reynolds number wall turbulence.
Sharma, A S; Moarref, R; McKeon, B J
2017-03-13
Previous work has established the usefulness of the resolvent operator that maps the terms nonlinear in the turbulent fluctuations to the fluctuations themselves. Further work has described the self-similarity of the resolvent arising from that of the mean velocity profile. The orthogonal modes provided by the resolvent analysis describe the wall-normal coherence of the motions and inherit that self-similarity. In this contribution, we present the implications of this similarity for the nonlinear interaction between modes with different scales and wall-normal locations. By considering the nonlinear interactions between modes, it is shown that much of the turbulence scaling behaviour in the logarithmic region can be determined from a single arbitrarily chosen reference plane. Thus, the geometric scaling of the modes is impressed upon the nonlinear interaction between modes. Implications of these observations on the self-sustaining mechanisms of wall turbulence, modelling and simulation are outlined.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Numerical Study of Wavy Film Flow on Vertical Plate Using Different Turbulent Models
International Nuclear Information System (INIS)
Min, June Kee; Park, Il Seouk
2014-01-01
Film flows applied to shell-and-tube heat exchangers in various industrial fields have been studied for a long time. One boundary of the film flow interfaces with a fixed wall, and the other boundary interfaces with a gaseous region. Thus, the flows become so unstable that wavy behaviors are generated on free surfaces as the film Reynolds number increases. First, high-amplitude solitary waves are detected in a low Reynolds number laminar region; then, the waves transit to a low-amplitude, high frequency ripple in a turbulent region. Film thickness is the most significant factor governing heat transfer. Since the wave accompanied in the film flow results in temporal and spatial variations in film thickness, it can be of importance for numerically predicting the film's wavy behavior. In this study, various turbulent models are applied for predicting low-amplitude ripple flows in turbulent regions. The results are compared with existing experimental results, and finally, the applied turbulent models are appraised in from the viewpoint of wavy behaviors
International Nuclear Information System (INIS)
Wang Huhu; Lee Saya; Hassan, Yassin A.; Ruggles, Arthur E.
2014-01-01
The design of next generation (Gen. IV) high-temperature nuclear reactors including gas-cooled and sodium-cooled ones involves massive numerical works especially the Computational Fluid Dynamics (CFD) simulations. The high cost of large-scale experiments and the inherent uncertainties existing in the turbulent models and wall functions of any CFD codes solving Reynolds-averaged Navier-Stokes (RANS) equations necessitate the high-spacial experimental data sets for benchmarking the simulation results. In Gen. IV conceptual reactors, the high- temperature flows mix in the upper plenum before entering the secondary cooling system. The mixing condition should be accurately estimated and fully understood as it is related to the thermal stresses induced in the upper plenum and the magnitudes of output power oscillations due to any changes of primary coolant temperature. The purpose of this study is to use Laser Doppler Anemometry (LDA) technique to measure the flow field of two submerged parallel jets issuing from two rectangular channels. The LDA data sets can be used to validate the corresponding simulation results. The jets studied in this work were at room temperature. The turbulent characteristics including the distributions of mean velocities, turbulence intensities, Reynolds stresses were studied. Uncertainty analysis was also performed to study the errors involved in this experiment. The experimental results in this work are valid for benchmarking any steady-state numerical simulations using turbulence models to solve RANS equations. (author)
Numerical Study of Wavy Film Flow on Vertical Plate Using Different Turbulent Models
Energy Technology Data Exchange (ETDEWEB)
Min, June Kee [Pusan National University, Busan (Korea, Republic of); Park, Il Seouk [Kyungpook National University, Daegu (Korea, Republic of)
2014-05-15
Film flows applied to shell-and-tube heat exchangers in various industrial fields have been studied for a long time. One boundary of the film flow interfaces with a fixed wall, and the other boundary interfaces with a gaseous region. Thus, the flows become so unstable that wavy behaviors are generated on free surfaces as the film Reynolds number increases. First, high-amplitude solitary waves are detected in a low Reynolds number laminar region; then, the waves transit to a low-amplitude, high frequency ripple in a turbulent region. Film thickness is the most significant factor governing heat transfer. Since the wave accompanied in the film flow results in temporal and spatial variations in film thickness, it can be of importance for numerically predicting the film's wavy behavior. In this study, various turbulent models are applied for predicting low-amplitude ripple flows in turbulent regions. The results are compared with existing experimental results, and finally, the applied turbulent models are appraised in from the viewpoint of wavy behaviors.
A stochastic model of particle dispersion in turbulent reacting gaseous environments
Sun, Guangyuan; Lignell, David; Hewson, John
2012-11-01
We are performing fundamental studies of dispersive transport and time-temperature histories of Lagrangian particles in turbulent reacting flows. The particle-flow statistics including the full particle temperature PDF are of interest. A challenge in modeling particle motions is the accurate prediction of fine-scale aerosol-fluid interactions. A computationally affordable stochastic modeling approach, one-dimensional turbulence (ODT), is a proven method that captures the full range of length and time scales, and provides detailed statistics of fine-scale turbulent-particle mixing and transport. Limited results of particle transport in ODT have been reported in non-reacting flow. Here, we extend ODT to particle transport in reacting flow. The results of particle transport in three flow configurations are presented: channel flow, homogeneous isotropic turbulence, and jet flames. We investigate the functional dependence of the statistics of particle-flow interactions including (1) parametric study with varying temperatures, Reynolds numbers, and particle Stokes numbers; (2) particle temperature histories and PDFs; (3) time scale and the sensitivity of initial and boundary conditions. Flow statistics are compared to both experimental measurements and DNS data.
Generalisation of two-layer turbulent model for passive cooling in a channel
International Nuclear Information System (INIS)
Bennacer, R.; Hammami, T.; Mohamad, A.A.; Beji, H.
2003-01-01
Turbulent natural convection still under improvement and no perfect compromise exist. The near wall region modelisation poses numerical difficulties and current modeling are either expensive or lack universality. Uncertainness in evaluating the good heat transfer rate can be catastrophically in causing local overheat and materials destruction which can be of heavy consequence as cooling nuclear component (rodes). Using the recent DNS done on natural convection flow in an infinite channel differentially heated for (10 4 6 ) a scaling analysis is developed and a one-equation near-wall turbulence model is deduced (inner layer). The inner model is coupled with a Low Reynolds Model (LRM) in the outer region (second layer) and applied to calculate natural flow for different Ra numbers. It yields good performance, computation time reduction and much better heat transfer prediction compared to the diffusive Jones Launder LRM. The efficiency is tested in one-dimensional and two-dimensional case. (author)
The effect of turbulent mixing models on the predictions of subchannel codes
International Nuclear Information System (INIS)
Tapucu, A.; Teyssedou, A.; Tye, P.; Troche, N.
1994-01-01
In this paper, the predictions of the COBRA-IV and ASSERT-4 subchannel codes have been compared with experimental data on void fraction, mass flow rate, and pressure drop obtained for two interconnected subchannels. COBRA-IV is based on a one-dimensional separated flow model with the turbulent intersubchannel mixing formulated as an extension of the single-phase mixing model, i.e. fluctuating equal mass exchange. ASSERT-4 is based on a drift flux model with the turbulent mixing modelled by assuming an exchange of equal volumes with different densities thus allowing a net fluctuating transverse mass flux from one subchannel to the other. This feature is implemented in the constitutive relationship for the relative velocity required by the conservation equations. It is observed that the predictions of ASSERT-4 follow the experimental trends better than COBRA-IV; therefore the approach of equal volume exchange constitutes an improvement over that of the equal mass exchange. ((orig.))
NASA Trapezoidal Wing Simulation Using Stress-w and One- and Two-Equation Turbulence Models
Rodio, J. J.; Xiao, X; Hassan, H. A.; Rumsey, C. L.
2014-01-01
The Wilcox 2006 stress-omega model (also referred to as WilcoxRSM-w2006) has been implemented in the NASA Langley code CFL3D and used to study a variety of 2-D and 3-D configurations. It predicted a variety of basic cases reasonably well, including secondary flow in a supersonic rectangular duct. One- and two-equation turbulence models that employ the Boussinesq constitutive relation were unable to predict this secondary flow accurately because it is driven by normal turbulent stress differences. For the NASA trapezoidal wing at high angles of attack, the WilcoxRSM-w2006 model predicted lower maximum lift than experiment, similar to results of a two-equation model.
Directory of Open Access Journals (Sweden)
Wenrui Huang
2010-03-01
Full Text Available This paper presents an improvement of the Mellor and Yamada's 2nd order turbulence model in the Princeton Ocean Model (POM for better predictions of vertical stratifications of salinity in estuaries. The model was evaluated in the strongly stratified estuary, Apalachicola River, Florida, USA. The three-dimensional hydrodynamic model was applied to study the stratified flow and salinity intrusion in the estuary in response to tide, wind, and buoyancy forces. Model tests indicate that model predictions over estimate the stratification when using the default turbulent parameters. Analytic studies of density-induced and wind-induced flows indicate that accurate estimation of vertical eddy viscosity plays an important role in describing vertical profiles. Initial model revision experiments show that the traditional approach of modifying empirical constants in the turbulence model leads to numerical instability. In order to improve the performance of the turbulence model while maintaining numerical stability, a stratification factor was introduced to allow adjustment of the vertical turbulent eddy viscosity and diffusivity. Sensitivity studies indicate that the stratification factor, ranging from 1.0 to 1.2, does not cause numerical instability in Apalachicola River. Model simulations show that increasing the turbulent eddy viscosity by a stratification factor of 1.12 results in an optimal agreement between model predictions and observations in the case study presented in this study. Using the proposed stratification factor provides a useful way for coastal modelers to improve the turbulence model performance in predicting vertical turbulent mixing in stratified estuaries and coastal waters.
The relationship between a deformation-based eddy parameterization and the LANS-α turbulence model
Bachman, Scott D.; Anstey, James A.; Zanna, Laure
2018-06-01
A recent class of ocean eddy parameterizations proposed by Porta Mana and Zanna (2014) and Anstey and Zanna (2017) modeled the large-scale flow as a non-Newtonian fluid whose subgridscale eddy stress is a nonlinear function of the deformation. This idea, while largely new to ocean modeling, has a history in turbulence modeling dating at least back to Rivlin (1957). The new class of parameterizations results in equations that resemble the Lagrangian-averaged Navier-Stokes-α model (LANS-α, e.g., Holm et al., 1998a). In this note we employ basic tensor mathematics to highlight the similarities between these turbulence models using component-free notation. We extend the Anstey and Zanna (2017) parameterization, which was originally presented in 2D, to 3D, and derive variants of this closure that arise when the full non-Newtonian stress tensor is used. Despite the mathematical similarities between the non-Newtonian and LANS-α models which might provide insight into numerical implementation, the input and dissipation of kinetic energy between these two turbulent models differ.
A model for the two-point velocity correlation function in turbulent channel flow
International Nuclear Information System (INIS)
Sahay, A.; Sreenivasan, K.R.
1996-01-01
A relatively simple analytical expression is presented to approximate the equal-time, two-point, double-velocity correlation function in turbulent channel flow. To assess the accuracy of the model, we perform the spectral decomposition of the integral operator having the model correlation function as its kernel. Comparisons of the empirical eigenvalues and eigenfunctions with those constructed from direct numerical simulations data show good agreement. copyright 1996 American Institute of Physics
Improved Modeling of Finite-Rate Turbulent Combustion Processes in Research Combustors
VanOverbeke, Thomas J.
1998-01-01
The objective of this thesis is to further develop and test a stochastic model of turbulent combustion in recirculating flows. There is a requirement to increase the accuracy of multi-dimensional combustion predictions. As turbulence affects reaction rates, this interaction must be more accurately evaluated. In this work a more physically correct way of handling the interaction of turbulence on combustion is further developed and tested. As turbulence involves randomness, stochastic modeling is used. Averaged values such as temperature and species concentration are found by integrating the probability density function (pdf) over the range of the scalar. The model in this work does not assume the pdf type, but solves for the evolution of the pdf using the Monte Carlo solution technique. The model is further developed by including a more robust reaction solver, by using accurate thermodynamics and by more accurate transport elements. The stochastic method is used with Semi-Implicit Method for Pressure-Linked Equations. The SIMPLE method is used to solve for velocity, pressure, turbulent kinetic energy and dissipation. The pdf solver solves for temperature and species concentration. Thus, the method is partially familiar to combustor engineers. The method is compared to benchmark experimental data and baseline calculations. The baseline method was tested on isothermal flows, evaporating sprays and combusting sprays. Pdf and baseline predictions were performed for three diffusion flames and one premixed flame. The pdf method predicted lower combustion rates than the baseline method in agreement with the data, except for the premixed flame. The baseline and stochastic predictions bounded the experimental data for the premixed flame. The use of a continuous mixing model or relax to mean mixing model had little effect on the prediction of average temperature. Two grids were used in a hydrogen diffusion flame simulation. Grid density did not effect the predictions except
Investigation of turbulence models with compressibility corrections for hypersonic boundary flows
Directory of Open Access Journals (Sweden)
Han Tang
2015-12-01
Full Text Available The applications of pressure work, pressure-dilatation, and dilatation-dissipation (Sarkar, Zeman, and Wilcox models to hypersonic boundary flows are investigated. The flat plate boundary layer flows of Mach number 5–11 and shock wave/boundary layer interactions of compression corners are simulated numerically. For the flat plate boundary layer flows, original turbulence models overestimate the heat flux with Mach number high up to 10, and compressibility corrections applied to turbulence models lead to a decrease in friction coefficients and heating rates. The pressure work and pressure-dilatation models yield the better results. Among the three dilatation-dissipation models, Sarkar and Wilcox corrections present larger deviations from the experiment measurement, while Zeman correction can achieve acceptable results. For hypersonic compression corner flows, due to the evident increase of turbulence Mach number in separation zone, compressibility corrections make the separation areas larger, thus cannot improve the accuracy of calculated results. It is unreasonable that compressibility corrections take effect in separation zone. Density-corrected model by Catris and Aupoix is suitable for shock wave/boundary layer interaction flows which can improve the simulation accuracy of the peak heating and have a little influence on separation zone.
Effect of LES models on the entrainment of a passive scalar in a turbulent planar jet
Chambel Lopes, Diogo; da Silva, Carlos; Reis, Ricardo; Raman, Venkat
2011-11-01
Direct and large-eddy simulations (DNS/LES) of turbulent planar jets are used to study the role of subgrid-scale models in the integral characteristics of the passive scalar mixing in a jet. Specifically the effect of subgrid-scale models in the jet spreading rate and centreline passive scalar decay rates are assessed and compared. The modelling of the subgrid-scale fluxes is particularly challenging in the turbulent/nonturbulent (T/NT) region that divides the two regions in the jet flow: the outer region where the flow is irrotational and the inner region where the flow is turbulent. It has been shown that important Reynolds stresses exist near the T/NT interface and that these stresses determine in part the mixing and combustion rates in jets. The subgrid scales of motion near the T/NT interface are far from equilibrium and contain an important fraction of the total kinetic energy. Model constants used in several subgrid-scale models such as the Smagorinsky and the gradient models need to be corrected near the jet edge. The procedure used to obtain the dynamic Smagorinsky constant is not able to cope with the intermittent nature of this region.
Bakosi, J.; Franzese, P.; Boybeyi, Z.
2007-11-01
Dispersion of a passive scalar from concentrated sources in fully developed turbulent channel flow is studied with the probability density function (PDF) method. The joint PDF of velocity, turbulent frequency and scalar concentration is represented by a large number of Lagrangian particles. A stochastic near-wall PDF model combines the generalized Langevin model of Haworth and Pope [Phys. Fluids 29, 387 (1986)] with Durbin's [J. Fluid Mech. 249, 465 (1993)] method of elliptic relaxation to provide a mathematically exact treatment of convective and viscous transport with a nonlocal representation of the near-wall Reynolds stress anisotropy. The presence of walls is incorporated through the imposition of no-slip and impermeability conditions on particles without the use of damping or wall-functions. Information on the turbulent time scale is supplied by the gamma-distribution model of van Slooten et al. [Phys. Fluids 10, 246 (1998)]. Two different micromixing models are compared that incorporate the effect of small scale mixing on the transported scalar: the widely used interaction by exchange with the mean and the interaction by exchange with the conditional mean model. Single-point velocity and concentration statistics are compared to direct numerical simulation and experimental data at Reτ=1080 based on the friction velocity and the channel half width. The joint model accurately reproduces a wide variety of conditional and unconditional statistics in both physical and composition space.
Directory of Open Access Journals (Sweden)
Tao Zhi
2016-10-01
Full Text Available A variety of turbulence models were used to perform numerical simulations of heat transfer for hydrocarbon fuel flowing upward and downward through uniformly heated vertical pipes at supercritical pressure. Inlet temperatures varied from 373 K to 663 K, with heat flux ranging from 300 kW/m2 to 550 kW/m2. Comparative analyses between predicted and experimental results were used to evaluate the ability of turbulence models to respond to variable thermophysical properties of hydrocarbon fuel at supercritical pressure. It was found that the prediction performance of turbulence models is mainly determined by the damping function, which enables them to respond differently to local flow conditions. Although prediction accuracy for experimental results varied from condition to condition, the shear stress transport (SST and launder and sharma models performed better than all other models used in the study. For very small buoyancy-influenced runs, the thermal-induced acceleration due to variations in density lead to the impairment of heat transfer occurring in the vicinity of pseudo-critical points, and heat transfer was enhanced at higher temperatures through the combined action of four thermophysical properties: density, viscosity, thermal conductivity and specific heat. For very large buoyancy-influenced runs, the thermal-induced acceleration effect was over predicted by the LS and AB models.
A turbulence model for large interfaces in high Reynolds two-phase CFD
International Nuclear Information System (INIS)
Coste, P.; Laviéville, J.
2015-01-01
Highlights: • Two-phase CFD commonly involves interfaces much larger than the computational cells. • A two-phase turbulence model is developed to better take them into account. • It solves k–epsilon transport equations in each phase. • The special treatments and transfer terms at large interfaces are described. • Validation cases are presented. - Abstract: A model for two-phase (six-equation) CFD modelling of turbulence is presented, for the regions of the flow where the liquid–gas interface takes place on length scales which are much larger than the typical computational cell size. In the other regions of the flow, the liquid or gas volume fractions range from 0 to 1. Heat and mass transfer, compressibility of the fluids, are included in the system, which is used at high Reynolds numbers in large scale industrial calculations. In this context, a model based on k and ε transport equations in each phase was chosen. The paper describes the model, with a focus on the large interfaces, which require special treatments and transfer terms between the phases, including some approaches inspired from wall functions. The validation of the model is based on high Reynolds number experiments with turbulent quantities measurements of a liquid jet impinging a free surface and an air water stratified flow. A steam–water stratified condensing flow experiment is also used for an indirect validation in the case of heat and mass transfer
Global MHD Modelling of the ISM - From large towards small scale turbulence
de Avillez, M.; Breitschwerdt, D.
2005-06-01
Dealing numerically with the turbulent nature and non-linearity of the physical processes involved in the ISM requires the use of sophisticated numerical schemes coupled to HD and MHD mathematical models. SNe are the main drivers of the interstellar turbulence by transferring kinetic energy into the system. This energy is dissipated by shocks (which is more efficient) and by molecular viscosity. We carried out adaptive mesh refinement simulations (with a finest resolution of 0.625 pc) of the turbulent ISM embedded in a magnetic field with mean field components of 2 and 3 μG. The time scale of our run was 400 Myr, sufficiently long to avoid memory effects of the initial setup, and to allow for a global dynamical equilibrium to be reached in case of a constant energy input rate. It is found that the longitudinal and transverse turbulent length scales have a time averaged (over a period of 50 Myr) ratio of 0.52-0.6, almost similar to the one expected for isotropic homogeneous turbulence. The mean characteristic size of the larger eddies is found to be ˜ 75 pc in both runs. In order to check the simulations against observations, we monitored the OVI and HI column densities within a superbubble created by the explosions of 19 SNe having masses and velocities of the stars that exploded in vicinity of the Sun generating the Local Bubble. The model reproduces the FUSE absorption measurements towards 25 white dwarfs of the OVI column density as function of distance and of N(HI). In particular for lines of sight with lengths smaller than 120 pc it is found that there is no correlation between N(OVI) and N(HI).
Fast Propagation in Fluid Transport Models with Evolution of Turbulence Saturation
Energy Technology Data Exchange (ETDEWEB)
Lopez-Bruna, D.
2012-07-01
This report compiles and extends two works on models that reproduce the experimental facts of non local transport and pulse propagation in magnetically confined fusion plasmas. The works are based on fluid transport models, originally designed to explain the formation of edge or internal transport barriers, that include fast evolution equations for the particle and heat fluxes. The heating of the plasma core in response to a sudden edge cooling or the propagation of turbulent fronts around transport barriers are a consequence of the competing roles of linear drive and non-linear reduction of the turbulent fluxes. Possibilities to use the models to interpret TJ-II plasmas are discussed. (Author) 62 refs.
Further improvements of a new model for turbulent convection in stars
Canuto, V. M.; Mazzitelli, I.
1992-01-01
The effects of including a variable molecular weight and of using the newest opacities of Rogers and Iglesias (1991) as inputs to a recent model by Canuto and Mazzitelli (1991) for stellar turbulent convection are studied. Solar evolutionary tracks are used to conclude that the the original model for turbulence with mixing length Lambda = z, Giuli's variable Q unequal to 1 and the new opacities yields a fit to solar T(eff) within 0.5 percent. A formulation of Lambda is proposed that extends the purely nonlocal Lambda = z expression to include local effects. A new expression for Lambda is obtained which generalizes both the mixing length theory (MLT) phenomenological expression for Lambda as well as the model Lambda = z. It is argued that the MLT should now be abandoned.
Fast Propagation in Fluid Transport Models with Evolution of Turbulence Saturation
International Nuclear Information System (INIS)
Lopez-Bruna, D.
2012-01-01
This report compiles and extends two works on models that reproduce the experimental facts of non local transport and pulse propagation in magnetically confined fusion plasmas. The works are based on fluid transport models, originally designed to explain the formation of edge or internal transport barriers, that include fast evolution equations for the particle and heat fluxes. The heating of the plasma core in response to a sudden edge cooling or the propagation of turbulent fronts around transport barriers are a consequence of the competing roles of linear drive and non-linear reduction of the turbulent fluxes. Possibilities to use the models to interpret TJ-II plasmas are discussed. (Author) 62 refs.
Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
International Nuclear Information System (INIS)
Ling, Julia; Kurzawski, Andrew; Templeton, Jeremy
2016-01-01
There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property. Furthermore, the Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.
Knobloch, Leanne K; Knobloch-Fedders, Lynne M; Yorgason, Jeremy B; Ebata, Aaron T; McGlaughlin, Patricia C
2017-08-01
This study drew on the relational turbulence model to investigate how the interpersonal dynamics of military couples predict parents' reports of the reintegration difficulty of military children upon homecoming after deployment. Longitudinal data were collected from 118 military couples once per month for 3 consecutive months after reunion. Military couples reported on their depressive symptoms, characteristics of their romantic relationship, and the reintegration difficulty of their oldest child. Results of dyadic growth curve models indicated that the mean levels of parents' depressive symptoms (H1), relationship uncertainty (H2), and interference from a partner (H3) were positively associated with parents' reports of military children's reintegration difficulty. These findings suggest that the relational turbulence model has utility for illuminating the reintegration difficulty of military children during the postdeployment transition. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Effect Of Turbulence Modelling In Numerical Analysis Of Melting Process In An Induction Furnace
Directory of Open Access Journals (Sweden)
Buliński P.
2015-09-01
Full Text Available In this paper, the velocity field and turbulence effects that occur inside a crucible of a typical induction furnace were investigated. In the first part of this work, a free surface shape of the liquid metal was measured in a ceramic crucible. Then a numerical model of aluminium melting process was developed. It took into account coupling of electromagnetic and thermofluid fields that was performed using commercial codes. In the next step, the sensitivity analysis of turbulence modelling in the liquid domain was performed. The obtained numerical results were compared with the measurement data. The performed analysis can be treated as a preliminary approach for more complex mathematical modelling for the melting process optimisation in crucible induction furnaces of different types.
Higher-order RANS turbulence models for separated flows
National Aeronautics and Space Administration — Higher-order Reynolds-averaged Navier-Stokes (RANS) models are developed to overcome the shortcomings of second-moment RANS models in predicting separated flows....
Equilibrium-eulerian les model for turbulent poly-dispersed particle-laden flow
Icardi, Matteo
2013-04-01
An efficient Eulerian method for poly-dispersed particles in turbulent flows is implemented, verified and validated for a channel flow. The approach couples a mixture model with a quadrature-based moment method for the particle size distribution in a LES framework, augmented by an approximate deconvolution method to reconstructs the unfiltered velocity. The particle velocity conditioned on particle size is calculated with an equilibrium model, valid for low Stokes numbers. A population balance equation is solved with the direct quadrature method of moments, that efficiently represents the continuous particle size distribution. In this first study particulate processes are not considered and the capability of the model to properly describe particle transport is investigated for a turbulent channel flow. First, single-phase LES are validated through comparison with DNS. Then predictions for the two-phase system, with particles characterised by Stokes numbers ranging from 0.2 to 5, are compared with Lagrangian DNS in terms of particle velocity and accumulation at the walls. Since this phenomenon (turbophoresis) is driven by turbulent fluctuations and depends strongly on the particle Stokes number, the approximation of the particle size distribution, the choice of the sub-grid scale model and the use of an approximate deconvolution method are important to obtain good results. Our method can be considered as a fast and efficient alternative to classical Lagrangian methods or Eulerian multi-fluid models in which poly-dispersity is usually neglected.
A CFD model for particle dispersion in turbulent boundary layer flows
International Nuclear Information System (INIS)
Dehbi, A.
2008-01-01
In Lagrangian particle dispersion modeling, the assumption that turbulence is isotropic everywhere yields erroneous predictions of particle deposition rates on walls, even in simple geometries. In this investigation, the stochastic particle tracking model in Fluent 6.2 is modified to include a better treatment of particle-turbulence interactions close to walls where anisotropic effects are significant. The fluid rms velocities in the boundary layer are computed using fits of DNS data obtained in channel flow. The new model is tested against correlations for particle removal rates in turbulent pipe flow and 90 o bends. Comparison with experimental data is much better than with the default model. The model is also assessed against data of particle removal in the human mouth-throat geometry where the flow is decidedly three-dimensional. Here, the agreement with the data is reasonable, especially in view of the fact that the DNS fits used are those of channel flows, for lack of better alternatives. The CFD Best Practice Guidelines are followed to a large extent, in particular by using multiple grid resolutions and at least second order discretization schemes
Equilibrium-eulerian les model for turbulent poly-dispersed particle-laden flow
Icardi, Matteo; Marchisio, Daniele Luca; Chidambaram, Narayanan; Fox, Rodney O.
2013-01-01
An efficient Eulerian method for poly-dispersed particles in turbulent flows is implemented, verified and validated for a channel flow. The approach couples a mixture model with a quadrature-based moment method for the particle size distribution in a LES framework, augmented by an approximate deconvolution method to reconstructs the unfiltered velocity. The particle velocity conditioned on particle size is calculated with an equilibrium model, valid for low Stokes numbers. A population balance equation is solved with the direct quadrature method of moments, that efficiently represents the continuous particle size distribution. In this first study particulate processes are not considered and the capability of the model to properly describe particle transport is investigated for a turbulent channel flow. First, single-phase LES are validated through comparison with DNS. Then predictions for the two-phase system, with particles characterised by Stokes numbers ranging from 0.2 to 5, are compared with Lagrangian DNS in terms of particle velocity and accumulation at the walls. Since this phenomenon (turbophoresis) is driven by turbulent fluctuations and depends strongly on the particle Stokes number, the approximation of the particle size distribution, the choice of the sub-grid scale model and the use of an approximate deconvolution method are important to obtain good results. Our method can be considered as a fast and efficient alternative to classical Lagrangian methods or Eulerian multi-fluid models in which poly-dispersity is usually neglected.
Directory of Open Access Journals (Sweden)
Adolfo Ribeiro
2015-03-01
Full Text Available Planets and stars are often capable of generating their own magnetic fields. This occurs through dynamo processes occurring via turbulent convective stirring of their respective molten metal-rich cores and plasma-based convection zones. Present-day numerical models of planetary and stellar dynamo action are not carried out using fluids properties that mimic the essential properties of liquid metals and plasmas (e.g., using fluids with thermal Prandtl numbers Pr < 1 and magnetic Prandtl numbers Pm ≪ 1. Metal dynamo simulations should become possible, though, within the next decade. In order then to understand the turbulent convection phenomena occurring in geophysical or astrophysical fluids and next-generation numerical models thereof, we present here canonical, end-member examples of thermally-driven convection in liquid gallium, first with no magnetic field or rotation present, then with the inclusion of a background magnetic field and then in a rotating system (without an imposed magnetic field. In doing so, we demonstrate the essential behaviors of convecting liquid metals that are necessary for building, as well as benchmarking, accurate, robust models of magnetohydrodynamic processes in Pm ≪ Pr < 1 geophysical and astrophysical systems. Our study results also show strong agreement between laboratory and numerical experiments, demonstrating that high resolution numerical simulations can be made capable of modeling the liquid metal convective turbulence needed in accurate next-generation dynamo models.
Bisetti, Fabrizio
2014-07-14
Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. © 2014 The Author(s) Published by the Royal Society.
Energy spectrum scaling in an agent-based model for bacterial turbulence
Mikel-Stites, Maxwell; Staples, Anne
2017-11-01
Numerous models have been developed to examine the behavior of dense bacterial swarms and to explore the visually striking phenomena of bacterial turbulence. Most models directly impose fluid dynamics physics, either by modeling the active matter as a fluid or by including interactions between the bacteria and a fluid. In this work, however, the `turbulence' is solely an emergent property of the collective behavior of the bacterial population, rather than a consequence of imposed fluid dynamics physical modeling. The system is simulated using a two dimensional Vicsek-style model, with the addition of individual repulsion to simulate bacterial collisions and physical interactions, and without the common flocking or sensing behaviors. Initial results indicate the presence of k-1 scaling in a portion of the kinetic energy spectrum that can be considered analogous to the inertial subrange in turbulent energy spectra. This result suggests that the interaction of large numbers of individual active bacteria may also be a contributing factor in the emergence of fluid dynamics phenomena, in addition to the physical interactions between bacteria and their fluid environment.
A model for the effect of submerged aquatic vegetation on turbulence induced by an oscillating grid
Pujol, Dolors; Colomer, Jordi; Serra, Teresa; Casamitjana, Xavier
2012-12-01
The aim of this study is to model, under controlled laboratory conditions, the effect of submerged aquatic vegetation (SAV) on turbulence generated in a water column by an oscillating grid turbulence (OGT). Velocity profiles have been measured by an acoustic Doppler velocimeter (MicroADV). Experimental conditions are analysed in two canopy models (rigid and semi-rigid), using nine plant-to-plant distances (ppd), three stem diameters (d), four types of natural SAV (Cladium mariscus, Potamogeton nodosus, Myriophyllum verticillatum and Ruppia maritima) and two oscillation grid frequencies (f). To quantify this response, we have developed a non-dimensional model, with a specific turbulent kinetic energy (TKE), f, stroke (s), d, ppd, distance from the virtual origin to the measurement (zm) and space between grid bars (M). The experimental data show that, at zm/zc 1, TKE decreases faster with zm and scales to the model variables according to TKE/(f·s)∝(·(. Therefore, at zm/zc > 1 the TKE is affected by the geometric characteristics of the plants (both diameter and plant-to-plant distance), an effect called sheltering. Results from semi-rigid canopies and natural SAV are found to scale with the non-dimensional model proposed for rigid canopies. We also discuss the practical implications for field conditions (wind and natural SAV).
A new model for the structure function of integrated water vapor in turbulence
International Nuclear Information System (INIS)
Bobak, Justin P.; Ruf, Christopher S.
1999-01-01
Turbulent fluctuation of integrated water vapor in the troposphere is one of the major noise sources in radio interferometry. Processed integrated water vapor estimates from microwave radiometers colocated with interferometers have been used to set bounds on this uncertainty. The bound has been in the form of a calculated structure function, which is a measure of temporal or spatial decorrelation of fluctuations. In this paper a new model is presented for the estimation of the structure function in the absence of radiometer measurements. Using this model, the structure function can be estimated using measurements or estimates of a limited number of meteorological parameters. These parameters include boundary layer depth, surface heat and humidity fluxes, entrainment humidity flux, average virtual potential temperature in the boundary layer, and geostrophic wind speed. These parameters can be found or estimated from radiosonde and surface eddy correlation system data. The model is based on a framework of turbulence meteorology and provides excellent agreement when compared with state-of-the-art atmospheric turbulence simulations. Results of preliminary comparisons with ground truth show some excellent agreement, as well as some problems. The performance of the new model exceeds that of one current model. (c) 1999 American Geophysical Union
A modular RANS approach for modelling laminar–turbulent transition in turbomachinery flows
International Nuclear Information System (INIS)
Liang Wang; Song Fu; Carnarius, Angelo; Mockett, Charles; Thiele, Frank
2012-01-01
Highlights: ► We propose a laminar–turbulent transition model for turbomachinery applications. ► The model considers the effects of the various instability modes. ► The pressure–diffusion process is represented by an elliptic formulation. ► The mixed-mode transition scenario benefits from our modular prediction approach. - Abstract: In this study we propose a laminar–turbulent transition model, which considers the effects of the various instability modes that exist in turbomachinery flows. This model is based on a K–ω–γ three-equation eddy-viscosity concept with K representing the fluctuating kinetic energy, ω the specific dissipation rate and γ the intermittency factor. As usual, the local mechanics by which the freestream disturbances penetrate into the laminar boundary layer, namely convection and viscous diffusion, are described by the transport equations. However, as a novel feature, the non-local effects due to pressure diffusion are additionally represented by an elliptic formulation. Such an approach allows the present model to respond accurately to freestream turbulence intensity properly and to predict both long and short bubble lengths well. The success in its application to a 3-D cascade indicates that the mixed-mode transition scenario indeed benefits from such a modular prediction approach, which embodies current conceptual understanding of the transition process.
Comparison of turbulent models in the case of a constricted tube
Directory of Open Access Journals (Sweden)
Elcner Jakub
2017-01-01
Full Text Available The validation of a proper solution is an indispensable phase of every numerical simulation. Nowadays, many turbulent models are available, whose application leads to slightly different solution of flow behaviour depending on the boundary conditions of a specific problem. It is essential to select the proper turbulence model appropriate for the given situation. The aim of this study is to select the most suitable two-equation eddy-viscosity model, which can be further used during calculations of airflow in human airways. For this purpose, geometry of a constricted tube with well-documented experimental measurements was chosen. The flow in the constricted tube was calculated using Spallart-Almaras, k-omega, k-epsilon and SST model approach using commercial software. The outcome of the comparison is a choice of the suitable model which is capable of simulating the transition of the boundary layer from laminar to turbulent flow. This transition typically arises in the upper part of the respiratory system, where the airways are constricted, specifically in the area, where the oral cavity continues through the glottis to trachea. The simulations were performed in a commercial solver Star-CCM+.
Energy Technology Data Exchange (ETDEWEB)
Ahlstedt, H [Tampere Univ. of Technology (Finland). Energy and Process Engineering
1998-12-31
In this work three different turbulence models, the k - {epsilon}, RNG k - {epsilon} and Reynolds stress model, have been compared in the case of confined swirling flow. The flow geometries are the isothermal swirling flows measured by International Flame Research Foundation (IFRF). The inlet boundary profiles have been taken from the measurements. At the outlet the effect of furnace end contraction has been studied. The k - {epsilon} model falls to predict the correct flow field. The RNG k - {epsilon} model can provide improvements, although it has problems near the symmetry axis. The Reynolds stress model produces the best agreement with measured data. (author) 13 refs.
Energy Technology Data Exchange (ETDEWEB)
Ahlstedt, H. [Tampere Univ. of Technology (Finland). Energy and Process Engineering
1997-12-31
In this work three different turbulence models, the k - {epsilon}, RNG k - {epsilon} and Reynolds stress model, have been compared in the case of confined swirling flow. The flow geometries are the isothermal swirling flows measured by International Flame Research Foundation (IFRF). The inlet boundary profiles have been taken from the measurements. At the outlet the effect of furnace end contraction has been studied. The k - {epsilon} model falls to predict the correct flow field. The RNG k - {epsilon} model can provide improvements, although it has problems near the symmetry axis. The Reynolds stress model produces the best agreement with measured data. (author) 13 refs.
A new algebraic turbulence model for accurate description of airfoil flows
Xiao, Meng-Juan; She, Zhen-Su
2017-11-01
We report a new algebraic turbulence model (SED-SL) based on the SED theory, a symmetry-based approach to quantifying wall turbulence. The model specifies a multi-layer profile of a stress length (SL) function in both the streamwise and wall-normal directions, which thus define the eddy viscosity in the RANS equation (e.g. a zero-equation model). After a successful simulation of flat plate flow (APS meeting, 2016), we report here further applications of the model to the flow around airfoil, with significant improvement of the prediction accuracy of the lift (CL) and drag (CD) coefficients compared to other popular models (e.g. BL, SA, etc.). Two airfoils, namely RAE2822 airfoil and NACA0012 airfoil, are computed for over 50 cases. The results are compared to experimental data from AGARD report, which shows deviations of CL bounded within 2%, and CD within 2 counts (10-4) for RAE2822 and 6 counts for NACA0012 respectively (under a systematic adjustment of the flow conditions). In all these calculations, only one parameter (proportional to the Karmen constant) shows slight variation with Mach number. The most remarkable outcome is, for the first time, the accurate prediction of the drag coefficient. The other interesting outcome is the physical interpretation of the multi-layer parameters: they specify the corresponding multi-layer structure of turbulent boundary layer; when used together with simulation data, the SED-SL enables one to extract physical information from empirical data, and to understand the variation of the turbulent boundary layer.
Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models
Energy Technology Data Exchange (ETDEWEB)
Pipin, V. V. [Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Kosovichev, A. G. [Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)
2014-04-10
We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter of anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.
Low-Rynolds number k-ε turbulence model for calculation of fast-reactor-channel flows
International Nuclear Information System (INIS)
Mikhin, V.I.
2000-01-01
For calculating the turbulent flows in the complex geometry channels typical for the nuclear reactor installation elements the low-Reynolds-number k-ε turbulence model with the model functions not containing the spatial coordinate like y + is proposed. Such spatial coordinate is usually used for modeling the turbulence near the wall correctly. The model completed on the developed flow of the non-viscous incompressible liquid in the plane channel correctly describes the transition from the laminar regime to the turbulent one. The calculated skin friction coefficients obey the well-known Dean and Zarbi - Reynolds laws. The mean velocity distributions are close to that obtained from the empirical three-layer Karman model. (author)
Qi, Di
Turbulent dynamical systems are ubiquitous in science and engineering. Uncertainty quantification (UQ) in turbulent dynamical systems is a grand challenge where the goal is to obtain statistical estimates for key physical quantities. In the development of a proper UQ scheme for systems characterized by both a high-dimensional phase space and a large number of instabilities, significant model errors compared with the true natural signal are always unavoidable due to both the imperfect understanding of the underlying physical processes and the limited computational resources available. One central issue in contemporary research is the development of a systematic methodology for reduced order models that can recover the crucial features both with model fidelity in statistical equilibrium and with model sensitivity in response to perturbations. In the first part, we discuss a general mathematical framework to construct statistically accurate reduced-order models that have skill in capturing the statistical variability in the principal directions of a general class of complex systems with quadratic nonlinearity. A systematic hierarchy of simple statistical closure schemes, which are built through new global statistical energy conservation principles combined with statistical equilibrium fidelity, are designed and tested for UQ of these problems. Second, the capacity of imperfect low-order stochastic approximations to model extreme events in a passive scalar field advected by turbulent flows is investigated. The effects in complicated flow systems are considered including strong nonlinear and non-Gaussian interactions, and much simpler and cheaper imperfect models with model error are constructed to capture the crucial statistical features in the stationary tracer field. Several mathematical ideas are introduced to improve the prediction skill of the imperfect reduced-order models. Most importantly, empirical information theory and statistical linear response theory are
Development of two phase turbulent mixing model for subchannel analysis relevant to BWR
International Nuclear Information System (INIS)
Sharma, M.P.; Nayak, A.K.; Kannan, Umasankari
2014-01-01
A two phase flow model is presented, which predicts both liquid and gas phase turbulent mixing rate between adjacent subchannels of reactor rod bundles. The model presented here is for slug churn flow regime, which is dominant as compared to the other regimes like bubbly flow and annular flow regimes, since turbulent mixing rate is the highest in slug churn flow regime. In this paper, we have defined new dimensionless parameters i.e. liquid mixing number and gas mixing number for two phase turbulent mixing. The liquid mixing number is a function of mixture Reynolds number whereas the gas phase mixing number is a function of both mixture Reynolds number and volumetric fraction of gas. The effect of pressure, geometrical influence of subchannel is also included in this model. The present model has been tested against low pressure and temperature air-water and high pressure and temperature steam-water experimental data found that it shows good agreement with available experimental data. (author)
Clifford, Corey; Kimber, Mark
2017-11-01
Over the last 30 years, an industry-wide shift within the nuclear community has led to increased utilization of computational fluid dynamics (CFD) to supplement nuclear reactor safety analyses. One such area that is of particular interest to the nuclear community, specifically to those performing loss-of-flow accident (LOFA) analyses for next-generation very-high temperature reactors (VHTR), is the capacity of current computational models to predict heat transfer across a wide range of buoyancy conditions. In the present investigation, a critical evaluation of Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) turbulence modeling techniques is conducted based on CFD validation data collected from the Rotatable Buoyancy Tunnel (RoBuT) at Utah State University. Four different experimental flow conditions are investigated: (1) buoyancy-aided forced convection; (2) buoyancy-opposed forced convection; (3) buoyancy-aided mixed convection; (4) buoyancy-opposed mixed convection. Overall, good agreement is found for both forced convection-dominated scenarios, but an overly-diffusive prediction of the normal Reynolds stress is observed for the RANS-based turbulence models. Low-Reynolds number RANS models perform adequately for mixed convection, while higher-order RANS approaches underestimate the influence of buoyancy on the production of turbulence.
Lewis, Bryan; Cimbala, John; Wouden, Alex
2011-11-01
Turbulence models are generally developed to study common academic geometries, such as flat plates and channels. Creating quality computational grids for such geometries is trivial, and allows stringent requirements to be met for boundary layer grid refinement. However, engineering applications, such as flow through hydroturbines, require the analysis of complex, highly curved geometries. To produce body-fitted grids for such geometries, the mesh quality requirements must be relaxed. Relaxing these requirements, along with the complexity of rotating flows, forces turbulence models to be employed beyond their developed scope. This study explores the solution sensitivity to boundary layer grid quality for various turbulence models and boundary conditions currently implemented in OpenFOAM. The following models are resented: k-omega, k-omega SST, k-epsilon, realizable k-epsilon, and RNG k-epsilon. Standard wall functions, adaptive wall functions, and sub-grid integration are compared using various grid refinements. The chosen geometry is the GAMM Francis Turbine because experimental data and comparison computational results are available for this turbine. This research was supported by a grant from the DoE and a National Defense Science and Engineering Graduate Fellowship.
Effect of LES models on the entrainment characteristics in a turbulent planar jet
Chambel Lopes, Diogo; da Silva, Carlos; Raman, Venkat
2012-11-01
The effect of subgrid-scale (SGS) models in the jet spreading rate and centreline passive scalar decay rates are assessed and compared. The modelling of the subgrid-scale fluxes is particularly challenging in the turbulent/nonturbulent (T/NT) region that divides the two regions in the jet flow: the outer region where the flow is irrotational and the inner region where the flow is turbulent: it has been shown that important Reynolds stresses exist near the T/NT interface and that these stresses determine in part the mixing and combustion rates in jets. In this work direct and large-eddy simulations (DNS/LES) of turbulent planar jets are used to study the role of subgrid-scale models in the integral characteristics of the passive scalar mixing in a jet. LES show that different SGS modes lead to different spreading rates for the velocity and scalar fields, and the scalar quantities are more affected than the velocity e.g. SGS models affect strongly the centreline mean scalar decay than the centreline mean velocity decay. The results suggest the need for a minimum resolution close to the Taylor micro-scale in order to recover the correct results for the integral quantities and this can be explained by recent results on the dynamics of the T/NT interface.
International Nuclear Information System (INIS)
Suluksna, Keerati; Dechaumphai, Pramote; Juntasaro, Ekachai
2009-01-01
This paper presents mathematical expressions for two significant parameters which control the onset location and length of transition in the γ-Re θ transition model of Menter et al. [Menter, F.R., Langtry, R.B., Volker, S., Huang, P.G., 2005. Transition modelling for general purpose CFD codes. In: ERCOFTAC International Symposium on Engineering Turbulence Modelling and Measurements]. The expressions are formulated and calibrated by means of numerical experiments for predicting transitional boundary layers under the influences of freestream turbulence and pressure gradient. It was also found that the correlation for transition momentum thickness Reynolds number needs only to be expressed in terms of local turbulence intensity, so that the more complex form that includes pressure gradient effects is unnecessary. Transitional boundary layers on a flat plate both with and without pressure gradients are employed to assess the performance of these two expressions for predicting the transition. The results show that the proposed expressions can work well with the model of Menter et al. (2005)
Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows.
Rolland, Joran
2018-02-01
This paper presents a numerical and theoretical study of multistability in two stochastic models of transitional wall flows. An algorithm dedicated to the computation of rare events is adapted on these two stochastic models. The main focus is placed on a stochastic partial differential equation model proposed by Barkley. Three types of events are computed in a systematic and reproducible manner: (i) the collapse of isolated puffs and domains initially containing their steady turbulent fraction; (ii) the puff splitting; (iii) the build-up of turbulence from the laminar base flow under a noise perturbation of vanishing variance. For build-up events, an extreme realization of the vanishing variance noise pushes the state from the laminar base flow to the most probable germ of turbulence which in turn develops into a full blown puff. For collapse events, the Reynolds number and length ranges of the two regimes of collapse of laminar-turbulent pipes, independent collapse or global collapse of puffs, is determined. The mean first passage time before each event is then systematically computed as a function of the Reynolds number r and pipe length L in the laminar-turbulent coexistence range of Reynolds number. In the case of isolated puffs, the faster-than-linear growth with Reynolds number of the logarithm of mean first passage time T before collapse is separated in two. One finds that ln(T)=A_{p}r-B_{p}, with A_{p} and B_{p} positive. Moreover, A_{p} and B_{p} are affine in the spatial integral of turbulence intensity of the puff, with the same slope. In the case of pipes initially containing the steady turbulent fraction, the length L and Reynolds number r dependence of the mean first passage time T before collapse is also separated. The author finds that T≍exp[L(Ar-B)] with A and B positive. The length and Reynolds number dependence of T are then discussed in view of the large deviations theoretical approaches of the study of mean first passage times and
Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows
Rolland, Joran
2018-02-01
This paper presents a numerical and theoretical study of multistability in two stochastic models of transitional wall flows. An algorithm dedicated to the computation of rare events is adapted on these two stochastic models. The main focus is placed on a stochastic partial differential equation model proposed by Barkley. Three types of events are computed in a systematic and reproducible manner: (i) the collapse of isolated puffs and domains initially containing their steady turbulent fraction; (ii) the puff splitting; (iii) the build-up of turbulence from the laminar base flow under a noise perturbation of vanishing variance. For build-up events, an extreme realization of the vanishing variance noise pushes the state from the laminar base flow to the most probable germ of turbulence which in turn develops into a full blown puff. For collapse events, the Reynolds number and length ranges of the two regimes of collapse of laminar-turbulent pipes, independent collapse or global collapse of puffs, is determined. The mean first passage time before each event is then systematically computed as a function of the Reynolds number r and pipe length L in the laminar-turbulent coexistence range of Reynolds number. In the case of isolated puffs, the faster-than-linear growth with Reynolds number of the logarithm of mean first passage time T before collapse is separated in two. One finds that ln(T ) =Apr -Bp , with Ap and Bp positive. Moreover, Ap and Bp are affine in the spatial integral of turbulence intensity of the puff, with the same slope. In the case of pipes initially containing the steady turbulent fraction, the length L and Reynolds number r dependence of the mean first passage time T before collapse is also separated. The author finds that T ≍exp[L (A r -B )] with A and B positive. The length and Reynolds number dependence of T are then discussed in view of the large deviations theoretical approaches of the study of mean first passage times and multistability
Modeling of the reactant conversion rate in a turbulent shear flow
Frankel, S. H.; Madnia, C. K.; Givi, P.
1992-01-01
Results are presented of direct numerical simulations (DNS) of spatially developing shear flows under the influence of infinitely fast chemical reactions of the type A + B yields Products. The simulation results are used to construct the compositional structure of the scalar field in a statistical manner. The results of this statistical analysis indicate that the use of a Beta density for the probability density function (PDF) of an appropriate Shvab-Zeldovich mixture fraction provides a very good estimate of the limiting bounds of the reactant conversion rate within the shear layer. This provides a strong justification for the implementation of this density in practical modeling of non-homogeneous turbulent reacting flows. However, the validity of the model cannot be generalized for predictions of higher order statistical quantities. A closed form analytical expression is presented for predicting the maximum rate of reactant conversion in non-homogeneous reacting turbulence.
Modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection
Emran, Mohammad; Shishkina, Olga
2016-11-01
We report modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection (RBC), which incorporates the effect of turbulent fluctuations. The study is based on the thermal boundary layer equation from Shishkina et al., and new Direct Numerical Simulations (DNS) of RBC in a cylindrical cell of the aspect ratio 1, for the Prandtl number variation of several orders of magnitude. Our modeled temperature profiles are found to agree with the DNS much better than those obtained with the classical Prandtl-Blasius or Falkner-Skan approaches. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh405/4 - Heisenberg fellowship and SFB963, Project A06.
Modeling water droplet condensation and evaporation in DNS of turbulent channel flow
Energy Technology Data Exchange (ETDEWEB)
Russo, E; Kuerten, J G M; Geld, C W M van der [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Geurts, B J, E-mail: e.russo@tue.nl [Faculty EEMCS, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands)
2011-12-22
In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an Eulerian-Lagrangian approach. The two-way coupling is investigated in terms of the effects of mass and heat transfer on the droplets distributions along the channel wall-normal direction and by comparison of the droplet temperature statistics with respect to the case without evaporation and condensation. A remarkable conclusion is that the presence of evaporating and condensing droplets results in an increase in the non-dimensional heat transfer coefficient of the channel flow represented by the Nusselt number.
Stochastic modelling of conjugate heat transfer in near-wall turbulence
International Nuclear Information System (INIS)
Pozorski, Jacek; Minier, Jean-Pierre
2006-01-01
The paper addresses the conjugate heat transfer in turbulent flows with temperature assumed to be a passive scalar. The Lagrangian approach is applied and the heat transfer is modelled with the use of stochastic particles. The intensity of thermal fluctuations in near-wall turbulence is determined from the scalar probability density function (PDF) with externally provided dynamical statistics. A stochastic model for the temperature field in the wall material is proposed and boundary conditions for stochastic particles at the solid-fluid interface are formulated. The heated channel flow with finite-thickness walls is considered as a validation case. Computation results for the mean temperature profiles and the variance of thermal fluctuations are presented and compared with available DNS data
Stochastic modelling of conjugate heat transfer in near-wall turbulence
Energy Technology Data Exchange (ETDEWEB)
Pozorski, Jacek [Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80952 Gdansk (Poland)]. E-mail: jp@imp.gda.pl; Minier, Jean-Pierre [Research and Development Division, Electricite de France, 6 quai Watier, 78400 Chatou (France)
2006-10-15
The paper addresses the conjugate heat transfer in turbulent flows with temperature assumed to be a passive scalar. The Lagrangian approach is applied and the heat transfer is modelled with the use of stochastic particles. The intensity of thermal fluctuations in near-wall turbulence is determined from the scalar probability density function (PDF) with externally provided dynamical statistics. A stochastic model for the temperature field in the wall material is proposed and boundary conditions for stochastic particles at the solid-fluid interface are formulated. The heated channel flow with finite-thickness walls is considered as a validation case. Computation results for the mean temperature profiles and the variance of thermal fluctuations are presented and compared with available DNS data.
Two-equation and multi-fluid turbulence models for Rayleigh–Taylor mixing
International Nuclear Information System (INIS)
Kokkinakis, I.W.; Drikakis, D.; Youngs, D.L.; Williams, R.J.R.
2015-01-01
Highlights: • We present a new improved version of the K–L model. • The improved K–L is found in good agreement with the multi-fluid model and ILES. • The study concerns Rayleigh–Taylor flows at initial density ratios 3:1 and 20:1. - Abstract: This paper presents a new, improved version of the K–L model, as well as a detailed investigation of K–L and multi-fluid models with reference to high-resolution implicit large eddy simulations of compressible Rayleigh–Taylor mixing. The accuracy of the models is examined for different interface pressures and specific heat ratios for Rayleigh–Taylor flows at initial density ratios 3:1 and 20:1. It is shown that the original version of the K–L model requires modifications in order to provide comparable results to the multi-fluid model. The modifications concern the addition of an enthalpy diffusion term to the energy equation; the formulation of the turbulent kinetic energy (source) term in the K equation; and the calculation of the local Atwood number. The proposed modifications significantly improve the results of the K–L model, which are found in good agreement with the multi-fluid model and implicit large eddy simulations with respect to the self-similar mixing width; peak turbulent kinetic energy growth rate, as well as volume fraction and turbulent kinetic energy profiles. However, a key advantage of the two-fluid model is that it can represent the degree of molecular mixing in a direct way, by transferring mass between the two phases. The limitations of the single-fluid K–L model as well as the merits of more advanced Reynolds-averaged Navier–Stokes models are also discussed throughout the paper.
International Nuclear Information System (INIS)
Mazzelli, Federico; Little, Adrienne B.; Garimella, Srinivas; Bartosiewicz, Yann
2015-01-01
Highlights: • Computational and experimental assessment of computational techniques for ejector flows. • Comparisons to 2D/3D (k–ε, k–ε realizable, k–ω SST, and stress–ω RSM) turbulence models. • k–ω SST model performs best while ε-based models more accurate at low motive pressures. • Good on-design agreement across 2D and 3D models; off-design needs 3D simulations. - Abstract: Numerical and experimental analyses are performed on a supersonic air ejector to evaluate the effectiveness of commonly-used computational techniques when predicting ejector flow characteristics. Three series of experimental curves at different operating conditions are compared with 2D and 3D simulations using RANS, steady, wall-resolved models. Four different turbulence models are tested: k–ε, k–ε realizable, k–ω SST, and the stress–ω Reynolds Stress Model. An extensive analysis is performed to interpret the differences between numerical and experimental results. The results show that while differences between turbulence models are typically small with respect to the prediction of global parameters such as ejector inlet mass flow rates and Mass Entrainment Ratio (MER), the k–ω SST model generally performs best whereas ε-based models are more accurate at low motive pressures. Good agreement is found across all 2D and 3D models at on-design conditions. However, prediction at off-design conditions is only acceptable with 3D models, making 3D simulations mandatory to correctly predict the critical pressure and achieve reasonable results at off-design conditions. This may partly depend on the specific geometry under consideration, which in the present study has a rectangular cross section with low aspect ratio.
Fatigue reliability and effective turbulence models in wind farms
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Frandsen, Sten Tronæs; Tarp-Johansen, N.J.
2007-01-01
behind wind turbines can imply a significant reduction in the fatigue lifetime of wind turbines placed in wakes. In this paper the design code model in the wind turbine code IEC 61400-1 (2005) is evaluated from a probabilistic point of view, including the importance of modeling the SN-curve by linear...
A Reynolds stress model for near-wall turbulence
Durbin, P. A.
1993-01-01
The paper formulates a tensorially consistent near-wall second-order closure model. Redistributive terms in the Reynolds stress equations are modeled by an elliptic relaxation equation in order to represent strongly nonhomogeneous effects produced by the presence of walls; this replaces the quasi-homogeneous algebraic models that are usually employed, and avoids the need for ad hoc damping functions. The model is solved for channel flow and boundary layers with zero and adverse pressure gradients. Good predictions of Reynolds stress components, mean flow, skin friction, and displacement thickness are obtained in various comparisons to experimental and direct numerical simulation data. The model is also applied to a boundary layer flowing along a wall with a 90-deg, constant-radius, convex bend.
A new nonlinear turbulence model based on Partially-Averaged Navier-Stokes Equations
International Nuclear Information System (INIS)
Liu, J T; Wu, Y L; Cai, C; Liu, S H; Wang, L Q
2013-01-01
Partially-averaged Navier-Stokes (PANS) Model was recognized as a Reynolds-averaged Navier-Stokes (RANS) to direct numerical simulation (DNS) bridging method. PANS model was purported for any filter width-from RANS to DNS. PANS method also shared some similarities with the currently popular URANS (unsteady RANS) method. In this paper, a new PANS model was proposed, which was based on RNG k-ε turbulence model. The Standard and RNG k-ε turbulence model were both isotropic models, as well as PANS models. The sheer stress in those PANS models was solved by linear equation. The linear hypothesis was not accurate in the simulation of complex flow, such as stall phenomenon. The sheer stress here was solved by nonlinear method proposed by Ehrhard. Then, the nonlinear PANS model was set up. The pressure coefficient of the suction side of the NACA0015 hydrofoil was predicted. The result of pressure coefficient agrees well with experimental result, which proves that the nonlinear PANS model can capture the high pressure gradient flow. A low specific centrifugal pump was used to verify the capacity of the nonlinear PANS model. The comparison between the simulation results of the centrifugal pump and Particle Image Velocimetry (PIV) results proves that the nonlinear PANS model can be used in the prediction of complex flow field
One possible method of mathematical modeling of turbulent transport processes in plasma
International Nuclear Information System (INIS)
Skvortsova, Nina N.; Batanov, German M.; Petrov, Alexander E.; Pshenichnikov, Anton A.; Sarksyan, Karen A.; Kharchev, Nikolay K.; Bening, Vladimir E.; Korolev, Victor Yu.
2003-01-01
It is proposed to use the mathematical modeling of the increments of fluctuating plasma variables to analyzing the probability characteristics of turbulent transport processes in plasma. It is shown that, in plasma of the L-2M stellarator and the TAU-1 linear device, the increments of the process of local fluctuating particle flux are stochastic in nature and their distribution is a scale mixture of Gaussians. (author)
Comparison Between 2D Turbulence Model ESEL and Experimental Data from AUG and Compass Tokamaks
Czech Academy of Sciences Publication Activity Database
Ondáč, Peter; Horáček, Jan; Seidl, Jakub; Vondráček, Petr; Müller, H.W.; Adámek, Jiří; Nielsen, A.H.
2015-01-01
Roč. 55, č. 2 (2015), s. 128-135 ISSN 1210-2709 R&D Projects: GA ČR(CZ) GAP205/12/2327; GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : turbulence * tokamak * computer model * probe measurements Subject RIV: BL - Plasma and Gas Discharge Physics https://ojs.cvut.cz/ojs/index.php/ap/article/viewFile/2257/2816
Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO
Reffray, G.; Bourdalle-Badie, R.; Calone, C.
2015-01-01
Through two numerical experiments, a 1-D vertical model called NEMO1D was used to investigate physical and numerical turbulent-mixing behaviour. The results show that all the turbulent closures tested (k+l from Blanke and Delecluse, 1993, and two equation models: generic length scale closures from Umlauf and Burchard, 2003) are able to correctly reproduce the classical test of Kato and Phillips (1969) under favourable numerical conditions while some solutions may diverge depending on the degradation of the spatial and time discretization. The performances of turbulence models were then compared with data measured over a 1-year period (mid-2010 to mid-2011) at the PAPA station, located in the North Pacific Ocean. The modelled temperature and salinity were in good agreement with the observations, with a maximum temperature error between -2 and 2 °C during the stratified period (June to October). However, the results also depend on the numerical conditions. The vertical RMSE varied, for different turbulent closures, from 0.1 to 0.3 °C during the stratified period and from 0.03 to 0.15 °C during the homogeneous period. This 1-D configuration at the PAPA station (called PAPA1D) is now available in NEMO as a reference configuration including the input files and atmospheric forcing set described in this paper. Thus, all the results described can be recovered by downloading and launching PAPA1D. The configuration is described on the NEMO site (PAPA">http://www.nemo-ocean.eu/Using-NEMO/Configurations/C1D_PAPA). This package is a good starting point for further investigation of vertical processes.
Czech Academy of Sciences Publication Activity Database
Haslinger, J.; Stebel, Jan
2011-01-01
Roč. 63, č. 2 (2011), s. 277-308 ISSN 0095-4616 R&D Projects: GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : optimal shape design * paper machine headbox * incompressible non-Newtonian fluid * algebraic turbulence model Subject RIV: BA - General Mathematics Impact factor: 0.952, year: 2011 http://link.springer.com/article/10.1007%2Fs00245-010-9121-x
Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model
Energy Technology Data Exchange (ETDEWEB)
Yamagishi, Osamu, E-mail: yamagisi@nifs.ac.jp; Sugama, Hideo [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)
2016-03-15
Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.
International Nuclear Information System (INIS)
Suluksna, Keerati; Juntasaro, Ekachai
2008-01-01
The γ-Re θ transition model of Menter et al. [Menter, F.R., Langtry, R.B., Volker, S., Huang, P.G., 2005. Transition modelling for general purpose CFD codes. ERCOFTAC International Symposium Engineering Turbulence Modelling and Measurements] is a highly generalized transport equation model in which it has been developed based on the concept of local variables compatible with modern CFD methods where the unstructured grid and the parallel computing technique are usually integrated in. To perform the prediction with this model, two essential parameters, F length which is used to control the length of the transition region and Re θc which is used to control the onset of the transition location, must be specified to close the model. At present, both parameters are proprietary and their formulations are unpublished. For the first time here, the relations for both parameters are formulated by means of numerical experiments and analysis under the assumption of Re θc = Re θt corresponding with the bypass transition behavior. Based on this analysis, the optimized values of the parameters are found and their relations can be constructed as follows: Re θc = 803.73(Tu ∞ , le + 0.6067) -1.027 and F length = 163 ln(Tu ∞ , le ) + 3.625. The performance of this transition model is assessed by testing with the experimental cases of T3AM, T3A, and T3B. Detailed comparisons with the predicted results by the transition models of Suzen and Huang [Suzen, Y.B., Huang, P.G., 2000. Modeling of flow transition using an intermittency transport equation. J. Fluids Eng. 122, 273-284] and Lodefier et al. [Lodefier, K., Merci, B., De Langhe, C., Dick, E., 2003. Transition modelling with the SST turbulence model and intermittency transport equation. ASME Turbo Expo, Atlanta, GA, USA, June 16-19], and also with the predicted results by the k-ε model of Launder and Sharma [Launder, B.E., Sharma, B., 1974. Application of the energy dissipation model of turbulence to the calculation of
Accuracy improvement of the modified EDM model for non-premixed turbulent combustion in gas turbine
Directory of Open Access Journals (Sweden)
Qiong Li
2015-09-01
Full Text Available Eight bluff body and swirl turbulent diffusion flames resembling the flow field and combustion inside gas turbine combustors are simulated and the simulation results are compared with experimental data. It is revealed that the original modified EDM model could not predict the temperature profile accurately. A more accurate model is developed and validated for gas turbine combustion application. However, this model under predicts the flame temperature for the regular round jet flames indicating that no universal form of the modified EDM model could be achieved for the combustion simulation of both gas furnaces and gas turbines.
Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model
Yamagishi, Osamu; Sugama, Hideo
2016-03-01
Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.
Combustion characteristics and turbulence modeling of swirling reacting flow in solid fuel ramjet
Musa, Omer; Xiong, Chen; Changsheng, Zhou
2017-10-01
This paper reviews the historical studies have been done on the solid-fuel ramjet engine and difficulties associated with numerical modeling of swirling flow with combustible gases. A literature survey about works related to numerical and experimental investigations on solid-fuel ramjet as well as using swirling flow and different numerical approaches has been provided. An overview of turbulence modeling of swirling flow and the behavior of turbulence at streamline curvature and system rotation are presented. A new and simple curvature/correction factor is proposed in order to reduce the programming complexity of SST-CC turbulence model. Finally, numerical and experimental investigations on the impact of swirling flow on SFRJ have been carried out. For that regard, a multi-physics coupling code is developed to solve the problems of multi-physics coupling of fluid mechanics, solid pyrolysis, heat transfer, thermodynamics, and chemical kinetics. The connected-pipe test facility is used to carry out the experiments. The results showed a positive impact of swirling flow on SFRJ along with, three correlations are proposed.
Energy Technology Data Exchange (ETDEWEB)
Oksanen, A.; Maeki-Mantila, E. [Tampere Univ. of Technology (Finland). Inst. of Energy and Process Technology
1997-10-01
The aim of the project has been to model and simulate gas phase combustion taking into account the interaction between the chemical reactions and turbulence, respectively. Especially the modelling of nitric oxide and carbon monoxide were included in the computations which were applied into two laboratory-scale test cases namely into the about 300 kW natural gas burner by International Flame Research Foundation and into the smaller natural gas jet flame by delft University of Technology. Both test cases were calculated in two dimensional axially symmetric chambers with the swirl numbers equal to 0.56 and zero in the IFRF and Delft flames, respectively. In this study it was necessary to take into account as well as possible the effect of turbulence on the chemical reactions. Therefore, the Eddy Dissipation Concept Model (EDC) together with the local extinction was chosen to describe both the combustion reactions of methane and carbon monoxide and the formation and reduction of nitric oxide, too. In this study two different turbulent time scales were used namely the Kolmogorov time scale in the fine structure conditions without and with the factor taking more into account the fine structure conditions, respectively. It can be noticed the computational results are more similar with the experimental data when the factor was used. The prediction of chemical time scale was based on the principle by Gran et Melaaen and Magnussen. (orig.)
Modeling and analysis of large-eddy simulations of particle-laden turbulent boundary layer flows
Rahman, Mustafa M.
2017-01-05
We describe a framework for the large-eddy simulation of solid particles suspended and transported within an incompressible turbulent boundary layer (TBL). For the fluid phase, the large-eddy simulation (LES) of incompressible turbulent boundary layer employs stretched spiral vortex subgrid-scale model and a virtual wall model similar to the work of Cheng, Pullin & Samtaney (J. Fluid Mech., 2015). This LES model is virtually parameter free and involves no active filtering of the computed velocity field. Furthermore, a recycling method to generate turbulent inflow is implemented. For the particle phase, the direct quadrature method of moments (DQMOM) is chosen in which the weights and abscissas of the quadrature approximation are tracked directly rather than the moments themselves. The numerical method in this framework is based on a fractional-step method with an energy-conservative fourth-order finite difference scheme on a staggered mesh. This code is parallelized based on standard message passing interface (MPI) protocol and is designed for distributed-memory machines. It is proposed to utilize this framework to examine transport of particles in very large-scale simulations. The solver is validated using the well know result of Taylor-Green vortex case. A large-scale sandstorm case is simulated and the altitude variations of number density along with its fluctuations are quantified.
New developments in isotropic turbulent models for FENE-P fluids
Resende, P. R.; Cavadas, A. S.
2018-04-01
The evolution of viscoelastic turbulent models, in the last years, has been significant due to the direct numeric simulation (DNS) advances, which allowed us to capture in detail the evolution of the viscoelastic effects and the development of viscoelastic closures. New viscoelastic closures are proposed for viscoelastic fluids described by the finitely extensible nonlinear elastic-Peterlin constitutive model. One of the viscoelastic closure developed in the context of isotropic turbulent models, consists in a modification of the turbulent viscosity to include an elastic effect, capable of predicting, with good accuracy, the behaviour for different drag reductions. Another viscoelastic closure essential to predict drag reduction relates the viscoelastic term involving velocity and the tensor conformation fluctuations. The DNS data show the high impact of this term to predict correctly the drag reduction, and for this reason is proposed a simpler closure capable of predicting the viscoelastic behaviour with good performance. In addition, a new relation is developed to predict the drag reduction, quantity based on the trace of the tensor conformation at the wall, eliminating the need of the typically parameters of Weissenberg and Reynolds numbers, which depend on the friction velocity. This allows future developments for complex geometries.
Turbulent flame acceleration and detonation quenching and reinitiation - modelling and validation
International Nuclear Information System (INIS)
Fischer, M.; Kratzel, T.; Pantow, E.
1997-01-01
For both, the reactor safety in an accidental release of hydrogen into containment compartments and also for the industrial safety of the production, storage and transport of combustibles like hydrogen, propane, methane and others in the Petroleum, Petrochemical and Pharmaceutical Industries, it is of great interest to know how the pressure forces of fast hydrogen combustion processes can be reduced. The numerical study of highly turbulent or detonation driven flame propagation processes is relatively recent because it depends on the availability of high performance computers and specialized numerical algorithms to solve the governing equations of reactive fluid dynamic processes. Numerical simulation can be used at a number of levels to study turbulent combustion and detonations. What is needed is both, to use modelling and numerical simulation to investigate fundamental interactions, and using modelling and numerical simulation as a tool to predict turbulent flame accelerating processes and decoupling or re-initiation of detonation waves in complex geometries of technical applications. Today, modelling and simulation show good agreement with a variety of fast combustion phenomena observed in experiments. Results of reactive computational fluid dynamics codes deliver inputs to reduce experimental parameters and provide the basis for an innovative design of arresters for deflagration and detonation processes. (author)
Validation of an LES Model for Soot Evolution against DNS Data in Turbulent Jet Flames
Mueller, Michael
2012-11-01
An integrated modeling approach for soot evolution in turbulent reacting flows is validated against three-dimensional Direct Numerical Simulation (DNS) data in a set of n-heptane nonpremixed temporal jet flames. As in the DNS study, the evolution of the soot population is described statistically with the Hybrid Method of Moments (HMOM). The oxidation of the fuel and formation of soot precursors are described with the Radiation Flamelet/Progress Variable (RFPV) model that includes an additional transport equation for Polycyclic Aromatic Hydrocarbons (PAH) to account for the slow chemistry governing these species. In addition, the small-scale interactions between soot, chemistry, and turbulence are described with a presumed subfilter PDF approach that accounts for the very large spatial intermittency characterizing soot in turbulent reacting flows. The DNS dataset includes flames at three different Damköhler numbers to study the influence of global mixing rates on the evolution of PAH and soot. In this work, the ability of the model to capture these trends quantitatively as Damköhler number varies is investigated. In order to reliably assess the LES approach, the LES is initialized from the filtered DNS data after an initial transitional period in an effort to minimize the hydrodynamic differences between the DNS and the LES.
Resolvent-based modeling of passive scalar dynamics in wall-bounded turbulence
Dawson, Scott; Saxton-Fox, Theresa; McKeon, Beverley
2017-11-01
The resolvent formulation of the Navier-Stokes equations expresses the system state as the output of a linear (resolvent) operator acting upon a nonlinear forcing. Previous studies have demonstrated that a low-rank approximation of this linear operator predicts many known features of incompressible wall-bounded turbulence. In this work, this resolvent model for wall-bounded turbulence is extended to include a passive scalar field. This formulation allows for a number of additional simplifications that reduce model complexity. Firstly, it is shown that the effect of changing scalar diffusivity can be approximated through a transformation of spatial wavenumbers and temporal frequencies. Secondly, passive scalar dynamics may be studied through the low-rank approximation of a passive scalar resolvent operator, which is decoupled from velocity response modes. Thirdly, this passive scalar resolvent operator is amenable to approximation by semi-analytic methods. We investigate the extent to which this resulting hierarchy of models can describe and predict passive scalar dynamics and statistics in wall-bounded turbulence. The support of AFOSR under Grant Numbers FA9550-16-1-0232 and FA9550-16-1-0361 is gratefully acknowledged.
Energy Technology Data Exchange (ETDEWEB)
Fang, Le [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); Zhu, Ying [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Liu, Yangwei, E-mail: liuyangwei@126.com [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Lu, Lipeng [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China)
2015-10-09
The non-equilibrium property in turbulence is a non-negligible problem in large-eddy simulation but has not yet been systematically considered. The generalization from equilibrium turbulence to non-equilibrium turbulence requires a clear recognition of the non-equilibrium property. As a preliminary step of this recognition, the present letter defines a typical non-equilibrium process, that is, the spectral non-equilibrium process, in homogeneous isotropic turbulence. It is then theoretically investigated by employing the skewness of grid-scale velocity gradient, which permits the decomposition of resolved velocity field into an equilibrium one and a time-reversed one. Based on this decomposition, an improved Smagorinsky model is proposed to correct the non-equilibrium behavior of the traditional Smagorinsky model. The present study is expected to shed light on the future studies of more generalized non-equilibrium turbulent flows. - Highlights: • A spectral non-equilibrium process in isotropic turbulence is defined theoretically. • A decomposition method is proposed to divide a non-equilibrium turbulence field. • An improved Smagorinsky model is proposed to correct the non-equilibrium behavior.
Wu, Hao; Ihme, Matthias
2017-11-01
The modeling of turbulent combustion requires the consideration of different physico-chemical processes, involving a vast range of time and length scales as well as a large number of scalar quantities. To reduce the computational complexity, various combustion models are developed. Many of them can be abstracted using a lower-dimensional manifold representation. A key issue in using such lower-dimensional combustion models is the assessment as to whether a particular combustion model is adequate in representing a certain flame configuration. The Pareto-efficient combustion (PEC) modeling framework was developed to perform dynamic combustion model adaptation based on various existing manifold models. In this work, the PEC model is applied to a turbulent flame simulation, in which a computationally efficient flamelet-based combustion model is used in together with a high-fidelity finite-rate chemistry model. The combination of these two models achieves high accuracy in predicting pollutant species at a relatively low computational cost. The relevant numerical methods and parallelization techniques are also discussed in this work.
1991-07-01
Is 0.12- - -- often focussed on complex turbulent flows and the A -0.4y deficiencies of turbulence models in these cir- cumstances. However, turbulent...inherent deficiencies in stress discrepancies which have been traced to numer- ical errors, and as the collaboration and interac- LASHER, W.C.; TAULBEE, D.B...nIliio K I A ( tK2 .iWA Notiwcwiar Ivitit: 1kiciii. I’ stabi.in t \\MAIU(Attn: Itilioickrt DI11 :ni~h I ).Ih oItii li o I’.t ll) ’kOE 25 - \\cd Iitacispa
Thermal shallow water models of geostrophic turbulence in Jovian atmospheres
International Nuclear Information System (INIS)
Warneford, Emma S.; Dellar, Paul J.
2014-01-01
Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune
International Nuclear Information System (INIS)
Drury, L.O.; Stewart, J.M.
1976-01-01
A generalization of a transformation due to Kurskov and Ozernoi is used to rewrite the usual equations governing subsonic turbulence in Robertson-Walker cosmological models as Navier-Stokes equations with a time-dependent viscosity. This paper first rederives some well-known results in a very simple way by means of this transformation. The main result however is that the establishment of a Kolmogorov spectrum at recombination appears to be incompatible with subsonic turbulence. The conditions after recombination are also discussed briefly. (author)
Pratt, D. T.
1984-01-01
An interactive computer code for simulation of a high-intensity turbulent combustor as a single point inhomogeneous stirred reactor was developed from an existing batch processing computer code CDPSR. The interactive CDPSR code was used as a guide for interpretation and direction of DOE-sponsored companion experiments utilizing Xenon tracer with optical laser diagnostic techniques to experimentally determine the appropriate mixing frequency, and for validation of CDPSR as a mixing-chemistry model for a laboratory jet-stirred reactor. The coalescence-dispersion model for finite rate mixing was incorporated into an existing interactive code AVCO-MARK I, to enable simulation of a combustor as a modular array of stirred flow and plug flow elements, each having a prescribed finite mixing frequency, or axial distribution of mixing frequency, as appropriate. Further increase the speed and reliability of the batch kinetics integrator code CREKID was increased by rewriting in vectorized form for execution on a vector or parallel processor, and by incorporating numerical techniques which enhance execution speed by permitting specification of a very low accuracy tolerance.
Thin-layer approximation and algebraic model for separated turbulent flows
Baldwin, B.; Lomax, H.
1978-01-01
An algebraic turbulence model for two- and three-dimensional separated flows is specified that avoids the necessity for finding the edge of the boundary layer. Properties of the model are determined and comparisons made with experiment for an incident shock on a flat plate, separated flow over a compression corner, and transonic flow over an airfoil. Separation and reattachment points from numerical Navier-Stokes solutions agree with experiment within one boundary-layer thickness. Use of law-of-the-wall boundary conditions does not alter the predictions significantly. Applications of the model to other cases are contained in companion papers.
Oubei, Hassan M.
2017-06-16
In this Letter, we use laser beam intensity fluctuation measurements to model and describe the statistical properties of weak temperature-induced turbulence in underwater wireless optical communication (UWOC) channels. UWOC channels with temperature gradients are modeled by the generalized gamma distribution (GGD) with an excellent goodness of fit to the measured data under all channel conditions. Meanwhile, thermally uniform channels are perfectly described by the simple gamma distribution which is a special case of GGD. To the best of our knowledge, this is the first model that comprehensively describes both thermally uniform and gradient-based UWOC channels.
Turbulent swirling flow in a dynamic model of a uniflow-scavenged two-stroke engine
DEFF Research Database (Denmark)
Ingvorsen, Kristian Mark; Meyer, Knud Erik; Walther, Jens Honore
2014-01-01
turbulence models. In the present work, the flow in a dynamic scale model of a uniflowscavenged cylinder is investigated experimentally. The model has a transparent cylinder and a moving piston driven by a linear motor. The flow is investigated using phase-locked stereoscopic particle image velocimetry (PIV...... cannot be assumed to be quasi-steady. The temporal development of the swirl strength is investigated by computing the angular momentum. The swirl strength shows an exponential decay from scavenge port closing to scavenge port opening corresponding to a reduction of 34 %, which is in good agreement...
One-equation near-wall turbulence modeling with the aid of direct simulation data
Rodi, W.; Mansour, N. N.; Michelassi, V.
1993-01-01
The length scales appearing in the relations for the eddy viscosity and dissipation rate in one-equation models were evaluated from direct numerical (DNS) simulation data for developed channel and boundary-layer flow at two Reynolds numbers each. To prepare the ground for the evaluation, the distribution of the most relevant mean-flow and turbulence quantities is presented and discussed, also with respect to Reynolds-number influence and to differences between channel and boundary-layer flow. An alternative model is tested as near wall component of a two-layer model by application to developed-channel, boundary-layer and backward-facing-step flows.
Laptev, A. G.; Basharov, M. M.
2018-05-01
The problem of modeling turbulent transfer of finely dispersed particles in liquids has been considered. An approach is used where the transport of particles is represented in the form of a variety of the diffusion process with the coefficient of turbulent transfer to the wall. Differential equations of transfer are written for different cases, and a solution of the cell model is obtained for calculating the efficiency of separation in a channel. Based on the theory of turbulent transfer of particles and of the boundary layer model, an expression has been obtained for calculating the rate of turbulent deposition of finely dispersed particles. The application of this expression in determining the efficiency of physical coagulation of emulsions in different channels and on the surface of chaotic packings is shown.
Reduced-Order Modeling of 3D Rayleigh-Benard Turbulent Convection
Hassanzadeh, Pedram; Grover, Piyush; Nabi, Saleh
2017-11-01
Accurate Reduced-Order Models (ROMs) of turbulent geophysical flows have broad applications in science and engineering; for example, to study the climate system or to perform real-time flow control/optimization in energy systems. Here we focus on 3D Rayleigh-Benard turbulent convection at the Rayleigh number of 106 as a prototype for turbulent geophysical flows, which are dominantly buoyancy driven. The purpose of the study is to evaluate and improve the performance of different model reduction techniques using this setting. One-dimensional ROMs for horizontally averaged temperature are calculated using several methods. Specifically, the Linear Response Function (LRF) of the system is calculated from a large DNS dataset using Dynamic Mode Decomposition (DMD) and Fluctuation-Dissipation Theorem (FDT). The LRF is also calculated using the Green's function method of Hassanzadeh and Kuang (2016, J. Atmos. Sci.), which is based on using numerous forced DNS runs. The performance of these LRFs in estimating the system's response to weak external forcings or controlling the time-mean flow are compared and contrasted. The spectral properties of the LRFs and the scaling of the accuracy with the length of the dataset (for the data-driven methods) are also discussed.
Comparison of turbulence models and CFD solution options for a plain pipe
Canli, Eyub; Ates, Ali; Bilir, Sefik
2018-06-01
Present paper is partly a declaration of state of a currently ongoing PhD work about turbulent flow in a thick walled pipe in order to analyze conjugate heat transfer. An ongoing effort on CFD investigation of this problem using cylindrical coordinates and dimensionless governing equations is identified alongside a literature review. The mentioned PhD work will be conducted using an in-house developed code. However it needs preliminary evaluation by means of commercial codes available in the field. Accordingly ANSYS CFD was utilized in order to evaluate mesh structure needs and asses the turbulence models and solution options in terms of computational power versus difference signification. Present work contains a literature survey, an arrangement of governing equations of the PhD work, CFD essentials of the preliminary analysis and findings about the mesh structure and solution options. Mesh element number was changed between 5,000 and 320,000. k-ɛ, k-ω, Spalart-Allmaras and Viscous-Laminar models were compared. Reynolds number was changed between 1,000 and 50,000. As it may be expected due to the literature, k-ɛ yields more favorable results near the pipe axis and k-ωyields more convenient results near the wall. However k-ɛ is found sufficient to give turbulent structures for a conjugate heat transfer problem in a thick walled plain pipe.
Modelling turbulent fluid flows in nuclear and fossil-fired power plants
International Nuclear Information System (INIS)
Viollet, P.L.
1995-06-01
The turbulent flows encountered in nuclear reactor thermal hydraulic studies or fossil-fired plant thermo-aerodynamic analyses feature widely varying characteristics, frequently entailing heat transfers and two-phase flows so that modelling these phenomena tends more and more to involve coupling between several branches of engineering. Multi-scale geometries are often encountered, with complex wall shapes, such as a PWR vessel, a reactor coolant pump impeller or a circulating fluidized bed combustion chamber. When it comes to validating physical models of these flows, the analytical process highlights the main descriptive parameters of local flow conditions: tensor characterizing the turbulence anisotropy, characteristic time scales for turbulent flow particle dynamics. Cooperative procedures implemented between national or international working parties can accelerate validation by sharing and exchanging results obtained by the various organizations involved. With this principle accepted, we still have to validate the products themselves, i.e. the software used for the studies. In this context, the ESTET, ASTRID and N3S codes have been subjected to a battery of test cases covering their respective fields of application. These test cases are re-run for each new version, so that the sets of test cases systematically benefit from the gradually upgraded functionalities of the codes. (author). refs., 3 figs., 6 tabs
Advances in the simulation of toroidal gyro Landau fluid model turbulence
International Nuclear Information System (INIS)
Waltz, R.E.; Kerbel, G.D.; Milovich, J.; Hammett, G.W.
1994-12-01
The gyro-Landau fluid (GLF) model equations for toroidal geometry have been recently applied to the study ion temperature gradient (ITG) mode turbulence using the 3D nonlinear ballooning mode representation (BMR). The present paper extends this work by treating some unresolved issues conceming ITG turbulence with adiabatic electrons. Although eddies are highly elongated in the radial direction long time radial correlation lengths are short and comparable to poloidal lengths. Although transport at vanishing shear is not particularly large, transport at reverse global shear, is significantly less. Electrostatic transport at moderate shear is not much effected by inclusion of local shear and average favorable curvature. Transport is suppressed when critical ExB rotational shear is comparable to the maximum linear growth rate with only a weak dependence on magnetic shear. Self consistent turbulent transport of toroidal momentum can result in a transport bifurcation at suffciently large r/(Rq). However the main thrust of the new formulation in the paper deals with advances in the development of finite beta GLF models with trapped electron and BMR numerical methods for treating the fast parallel field motion of the untrapped electrons
Alvarez, L. V.; Grams, P.
2017-12-01
We present a parallelized, three-dimensional, turbulence-resolving model using the Detached-Eddy Simulation (DES) technique, tested at the scale of the river-reach in the Colorado River. DES is a hybrid large eddy simulation (LES) and Reynolds-averaged Navier Stokes (RANS). RANS is applied to the near-bed grid cells, where grid resolution is not sufficient to fully resolve wall turbulence. LES is applied in the flow interior. We utilize the Spalart-Allmaras one equation turbulence closure with a rough wall extension. The model resolves large-scale turbulence using DES and simultaneously integrates the suspended sediment advection-diffusion equation. The Smith and McLean suspended sediment boundary condition is used to calculate the upward and downward settling of sediment fluxes in the grid cells attached to the bed. Model results compare favorably with ADCP measurements of flow taken on the Colorado River in Grand Canyon during the High Flow Experiment (HFE) of 2008. The model accurately reproduces the size and position of the major recirculation currents, and the error in velocity magnitude was found to be less than 17% or 0.22 m/s absolute error. The mean deviation of the direction of velocity with respect to the measured velocity was found to be 20 degrees. Large-scale turbulence structures with vorticity predominantly in the vertical direction are produced at the shear layer between the main channel and the separation zone. However, these structures rapidly become three-dimensional with no preferred orientation of vorticity. Cross-stream velocities, into the main recirculation zone just upstream of the point of reattachment and out of the main recirculation region just downstream of the point of separation, are highest near the bed. Lateral separation eddies are more efficient at storing and exporting sediment than previously modeled. The input of sediment to the eddy recirculation zone occurs in the interface of the eddy and main channel. Pulsation of the
The Coherent Flame Model for Turbulent Chemical Reactions
1977-01-01
numerical integration of the resulting differential equations. The model predicts the flame length and superficial comparison with experiments suggest a...value for the single universal constant. The theory correctly predicts the change of flame length with changes in stoich- iometric ratio for the...indicate the X will be some where between 0.1 and 0.5. Figure 13 is presented to show the effect of equivalence ratio, , on the flame length when the
Studying and modelling variable density turbulent flows for industrial applications
Energy Technology Data Exchange (ETDEWEB)
Chabard, J.P.; Simonin, O.; Caruso, A.; Delalondre, C.; Dalsecco, S.; Mechitoua, N.
1996-07-01
Industrial applications are presented in the various fields of interest for EDF. A first example deals with transferred electric arcs couplings flow and thermal transfer in the arc and in the bath of metal and is rela