WorldWideScience

Sample records for kaempferol 3-o-beta-d glucoside

  1. Chemical constituents from Bakeridesia pickelii Monteiro (Malvaceae) and the relaxant activity of kaempferol-3-O-{beta}-D-(6''-E-p -coumaroyl) glucopyranoside on guinea-pig ileum

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Danielly Albuquerque da; Silva, Davi Antas e; Cavalcanti, Aline Coutinho; Medeiros, Marcos Antonio Alves de; Lima, Julianeli Tolentino de; Cavalcante, Jose Marcilio Sobral; Silva, Bagnolia Araujo da; Agra, Maria de Fatima; Souza, Maria de Fatima Vanderlei de [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Centro de Ciencias da Saude. Dept. de Ciencias Farmaceuticas]. E-mail: mfvanderlei@ltf.ufpb.br

    2007-07-15

    The phytochemical investigation of Bakeridesia pickelii Monteiro led to the isolation of seven compounds: {beta}-sitosterol, a mixture of sitosteryl-3-O-{beta}-D-glucopyranoside and stigmasteryl-3-O-{beta}-D-glucopyranoside, vanillic acid, p-coumaric acid, quercetin 3-O-{beta}-D-glucopyranoside (isoquercitrin) and kaempferol-3-O-{beta}-D-(6{sup -}E-p -coumaroyl) glucopyranoside (tiliroside), which was isolated as the major component. Their structures were elucidated on the basis of spectroscopic data such as IR, {sup 1}H and {sup 13}C NMR, including two-dimensional techniques. Tiliroside relaxed the guinea-pig ileum pre-contracted with KCl 40 mM (EC{sub 50} = 9.5 {+-} 1.0 x 10{sup -5} M), acetylcholine 10{sup -6} M (EC{sub 50} = 2.3 {+-} 0.9 x 10{sup -5} M) or histamine 10{sup -6} M (EC{sub 50} = 4.1 {+-} 1.0 x 10{sup -5} M) in a concentration-dependent manner. (author)

  2. Chemical constituents from Bakeridesia pickelii Monteiro (Malvaceae and the relaxant activity of kaempferol-3-O-beta-D-(6"-E-p -coumaroyl glucopyranoside on guinea-pig ileum

    Directory of Open Access Journals (Sweden)

    Danielly Albuquerque da Costa

    2007-08-01

    Full Text Available The phytochemical investigation of Bakeridesia pickelii Monteiro led to the isolation of seven compounds: beta-sitosterol, a mixture of sitosteryl-3-O-beta-D-glucopyranoside and stigmasteryl-3-O-beta-D-glucopyranoside, vanillic acid, p-coumaric acid, quercetin 3-O-beta-D-glucopyranoside (isoquercitrin and kaempferol-3-O-beta-D-(6"-E-p -coumaroyl glucopyranoside (tiliroside, which was isolated as the major component. Their structures were elucidated on the basis of spectroscopic data such as IR, ¹H and 13C NMR, including two-dimensional techniques. Tiliroside relaxed the guinea-pig ileum pre-contracted with KCl 40 mM (EC50 = 9.5 ± 1.0 x 10-5 M, acetylcholine 10-6 M (EC50 = 2.3 ± 0.9 x 10-5 M or histamine 10-6 M (EC50 = 4.1 ± 1.0 x 10-5 M in a concentration-dependent manner.

  3. Kaempferol triosides from Silphium perfoliatum.

    Science.gov (United States)

    el-Sayed, Nabil H; Wojcińska, Małgorzata; Drost-Karbowska, Krystyna; Matławska, Irena; Williams, Jeffrey; Mabry, Tom J

    2002-08-01

    Two apiose-containing kaempferol triosides, together with nine known flavonoids were isolated from the leaves of Silphium perfoliatum L. Their structures were elucidated by acid hydrolysis and spectroscopic methods including UV, LSI MS, FAB MS, CI MS, (1)H, (13)C and 2D-NMR, DEPT, HMQC and HMBC experiments. The two new compounds were identified as kaempferol 3-O-beta-D-apiofuranoside 7-O-alpha-L-rhamnosyl-(1"-->6"')-O-beta-D-galactopyranoside and kaempferol 3-O-beta-D-apiofuranoside 7-O-alpha-L-rhamnosyl-(1''''--> 6"')-O-beta-D (2"'-O-E-caffeoylgalactopyranoside).

  4. Kaempferol triosides from Reseda muricata.

    Science.gov (United States)

    El-Sayed, N H; Omara, N M; Yousef, A K; Farag, A M; Mabry, T J

    2001-06-01

    A flavonoid trioside and its coumaryl ester together with seven known flavonoids and five phenolic acids were isolated from the leaves of Reseda muricata. Their structures were elucidated by spectroscopic methods including UV, FAB MS, 1H, 13C and 2D-NMR, DEPT, HMBC and HMQC experiments. The two compounds were identified as kaempferol 3-O-beta-D-glucopyranosyl-(1''' --> 2'')-O-alpha-L-rhamnopyranoside 7-O-beta-D-glucopyranoside and kaempferol 3-O-beta-D-glucopyranosyl-(1''' --> 2'')-O-alpha-L rhamnopyranoside 7-O-beta-D-(6''''-O-E-coumarylglucopyranoside), respectively.

  5. Effect of pH on the complexation of kaempferol-4'-glucoside with three β-cyclodextrin derivatives: isothermal titration calorimetry and spectroscopy study.

    Science.gov (United States)

    Zheng, Yan; Dong, Li-Na; Liu, Min; Chen, Aiju; Feng, Shangcai; Wang, Bingquan; Sun, Dezhi

    2014-01-08

    The utilization of kaempferol and its glycosides in food and pharmaceutical industries could be improved by the formation of inclusion complexes with cyclodextrins at different pH. This study explores the complexation of kaempferol-4'-glucoside with sulfobutyl ether-β-cyclodextrin (SBE-β-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD), and methylated-β-cyclodextrin (M-β-CD) in phosphate buffer solutions of different pH using isothermal titration calorimetry, UV-vis absorption and proton nuclear magnetic resonance spectroscopy at 298.2 K. Experimental results showed that kaempferol-4'-glucoside binds with the three β- cyclodextrins in the same 1:1 stoichiometry. The rank order of stability constants is SBE-β-CD > HP-β-CD > M-β-CD at the same pH level and pH 6.0 > pH 7.4 > pH 9.0 for the same cyclodextrin. The binding of kaempferol-4'-glucoside with the three β-cyclodextrin derivatives is synergistically driven by enthalpy and entropy at pH 6.0 and enthalpy-driven at pH 7.4 and 9.0. The possible inclusion mode was that in the cavity of β-CD is included the planar benzopyranic-4-one part of the kaempferol-4'-glucoside.

  6. Kaempferol tetraglucosides from cabbage leaves.

    Science.gov (United States)

    Nielsen, J K; Nørbaek, R; Olsen, C E

    1998-12-01

    Four flavonol glycosides were isolated from a leaf extract of cabbage and characterized by chemical and spectroscopic methods including 1H and 13C NMR and negative ion FAB-MS. The common structure of the four compounds was kaempferol 3-O-beta-D-[beta-D-glucopyranosyl(1-->2)glucopyranoside]-7- O-beta-D-[beta-D-glucopyranosyl(1-->4)glucopyranoside]. This compound was found unmodified or acylated at C-2"' (outer glucose in sophorosyl moiety) with either sinapic acid, ferulic acid or caffeic acid. The possible role of diversity in glycosylation and acylation patterns of flavonol glycosides for plant defences against herbivores is discussed.

  7. [Two kaempferol triglycosides from pericarps of Sophora japonica L].

    Science.gov (United States)

    Tang, Y P; Lou, F C; Wang, J H

    2001-12-01

    To study the flavonol triglycosides in the pericarps of Sophora japonica. Various chromatographic techniques were used to isolate and purify the constituents. The structures were elucidated by chemical evidence and spectral analysis, especially by 2D NMR experiments. Two kaempferol triglycosides were isolated and identified as kaempferol 3-O-beta-D-sophoroside-7-O-alpha-L-rhamnoside and kaempferol 3-O-(2"-O-beta-D-glucosyl)-beta-D-rutinoside. Both of them were reported in S. japonica for the first time.

  8. Separation of patuletin-3-O-glucoside, astragalin, quercetin, kaempferol and isorhamnetin from Flaveria bidentis (L.) Kuntze by elution-pump-out high-performance counter-current chromatography.

    Science.gov (United States)

    Wei, Yun; Xie, Qianqian; Fisher, Derek; Sutherland, Ian A

    2011-09-09

    Flaveria bidentis (L.) Kuntze is an annual alien weed of Flaveria Juss. (Asteraceae) in China. Bioactive compounds, mainly flavonol glycosides and flavones from F. bidentis (L.) Kuntze, have been studied in order to utilize this invasive weed, Analytical high-performance counter-current chromatography (HPCCC) was successfully used to separate patuletin-3-O-glucoside, a mixture of hyperoside (quercetin-3-O-galactoside) and 6-methoxykaempferol-3-O-galactoside, astragalin, quercetin, kaempferol and isorhamnetin using two runs with different solvent system. Ethyl acetate-methanol-water (10:1:10, v/v) was selected by analytical HPCCC as the optimum phase system for the separation of patuletin-3-O-glucoside, a mixture of hyperoside and 6-methoxykaempferol-3-O-galactoside, and astragalin. A Dichloromethane-methanol-water (5:3:2, v/v) was used for the separation of quercetin, kaempferol and isorhamnetin. The separation was then scaled up: the crude extract (ca 1.5 g) was separated by preparative HPCCC, yielding 12 mg of patuletin-3-O-glucoside at a purity of 98.3%, yielding 9 mg of a mixture of hyperoside and 6-methoxykaempferol-3-O-galactoside constituting over 98% of the fraction, and 16 mg of astragalin (kaempferol-3-O-glucoside) at a purity of over 99%. The pump-out peaks are isorhanetin (98% purity), kaemferol (93% purity) and quercitin (99% purity). The chemical structure of patuletin-3-O-glucoside and astragalin were confirmed by MS and ¹H, ¹³C NMR. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Kaempferol, isorhamnetin and their glycosides in the flowers of Asclepias syriaca L.

    Science.gov (United States)

    Sikorska, M; Matławska, I

    2001-01-01

    The following flavonoid compounds have been isolated and identified from the flowers of Asclepias svriaca L.: kaempferol, kaempferol 7-O-beta-glucoside, kaempferol 3-O-beta-galactopyranoside, kaempferol 3-O-beta-xylopyranosyl (1-->2)-beta-galactopyranoside, kaempferol 3-O-beta-glucopyranosyl (1-->2)-beta-galactopyranoside, isorhamnetin, isorhamnetin 7-O-beta-glucoside, isorhamnetin 3-O-beta-galactoside and isorhamnetin 3-O-beta-xylopyranosyl (1-->2)-beta-galactopyranoside. Their structures were established by conventional (acid, enzymatic hydrolysis and H2O2 oxidation) and spectral analysis (UV, 1H NMR, 13C NMR).

  10. A new kaempferol triglycoside from Fagonia taeckholmiana: cytotoxic activity of its extracts.

    Science.gov (United States)

    Ibrahim, Lamyaa F; Kawashty, Salwa A; El-Hagrassy, Ali M; Nassar, Mahmoud I; Mabry, Tom J

    2008-01-14

    In addition to apigenin, apigenin 7-O-glucoside, kaempferol 3-O-glucoside, kaempferol 3,7-di-O-rhamnoside, quercetin, and quercetin 3-O-glucoside, the methanolic extract of Fagonia taeckholmiana afforded a new compound identified as kaempferol 3-O-beta-l-arabinopyranosyl-(1-->4)-alpha-l-rhamnopyranoside-7-O-alpha-l-rhamnopyranoside. Identification of the isolated compounds was based on chemical and spectroscopic analyses including UV, FABMS, (1)H, (13)C and 2D NMR, and DEPT. The cytotoxic activities of the compounds against several cancer cell lines were determined.

  11. Kaempferol glycosides in the flowers of carnation and their contribution to the creamy white flower color.

    Science.gov (United States)

    Iwashina, Tsukasa; Yamaguchi, Masa-atsu; Nakayama, Masayoshi; Onozaki, Takashi; Yoshida, Hiroyuki; Kawanobu, Shuji; Onoe, Hiroshi; Okamura, Masachika

    2010-12-01

    Three flavonol glycosides were isolated from the flowers of carnation cultivars 'White Wink' and 'Honey Moon'. They were identified from their UV, MS, 1H and 13C NMR spectra as kaempferol 3-O-neohesperidoside, kaempferol 3-O-sophoroside and kaempferol 3-O-glucosyl-(1 --> 2)-[rhamnosyl-(1 --> 6)-glucoside]. Referring to previous reports, flavonols occurring in carnation flowers are characterized as kaempferol 3-O-glucosides with additional sugars binding at the 2 and/or 6-positions of the glucose. The kaempferol glycoside contents of a nearly pure white flower and some creamy white flower lines were compared. Although the major glycoside was different in each line, the total kaempferol contents of the creamy white lines were from 5.9 to 20.9 times higher than the pure white line. Thus, in carnations, kaempferol glycosides surely contribute to the creamy tone of white flowers.

  12. Peracylated Glucosyl Kaempferols from Pasania dodonfifolia Leaf.

    Science.gov (United States)

    Chang, Chi-Chih; Lee, Shoei-Sheng

    2015-08-01

    Phytochemical investigation of the ethanolic extract of Pasania dodoniifolia leaf led to the isolation of four kaempferol 3-0-peracylated glucosides (1-4), together with four flavonoid glucosides (5-8), epicatechin (9), and (7S, 7'S, 8R, 8'R)-icariol A2 (10). Of these, kaempferol-3-O-(3",4"-di-O-acetyl-2"-O-(Z)-p- coumaroyl)-6"-O-(E)-p-coumaroyl)-beta-glucopyranoside (3) and 3-O-(3",4"-di-O-acetyl-2",6"-di-O-(Z)-p-coumaroyl)-beta-glucopyranoside (4) are new and their structures were elucidated by 2D NMR spectroscopic analyses and MS data.

  13. [Studies on the chemical constitutens of Vicia amoena Fisch].

    Science.gov (United States)

    Wei, F; Yan, W M

    1997-10-01

    One new flavonoide was isolated from Vicia amoena Fisch. On the basis of spectral (UV, MS, NMR) and chemical reactions, it was elucidated to be kaempferol-3-O-beta-D-mannoside, named amoenin(A3). Moreover, five known compounds have been isolated and identified as quercetin, kaempferol, quercetin-3-O-alpha-L-rhamoside, quercetin-3-O-beta-D-glucoside, kaempferol-3, 7-O-alpha-L-dirhamoside. The total flavonoides showed significant effects on inducing hyperlipidemia and increasing micro-blood vessel elasticity.

  14. Flavonoids and a neolignan glucoside from Guarea macrophylla (Meliaceae)

    International Nuclear Information System (INIS)

    Pereira, Cristiane; Barreto Junior, Cleber Bomfim; Kuster, Ricardo Machado; Simas, Naomi Kato; Sakuragui, Cassia Monica; Porzel, Andrea; Wessjohann, Ludger

    2012-01-01

    This work describes the phytochemical study of the methanol extract obtained from leaves of Guarea macrophylla, leading to the isolation and identification of three flavonoid glycosides (quercetin 3-O-β-D-glucopyranoside, quercetin 3-O-b-D-galactopyranoside, kaempferol 7-O-β-D-glucopyranoside) and a neolignan glucoside, dehydrodiconiferyl alcohol-4-b-D-glucoside. All compounds were identified by a combination of spectroscopic methods ( 1 H, 1D, 2D NMR, 13 C and UV), ESI-MS and comparison with the literature data. This is the first report of flavonoids in the genus Guarea and of a neolignan glucoside in the Meliaceae family. (author)

  15. Flavonoids and a neolignan glucoside from Guarea macrophylla (Meliaceae

    Directory of Open Access Journals (Sweden)

    Cristiane Pereira

    2012-01-01

    Full Text Available This work describes the phytochemical study of the methanol extract obtained from leaves of Guarea macrophylla, leading to the isolation and identification of three flavonoid glycosides (quercetin 3-O-β-D-glucopyranoside, quercetin 3-O-b-D-galactopyranoside, kaempferol 7-O-β-D-glucopyranoside and a neolignan glucoside, dehydrodiconiferyl alcohol-4-β-D-glucoside. All compounds were identified by a combination of spectroscopic methods (¹H, 1D, 2D NMR, 13C and UV, ESI-MS and comparison with the literature data. This is the first report of flavonoids in the genus Guarea and of a neolignan glucoside in the Meliaceae family.

  16. An Acylated Kaempferol Glycoside from Flowers of Foeniculum vulgare and F. Dulce

    OpenAIRE

    Soliman, Fathy M.; Shehata, Afaf H.; Khaleel, Amal E.; Ezzat, Shahera M.

    2002-01-01

    An acylated kaempferol glycoside, namely kaempferol-3-O-α-L-(2”,3”-di-E-pcoumaroyl)-rhamnoside (1) was isolated from the flowers of Foeniculum vulgare Mill. and F. dulce DC. It is thus isolated for the first time from family Apiaceae. In addition, the different organs of both plants afforded six flavonoid glycosides - namely afzelin (kaempferol-3-O-α-L-rhamnoside) (2), quercitrin (3), isorhamnetin-3-O-β-D-glucoside (4), isoquercitrin (5), rutin (6), and miquelianin (quercetin-3...

  17. Flavonoids and a neolignan glucoside from Guarea macrophylla (Meliaceae)

    OpenAIRE

    Pereira, Cristiane; Barreto Júnior, Cleber Bomfim; Kuster, Ricardo Machado; Simas, Naomi Kato; Sakuragui, Cassia Mônica; Porzel, Andrea; Wessjohann, Ludger

    2012-01-01

    This work describes the phytochemical study of the methanol extract obtained from leaves of Guarea macrophylla, leading to the isolation and identification of three flavonoid glycosides (quercetin 3-O-β-D-glucopyranoside, quercetin 3-O-b-D-galactopyranoside, kaempferol 7-O-β-D-glucopyranoside) and a neolignan glucoside, dehydrodiconiferyl alcohol-4-β-D-glucoside. All compounds were identified by a combination of spectroscopic methods (¹H, 1D, 2D NMR, 13C and UV), ESI-MS and com...

  18. New kaempferol 3,7-diglycosides from Asplenium ruta-muraria and Asplenium altajense.

    Science.gov (United States)

    Iwashina, Tsukasa; Kitajima, Junichi; Mizuno, Takayuki; Smirnov, Sergey V; Damdinsuren, Oyunchimeg; Kondo, Katsuhiko

    2015-03-01

    A flavonoid was isolated from the fronds of Asplenium ruta-muraria and A. altajense (Aspleniaceae) collected in the Altai Mountains and adjacent area. The compound was identified as kaempferol 3-O-β-[(6'''-E-caffeoylglucopyranosyl)-(1-->3)-glucopyranoside]-7-O-β-glucopyranoside (1) by UV, 1H and 13C NMR spectroscopy, LC-MS, and acid and alkaline hydrolyses. Another flavonoid (2) was isolated from A. altajense, as a minor compound, together with 1 and identified as deacylated compound 1, i.e. kaempferol 3-O-laminaribioside-7-O-glucoside. They were found in nature for the first time.

  19. An Acylated Kaempferol Glycoside from Flowers of Foeniculum vulgare and F. Dulce

    Directory of Open Access Journals (Sweden)

    Shahera M. Ezzat

    2002-02-01

    Full Text Available An acylated kaempferol glycoside, namely kaempferol-3-O-α-L-(2”,3”-di-E-pcoumaroyl-rhamnoside (1 was isolated from the flowers of Foeniculum vulgare Mill. and F. dulce DC. It is thus isolated for the first time from family Apiaceae. In addition, the different organs of both plants afforded six flavonoid glycosides - namely afzelin (kaempferol-3-O-α-L-rhamnoside (2, quercitrin (3, isorhamnetin-3-O-β-D-glucoside (4, isoquercitrin (5, rutin (6, and miquelianin (quercetin-3-O-β-D-glucuronide (7. Structure elucidation of the above mentioned flavonoids was achieved by UV, 1H- and 13C-NMR, 1H-1H COSY, HMQC and EI-MS.

  20. Kaempferol glycosides from Siparuna apiosyce.

    Science.gov (United States)

    Leitão, G G; Soares, S S; Brito, T D; Delle Monache, F

    2000-11-01

    The kaempferol derivative 3,7-di-O-methyl-4'-O-beta-[alpha rhamnosyl (1 --> 6)]-glucopyranoside (siparunoside) was isolated from the leaves of Sparuna apiosyce. Its structure was established by extensive NMR studies. The alkaloids reticuline and liriodenine were also isolated from the leaves along with the kaempferol derivative tiliroside. Benzylisoquinoline alkaloids were isolated from the wood (liriodenine) and wood bark (liriodenine, laurotetanine, N-methyl-laurotetanine, reticuline), together with a mixture of cis and trans-N-feruloyltyramines. 3,7,4'-tri-O-methylkaempferol was isolated from all organs.

  1. Biochemical and catalytic properties of two intracellular beta-glucosidases from the fungus Penicillium decumbens active on flavonoid glucosides

    DEFF Research Database (Denmark)

    Mamma, D.; Hatzinikolaou, D.G.; Christakopoulos, Paul

    2004-01-01

    ,6)-beta-glucosides as well as aryl beta-glucosides. Determination of k(cat)/K-m revealed that G(II) hydrolyzed 3-8 times more efficiently the above-mentioned substrates. The ability of G(I) and G(II) to deglycosylate various flavonoid glycosides was also investigated. Both enzymes were active against...... flavonoids glycosylated at the 7 position but G(II) hydrolyzed them 5 times more efficiently than G(I). Of the flavanols tested, both enzymes were incapable of hydrolyzing quercetrin and kaempferol-3-glucoside. The main difference between G(I) and G(II) as far as the hydrolysis of flavanols is concerned...

  2. Formation of flavone di-O-glucosides using a glycosyltransferase from Bacillus cereus.

    Science.gov (United States)

    Ahn, Byoung Chan; Kim, Bong Gyu; Jeon, Young Min; Lee, Eun Jeong; Lim, Yoongho; Ahn, Joong-Hoon

    2009-04-01

    Microbial UDP-glycosyltransferases can convert many small lipophilic compounds into glycons using uridinediphosphate- activated sugars. The glycosylation of flavonoids affects solubility, stability, and bioavailability. The gene encoding the UDP-glycosyltransferase from Bacillus cereus, BcGT-3, was cloned by PCR and sequenced. BcGT-3 was expressed in Escherichia coli BL21 (DE3) with a glutathione S-transferase tag and purified using a glutathione Stransferase affinity column. BcGT-3 was tested for activity on several substrates including genistein, kaempferol, luteolin, naringenin, and quercetin. Flavonols were the best substrates for BcGT-3. The enzyme dominantly glycosylated the 3-hydroxyl group, but the 7-hydroxyl group was glycosylated when the 3-hydroxyl group was not available. The kaempferol reaction products were identified as kaempferol-3-O-glucoside and kaempferol- 3,7-O-diglucoside. Kaempferol was the most effective substrate tested. Based on HPLC, LC/MS, and NMR analyses of the reaction products, we conclude that BcGT-3 can be used for the synthesis of kaempferol 3,7-O-diglucose.

  3. Transport of trans-tiliroside (kaempferol-3-β-D-(6"-p-coumaroyl-glucopyranoside) and related flavonoids across Caco-2 cells, as a model of absorption and metabolism in the small intestine.

    Science.gov (United States)

    Luo, Zijun; Morgan, Michael R A; Day, Andrea J

    2015-01-01

    1. Absorption and metabolism of tiliroside (kaempferol 3-β-D-(6"-p-coumaroyl)-glucopyranoside) and its related compounds kaempferol, kaempferol-3-glucoside and p-coumaric acid were investigated in the small intestinal Caco-2 cell model. Apparent permeation (Papp) was determined as 0.62 × 10(-6) cm/s, 3.1 × 10(-6) cm/s, 0 and 22.8 × 10(-6) cm/s, respectively. 2. Mechanistic study showed that the transportation of tiliroside, kaempferol-3-glucoside and p-coumaric acid in Caco-2 model were transporter(s) involved, while transportation of kaempferol was solely by passive diffusion mechanism. 3. Efflux transporters, multi-drug-resistance-associated protein-2 (MRP2), were shown to play a role in limiting the uptake of tiliroside. Inhibitors of MRP2, (MK571 and rifampicin) and co-incubation with kaempferol (10 μM), increased transfer from the apical to the basolateral side by three to five fold. 4. Metabolites of kaempferol-3-glucoside and p-coumaric acid were not detected in the current Caco-2 model, while tiliroside was metabolised to a limited extent, with two tiliroside mono-glucuronides identified; and kaempferol was metabolised to a higher extent, with three mono-glucuronides and two mono-sulfates identified. 5. In conclusion, tiliroside was metabolised and transported across Caco-2 cell membrane to a limited extent. Transportation could be increased by applying MRP2 inhibitors or co-incubation with kaempferol. It is proposed that tiliroside can be absorbed by human; future pharmacokinetics studies are warranted in order to determine the usefulness of tiliroside as a bioactive agent.

  4. Reactive oxygen species scavenging activity of flavone glycosides from Melilotus neapolitana.

    Science.gov (United States)

    Fiorentino, Antonio; D'Abrosca, Brigida; Pacifico, Severina; Golino, Annunziata; Mastellone, Claudio; Oriano, Palma; Monaco, Pietro

    2007-02-28

    One new and six known flavone glycosides were isolated from the MeOH extract of Melilotus neapolitana Ten. The new compound, identified as 7-O-beta-D-glucopyranosyloxy-4',5-dihydroxy-3-[O-alpha-L-rhamnopyranosyl-(1-->6)-3-O-beta-D-glucopyranosyloxy]flavone (1) by 1D and 2D NMR techniques and mass spectra, was isolated along with kaempferol-3-O-rutinoside (2), kaempferol-3-O-glucoside (3), rutin (4), quercetin-3-O-glucoside (5), isorhamnetin-3-O-rutinoside (6), and isorhamnetin-3-O-glucoside (7). The antioxidant and radical scavenging activities of these compounds and the whole crude methanol extract were evaluated. The organic extract can inhibit MDA marker's synthesis by 57%. All the metabolites displayed good reducing power, with the kaempferol (2,3) and isorhamnetin derivatives (6,7) being less active than the corresponding quercetin derivatives 4,5.

  5. Iridoid glucosides from Veronica hederifolia.

    Science.gov (United States)

    Harput, Ummuhan Sebnem; Saracoglu, Iclal; Nagatsu, Akito; Ogihara, Yukio

    2002-08-01

    A new iridoid glucoside, urphoside A, and six known iridoid glucosides, pikuroside, aucubin, veronicoside, catalposide, amphicoside, and verminoside, were isolated from Veronica hederifolia together with a known megastigmane glucoside, 3-hydroxy-5,6-epoxy-beta-ionol-9-O-beta-D-glucopyranoside, and a hexitol, dulcitol. The structures of the isolated compounds were established by the extensive 1D- and 2D-NMR spectroscopy.

  6. Kaempferol inhibits thrombosis and platelet activation.

    Science.gov (United States)

    Choi, Jun-Hui; Park, Se-Eun; Kim, Sung-Jun; Kim, Seung

    2015-08-01

    The objectives of the present study were to investigate whether kaempferol affects pro-coagulant proteinase activity, fibrin clot formation, blood clot and thrombin (or collagen/epinephrine)-stimulated platelet activation, thrombosis, and coagulation in ICR (Imprinting Control Region) mice and SD (Sprague-Dawley) rats. Kaempferol significantly inhibited the enzymatic activities of thrombin and FXa by 68 ± 1.6% and 52 ± 2.4%, respectively. Kaempferol also inhibited fibrin polymer formation in turbidity. Microscopic analysis was performed using a fluorescent conjugate. Kaempferol completely attenuated phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38, c-Jun N-terminal kinase (JNK) 1/2, and phosphoinositide 3-kinase (PI3K)/PKB (AKT) in thrombin-stimulated platelets and delayed aggregation time (clotting) by 34.6% in an assay of collagen/epinephrine-stimulated platelet activation. Moreover, kaempferol protected against thrombosis development in 3 animal models, including collagen/epinephrine- and thrombin-induced acute thromboembolism models and an FeCl3-induced carotid arterial thrombus model. The ex vivo anticoagulant effect of kaempferol was further confirmed in ICR mice. This study demonstrated that kaempferol may be clinically useful due to its ability to reduce or prevent thrombotic challenge. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  7. Iridoid Glucosides from Eremostachys moluccelloides

    DEFF Research Database (Denmark)

    Calis, Ihsan; Güvenc, Aysegül; Armagan, Metin

    2007-01-01

    From the aerial parts of Eremostachys moluccelloides, a new iridoid glucoside, lamalbidic acid (7), was isolated together with six known iridoid glucosides, 5-desoxysesamoside (1), 6β-hydroxy-7-epi-loganin (2), lamalbide (3), shanzhiside methyl ester (4), sesamoside (5) and 5-deoxypulchelloside I...

  8. Selective methylation of kaempferol via benzylation and deacetylation of kaempferol acetates

    OpenAIRE

    Mei, Qinggang; Wang, Chun; Yuan, Weicheng; Zhang, Guolin

    2015-01-01

    A strategy for selective mono-, di- and tri-O-methylation of kaempferol, predominantly on the basis of selective benzylation and controllable deacetylation of kaempferol acetates, was developed. From the selective deacetylation and benzylation of kaempferol tetraacetate (1), 3,4′,5,-tri-O-acetylkaempferol (2) and 7-O-benzyl-3,4′5,-tri-O-acetylkaempferol (8) were obtained, respectively. By controllable deacetylation and followed selective or direct methylation of these two intermediates, eight...

  9. Preparative isolation and purification of four flavonoids from the petals of Nelumbo nucifera by high-speed counter-current chromatography.

    Science.gov (United States)

    Xingfeng, Guo; Daijie, Wang; Wenjuan, Duan; Jinhua, Du; Xiao, Wang

    2010-01-01

    Flavonoids, the primary constituents of the petals of Nelumbo nucifera, are known to have antioxidant properties and antibacterial bioactivities. However, efficient methods for the preparative isolation and purification of flavonoids from this plant are not currently available. To develop an efficient method for the preparative isolation and purification of flavonoids from the petals of N. nucifera by high-speed counter-current chromatography (HSCCC). Following an initial clean-up step on a polyamide column, HSCCC was utilised to separate and purify flavonoids. Purities and identities of the isolated compounds were established by HPLC-PAD, ESI-MS, (1)H-NMR and (13)C-NMR. The separation was performed using a two-phase solvent system composed of ethyl acetate-methanol-water-acetic acid (4 : 1 : 5 : 0.1, by volume), in which the upper phase was used as the stationary phase and the lower phase was used as the mobile phase at a flow-rate of 1.0 mL/min in the head-to-tail elution mode. Ultimately, 5.0 mg syringetin-3-O-beta-d-glucoside, 6.5 mg quercetin-3-O-beta-d-glucoside, 12.8 mg isorhamnetin-3-O-beta-d-glucoside and 32.5 mg kaempferol-3-O-beta-d-glucoside were obtained from 125 mg crude sample. The combination of HSCCC with a polyamide column is an efficient method for the preparative separation and purification of flavonoids from the petals of N. nucifera. (c) 2009 John Wiley & Sons, Ltd.

  10. Kaempferol and Kaempferol Rhamnosides with Depigmenting and Anti-Inflammatory Properties

    Directory of Open Access Journals (Sweden)

    Jae Youl Cho

    2011-04-01

    Full Text Available The objective of this study was to examine the biological activity of kaempferol and its rhamnosides. We isolated kaempferol (1, a-rhamnoisorobin (2, afzelin (3, and kaempferitrin (4 as pure compounds by far-infrared (FIR irradiation of kenaf (Hibiscus cannabinus L. leaves. The depigmenting and anti-inflammatory activity of the compounds was evaluated by analyzing their structure-activity relationships. The order of the inhibitory activity with regard to depigmentation and nitric oxide (NO production was kaempferol (1 > a-rhamnoisorobin (2 > afzelin (3 > kaempferitrin (4. However, a-rhamnoisorobin (2 was more potent than kaempferol (1 in NF-kB-mediated luciferase assays. From these results, we conclude that the 3-hydroxyl group of kaempferol is an important pharmacophore and that additional rhamnose moieties affect the biological activity negatively.

  11. Development of Validated High-performance Thin-layer Chromatography Method for Simultaneous Determination of Quercetin and Kaempferol in Thespesia populnea.

    Science.gov (United States)

    Panchal, Hiteksha; Amin, Aeshna; Shah, Mamta

    2017-01-01

    Thespesia populnea L. (Family: Malvaceae) is a well-known medicinal plant distributed in tropical regions of the world and cultivated in South Gujarat and indicated to be useful in cutaneous affections, psoriasis, ringworm, and eczema. Bark and fruits are indicated in the diseases of skin, urethritis, and gonorrhea. The juice of fruits is employed in treating certain hepatic diseases. The plant is reported to contain flavonoids, quercetin, kaempferol, gossypetin, Kaempferol-3-monoglucoside, β-sitosterol, kaempferol-7-glucoside, and gossypol. T. populnea is a common component of many herbal and Ayurvedic formulation such as Kamilari and Liv-52. The present study aimed at developing validated and reliable high-performance thin layer chromatography (HPTLC) method for the analysis of quercetin and kaempferol simultaneously in T. populnea . The method employed thin-layer chromatography aluminum sheets precoated with silica gel as the stationary phase and toluene: ethyl acetate: formic acid (6:4:0.3 v/v/v) as the mobile phase, which gave compact bands of quercetin and kaempferol. Linear regression data for the calibration curves of standard quercetin and kaempferol showed a good linear relationship over a concentration range of 100-600 ng/spot and 500-3000 ng/spot with respect to the area and correlation coefficient (R2) was 0.9955 and 0.9967. The method was evaluated regarding accuracy, precision, selectivity, and robustness. Limits of detection and quantitation were recorded as 32.06 and 85.33 ng/spot and 74.055 and 243.72 ng/spot for quercetin and kaempferol, respectively. We concluded that this method employing HPTLC in the quantitative determination of quercetin and kaempferol is efficient, simple, accurate, and validated.

  12. An Apoplastic β-Glucosidase is Essential for the Degradation of Flavonol 3-O-β-Glucoside-7-O-α-Rhamnosides in Arabidopsis.

    Science.gov (United States)

    Roepke, Jonathon; Gordon, Harley O W; Neil, Kevin J A; Gidda, Satinder; Mullen, Robert T; Freixas Coutin, José A; Bray-Stone, Delaney; Bozzo, Gale G

    2017-06-01

    Flavonol bisglycosides accumulate in plant vegetative tissues in response to abiotic stress, including simultaneous environmental perturbations (i.e. nitrogen deficiency and low temperature, NDLT), but disappear with recovery from NDLT. Previously, we determined that a recombinant Arabidopsis β-glucosidase (BGLU), BGLU15, hydrolyzes flavonol 3-O-β-glucoside-7-O-α-rhamnosides and flavonol 3-O-β-glucosides, forming flavonol 7-O-α-rhamnosides and flavonol aglycones, respectively. In this study, the transient expression of a BGLU15-Cherry fusion protein in onion epidermal cells demonstrated that BGLU15 was localized to the apoplast. Analysis of BGLU15 T-DNA insertional inactivation lines (bglu15-1 and bglu15-2) revealed negligible levels of BGLU15 transcripts, whereas its paralogs BGLU12 and BGLU16 were expressed in wild-type and bglu15 plants. The recombinant BGLU16 did not hydrolyze quercetin 3-O-β-glucoside-7-O-α-rhamnoside or rhamnosylated flavonols, but was active with the synthetic substrate, p-nitrophenyl-β-d-glucoside. In addition, shoots of both bglu15 mutants contained negligible flavonol 3-O-β-glucoside-7-O-α-rhamnoside hydrolase activity, whereas this activity increased by 223% within 2 d of NDLT recovery in wild-type plants. The levels of flavonol 3-O-β-glucoside-7-O-α-rhamnosides and quercetin 3-O-β-glucoside were high and relatively unchanged in shoots of bglu15 mutants during recovery from NDLT, whereas rapid losses were apparent in wild-type shoots. Moreover, losses of two flavonol 3-O-β-neohesperidoside-7-O-α-rhamnosides and kaempferol 3-O-α-rhamnoside-7-O-α-rhamnoside were evident during recovery from NDLT, regardless of whether BGLU15 was present. A spike in a kaempferol 7-O-α-rhamnoside occurred with stress recovery, regardless of germplasm, suggesting a contribution from hydrolysis of kaempferol 3-O-β-neohesperidoside-7-O-α-rhamnosides and/or kaempferol 3-O-α-rhamnoside-7-O-α-rhamnoside by hitherto unknown mechanisms. Thus

  13. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae

    OpenAIRE

    Duan, Lijin; Ding, Wentao; Liu, Xiaonan; Cheng, Xiaozhi; Cai, Jing; Hua, Erbing; Jiang, Huifeng

    2017-01-01

    Background Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. Methods In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. Results First...

  14. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae.

    Science.gov (United States)

    Duan, Lijin; Ding, Wentao; Liu, Xiaonan; Cheng, Xiaozhi; Cai, Jing; Hua, Erbing; Jiang, Huifeng

    2017-09-26

    Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. Firstly, a high efficient flavonol synthases (FLS) from Populus deltoides was introduced into the biosynthetic pathway of kaempferol. Secondly, a S. cerevisiae recombinant was constructed for de novo synthesis of kaempferol, which generated about 6.97 mg/L kaempferol from glucose. To further promote kaempferol production, the acetyl-CoA biosynthetic pathway was overexpressed and p-coumarate was supplied as substrate, which improved kaempferol titer by about 23 and 120%, respectively. Finally, a fed-batch process was developed for better kaempferol fermentation performance, and the production reached 66.29 mg/L in 40 h. The titer of kaempferol in our engineered yeast is 2.5 times of the highest reported titer. Our study provides a possible strategy to produce kaempferol using microbial cell factory.

  15. Kaempferol and inflammation: From chemistry to medicine.

    Science.gov (United States)

    Devi, Kasi Pandima; Malar, Dicson Sheeja; Nabavi, Seyed Fazel; Sureda, Antoni; Xiao, Jianbo; Nabavi, Seyed Mohammad; Daglia, Maria

    2015-09-01

    Inflammation is an important process of human healing response, wherein the tissues respond to injuries induced by many agents including pathogens. It is characterized by pain, redness and heat in the injured tissues. Chronic inflammation seems to be associated with different types of diseases such as arthritis, allergies, atherosclerosis, and even cancer. In recent years natural product based drugs are considered as the novel therapeutic strategy for prevention and treatment of inflammatory diseases. Among the different types of phyto-constituents present in natural products, flavonoids which occur in many vegetable foods and herbal medicines are considered as the most active constituent, which has the potency to ameliorate inflammation under both in vitro and in vivo conditions. Kaempferol is a natural flavonol present in different plant species, which has been described to possess potent anti-inflammatory properties. Despite the voluminous literature on the anti-inflammatory effects of kaempferol, only very limited review articles has been published on this topic. Hence the present review is aimed to provide a critical overview on the anti-inflammatory effects and the mechanisms of action of kaempferol, based on the current scientific literature. In addition, emphasis is also given on the chemistry, natural sources, bioavailability and toxicity of kaempferol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Kaempferol and Kaempferol Rhamnosides with Depigmenting and Anti-Inflammatory Properties

    OpenAIRE

    Rho, Ho Sik; Ghimeray, Amal Kumar; Yoo, Dae Sung; Ahn, Soo Mi; Kwon, Sun Sang; Lee, Keun Ha; Cho, Dong Ha; Cho, Jae Youl

    2011-01-01

    The objective of this study was to examine the biological activity of kaempferol and its rhamnosides. We isolated kaempferol (1), a-rhamnoisorobin (2), afzelin (3), and kaempferitrin (4) as pure compounds by far-infrared (FIR) irradiation of kenaf (Hibiscus cannabinus L.) leaves. The depigmenting and anti-inflammatory activity of the compounds was evaluated by analyzing their structure-activity relationships. The order of the inhibitory activity with regard to depigmentation and nitric oxide ...

  17. Complete LC/MS analysis of a Tinnevelli senna pod extract and subsequent isolation and identification of two new benzophenone glucosides.

    Science.gov (United States)

    Terreaux, Christian; Wang, Qi; Ioset, Jean-Robert; Ndjoko, Karine; Grimminger, Wolf; Hostettmann, Kurt

    2002-04-01

    The hydroalcoholic extract of Tinnevelli senna is widely used as a laxative phytomedicine. In order to improve the knowledge of the chemical composition of this extract, LC/MS and LC/MS(n) studies were performed, allowing the on-line identification of most of the known constituents, i. e., flavonoids, anthraquinones and the typical dianthronic sennosides. However, the identity of four compounds could not be ascertained on-line under the given LC/MS conditions. These substances were isolated and their structures elucidated as kaempferol, the naphthalene derivative tinnevellin 8-glucoside and two new carboxylated benzophenone glucosides.

  18. A new kaempferol trioside from Silphium perfoliatum.

    Science.gov (United States)

    Feng, Wei-Sheng; Pei, Yuan-Yuan; Zheng, Xiao-Ke; Li, Chun-Ge; Ke, Ying-Ying; Lv, Yan-Yan; Zhang, Yan-Li

    2014-01-01

    A new apiose-containing kaempferol trioside, kaempferol-3-O-α-L-rhamnosyl-(1‴ → 6″)-O-β-D-galactopyranosyl-7-O-β-D-apiofuranoside, along with 16 known compounds, were isolated from 50% acetone extract of Silphium perfoliatum L. Their structures were elucidated by acid hydrolysis and spectroscopic techniques including UV, IR, MS, ¹H, ¹³C, and 2D-NMR. In addition, the pharmacological activity of compound 1 was tested with HepG2 and Balb/c mice (splenic lymphocytes and thymic lymphocytes) in vitro, and it exhibited inhibitory effect on the proliferation of HepG2 cells and showed the immunosuppressive activity.

  19. Kaempferol, a mutagenic flavonol from Helichrysum simillimum.

    Science.gov (United States)

    Elgorashi, Ee; van Heerden, Fr; van Staden, J

    2008-11-01

    Helichrysum simillimum is native to South Africa. It is used for the treatment of coughs, colds, fever, infections, headache, and menstrual pain. Extracts of this species showed mutagenic effects in the Salmonella/microsome assay. The aim of this study was to isolate and determine the mutagenic constituents of H. simillimum. Bioassay-guided fractionation of 90% aqueous methanol extracts, using Salmonella typhimurium TA98, led to the isolation of the flavonol kaempferol.

  20. Effect of Kaempferol Pretreatment on Myocardial Injury in Rats.

    Science.gov (United States)

    Vishwakarma, Anamika; Singh, Thakur Uttam; Rungsung, Soya; Kumar, Tarun; Kandasamy, Arunvikram; Parida, Subhashree; Lingaraju, Madhu Cholenahalli; Kumar, Ajay; Kumar, Asok; Kumar, Dinesh

    2018-01-20

    The present study was undertaken to evaluate the effect of kaempferol in isoprenaline (ISP)-induced myocardial injury in rats. ISP was administered subcutaneously for two subsequent days to induce myocardial injury. Assessment of myocardial injury was done by estimation of hemodynamic functions, myocardial infarcted area, cardiac injury markers, lipid profile, oxidative stress, pro-inflammatory cytokines and histopathology of heart and liver. Rats pretreated with kaempferol showed reduction in the myocardial infarcted area and heart rate. However, no improvement was observed in change in body weight, mean arterial, systolic and diastolic blood pressure. Kaempferol showed significant decrease in serum LDH, CK-MB, troponin-I and lipid profile. However, highest dose of kaempferol did not reduce the serum triglyceride level. Further, antioxidant enzymes, SOD and catalase, were also higher. However, reduced glutathione, serum SGOT and creatinine did not show any improvement. Kaempferol showed reduction in MDA level. Kaempferol at highest dose showed reduction in pro-MMP-2 expression and MMP-9 level. mRNA expression level of TNF-α was not different in kaempferol-pretreated myocardial injured rats with ISP-alone group. Pretreatment with kaempferol at highest dose showed mild mononuclear infiltration and degenerative changes in heart tissue section of myocardial injured rats. Rats pretreated with kaempferol at higher concentration showed normal cordlike arrangement of hepatocytes with moderate swelling of hepatocytes (vacuolar degeneration) around the central vein. Study suggests that kaempferol attenuated lipid profile, infarcted area and oxidative stress in ISP-induced myocardial injury in rats.

  1. Kaempferol tri- and tetraglycosides from the flowers of Clematis cultivar.

    Science.gov (United States)

    Sakaguchi, Keisuke; Kitajima, Junichi; Iwashina, Tsukasa

    2012-02-01

    A new kaempferol glycoside, kaempferol 3-O-alpha-rhamnopyranosyl-(1 --> 2)-[alpha-rhamnopyranosyl-(1 --> 6)-beta-glucopyranoside]-7-O-beta-glucopyranoside (2) was isolated from the flowers of Clematis cultivar "Jackmanii Superba", together with a known kaempferol 3-O-alpha-rhamnopyranosyl-(1 --> 6)-beta-glucopyranoside-7-O-beta-glucopyranoside (1). The chemical structures of the isolated glycosides were established by UV, LC-MS, characterization of acid hydrolysates, and 1H and 13C NMR spectroscopy.

  2. Roles of Hydroxynitrile Glucosides in Barley

    DEFF Research Database (Denmark)

    Roelsgaard, Pernille Sølvhøj

    on barley (Hordeum vulgare). Barley accumulates five hydroxynitrile glucosides, including one cyanogenic glucoside, in the epidermal cell layer. Cyanogenic glucosides are classically known as hydrogen cyanide-releasing defense compounds which act against generalist insects and herbivores. However...... is proposed. The results obtained in this Ph.D. study provide a unique insight demonstrating that hydroxynitrile glucosides play a far more complex role in barley defense against and susceptibility to Bgh than previously described. Future studies can build on the platforms established in this study to provide...

  3. Kaempferol, a flavonoid compound from Gynura medica induced ...

    African Journals Online (AJOL)

    Background: Kaempferol, a natural flavonoid, has been shown to induce cancer cell apoptosis and cell growth inhibition in several tumors. Previously we have conducted a full investigation on the chemical constituents of Gynura medica, kaempferol and its glycosides are the major constituents of G. medica. Here we ...

  4. Kaempferol impedes IL-32-induced monocyte-macrophage differentiation.

    Science.gov (United States)

    Nam, Sun-Young; Jeong, Hyun-Ja; Kim, Hyung-Min

    2017-08-25

    Kaempferol possesses a wide range of therapeutic properties, including antioxidant, anti-inflammatory, and anticancer properties. The present study sought to evaluate the effects and possible pharmacological mechanisms of kaempferol on interleukin (IL)-32-induced monocyte-macrophage differentiation. In this study, we performed flow cytometry assay, immunocytochemical staining, quantitative real-time PCR, enzyme-linked immuno sorbent assay, caspase-1 assay, and Western blotting to observe the effects and underlying mechanisms of kaempferol using the human monocyte cell line THP-1. The flow cytometry, immunocytochemical staining, and real-time PCR results show that kaempferol attenuated IL-32-induced monocyte differentiation to product macrophage-like cells. Kaempferol decreased the production and mRNA expression of pro-inflammatory cytokines, in this case thymic stromal lymphopoietin (TSLP), IL-1β, tumor necrosis factor (TNF)-α, and IL-8. Furthermore, kaempferol inhibited the IL-32-induced activation of p38 and nuclear factor-κB in a dose-dependent manner in THP-1 cells. Kaempferol also ameliorated the lipopolysaccharide-induced production of the inflammatory mediators TSLP, IL-1β, TNF-α, IL-8, and nitric oxide of macrophage-like cells differentiated by IL-32. In brief, our findings may provide new mechanistic insights into the anti-inflammatory effects of kaempferol. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of Kaempferol on in vitro Maturation of Porcine Oocytes

    Directory of Open Access Journals (Sweden)

    Delia Orlovschi

    2014-10-01

    Full Text Available We investigated the effects of kaempferol on porcine oocytes in vitro maturation. Kaempferol is one the most studied flavonoids and is in research attention on animal cells until 1979. Flavonoids are known as polyphenolic compounds synthesized by the plants. Cumulus-oocyte complexes aspirated from the ovaries were maturated in vitro, fertilized and embryos were cultured in a defined conditioned medium with 5, 15, 25, 35 µg/ml or without kaempferol supplementation. During in vitro maturation with highest kaempferol concentration (35 µg/ml distinct significantly increase the rate of cumulus cell expansion in grad 4 (42.74 vs. 50.96%, p<0.01. The same, addition of 5 µg/ml kaempferol to the in vitro maturation medium increase significantly the rate of expansion compared to 25 µg/ml (42.20 vs. 48.67%, p<0.05 and increase distinct significantly the rate of expansion compared to 35 µg/ml (42.20 vs. 50.96%, p<0.01. Kaempferol supplementation (15 µg/ml vs. 35 µg/ml of the in vitro fertilization medium led to a significant increase in the rate of 4-8 cells formation (0.69 vs. 4.96%, p<0.05. In conclusion, these results demonstrate that supplementation with kaempferol during in vitro maturation improved the developmental competence of porcine oocytes.

  6. Radiosensitization of non-small cell lung cancer by kaempferol.

    Science.gov (United States)

    Kuo, Wei-Ting; Tsai, Yuan-Chung; Wu, His-Chin; Ho, Yung-Jen; Chen, Yueh-Sheng; Yao, Chen-Han; Yao, Chun-Hsu

    2015-11-01

    The aim of the present study was to determine whether kaempferol has a radiosensitization potential for lung cancer in vitro and in vivo. The in vitro radio-sensitization activity of kaempferol was elucidated in A-549 lung cancer cells by using an MTT (3-(4 5-dimethylthiazol-2-yl)-25-diphenyl-tetrazolium bromide) assay, cell cycle analysis and clonogenic assay. The in vivo activity was evaluated in the BALB/c nude mouse xenograft model of A-549 cells by hematoxylin and eosin staining and immunohistochemistry, and the tumor volume was recorded. Protein levels of the apoptotic pathway were detected by western blot analysis. Treatment with kaempferol inhibited the growth of A-549 cells through activation of apoptotic pathway. However, the same doses did not affect HFL1 normal lung cell growth. Kaempferol induced G2/M cell cycle arrest and the enhancement of radiation-induced death and clonogenic survival inhibition. The in vivo data showed that kaempferol increased tumor cell apoptosis and killing of radiation. In conclusion, the findings demonstrated that kaempferol increased tumor cell killing by radiation in vitro and in vivo through inhibition of the AKT/PI3K and ERK pathways and activation of the mitochondria apoptosis pathway. The results of the present study provided solid evidence that kaempferol is a safe and potential radiosensitizer.

  7. Kaempferol inhibits Entamoeba histolytica growth by altering cytoskeletal functions.

    Science.gov (United States)

    Bolaños, Verónica; Díaz-Martínez, Alfredo; Soto, Jacqueline; Marchat, Laurence A; Sanchez-Monroy, Virginia; Ramírez-Moreno, Esther

    2015-11-01

    The flavonoid kaempferol obtained from Helianthemum glomeratum, an endemic Mexican medicinal herb used to treat gastrointestinal disorders, has been shown to inhibit growth of Entamoeba histolytica trophozoites in vitro; however, the mechanisms associated with this activity have not been documented. Several works reported that kaempferol affects cytoskeleton in mammalian cells. In order to gain insights into the action mechanisms involved in the anti-amoebic effect of kaempferol, here we evaluated the effect of this compound on the pathogenic events driven by the cytoskeleton during E. histolytica infection. We also carried out a two dimensional gel-based proteomic analysis to evidence modulated proteins that could explain the phenotypical changes observed in trophozoites. Our results showed that kaempferol produces a dose-dependent effect on trophozoites growth and viability with optimal concentration being 27.7 μM. Kaempferol also decreased adhesion, it increased migration and phagocytic activity, but it did not affect erythrocyte binding nor cytolytic capacity of E. histolytica. Congruently, proteomic analysis revealed that the cytoskeleton proteins actin, myosin II heavy chain and cortexillin II were up-regulated in response to kaempferol treatment. In conclusion, kaempferol anti-amoebic effects were associated with deregulation of proteins related with cytoskeleton, which altered invasion mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention

    OpenAIRE

    Chen, Allen Y.; Chen, Yi Charlie

    2012-01-01

    Kaempferol is a polyphenol antioxidant found in fruits and vegetables. Many studies have described the beneficial effects of dietary kaempferol in reducing the risk of chronic diseases, especially cancer. Epidemiological studies have shown an inverse relationship between kaempferol intake and cancer. Kaempferol may help by augmenting the body’s antioxidant defense against free radicals, which promote the development of cancer. At the molecular level, kaempferol has been reported to modulate a...

  9. Kaempferol and its glycosides in the seeds hair of Asclepias syriaca L.

    Science.gov (United States)

    Sikorska, M; Matławska, I; Frański, R

    2001-01-01

    The following flavonoid compounds have been isolated and identified from the seeds hair of Asclepias syriaca L.: kaempferol, kaempferol 3-O-beta-galactopyranoside, kaempferol 3-O-beta-xylopyranosyl (1 --> 2)-beta-galactopyranoside, kaempferol 3-O-beta-glucopyranosyl (1 --> 2)-beta-galactopyranoside, kaempferol 3-O-alpha-rhamnopyranosyl (1 --> 2)-beta-galactopyranoside. Their structures were established by acid hydrolysis, H2O2 oxidation and spectral analysis (UV, 1H, 3C NMR, MS).

  10. Hepatoprotective effect of kaempferol against alcoholic liver injury in mice.

    Science.gov (United States)

    Wang, Meng; Sun, Jianguo; Jiang, Zhihui; Xie, Wenyan; Zhang, Xiaoying

    2015-01-01

    Kaempferol is a biologically active component present in various plants. The hepatoprotective effect of kaempferol in drug-induced liver injury has been proven, while its effect against alcoholic liver injury (ALI) remains unclear. Hence, the present study aimed to evaluate the effect of kaempferol against ALI in mice. The experimental ALI mice model was developed and the mice were treated with different doses of kaempferol for 4 weeks. The liver functions were observed by monitoring the following parameters: Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) levels in serum; histopathological studies of liver tissue; oxidative stress by hydrogen peroxide (H2O2), superoxide dismutase (SOD) and glutathione (GSH); the lipid peroxidation status by malondialdehyde (MDA) and lipid accumulation by triglyceride (TG) level in serum; and the expression levels and activities of a key microsomal enzyme cytochrome 2E1 (CYP2E1), by both in vitro and in vivo methods. The ALI mice (untreated) showed clear symptoms of liver injury, such as significantly increased levels of oxidative stress, lipid peroxidation and excessive CYP2E1 expression and activity. The mice treated with different kaempferol dosages exhibited a significant decrease in the oxidative stress as well as lipid peroxidation, and increased anti-oxidative defense activity. The kaempferol treatment has significantly reduced the expression level and activity of hepatic CYP2E1, thus indicating that kaempferol could down regulate CYP2E1. These findings show the hepatoprotective properties of kaempferol against alcohol-induced liver injury by attenuating the activity and expression of CYP2E1 and by enhancing the protective role of anti-oxidative defense system.

  11. Occurrence of riboflavinyl glucoside in rat urine

    International Nuclear Information System (INIS)

    Ohkawa, Hiroshi; Ohishi, Nobuko; Yagi, Kunio

    1983-01-01

    To investigate the metabolism of riboflavin, [2- 14 C]-riboflavin was administered orally to a rat. The urine pooled for 24 h after administration was fractionated by paper and silica gel thin layer chromatographies using various solvent systems. Among the radioactive metabolites, riboflavinyl glucoside was found along with 7-carboxy lumichrome and 8-carboxy lumichrome. The radioactivity of riboflavinyl glucoside comprised about 6 % of the total radioactivity excreted in the urine during 24 h. (author)

  12. Unexpected secoiridoid glucosides from Manulea corymbosa.

    Science.gov (United States)

    Gousiadou, Chrysoula; Kokubun, Tetsuo; Gotfredsen, Charlotte H; Jensen, Søren R

    2014-03-28

    From an extract of Manulea corymbosa were isolated four known secoiridoid glucosides (1-4), 10 new monoterpenoid esters of secologanol, namely, manuleosides A-I (5-11, 13, and 14) and dimethyl rhodanthoside A (12), and four new phenylpropanoid esters of carbocyclic iridoid glucosides, manucorymbosides I-IV (15-18). Also, the caffeoyl phenylethanoid glycoside verbascoside was isolated. The presence of secoiridoids apparently derived from loganic acid in the family Scrophulariaceae is unprecedented and greatly unexpected.

  13. Unexpected Secoiridoid Glucosides from Manulea corymbosa

    DEFF Research Database (Denmark)

    Gousiadou, Chrysoula; Kokubun, Tetsuo; Gotfredsen, Charlotte Held

    2014-01-01

    From an extract of Manulea corymbosa were isolated four known secoiridoid glucosides (1–4), 10 new monoterpenoid esters of secologanol, namely, manuleosides A–I (5–11, 13, and 14) and dimethyl rhodanthoside A (12), and four new phenylpropanoid esters of carbocyclic iridoid glucosides, manucorymbo......, manucorymbosides I–IV (15–18). Also, the caffeoyl phenylethanoid glycoside verbascoside was isolated. The presence of secoiridoids apparently derived from loganic acid in the family Scrophulariaceae is unprecedented and greatly unexpected....

  14. Study of the interaction of kaempferol with bovine serum albumin

    Science.gov (United States)

    Tian, Jianniao; Liu, Jiaqin; Tian, Xuan; Hu, Zhide; Chen, Xingguo

    2004-03-01

    The binding of kaempferol with bovine serum albumin (BSA) was investigated at three temperatures, 296, 310 and 318 K, by the fluorescence, circular dichroism (CD) and Fourier transform infrared spectroscopy (FT-IR) at pH 7.40. The CD and FT-IR studies indicate that kaempferol binds strongly to BSA. The association constant K was determined by Stern-Volmer equation based on the quenching of the fluorescence BSA in the presence of kaempferol. The thermodynamic parameters were calculated according to the dependence of enthalpy change on the temperature as follows: Δ H0 and Δ S0 possess small negative (-1.694 kJ/mol) and positive values (88.814 J/mol K), respectively. According to the displacement experimental and the thermodynamic results, it is considered that kaempferol binding site II (subdomain III) mainly by hydrophobic interaction. The results studied by FT-IR and CD experiments indicate that the secondary structures of the protein have been changed by the interaction of kaempferol with BSA. The distance between the tryptophan residues in BSA and kaempferol bound to site II was estimated to be 2.78 nm using Foster's equation on the basis of fluorescence energy transfer.

  15. Kaempferol-Phospholipid Complex: Formulation, and Evaluation of Improved Solubility, In Vivo Bioavailability, and Antioxidant Potential of Kaempferol

    OpenAIRE

    Darshan R. Telange; Arun T. Patil; Anil M. Pethe; Amol A. Tatode; Sridhar Anand; Vivek S. Dave

    2016-01-01

    The current work describes the formulation and evaluation of a phospholipid complex of kaempferol to enhance the latter’s aqueous solubility, in vitro dissolution rate, in vivo antioxidant and hepatoprotective activities, and oral bioavailability. The kaempferol-phospholipid complex was synthesized using a freeze-drying method with the formulation being optimized using a full factorial design (32) approach. Our results include the validation of the mathematical model in order to ascertain the...

  16. Kaempferol-Phospholipid Complex: Formulation, and Evaluation of Improved Solubility, In Vivo Bioavailability, and Antioxidant Potential of Kaempferol

    Directory of Open Access Journals (Sweden)

    Darshan R. Telange

    2016-12-01

    Full Text Available The current work describes the formulation and evaluation of a phospholipid complex of kaempferol to enhance the latter’s aqueous solubility, in vitro dissolution rate, in vivo antioxidant and hepatoprotective activities, and oral bioavailability. The kaempferol-phospholipid complex was synthesized using a freeze-drying method with the formulation being optimized using a full factorial design (32 approach. Our results include the validation of the mathematical model in order to ascertain the role of specific formulation and process variables that contribute favorably to the formulation’s development. The final product was characterized and confirmed by Differential Scanning Calorimetry (DSC, Fourier Transform Infrared Spectroscopy (FTIR, Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR, and Powder X-ray Diffraction (PXRD analysis. The aqueous solubility and the in vitro dissolution rate were enhanced compared to that of pure kaempferol. The in vivo antioxidant properties of the kaempferol-phospholipid complex were evaluated by measuring its impact on carbon tetrachloride (CCl4-intoxicated rats. The optimized phospholipid complex improved the liver function test parameters to a significant level by restoration of all elevated liver marker enzymes in CCl4-intoxicated rats. The complex also enhanced the in vivo antioxidant potential by increasing levels of GSH (reduced glutathione, SOD (superoxide dismutase, catalase and decreasing lipid peroxidation, compared to that of pure kaempferol. The final optimized phospholipid complex also demonstrated a significant improvement in oral bioavailability demonstrated by improvements to key pharmacokinetic parameters, compared to that of pure kaempferol.

  17. Radiolysis of kaempferol in water/methanol mixtures. Evaluation of antioxidant activity of kaempferol and products formed.

    Science.gov (United States)

    Marfak, Abdelghafour; Trouillas, Patrick; Allais, Daovy-Paulette; Champavier, Yves; Calliste, Claude-Alain; Duroux, Jean-Luc

    2003-02-26

    Oxidative reaction between hydroxymethyl radical ((*)CH(2)OH) and kaempferol, in methanol and methanol/water mixtures, was studied by gamma-radiolysis using a (60)Co source. Radiolysis was performed with concentrations and doses ranging from 5 x 10(-)(5) M to 5 x 10(-)(3) M and from 0.5 kGy to 14 kGy, respectively. Kaempferol degradation was followed by HPLC. Results showed that (*)CH(2)OH reacts with kaempferol at the 3-OH group and produces two depsides (K1 and K2) and other products including K3. K1, K2, and K3 were identified by NMR, LC-MS, and HRMS. The kaempferol degradation pathway leading to the K1, K2, and K3 formation is proposed. It was observed that the more water concentration in the irradiation medium increases, the more K2 concentration increases. Comprehension of food preservation is not clear because many phenomena occurring during irradiation are not established. Radiolysis of kaempferol in water/methanol mixtures helps to elucidate the phenomenon and it is possible that during the treatment of nutriments by gamma-irradiation, a series of products such as depside K2 could be formed. Antioxidant properties of kaempferol radiolysis products were evaluated according to their capacity to decrease the EPR DPPH (1,1-diphenyl-2-picrylhydrazil) signal and to inhibit superoxide radicals formed by the enzyme reaction "xanthine + xanthine oxidase".

  18. The Effects of Kaempferol-Inhibited Autophagy on Osteoclast Formation.

    Science.gov (United States)

    Kim, Chang-Ju; Shin, Sang-Hun; Kim, Bok-Joo; Kim, Chul-Hoon; Kim, Jung-Han; Kang, Hae-Mi; Park, Bong-Soo; Kim, In-Ryoung

    2018-01-02

    Kaempferol, a flavonoid compound, is derived from the rhizome of Kaempferia galanga L ., which is used in traditional medicine in Asia. Autophagy has pleiotropic functions that are involved in cell growth, survival, nutrient supply under starvation, defense against pathogens, and antigen presentation. There are many studies dealing with the inhibitory effects of natural flavonoids in bone resorption. However, no studies have explained the relationship between the autophagic and inhibitory processes of osteoclastogenesis by natural flavonoids. The present study was undertaken to investigate the inhibitory effects of osteoclastogenesis through the autophagy inhibition process stimulated by kaempferol in murin macrophage (RAW 264.7) cells. The cytotoxic effect of Kaempferol was investigated by MTT assay. The osteoclast differentiation and autophagic process were confirmed via tartrate-resistant acid phosphatase (TRAP) staining, pit formation assay, western blot, and real-time PCR. Kaempferol controlled the expression of autophagy-related factors and in particular, it strongly inhibited the expression of p62/SQSTM1. In the western blot and real time-PCR analysis, when autophagy was suppressed with the application of 3-Methyladenine (3-MA) only, osteoclast and apoptosis related factors were not significantly affected. However, we found that after cells were treated with kaempferol, these factors inhibited autophagy and activated apoptosis. Therefore, we presume that kaempferol-inhibited autophagy activated apoptosis by degradation of p62/SQSTM1. Further study of the p62/SQSTM1 gene as a target in the autophagy mechanism, may help to delineate the potential role of kaempferol in the treatment of bone metabolism disorders.

  19. Kaempferol, a potential cytostatic and cure for inflammatory disorders.

    Science.gov (United States)

    Rajendran, Peramaiyan; Rengarajan, Thamaraiselvan; Nandakumar, Natarajan; Palaniswami, Rajendran; Nishigaki, Yutaka; Nishigaki, Ikuo

    2014-10-30

    Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many edible plants (e.g., tea, broccoli, cabbage, kale, beans, endive, leek, tomato, strawberries, and grapes) and in plants or botanical products commonly used in traditional medicine (e.g., Ginkgo biloba, Tilia spp, Equisetum spp, Moringa oleifera, Sophora japonica and propolis). Its anti-oxidant/anti-inflammatory effects have been demonstrated in various disease models, including those for encephalomyelitis, diabetes, asthma, and carcinogenesis. Moreover, kaempferol act as a scavenger of free radicals and superoxide radicals as well as preserve the activity of various anti-oxidant enzymes such as catalase, glutathione peroxidase, and glutathione-S-transferase. The anticancer effect of this flavonoid is mediated through different modes of action, including anti-proliferation, apoptosis induction, cell-cycle arrest, generation of reactive oxygen species (ROS), and anti-metastasis/anti-angiogenesis activities. In addition, kaempferol was found to exhibit its anticancer activity through the modulation of multiple molecular targets including p53 and STAT3, through the activation of caspases, and through the generation of ROS. The anti-tumor effects of kaempferol have also been investigated in tumor-bearing mice. The combination of kaempferol and conventional chemotherapeutic drugs produces a greater therapeutic effect than the latter, as well as reduces the toxicity of the latter. In this review, we summarize the anti-oxidant/anti-inflammatory and anticancer effects of kaempferol with a focus on its molecular targets and the possible use of this flavonoid for the treatment of inflammatory diseases and cancer. Copyright © 2014. Published by Elsevier Masson SAS.

  20. Kaempferol and Chrysin Synergies to Improve Septic Mice Survival.

    Science.gov (United States)

    Harasstani, Omar A; Tham, Chau Ling; Israf, Daud A

    2017-01-06

    Previously, we reported the role of synergy between two flavonoids-namely, chrysin and kaempferol-in inhibiting the secretion of a few major proinflammatory mediators such as tumor necrosis factor -alpha (TNF-α), prostaglandin E₂ (PGE₂) , and nitric oxide (NO) from lipopolysaccharide (LPS)-induced RAW 264.7 cells. The present study aims to evaluate the effects of this combination on a murine model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Severe sepsis was induced in male ICR mice ( n = 7) via the CLP procedure. The effects of chrysin and kaempferol combination treatment on septic mice were investigated using a 7-day survival study. The levels of key proinflammatory mediators and markers-such as aspartate aminotransferase (AST), TNF-α, and NO-in the sera samples of the septic mice were determined via ELISA and fluorescence determination at different time point intervals post-CLP challenge. Liver tissue samples from septic mice were harvested to measure myeloperoxidase (MPO) levels using a spectrophotometer. Moreover, intraperitoneal fluid (IPF) bacterial clearance and total leukocyte count were also assessed to detect any antibacterial effects exerted by chrysin and kaempferol, individually and in combination. Kaempferol treatment improved the survival rate of CLP-challenged mice by up to 16%. During this treatment, kaempferol expressed antibacterial, antiapoptotic and antioxidant activities through the attenuation of bacterial forming units, AST and NO levels, and increased polymorphonuclear leukocyte (PMN) count in the IPF. On the other hand, the chrysin treatment significantly reduced serum TNF-α levels. However, it failed to significantly improve the survival rate of the CLP-challenged mice. Subsequently, the kaempferol/chrysin combination treatment significantly improved the overall 7-day survival rate by 2-fold-up to 29%. Kaempferol and chrysin revealed some synergistic effects by acting individually upon multiple

  1. Kaempferol inhibits the growth and metastasis of cholangiocarcinoma in vitro and in vivo

    OpenAIRE

    Qin, Youyou; Cui, Wu; Yang, Xuewei; Tong, Baifeng

    2016-01-01

    Kaempferol is a flavonoid that has been reported to exhibit antitumor activity in various malignant tumors. However, the role of kaempferol on cholangiocarcinoma (CCA) is largely unknown. In this article, we found that kaempferol inhibited proliferation, reduced colony formation ability, and induced apoptosis in HCCC9810 and QBC939 cells in vitro. Results from transwell assay and wound-healing assay demonstrated that kaempferol significantly suppressed the migration and invasion abilities of ...

  2. Cytogenetic activity of the coumarin glucoside seseloside

    International Nuclear Information System (INIS)

    Arshava, E.A.

    1986-01-01

    The cytogenetic effect of the coumarin glucoside seseloside on plant objects was studied. It was established that low concentrations of the preparation (from 1 x 10 -5 to 1 x 10 -3 μg/ml) inhibit both spontaneous and radiation-induced mutagenesis. The effect of high concentrations (10 and 100 μg/ml) causes a mutagenic effect

  3. Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway.

    Science.gov (United States)

    Yao, Shihua; Wang, Xiaowei; Li, Chunguang; Zhao, Tiejun; Jin, Hai; Fang, Wentao

    2016-08-01

    Antitumor activity of kaempferol has been studied in various tumor types, but its potency in esophagus squamous cell carcinoma is rarely known. Here, we reported the activity of kaempferol against esophagus squamous cell carcinoma as well as its antitumor mechanisms. Results of cell proliferation and colony formation assay showed that kaempferol substantially inhibited tumor cell proliferation and clone formation in vitro. Flow cytometric analysis demonstrated that tumor cells were induced G0/G1 phase arrest after kaempferol treatment, and the expression of protein involved in cell cycle regulation was dramatically changed. Except the potency on cell proliferation, we also discovered that kaempferol had a significant inhibitory effect against tumor glycolysis. With the downregulation of hexokinase-2, glucose uptake and lactate production in tumor cells were dramatically declined. Mechanism studies revealed kaempferol had a direct effect on epidermal growth factor receptor (EGFR) activity, and along with the inhibition of EGFR, its downstream signaling pathways were also markedly suppressed. Further investigations found that exogenous overexpression of EGFR in tumor cells substantially attenuated glycolysis suppression induced by kaempferol, which implied that EGFR also played an important role in kaempferol-mediated glycolysis inhibition. Finally, the antitumor activity of kaempferol was validated in xenograft model and kaempferol prominently restrained tumor growth in vivo. Meanwhile, dramatic decrease of EGFR activity and hexokinase-2 expression were observed in kaempferol-treated tumor tissue, which confirmed these findings in vitro. Briefly, these studies suggested that kaempferol, or its analogues, may serve as effective candidates for esophagus squamous cell carcinoma management.

  4. Anti-inflammatory effects of kaempferol, myricetin, fisetin and ...

    African Journals Online (AJOL)

    Purpose: To investigate the anti-inflammatory effects of kaempferol, myricetin, fisetin and ibuprofen in rat pups. Methods: The expression levels of cyclooxygenase (COX)-1, COX-2 and tumour necrosis factor-α (TNF-α) were determined by western blotting; the inhibition of these proteins by plant compounds was evaluated.

  5. Metabolism, oral bioavailability and pharmacokinetics of chemopreventive kaempferol in rats

    Science.gov (United States)

    Barve, Avantika; Chen, Chi; Hebbar, Vidya; Desiderio, Joseph; Saw, Constance Lay-Lay; Kong, Ah-Ng

    2012-01-01

    The purpose of this study was to compare the hepatic and small intestinal metabolism, and examine bioavailability and gastro-intestinal first-pass effects of Kaempferol in the rats. Liver and small intestinal microsomes fortified with either NADPH or UDPGA were incubated with varying concentrations of Kaempferol for upto 120 minutes. Based on the values of the kinetic constants (Km and Vmax), the propensity for UDPGA-dependent conjugation as compared to NADPH-dependent oxidative metabolism was higher for both hepatic and small intestinal microsomes. Male Sprague-Dawley rats were administered Kaempferol intravenously (IV) (10, 25 mg/kg) or orally (100, 250 mg/kg). Gastro-intestinal first pass effects were observed by collecting portal blood after oral administration of 100 mg/kg Kaempferol. Pharmacokinetic parameters were obtained by Noncompartmental analysis using WinNonlin. After IV administration, the plasma concentration-time profiles for 10 and 25 mg/kg were consistent with high clearance (~ 3 L/hr/kg) and large volumes of distribution (8-12 L/kg). The disposition was characterized by a terminal half-life value of 3-4 hours. After oral administration the plasma concentration-time profiles demonstrated fairly rapid absorption (tmax ~ 1-2 hours). The area under the curve (AUC) values after IV and oral doses increased proportional to the dose. The bioavailability (F) was poor at ~ 2%. Analysis of portal plasma after oral administration revealed low to moderate absorption. Taken together, the low F of Kaempferol is attributed in part to extensive first-pass metabolism by glucuronidation and other metabolic pathways in the gut and in the liver. PMID:19722166

  6. Production, Characterization and Evaluation of Kaempferol Nanosuspension for Improving Oral Bioavailability.

    Science.gov (United States)

    Qian, Yew S; Ramamurthy, Srinivasan; Candasamy, Mayuren; Shadab, Md; Kumar, Ravindran H; Meka, Venkata S

    2016-01-01

    Kaempferol has a large particle size and poor water solubility, leading to poor oral bioavailability. The present work aimed to develop a kaempferol nanosuspension (KNS) to improve pharmacokinetics and absolute bioavailability. A nanosuspension was prepared using high pressure homogenization (HPH) techniques. The physico-chemical properties of the kaempferol nanosuspension (KNS) were characterized using photon correlation spectroscopy (PCS), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and x-ray diffractometry (XRD). A reversephase high performance liquid chromatography (RP-HPLC) method for the analysis of the drug in rat plasma was developed and validated as per ICH guidelines. In vivo pharmacokinetic parameters of oral pure kaempferol solution, oral kaempferol nanosuspension and intravenous pure kaempferol were assessed in rats. The kaempferol nanosuspension had a greatly reduced particle size (426.3 ± 5.8 nm), compared to that of pure kaempferol (1737 ± 129 nm). The nanosuspension was stable under refrigerated conditions. No changes in physico-chemical characteristics were observed. In comparison to pure kaempferol, kaempferol nanosuspension exhibited a significantly (Pkaempferol. These results demonstrate enhanced oral bioavailability of kaempferol when formulated as a nanosuspension.

  7. Antinociceptive and anti-inflammatory kaempferol glycosides from Sedum dendroideum.

    Science.gov (United States)

    De Melo, Giany O; Malvar, David do C; Vanderlinde, Frederico A; Rocha, Fabio F; Pires, Priscila Andrade; Costa, Elson A; de Matos, Lécia G; Kaiser, Carlos R; Costa, Sônia S

    2009-07-15

    To identify the compounds responsible for the antinociceptive and anti-inflammatory effects previously described for Sedum dendroideum, through bioassay-guided fractionation procedures. Antinociceptive activity was evaluated through mouse acetic acid-induced writhing model. The anti-inflammatory activity was assessed through croton oil-induced mouse ear oedema and carrageenan-induced peritonitis. The Sedum dendroideum juice afforded seven known flavonoids identified with basis on NMR data. The oral administration of the major kaempferol glycosides kaempferitrin [1] (17.29 micromol/kg), kaempferol 3-O-beta-glucopyranoside-7-O-alpha-rhamnopyranoside [2] (16.82 micromol/kg), kaempferol 3-O-neohesperidoside-7-O-alpha-rhamnopyranoside [3] (13.50 micromol/kg) or alpha-rhamnoisorobin [5] (23.13 micromol/kg) inhibited by 47.3%, 25.7%, 60.2% and 58.0%, respectively, the acetic acid-induced nociception (indomethacin: 27.95 micromol/kg, p.o.; 68.9%). Flavonoids 1, 2, 3 or 5, at the same doses, reduced by 39.5%, 46.5%, 35.6% and 33.3%, respectively, the croton oil-induced oedema (dexamethasone: 5.09 micromol/kg, s.c.; 83.7%) and impaired leukocyte migration by 42.9%, 46.3%, 50.4% and 49.6%, respectively (dexamethasone: 5.09 micromol/kg, s.c.; 66.1%). Our findings show that the major kaempferol glycosides may account for the renowned medicinal use of Sedum dendroideum against pain and inflammatory troubles.

  8. Kaempferol ameliorates symptoms of metabolic syndrome by regulating activities of liver X receptor-β.

    Science.gov (United States)

    Hoang, Minh-Hien; Jia, Yaoyao; Mok, Boram; Jun, Hee-jin; Hwang, Kwang-Yeon; Lee, Sung-Joon

    2015-08-01

    Kaempferol is a dietary flavonol previously shown to regulate cellular lipid and glucose metabolism. However, its molecular mechanisms of action and target proteins have remained elusive, probably due to the involvement of multiple proteins. This study investigated the molecular targets of kaempferol. Ligand binding of kaempferol to liver X receptors (LXRs) was quantified by time-resolved fluorescence resonance energy transfer and surface plasmon resonance analyses. Kaempferol directly binds to and induces the transactivation of LXRs, with stronger specificity for the β-subtype (EC50 = 0.33 μM). The oral administration of kaempferol in apolipoprotein-E-deficient mice (150 mg/day/kg body weight) significantly reduced plasma glucose and increased high-density lipoprotein cholesterol levels and insulin sensitivity compared with the vehicle-fed control. Kaempferol also reduced plasma triglyceride concentrations and did not cause liver steatosis, a common side effect of potent LXR activation. In immunoblotting analysis, kaempferol reduced the nuclear accumulation of sterol regulatory element-binding protein-1 (SREBP-1). Our results show that the suppression of SREBP-1 activity and the selectivity for LXR-β over LXR-α by kaempferol contribute to the reductions of plasma and hepatic triglyceride concentrations in mice fed kaempferol. They also suggest that kaempferol activates LXR-β and suppresses SREBP-1 to enhance symptoms in metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Kaempferol attenuates acute lung injury in caecal ligation and puncture model of sepsis in mice.

    Science.gov (United States)

    Rabha, Dipankar Jyoti; Singh, Thakur Uttam; Rungsung, Soya; Kumar, Tarun; Parida, Subhashree; Lingaraju, Madhu Cholenahalli; Paul, Avishek; Sahoo, Monalisa; Kumar, Dinesh

    2018-03-01

    Kaempferol is a flavonoid and important part of the diet. Kaempferol has shown antioxidant, antiinflammatory and antidiabetic activities in various studies. However, protective potential of kaempferol in acute lung injury induced by sepsis and its mechanism remains unclear. The present study was undertaken to evaluate the effect of kaempferol in sepsis-induced acute lung injury in mice and its possible mechanism of action. Acute lung injury was induced by CLP surgery in mice. Kaempferol (100 mg/kg bw) was administered orally one hour before caecal ligation and puncture surgery in mice. Mice were divided into four groups sham, KEM+sham, sepsis (CLP), and KEM+sepsis. Assessment of lung injury was done by estimation of protein content in lung tissue, lung edema, proinflammatory cytokines in plasma and lung tissue, oxidative stress, antioxidant enzymes, nitrite production, and histopathology. Kaempferol pretreated mice showed significant (P Kaempferol pretreatment showed reduction in cytokines IL-6, IL-1β, and TNF-α in plasma as well as in lung tissue in comparison with septic mice without pretreatment. Pretreatment with kaempferol did not show any reduction in MDA level in comparison with septic mice. Antioxidant enzymes SOD and catalase and nonenzymatic antioxidant GSH activities were also increased with kaempferol pretreatment in septic mice. Further, kaempferol pretreatment reduced the lung tissue nitrite level (P Kaempferol pretreatment did not decrease bacterial load in septic mice. Mice pretreated with kaempferol followed by sepsis showed lesser infiltration of cells and more arranged alveolar structure in histopathological analysis. The study suggests that kaempferol showed attenuation in sepsis-induced acute lung injury in mice through suppression of oxidative stress, iNOS, and ICAM-1 pathways.

  10. Enzymatic Biosynthesis of Novel Resveratrol Glucoside and Glycoside Derivatives

    OpenAIRE

    Pandey, Ramesh Prasad; Parajuli, Prakash; Shin, Ju Yong; Lee, Jisun; Lee, Seul; Hong, Young-Soo; Park, Yong Il; Kim, Joong Su; Sohng, Jae Kyung

    2014-01-01

    A UDP glucosyltransferase from Bacillus licheniformis was overexpressed, purified, and incubated with nucleotide diphosphate (NDP) d- and l-sugars to produce glucose, galactose, 2-deoxyglucose, viosamine, rhamnose, and fucose sugar-conjugated resveratrol glycosides. Significantly higher (90%) bioconversion of resveratrol was achieved with α-d-glucose as the sugar donor to produce four different glucosides of resveratrol: resveratrol 3-O-β-d-glucoside, resveratrol 4′-O-β-d-glucoside, resveratr...

  11. Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase.

    Science.gov (United States)

    Wang, Yajie; Zhang, Guowen; Pan, Junhui; Gong, Deming

    2015-01-21

    Xanthine oxidase (XO), a key enzyme in purine catabolism, is widely distributed in human tissues. It can catalyze xanthine to generate uric acid and cause hyperuricemia and gout. Inhibition kinetics assay showed that kaempferol inhibited XO activity reversibly in a competitive manner. Strong fluorescence quenching and conformational changes of XO were found due to the formation of a kaempferol-XO complex, which was driven mainly by hydrophobic forces. The molecular docking further revealed that kaempferol inserted into the hydrophobic cavity of XO to interact with some amino acid residues. The main inhibition mechanism of kaempferol on XO activity may be due to the insertion of kaempferol into the active site of XO occupying the catalytic center of the enzyme to avoid the entrance of the substrate and inducing conformational changes of XO. In addition, luteolin exhibited a stronger synergistic effect with kaempferol than did morin at the lower concentration.

  12. Kaempferol induces hepatocellular carcinoma cell death via endoplasmic reticulum stress-CHOP-autophagy signaling pathway

    OpenAIRE

    Guo, Haiqing; Lin, Wei; Zhang, Xiangying; Zhang, Xiaohui; Hu, Zhongjie; Li, Liying; Duan, Zhongping; Zhang, Jing; Ren, Feng

    2017-01-01

    Kaempferol is a flavonoid compound that has gained widespread attention due to its antitumor functions. However, the underlying mechanisms are still not clear. The present study investigated the effect of kaempferol on hepatocellular carcinoma and its underlying mechanisms. Kaempferol induced autophagy in a concentration- and time-dependent manner in HepG2 or Huh7 cells, which was evidenced by the significant increase of autophagy-related genes. Inhibition of autophagy pathway, through 3-meth...

  13. Kaempferol 3,7,4'-glycosides from the flowers of Clematis cultivars.

    Science.gov (United States)

    Sakaguchi, Keisuke; Kitajima, Junichi; Iwashina, Tsukasa

    2013-08-01

    A new kaempferol glycoside, kaempferol 3-O-alpha-rhamnopyranosyl-(1 --> 6)-beta-glucopyranoside-7,4'-di-O-beta-glucopyranoside (1) was isolated from the flowers of Clematis cultivars "Jackmanii Superba" and "Fujimusume", together with the known compound kaempferol 3,7,4'-tri-O-beta-glucopyranoside (2). The chemical structures of the isolated kaemferol glycosides were established by UV, 1H and 13C NMR spectroscopy, LC-MS, and characterization of acid hydrolysates.

  14. Glucosides from Vitex agnus-castus.

    Science.gov (United States)

    Kuruüzüm-Uz, Ayşe; Ströch, Karsten; Demirezer, L Omür; Zeeck, Axel

    2003-08-01

    The methanolic extract of the flowering stems of Vitex agnus-castus yielded three new iridoids: 6'-O-foliamenthoylmussaenosidic acid (agnucastoside A), 6'-O-(6,7-dihydrofoliamenthoyl)mussaenosidic acid (agnucastoside B) and 7-O-trans-p-coumaroyl-6'-O-trans-caffeoyl-8-epiloganic acid (agnucastoside C) in addition to four known iridoids (aucubin, agnuside, mussaenosidic acid and 6'-O-p-hydroxybenzoylmussaenosidic acid) and one known phenylbutanone glucoside (myzodendrone). The structure elucidations were mainly done by spectroscopic methods (1D and 2D NMR spectra) and MS data interpretation. The purified compounds were tested for biological activities against various microorganisms and cancer cell lines.

  15. Kaempferol induces hepatocellular carcinoma cell death via endoplasmic reticulum stress-CHOP-autophagy signaling pathway.

    Science.gov (United States)

    Guo, Haiqing; Lin, Wei; Zhang, Xiangying; Zhang, Xiaohui; Hu, Zhongjie; Li, Liying; Duan, Zhongping; Zhang, Jing; Ren, Feng

    2017-10-10

    Kaempferol is a flavonoid compound that has gained widespread attention due to its antitumor functions. However, the underlying mechanisms are still not clear. The present study investigated the effect of kaempferol on hepatocellular carcinoma and its underlying mechanisms. Kaempferol induced autophagy in a concentration- and time-dependent manner in HepG2 or Huh7 cells, which was evidenced by the significant increase of autophagy-related genes. Inhibition of autophagy pathway, through 3-methyladenine or Atg7 siRNA, strongly diminished kaempferol-induced apoptosis. We further hypothesized that kaempferol can induce autophagy via endoplasmic reticulum (ER) stress pathway. Indeed, blocking ER stress by 4-phenyl butyric acid (4-PBA) or knockdown of CCAAT/enhancer-binding protein homologous protein (CHOP) with siRNA alleviated kaempferol-induced HepG2 or Huh7 cells autophagy; while transfection with plasmid overexpressing CHOP reversed the effect of 4-PBA on kaempferol-induced autophagy. Our results demonstrated that kaempferol induced hepatocarcinoma cell death via ER stress and CHOP-autophagy signaling pathway; kaempferol may be used as a potential chemopreventive agent for patients with hepatocellular carcinoma.

  16. Synthesis, characterization and anticancer activity of kaempferol-zinc(II) complex.

    Science.gov (United States)

    Tu, Lv-Ying; Pi, Jiang; Jin, Hua; Cai, Ji-Ye; Deng, Sui-Ping

    2016-06-01

    According to the previous studies, the anticancer activity of flavonoids could be enhanced when they are coordinated with transition metal ions. In this work, kaempferol-zinc(II) complex (kaempferol-Zn) was synthesized and its chemical properties were characterized by UV-VIS, FT-IR, (1)H NMR, elemental analysis, electrospray mass spectrometry (ES-MS) and fluorescence spectroscopy, which showed that the synthesized complex was coordinated with a Zn(II) ion via the 3-OH and 4-oxo groups. The anticancer effects of kaempferol-Zn and free kaempferol on human oesophageal cancer cell line (EC9706) were compared. MTT results demonstrated that the killing effect of kaempferol-Zn was two times higher than that of free kaempferol. Atomic force microscopy (AFM) showed the morphological and ultrastructural changes of cellular membrane induced by kaempferol-Zn at subcellular or nanometer level. Moreover, flow cytometric analysis indicated that kaempferol-Zn could induce apoptosis in EC9706 cells by regulating intracellular calcium ions. Collectively, all the data showed that kaempferol-Zn might be served as a kind of potential anticancer agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Kaempferol induces chondrogenesis in ATDC5 cells through activation of ERK/BMP-2 signaling pathway.

    Science.gov (United States)

    Nepal, Manoj; Li, Liang; Cho, Hyoung Kwon; Park, Jong Kun; Soh, Yunjo

    2013-12-01

    Endochondral bone formation occurs when mesenchymal cells condense to differentiate into chondrocytes, the primary cell types of cartilage. The aim of the present study was to identify novel factors regulating chondrogenesis. We investigated whether kaempferol induces chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Kaempferol treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. Kaempferol-treated ATDC5 cells stained more intensely with alcian blue staining than control cells, suggesting greater synthesis of matrix proteoglycans in the kaempferol-treated cells. Similarly, kaempferol induced greater activation of alkaline phosphatase activity than control cells, and it enhanced the expression of chondrogenic marker genes, such as collagen type I, collagen type X, OCN, Runx2, and Sox9. Kaempferol induced an acute activation of extracellular signal-regulated kinase (ERK) but not c-jun N-terminal kinase or p38 MAP kinase. PD98059, an inhibitor of MAPK/ERK, decreased in stained cells treated with kaempferol. Furthermore, kaempferol greatly expressed the protein and mRNA levels of BMP-2, suggesting chondrogenesis was stimulated via a BMP-2 pathway. Taken together, our results suggest that kaempferol has chondromodulating effects via an ERK/BMP-2 signaling pathway and could potentially be used as a therapeutic agent for bone growth disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer. © 2014 Wiley Periodicals, Inc.

  19. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention

    Science.gov (United States)

    Chen, Allen Y.; Chen, Yi Charlie

    2013-01-01

    Kaempferol is a polyphenol antioxidant found in fruits and vegetables. Many studies have described the beneficial effects of dietary kaempferol in reducing the risk of chronic diseases, especially cancer. Epidemiological studies have shown an inverse relationship between kaempferol intake and cancer. Kaempferol may help by augmenting the body’s antioxidant defense against free radicals, which promote the development of cancer. At the molecular level, kaempferol has been reported to modulate a number of key elements in cellular signal transduction pathways linked to apoptosis, angiogenesis, inflammation, and metastasis. Significantly, kaempferol inhibits cancer cell growth and angiognesis and induces cancer cell apoptosis, but on the other hand, kaempferol appears to preserve normal cell viability, in some cases exerting a protective effect. The aim of this review is to synthesize information concerning the extraction of kaempferol, as well as to provide insights into the molecular basis of its potential chemo-preventative activities, with an emphasis on its ability to control intracellular signaling cascades that regulate the aforementioned processes. Chemoprevention using nanotechnology to improve the bioavailability of kaempferol is also discussed. PMID:23497863

  20. Structural Revision of Some Recently Published Iridoid Glucosides

    DEFF Research Database (Denmark)

    Jensen, Søren Rosendal; Calis, Ihsan; Gotfredsen, Charlotte Held

    2007-01-01

    ). Finally, two alleged iridoid galactosides from Buddleja crispa named buddlejosides A and B (12a and 12b) have been shown to be the corresponding glucosides; the former is identical to agnuside (13a) while the latter is 3,4-dihydroxybenzoylaucubin (13b), an iridoid glucoside not previously published...

  1. A kaempferol triglycoside from Tephrosia preussii Taub. (Fabaceae).

    Science.gov (United States)

    Mba Nguekeu, Yves Martial; Awouafack, Maurice Ducret; Tane, Pierre; Nguedia Lando, Marius Roch; Kodama, Takeshi; Morita, Hiroyuki

    2017-11-01

    A phytochemical investigation of the MeOH extract of twigs and leaves of Tephrosia preussi was carried out to give a new kaempferol triglycoside, named tephrokaempferoside (1), together with five known compounds: tephrosin (2), betulinic acid (3), lupeol (4), β-sitosterol (5) and 3-O-β-d-glucopyranoside of β-sitosterol (6). The structure of the new compound was characterised by analyses of NMR (1D and 2D) and MS data, and chemical conversion. Tephrokaempferoside (1) had weak antibacterial activity against Klebsiella pneumoniae with an MIC value of 150 μg/mL.

  2. Ginkgo Biloba Extract Kaempferol Inhibits Cell Proliferation and Induces Apoptosis in Pancreatic Cancer Cells

    Science.gov (United States)

    Zhang, Yuqing; Chen, Aaron Y.; Li, Min; Chen, Changyi; Yao, Qizhi

    2010-01-01

    Background Kaempferol is one of the most important constituents in ginkgo flavonoids. Recent studies indicate kaempferol may have anti-tumor activities. The objective in this study was to determine the effect and mechanisms of kaempferol on pancreatic cancer cell proliferation and apoptosis. Materials and Methods Pancreatic cancer cell lines MIA PaCa-2 and Panc-1 were treated with Kampferol, and the inhibitory effects of kaempferol on pancreatic cancer cell proliferation were examined by direct cell counting, 3H-thymidine incorporation and MTS assay. Lactate dehydrogenase (LDH) release from cells was determined as an index of cytotoxicity. Apoptosis was analyzed by TUNEL assay. Results Upon the treatment with 70 μM kaempferol for 4 days, MIA PaCa-2 cell proliferation was significantly inhibited by 79% and 45.7% as determined by direct cell counting and MTS assay, respectively, compared with control cells (Pkaempferol significantly inhibited Panc-1 cell proliferation. Kaempferol treatment also significantly reduced 3H-thymidine incorporation in both MIA PaCa-2 and Panc-1 cells. Combination treatment of low concentrations of kaempferol and 5-fluorouracil (5-FU) showed an additive effect on the inhibition of MIA PaCa-2 cell proliferation. Furthermore, kaempferol had a significantly less cytotoxicity than 5-FU in normal human pancreatic ductal epithelial cells (P=0.029). In both MIA PaCa-2 and Panc-1 cells, apoptotic cell population was increased when treated with kaempferol in a concentration-dependent manner. Conclusions Ginkgo biloba extract kaempferol effectively inhibits pancreatic cancer cell proliferation and induces cancer cell apoptosis, which may sensitize pancreatic tumor cells to chemotherapy. Kaempferol may have clinical applications as adjuvant therapy in the treatment of pancreatic cancer. PMID:18570926

  3. Kaempferol inhibits the growth and metastasis of cholangiocarcinoma in vitro and in vivo.

    Science.gov (United States)

    Qin, Youyou; Cui, Wu; Yang, Xuewei; Tong, Baifeng

    2016-03-01

    Kaempferol is a flavonoid that has been reported to exhibit antitumor activity in various malignant tumors. However, the role of kaempferol on cholangiocarcinoma (CCA) is largely unknown. In this article, we found that kaempferol inhibited proliferation, reduced colony formation ability, and induced apoptosis in HCCC9810 and QBC939 cells in vitro. Results from transwell assay and wound-healing assay demonstrated that kaempferol significantly suppressed the migration and invasion abilities of HCCC9810 and QBC939 cells in vitro. Kaempferol was found to decrease the expression of Bcl-2 and increase the expressions of Bax, Fas, cleaved-caspase 3, cleaved-caspase 8, cleaved-caspase 9, and cleaved-PARP. In addition, kaempferol also downregulated the levels of phosphorylated AKT, TIMP2, and MMP2. In vivo, it was found that the volume of subcutaneous xenograft (0.15 cm(3)) in the kaempferol-treated group was smaller than that (0.6 cm(3)) in the control group. Kaempferol also suppressed the number and volume of metastasis foci in the lung metastasis model, with no marked effects on body weight of mice. Immunohistochemistry assay showed that the number of Ki-67-positive cells was lower in the kaempferol-treated group than that in the control group. We further confirmed that the changes of apoptosis- and invasion-related proteins after kaempferol treatment in vivo were similar to the results in vitro. These data suggest that kaempferol may be a promising candidate agent for the treatment of CCA. © The Author 2016. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  4. Kaempferol modulates Angiopoietin-like protein 2 expression to lessen the mastitis in mice.

    Science.gov (United States)

    Xiao, Hong-Bo; Sui, Guo-Guang; Lu, Xiang-Yang; Sun, Zhi-Liang

    2017-11-22

    Mastitis is inflammation of a breast (or udder). Angiopoietin-like protein 2 (ANGPTL2) has been found as a key inflammatory mediator in mastitis. Purpose of this research was to investigate the mechanisms about repressing effect of kaempferol on mastitis. Forty mice were randomly divided into 4 groups (n = 10): C57BL/6J control mice, untreated murine mastitis, 10 mg/kg kaempferol treated murine mastitis (ip), and 30 mg/kg kaempferol treated murine mastitis (ip). Primary cultured mouse mammary epithelial cells (MMEC) were indiscriminately divided into seven groups including control group, 10 mmol/L vehicle of kaempferol group, 10 μmol/L kaempferol treated group, 20 μg/mL LPS treated group, 1 μmol/L kaempferol plus LPS treated group, 3 μmol/L kaempferol plus LPS treated group, and 10 μmol/L kaempferol plus LPS treated group. In murine mastitis, kaempferol (10 or 30 mg/kg) treatment prevented mastitis development, decreased myeloperoxidase (MPO) production, interleukin (IL)-6 level, tumour necrosis factor-α (TNF-α) concentration, and ANGPTL2 expression. In MMEC, kaempferol (1, 3, or 10 μM) reduced MPO production, TNF-α concentration, IL-6 level, and ANGPTL2 expression. The results in present study show that kaempferol modulates the expression of ANGPTL2 to lessen the mastitis in mice. Copyright © 2018 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  5. Safety assessment of decyl glucoside and other alkyl glucosides as used in cosmetics.

    Science.gov (United States)

    Fiume, Monice M; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2013-01-01

    The Cosmetic Ingredient Review (CIR) Expert Panel assessed the safety of 19 alkyl glucosides as used in cosmetics and concluded that these ingredients are safe in the present practices of use and concentration when formulated to be nonirritating. Most of these ingredients function as surfactants in cosmetics, but some have additional functions as skin-conditioning agents, hair-conditioning agents, or emulsion stabilizers. The Panel reviewed the available animal and clinical data on these ingredients. Since glucoside hydrolases in human skin are likely to break down these ingredients to release their respective fatty acids and glucose, the Panel also reviewed CIR reports on the safety of fatty alcohols and were able to extrapolate data from those previous reports to support safety.

  6. Mechanistic Study of the Inhibitory Effect of Kaempferol on Uterine Fibroids In Vitro.

    Science.gov (United States)

    Li, Yanxia; Ding, Zhaoxia; Wu, Chuanzhong

    2016-12-08

    BACKGROUND This study examined the effect of kaempferol on uterine fibroids in vitro and the underlying mechanism, and investigated the potential of kaempferol as a clinical drug for the treatment of uterine fibroids. MATERIAL AND METHODS Uterine fibroid tissue and surrounding smooth muscle tissue were collected for primary culture. Different concentrations of kaempferol (12 μM, 24 μM, and 48 μM) were used to treat the cells for 24, 48, and 72 hours. Ethanol was used in the control group. A CCK-8 colorimetric assay was used to detect cell proliferation. Real-time PCR and immunoblot were used to detect estrogen receptor (ER), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF) levels in mRNA and protein. RESULTS The differences in proliferation at different time points and concentrations of kaempferol were statistically significant. The inhibitory effect of kaempferol on mRNA levels of ER and IGF, and protein levels of ER, VEGF, and IGF-1 were positively correlated with kaempferol concentration. Changes in kaempferol concentration showed no effect on VEGF mRNA expression. Treatment with kaempferol significantly lowered myocardin levels in uterine fibroid tissue compared to normal uterine smooth muscle (PKaempferol might be used for clinical treatment of uterine fibroids due to its inhibitory effect on the proliferation of uterine fibroids cells.

  7. Protective effects of kaempferol on lipopolysaccharide-induced mastitis in mice.

    Science.gov (United States)

    Cao, Rongfeng; Fu, Kaiqiang; Lv, Xiaopei; Li, Weishi; Zhang, Naisheng

    2014-10-01

    Kaempferol isolated from the root of Zingiberaceae plants galangal and other Chinese herbal medicines have been reported to have anti-inflammatory properties. However, the anti-inflammatory effects of kaempferol on lipopolysaccharide (LPS)-induced mastitis are unknown and their underlying molecular mechanisms remain to be explored. The aim of this study was to evaluate the effects of kaempferol on LPS-induced mouse mastitis. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. Kaempferol was injected 1 h before and 12 h after induction of LPS intraperitoneally. The present results showed that kaempferol markedly reduced infiltration of neutrophilic granulocyte, activation of myeloperoxidase (MPO), expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner, which were increased in LPS-induced mouse mastitis. Furthermore, kaempferol suppressed the phosphorylation of nuclear factor-κB (NF-κB) p65 subunit and the degradation of its inhibitor IκBα. All results suggest that anti-inflammatory effects of kaempferol against the LPS-induced mastitis possibly through inhibition of the NF-κB signaling pathway. Kaempferol may be a potential therapeutic agent for mastitis.

  8. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    Science.gov (United States)

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes.

  9. Kaempferol inhibits gastric cancer tumor growth: An in vitro and in vivo study.

    Science.gov (United States)

    Song, Haibin; Bao, Junjie; Wei, Yuzhe; Chen, Yang; Mao, Xiaoguang; Li, Jianguo; Yang, Zhiwei; Xue, Yingwei

    2015-02-01

    Kaempferol, which is one of the general flavonoids, has recently been reported to suppress proliferation, induce cell cycle arrest and promote apoptosis in various human cancer cell lines. In the present study, the effect and mechanism of kaempferol on gastric cancer (GC) was examined. The results showed that kaempferol significantly inhibited the proliferation of MKN28 and SGC7901 cell lines. However, no significant inhibition in the GSE-1 normal gastric epithelial cell line in our experimental dose was detected. Additionally, significant apoptosis and G2/M phase cell cycle arrest were identified following the treatment of kaempferol. More importantly, we observed that kaempferol inhibited the growth of the tumor xenografts although no marked effects on liver, spleen or body weight were induced. The expression levels of G2/M cell cycle‑regulating factors, cyclin B1, Cdk1 and Cdc25C, were significantly reduced. In addition, kaempferol treatment markedly decreased the level of Bcl-2 concomitant with an increase in Bax expression, resulting in the upregulation of cleaved caspase-3 and -9, which promoted PARP cleavage. Kaempferol-treated cells also led to a decrease in p-Akt, p-ERK and COX-2 expression levels. The present study therefore provided evidence that kaempferol may be a therapeutic agent for GC.

  10. [Inhibitory effect of kaempferol on inflammatory response of lipopolysaccharide-stimulated human mast cells].

    Science.gov (United States)

    Zhou, Yun-jiang; Wang, Hu; Li, Li; Sui, He-huan; Huang, Jia-jun

    2015-06-01

    This study is to investigate the inhibitory effect of kaempferol on inflammatory response of lipopolysaccharide(LPS)-stimulated HMC-1 mast cells. The cytotoxicity of kaempferol to HMC-1 mast cells were analyzed by using MTT assay and then the administration concentrations of kaempferol were established. Histamine, IL-6, IL-8, IL-1β and TNF-α were measured using ELISA assay in activated HMC-1 mast cells after incubation with various concentrations of kaempferol (10, 20 and 40 µmol.L-1). Western blot was used to test the protein expression of p-IKKβ, IκBα, p-IκBα and nucleus NF-κB of LPS-induced HMC-1 mast cells after incubation with different concentrations of kaempferol. The optimal concentrations of kaempferol were defined as the range from 5 µmol.L-1 to 40 µmol.L-1. Kaempferol significantly decreased the release of histamine, IL-6, IL-8, IL-1β and TNF-α of activated HMC-1 mast cells (Pkaempferol, the protein expression of p-IKKβ, p-IKBa and nucleus NF-κB (p65) markedly reduced in LPS-stimulated HMC-1 mast cells (Pkaempferol markedly inhibit mast cell-mediated inflammatory response. At the same time, kaempferol can inhibit the activation of IKKβ, block the phosphorylation of IκBα, prevent NF-KB entering into the nucleus, and then decrease the release of inflammatory mediators.

  11. Effect of Glucuronidation on the Potential of Kaempferol to Inhibit Serine/Threonine Protein Kinases

    NARCIS (Netherlands)

    Beekmann, Karsten; Haan, De Laura H.J.; Actis-Goretta, Lucas; Bladeren, Van Peter J.; Rietjens, Ivonne M.C.M.

    2016-01-01

    To study the effect of metabolic conjugation of flavonoids on the potential to inhibit protein kinase activity, the inhibitory effects of the dietary flavonol kaempferol and its major plasma conjugate kaempferol-3-O-glucuronide on protein kinases were studied. To this end, the inhibition of the

  12. Kaempferol increases levels of coenzyme Q in kidney cells and serves as a biosynthetic ring precursor.

    Science.gov (United States)

    Fernández-Del-Río, Lucía; Nag, Anish; Gutiérrez Casado, Elena; Ariza, Julia; Awad, Agape M; Joseph, Akil I; Kwon, Ohyun; Verdin, Eric; de Cabo, Rafael; Schneider, Claus; Torres, Jorge Z; Burón, María I; Clarke, Catherine F; Villalba, José M

    2017-09-01

    Coenzyme Q (Q) is a lipid-soluble antioxidant essential in cellular physiology. Patients with Q deficiencies, with few exceptions, seldom respond to treatment. Current therapies rely on dietary supplementation with Q 10 , but due to its highly lipophilic nature, Q 10 is difficult to absorb by tissues and cells. Plant polyphenols, present in the human diet, are redox active and modulate numerous cellular pathways. In the present study, we tested whether treatment with polyphenols affected the content or biosynthesis of Q. Mouse kidney proximal tubule epithelial (Tkpts) cells and human embryonic kidney cells 293 (HEK 293) were treated with several types of polyphenols, and kaempferol produced the largest increase in Q levels. Experiments with stable isotope 13 C-labeled kaempferol demonstrated a previously unrecognized role of kaempferol as an aromatic ring precursor in Q biosynthesis. Investigations of the structure-function relationship of related flavonols showed the importance of two hydroxyl groups, located at C3 of the C ring and C4' of the B ring, both present in kaempferol, as important determinants of kaempferol as a Q biosynthetic precursor. Concurrently, through a mechanism not related to the enhancement of Q biosynthesis, kaempferol also augmented mitochondrial localization of Sirt3. The role of kaempferol as a precursor that increases Q levels, combined with its ability to upregulate Sirt3, identify kaempferol as a potential candidate in the design of interventions aimed on increasing endogenous Q biosynthesis, particularly in kidney. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Mechanisms underlying apoptosis-inducing effects of Kaempferol in HT-29 human colon cancer cells.

    Science.gov (United States)

    Lee, Hyun Sook; Cho, Han Jin; Yu, Rina; Lee, Ki Won; Chun, Hyang Sook; Park, Jung Han Yoon

    2014-02-17

    We previously noted that kaempferol, a flavonol present in vegetables and fruits, reduced cell cycle progression of HT-29 cells. To examine whether kaempferol induces apoptosis of HT-29 cells and to explore the underlying molecular mechanisms, cells were treated with various concentrations (0-60 μmol/L) of kaempferol and analyzed by Hoechst staining, Annexin V staining, JC-1 labeling of the mitochondria, immunoprecipitation, in vitro kinase assays, Western blot analyses, and caspase-8 assays. Kaempferol increased chromatin condensation, DNA fragmentation and the number of early apoptotic cells in HT-29 cells in a dose-dependent manner. In addition, kaempferol increased the levels of cleaved caspase-9, caspase-3 and caspase-7 as well as those of cleaved poly (ADP-ribose) polymerase. Moreover, it increased mitochondrial membrane permeability and cytosolic cytochrome c concentrations. Further, kaempferol decreased the levels of Bcl-xL proteins, but increased those of Bik. It also induced a reduction in Akt activation and Akt activity and an increase in mitochondrial Bad. Additionally, kaempferol increased the levels of membrane-bound FAS ligand, decreased those of uncleaved caspase-8 and intact Bid and increased caspase-8 activity. These results indicate that kaempferol induces the apoptosis of HT-29 cells via events associated with the activation of cell surface death receptors and the mitochondrial pathway.

  14. Quercetin, kaempferol, myricetin, and fatty acid content among several Hibiscus sabdariffa accession calyces based on maturity in a greenhouse

    Science.gov (United States)

    Flavonols including quercetin, kaempferol, myricetin, and fatty acids in plants have many useful health attributes including antioxidants, cholesterol lowering, and cancer prevention. Six accessions of roselle, Hibiscus sabdariffa calyces were evaluated for quercetin, kaempferol, and myricetin conte...

  15. Anthocyanin indexes, quercetin, kaempferol, and myricetin concentration in leaves and fruit of Abutilon theophrasti Medik. genetic resources

    Science.gov (United States)

    Anthocyanin indexes, quercetin, kaempferol, and myricetin may provide industry with potential new medicines or nutraceuticals. Velvetleaf (Abutilon theophrasti Medik) leaves from 42 accessions were analyzed for anthocyanin indexes while both leaves and fruit were used for quercetin, kaempferol, and ...

  16. Enantiopure cyclopentane building blocks from iridoid glucosides

    DEFF Research Database (Denmark)

    Rasmussen, Jon Holbech

    .e. S. albida, S. woronowic, S. subvelutina, S. lateriflora, S. altissima, were investigated. It was found that in the water-soluble part of an ethanolic extract, a cinnamic ester of catalpol, scutellarioside I (348), was extractable into EtOAc. A method was developed in which the preparation of a water......-soluble extract of the plant material, extraction of 348 into EtOAc and acetylation of the crude EtOAc-extract, gave an acetylated crude product, from which scutellarioside I pentaacetate (351) was crystallised. Thus, 351 was obtained without the use of chromatography. Conversely, the purification of 5 was only......, pentaacetate 351 was transformed into an iridoid glucoside diacetonide 371. Ozonolysis of 371 followed by a reductive work-up procedure (NaBH4) led to the partially protected cyclopentane derivative 352. The ozonolysis/reduction sequence constitutes a new method in iridoid chemistry to obtain cyclopentanoid...

  17. Kaempferol glycosides from the twigs of Cinnamomum osmophloeum and their nitric oxide production inhibitory activities.

    Science.gov (United States)

    Lin, Huan-You; Chang, Shang-Tzen

    2012-12-15

    In the present study, ethanolic extract of twigs from Cinnamomum osmophloeum led to isolate nine kaempferol glycosides including two new kaempferol triglycosides that were characterized as kaempferol 3-O-β-D-xylopyranosyl-(1→2)-α-L-arabinofuranosyl-7-O-α-L-rhamnopyranoside (1) and kaempferol 3-O-β-D-xylopyranosyl-(1→2)-α-L-rhamnopyranosyl-7-O-α-L-rhamnopyranoside (2). The structures of these compounds were assigned by the application of 1D and 2D NMR spectroscopy and other techniques. Among these nine compounds, kaempferol 7-O-α-L-rhamnopyranoside (9) revealed inhibitory effect against LPS-induced production of nitric oxide in RAW 264.7 macrophages with an IC(50) value of 41.2 μM. It also slightly reduced PGE(2) accumulation by 26% at the concentration of 50 μM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. KAEMPFEROL, A FLAVONOID COMPOUND FROM GYNURA MEDICA INDUCED APOPTOSIS AND GROWTH INHIBITION IN MCF-7 BREAST CANCER CELL

    OpenAIRE

    Yi, Xiaofang; Zuo, Jiangcheng; Tan, Chao; Xian, Sheng; Luo, Chunhua; Chen, Sai; Yu, Liangfang; Luo, Yucheng

    2016-01-01

    Background: Kaempferol, a natural flavonoid, has been shown to induce cancer cell apoptosis and cell growth inhibition in several tumors. Previously we have conducted a full investigation on the chemical constituents of Gynura medica, kaempferol and its glycosides are the major constituents of G. medica. Here we investigated the growth inhibition and apoptosis induction effect of kaempferol extracted from G. medica. Materials and Methods: The inhibition effects of kaempferol were evaluated by...

  19. [Investigation the Inhibitory Effects of Kaempferol on Rat Renalmesangial Cells Proliferation under High Glucose Condition].

    Science.gov (United States)

    Chen, Ni; Han, Peng-Ding; Chen, Wen; Deng, Yan

    2017-07-01

    To investigate the protective effects of kaempferol on rat renal mesangial cells under high glucose condition and explore its mechanism. The HBZY-1 cells were divided into normal glucose group (5.5 mmol/L), high glucose group (25 mmol/L), 10 μmol/L kaempferol+high glucose group, and 30 μmol/L kaempferol+high glucose group. Cell proliferative ability was measured by MTT; cell cycle was analyzed by flow cytometry; mRNA and protein levels were determined by Real-time PCR and Western blot, respectively. Kaempferol had no effect on the proliferative ability of rat renal mesangial cells under normal glucose (5.5 mmol/L) condition. High glucose (25 mmol/L) enhanced the cell proliferative ability, and this effect was antagonized by kaempferol (10-30 μmol/L) treatment. High glucose reduced the cell population at G 0 /G 1 phase with an associated increase in S phase, and had no effect on G₂/M phase; and kaempferol treatment restored high glucose-induced changes in cell cycle. Kaempferol also prevented high glucose-induced increase in fibronectin and connective tissue growth factor mRNA and protein expression levels. Kaempferol also prevented high glucose-induced increase in fibronectin and connective tissue growth factor mRNA and protein expression levels. Further, high glucose caused an increase in protein level of phosphorylated p38 mitogen-activated protein kinases (p38 MAPK), which was antagonized by kaempferol treatment. Our results suggest that kaempferol exerts its protective effect on rat renal mesangial cells under high glucose condition via p38 MAPK signaling pathway.

  20. Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability

    Science.gov (United States)

    Luo, Haitao; Jiang, Bingbing; Li, Bingyun; Li, Zhaoliang; Jiang, Bing-Hua; Chen, Yi Charlie

    2012-01-01

    Ovarian cancer is one of the leading causes of cancer death for women throughout the Western world. Kaempferol, a natural flavonoid, has shown promise in the chemoprevention of ovarian cancer. A common concern about using dietary supplements for chemoprevention is their bioavailability. Nanoparticles have shown promise in increasing the bioavailability of some chemicals. Here we developed five different types of nanoparticles incorporating kaempferol and tested their efficacy in the inhibition of viability of cancerous and normal ovarian cells. We found that positively charged nanoparticle formulations did not lead to a significant reduction in cancer cell viability, whereas nonionic polymeric nanoparticles resulted in enhanced reduction of cancer cell viability. Among the nonionic polymeric nanoparticles, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) nanoparticles incorporating kaempferol led to significant reduction in cell viability of both cancerous and normal cells. Poly(DL-lactic acid-co-glycolic acid) (PLGA) nanoparticles incorporating kaempferol resulted in enhanced reduction of cancer cell viability together with no significant reduction in cell viability of normal cells compared with kaempferol alone. Therefore, both PEO-PPO-PEO and PLGA nanoparticle formulations were effective in reducing cancer cell viability, while PLGA nanoparticles incorporating kaempferol had selective toxicity against cancer cells and normal cells. A PLGA nanoparticle formulation could be advantageous in the prevention and treatment of ovarian cancers. On the other hand, PEO-PPO-PEO nanoparticles incorporating kaempferol were more effective inhibitors of cancer cells, but they also significantly reduced the viability of normal cells. PEO-PPO-PEO nanoparticles incorporating kaempferol may be suitable as a cancer-targeting strategy, which could limit the effects of the nanoparticles on normal cells while retaining their potency against cancer cells. We

  1. Kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    International Nuclear Information System (INIS)

    Xiao, Hong-Bo; Lu, Xiang-Yang; Sun, Zhi-Liang; Zhang, Heng-Bo

    2011-01-01

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE −/− ) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effective concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE −/− mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis of ApoE −/− mice. -- Graphical abstract: Kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis of ApoE −/− mice. Highlights: ► OPN–CD44 pathway plays a critical role in the development of atherosclerosis. ► We examine lesion area, OPN and CD44 changes after kaempferol treatment. ► Kaempferol treatment decreased atherosclerotic lesion area in ApoE −/− mice. ► Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE −/− mice. ► Kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis.

  2. Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hong-Bo, E-mail: xhbzhb@yahoo.com [College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128 (China); Lu, Xiang-Yang; Sun, Zhi-Liang [Hunan Agricultural University, Changsha 410128 (China); Zhang, Heng-Bo [Furong District Red Cross Hospital, Changsha 410126 (China)

    2011-12-15

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE{sup -/-}) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effective concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE{sup -/-} mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. -- Graphical abstract: Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. Highlights: Black-Right-Pointing-Pointer OPN-CD44 pathway plays a critical role in the development of atherosclerosis. Black-Right-Pointing-Pointer We examine lesion area, OPN and CD44 changes after kaempferol treatment. Black-Right-Pointing-Pointer Kaempferol treatment decreased atherosclerotic lesion area in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis.

  3. Escherichia coli modular coculture system for resveratrol glucosides production

    DEFF Research Database (Denmark)

    Thuan, Nguyen Huy; Trung, Nguyen Thanh; Cuong, Nguyen Xuan

    2018-01-01

    converting para-coumaric acid into resveratrol and the downstream module expressing glucosyltransferase to convert the resveratrol into its glucosidated forms; polydatin and resveratroloside. Upon optimization of the initial inoculum ratio of two E. coli populations, 92 mg resveratrol glucosides/L (236 µ......M) was produced i.e. achieving 84% bioconversion from 280 µM of p-coumaric acid in 60 h by 3 L fed batch fermentor. This is the report of applying coculture system to produce resveratrol glucosides by expressing the aglycone formation pathway and sugar dependent pathway into two different cells....

  4. Biosynthesis and Characterization of Zearalenone-14-Sulfate, Zearalenone-14-Glucoside and Zearalenone-16-Glucoside Using Common Fungal Strains

    Directory of Open Access Journals (Sweden)

    Antje Borzekowski

    2018-03-01

    Full Text Available Zearalenone (ZEN and its phase II sulfate and glucoside metabolites have been detected in food and feed commodities. After consumption, the conjugates can be hydrolyzed by the human intestinal microbiota leading to liberation of ZEN that implies an underestimation of the true ZEN exposure. To include ZEN conjugates in routine analysis, reliable standards are needed, which are currently not available. Thus, the aim of the present study was to develop a facilitated biosynthesis of ZEN-14-sulfate, ZEN-14-glucoside and ZEN-16-glucoside. A metabolite screening was conducted by adding ZEN to liquid fungi cultures of known ZEN conjugating Aspergillus and Rhizopus strains. Cultivation conditions and ZEN incubation time were varied. All media samples were analyzed for metabolite formation by HPLC-MS/MS. In addition, a consecutive biosynthesis was developed by using Fusarium graminearum for ZEN biosynthesis with subsequent conjugation of the toxin by utilizing Aspergillus and Rhizopus species. ZEN-14-sulfate (yield: 49% is exclusively formed by Aspergillus oryzae. ZEN-14-glucoside (yield: 67% and ZEN-16-glucoside (yield: 39% are formed by Rhizopus oryzae and Rhizopus oligosporus, respectively. Purities of ≥73% ZEN-14-sulfate, ≥82% ZEN-14-glucoside and ≥50% ZEN-16-glucoside were obtained by 1H-NMR. In total, under optimized cultivation conditions, fungi can be easily utilized for a targeted and regioselective synthesis of ZEN conjugates.

  5. Insect Counter-Adaptations to Plant Cyanogenic Glucosides

    DEFF Research Database (Denmark)

    Pentzold, Stefan

    . This thesis presents evidence that larvae of the sequestering lepidopteran specialist Zygaena filipendulae have evolved diverse behavioural, morphological, physiological and metabolic adaptations to keep cyanogenic glucosides from its food plant Lotus corniculatus (Fabaceae) intact and thus non-toxic during...

  6. Distribution and Biosynthesis of Iridoid Glucosides in the Loasaceae Family

    DEFF Research Database (Denmark)

    Rodriguez-Lopez, Veronica

    In order to make a more precise inventory of iridoid glucosides from Loasaceae family 13 species belonging to 7 genera (Eucnide bartonioides, E. grandiflora, Gronovia scandens, Fuertesia domingensis, Loasa parviflora, L. tricolor, L. urens, L. speciosa, Klaphrotia mentzeloides, Cajophora cernua, ...

  7. Impact of apigenin and kaempferol on human head and neck squamous cell carcinoma

    Science.gov (United States)

    Swanson, Hollie I.; Choi, Eun-Young; Helton, W. Brian; Gairola, C. Gary; Valentino, Joseph

    2014-01-01

    Objective Apigenin and kaempferol are plant flavonoids with reported chemopreventive activities. This study aimed to determine the effect of apigenin and kaempferol on cell viability in cultured cells derived from the pharynx (FaDu cell line), an oral cavity carcinoma (PCI-13 cell line), and a metastatic lymph node (PCI-15B cell line) and in explanted FaDu cells. Study Design The in vitro viability of FaDu, PCI-13, and PCI-15B cells treated with apigenin and kaempferol was determined. Tumor growth of FaDu explants was evaluated in athymic mice that were gavaged with either apigenin or kaempferol. Results Although apigenin and kaempferol treatment decreased viability of cells in vitro, cell-type-dependent differences in responsiveness were observed. In vivo apigenin treatment significantly increased the tumor size of FaDu explants. Results obtained using kaempferol were similar. Conclusions The in vitro decrease in FaDu cell viability by apigenin and kaempferol was not observed in in vivo tumor explants using the conditions described in this study. PMID:24439916

  8. Kaempferol enhances the suppressive function of Treg cells by inhibiting FOXP3 phosphorylation.

    Science.gov (United States)

    Lin, Fang; Luo, Xuerui; Tsun, Andy; Li, Zhiyuan; Li, Dan; Li, Bin

    2015-10-01

    Kaempferol is a natural flavonoid found in many vegetables and fruits. Epidemiologic studies have described that Kaempferol intake could reduce risk of cancer, especially lung, gastric, pancreatic and ovarian cancers. Recent studies have shown that Kaempferol could also be beneficial to the body to defend against inflammation, and infection by bacteria and viruses; however, the molecular mechanism of its immunoregulatory function remains largely unknown. Through screening a small molecule library of traditional Chinese medicine (TCM), we identified that Kaempferol could enhance the suppressive function of regulatory T cells (Tregs). Kaempferol was found to increase FOXP3 expression level in Treg cells and prevent pathological symptoms of collagen-induced arthritis in a rat animal model. Kaempferol could also reduce PIM1-mediated FOXP3 phosphorylation at S422. Our study reveals a molecular mechanism that underlies the anti-inflammatory action of Kaempferol for the prevention and treatment of inflammatory diseases such as rheumatoid arthritis, systemic lupus erythematosus, and ankylosing spondylitis. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Dietary flavonoid kaempferol inhibits glucocorticoid-induced bone loss by promoting osteoblast survival.

    Science.gov (United States)

    Adhikary, Sulekha; Choudhary, Dharmendra; Ahmad, Naseer; Karvande, Anirudha; Kumar, Avinash; Banala, Venkatesh Teja; Mishra, Prabhat Ranjan; Trivedi, Ritu

    2018-02-13

    Kaempferol, a dietary flavonoid found in fruits and vegetables, has been reported to reverse osteopenic condition in ovariectomized rats. Because kaempferol is endowed with osteogenic activity, the aim of this study was to determine whether it has a beneficial effect on glucocorticoid (GC)-induced bone loss. Adult female rats were divided into four groups as control (vehicle; distilled water), methylprednisolone (MP; 5 mg•kg•d, subcutaneously), MP + kaempferol (5 mg•kg•d, oral), and MP + human parathyroid 1-34 (30 µg/kg, 5 times/wk, subcutaneously) and treated for 4 wk. To study the antagonizing effect of kaempferol on GC-induced inhibition of fracture healing, drill-hole injury was performed on control and GC-treated rats. An oral dose of kaempferol was given for 14 d to observe the effect on callus formation at the site of injury. After treatment, bones were collected for further analysis. GC was associated with a decreased bone mineral density and impaired bone microarchitecture parameters. Consumption of kaempferol induced bone-sparing effects in GC-induced osteopenic condition. Additionally, improved callus formation at site of drill injury in femur diaphysis was observed with kaempferol consumption in animals on GC. Consistent with the in vivo data, kaempferol elicited a higher expression of osteogenic markers in vitro and antagonized the apoptotic effect of dexamethasone on calvarial osteoblasts. These results suggested that kaempferol reduced GC-induced bone loss and enhanced bone regeneration at fractured site, thus emphasizing the positive role of flavonoids on bone health. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Kaempferol inhibits vascular smooth muscle cell migration by modulating BMP-mediated miR-21 expression.

    Science.gov (United States)

    Kim, Kwangho; Kim, Sunghwan; Moh, Sang Hyun; Kang, Hara

    2015-09-01

    Bioflavonoids are known to induce cardioprotective effects by inhibiting vascular smooth muscle cell (VSMC) proliferation and migration. Kaempferol has been shown to inhibit VSMC proliferation. However, little is known about the effect of kaempferol on VSMC migration and the underlying molecular mechanisms. Our studies provide the first evidence that kaempferol inhibits VSMC migration by modulating the BMP4 signaling pathway and microRNA expression levels. Kaempferol activates the BMP signaling pathway, induces miR-21 expression and downregulates DOCK4, 5, and 7, leading to inhibition of cell migration. Moreover, kaempferol antagonizes the PDGF-mediated pro-migratory effect. Therefore, our study uncovers a novel regulatory mechanism of VSMC migration by kaempferol and suggests that miRNA modulation by kaempferol is a potential therapy for cardiovascular diseases.

  11. Characterization of a Glucosyltransferase Enzyme Involved in the Formation of Kaempferol and Quercetin Sophorosides in Crocus sativus1[C][W

    Science.gov (United States)

    Trapero, Almudena; Ahrazem, Oussama; Rubio-Moraga, Angela; Jimeno, Maria Luisa; Gómez, Maria Dolores; Gómez-Gómez, Lourdes

    2012-01-01

    UGT707B1 is a new glucosyltransferase isolated from saffron (Crocus sativus) that localizes to the cytoplasm and the nucleus of stigma and tepal cells. UGT707B1 transcripts were detected in the stigma tissue of all the Crocus species analyzed, but expression analysis of UGT707B1 in tepals revealed its absence in certain species. The analysis of the glucosylated flavonoids present in Crocus tepals reveals the presence of two major flavonoid compounds in saffron: kaempferol-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside and quercetin-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside, both of which were absent from the tepals of those Crocus species that did not express UGT707B1. Transgenic Arabidopsis (Arabidopsis thaliana) plants constitutively expressing UGT707B1 under the control of the cauliflower mosaic virus 35S promoter have been constructed and their phenotype analyzed. The transgenic lines displayed a number of changes that resembled those described previously in lines where flavonoid levels had been altered. The plants showed hyponastic leaves, a reduced number of trichomes, thicker stems, and flowering delay. Levels of flavonoids measured in extracts of the transgenic plants showed changes in the composition of flavonols when compared with wild-type plants. The major differences were observed in the extracts from stems and flowers, with an increase in 3-sophoroside flavonol glucosides. Furthermore, a new compound not detected in ecotype Columbia wild-type plants was detected in all the tissues and identified as kaempferol-3-O-sophoroside-7-O-rhamnoside. These data reveal the involvement of UGT707B1 in the biosynthesis of flavonol-3-O-sophorosides and how significant changes in flavonoid homeostasis can be caused by the overproduction of a flavonoid-conjugating enzyme. PMID:22649274

  12. Combination of Quercetin and Kaempferol enhances in vitro Cytotoxicity on Human Colon Cancer (HCT-116 Cells

    Directory of Open Access Journals (Sweden)

    Sara Jaramillo-Carmona

    2014-05-01

    Full Text Available Colon cancer is one of the most common types of cancer malignancy. Although flavonoids naturally occur as mixtures, little information is available regarding the additive or synergistic biochemical interactions between flavonoids. The objectives of this study were to examine the feasibility of combining two major structurally related flavonoids, quercetin and kaempferol, to affect the cell viability, cell cycle, and proliferation of the human colon cancer HCT-116 cell line. The combination of quercetin and kaempferol exhibited a greater cytotoxic efficacy than did either quercetin or kaempferol alone. This effect was highest and acted in a synergistic fashion in a 2-fold quercetin and 1-fold kaempferol IC50 combination, which also arrested cell growth in the G2/M phase and suppressed proliferation. Our observations support a structure-activity relationship based on the presence of 3’–OH moiety and/or 4’–OH moiety on the B-ring of flavonoids.

  13. Evaluation of ozonation technique for pesticide residue removal and its effect on ascorbic acid, cyanidin-3-glucoside, and polyphenols in apple (Malus domesticus) fruits.

    Science.gov (United States)

    Swami, Saurabh; Muzammil, Raunaq; Saha, Supradip; Shabeer, Ahammed; Oulkar, Dasharath; Banerjee, Kaushik; Singh, Shashi Bala

    2016-05-01

    Ozonated water dip technique was evaluated for the detoxification of six pesticides, i.e., chlorpyrifos, cypermethrin, azoxystrobin, hexaconazole, methyl parathion, and chlorothalonil from apple fruits. Results revealed that ozonation was better than washing alone. Ozonation for 15 min decreased residues of the test pesticides in the range of from 26.91 to 73.58%, while ozonation for 30 min could remove the pesticide residues by 39.39-95.14 % compared to 19.05-72.80 % by washing. Cypermethrin was the least removed pesticide by washing as well as by ozonation. Chlorothalonil, chlorpyrifos, and azoxystrobin were removed up to 71.45-95.14 % in a 30-min ozonation period. In case of methyl parathion removal, no extra advantage could be obtained by ozonation. The HPLC analysis indicated that ozonation also affected adversely the ascorbic acid and cyanidin-3-glucoside content of apples. However, 11 polyphenols studied showed a mixed trend. Gallic acid, 3,4-dihydroxybenzoic acid, catechin, epicatechin, p-coumaric acid, quercetin-3-O-glucoside, quercetin, and kaempferol were found to decrease while syringic acid, rutin, and resveratrol were found to increase in 30-min ozonation.

  14. Kaempferol Attenuates Cardiac Hypertrophy via Regulation of ASK1/MAPK Signaling Pathway and Oxidative Stress.

    Science.gov (United States)

    Feng, Hong; Cao, Jianlei; Zhang, Guangyu; Wang, Yanggan

    2017-07-01

    Kaempferol has been demonstrated to provide benefits for the treatment of atherosclerosis, coronary heart disease, hyperlipidemia, and diabetes through its antioxidant and anti-inflammatory properties. However, its role in cardiac hypertrophy remains to be elucidated. The aim of our study was to investigate the effects of kaempferol on cardiac hypertrophy and the underlying mechanism. Mice subjected to aorta banding were treated with or without kaempferol (100 mg/kg/d, p. o.) for 6 weeks. Echocardiography was performed to evaluate cardiac function. Mice hearts were collected for pathological observation and molecular mechanism investigation. H9c2 cardiomyocytes were stimulated with or without phenylephrine for in vitro study. Kaempferol significantly attenuated cardiac hypertrophy induced by aorta banding as evidenced by decreased cardiomyocyte areas and interstitial fibrosis, accompanied with improved cardiac functions and decreased apoptosis. The ASK1/MAPK signaling pathways (JNK1/2 and p38) were markedly activated in the aorta banding mouse heart but inhibited by kaempferol treatment. In in vitro experiments, kaempferol also inhibited the activity of ASK1/JNK1/2/p38 signaling pathway and the enlargement of H9c2 cardiomyocytes. Furthermore, our study revealed that kaempferol could protect the mouse heart and H9c2 cells from pathological oxidative stress. Our investigation indicated that treatment with kaempferol protects against cardiac hypertrophy, and its cardioprotection may be partially explained by the inhibition of the ASK1/MAPK signaling pathway and the regulation of oxidative stress. Georg Thieme Verlag KG Stuttgart · New York.

  15. First secondary metabolites from Herissantia crispa L (Brizicky) and the toxicity activity against Artemia salina Leach

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Danielly Albuquerque da; Matias, Wemerson Neves; Lima, Igara Oliveira; Xavier, Aline Lira; Costa, Vivian Bruna Machado; Diniz, Margareth de Fatima Formiga Melo; Agra, Maria de Fatima; Batista, Leonia Maria; Souza, Maria de Fatima Vanderlei de [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Lab. de Tecnologia Farmaceutica Prof. Delby Fernandes de Medeiros; Silva, Davi Antas e [Universidade Federal Rural de Pernambuco, Serra Talhada, PE (Brazil). Dept. de Quimica

    2009-07-01

    The phytochemical investigation of Herissantia crispa led to the isolation of seven compounds, identified as: sitosterol 3-O-{beta}-D-glucopyranoside, stigmasterol 3-O-{beta}-D-glucopyranoside, 3,5,7,4'-tetrahydroxyflavone (kaempferol), 3,5,7,3',4'-pentahydroxyflavone (quercetin), unpublished in the genus Herissantia, besides {beta}-sitosterol, kaempferol 3-O-{beta}-D-(6''-E-p-coumaroil) (tiliroside) glucopyranoside and kaempferol 3,7-di-O-{alpha}-L-ramnopyranoside (lespedin), described for the first time in the species. The structural determination of the compounds was made by means of spectroscopy methods such as Infrared Spectroscopy, {sup 1}H and {sup 13}C Nuclear Magnetic Resonance, with the aid of two dimensional techniques, and by comparison with literature data. The toxicity activity of the MeOH extract and lespedin on Artemia salina Leach. was also carried out. (author)

  16. Kaempferol Inhibits the Primary Attachment Phase of Biofilm Formation in Staphylococcus aureus.

    Science.gov (United States)

    Ming, Di; Wang, Dacheng; Cao, Fengjiao; Xiang, Hua; Mu, Dan; Cao, Junjie; Li, Bangbang; Zhong, Ling; Dong, Xiaoyun; Zhong, Xiaobo; Wang, Lin; Wang, Tiedong

    2017-01-01

    The ability to form biofilms on surfaces makes Staphylococcus aureus the main pathogenic factor in implanted medical device infections. The aim of this study was to discover a biofilm inhibitor distinct from the antibiotics used to prevent infections resulting from S. aureus biofilms. Here, we describe kaempferol, a small molecule with anti-biofilm activity that specifically inhibited the formation of S. aureus biofilms. Crystal violet (CV) staining and fluorescence microscopy clearly showed that 64 μg/ml kaempferol inhibited biofilm formation by 80%. Meanwhile, the minimum inhibitory concentration (MIC) and growth curve results indicated that kaempferol had no antibacterial activity against the tested bacterial strain. Kaempferol inhibited the primary attachment phase of biofilm formation, as determined by a fibrinogen-binding assay. Moreover, a fluorescence resonance energy transfer (FRET) assay and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analyses revealed that kaempferol reduced the activity of S. aureus sortaseA (SrtA) and the expression of adhesion-related genes. Based on these results, kaempferol provides a starting point for the development of novel anti-biofilm drugs, which may decrease the risk of bacterial drug resistance, to prevent S. aureus biofilm-related infections.

  17. Pharmacokinetic evaluation of the interaction between oral kaempferol and ethanol in rats.

    Science.gov (United States)

    Zhou, Zhaoxiang; Wang, Meng; Guo, Zengjun; Zhang, Xiaoying

    2016-12-01

    This study was aimed at investigating the effect of ethanol on oral bioavailability of kaempferol in rats, namely, at disclosing their possible interaction. Kaempferol (100 or 250 mg kg-1 bm) was administered to the rats by oral gavage with or without ethanol (600 mg kg-1 bm) co-administration. Intravenous administration (10 and 25 mg kg-1 bm) of kaempferol was used to determine the bioavailability. The concentration of kaempferol in plasma was estimated by ultra high performance liquid chromatography. During coadministration, a significant increase of the area under the plasma concentration-time curve as well as the peak concentration were observed, along with a dramatic decrease in total body clearance. Consequently, the bioavailability of kaempferol in oral control groups was 3.1 % (100 mg kg-1 bm) and 2.1 % (250 mg kg-1 bm). The first was increased by 4.3 % and the other by 2.8 % during ethanol co-administration. Increased permeability of cell membrane and ethanolkaempferol interactions on CYP450 enzymes may enhance the oral bioavailability of kaempferol in rats.

  18. Anti-oxidant activity and attenuation of bladder hyperactivity by the flavonoid compound kaempferol.

    Science.gov (United States)

    Huang, Yaw-Bin; Lin, Ming-Wei; Chao, Yun; Huang, Chi-Te; Tsai, Yi-Hung; Wu, Pao-Chu

    2014-01-01

    To evaluate the anti-oxidant activity of the flavonoid compound, kaempferol, and to examine its role in the suppression of oxidative stress and attenuation of bladder hyperactivity in a rat model of bladder injury. The anti-oxidative activity of kaempferol was examined in lipopolysaccharide-treated RAW264.7 macrophages by using flow cytometry. For in vivo studies, rats were pretreated with kaempferol or vehicle for 24 h. The rat urothelium was injured by the administration of protamine sulfate for 1.5 h and irritated by the subsequent infusion of potassium chloride for 4 h. Oxidative stress in the bladder tissue was assessed using chemiluminescence assay, and the bladder pressure was determination by cystomertrogram. Kaempferol significantly suppressed lipopolysaccharide-induced reactive oxygen species production in RAW264.7 rat macrophages. Exposure of the rat bladder to sequential infusion of protamine sulfate and potassium chloride induced bladder hyperactivity. Pretreatment with kaempferol, prevented the formation of reactive oxygen species and prolonged the intercontraction interval. Kaempferol suppresses oxidative stress and attenuates bladder hyperactivity caused by potassium chloride after protamine sulfate-induced bladder injury. © 2013 The Japanese Urological Association.

  19. Kaempferol induces autophagic cell death of hepatocellular carcinoma cells via activating AMPK signaling.

    Science.gov (United States)

    Han, Bing; Yu, Yi-Qun; Yang, Qi-Lian; Shen, Chun-Ying; Wang, Xiao-Juan

    2017-10-17

    In the present study, we demonstrate that Kaempferol inhibited survival and proliferation of established human hepatocellular carcinoma (HCC) cell lines (HepG2, Huh-7, BEL7402, and SMMC) and primary human HCC cells. Kaempferol treatment in HCC cells induced profound AMP-activated protein kinase (AMPK) activation, which led to Ulk1 phosphorylation, mTOR complex 1 inhibition and cell autophagy. Autophagy induction was reflected by Beclin-1/autophagy gene 5 upregulation and p62 degradation as well as light chain 3B (LC3B)-I to LC3B-II conversion and LC3B puncta formation. Inhibition of AMPK, via AMPKα1 shRNA or dominant negative mutation, reversed above signaling changes. AMPK inhibition also largely inhibited Kaempferol-induced cytotoxicity in HCC cells. Autophagy inhibition, by 3-methyaldenine or Beclin-1 shRNA, also protected HCC cells from Kaempferol. Kaempferol downregulated melanoma antigen 6, the AMPK ubiquitin ligase, causing AMPKα1 stabilization and accumulation. We conclude that Kaempferol inhibits human HCC cells via activating AMPK signaling.

  20. Pharmacokinetics of dietary kaempferol and its metabolite 4-hydroxyphenylacetic acid in rats.

    Science.gov (United States)

    Zabela, Volha; Sampath, Chethan; Oufir, Mouhssin; Moradi-Afrapoli, Fahimeh; Butterweck, Veronika; Hamburger, Matthias

    2016-12-01

    Kaempferol is a major flavonoid in the human diet and in medicinal plants. The compound exerts anxiolytic activity when administered orally in mice, while no behavioural changes were observed upon intraperitoneal administration, or upon oral administration in gut sterilized animals. 4-Hydroxyphenylacetic acid (4-HPAA), which possesses anxiolytic effects when administered intraperitoneally, is a major intestinal metabolite of kaempferol. Pharmacokinetic properties of the compounds are currently not clear. UHPLC-MS/MS methods were validated to support pharmacokinetic studies of kaempferol and 4-HPAA in rats. Non-compartmental and compartmental analyses were performed. After intravenous administration, kaempferol followed a one-compartment model, with a rapid clearance (4.40-6.44l/h/kg) and an extremely short half-life of 2.93-3.79min. After oral gavage it was not possible to obtain full plasma concentration-time profiles of kaempferol. Pharmacokinetics of 4-HPAA was characterized by a two-compartment model, consisting of a quick distribution phase (half-life 3.04-6.20min) followed by a fast elimination phase (half-life 19.3-21.1min). Plasma exposure of kaempferol is limited by poor oral bioavailability and extensive metabolism. Both compounds are rapidly eliminated, so that effective concentrations at the site of action do not appear to be reached. At present, it is not clear how the anxiolytic-like effects reported for the compounds can be explained. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Cyanogenic glucoside patterns in sweet and bitter almonds

    DEFF Research Database (Denmark)

    Sánchez Pérez, Raquel; Møller, Birger Lindberg; Olsen, Carl Erik

    2009-01-01

    When an almond (Prunus dulcis (Mill.) D. A. Webb) kernel containing cyanogenic glucosides (prunasin or amygdalin) is disintegrated, the glucosides will typically be hydrolyzed by amygdalin hydrolase, prunasin hydrolase, and mandelonitrile lyase with concomitant release of glucose, benzaldehyde......, and hydrogen cyanide (HCN). Benzaldehyde and HCN, in low amounts, provide the characteristic almond taste and flavour. Because of the toxicity of HCN, low cyanogenic glucoside content in the kernel is a prime breeding target. Biochemical analyses of different almond tissues were carried out to investigate...... their ability to synthesize and degrade prunasin and amygdalin. The analyses were carried out during the entire growth season, from almond tree flowering to kernel ripening using the following tissues: leaves, petioles, and the fruit (endosperm and cotyledon). Four different genotypes were investigated...

  2. Tandem malonate-based glucosides (TMGs) for membrane protein structural studies

    DEFF Research Database (Denmark)

    Hussain, Hazrat; Mortensen, Jonas S.; Du, Yang

    2017-01-01

    class of glucoside amphiphiles, designated tandem malonate-based glucosides (TMGs). A few TMG agents proved effective at both stabilizing a range of membrane proteins and extracting proteins from the membrane environment. These favourable characteristics, along with synthetic convenience, indicate...

  3. Iridoid Glucosides from Phlomis tuberosa L. and Phlomis herba-ventis L

    DEFF Research Database (Denmark)

    Alipieva, Kalina A.; Jensen, Søren Rosendal; Franzyk, Henrik

    2000-01-01

    A new iridoid glucoside, 5-deoxysesamoside, was isolated from Phlomis tuberosa together with three known iridoid glucosides sesamoside, shanzhiside methyl ester and lamalbid. Lamiide was found in Ph. herba-ventis ssp. pungens. in high concentrations....

  4. Further iridoid glucosides in the genus Manulea (Scrophulariaceae)

    DEFF Research Database (Denmark)

    Gousiadou, Chryssoula; Kokubun, Tetsuo; Gotfredsen, Charlotte Held

    2015-01-01

    From Manulea altissima (Scrophulariaceae) were isolated five known secoiridoid glucosides sweroside, eustomoside, eustoside, secoxyloganin and secologanoside as well as the 4″-O-rhamnopyranosyl-feruloyl ester of adoxosidic acid, named altissimoside. Also, the caffeoyl phenylethanoid glycoside...... verbascoside was isolated. In addition two previously unknown terpenoid esters of 6β-hydroxy 8-epi-boschnaloside, named manucoside A and B were isolated from a formerly obtained fraction from the work-up of Manulea corymbosa. The distribution of iridoid glucosides in the Scrophulariaceae is discussed....

  5. Further iridoid glucosides in the genus Manulea (Scrophulariaceae).

    Science.gov (United States)

    Gousiadou, Chrysoula; Kokubun, Tetsuo; Gotfredsen, Charlotte H; Jensen, Søren R

    2015-01-01

    From Manulea altissima (Scrophulariaceae) were isolated five known secoiridoid glucosides sweroside, eustomoside, eustoside, secoxyloganin and secologanoside as well as the 4″-O-rhamnopyranosyl-feruloyl ester of adoxosidic acid, named altissimoside. Also, the caffeoyl phenylethanoid glycoside verbascoside was isolated. In addition two previously unknown terpenoid esters of 6β-hydroxy 8-epi-boschnaloside, named manucoside A and B were isolated from a formerly obtained fraction from the work-up of Manulea corymbosa. The distribution of iridoid glucosides in the Scrophulariaceae is discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs.

    Science.gov (United States)

    Zhu, Jun; Tang, Haoyu; Zhang, Zhenhua; Zhang, Yong; Qiu, Chengfeng; Zhang, Ling; Huang, Pinge; Li, Feng

    2017-02-01

    Intervertebral disc (IVD) degeneration is a common disease that represents a significant cause of socio-economic problems. Bone marrow-derived mesenchymal stem cells (BMSCs) are a potential autologous stem cell source for the nucleus pulposus regeneration. Kaempferol has been reported to exert protective effects against both osteoporosis and obesity. This study explored the effect of kaempferol on BMSCs differentiation and inflammation. The results demonstrated that kaempferol did not show any cytotoxicity at concentrations of 20, 60 and 100μM. Kaempferol enhanced cell viability by counteracting the lipopolysaccharide (LPS)-induced cell apoptosis and increasing cell proliferation. Western blot analysis of mitosis-associated nuclear antigen (Ki67) and proliferation cell nuclear antigen (PCNA) further confirmed the increased effect of kaempferol on LPS-induced decreased viability of BMSCs. Besides, kaempferol elevated LPS-induced reduced level of chondrogenic markers (SOX-9, Collagen II and Aggrecan), decreased the level of matrix-degrading enzymes, i.e., matrix metalloprotease (MMP)-3 and MMP-13, suggesting the osteogenesis of BMSC under kaempferol treatment. On the other hand, kaempferol enhanced LPS-induced decreased expression of lipid catabolism-related genes, i.e., carnitine palmitoyl transferase-1 (CPT-1). Kaempferol also suppressed the expression of lipid anabolism-related genes, i.e., peroxisome proliferators-activated receptor-γ (PPAR-γ). The Oil red O staining further convinced the inhibition effect of kaempferol on BMSCs adipogenesis. In addition, kaempferol alleviated inflammatory by reducing the level of pro-inflammatory cytokines (i.e., interleukin (IL)-6) and increasing anti-inflammatory cytokine (IL-10) via inhibiting the nucleus translocation of nuclear transcription factor (NF)-κB p65. Taken together, our research indicated that kaempferol may serve as a novel target for treatment of IVD degeneration. Copyright © 2016 Elsevier B.V. All rights

  7. Protective and detrimental effects of kaempferol in rat H4IIE cells: Implication of oxidative stress and apoptosis

    International Nuclear Information System (INIS)

    Niering, Petra; Michels, Gudrun; Waetjen, Wim; Ohler, Sandra; Steffan, Baerbel; Chovolou, Yvonni; Kampkoetter, Andreas; Proksch, Peter; Kahl, Regine

    2005-01-01

    Flavonoids are ubiquitous substances in fruits and vegetables. Among them, the flavonol kaempferol contributes up to 30% of total dietary flavonoid intake. Flavonoids are assumed to exert beneficial effects on human health, e.g., anticancer properties. For this reason, they are used in food supplements at high doses. The aim of this project was to determine the effects of kaempferol on oxidative stress and apoptosis in H4IIE rat hepatoma cells over a broad concentration range. Kaempferol is rapidly taken up and glucuronidated by H4IIE cells. The results demonstrate that kaempferol protects against H 2 O 2 -induced cellular damage at concentrations which lead to cell death and DNA strand breaks in the absence of H 2 O 2 -mediated oxidative stress. Preincubation with 50 μM kaempferol exerts protection against the loss of cell viability induced by 500 μM H 2 O 2 (2 h) while the same concentration of kaempferol reduces cell viability by 50% in the absence of H 2 O 2 (24 h). Preincubation with 50 μM kaempferol ameliorates the strong DNA damage induced by 500 μM H 2 O 2 while 50 μM kaempferol leads to a significant increase of DNA breakage in the absence of H 2 O 2 . Preincubation with 50 μM kaempferol reduces H 2 O 2 -mediated caspase-3 activity by 40% (4 h) while the same concentration of kaempferol leads to the formation of a DNA ladder in the absence of H 2 O 2 (24 h). It is concluded that the intake of high dose kaempferol in food supplements may not be advisable because in our cellular model protective kaempferol concentrations can also induce DNA damage and apoptosis by themselves

  8. Kaempferol induces ATM/p53-mediated death receptor and mitochondrial apoptosis in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Chiu-Fang; Yang, Jai-Sing; Tsai, Fuu-Jen; Chiang, Ni-Na; Lu, Chi-Cheng; Huang, Yu-Syuan; Chen, Chun; Chen, Fu-An

    2016-05-01

    Kaempferol is a member of the flavonoid compounds found in vegetables and fruits. It is shown to exhibit biological impact and anticancer activity, but no report exists on the angiogenic effect of kaempferol and induction of cell apoptosis in vitro. In this study, we investigated the role of kaempferol on anti-angiogenic property and the apoptotic mechanism of human umbilical vein endothelial cells (HUVECs). Our results demonstrated that kaempferol decreased HUVEC viability in a time- and concentration-dependent manner. Kaempferol also induced morphological changes and sub-G1 phase cell population (apoptotic cells). Kaempferol triggered apoptosis of HUVECs as detecting by DNA fragmentation, comet assay and immunofluorescent staining for activated caspase-3. The caspase signals, including caspase-8, -9 and -3, were time-dependently activated in HUVECs after kaempferol exposure. Furthermore, pre-treatment with a specific inhibitor of caspase-8 (Z-IETD-FMK) significantly reduced the activity of caspase-8, -9 and -3, indicating that extrinsic pathway is a major signaling pathway in kaempferol-treated HUVECs. Importantly, kaempferol promoted reactive oxygen species (ROS) evaluated using flow cytometric assay in HUVECs. We further investigated the upstream extrinsic pathway and showed that kaempferol stimulated death receptor signals [Fas/CD95, death receptor 4 (DR4) and DR5] through increasing the levels of phosphorylated p53 and phosphorylated ATM pathways in HUVECs, which can be individually confirmed by N-acetylcysteine (NAC), ATM specific inhibitor (caffeine) and p53 siRNA. Based on these results, kaempferol-induced HUVEC apoptosis was involved in an ROS-mediated p53/ATM/death receptor signaling. Kaempferol might possess therapeutic effects on cancer treatment in anti-vascular targeting.

  9. In Vivo Exposure of Kaempferol Is Driven by Phase II Metabolic Enzymes and Efflux Transporters.

    Science.gov (United States)

    Zheng, Liang; Zhu, Lijun; Zhao, Min; Shi, Jian; Li, Yuhuan; Yu, Jia; Jiang, Huangyu; Wu, Jinjun; Tong, Yunli; Liu, Yuting; Hu, Ming; Lu, Linlin; Liu, Zhongqiu

    2016-09-01

    Kaempferol is a well-known flavonoid; however, it lacks extensive pharmacokinetic studies. Phase II metabolic enzymes and efflux transporters play an important role in the disposition of flavonoids. This study aimed to investigate the mechanism by which phase II metabolic enzymes and efflux transporters determine the in vivo exposure of kaempferol. Pharmacokinetic analysis in Sprague-Dawley rats revealed that kaempferol was mostly biotransformed to conjugates, namely, kaempferol-3-glucuronide (K-3-G), kaempferol-7-glucuronide (K-7-G), and kaempferol-7-sulfate, in plasma. K-3-G represented the major metabolite. Compared with that in wild-type mice, pharmacokinetics in knockout FVB mice demonstrated that the absence of multidrug resistance protein 2 (MRP2) and breast cancer resistance protein (BCRP) significantly increased the area under the curve (AUC) of the conjugates. The lack of MRP1 resulted in a much lower AUC of the conjugates. Intestinal perfusion in rats revealed that the glucuronide conjugates were mainly excreted in the small intestine, but 7-sulfate was mainly excreted in the colon. In Caco-2 monolayers, K-7-G efflux toward the apical (AP) side was significantly higher than K-3-G efflux. In contrast, K-3-G efflux toward the basolateral (BL) side was significantly higher than K-7-G efflux. The BL-to-AP efflux was significantly reduced in the presence of the MRP2 inhibitor LTC4. The AP-to-BL efflux was significantly decreased in the presence of the BL-side MRPs inhibitor MK571. The BCRP inhibitor Ko143 decreased the glucuronide conjugate efflux. Therefore, kaempferol is mainly exposed as K-3-G in vivo, which is driven by phase II metabolic enzymes and efflux transporters (i.e., BCRP and MRPs).

  10. Kaempferol targets RSK2 and MSK1 to suppress ultraviolet radiation-induced skin cancer

    Science.gov (United States)

    Langfald, Alyssa; Yang, Ge; Zhang, Yi; Yu, Dong Hoon; Kim, Myoung Ok; Lee, Mee-Hyun; Li, Haitao; Bae, Ki Beom; Kim, Hong-Gyum; Ma, Wei-Ya; Bode, Ann M.; Dong, Ziming; Dong, Zigang

    2014-01-01

    Solar ultraviolet (SUV) irradiation is a major factor in skin carcinogenesis, the most common form of cancer in the USA. The mitogen-activated protein (MAP) kinase cascades are activated by SUV irradiation. The 90 kDa ribosomal S6 kinase (RSK) and mitogen and stress activated protein kinase (MSK) proteins constitute a family of protein kinases that mediate signal transduction downstream of the MAP kinase cascades. In this study, phosphorylation of RSK and MSK1 was up-regulated in human squamous cell carcinoma (SCC) and solar UV-treated mouse skin. Kaempferol, a natural flavonol, found in tea, broccoli, grapes, apples and other plant sources, is known to have anticancer activity, but its mechanisms and direct target(s) in cancer chemoprevention are unclear. Kinase array results revealed that kaempferol inhibited RSK2 and MSK1. Pull-down assay results, ATP competition and in vitro kinase assay data revealed that kaempferol interacts with RSK2 and MSK1 at the ATP-binding pocket and inhibits their respective kinase activities. Mechanistic investigations showed that kaempferol suppresses RSK2 and MSK1 kinase activities to attenuate solar UV-induced phosphorylation of CREB and histone H3 in mouse skin cells. Kaempferol was a potent inhibitor of solar UV-induced mouse skin carcinogenesis. Further analysis showed that skin from the kaempferol-treated group exhibited a substantial reduction in solar UV-induced phosphorylation of cAMP response element-binding protein (CREB), c-Fos and histone H3. Overall, our results identify kaempferol as a safe and novel chemopreventive agent against solar UV-induced skin carcinogenesis that acts by targeting RSK2 and MSK1. PMID:24994661

  11. Kaempferol targets RSK2 and MSK1 to suppress UV radiation-induced skin cancer.

    Science.gov (United States)

    Yao, Ke; Chen, Hanyong; Liu, Kangdong; Langfald, Alyssa; Yang, Ge; Zhang, Yi; Yu, Dong Hoon; Kim, Myoung Ok; Lee, Mee-Hyun; Li, Haitao; Bae, Ki Beom; Kim, Hong-Gyum; Ma, Wei-Ya; Bode, Ann M; Dong, Ziming; Dong, Zigang

    2014-09-01

    Solar UV (SUV) irradiation is a major factor in skin carcinogenesis, the most common form of cancer in the United States. The MAPK cascades are activated by SUV irradiation. The 90 kDa ribosomal S6 kinase (RSK) and mitogen and stress-activated protein kinase (MSK) proteins constitute a family of protein kinases that mediate signal transduction downstream of the MAPK cascades. In this study, phosphorylation of RSK and MSK1 was upregulated in human squamous cell carcinoma (SCC) and SUV-treated mouse skin. Kaempferol, a natural flavonol, found in tea, broccoli, grapes, apples, and other plant sources, is known to have anticancer activity, but its mechanisms and direct target(s) in cancer chemoprevention are unclear. Kinase array results revealed that kaempferol inhibited RSK2 and MSK1. Pull-down assay results, ATP competition, and in vitro kinase assay data revealed that kaempferol interacts with RSK2 and MSK1 at the ATP-binding pocket and inhibits their respective kinase activities. Mechanistic investigations showed that kaempferol suppresses RSK2 and MSK1 kinase activities to attenuate SUV-induced phosphorylation of cAMP-responsive element binding protein (CREB) and histone H3 in mouse skin cells. Kaempferol was a potent inhibitor of SUV-induced mouse skin carcinogenesis. Further analysis showed that skin from the kaempferol-treated group exhibited a substantial reduction in SUV-induced phosphorylation of CREB, c-Fos, and histone H3. Overall, our results identify kaempferol as a safe and novel chemopreventive agent against SUV-induced skin carcinogenesis that acts by targeting RSK2 and MSK1. ©2014 American Association for Cancer Research.

  12. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  13. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl glucoside-coconut oil ester. 573.660 Section 573.660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil...

  14. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 172.816 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  15. Kaempferol modulates the metastasis of human non-small cell lung cancer cells by inhibiting epithelial-mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Meng Hang

    2015-06-01

    Full Text Available The present study was done to determine whether kaempferol, a natural polyphenol of the flavonoid family, affects Epithelial-Mesenchymal Transition (EMT in non-small cell lung cancer cells. Kaempferol not only inhibited cancer cell proliferation and migration in a dose-dependent manner but also modulated the expression of EMT-related proteins E-cadherin and vimentin which are indispensible to cellular motility, invasiveness and metastasis. These results indicate that kaempferol suppresses non-small cell lung cancer migration by modulating the expression of EMT proteins. Therefore, kaempferol may be useful as a potential anticancer agent for non-small cell lung cancer.

  16. Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway.

    Science.gov (United States)

    Pan, Dongmei; Li, Nan; Liu, Yanyan; Xu, Qiang; Liu, Qingping; You, Yanting; Wei, Zhenquan; Jiang, Yubao; Liu, Minying; Guo, Tianfeng; Cai, Xudong; Liu, Xiaobao; Wang, Qiang; Liu, Mingling; Lei, Xujie; Zhang, Mingying; Zhao, Xiaoshan; Lin, Changsong

    2018-02-01

    In rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLSs) play an essential role in cartilage destruction. Aggressive migration and invasion by FLSs significantly affect RA pathology. Kaempferol has been shown to inhibit cancer cell migration and invasion. However, the effects of kaempferol on RA FLSs have not been investigated. Our study aimed to determine the effects of kaempferol on RA both in vitro and in vivo. In vitro, cell migration and invasion were measured using scratch assays and the Boyden chamber method, respectively. The cytoskeletal reorganization of RA FLSs was evaluated by immunofluorescence staining. Matrix metalloproteinase (MMP) levels were measured by real-time PCR, and protein expression levels were measured by western blotting. In vivo, the effects of kaempferol were evaluated in mice with CIA. The results showed that kaempferol reduced migration, invasion and MMP expression in RA FLSs. In addition, we demonstrated that kaempferol inhibited reorganization of the actin cytoskeleton during cell migration. Moreover, kaempferol dramatically suppressed tumor necrosis factor (TNF)-α-induced MAPK activation without affecting the expression of TNF-α receptors. We also demonstrated that kaempferol attenuated the severity of arthritis in mice with CIA. Taken together, these results suggested that kaempferol inhibits the migration and invasion of FLSs in RA by blocking MAPK pathway activation without affecting the expression of TNF-α receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Enzymatic Synthesis of Acylphloroglucinol 3-C-Glucosides from 2-O-Glucosides using a C-Glycosyltransferase from Mangifera indica.

    Science.gov (United States)

    Chen, Dawei; Sun, Lili; Chen, Ridao; Xie, Kebo; Yang, Lin; Dai, Jungui

    2016-04-18

    A green and cost-effective process for the convenient synthesis of acylphloroglucinol 3-C-glucosides from 2-O-glucosides was exploited using a novel C-glycosyltransferase (MiCGTb) from Mangifera indica. Compared with previously characterized CGTs, MiCGTb exhibited unique de-O-glucosylation promiscuity and high regioselectivity toward structurally diverse 2-O-glucosides of acylphloroglucinol and achieved high yields of C-glucosides even with a catalytic amount of uridine 5'-diphosphate (UDP). These findings demonstrate for the first time the significant potential of a single-enzyme approach to the synthesis of bioactive C-glucosides from both natural and unnatural acylphloroglucinol 2-O-glucosides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The integrated enzymatic production and downstream processing of glucosides

    NARCIS (Netherlands)

    Roode, de B.M.

    2001-01-01

    Glucosides are of commercial interest for the industry in general and for the pharmaceutical and food industry in particular. Chemical preparation of glycosides is not applicable in the food industry, and therefore an enzyme-catalyzed reaction would be an alternative. However, until now the

  19. Total Glucosides of Paeonia lactiflora Pall Suppress Nitric Oxide ...

    African Journals Online (AJOL)

    iNOS) expression and ... Keywords: Total glucosides, Paeonia lactiflora, Nitric oxide, iNOs, Nuclear factor-κB. Tropical Journal of Pharmaceutical Research ... Nuclear factor (NF)-κB is the key transcriptional factor regulating iNOS gene transcription.

  20. Chlorinated Iridoid Glucosides from Veronica longifolia and their Antioxidant Activity

    DEFF Research Database (Denmark)

    Jensen, Søren Rosendal; Gotfredsen, Charlotte Held; Harput, U. Sebnem

    2010-01-01

    From Veronica longifolia were isolated three chlorinated iridoid glucosides, namely asystasioside E (6) and its 6-O-esters 6a and 6b, named longifoliosides A and B, respectively. The structures of 6a and 6b were proved by analysis of their spectroscopic data and by conversion to the catalpol ester...

  1. Different concentrations of kaempferol distinctly modulate murine embryonic stem cell function.

    Science.gov (United States)

    Correia, Marcelo; Rodrigues, Ana S; Perestrelo, Tânia; Pereira, Sandro L; Ribeiro, Marcelo F; Sousa, Maria I; Ramalho-Santos, João

    2016-01-01

    Kaempferol (3,4',5,7-tetrahydroxyflavone) is a natural flavonoid with several beneficial and protective effects. It has been demonstrated that kaempferol has anticancer properties, particularly due to its effects on proliferation, apoptosis and the cell cycle. However, possible effects on pluripotent embryonic stem cell function have not yet been addressed. Embryonic stem cells have the ability to self-renew and to differentiate into all three germ layers with potential applications in regenerative medicine and in vitro toxicology. We show that exposure of murine embryonic stem cells (mESC) to high concentrations of kaempferol (200 μM) leads to decreased cell numbers, although the resulting smaller cell colonies remain pluripotent. However, lower concentrations of this compound (20 μM) increase the expression of pluripotency markers in mESCs. Mitochondrial membrane potential and mitochondrial mass are not affected, but a dose-dependent increase in apoptosis takes place. Moreover, mESC differentiation is impaired by kaempferol, which was not related to apoptosis induction. Our results show that low concentrations of kaempferol can be beneficial for pluripotency, but inhibit proper differentiation of mESCs. Additionally, high concentrations induce apoptosis and increase mitochondrial reactive oxygen species (ROS). Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Recent Developments of C-Aryl Glucoside SGLT2 Inhibitors.

    Science.gov (United States)

    Zhang, Yang; Liu, Zhao-Peng

    2016-01-01

    Sodium-glucose cotransporter 2 (SGLT2) is almost exclusively expressed in the proximal renal tubules. It is responsible for about 90% of the glucose reabsorption from tubular fluid. Selective inhibition of SGLT2 is expected to favor in the normalization of plasma glucose levels in T2DM patients through the prevention of renal glucose reabsorption and the promotion of glucose excretion from urine. Selective SGLT2 inhibitors have the merits to minimize the gastrointestinal side effects associated with SGLT1 inhibition, and selective SGLT2 inhibition may have a low risk of hypoglycemia. Since the C-aryl glucosides are metabolically more stable than the O-glucosides, numerous efforts have been made in the development of potent and selective C-aryl glucoside SGLT2 inhibitors, and a number of them are now used as anti-diabetes drugs in clinic or at various stages of clinical developments. Based on their structural features, in this review, these SGLT2 inhibitors are classified as three types: the phenyl/arylmethylphenyl C-glucosides, with an emphasis on the modifications on the proximal and/or the distal phenyl ring, and the spacer; the heteroarylmethylphenyl Cglucosides, with a replacement of the distal phenyl ring by a heterocycle like pyridazine, pyrimidine, thiophene and benzothiophene, thiazole, 1,3,4-thiadiazole, and triazolopyridinone; and the glucose-modified Caryl glucosides, including the glucose C-1 derived O-spiroketals, C-4 gem-difluoro analogues, C-5 and C-6 modified derivatives, dioxa-bicyclo[3.2.1]octane bridged ketals, the thioglucosides, and carbasugars. The structure-activity relationships (SARs) of each type along with their inhibitory potency against human SGLT2 and selectivity over human SGLT1 are discussed.

  3. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation.

    Science.gov (United States)

    Wang, Su Bin; Jang, Ji Yong; Chae, Yun Hee; Min, Ji Hyun; Baek, Jin Young; Kim, Myunghee; Park, Yunjeong; Hwang, Gwi Seo; Ryu, Jae-Sang; Chang, Tong-Shin

    2015-06-01

    Reactive oxygen species (ROS) generated upon collagen stimulation act as second messengers to propagate various platelet-activating events. Among the ROS-generating enzymes, NADPH oxidase (NOX) plays a prominent role in platelet activation. Thus, NOX has been suggested as a novel target for anti-platelet drug development. Although kaempferol has been identified as a NOX inhibitor, the influence of kaempferol on the activation of platelets and the underlying mechanism have never been investigated. Here, we studied the effects of kaempferol on NOX activation, ROS-dependent signaling pathways, and functional responses in collagen-stimulated platelets. Superoxide anion generation stimulated by collagen was significantly inhibited by kaempferol in a concentration-dependent manner. More importantly, kaempferol directly bound p47(phox), a major regulatory subunit of NOX, and significantly inhibited collagen-induced phosphorylation of p47(phox) and NOX activation. In accordance with the inhibition of NOX, ROS-dependent inactivation of SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) was potently protected by kaempferol. Subsequently, the specific tyrosine phosphorylation of key components (Syk, Vav1, Btk, and PLCγ2) of collagen receptor signaling pathways was suppressed by kaempferol. Kaempferol also attenuated downstream responses, including cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Ultimately, kaempferol inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. This study shows that kaempferol impairs collagen-induced platelet activation through inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2. This effect suggests that kaempferol has therapeutic potential for the prevention and treatment of thrombovascular diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Kaempferol Alleviates the Interleukin-1β-Induced Inflammation in Rat Osteoarthritis Chondrocytes via Suppression of NF-κB.

    Science.gov (United States)

    Zhuang, Zhengling; Ye, Guangqun; Huang, Bin

    2017-08-14

    BACKGROUND This study was designed to examine the anti-inflammatory and anti-osteoarthritis (OA) effects of kaempferol in rat articular chondrocytes stimulated with interleukin-1β. MATERIAL AND METHODS Rat articular chondrocytes cultures were treated with interleukin-1β alone or with kaempferol (25, 50, 100, and 200 μM) and interleukin-1β. The effect of kaempferol on chondrocyte cells viability was measured by MTT assay. The effect on prostaglandin E2 (PGE2) and nitric oxide (NO) level were also assessed using the ELISA and Griess reagent, respectively, for kaempferol activity. Moreover, the expression of iNOS, Cox-2 and activation of NF-κB under influence of kaempferol was also assessed by Western blot. RESULTS Kaempferol treatment (up to 100 μM) in a concentration-dependent way caused reduction in the interleukin-1b-stimulated formations of PGE2 and NO. Kaempferol also upregulated the expression of iNOS and Cox-2 in interleukin-1β-stimulated rat OA chondrocytes. Additionally, kaempferol was found to inhibit the IkBa degradation and NF-κB activation in rat chondrocytes stimulated with interleukin-1β. CONCLUSIONS Kaempferol significantly caused reduction in interleukin-1β-stimulated pro-inflammatory mediators in rat OA chondrocytes by inhibiting the NF-κB pathway. These results suggest that kaempferol had significant anti-inflammatory and anti-arthritis effects. Thus, kaempferol, as a novel therapeutic active agent, may prevent, stop, or retard the progression of OA.

  5. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    Science.gov (United States)

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism.

  6. The Best Extraction Technique for Kaempferol and Quercetin Isolation from Guava Leaves (Psidium guajava)

    Science.gov (United States)

    Batubara, I.; Suparto, I. H.; Wulandari, N. S.

    2017-03-01

    Guava leaves contain various compounds that have biological activity such as kaempferol and quercetin as anticancer. Twelve extraction techniques were performed to obtain the best extraction technique to isolate kaempferol and quercetin from the guava leaves. Toxicity of extracts was tested against Artemia salina larvae. All extracts were toxic (LC50 value less than 1000 ppm) except extract of direct soxhletation on guava leaves, and extract of sonication and soxhletation using n-hexane. The extract with high content of total phenols and total flavonoids, low content of tannins, intense color of spot on thin layer chromatogram was selected for high performance liquid chromatography analysis. Direct sonication of guava leaves was chosen as the best extraction technique with kampferol and quercetin content of 0.02% and 2.15%, respectively. In addition to high content of kaempferol and quercetin, direct sonication was chosen due to the shortest extraction time, lesser impurities and high toxicity.

  7. Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol.

    Science.gov (United States)

    Ilk, Sedef; Sağlam, Necdet; Özgen, Mustafa; Korkusuz, Feza

    2017-01-01

    Quorum sensing (QS) is a cell density dependent expression of species in bacteria mediated by compounds called autoinducers (AI). Several processes responsible for successful establishment of bacterial infection are mediated by QS. Inhibition of QS is therefore being considered as a new target for antimicrobial chemotherapy. Flavonoid compounds are strong antioxidant and antimicrobial agents but their applications are limited due to their poor dissolution and bioavailability. Our objective was to investigate the effect of kaempferol loaded chitosan nanoparticles on modulating QS mediated by AI in model bioassay test systems. For this purpose, kaempferol loaded nanoparticles were synthesized and characterized in terms of hydrodynamic diameter, hydrogen bonding, amorphous transformation and antioxidant activity. QS inhibition in time dependent manner of nanoparticles was measured in violacein pigment producing using the biosensor strain Chromobacterium violaceum CV026 mediated by AI known as acylated homoserine lactone (AHL). Our results indicated that the average kaempferol loaded chitosan/TPP nanoparticle size and zeta potential were 192.27±13.6nm and +35mV, respectively. The loading and encapsulation efficiency of kaempferol into chitosan/TPP nanoparticles presented higher values between 78 and 93%. Kaempferol loaded chitosan/TPP nanoparticle during the 30 storage days significantly inhibited the production of violacein pigment in Chromobacterium violaceum CV026. The observation that kaempferol encapsulated chitosan nanoparticles can inhibit QS related processes opens up an exciting new strategy for antimicrobial chemotherapy as stable QS-based anti-biofilm agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Phenolic compounds apigenin, hesperidin and kaempferol reduce in vitro lipid accumulation in human adipocytes.

    Science.gov (United States)

    Gómez-Zorita, Saioa; Lasa, Arrate; Abendaño, Naiara; Fernández-Quintela, Alfredo; Mosqueda-Solís, Andrea; Garcia-Sobreviela, Maria Pilar; Arbonés-Mainar, Jose M; Portillo, Maria P

    2017-11-21

    Adipocytes derived from human mesenchymal stem cells (MSCs) are widely used to investigate adipogenesis. Taking into account both the novelty of these MSCs and the scarcity of studies focused on the effects of phenolic compounds, the aim of the present study was to analyze the effect of apigenin, hesperidin and kaempferol on pre-adipocyte and mature adipocytes derived from this type of cells. In addition, the expression of genes involved in TG accumulation was also measured. Pre-adipocytes were cultured from day 0 to day 8 and mature adipocytes for 48 h with the polyphenols at doses of 1, 10 and 25 µM. Apigenin did not show an anti-adipogenic action. Pre-adipocytes treated with hesperidin and kaempferol showed reduced TG content at the three experimental doses. Apigenin did not modify the expression of the main adipogenic genes (c/ebpβ, c/ebpα, pparγ and srebp1c), hesperidin inhibited genes involved in the three phases of adipogenesis (c/ebpβ, srebp1c and perilipin) and kaempferol reduced c/ebpβ. In mature adipocytes, the three polyphenols reduced TG accumulation at the dose of 25 µM, but not at lower doses. All compounds increased mRNA levels of atgl. Apigenin and hesperidin decreased fasn expression. The present study shows the anti-adipogenic effect and delipidating effects of apigenin, hesperidin and kaempferol in human adipocytes derived from hMSCs. While hesperidin blocks all the stages of adipogenesis, kaempferol only inhibits the early stage. Regarding mature adipocytes, the three compounds reduce TG accumulation by activating, at least in part, lipolysis, and in the case of hesperidin and apigenin, also by reducing lipogenesis. The present study shows for the first time the anti-adipogenic effect and delipidating effect of apigenin, hesperidin and kaempferol in human adipocytes derived from MSCs for the first time.

  9. Kaempferol increases apoptosis in human acute promyelocytic leukemia cells and inhibits multidrug resistance genes.

    Science.gov (United States)

    Moradzadeh, Maliheh; Tabarraei, Alijan; Sadeghnia, Hamid Reza; Ghorbani, Ahmad; Mohamadkhani, Ashraf; Erfanian, Saiedeh; Sahebkar, Amirhossein

    2018-02-01

    Acute promyelocytic leukemia (APL) is one of the most life-threatening hematological malignancies. Defects in the cell growth and apoptotic pathways are responsible for both disease pathogenesis and treatment resistance. Therefore, pro-apoptotic agents are potential candidates for APL treatment. Kaempferol is a flavonoid with antioxidant and anti-tumor properties. This study was designed to investigate the cytotoxic, pro-apoptotic, and differentiation-inducing effects of kaempferol on HL-60 and NB4 leukemia cells. Resazurin assay was used to determine cell viability following treatment with kaempferol (12.5-100 μM) and all-trans retinoic acid (ATRA; 10 μM; used as a positive control). Apoptosis and differentiation were also detected using propidium iodide and NBT staining techniques, respectively. Furthermore, the expression levels of genes involved in apoptosis (PI3 K, AKT, BCL2, BAX, p53, p21, PTEN, CASP3, CASP8, and CASP9), differentiation (PML-RAR and HDAC1), and multi-drug resistance (ABCB1 and ABCC1) were determined using quantitative real-time PCR. The protein expressions of Bax/Bcl2 and casp3 were confirmed using Western blot. The results showed that kaempferol decreased cell viability and increased subG1 population in the tested leukemic cells. This effect was associated with decreased expression of Akt, BCL2, ABCB1, and ABCC1 genes, while the expression of CASP3 and BAX/BCL-2 ratio were significantly increased at both gene and protein levels. Kaempferol promoted apoptosis and inhibited multidrug resistance in a concentration-dependent manner, without any differential effect on leukemic cells. In conclusion, this study suggested that kaempferol may be utilized as an appropriate alternative for ATRA in APL patients. © 2017 Wiley Periodicals, Inc.

  10. Kaempferol, a dietary flavonoid, ameliorates acute inflammatory and nociceptive symptoms in gastritis, pancreatitis, and abdominal pain.

    Science.gov (United States)

    Kim, Shi Hyoung; Park, Jae Gwang; Sung, Gi-Ho; Yang, Sungjae; Yang, Woo Seok; Kim, Eunji; Kim, Jun Ho; Ha, Van Thai; Kim, Han Gyung; Yi, Young-Su; Kim, Ji Hye; Baek, Kwang-Soo; Sung, Nak Yoon; Lee, Mi-nam; Kim, Jong-Hoon; Cho, Jae Youl

    2015-07-01

    Kaempferol (KF) is the most abundant polyphenol in tea, fruits, vegetables, and beans. However, little is known about its in vivo anti-inflammatory efficacy and mechanisms of action. To study these, several acute mouse inflammatory and nociceptive models, including gastritis, pancreatitis, and abdominal pain were employed. Kaempferol was shown to attenuate the expansion of inflammatory lesions seen in ethanol (EtOH)/HCl- and aspirin-induced gastritis, LPS/caerulein (CA) triggered pancreatitis, and acetic acid-induced writhing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A new kaempferol diglycoside from Datura suaveolens Humb. & Bonpl. ex. Willd.

    Science.gov (United States)

    Sajeli Begum, A; Sahai, Mahendra; Fujimoto, Yoshinori; Asai, K; Schneider, Kathrin; Nicholson, Graeme; Suessmuth, Roderich

    2006-11-01

    A new flavonol glycoside, kaempferol 3-O-alpha-L-arabinopyranosyl-7-O-beta-D-glucopyranoside (1), has been isolated from methanol extract of leaves of Datura suaveolens (Solanaceae), along with six other known compounds, which include kaempferol 3-O-alpha-L-arabinopyranoside (2), 3-phenyl lactic acid, 3-(3-indolyl) lactic acid, and its methyl ester, physalindicanol A and physalindicanol B. The structural elucidation of 1 and characterization of the known compounds are based on detailed spectral analysis (ESI-FTICR-MS and 2D-NMR). This is the first report of isolation of these compounds from this plant.

  12. Influence of kaempferol, a flavonoid compound, on membrane-bound ATPases in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Al-Numair, Khalid S; Veeramani, Chinnadurai; Alsaif, Mohammed A; Chandramohan, Govindasamy

    2015-01-01

    Kaempferol is a flavonoid found in many edible plants (e.g. tea, cabbage, beans, tomato, strawberries, and grapes) and in plants or botanical products commonly used in traditional medicine. Numerous preclinical studies have shown that kaempferol have a wide range of pharmacological activities, including antioxidant, anti-inflammatory, anticancer, cardioprotective, neuroprotective, and antidiabetic activities. The present study investigates the effect of kaempferol on membrane-bound ATPases in erythrocytes and in liver, kidney, and heart of streptozotocin (STZ)-induced diabetic rats. Diabetes was induced into adult male albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 d to normal and STZ-induced diabetic rats. The effects of kaempferol on membrane-bound ATPases (total ATPase, Na(+)/K(+)-ATPase, Ca(2+)-ATPase, and Mg(2+)-ATPase) activity in erythrocytes and in liver, kidney, and heart were determined. In our study, diabetic rats had significantly (p kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) for a period of 45 d resulted in significant (p kaempferol has the potential to restore deranged activity of membrane-bound ATPases in STZ-induced diabetic rats. Further detailed investigation is necessary to discover kaempferol's action mechanism.

  13. Kaempferol Inhibits the Invasion and Migration of Renal Cancer Cells through the Downregulation of AKT and FAK Pathways.

    Science.gov (United States)

    Hung, Tung-Wei; Chen, Pei-Ni; Wu, Hsu-Chen; Wu, Sheng-Wen; Tsai, Pao-Yu; Hsieh, Yih-Shou; Chang, Horng-Rong

    2017-01-01

    Kaempferol, which is isolated from several natural plants, is a polyphenol belonging to the subgroup of flavonoids. Kaempferol exhibits various pharmacological activities, including anti-inflammatory, antioxidant, antimicrobial, and anticancer activities. In this study, kaempferol can significantly inhibit the invasion and migration of 786-O renal cell carcinoma (RCC) without cytotoxicity. We examined the potential mechanisms underlying its anti-invasive activities on 786-O RCC cells. Western blot was performed, and the results showed that kaempferol attenuates the manifestation of metalloproteinase-2 (MMP-2) protein and activity. The inhibitive effect of kaempferol on MMP-2 may be attributed to the downregulation of phosphorylation of Akt and focal adhesion kinase (FAK). By examining the SCID mice model, we found that kaempferol can safely inhibit the metastasis of the 786-O RCC cells into the lungs by about 87.4% as compared to vehicle treated control animals. In addition, the lung tumor masses of mice pretreated with 2-10 mg/kg kaempferol were reduced about twofold to fourfold. These data suggested that kaempferol can play a promising role in tumor prevention and cancer metastasis inhibition.

  14. Plasma concentrations and urinary excretion of the antioxidant flavonols quercetin and kaempferol as biomarkers for dietary intake.

    NARCIS (Netherlands)

    Vries, de J.H.M.; Hollman, P.C.H.; Meyboom, S.; Buysman, M.N.C.P.; Zock, P.L.; Staveren, van W.A.; Katan, M.B.

    1998-01-01

    Flavonols are antioxidants that may reduce the risk of heart disease. Two major flavonols in the diet are quercetin and kaempferol, and their main sources in The Netherlands are tea and onions. We investigated whether plasma concentrations and urinary excretion of quercetin and kaempferol in humans

  15. The chain length of lignan macromolecule from flaxseed hulls is determined by the incorporation of coumaric acid glucosides and ferulic acid glucosides

    NARCIS (Netherlands)

    Struijs, K.; Vincken, J.P.; Doeswijk, T.G.; Voragen, A.G.J.; Gruppen, H.

    2009-01-01

    Lignan macromolecule from flaxseed hulls is composed of secoisolariciresinol diglucoside (SDG) and herbacetin diglucoside (HDG) moieties ester-linked by 3-hydroxy-3-methylglutaric acid (HMGA), and of p-coumaric acid glucoside (CouAG) and ferulic acid glucoside (FeAG) moieties ester-linked directly

  16. Synthesis of monoterpene piperidines from the iridoid glucoside antirrhinoside

    DEFF Research Database (Denmark)

    Franzyk, Henrik; Frederiksen, Signe Maria; Jensen, Søren Rosendal

    1997-01-01

    Synthesis of five novel piperidine monoterpene alkaloids using the iridoid glucoside antirrhinoside as a synthon is described. Two strategies for their preparation were investigated: the first possible pathway involved an intermediate diol from which the piperidine ring was expected to be constru......Synthesis of five novel piperidine monoterpene alkaloids using the iridoid glucoside antirrhinoside as a synthon is described. Two strategies for their preparation were investigated: the first possible pathway involved an intermediate diol from which the piperidine ring was expected...... to be constructed via reaction of its ditosylate with an amine; the second strategy involved a double reductive amination as the key step to the piperidine ring, which proved successful. The stereochemistry of C-5 and C-9 in the obtained piperidine monoterpenes was the same as that reported for alfa...

  17. Sesquiterpene lactones and monoterpene glucosides from plant species Picris echoides

    Directory of Open Access Journals (Sweden)

    MILUTIN STEFANOVIC

    2000-11-01

    Full Text Available Investigation of the constituents of the aerial parts of domestic plant species Picris echoides afforded the sesquiterpene lactones, i.e., guaianolides jacquilenin (1, 11-epi-jacquilenin (2, achillin (3 and eudesmanolide telekin (4. The chemical indentification of the two monoterpene glucosides (–-cis-chrysanthenol-b-D-glucopyranoside (5 and its 6’-acetate 6 is also repoted. The guaianolide achillin (3 and the two monoterpene glucosides 5 and 6 were isolated for the first time from this plant species. Isolation was achieved by column chromatography and the structures were established mainly by the interpretation of their physical and spectral data, which were in agreement with those in the literature.

  18. Mutational analysis of β-glucoside utilization in Klebsiella aerogenes

    Indian Academy of Sciences (India)

    Unknown

    in M9 minimal medium with 0.4% succinate as carbon source. At mid-log phase, .... Figure 2. Isolation and properties of Sal– mutants of K. aerogenes AN292. (a) Contrast- ing effects of 200 mM phenyl-β-D-glucoside (p-glu) on the growth of K. aerogenes. AN292 (Ka AN292) ... side utilization systems. One for the aromatic ...

  19. Antidepressant-like Effect of Kaempferol and Quercitirin, Isolated from Opuntia ficus-indica var. saboten.

    Science.gov (United States)

    Park, Soo-Hyun; Sim, Yun-Beom; Han, Pyung-Lim; Lee, Jin-Koo; Suh, Hong-Won

    2010-06-01

    Opuntia ficus-indica var. saboten. is widely cultivated in Jeju Island (South Korea) for use in manufacture of health foods. This study described antidepressant effect of two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. The expression of the hypothalamic POMC mRNA or plasma β-endorphin levels were increased by extract of Opuntia ficus-indica var. saboten or its flavoniods administered orally. In addition, antidepressant activity was studied using tail suspension test (TST), forced swimming test (FST) and rota-rod test in chronically restraint immobilization stress group in mice. After restraint stress (2 hrs/day for 14 days), animals were kept in cage for 14 days without any further stress, bet with drugs. Mice were fed with a diet supplemented for 14 days and during the behavioral test period with kaempferol or quercitrin (30 mg/kg/day). POMC mRNA or plasma β-endorphin level was increased by extract of Opuntia ficus-indica var. saboten and its flavoniods. In addition, immobility time in TST and FST was significantly reduced by kaempferol or quercitrin. In rota-rod test, the time of permanence was maintained to the semblance of control group in turning at 15 rpm. Our results suggest that two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. show a potent antidepressant effect.

  20. Antidepressant-like Effect of Kaempferol and Quercitirin, Isolated from Opuntia ficus-indica var. saboten

    Science.gov (United States)

    Park, Soo-Hyun; Sim, Yun-Beom; Han, Pyung-Lim; Lee, Jin-Koo

    2010-01-01

    Opuntia ficus-indica var. saboten. is widely cultivated in Jeju Island (South Korea) for use in manufacture of health foods. This study described antidepressant effect of two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. The expression of the hypothalamic POMC mRNA or plasma β-endorphin levels were increased by extract of Opuntia ficus-indica var. saboten or its flavoniods administered orally. In addition, antidepressant activity was studied using tail suspension test (TST), forced swimming test (FST) and rota-rod test in chronically restraint immobilization stress group in mice. After restraint stress (2 hrs/day for 14 days), animals were kept in cage for 14 days without any further stress, bet with drugs. Mice were fed with a diet supplemented for 14 days and during the behavioral test period with kaempferol or quercitrin (30 mg/kg/day). POMC mRNA or plasma β-endorphin level was increased by extract of Opuntia ficus-indica var. saboten and its flavoniods. In addition, immobility time in TST and FST was significantly reduced by kaempferol or quercitrin. In rota-rod test, the time of permanence was maintained to the semblance of control group in turning at 15 rpm. Our results suggest that two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. show a potent antidepressant effect. PMID:22110339

  1. Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Al-Numair, Khalid S; Chandramohan, Govindasamy; Veeramani, Chinnadurai; Alsaif, Mohammed A

    2015-09-01

    The aim of the present study was to evaluate the protective effect of kaempferol against oxidative stress in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in male, adult albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 days to normal and STZ-induced diabetic rats. The STZ-induced diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes in plasma, liver, kidney, and heart whereas they showed significantly decreased level of plasma insulin. The levels of non-enzymic antioxidants (vitamin C, vitamin E, reduced glutathione) in plasma, liver, kidney, and heart and the activities of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase) in liver, kidney, and heart were significantly decreased in diabetic rats. Administration of kaempferol to diabetic rats was showed brought back in plasma glucose, insulin, lipid peroxidation products, enzymatic, and non-enzymatic antioxidants to near normal. The present study indicates that kaempferol has a good antioxidant property, as evidenced by its increase of antioxidant status and decrease of lipid peroxidation markers, thus providing protection from the risks of diabetic complications.

  2. Structural revision of some recently published iridoid glucosides.

    Science.gov (United States)

    Jensen, Søren R; Caliş, Ihsan; Gotfredsen, Charlotte H; Søtofte, Inger

    2007-01-01

    The structures of six different iridoid glucosides have been revised. Three compounds isolated from Eremostachys glabra and designated 6,9-epi-8-O-acetylshanziside (1), 5,9-epi-penstemoside (2), and 5,9-epi-7,8-didehydropenstemoside (3) have been shown to be identical to the known iridoids barlerin (4, 8-O-acetylshanziside), penstemoside (5), and 7,8-didehydropenstemoside (6), respectively. Another compound named harpagoside-B, isolated from Scrophularia deserti and proposed to be 9-epi-6-O-methylharpagoside (11), was demonstrated from the spectroscopic data given to be the known harpagoside (10b). Finally, two alleged iridoid galactosides from Buddleja crispa named buddlejosides A and B (12a and 12b) have been shown to be the corresponding glucosides; the former is identical to agnuside (13a), while the latter is 3,4-dihydroxybenzoylaucubin (13b), an iridoid glucoside not previously published. This clearly showed that care should be taken with the interpretation of NOEs involving bridgehead protons in iridoid structures because they can be capricious and lead to erroneous structural assignments.

  3. Identification of Iridoid Glucoside Transporters in Catharanthus roseus

    Science.gov (United States)

    Larsen, Bo; Fuller, Victoria L.; Pollier, Jacob; Van Moerkercke, Alex; Schweizer, Fabian; Payne, Richard; Colinas, Maite; O’Connor, Sarah E.; Goossens, Alain; Halkier, Barbara A.

    2017-01-01

    Abstract Monoterpenoid indole alkaloids (MIAs) are plant defense compounds and high-value pharmaceuticals. Biosynthesis of the universal MIA precursor, secologanin, is organized between internal phloem-associated parenchyma (IPAP) and epidermis cells. Transporters for intercellular transport of proposed mobile pathway intermediates have remained elusive. Screening of an Arabidopsis thaliana transporter library expressed in Xenopus oocytes identified AtNPF2.9 as a putative iridoid glucoside importer. Eight orthologs were identified in Catharanthus roseus, of which three, CrNPF2.4, CrNPF2.5 and CrNPF2.6, were capable of transporting the iridoid glucosides 7-deoxyloganic acid, loganic acid, loganin and secologanin into oocytes. Based on enzyme expression data and transporter specificity, we propose that several enzymes of the biosynthetic pathway are present in both IPAP and epidermis cells, and that the three transporters are responsible for transporting not only loganic acid, as previously proposed, but multiple intermediates. Identification of the iridoid glucoside-transporting CrNPFs is an important step toward understanding the complex orchestration of the seco-iridioid pathway. PMID:28922750

  4. HPLC identification and determination of myricetin, quercetin, kaempferol and total flavonoids in herbal drugs

    Directory of Open Access Journals (Sweden)

    Svetlana Kulevanova

    2003-05-01

    Full Text Available A new and rapid HPLC method for identification and determination of myricetin, quercetin, kaempferol and total flavonoids in ten herbal drugs of Macedonian origin is presented. Preparation of samples (Uvae ursi folim, Pruni spinosae flos, Sambuci flos, Betulae folim, Primulae flos, Herniariae herba, Centaurii herba, Tiliae flos, Robiniae pseudoacaciae flos, Bursae pastoris herba included hydrolysis of glycosides and extraction of total aglycones with ethyl acetate. HPLC analysis with UV-diode array detection was carried out on RP C18 column, using 5% acetic acid and acetonitrile in agradient elution mode and column temperature of 30 o C. The monitoring of the elution is performed in the whole UV-range and the acquisition of data for quantitative analysis at 367 nm. Screening of the extracts showed presence of quercetin in nine, kaempferol in seven and myricetin in only one sample. The quantitative analysis showed that the content of quercetin ranged from 0.026-0.506 % (m/m, while for kaempferol it was from traces to 1.246 %. Uvaeursi folium and Pruni spinosae flos were rich in content of quercetin (0.482 % and 0.506 %, respectively, while Pruni spinosae flos and Robiniae pseudoaccaciae flos contained the highest amounts of kaempferol (1.246 % and 0.892 %, respectively. Myricetin was identified and determined only in Betulae folium (0.102 %. The content of total flavonoids in the investigated samples expressed in terms of quercetin ranged from 0.040 to 1.680 %. The proposed HPLC method is convenient for use in routine analysis of myricetin, quercetin and kaempferol, as well as for estimation of total flavonoids content in herbal drugs.

  5. Mucor fragilis as a novel source of the key pharmaceutical agents podophyllotoxin and kaempferol.

    Science.gov (United States)

    Huang, Jian-Xin; Zhang, Jun; Zhang, Xiao-Rui; Zhang, Kun; Zhang, Xiao; He, Xiao-Rui

    2014-10-01

    Podophyllotoxin, a pharmaceutically important bioactive compound of Podophyllum sps. (Berberidaceae), is in great demand worldwide as an anticancer and antivirus drug precursor. However, the source of podophyllotoxin is very limited due to the endangered status of the Podophyllum plant. The aim of this study was to isolate podophyllotoxin-producing endophytic fungi from Sinopodophyllum hexandrum (Royle) Ying (1979) (Berberidaceae) plants of the Taibai Mountains of China in order to obtain bioactive compounds. The strains producing kaempferol and podophyllotoxin were screened by thin-layer chromatography (TLC) analysis. The presence of kaempferol and podophyllotoxin in extracts of these strains was further confirmed by high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) analyses. Among six endophytic fungi isolated from the rhizomes of S. hexandrum, one strain was able to produce kaempferol. Another strain, named TW5, was able to produce both kaempferol and podophyllotoxin simultaneously according to the TLC, HPLC, and NMR results. The podophyllotoxin yield of TW5 was calculated to be 49.3 μg/g of mycelial dry weight after 7-d fermentation. Strain TW5 was identified morphologically and phylogenetically to be Mucor fragilis Fresen. (Mucoraceae). These results suggest that the podophyllotoxin-synthesizing ability is obtained by uptaking genes involved in the podophyllotoxin synthesis from the host plant into endophytic fungal genomes. Our results showed, for the first time, that the endophytic fungus M. fragilis is able to produce simultaneously the same two bioactive metabolites, podophyllotoxin and kaempferol, as its host plant. Furthermore, the relatively high podophyllotoxin yield obtained may improve the industrial production of podophyllotoxin, which may help protect this endangered plant.

  6. Dianthosaponins A-F, triterpene saponins, flavonoid glycoside, aromatic amide glucoside and γ-pyrone glucoside from Dianthus japonicus.

    Science.gov (United States)

    Nakano, Takahiro; Sugimoto, Sachiko; Matsunami, Katsuyoshi; Otsuka, Hideaki

    2011-01-01

    From aerial parts of Dianthus japonicus, six new and seven known oleanane-type triterpene saponins were isolated. The structures of the new saponins, named dianthosaponins A-F, were elucidated by means of high resolution mass spectrometry, and extensive inspection of one- and two-dimensional NMR spectroscopic data. A new C-glycosyl flavone, a glycosidic derivative of anthranilic acid amide and a maltol glucoside were also isolated.

  7. Regulation of heme oxygenase-1 expression and MAPK pathways in response to kaempferol and rhamnocitrin in PC12 cells

    International Nuclear Information System (INIS)

    Hong, J.-T.; Yen, J.-H.; Wang Lisu; Lo, Y.-H.; Chen, Z.-T.; Wu, M.-J.

    2009-01-01

    Oxidative stress has been considered as a major cause of cellular injuries in a variety of clinical abnormalities, especially neural diseases. Our aim of research is to investigate the protective effects and mechanisms of kaempferol and rhamnocitrin (kaempferol-7-methyl ether) on oxidative damage in rat pheochromocytoma PC12 cells induced by a limited supply of serum and hydrogen peroxide (H 2 O 2 ). The current result demonstrated that kaempferol protected PC12 cells from serum deprivation-induced apoptosis. Pretreatment of cells with kaempferol also diminished intracellular generation of reactive oxygen species (ROS) in response to H 2 O 2 and strongly elevated cell viability. RT-Q-PCR and Western blotting revealed that kaempferol and rhamnocitrin significantly induced heme oxygenase (HO)-1 gene expression. Addition of zinc protoporphyrin (Znpp), a HO-1 competitive inhibitor, significantly attenuated their protective effects in H 2 O 2 -treated cells, indicating the vital role of HO-1 in cell resistance to oxidative injury. While investigating the signaling pathways responsible for HO-1 induction, we observed that kaempferol induced sustained extracellular signal-regulated protein kinase 1/2 (ERK1/2) in PC12 cells grown in low serum medium; while rhamnocitrin only stimulated transient ERK cascade. Addition of U0126, a highly selective inhibitor of MEK1/2, which is upstream of ERK1/2, had no effect on kaempferol- or rhamnocitrin-induced HO-1 mRNA expression, indicating no direct cross-talk between these two pathways. Furthermore, both kaempferol and rhamnocitrin were able to persistently attenuate p38 phosphorylation. Taking together, the above findings suggest that kaempferol and rhamnocitrin can augment cellular antioxidant defense capacity, at least in part, through regulation of HO-1 expression and MAPK signal transduction.

  8. Small molecule kaempferol modulates PDX-1 protein expression and subsequently promotes pancreatic β-cell survival and function via CREB

    Science.gov (United States)

    Zhang, Yanling.; Zhen, Wei.; Maechler, Pierre; Liu, Dongmin

    2013-01-01

    Chronic hyperlipidemia causes β-cell apoptosis and dysfunction, thereby contributing to the pathogenesis of T2D. Thus, searching for agents to promote pancreatic β-cell survival and improve its function could be a promising strategy to prevent and treat T2D. We investigated the effects of kaempferol, a small molecule isolated from ginkgo biloba, on apoptosis and function of β-cells and further determined the mechanism underlying its actions. Kaempferol treatment promoted viability, inhibited apoptosis, and reduced caspase-3 activity in INS-1E cells and human islets chronically exposed to palmitate. In addition, kaempferol prevented the lipotoxicity-induced down-regulation of anti-apoptotic proteins Akt and Bcl-2. The cytoprotective effects of kaempferol were associated with improved insulin secretion, synthesis, and PDX-1 expression. Chronic hyperlipidemia significantly diminished cAMP production, PKA activation, and CREB phosphorylation and its regulated transcriptional activity in β-cells, all of which were restored by kaempferol treatment. Disruption of CREB expression by transfection of CREB siRNA in INS-1E cells or adenoviral transfer of dominant-negative forms of CREB in human islets ablated kaempferol protection of β-cell apoptosis and dysfunction caused by palmitate. Incubation of INS-1E cells or human islets with kaempferol for 48 h induced PDX-1 expression. This effect of kaempferol on PDX-1 expression was not shared by a host of structurally related flavonoid compounds. PDX-1 gene knockdown reduced kaempferol–stimulated cAMP generation and CREB activation in INS-1E cells. These findings demonstrate that kaempferol is a novel survivor factor for pancreatic β-cells via up-regulating the PDX-1/cAMP/PKA/CREB signaling cascade. PMID:22819546

  9. Effect of different exposed lights on quercetin and quercetin glucoside content in onion (Allium cepa L.)

    OpenAIRE

    Ko, Eun Young; Nile, Shivraj Hariram; Sharma, Kavita; Li, Guan Hao; Park, Se Won

    2014-01-01

    Quercetin and quercetin glucosides are the major flavonols present in onion (Allium cepa L.) and are predominantly present as quercetin, quercetin-3,4′-diglucoside and quercetin-4′-glucoside. Effect of different light wavelengths on onion after harvest and storage, with fluorescent, blue, red and ultra violet light influenced the quercetin and quercetin glucosides profile. In a peeled onion, all the light treatments elevated quercetin content in bulb. Among them, particularly fluorescent ligh...

  10. The mechanism of kaempferol induced apoptosis and inhibited proliferation in human cervical cancer SiHa cell: From macro to nano.

    Science.gov (United States)

    Tu, Lv-Ying; Bai, Hai-Hua; Cai, Ji-Ye; Deng, Sui-Ping

    2016-11-01

    Kaempferol has been identified as a potential cancer therapeutic agent by an increasing amount of evidences. However, the changes in the topography of cell membrane induced by kaempferol at subcellular- or nanometer-level were still unclear. In this work, the topographical changes of cytomembrane in human cervical cancer cell (SiHa) induced by kaempferol, as well as the role of kaempferol in apoptosis induction and its possible mechanisms, were investigated. At the macro level, MTT assays showed that kaempferol inhibited the proliferation of SiHa cells in a time- and dose-dependent manner. Flow cytometry analysis demonstrated that kaempferol could induce SiHa cell apoptosis, mitochondrial membrane potential disruption, and intracellular free calcium elevation. At the micro level, fluorescence imaging by laser scanning confocal microscopy (LSCM) indicated that kaempferol could also destroy the networks of microtubules. Using high resolution atomic force microscopy (AFM), we determined the precise changes of cellular membrane induced by kaempferol at subcellular or nanometer level. The spindle-shaped SiHa cells shrank after kaempferol treatment, with significantly increased cell surface roughness. These data showed structural characterizations of cellular topography in kaempferol-induced SiHa cell apoptosis and might provide novel integrated information from macro to nano level to assess the impact of kaempferol on cancer cells, which might be important for the understanding of the anti-cancer mechanisms of drugs. SCANNING 38:644-653, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  11. Kaempferol Promotes Transplant Tolerance by Sustaining CD4+FoxP3+ Regulatory T Cells in the Presence of Calcineurin Inhibitor.

    Science.gov (United States)

    Zeng, Y Q; Liu, X S; Wu, S; Zou, C; Xie, Q; Xu, S M; Jin, X W; Li, W; Zhou, A; Dai, Z

    2015-07-01

    Calcineurin inhibitor cyclosporine is widely used as an immunosuppressant in clinic. However, mounting evidence has shown that cyclosporine hinders tolerance induction by dampening Tregs. Therefore, it is of paramount importance to overcome this pitfall. Kaempferol was reported to inhibit DC function. Here, we found that kaempferol delayed islet allograft rejection. Combination of kaempferol and low-dose, but not high-dose, of cyclosporine induced allograft tolerance in majority of recipient mice. Although kaempferol plus either dose of cyclosporine largely abrogated proliferation of graft-infiltrating T cells and their CTL activity, both proliferation and CTL activity in mice treated with kaempferol plus low-dose, but not high-dose, cyclosporine reemerged rapidly upon treatment withdrawal. Kaempferol increased CD4+FoxP3+ Tregs both in transplanted mice and in vitro, likely by suppressing DC maturation and their IL-6 expression. Reduction in Tregs by low dose of cyclosporine was reversed by kaempferol. Kaempferol-induced Tregs exhibited both allospecific and non-allospecific suppression. Administering IL-6 abrogated allograft tolerance induced by kaempferol and cyclosporine via diminishing CD4+FoxP3+ Tregs. Thus, for the first time, we demonstrated that kaempferol promotes transplant tolerance in the presence of low dose of cyclosporine, which allows for sufficient Treg generation while minimizing side effects, resulting in much-needed synergy between kaempferol and cyclosporine. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  12. The role of kaempferol-induced autophagy on differentiation and mineralization of osteoblastic MC3T3-E1 cells.

    Science.gov (United States)

    Kim, In-Ryoung; Kim, Seong-Eon; Baek, Hyun-Su; Kim, Bok-Joo; Kim, Chul-Hoon; Chung, In-Kyo; Park, Bong-Soo; Shin, Sang-Hun

    2016-08-31

    Kaempferol, a kind of flavonol, has been reported to possess various osteogenic biological activities, such as inhibiting bone resorption of osteoclasts and promoting the differentiation and mineralization of preosteoblasts. However, the precise cellular mechanism of action of kaempferol in osteogenesis is elusive. Autophagy is a major intracellular degradation system, which plays an important role in cell growth, survival, differentiation and homeostasis in mammals. Recent studies showed that autophagy appeared to be involved in the degradation of osteoclasts, osteoblasts and osteocytes, potentially pointing to a new pathogenic mechanism of bone homeostasis and bone marrow disease. The potential correlation between autophagy, osteogenesis and flavonoids is unclear. The present study verified that kaempferol promoted osteogenic differentiation and mineralization and that it elevated osteogenic gene expression based on alkaline phosphatase (ALP) activity, alizarin red staining and quantitative PCR. And then we found that kaempferol induced autophagy by acridine orange (AO) and monodansylcadaverine (MDC) staining and autophagy-related protein expression. The correlation between kaempferol-induced autophagy and the osteogenic process was confirmed by the autophagy inhibitor 3-methyladenine (3-MA). Kaempferol promoted the proliferation, differentiation and mineralization of osteoblasts at a concentration of 10 μM. Kaempferol showed cytotoxic properties at concentrations above 50 μM. Concentrations above 10 μM decreased ALP activity, whereas those up to 10 μM increased ALP activity. Kaempferol at concentrations up to 10 μM also increased the expression of the osteoblast- activated factors RUNX-2, osterix, BMP-2 and collagen I according to RT-PCR analyses. 10 μM or less, the higher of the concentration and over time, kaempferol promoted the activity of osteoblasts. Kaempferol induced autophagy. It also increased the expression of the autophagy-related factors

  13. Honeybees tolerate cyanogenic glucosides from clover nectar and flowers

    DEFF Research Database (Denmark)

    Lecocq, Antoine; Green, Amelia Ann; Pinheiro de Castro, Érika Cristina

    2018-01-01

    Honeybees (Apis mellifera) pollinate flowers and collect nectar from many important crops. White clover (Trifolium repens) is widely grown as a temperate forage crop, and requires honeybee pollination for seed set. In this study, using a quantitative LC-MS (Liquid Chromatography-Mass Spectrometry...... indicates that plant secondary metabolites found in nectar may protect pollinators from disease or predators. In a laboratory survival study with chronic feeding of secondary metabolites, we show that honeybees can ingest the cyanogenic glucosides linamarin and amygdalin at naturally occurring...

  14. Chemotaxonomy of Plantago. Iridoid glucosides and caffeoyl phenylethanoid glycosides

    DEFF Research Database (Denmark)

    Rønsted, N.; Göbel, E.; Franzyk, Henrik

    2000-01-01

    Data for 34 species of Plantago (Plantaginaceae), including subgen. Littorella (=Littorella uniflora), have been collected with regard to their content of iridoid glucosides and caffeoyl phenylethanoid glycosides (CPGs). In the present work, 21 species were investigated for the first time and man...... in the family. Finally, the close relationship between Plantago and Veronica suggested by chloroplast DNA sequence analysis, could be corroborated by the common occurrence of the rare 8,9-unsaturated iridoids in these two genera. (C) 2000 Elsevier Science Ltd. All rights reserved....

  15. Kaempferol-human serum albumin interaction: Characterization of the induced chirality upon binding by experimental circular dichroism and TDDFT calculations

    Science.gov (United States)

    Matei, Iulia; Ionescu, Sorana; Hillebrand, Mihaela

    2012-10-01

    The experimental induced circular dichroism (ICD) and absorption spectra of the achiral flavonoid kaempferol upon binding to human serum albumin (HSA) were correlated to electronic CD and UV-vis spectra theoretically predicted by time-dependent density functional theory (TDDFT). The neutral and four anionic species of kaempferol in various conformations were considered in the calculations. The appearance of the experimental ICD signal was rationalized in terms of kaempferol binding to HSA in a distorted, chiral, rigid conformation. The comparison between the experimental and simulated spectra allowed for the identification of the kaempferol species that binds to HSA, namely the anion generated by deprotonation of the hydroxyl group in position 7. This approach constitutes a convenient method for evidencing the binding species and for determining its conformation in the binding pocket of the protein. Its main advantage over the UV-vis absorption method lays in the fact that only the bound ligand species gives an ICD signal.

  16. Kaempferol glycosides and cardenolide glycosides, cytotoxic constituents from the seeds of Draba nemorosa (Brassicaceae).

    Science.gov (United States)

    Moon, Surk-Sik; Rahman, Md Aziz Abdur; Manir, Md Maniruzzaman; Jamal Ahamed, V S

    2010-08-01

    Bioassay-directed fractionation of a methanolic extract from the seeds of Draba nemorosa (Brassicaceae) led to isolation of a new flavonol glycoside, drabanemoroside (5, kaempferol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranose) along with four known flavonoid derivatives (1-4), four cardenolide glycosides (6-9). Kaempferol glycosides 2 and 5 showed strong cytotoxicity against human small lung cancer cell line A549 and melanoma SK-Mel-2 with an IC(50) of 0.5 microg/mL and 1.9 microg/mL, respectively. Cardenolide glycosides 6-9 showed potent cytotoxicity (A549) in the range of 0.01-0.032 microg/mL. Their structures were characterized based on spectroscopic data (2D NMR, HRTOFMS, IR, and UV) and comparison of literature values. The carbohydrate units were also confirmed by comparing the hydrolysate of 5 with authentic monosaccharides.

  17. Kaempferol Promotes Apoptosis in Human Bladder Cancer Cells by Inducing the Tumor Suppressor, PTEN

    Directory of Open Access Journals (Sweden)

    Liqun Zhou

    2013-10-01

    Full Text Available Kaempferol (Kae, a natural flavonoid, is widely distributed in fruits and vegetables. Previous studies have identified Kae as a possible cancer preventive and therapeutic agent. We found Kae to exhibit potent antiproliferation and anti-migration effects in human bladder cancer EJ cells. Kaempferol robustly induced apoptosis in EJ cells in a dose-dependent manner, as evidenced by increased cleavage of caspase-3. Furthermore, we found Kae-induced apoptosis in EJ cells to be associated with phosphatase and the tensin homolog deleted on the chromosome 10 (PTEN/PI3K/Akt pathway. Kae significantly increased PTEN and decreased Akt phosphorylation. Kae-induced apoptosis was partially attenuated in PTEN-knockdown cells. Our findings indicate that Kae could be an alternative medicine for bladder cancer, based on a PTEN activation mechanism.

  18. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions

    International Nuclear Information System (INIS)

    Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas; Simos, George

    2010-01-01

    Research highlights: → Kaempferol inhibits HIF-1 activity in hepatocarcinoma cells; → Kaempferol causes cytoplasmic mislocalization of HIF-1α by impairing the MAPK pathway. → Viability of hepatocarcinoma cells under hypoxia is reduced by kaempferol. -- Abstract: Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1α subunit, an important target of anti-cancer therapy, is observed in many cancers including HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1α as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC 50 = 5.16 μM). The mechanism of this inhibition did not involve suppression of HIF-1α protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC 50 = 4.75 μM). Exposure of Huh7 cells to 10 μΜ kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10 μM) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.

  19. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas [Laboratory of Biochemistry, School of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa (Greece); Institute of Biomedical Research and Technology (BIOMED), 51 Papanastasiou str., 41222 Larissa (Greece); Simos, George, E-mail: simos@med.uth.gr [Laboratory of Biochemistry, School of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa (Greece); Institute of Biomedical Research and Technology (BIOMED), 51 Papanastasiou str., 41222 Larissa (Greece)

    2010-07-16

    Research highlights: {yields} Kaempferol inhibits HIF-1 activity in hepatocarcinoma cells; {yields} Kaempferol causes cytoplasmic mislocalization of HIF-1{alpha} by impairing the MAPK pathway. {yields} Viability of hepatocarcinoma cells under hypoxia is reduced by kaempferol. -- Abstract: Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1{alpha} subunit, an important target of anti-cancer therapy, is observed in many cancers including HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1{alpha} as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC{sub 50} = 5.16 {mu}M). The mechanism of this inhibition did not involve suppression of HIF-1{alpha} protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC{sub 50} = 4.75 {mu}M). Exposure of Huh7 cells to 10 {mu}{Mu} kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10 {mu}M) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.

  20. [Influence of kaempferol on TGF-β1/Smads signal path in liver tissue of mice with Schistosoma japonicum infection].

    Science.gov (United States)

    Cai, Wen; Zhao, Lei; Li, Hua-rong; Zhang, Shu-ling

    2014-08-01

    To investigate the influence of kaempferol on transforming growth factor(TGF-β1/Smads signal tiransduction in liver tissue of mice with schistosomiasis liver fibrosis. Forty BALB/c mice were randomly divided into a normal control group (8 mice), a praziquantel group (8 mice ), and 4 praziquantel + kaempferol groups with different kaempferol dosages (5, 10, 15, 20 mg/kg respectively, 6 mice each group). Besides the normal control group, all the mice in the other 5 groups were infected with Schistosoma japonicum. After the infection for 6 weeks, the praziquantel group and the 4 praziquantel + kaempferol groups were treated with praziquantel 500 mg/(kg.d) for 2 d, then the mice in the praziquantel group were drenched with normal saline for 6 weeks, and those in the 4 praziquantel + kaempferol groups were drenched with kaempferol 5, 10, 15, 20 mg/kg respectively for 6 weeks. After the treatment, all the animals were sacrificed by the cervical dislocation method, and the area of egg granuloma and the degree of fibrosis in the livers of the mice were observed by HE and Masson staining. The expressions of TGF-β1, Smad2/3, Smad7 proteins were measured by the immunohistochemical method, and the mRNA levels of the 3 proteins were detected by RT-PCR. Compared with the mice in the praziquantel group, the areas of egg granuloma of the liver of the mice in the 4 praziquantel + kaempferol groups were smaller, and the degrees of the hepatic fibrosis of the mice were lesser, and their expressions of Smad2 and Smad3 at protein and their mRNA levels were significantly lower (all P kaempferol can significantly reduce the degrees of hepatic fibrosis and granuloma caused by schistosome eggs after the praziquantel treatment.

  1. Kaempferol Inhibits Endoplasmic Reticulum Stress-Associated Mucus Hypersecretion in Airway Epithelial Cells And Ovalbumin-Sensitized Mice.

    Science.gov (United States)

    Park, Sin-Hye; Gong, Ju-Hyun; Choi, Yean-Jung; Kang, Min-Kyung; Kim, Yun-Ho; Kang, Young-Hee

    2015-01-01

    Mucus hypersecretion is an important pathological feature of chronic airway diseases, such as asthma and pulmonary diseases. MUC5AC is a major component of the mucus matrix forming family of mucins in the airways. The initiation of endoplasmic reticulum (ER)-mediated stress responses contributes to the pathogenesis of airway diseases. The present study investigated that ER stress was responsible for airway mucus production and this effect was blocked by the flavonoid kaempferol. Oral administration of ≥10 mg/kg kaempferol suppressed mucus secretion and goblet cell hyperplasia observed in the bronchial airway and lung of BALB/c mice sensitized with ovalbumin (OVA). TGF-β and tunicamycin promoted MUC5AC induction after 72 h in human bronchial airway epithelial BEAS-2B cells, which was dampened by 20 μM kaempferol. Kaempferol inhibited tunicamycin-induced ER stress of airway epithelial cells through disturbing the activation of the ER transmembrane sensor ATF6 and IRE1α. Additionally, this compound demoted the induction of ER chaperones such as GRP78 and HSP70 and the splicing of XBP-1 mRNA by tunicamycin. The in vivo study further revealed that kaempferol attenuated the induction of XBP-1 and IRE1α in epithelial tissues of OVA-challenged mice. TGF-β and tunicamycin induced TRAF2 with JNK activation and such induction was deterred by kaempferol. The inhibition of JNK activation encumbered the XBP-1 mRNA splicing and MUC5AC induction by tunicamycin and TGF-β. These results demonstrate that kaempferol alleviated asthmatic mucus hypersecretion through blocking bronchial epithelial ER stress via the inhibition of IRE1α-TRAF2-JNK activation. Therefore, kaempferol may be a potential therapeutic agent targeting mucus hypersecretion-associated pulmonary diseases.

  2. Oral administration of kaempferol inhibits bone loss in rat model of ovariectomy-induced osteopenia.

    Science.gov (United States)

    Nowak, Beata; Matuszewska, Agnieszka; Nikodem, Anna; Filipiak, Jarosław; Landwójtowicz, Marcin; Sadanowicz, Ewa; Jędrzejuk, Diana; Rzeszutko, Marta; Zduniak, Krzysztof; Piasecki, Tomasz; Kowalski, Przemysław; Dziewiszek, Wojciech; Merwid-Ląd, Anna; Trocha, Małgorzata; Sozański, Tomasz; Kwiatkowska, Joanna; Bolanowski, Marek; Szeląg, Adam

    2017-10-01

    Postmenopausal osteoporosis and osteoporotic fractures constitute an increasing problem in developing countries. Kaempferol, isolated from seeds of Cuscuta chinensis, is an active flavonoid inhibiting in vitro osteoclast activity. The aim of the presented research was an assessment of kaempferol effect on estrogen-deficiency-induced bone structure disturbances in rats. The study was performed on 24 Wistar female rats divided into 3 groups: SHAM - rats undergoing a "sham" surgery, OVX-C - control group of animals that underwent ovariectomy, OVX-K - rats undergoing ovariectomy and receiving kaempferol for 8 weeks (from day 56 to day 112). In the OVX-K group, contrary to the OVX-C one, there was no significant decrease in femoral bone mineral density (BMD). A significant increase in Young's modulus was observed in the OVX-K group compared to the OVX-C (15.33±2.51GPa vs. 11.14±1.93GPa, p<0.05). A decreased bone turnover was detected in the OVX-K group. Tissue volume ratio (BV/TV) and trabecular bone perimeter were increased in the OVX-K group compared to the OVX-C one (0.241±0.037 vs. 0.170±0.022, p<0.05 and 15.52±2.78mm vs. 9.67±3.07mm, p<0.05, respectively). Kaempferol has a beneficial influence on estrogen-deficiency-induced disturbances of bone structure in rats. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. Petals of Crocus sativus L. as a potential source of the antioxidants crocin and kaempferol.

    Science.gov (United States)

    Zeka, Keti; Ruparelia, Ketan C; Continenza, Maria A; Stagos, Dimitrios; Vegliò, Francesco; Arroo, Randolph R J

    2015-12-01

    Saffron from the province of L'Aquila, in the Abruzzo region of Italy, is highly prized and has been awarded a formal recognition by the European Union with EU Protected Designation of Origin (PDO) status. Despite this, the saffron regions are abandoned by the younger generations because the traditional cultivation of saffron (Crocus sativus L.) is labour intensive and yields only one crop of valuable saffron stamens per year. Petals of the saffron Crocus have had additional uses in traditional medicine and may add value to the crops for local farmers. This is especially important because the plant only flowers between October and November, and farmers will need to make the best use of the flowers harvested in this period. Recently, the petals of C. sativus L., which are considered a waste material in the production of saffron spice, were identified as a potential source of natural antioxidants. The antioxidants crocin and kaempferol were purified by flash column chromatography, and identified by thin layer chromatography (TLC), HPLC-DAD, infrared (IR), and nuclear magnetic resonance ((1)H &(13)C NMR) spectroscopy. The antioxidant activity was determined with the ABTS and DPPH tests. The antioxidant activities are mainly attributed to carotenoid and flavonoid compounds, notably glycosides of crocin and kaempferol. We found in dried petals 0.6% (w/w) and 12.6 (w/w) of crocin and kaempferol, respectively. Petals of C. sativus L. have commercial potential as a source for kaempferol and crocetin glycosides, natural compounds with antioxidant activity that are considered to be the active ingredients in saffron-based herbal medicine. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Iridoids and phenylpropanoid glucosides from Agalinis communis (Cham. & Schlecht) D'Arcy and Scoparia ericacea Cham. (Scrophulariaceae)

    DEFF Research Database (Denmark)

    von Poser, Gilsane Lino; Henriques, Amélia T.; Schripsema, Jan

    1996-01-01

    In this work we report the isolation of iridoid glucosides from two species of Scrophulariaceae. From the aerial parts of Scoparia ericacea geniposidic acid, geniposide, scandoside methylester, shanzhiside methylester, caryoptoside and the phenylpropanoid glucoside verbascoside were isolated...

  5. Kaempferol inhibits fibroblast collagen synthesis, proliferation and activation in hypertrophic scar via targeting TGF-β receptor type I.

    Science.gov (United States)

    Li, Hongwei; Yang, Liu; Zhang, Yuebing; Gao, Zhigang

    2016-10-01

    Hypertrophic scar (HPS) formation is a debilitating condition that results in pain, esthetic symptom and loss of tissue function. So far, no satisfactory therapeutic approach has been available for HPS treatment. In this study, we discovered that a natural small molecule, kaempferol, could significantly inhibit HPS formation in a mechanical load-induced mouse model. Our results also demonstrated that kaempferol remarkably attenuated collagen synthesis, proliferation and activation of fibroblasts in vitro and in vivo. Western blot analysis further revealed that kaempferol significantly down-regulated Smad2 and Smad3 phosphorylation in a dose-dependent manner. At last, we found that such bioactivity of kaempferol which resulted from the inhibition of TGF-β1/Smads signaling was induced by the selective binding of kaempferol to TGF-β receptor type I (TGFβRI). These findings suggest that kaempferol could be developed into a promising agent for the treatment of HPS or other fibroproliferative disorders. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Kaempferol alleviates insulin resistance via hepatic IKK/NF-κB signal in type 2 diabetic rats.

    Science.gov (United States)

    Luo, Cheng; Yang, Hui; Tang, Chengyong; Yao, Gaoqiong; Kong, Lingxi; He, Haixia; Zhou, Yuanda

    2015-09-01

    Recent studies show that inflammation underlies the metabolic disorders of insulin resistance and type 2 diabetes mellitus. Since kaempferol, a naturally occurring flavonoid, has been described to have potent anti-inflammatory properties, we investigated whether kaempferol could ameliorate insulin resistance through inhibiting inflammatory responses. The model of diabetic rat was induced by 6-week high-fat diet plus streptozotocin. Animals were orally treated with kaempferol (50 or 150 mg/kg) and aspirin (100mg/kg) for 10 weeks. The results showed that kaempferol ameliorated blood lipids and insulin in an dose-dependent manner. Kaempferol effectively restored insulin resistance induced alteration of glucose disposal by using an insulin tolerance test and the euglycemic-hyperinsulinemic clamp method. Western blotting results showed that KPF inhibited the phosphorylation of insulin receptor substrate-1 (IRS-1), IkB kinase α (IKKα) and IkB kinase β (IKKβ). These effects were accompanied with reduction in nucleic and cytosol levels of nuclear factor kappa-β (NF-κB), and further tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels. Aspirin had similar effects. These results provide in vivo evidence that kaempferol-mediated down-regulation of IKK and subsequent inhibition of NF-κB pathway activation may be associated with the reduction of hepatic inflammatory lesions, which is contributing to the improvement of insulin signaling defect in diabetes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. KAEMPFEROL, A FLAVONOID COMPOUND FROM GYNURA MEDICA INDUCED APOPTOSIS AND GROWTH INHIBITION IN MCF-7 BREAST CANCER CELL.

    Science.gov (United States)

    Yi, Xiaofang; Zuo, Jiangcheng; Tan, Chao; Xian, Sheng; Luo, Chunhua; Chen, Sai; Yu, Liangfang; Luo, Yucheng

    2016-01-01

    Kaempferol, a natural flavonoid, has been shown to induce cancer cell apoptosis and cell growth inhibition in several tumors. Previously we have conducted a full investigation on the chemical constituents of Gynura medica , kaempferol and its glycosides are the major constituents of G. medica . Here we investigated the growth inhibition and apoptosis induction effect of kaempferol extracted from G. medica . The inhibition effects of kaempferol were evaluated by MTS assay and soft agar colony formation assay. Fluorescence staining and western blotting were be used to study the apoptosis. The structure was identified by 1 H- NMR), 13 C-NMR and ESI-MS analyses. Our results showed that kaempferol's inhibition of MCF-7 breast cancer cell growth may through inducing apoptosis and downregulation of Bcl2 expression. Kaempferol is a promising cancer preventive and therapeutic agent for breast cancer. List of non-standard abbreviations: MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, HPLC: High-performance liquid chromatography, NMR: Nuclear Magnetic Resonance, ESI-MS Electrospray Ionization Mass Spectral, PARP: Poly ADP-ribose polymerase.

  8. Kaempferol inhibited VEGF and PGF expression and in vitro angiogenesis of HRECs under diabetic-like environment.

    Science.gov (United States)

    Xu, X H; Zhao, C; Peng, Q; Xie, P; Liu, Q H

    2017-03-02

    Diabetic retinopathy (DR) is one of the common and specific microvascular complications of diabetes. This study aimed to investigate the anti-angiogenic effect of kaempferol and explore its underlying molecular mechanisms. The mRNA expression level of vascular endothelial growth factor (VEGF) and placenta growth factor (PGF) and the concentrations of secreted VEGF and PGF were measured by qTR-PCR and ELISA assay, respectively. Human retinal endothelial cells (HRECs) proliferation, migration, and sprouting were measured by CCK-8 and transwell, scratching wound, and tube formation assays, respectively. Protein levels were determined by western blot. High glucose (25 mM) increased the mRNA expression levels of VEGF and PGF as well as the concentrations of secreted VEGF and PGF in HRECs, which can be antagonized by kaempferol (25 µM). Kaempferol (5-25 µM) significantly suppressed cell proliferation, migration, migration distance and sprouting of HRECs under high glucose condition. The anti-angiogenic effect of kaempferol was mediated via downregulating the expression of PI3K and inhibiting the activation of Erk1/2, Src, and Akt1. This study indicates that kaempferol suppressed angiogenesis of HRECs via targeting VEGF and PGF to inhibit the activation of Src-Akt1-Erk1/2 signaling pathway. The results suggest that kaempferol may be a potential drug for better management of DR.

  9. Dietary Flavonoids as Therapeutics for Preterm Birth: Luteolin and Kaempferol Suppress Inflammation in Human Gestational Tissues In Vitro

    Science.gov (United States)

    Wall, Courtney; Lim, Ratana; Poljak, Marin; Lappas, Martha

    2013-01-01

    Infection/inflammation is commonly associated with preterm birth (PTB), initiating uterine contractions and rupture of fetal membranes. Proinflammatory cytokines induce matrix metalloproteinases (MMPs) that degrade the extracellular matrix (ECM) and prostaglandins which initiate uterine contractions. Nuclear factor-κB (NF-κB) and activator-protein- (AP-)1 have key roles in the formation of these prolabour mediators. In nongestational tissues, dietary flavonoids such as luteolin and kaempferol inhibit NF-κB, AP-1, and their downstream targets. The aim of this study was to determine if luteolin and kaempferol reduce infection-induced prolabour mediators in human gestational tissues. Fetal membranes were incubated with LPS, and primary amnion cells and myometrial cells were incubated with IL-1β in the absence or presence of luteolin or kaempferol. Luteolin and kaempferol significantly reduced LPS-induced secretion of proinflammatory cytokines (IL-6 and IL-8) and prostaglandins (PGE2 and PGF2α) in fetal membranes, IL-1β-induced COX-2 gene expression and prostaglandin production in myometrium, and IL-1β-induced MMP-9 activity in amnion and myometrial cells. Luteolin and kaempferol decreased IL-1β-induced NF-κB p65 DNA binding activity and nuclear c-Jun expression. In conclusion, luteolin and kaempferol inhibit prolabour mediators in human gestational tissues. Given the central role of inflammation in provoking preterm labour, phytophenols may be a therapeutic approach to reduce the incidence of PTB. PMID:23840918

  10. Hydrolysis of Toxic Natural Glucosides Catalyzed by Cyclodextrin Dicyanohydrins

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Nielsen, Erik Holm; Bols, Mikael

    2008-01-01

    , and an impressive rate increase of up to 7569 (kcat/kuncat) was found for the hydroxycoumarin glucoside substrate 4-MUGP. Good and moderate degrees of catalysis (kcat/kuncat) of up to 1259 were found for the natural glucosides phloridzin and skimmin. By using a newly developed catechol detection UV-assay, a weak...

  11. Conversion of major soy isoflavone glucosides and aglycones in in vitro intestinal models

    NARCIS (Netherlands)

    Islam, M.A.; Punt, A.; Spenkelink, A.; Murk, A.J.; Leeuwen, F.X.R.; Rietjens, I.

    2014-01-01

    ScopeThis study compares conversion of three major soy isoflavone glucosides and their aglycones in a series of in vitro intestinal models. Methods and resultsIn an in vitro human digestion model isoflavone glucosides were not deconjugated, whereas studies in a Caco-2 transwell model confirmed that

  12. Iridoid glucosides of Paederota bonarota and the relationships between Paederota and Veronica. II

    DEFF Research Database (Denmark)

    Jensen, Søren Rosendal; Gotfredsen, Charlotte Held; Pierce, Simon

    2007-01-01

    In a chemical investigation of the water soluble compounds in Paederota bonarota five known iridoid glucosides were isolated together with a compound with an 8,9-double bond, namely bonarotoside (10-O-benzoyl arborescosidic acid). The known iridoid glucosides were aucubin, catalpol and the 6-O-es...

  13. 13C CPMAS NMR Studies of Anthocyanidins and their Glucosides

    International Nuclear Information System (INIS)

    Wolniak, M.; Wawer, I.

    2005-01-01

    Anthocyanins are responsible for red, purple or blue colours of flower petals and can be found in red or black fruits and berries. Many foods, especially red grapes and wines, aronia or blueberries contain large amounts of anthocyanins. Their health beneficial effects are related to antioxidant and radical scavenging properties. Structural analysis of anthocyanins by NMR are few, owing to the difficulty in obtaining analysable spectra for unstable, interconverting compounds, available in small amounts. Compounds studied by us were isolated from fruits and berries. 13 C CPMAS NMR spectra were recorded on a Bruker DSX-400 spectrometer for solid chlorides of: cyanidin, cyanidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, pelargonidin and pelargonidin 3-O-glucoside. Dipolar dephased and short contact pulse sequences were used as an aid in the assignment of resonances in CPMAS spectra of solids. Inspection of the spectra indicates that anthocyanidins are in the form of flavylium (cationic) and not in form of the chalcone.: the resonance of C2 appears at ca. 160 ppm and C3 at ca. 135 ppm, whereas C ring opening produces C2 = O, for which chemical shift of ca. 180 ppm can be expected. A comparison of experimental (CPMAS) and predicted (GIAO DFT) shielding constants for cyanidin provided information about the orientation of OH groups, twist angle of aromatic ring B and the localization of the chloride anion.(author)

  14. Chemical studies of launaea nudicaulis hook f. extracts with antioxidant and urease inhibitory activities

    International Nuclear Information System (INIS)

    Mansoor, F.; Anis, I.

    2013-01-01

    Summary: An activity guide isolation of Launaea nudicaulis Hook f, medicinal plant of Indo-Pak region has shown antioxidant potentials via its polar solvent soluble fractions while urease inhibition studies (in vitro) indicated compound 8 and 9 as a good urease inhibitors. Eight compounds have also been isolated for the first time from Launaea nudicaulis Hook f., namely, Scopoletin 1, lupeol 2, beta-amyrin 3, beta-sitosterol 3-O-beta-D-glucopyranoside 4, stigmasterol 3-O-beta-D-glucopyranoside 5, 6- hydroxy flavone 6, 7-methoxy flavone 7 and kaempferol 8, respectively. Their structures were elucidated by EI-MS, FABMS, 1H-NMR spectroscopic data. (author)

  15. Molecular Pathways Involved in the Amelioration of Myocardial Injury in Diabetic Rats by Kaempferol.

    Science.gov (United States)

    Suchal, Kapil; Malik, Salma; Khan, Sana Irfan; Malhotra, Rajiv Kumar; Goyal, Sameer N; Bhatia, Jagriti; Ojha, Shreesh; Arya, Dharamvir Singh

    2017-05-15

    There is growing evidence that chronic hyperglycemia leads to the formation of advanced glycation end products (AGEs) which exerts its effect via interaction with the receptor for advanced glycation end products (RAGE). AGE-RAGE activation results in oxidative stress and inflammation. It is well known that this mechanism is involved in the pathogenesis of cardiovascular disease in diabetes. Kaempferol, a dietary flavonoid, is known to possess antioxidant, anti-apoptotic, and anti-inflammatory activities. However, little is known about the effect of kaempferol on myocardial ischemia-reperfusion (IR) injury in diabetic rats. Diabetes was induced in male albino Wistar rats using streptozotocin (70 mg/kg; i.p.), and rats with glucose level >250 mg/dL were considered as diabetic. Diabetic rats were treated with vehicle (2 mL/kg; i.p.) and kaempferol (20 mg/kg; i.p.) daily for a period of 28 days and on the 28th day, ischemia was produced by one-stage ligation of the left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed and the heart tissue was processed for biochemical, morphological, and molecular studies. Kaempferol pretreatment significantly reduced hyperglycemia, maintained hemodynamic function, suppressed AGE-RAGE axis activation, normalized oxidative stress, and preserved morphological alterations. In addition, there was decreased level of inflammatory markers (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and NF-κB), inhibition of active c-Jun N-terminal kinase (JNK) and p38 proteins, and activation of Extracellular signal regulated kinase 1/2 (ERK1/2) a prosurvival kinase. Furthermore, it also attenuated apoptosis by reducing the expression of pro-apoptotic proteins (Bax and Caspase-3), Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells, and increasing the level of anti-apoptotic protein (Bcl-2). In conclusion, kaempferol attenuated

  16. Dietary Compound Kaempferol Inhibits Airway Thickening Induced by Allergic Reaction in a Bovine Serum Albumin-Induced Model of Asthma.

    Science.gov (United States)

    Shin, Daekeun; Park, Sin-Hye; Choi, Yean-Jung; Kim, Yun-Ho; Antika, Lucia Dwi; Habibah, Nurina Umy; Kang, Min-Kyung; Kang, Young-Hee

    2015-12-16

    Asthma is characterized by aberrant airways including epithelial thickening, goblet cell hyperplasia, and smooth muscle hypertrophy within the airway wall. The current study examined whether kaempferol inhibited mast cell degranulation and prostaglandin (PG) release leading to the development of aberrant airways, using an in vitro model of dinitrophenylated bovine serum albumin (DNP-BSA)-sensitized rat basophilic leukemia (RBL-2H3) mast cells and an in vivo model of BSA-challenged asthmatic mice. Nontoxic kaempferol at 10-20 μM suppressed β-hexosaminidase release and cyclooxygenase 2 (COX2)-mediated production of prostaglandin D2 (PGD2) and prostaglandin F2α (PGF2α) in sensitized mast cells. Oral administration of ≤20 mg/kg kaempferol blocked bovine serum albumin (BSA) inhalation-induced epithelial cell excrescence and smooth muscle hypertrophy by attenuating the induction of COX2 and the formation of PGD2 and PGF2α, together with reducing the anti-α-smooth muscle actin (α-SMA) expression in mouse airways. Kaempferol deterred the antigen-induced mast cell activation of cytosolic phospholipase A2 (cPLA2) responsive to protein kinase Cμ (PKCμ) and extracellular signal-regulated kinase (ERK). Furthermore, the antigen-challenged activation of Syk-phospholipase Cγ (PLCγ) pathway was dampened in kaempferol-supplemented mast cells. These results demonstrated that kaempferol inhibited airway wall thickening through disturbing Syk-PLCγ signaling and PKCμ-ERK-cPLA2-COX2 signaling in antigen-exposed mast cells. Thus, kaempferol may be a potent anti-allergic compound targeting allergic asthma typical of airway hyperplasia and hypertrophy.

  17. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways.

    Science.gov (United States)

    Kashafi, Elham; Moradzadeh, Maliheh; Mohamadkhani, Ashraf; Erfanian, Saiedeh

    2017-05-01

    Cervical cancer is one of the most frequent cancers in women worldwide. Defects in the apoptotic pathways are responsible for both the disease pathogenesis and its therapy resistance. It is thus a good candidate for treatment by pro-apoptotic agents. Kaempferol as a flavonoid has antioxidant and anti-tumor properties. Kaempferol has been shown to induce apoptosis and cell death in cancer cells. However, due to the problems in the treatment of cervical cancer, this study is designed to investigate the molecular mechanism by which kaempferol suppresses the growth of cervical cancer HeLa cell as compared with HFF cells (normal cells). Cells treated with kaempferol (12-100μM) and 5-FU (1-10μM), as the positive control, up to 72h. Cell viability was determined by MTT assay and real time PCR was used to investigate apoptosis and telomerase genes expression. The results showed that kaempferol decreased cell viability as concentration- and time-dependently. IC 50 values were 10.48μM for HeLa and 707.00μM for HFF cells, as compared with 1.40μM and 16.38μM for 5-FU after 72h treatment, respectively. Also, kaempferol induced cellular apoptosis and aging through down-regulating the PI3K/AKT and hTERT pathways. This study suggests that kaempferol may be a useful adjuvant therapeutic agent in the treatment of cervical cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Four new neolignan glucosides from the fruits of Arctium lappa.

    Science.gov (United States)

    Huang, Xiao-Ying; Feng, Zi-Ming; Yang, Ya-Nan; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2015-05-01

    Four new neolignan glucosides named (7S, 8R)-4,7,9,9'-tetrahydroxy-3,3'-dimethoxy-8-O-4'-neolignan-9'-O-β-d-apiofuranosyl-(1 → 6)-O-β-d-glucopyranoside (1), (8R)-4,9,9'-trihydroxy-3,3'-dimethoxy-7-oxo-8-O-4'-neolignan-4-O-β-d-glucopyranoside (2), (7R, 8S)-dihydrodehydrodiconiferyl alcohol-7'-oxo-4-O-β-d-glucopyranoside (3), and (7'S, 8'R, 8S)-4,4',9'-trihydroxy-3,3'-dimethoxy-7',9-epoxylignan-7-oxo-4-O-β-d-glucopyranoside (4) were isolated from the fruits of Arctium lappa L. Their structures and absolute configurations were elucidated on the basis of comprehensive spectroscopic analyses (UV, IR, HR-ESI-MS, 1D and 2D NMR, CD), as well as by comparison with known analogues in the literature.

  19. Synthetic yeast based cell factories for vanillin-glucoside production

    DEFF Research Database (Denmark)

    Strucko, Tomas

    and controlled expression/overexpression of genes of interest. De novo biosynthetic pathway for vanillin-β-glucoside production was employed as a model system for several case studies in this project. In order to construct yeast cell factories fulfilling current demands of industrial biotechnology, methods......The yeast Saccharomyces cerevisiae is well a characterized microorganism and widely used as eukaryotic model organism as well as a key cell factory for bioproduction of various products. The latter comprise a large variety of scientifically and industrially relevant products such as low-value bulk...... chemicals and biofuels, food additives, high-value chemicals and recombinant proteins. Despite the recent achievements in the fields of systems biology and metabolic engineering together with availability of broad genetic engineering toolbox, the full potential of S. cerevisiae as a cell factory is not yet...

  20. Kaempferol alleviates ox-LDL-induced apoptosis by up-regulation of autophagy via inhibiting PI3K/Akt/mTOR pathway in human endothelial cells.

    Science.gov (United States)

    Che, Jianbo; Liang, Bing; Zhang, Yuan; Wang, Yi; Tang, Jianyu; Shi, Gongning

    Oxidized low-density lipoprotein (ox-LDL) has been reported to induce apoptosis of endothelial cells (ECs) and contribute to the progression of atherosclerosis. Kaempferol has been shown to possess antiatherosclerotic effect. The aim of the present study was to evaluate the effect of kaempferol on ox-LDL-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and its possible molecular basis. The results showed that kaempferol alleviated ox-LDL-induced apoptosis. Kaempferol increased the ratio of LC3-II/I and beclin-1 level in ox-LDL-induced HUVECs. Moreover, the expression of p-Akt and p-mTOR was down-regulated after treatment with kaempferol in ox-LDL-treated HUVECs, which is similar to the effect of PI3K inhibitor (LY294002) or mTOR inhibitor [rapamycin (RAP)]. Besides, autophagy induced by kaempferol was enhanced by LY294002 or RAP, while kaempferol-induced autophagy was attenuated with insulin treatment, the activator of PI3K/Akt/mTOR pathway. Furthermore, insulin also abated the effect of kaempferol on cell viability and apoptosis in ox-LDL-induced HUVECs. The results indicated that kaempferol alleviated ox-LDL-induced cell apoptosis by up-regulation of autophagy via inhibiting PI3K/Akt/mTOR pathway in human ECs. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Different inhibition mechanisms of gentisic acid and cyaniding-3-O-glucoside on polyphenoloxidase.

    Science.gov (United States)

    Zhou, Lei; Xiong, Zhiqiang; Liu, Wei; Zou, Liqiang

    2017-11-01

    Gentisic acid and cyanidin-3-O-glucoside are important bioactive polyphenols which are widely distributed in many fruits and cereals. In this work, kinetic study, spectral analysis and computational simulation were used to compare the inhibitory effects and inhibition mechanisms of gentisic acid and cyanidin-3-O-glucoside on mushroom polyphenoloxidase (PPO). The inhibitory effect of cyanidin-3-O-glucoside on PPO was much stronger than that of gentisic acid. Gentisic acid inhibited PPO in a reversible mixed-type manner while cyanidin-3-O-glucoside was an irreversible inhibitor. Gentisic acid and cyanidin-3-O-glucoside made the thermal inactivation of PPO easier, and induced apparent conformational changes of PPO. Compared with gentisic acid, cyanidin-3-O-glucoside had stronger effects on the thermal inactivation and conformation of PPO. Molecular docking results revealed gentisic acid bound to the active site of PPO by hydrogen bonding, π-π stacking and van der Waals forces. However, cyanidin-3-O-glucoside might irreversibly interact with the Met or Cys in PPO by covalent bonds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Constituintes químicos e atividade antioxidante de Sida galheirensiS Ulbr. (Malvaceae

    Directory of Open Access Journals (Sweden)

    Davi Antas e Silva

    2006-12-01

    Full Text Available The phytochemical investigation of Sida galheirensis led to the isolation of 5,4'-dihydroxy-3,7,3´-trimethoxyflavone, 17³-ethoxyphaeoforbide, a rare natural product, 6,7-dimethoxycoumarin, ortho-hydroxybenzoic acid, sitosterol-3-O-beta-D-glucopyranoside, stigmasterol-3-O-beta-D-glucopyranoside, 5,7,4'-trihydroxyflavone, 5,7,3',4'-tetrahydroxyflavone, kaempferol-3-O-beta-D-(6"-E-p-coumaroyl glucopyranoside and luteolin 7-O-beta-D-glucopyranoside. Their structures were assigned based on spectroscopic analyses, including two-dimensional NMR techniques. Antioxidant activities of hexane, CHCl3, EtOAc, BuOH and EtOH extracts of Sida galheirensis were measured using the 1,2-diphenyl-2-picryl-hydrazyl (DPPH free radical scavenging assay. This is also the first work reporting the chemical investigation of Sida galheirensis.

  3. A new flavonol glycoside and activity of compounds from the flower of Nymphaea candida.

    Science.gov (United States)

    Liu, R-N; Wang, W; Ding, Y; Xie, W-D; Ma, C; Du, L-J

    2007-01-01

    A new compound, kaempferol 3-O-(2''-O-galloylrutinoside) (1), was isolated from the white flower of Nymphaea candida, together with nine known flavonol glycosides, kaempferol (2), kaempferol 3-O-beta-D-glucopyranoside (3), kaempferol 3-O-alpha-l-rhamnopyranoside (4), kaempferol 3-O-alpha-l-rhamnopyranosylglucopyranoside (5), kaempferol 7-O-beta-D-glucopyranoside 3-(O-alpha-l-rhamnopyranosylglucopyranoside) (6), quercetin (7), quercetin 3-O-beta-D-xylopyranoside (8), myricetin (9), myricetin 3'-O-beta-D-xylopyranoside (10). The structure of 1 was established on the basis of the analysis of its 1D and 2D NMR spectral data. Compounds 1-7 and 9 exhibited moderate to significant antioxidant activities, which were evaluated by measurement of low-density lipoprotein (LDL) and malondialdehyde (MDA) levels in vitro. Compounds 1, 3, 4, 6 and 9 exhibited promising neuroprotective effects on ischemic injury model of cultured rat cortical neurons treated with sodium dithionite in glucose-free medium. Furthermore, compounds 1, 5, and 9 had distinct cytotoxicity to adrenal gland pheochromocytoma, PC12 cells, being treated by the same way.

  4. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells.

    Science.gov (United States)

    Wu, Lung-Yuan; Lu, Hsu-Feng; Chou, Yu-Cheng; Shih, Yung-Luen; Bau, Da-Tian; Chen, Jaw-Chyun; Hsu, Shu-Chun; Chung, Jing-Gung

    2015-01-01

    Numerous evidences have shown that plant flavonoids (naturally occurring substances) have been reported to have chemopreventive activities and protect against experimental carcinogenesis. Kaempferol, one of the flavonoids, is widely distributed in fruits and vegetables, and may have cancer chemopreventive properties. However, the precise underlying mechanism regarding induced DNA damage and suppressed DNA repair system are poorly understood. In this study, we investigated whether kaempferol induced DNA damage and affected DNA repair associated protein expression in human leukemia HL-60 cells in vitro. Percentages of viable cells were measured via a flow cytometry assay. DNA damage was examined by Comet assay and DAPI staining. DNA fragmentation (ladder) was examined by DNA gel electrophoresis. The changes of protein levels associated with DNA repair were examined by Western blotting. Results showed that kaempferol dose-dependently decreased the viable cells. Comet assay indicated that kaempferol induced DNA damage (Comet tail) in a dose-dependent manner and DAPI staining also showed increased doses of kaempferol which led to increased DNA condensation, these effects are all of dose-dependent manners. Western blotting indicated that kaempferol-decreased protein expression associated with DNA repair system, such as phosphate-ataxia-telangiectasia mutated (p-ATM), phosphate-ataxia-telangiectasia and Rad3-related (p-ATR), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6)-methylguanine-DNA methyltransferase (MGMT), p53 and MDC1 protein expressions, but increased the protein expression of p-p53 and p-H2AX. Protein translocation was examined by confocal laser microscopy, and we found that kaempferol increased the levels of p-H2AX and p-p53 in HL-60 cells. Taken together, in the present study, we found that kaempferol induced DNA damage and suppressed DNA repair and inhibited DNA repair associated protein expression in HL-60

  5. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway.

    Science.gov (United States)

    Saw, Constance Lay Lay; Guo, Yue; Yang, Anne Yuqing; Paredes-Gonzalez, Ximena; Ramirez, Christina; Pung, Douglas; Kong, Ah-Ng Tony

    2014-10-01

    Quercetin, kaempferol, and pterostilbene are abundant in berries. The anti-oxidative properties of these constituents may contribute to cancer chemoprevention. However, their precise mechanisms of action and their combinatorial effects are not completely understood. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates anti-oxidative stress enzymes and Phase II drug metabolizing/detoxifying enzymes by binding to antioxidant response element (ARE). This study aimed to investigate the anti-oxidative stress activities of quercetin, kaempferol, and pterostilbene individually and in combination, as well as the involvement of the Nrf2-ARE signaling pathway. Quercetin, kaempferol, and pterostilbene all exhibited strong free-radical scavenging activity in the DPPH assay. The MTS assay revealed that low concentration combinations we tested were relatively non-toxic to HepG2-C8 cells. The results of the DCFH-DA assay and combination index (CI) indicated that quercetin, kaempferol, and pterostilbene attenuated intracellular reactive oxygen species (ROS) levels when pretreated individually and had synergistic effects when used in combination. In addition, the combination treatment significantly induced ARE and increased the mRNA and protein expression of Nrf2-regulated genes. Collectively, our study demonstrated that the berry constituents quercetin, kaempferol, and pterostilbene activated the Nrf2-ARE signaling pathway and exhibited synergistic anti-oxidative stress activity at appropriate concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Small Molecule Kaempferol Promotes Insulin Sensitivity and Preserved Pancreatic β-Cell Mass in Middle-Aged Obese Diabetic Mice

    Science.gov (United States)

    Alkhalidy, Hana; Moore, William; Zhang, Yanling; Wang, Aihua; Ali, Mostafa; Suh, Kyung-Shin; Zhen, Wei; Cheng, Zhiyong; Jia, Zhenquan; Hulver, Matthew

    2015-01-01

    Insulin resistance and a progressive decline in functional β-cell mass are hallmarks of developing type 2 diabetes (T2D). Thus, searching for natural, low-cost compounds to target these two defects could be a promising strategy to prevent the pathogenesis of T2D. Here, we show that dietary intake of flavonol kaempferol (0.05% in the diet) significantly ameliorated hyperglycemia, hyperinsulinemia, and circulating lipid profile, which were associated with the improved peripheral insulin sensitivity in middle-aged obese mice fed a high-fat (HF) diet. Kaempferol treatment reversed HF diet impaired glucose transport-4 (Glut4) and AMP-dependent protein kinase (AMPK) expression in both muscle and adipose tissues from obese mice. In vitro, kaempferol increased lipolysis and prevented high fatty acid-impaired glucose uptake, glycogen synthesis, AMPK activity, and Glut4 expression in skeletal muscle cells. Using another mouse model of T2D generated by HF diet feeding and low doses of streptozotocin injection, we found that kaempferol treatment significantly improved hyperglycemia, glucose tolerance, and blood insulin levels in obese diabetic mice, which are associated with the improved islet β-cell mass. These results demonstrate that kaempferol may be a naturally occurring anti-diabetic agent by improving peripheral insulin sensitivity and protecting against pancreatic β-cell dysfunction. PMID:26064984

  7. Kaempferol stimulates gene expression of low-density lipoprotein receptor through activation of Sp1 in cultured hepatocytes

    Science.gov (United States)

    Ochiai, Ayasa; Miyata, Shingo; Iwase, Masamori; Shimizu, Makoto; Inoue, Jun; Sato, Ryuichiro

    2016-01-01

    A high level of plasma low-density lipoprotein (LDL) cholesterol is considered a risk factor for atherosclerosis. Because the hepatic LDL receptor (LDLR) is essential for clearing plasma LDL cholesterol, activation of LDLR is a promising therapeutic target for patients with atherosclerotic disease. Here we demonstrated how the flavonoid kaempferol stimulated the gene expression and activity of LDLR in HepG2 cells. The kaempferol-mediated stimulation of LDLR gene expression was completely inhibited by knockdown of Sp1 gene expression. Treatment of HepG2 cells with kaempferol stimulated the recruitment of Sp1 to the promoter region of the LDLR gene, as well as the phosphorylation of Sp1 on Thr-453 and Thr-739. Moreover, these kaempferol-mediated processes were inhibited in the presence of U0126, an ERK pathway inhibitor. These results suggest that kaempferol may increase the activity of Sp1 through stimulation of Sp1 phosphorylation by ERK1/2 and subsequent induction of LDLR expression and activity. PMID:27109240

  8. Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells.

    Science.gov (United States)

    Liao, Wenzhen; Chen, Luying; Ma, Xiang; Jiao, Rui; Li, Xiaofeng; Wang, Yong

    2016-05-23

    The protective effects of kaempferol against reactive oxygen species (ROS)-induced hemolysis and its antiproliferative activity on human cancer cells were evaluated in this study. Kaempferol exhibited strong cellular antioxidant ability (CAA) with a CAA value of 59.80 ± 0.379 μM of quercetin (QE)/100 μM (EC50 = 7.74 ± 0.049 μM). Pretreatment with kaempferol significantly attenuated the ROS-induced hemolysis of human erythrocyte (87.4% hemolysis suppressed at 100 μg/mL) and reduced the accumulation of toxic lipid peroxidation product malondialdehyde (MDA). The anti-hemolytic activity of kaempferol was mainly through scavenging excessive ROS and preserving the intrinsic antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GPx) activities in normal levels. Additionally, kaempferol showed significant antiproliferative activity on a panel of human cancer cell lines including human breast carcinoma (MCF-7) cells, human stomach carcinoma (SGC-7901) cells, human cervical carcinoma (Hela) cells and human lung carcinoma (A549) cells. Kaemperol induced apoptosis of MCF-7 cells accompanied with nuclear condensation and mitochondria dysfunction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Succinate-induced neuronal mitochondrial fission and hexokinase II malfunction in ischemic stroke: Therapeutical effects of kaempferol.

    Science.gov (United States)

    Wu, Bin; Luo, Hong; Zhou, Xu; Cheng, Cai-Yi; Lin, Lin; Liu, Bao-Lin; Liu, Kang; Li, Ping; Yang, Hua

    2017-09-01

    Mitochondrial dysfunction is known as one of causative factors in ischemic stroke, leading to neuronal cell death. The present work was undertaken to investigate whether succinate induces neuron apoptosis by regulating mitochondrial morphology and function. In neurons, oxygen-glucose deprivation induced succinate accumulation due to the reversal of succinate dehydrogenase (SDH) activation, leading to mitochondrial fission. Kaempferol inhibited mitochondrial fission and maintained mitochondrial HK-II through activation of Akt, and thereby protected neurons from succinate-mediated ischemi injury. Knockdown of Akt2 with siRNA diminished the effect of kaempferol, indicating that kaempferol suppressed dynamin-related protein 1 (Drp1) activation and promoted HK-II mitochondrial binding dependently on Akt. Moreover, we demonstrated that kaempferol potentiated autophagy during oxygen and glucose deprivation, contributing to protecting neuron survival against succinate insult. In vivo, oral administration of kaempferol in mice attenuated the infract volume after ischemic and reperfusion (I/R) injury and reproduced the similar mitochondrial protective effect in the brain infract area. This study indicates that succinate accumulation plays a pivotal role in I/R injury-induced neuronal mitochondrial dysfunction, and suggests that modulation of Drp1 phosphorylation might be potential therapeutic strategy to protect neuron mitochondrial integrity and treat ischemic stroke. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The anti-inflammatory effect of kaempferol on early atherosclerosis in high cholesterol fed rabbits

    Science.gov (United States)

    2013-01-01

    Background Atherosclerosis has been widely accepted as an inflammatory disease of vascular, adhesion molecules play an important role in the early progression of it. The aim of the present study was to evaluate the effect of kaempferol on the inflammatory molecules such as E-selectin (E-sel), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesionmolecule-1 (VCAM-1) and monocyte chemotactic protein-1 (MCP-1) in high cholesterol induced atherosclerosis rabbit models. Methods Thirty male New Zealand white (NZW) rabbits were randomly divided into five groups, control group, model group, fenofibrate (12mg/kg) group and kaempferol groups (150 mg/kg and 30 mg/kg). The rabbits were fed with a normal diet or a high cholesterol diet for 10 weeks. Levels of blood lipids, serum tumour-necrosis factor-alpha (TNF-α) and serum interleukin-1beta (IL-1β) were detected at the end of the sixth and tenth week. Malonaldehyde (MDA) level and superoxide dismutase (SOD) activity in serum were also determined. Lesion areas of the aorta were measured with morphometry analysis after ten weeks. Gene expression of E-sel, ICAM-1, VCAM-1 and MCP-1 in aortas was determined by RT-PCR (reverse transcription-polymerase chain reaction). Immunohistochemical staining was employed to measure protein expression of E-sel, ICAM-1, VCAM-1 and MCP-1. Results Model rabbits fed with ten weeks of high-cholesterol diet developed significant progression of atherosclerosis. Compared with the control, levels of blood lipids, TNF-α, IL-1β and MDA increased markedly in serum of model rabbits, while SOD levels decreased. Gene and protein expressions of E-sel, ICAM-1, VCAM-1 and MCP-1 in atherosclerotic aortas increased remarkably in model group. However, comparing to the model rabbits, levels of TNF-α, IL-1β and MDA decreased significantly and serum SOD activity increased, gene and protein expressions of E-sel, ICAM-1, VCAM-1 and MCP-1 in aortas decreased significantly with the treatment of

  11. SERS spectroscopy of kaempferol and galangin under the interaction of human serum albumin with adsorbed silver nanoparticles

    Science.gov (United States)

    Zhang, Wei; Bai, Xueyuan; Wang, Yingping; Zhao, Bing; Zhao, Daqing; Zhao, Yu

    Raman and surface-enhanced Raman scattering (SERS) spectroscopy were employed to probe the interaction of the flavonol drugs, kaempferol and galangin, with human serum albumin (HSA). SERS spectra of both flavonol derivatives were obtained from a colloidal silver surface in physiological condition, based on the high performance of the enhanced substrate, the most enhanced modes of kaempferol and galangin were those with certain motions perpendicular to the metal surface. The SERS spectra were allowed to predict similar orientation geometry for both of the drugs on the colloidal surface with minor difference. In addition, both flavonols-HSA complexes were prepared in different concentration ratios and the orientated differences between kaempferol and galangin were investigated by SERS.

  12. Kaempferol Identified by Zebrafish Assay and Fine Fractionations Strategy from Dysosma versipellis Inhibits Angiogenesis through VEGF and FGF Pathways

    Science.gov (United States)

    Liang, Fang; Han, Yuxiang; Gao, Hao; Xin, Shengchang; Chen, Shaodan; Wang, Nan; Qin, Wei; Zhong, Hanbing; Lin, Shuo; Yao, Xinsheng; Li, Song

    2015-01-01

    Natural products are a rich resource for the discovery of therapeutic substances. By directly using 504 fine fractions from isolated traditional Chinese medicine plants, we performed a transgenic zebrafish based screen for anti-angiogenesis substances. One fraction, DYVE-D3, was found to inhibit the growth of intersegmental vessels in the zebrafish vasculature. Bioassay-guided isolation of DYVE-D3 indicates that the flavonoid kaempferol was the active substance. Kaempferol also inhibited the proliferation and migration of HUVECs in vitro. Furthermore, we found that kaempferol suppressed angiogenesis through inhibiting VEGFR2 expression, which can be enhanced by FGF inhibition. In summary, this study shows that the construction of fine fraction libraries allows efficient identification of active substances from natural products. PMID:26446489

  13. The evolution of plant chemical defence - new roles for hydroxynitrile glucosides in Lotus japonicus

    DEFF Research Database (Denmark)

    Knudsen, Camilla

    Plants are sessile organisms well-known to produce a vast array of chemical compounds of which many are used in chemical defence against herbivores and pathogens. The biosynthesis of these plant chemical defence compounds poses a considerable risk of self-toxicity for the plant itself. Several...... on hydroxynitrile glucoside metabolism in the legume model plant Lotus japonicus. Lotus japonicus produces both cyanogenic and non-cyanogenic hydroxynitrile glucosides as chemical defence compounds. The cyanogenic glucosides linamarin and lotaustralin are stored in the cell vacuole as inactive glycosides and, upon...... function and evolution. Further, it contributes to our understanding of the formation and role of biosynthetic gene clusters in plant chemical defence. The bifurcation in hydroxynitrile glucoside biosynthesis and catabolism observed in Lotus japonicus makes it a very suitable model system to study...

  14. Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway.

    Science.gov (United States)

    Guo, Haiqing; Ren, Feng; Zhang, Li; Zhang, Xiangying; Yang, Rongrong; Xie, Bangxiang; Li, Zhuo; Hu, Zhongjie; Duan, Zhongping; Zhang, Jing

    2016-03-01

    Kaempferol is a flavonoid compound that has gained importance due to its antitumor properties; however, the underlying mechanisms remain to be fully understood. The present study aimed to investigate the molecular mechanisms of the antitumor function of kaempferol in HepG2 hepatocellular carcinoma cells. Kaempferol was determined to reduce cell viability, increase lactate dehydrogenase activity and induce apoptosis in a concentration‑ and time‑dependent manner in HepG2 cells. Additionally, kaempferol‑induced apoptosis possibly acts via the endoplasmic reticulum (ER) stress pathway, due to the significant increase in the protein expression levels of glucose‑regulated protein 78, glucose‑regulated protein 94, protein kinase R‑like ER kinase, inositol‑requiring enzyme 1α, partial activating transcription factor 6 cleavage, caspase‑4, C/EBP homologous protein (CHOP) and cleaved caspase‑3. The pro‑apoptotic activity of kaempferol was determined to be due to induction of the ER stress‑CHOP pathway, as: i) ER stress was blocked by 4‑phenyl butyric acid (4‑PBA) pretreatment and knockdown of CHOP with small interfering RNA, which resulted in alleviation of kaempferol‑induced HepG2 cell apoptosis; and ii) transfection with plasmid overexpressing CHOP reversed the protective effect of 4‑PBA in kaempferol‑induced HepG2 cells and increased the apoptotic rate. Thus, kaempferol promoted HepG2 cell apoptosis via induction of the ER stress‑CHOP signaling pathway. These observations indicate that kaempferol may be used as a potential chemopreventive treatment strategy for patients with hepatocellular carcinoma.

  15. Mechanisms of transformation of the antioxidant kaempferol into depsides. Gamma-radiolysis study in methanol and ethanol.

    Science.gov (United States)

    Marfak, A; Trouillas, P; Allais, D P; Calliste, C A; Cook-Moreau, J; Duroux, J L

    2003-09-01

    In this study, we irradiated the antioxidant kaempferol in ethanol and methanol solutions with gamma rays at doses ranging from 0.2-20 kGy. NMR and ES-MS spectroscopy were used to identify radiolysis products. Two depsides, [2-[(4'-hydroxybenzoyl)oxy]-4,6-dihydroxyphenyl](oxo) methyl acetate and [2-[(4'-hydroxybenzoyl)oxy]-4,6-dihydroxyphenyl](oxo) ethyl acetate, were the major compounds of kaempferol degradation in methanol and in ethanol, respectively. Other products formed in low concentrations were identified as [4-hydroxyphenyl](oxo) methyl acetate, [4-hydroxyphenyl](oxo) ethyl acetate, and depside [2-[(4'-hydroxybenzoyl)oxy]-4,6-dihydroxyphenyl](oxo) acetic acid. The formation of the latter was observed in both solvents. We propose degradation mechanisms that suggest that (.)CH(2)OH and CH(3)(.)CHOH, produced by solvent radiolysis, react with the 3-OH kaempferol group because of its high H-donor capacity. pi-Electron delocalization in the flavonoxy formed after the first H-transfer leads to C-ring opening and consequently to the formation of depsides. G calculation of the degradation products and of (.)CH(2)OH and CH(3)(.)CHOH radicals confirmed the proposed mechanism of kaempferol radiolysis. The rate constants for the reaction between kaempferol and these free radicals were also calculated. Formation of depside has also been observed in many studies of the oxidation of flavonoids; those studying human metabolism have suggested similar redox transformation of flavonols. The antioxidant activities of radiolysis products were evaluated and compared to those of kaempferol.

  16. Bioconversion of apigenin-7-O-β-glucoside in aqueous two-phase system

    Directory of Open Access Journals (Sweden)

    Ilić Sanja M.

    2005-01-01

    Full Text Available The study is concerned with the conversion of apigenin-7-O-β-glucoside into apigenin in polyethylene glycol 6000 / dextran 20000 aqueous two-phase system by β-glucosidase. Apigenin was separated from apigenin-7-O-β-glucoside and β-glucosidase by their partition into opposite phases. In 14% PEG / 22.5% DEX aqueous two-phase system obtained yield of apigenin in top phase was 108%.

  17. Diversification and specialization of β-glucosidases in the catabolism of hydroxynitrile glucosides in Lotus japonicus

    DEFF Research Database (Denmark)

    Lai, Daniela

    that involves specific β-glucosidases. If plant tissue is disrupted, cyanogenic glucosides come into contact with these β-glucosidases and are hydrolyzed, which results in the release of hydrogen cyanide gas. The work reported in this thesis is focused on the β-glucosidases that activated hydroxynitrile...... glucosides in the model plant Lotus japonicus. The work highlights how closely related β-glucosidases have evolved distinct substrate specificities and differential expression patterns to serve distinct physiological and ecological roles....

  18. Two-electron electrochemical oxidation of quercetin and kaempferol changes only the flavonoid C-ring

    DEFF Research Database (Denmark)

    Jørgensen, Lars; Cornett, Claus; Justesen, Ulla

    1998-01-01

    Bulk electrolysis of the antioxidant flavonoids quercetin and kaempferol in acetonitrile both yield a single oxidation product in two-electron processes. The oxidation products are more polar than their parent compounds, with an increased molecular weight of 16g/mol, and were identified as 2......-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3 (2H)-benzofuranone and 2-(4-hydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone for quercetin and kaempferol, respectively. Two-electron oxidation of the parent flavonoid is suggested to yield a 3,4-flavandione with unchanged substitution pattern in the A- and B-ring, which...... may rearrange to form the substituted 3(2H)-benzofuranone through the chalcan-trione ring-chain tautomer. The acidity of the 3-OH group is suggested to determine the fate of the flavonoid phenoxyl radical originally formed by one-electron oxidation, as no well-defined oxidation product of luteolin...

  19. Inhibition of fatty acid amide hydrolase by kaempferol and related naturally occurring flavonoids

    Science.gov (United States)

    Thors, L; Belghiti, M; Fowler, C J

    2008-01-01

    Background and purpose: Recent studies have demonstrated that the naturally occurring isoflavone compounds genistein and daidzein inhibit the hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) in the low micromolar concentration range. The purpose of the present study was to determine whether this property is shared by flavonoids. Experimental approach: The hydrolysis of anandamide in homogenates and intact cells was measured using the substrate labelled in the ethanolamine part of the molecule. Key results: Twenty compounds were tested. Among the commonly occurring flavonoids, kaempferol was the most potent, inhibiting FAAH in a competitive manner with a Ki value of 5 μM. Among flavonoids with a more restricted distribution in nature, the two most active toward FAAH were 7-hydroxyflavone (IC50 value of 0.5–1 μM depending on the solvent used) and 3,7-dihydroxyflavone (IC50 value 2.2 μM). All three compounds reduced the FAAH-dependent uptake of anandamide and its metabolism by intact RBL2H3 basophilic leukaemia cells. Conclusions and implications: Inhibition of FAAH is an additional in vitro biochemical property of flavonoids. Kaempferol, 7-hydroxyflavone and 3,7-dihydroxyflavone may be useful as templates for the synthesis of novel compounds, which target several systems that are involved in the control of inflammation and cancer. PMID:18552875

  20. Genetic effects of the flavonols quercetin, kaempferol, and galangin on Chinese hamster ovary cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Carver, J.H. (Lawrence Livermore National Lab., Livermore, CA); Carrano, A.V.; MacGregor, J.T.

    1983-01-01

    The genotoxicity of selected flavonols was evaluated by multiple endpoints in Chinese hamster ovary (CHO) cells. Chromosomal aberrations, sister-chromatid exchange (SCE), and forward mutation at 4 gene loci were measured in a single population of cells exposed to quercetin, kaempferol, or galangin for 15 h with and without metabolic activation. The incidence of chromosomal aberrations was significantly increased by quercetin in the absence of activation and by kaempferol and galangin with and without activation. Flavanol treatment affected SCE and mutation at the hgprt, aprt, or Na/sup +//K/sup +/-ATPase loci only marginally, but significantly increased mutation frequencies at the tk locus. The response at the tk locus suggests that the CHO cells may behave similarly to L5178Y cells, in which the tk locus is thought to reflect chromosomal lesions in addition to point mutation. These results indicate that, at least under the conditions examined, flavonols induce chromosomal aberrations in CHO cells, but have little effect on point mutation or SCE.

  1. Kaempferol glycosides from Lobularia maritima and their potential role in plant interactions.

    Science.gov (United States)

    Fiorentino, Antonio; Ricci, Andreina; D'Abrosca, Brigida; Golino, Annunziata; Izzo, Angelina; Pascarella, Maria Teresa; Piccolella, Simona; Esposito, Assunta

    2009-02-01

    Six kaempferol glycosides, four of them characterized for the first time, were isolated from the leaf extract of Lobularia maritima. The structural elucidation was performed by a combined approach using Electrospray-Ionization Triple-Quadrupole Mass-Spectrometric (ESI/TQ/MS) techniques, and 1D- and 2D-NMR experiments (1H, 13C, DEPT, DQ-COSY, TOCSY, ROESY, NOESY, HSQC, HMBC, and HSQC-TOCSY). The isolated kaempferol derivatives have different disaccharide substituents at C(3) and four of them have a rhamnose unit at C(7). To evaluate their potential allelopathic role within the herbaceous plant community, the compounds, as well as the aglycone obtained from enzymatic hydrolysis, have been tested in vitro on three coexisting plant species, Dactylis hispanica, Petrorhagia velutina, and Phleum subulatum. The results obtained allow us to hypothesize that the type of the sugar modulates the biological response. The bioassay data, analyzed by a multivariate approach, and grouping the compounds on the basis of the number of sugar units and the nature of carbohydrates present in the disaccharide moiety, indicate a structure-activity relationship.

  2. Kaempferol targets estrogen-related receptor α and suppresses the angiogenesis of human retinal endothelial cells under high glucose conditions.

    Science.gov (United States)

    Wu, Yan; Zhang, Qinmei; Zhang, Rui

    2017-12-01

    Diabetic retinopathy (DR) is the most common complication of diabetes and a major cause of new-onset blindness in the developed world. The present study aimed to examine the effect of kaempferol on high glucose-induced human retinal endothelial cells (HRECs) in vitro . The expression levels of various mRNAs and proteins were measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting, respectively. The target of kaempferol was determined using a luciferase reporter assay. In addition, HREC proliferation, migration and cell sprouting were determined using Cell Counting kit-8, wound scratch and tube formation assays, respectively. RT-qPCR and western blotting results showed that treatment with 30 mM glucose for 12, 24 and 48 h increased the expression level of estrogen-related receptor α (ERRα) mRNA and protein. The luciferase reporter assay demonstrated that kaempferol inhibited ERRα activity in HRECs. Compared with 5 mM normal glucose treatment, high (30 mM) glucose significantly promoted the proliferation, migration and tube formation of HRECs, which was antagonized by 10 and 30 µM kaempferol in a dose-dependent manner. Treatment with 30 mM glucose also increased the expression of vascular endothelial growth factor (VEGF) mRNA and protein, and the expression levels of VEGF mRNA and protein were suppressed by kaempferol (10 and 30 µM). Kaempferol (30 µM) treatment also increased the expression levels of thrombospondin 1 (TSP-1) and a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS-1) mRNA; however, TSP-1 and ADAMTS-1 levels did not differ between high glucose and normal (5 mM) glucose conditions. The results of this study suggest that kaempferol targets ERRα and suppresses the angiogenesis of HRECs under high glucose conditions. Kaempferol may be a potential drug for use in controlling the progression of DR; however, in vivo studies are required to evaluate its efficacy and safety.

  3. Kaempferol modulates pro-inflammatory NF-κB activation by suppressing advanced glycation endproducts-induced NADPH oxidase

    Science.gov (United States)

    Kim, Ji Min; Lee, Eun Kyeong; Kim, Dae Hyun; Yu, Byung Pal

    2010-01-01

    Advanced glycation endproducts (AGE) are oxidative products formed from the reaction between carbohydrates and a free amino group of proteins that are provoked by reactive species (RS). It is also known that AGE enhance the generation of RS and that the binding of AGE to a specific AGE receptor (RAGE) induces the activation of the redox-sensitive, pro-inflammatory transcription factor, nuclear factor-kappa B (NF-ĸB). In this current study, we investigated the anti-oxidative effects of short-term kaempferol supplementation on the age-related formation of AGE and the binding activity of RAGE in aged rat kidney. We further investigated the suppressive action of kaempferol against AGE's ability to stimulate activation of pro-inflammatory NF-ĸB and its molecular mechanisms. For this study, we utilized young (6 months old), old (24 months old), and kaempferol-fed (2 and 4 mg/kg/day for 10 days) old rats. In addition, for the molecular work, the rat endothelial cell line, YPEN-1 was used. The results show that AGE and RAGE were increased during aging and that these increases were blunted by kaempferol. In addition, dietary kaempferol reduced age-related increases in NF-κB activity and NF-ĸB-dependant pro-inflammatory gene activity. The most significant new finding from this study is that kaempferol supplementation prevented age-related NF-κB activation by suppressing AGE-induced nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Taken together, our results demonstrated that dietary kaempferol exerts its anti-oxidative and anti-inflammatory actions by modulating the age-related NF-κB signaling cascade and its pro-inflammatory genes by suppressing AGE-induced NADPH oxidase activation. Based on these data, dietary kaempferol is proposed as a possible anti-AGE agent that may have the potential for use in anti-inflammation therapies. PMID:20431987

  4. Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9.

    Science.gov (United States)

    Li, Chenglin; Zhao, Yuanwei; Yang, Dan; Yu, Yanyan; Guo, Hao; Zhao, Ziming; Zhang, Bei; Yin, Xiaoxing

    2015-02-01

    Matrix metalloproteinases (MMPs) have been regarded as major critical molecules assisting tumor cells during metastasis, for excessive ECM (ECM) degradation, and cancer cell invasion. In the present study, in vitro and in vivo assays were employed to examine the inhibitory effects of kaempferol, a natural polyphenol of flavonoid family, on tumor metastasis. Data showed that kaempferol could inhibit adhesion, migration, and invasion of MDA-MB-231 human breast carcinoma cells. Moreover, kaempferol led to the reduced activity and expression of MMP-2 and MMP-9, which were detected by gelatin zymography, real-time PCR, and western blot analysis, respectively. Further elucidation of the mechanism revealed that kaempferol treatment inhibited the activation of transcription factor activator protein-1 (AP-1) and MAPK signaling pathway. Moreover, kaempferol repressed phorbol-12-myristate-13-acetate (PMA)-induced MMP-9 expression and activity through suppressing the translocation of protein kinase Cδ (PKCδ) and MAPK signaling pathway. Our results also indicated that kaempferol could block the lung metastasis of B16F10 murine melanoma cells as well as the expression of MMP-9 in vivo. Taken together, these results demonstrated that kaempferol could inhibit cancer cell invasion through blocking the PKCδ/MAPK/AP-1 cascade and subsequent MMP-9 expression and its activity. Therefore, kaempferol might act as a therapeutic potential candidate for cancer metastasis.

  5. Galangin and kaempferol suppress phorbol-12-myristate-13-acetate-induced matrix metalloproteinase-9 expression in human fibrosarcoma HT-1080 cells.

    Science.gov (United States)

    Choi, Yu Jung; Lee, Young Hun; Lee, Seung-Taek

    2015-01-01

    Matrix metalloproteinase (MMP)-9 degrades type IV collagen in the basement membrane and plays crucial roles in several pathological implications, including tumorigenesis and inflammation. In this study, we analyzed the effect of flavonols on MMP-9 expression in phorbol-12-myristate-13-acetate (PMA)-induced human fibrosarcoma HT-1080 cells. Galangin and kaempferol efficiently decreased MMP-9 secretion, whereas fisetin only weakly decreased its secretion. Galangin and kaempferol did not affect cell viability at concentrations up to 30 μM. Luciferase reporter assays showed that galangin and kaempferol decrease transcription of MMP-9 mRNA. Moreover, galangin and kaempferol strongly reduce IκBα phosphorylation and significantly decrease JNK phosphorylation. These results indicate that galangin and kaempferol suppress PMA-induced MMP-9 expression by blocking activation of NF-κB and AP-1. Therefore, these flavonols could be used as chemopreventive agents to lower the risk of diseases involving MMP-9.

  6. Tetrahydroxystilbene Glucoside Effectively Prevents Apoptosis Induced Hair Loss

    Directory of Open Access Journals (Sweden)

    Lulu Chen

    2018-01-01

    Full Text Available The effect of Polygonum multiflorum against hair loss has been widely recognized. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG is the main component of Polygonum multiflorum; however, its role in hair regeneration has not been established. To evaluate the hair growth-promoting activity of TSG, depilated C57BL/6J mice were topically treated with normal saline, TSG, Pifithrin-α, Minoxidil for 2 weeks. In this study, we identified that p53, Caspase-3, Active Caspase-3, and Caspase-9 were obviously upregulated in the skin of human and mice with hair loss by western blot analysis. Depilated mice treated with TSG showed markedly hair regrowth. TUNEL+ cells were also reduced in mice with TSG. These changes were accompanied with inhibition of Fas, p53, Bax, Active Caspase-3, and Procaspase-9 activities. These results demonstrated that TSG exerts great hair regrowth effect on hair loss, which was probably mediated by inhibition of p53, Fas, and Bax induced apoptosis.

  7. Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1.

    Science.gov (United States)

    Li, Shoushan; Yan, Ting; Deng, Rong; Jiang, Xuesong; Xiong, Huaping; Wang, Yuan; Yu, Qiao; Wang, Xiaohua; Chen, Cheng; Zhu, Yichao

    2017-01-01

    Triple-negative breast cancer (TNBC) is an especially aggressive and hard-to-treat disease. Although the anticancer role of kaempferol has been reported in breast cancer, the effect of kaempferol on TNBC remains unclear. This experiment investigated the migration-suppressive role of a low dose of kaempferol in TNBC cells. Wound-healing assays and cell invasion assays were used to confirm the migration and invasion of cells treated with kaempferol or transfected indicated constructs. We evaluated the activations of RhoA, Rac1 and Cdc42 in TNBC cells with a Rho activation assay. A panel of inhibitors of estrogen receptor/progesterone receptor/human epidermal growth factor receptor 2 (ER/PR/HER2) treated non-TNBC (SK-BR-3 and MCF-7) cells and blocked the ER/PR/HER2 activity. Wound-healing assays and Rho activation assays were employed to measure the effect of kaempferol and ER/PR/HER2 inhibitors on Rho activation and cell migration rates. A low dose of kaempferol (20 μmol/L) had a potent inhibitory effect on the migration and invasion of TNBC cells, but not on the migration of non-TNBC (SK-BR-3 and MCF-7) cells. The low dose of kaempferol downregulated the activations of RhoA and Rac1 in TNBC cells. Moreover, the low dose of kaempferol also inhibited the migration and RhoA activations of HER2-silence SK-BR-3 and ER/PR-silence MCF-7 cells. Overexpressed HER2 rescued the cell migration and RhoA and Rac1 activations of kaempferol-treated MDA-MB-231 cells. The low dose of kaempferol inhibits the migration and invasion of TNBC cells via blocking RhoA and Rac1 signaling pathway.

  8. Kaempferol stimulates large conductance Ca2+-activated K+ (BKCa) channels in human umbilical vein endothelial cells via a cAMP/PKA-dependent pathway

    Science.gov (United States)

    Xu, Y C; Leung, G P H; Wong, P Y D; Vanhoutte, P M; Man, R Y K

    2008-01-01

    Background and purpose: Kaempferol has been shown to possess a vasodilator effect but its mechanism of action remains unclear. In this study, experiments were carried out to study the effect of kaempferol on K+ channels in endothelial cells. Experimental approach: K+ channel activities in human umbilical vein endothelial cells (HUVECs) were studied by conventional whole cell and cell-attached patch-clamp electrophysiology. Key results: Kaempferol stimulated an outward-rectifying current in HUVECs in a dose-dependent manner with an EC50 value of 2.5±0.02 μM. This kaempferol-induced current was abolished by large conductance Ca2+-activated K+ (BKCa) channel blockers, such as iberiotoxin (IbTX) and charybdotoxin (ChTX), whereas the small conductance Ca2+-activated K+ (SKCa) channel blocker, apamin, and the voltage-dependent K+ (KV) channel blocker, 4-aminopyridine, had no effect. Cell-attached patches demonstrated that kaempferol increased the open probability of BkCa channels in HUVECs. Clamping intracellular Ca2+ did not prevent kaempferol-induced increases in outward current. In addition, the kaempferol-induced current was diminished by the adenylyl cyclase inhibitor SQ22536, the cAMP antagonist Rp-8-Br-cAMP and the PKA inhibitor KT5720, but was not affected by the guanylyl cyclase inhibitor ODQ, the cGMP antagonist Rp-8-Br-cGMP and the PKG inhibitor KT5823. The activation of BKCa channels by kaempferol caused membrane hyperpolarization of HUVECs. Conclusion and implications: These results demonstrate that kaempferol activates the opening of BKCa channels in HUVECs via a cAMP/PKA-dependent pathway, resulting in membrane hyperpolarization. This mechanism may partly account for the vasodilator effects of kaempferol. PMID:18493242

  9. Simultaneous determination by HPLC of quercetin and kaempferol in three Sedum medicinal plants harvested in different seasons.

    Science.gov (United States)

    Wang, Luyao; Mei, Qing; Wan, Dingrong

    2014-04-01

    A high-performance liquid chromatography method was established for the fast quantification of quercetin and kaempferol in three Sedum crude medicines: Sedi Herba (Sedum sarmentosum Bunge.), Sedi Linearis Herba (Sedum lineare Thunb.) and Sedi Emarginati Herba (Sedum emarginatum Migo.). The column used was a YMC-pack ODS-A (250 × 4.6 mm, 5 µm), the mobile phase was a solution of methanol-0.4% phosphoric acid (47:53) with a flow rate of 1.0 mL/min at 35°C and the detection wavelength was 360 nm. The calibration curves for quercetin and kaempferol were linear over the range of 0.01-0.62 µg for quercetin and 0.02-0.78 µg for kaempferol, and the average recoveries were 99.72% [relative standard deviation (RSD): 1.63% and 99.50% (RSD: 1.16%), respectively]. In conclusion, the method established in this paper is accurate and repeatable. It can be used for the determination of quercetin and kaempferol, controlling the quality of the three crude drugs. Furthermore, the experimental data showed that the best harvest season for the three Sedum medicinal species should be the full-bloom period between the end of April and the beginning of May.

  10. Kaempferol inhibits the production of ROS to modulate OPN-αvβ3 integrin pathway in HUVECs.

    Science.gov (United States)

    Xiao, Hong-Bo; Lu, Xiang-Yang; Liu, Zi-Kui; Luo, Zhi-Feng

    2016-06-01

    In the present study, we tested the hypothesis that aldosterone regulates osteopontin (OPN)-related signaling pathways to promote nuclear factor κB (NF-κB) activation in primary human umbilical vein endothelial cells (HUVECs) and that kaempferol, a flavonoid compound, blocks those changes. Aldosterone induced productions of reactive oxygen species (ROS), OPN, interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) and expression of nicotinamide adenine dinucleotide phosphate-oxidase 4 (Nox4), NF-κB, OPN, alphavbeta3 (αvβ3) integrin, and inhibitor of NF-κB alpha phosphorylation (P-IκBα) in HUVEC. HUVECs were pretreated with kaempferol (0, 1, 3, or 10 μM) for 1 h and exposed to aldosterone (10(-6) M) for 24 h. Kaempferol reduced ROS, OPN, NF-κB, IL-6, and TNF-α levels; Nox4, αvβ3 integrin; and P-IκBα expressions. The effect of aldosterone was also abrogated by spironolactone (10(-6) M). In addition, vitamin C (20 mmol/L) reduced ROS production. Vitamin C and LM609 (10 μg/mL) treatment decreased expressions of OPN, αvβ3 integrin, and NF-κB (P kaempferol may modulate OPN-αvβ3 integrin pathway to inhibit NF-κB activation in HUVECs.

  11. Simultaneous determination of quercetin, kaempferol and isorhamnetin accumulated human breast cancer cells, by high-performance liquid chromatography.

    Science.gov (United States)

    Wang, Yi; Cao, Jiang; Weng, Jian-Hua; Zeng, Su

    2005-09-01

    Quercetin, kaempferol and isorhamnetin are the most important constituents in ginkgo flavonoids. A simple, rapid and sensitive high-performance liquid chromatography method was developed to simultaneously determine quercetin, kaempferol and isorhamnetin absorped by human breast cancer cells. Cells were treated with ginkgo flavonols and then lysed with Triton-X 100. The flavonols in the samples were measured by RP-HPLC with a C18 column after a simple extraction with a mixture of ether and acetone. The mobile phase contained phosphate buffer (pH 2.0; 10 mM) tetrahydrofuran, methanol and isopropanol (65:15:10:20, v/v/v/v). The ultraviolet detector was operated at 380 nm. The calibration curve was linear from 0.1 to 1.0 microM (r > 0.999) for each flavonol. The mean extraction efficiency was about 70%. The recovery of the assay was between 98.9 and 100.6%. The limit of detection was 0.01 microM for quercetin and kaempferol and 0.05 microM for isorhamnetin. The limit of quantitation was 0.1 microM (R.S.D.method was applied to quantify quercetin, kaempferol and isorhamnetin in human breast cancer Bcap37 and Bcap37/MDR1 cells.

  12. Quantum dots (QDs) based fluorescence probe for the sensitive determination of kaempferol

    Science.gov (United States)

    Tan, Xuanping; Liu, Shaopu; Shen, Yizhong; He, Youqiu; Yang, Jidong

    2014-12-01

    In this work, using the quenching of fluorescence of thioglycollic acid (TGA)-capped CdTe quantum dots (QDs), a novel method for the determination of kaempferol (KAE) has been developed. Under optimum conditions, a linear calibration plot of the quenched fluorescence intensity at 552 nm against the concentration of KAE was observed in the range of 4-44 μg mL-1 with a detection limit (3σ/K) of 0.79 μg mL-1. In addition, the detailed reaction mechanism has also been proposed on the basis of electron transfer supported by ultraviolet-visible (UV-vis) absorption and fluorescence (FL) spectroscopy. The method has been applied for the determination of KAE in pharmaceutical preparations with satisfactory results. The proposed method manifested several advantages such as high sensitivity, short analysis time, low cost and ease of operation.

  13. Anti-free radical activities of kaempferol isolated from Acacia nilotica (L.) Willd. Ex. Del.

    Science.gov (United States)

    Singh, Rajbir; Singh, Bikram; Singh, Sukhpreet; Kumar, Neeraj; Kumar, Subodh; Arora, Saroj

    2008-12-01

    In the present study the polyphenolic compound has been isolated from methanol extract of Acacia nilotica Willd. Ex. Del. which has been identified as kaempferol (AN-5) by NMR and mass spectroscopy. The antioxidant potential of the AN-5 was demonstrated in several in vitro assays: measuring the proton radical scavenging activity (DPPH scavenging assay), hydroxyl radical scavenging activity (deoxyribose degradation assay), metal chelating activity, reducing power and inhibition of lipid peroxidation. It was found that the effect of the compound AN-5 was strongly dose dependent up to the concentrations 1-50 microg/ml in DPPH assay and 1-100 microg/ml in deoxyribose degradation assay but did not show further change above the highest concentrations.

  14. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions.

    Science.gov (United States)

    Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas; Simos, George

    2010-07-16

    Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1alpha subunit, an important target of anti-cancer therapy, is observed in many cancers including HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1alpha as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC(50)=5.16microM). The mechanism of this inhibition did not involve suppression of HIF-1alpha protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC(50)=4.75microM). Exposure of Huh7 cells to 10microM kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10microM) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Anxiolytic effects of orcinol glucoside and orcinol monohydrate in mice.

    Science.gov (United States)

    Wang, Xiaohong; Li, Guiyun; Li, Peng; Huang, Linyuan; Huang, Jianmei; Zhai, Haifeng

    2015-06-01

    Anxiety is a common psychological disorder, often occurring in combination with depression, but therapeutic drugs with high efficacy and safety are lacking. Orcinol glucoside (OG) was recently found to have an antidepressive action. To study the therapeutic potential of OG and orcinol monohydrate (OM) as anxiolytic agents. Anxiolytic effects in mice were measured using the elevated plus-maze, hole-board, and open-field tests. Eight groups of mice were included in each test. Thirty minutes before each test, mice in each group received one oral administration of OG (5, 10, or 20 mg/kg), OM (2.5, 5, or 10 mg/kg), the positive control diazepam (1 or 5 mg/kg), or control vehicle. Each mouse underwent only one test. Uptake of orcinol (5 mg/kg) in the brain was qualitatively detected using the HPLC-MS method. OG (5, 10, and 20 mg/kg) and OM (2.5 and 5 mg/kg) increased the time spent in open arms and the number of entries into open arms in the elevated plus-maze test. OG (5 and 10 mg/kg) and OM (2.5 and 5 mg/kg) increased the number of head-dips in the hole-board test. At all tested doses, OG and OM did not significantly affect the locomotion of mice in the open-field test. Orcinol could be detected in the mouse brain homogenates 30 min after oral OM administration, having confirmed that OM is centrally active. The results demonstrated that OG and OM are anxiolytic agents without sedative effects, indicating their therapeutic potential for anxiety.

  16. Effects of Long-Term Feeding of the Polyphenols Resveratrol and Kaempferol in Obese Mice

    Science.gov (United States)

    Montero, Mayte; de la Fuente, Sergio; Fonteriz, Rosalba I.; Moreno, Alfredo; Alvarez, Javier

    2014-01-01

    The effect of the intake of antioxidant polyphenols such as resveratrol and others on survival and different parameters of life quality has been a matter of debate in the last years. We have studied here the effects of the polyphenols resveratrol and kaempferol added to the diet in a murine model undergoing long-term hypercaloric diet. Using 50 mice for each condition, we have monitored weight, survival, biochemical parameters such as blood glucose, insulin, cholesterol, triglycerides and aspartate aminotransferase, neuromuscular coordination measured with the rotarod test and morphological aspect of stained sections of liver and heart histological samples. Our data show that mice fed since they are 3-months-old with hypercaloric diet supplemented with any of these polyphenols reduced their weight by about 5–7% with respect to the controls fed only with hypercaloric diet. We also observed that mice fed with any of the polyphenols had reduced levels of glucose, insulin and cholesterol, and better marks in the rotarod test, but only after 1 year of treatment, that is, during senescence. No effect was observed in the rest of the parameters studied. Furthermore, although treatment with hypercaloric diets induced large changes in the pattern of gene expression in liver, we found no significant changes in gene expression induced by the presence of any of the polyphenols. Thus, our data indicate that addition of resveratrol or kaempferol to mice food produces an initial decrease in weight in mice subjected to hypercaloric diet, but beneficial effects in other parameters such as blood glucose, insulin and cholesterol, and neuromuscular coordination, only appear after prolonged treatments. PMID:25386805

  17. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway.

    Science.gov (United States)

    Cheng, Xiao; Yang, Ying-Lin; Yang, Huan; Wang, Yue-Hua; Du, Guan-Hua

    2018-03-01

    Kaempferol is a natural flavonoid with many biological activities including anti-oxidation and anti-inflammation. Nevertheless, its anti-neuroinflammation role and the relevant mechanism remain unclear. The present study was to investigate effects of kaempferol against LPS-induced neuroinflammation and blood-brain barrier dysfunction as well as the mechanism in mice. BALB/c mice were treated with LPS 5mg/kg to induce inflammation after pre-treatment with kaempferol 25, 50, or 100mg/kg for 7days. The results showed that kaempferol reduced the production of various pro-inflammatory factors and inflammatory proteins including IL-1β, IL-6, TNF-α, MCP-1, COX-2 and iNOS in brain tissues. In addition, kaempferol also protected BBB integrity and increased BBB related proteins including occludin-1, claudin-1 and CX43 in brain of LPS-induced mice. Furthermore, kaempferol significantly reduced HMGB1 level and suppressed TLR4/MyD88 inflammatory pathway in both transcription level and translation level. These results collectively suggested that kaempferol might be a promising neuroprotective agent for alleviating inflammatory responses and BBB dysfunction by inhibiting HMGB1 release and down-regulating TLR4/MyD88 inflammatory pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Kaempferol Reduces Matrix Metalloproteinase-2 Expression by Down-Regulating ERK1/2 and the Activator Protein-1 Signaling Pathways in Oral Cancer Cells

    Science.gov (United States)

    Lin, Chiao-Wen; Chen, Pei-Ni; Chen, Mu-Kuan; Yang, Wei-En; Tang, Chih-Hsin; Yang, Shun-Fa; Hsieh, Yih-Shou

    2013-01-01

    Background Kaempferol has been proposed as a potential drug for cancer chemoprevention and treatment because it is a natural polyphenol contained in plant-based foods. Recent studies have demonstrated that kaempferol protects against cardiovascular disease and cancer. Based on this finding, we investigated the mechanisms by which kaempferol produces the anti-metastatic effect in human tongue squamous cell carcinoma SCC4 cells. Methodology/Principal Findings In this study, we provided molecular evidence associated with the anti-metastatic effect of kaempferol by demonstrating a substantial suppression of SCC4 cell migration and invasion. This effect was associated with reduced expressions of MMP-2 and TIMP-2 mRNA and protein levels. Analysis of the transcriptional regulation indicated that kaempferol inhibited MMP-2 transcription by suppressing c-Jun activity. Kaempferol also produced an inhibitory effect on the phosphorylation of ERK1/2. Conclusions These findings provide new insights into the molecular mechanisms involved in the anti-metastatic effect of kaempferol, and are valuable in the prevention of oral cancer metastasis. PMID:24278338

  19. Kaempferol protects against gamma radiation-induced mortality and damage via inhibiting oxidative stress and modulating apoptotic molecules in vivo and vitro.

    Science.gov (United States)

    Wang, Jing; Li, Tiejun; Feng, Jingjing; Li, Li; Wang, Rong; Cheng, Hao; Yuan, Yongfang

    2018-04-20

    To investigate the potential protective effect of kaempferol, a representative flavonoid, against radiation induced mortality and injury in vivo and vitro.C57BL/6 male mice and human umbilical venous endothelial cells (HUVECs) were pretreated with kaempferol before radiation. We found that kaempferol can effectively increase 30-day survival rate after 8.5 Gy lethal total body irradiation (TBI). Mice were sacrificed at 7th day after 7 Gy TBI, we found kaempferol against radiation-induced tissues damage, by inhibiting the oxidative stress, and attenuating morphological changes and cell apoptosis. In vitro, kaempferol increased HUVECs cell viability and decrease apoptosis. It also mitigated oxidative stress and restored the abnormal expression of prx-5, Cyt-c, Caspase9 and Caspase3 in mRNA and protein level in HUVECs after radiation. Taken together, it suggests kaempferol can protect against gamma-radiation induced tissue damage and mortality. The present study is the first report of the radioprotective role of kaempferol in vivo and vitro. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Effect of Cudrania tricuspidata and Kaempferol in Endoplasmic Reticulum Stress-Induced Inflammation and Hepatic Insulin Resistance in HepG2 Cells.

    Science.gov (United States)

    Kim, Ok-Kyung; Jun, Woojin; Lee, Jeongmin

    2016-01-21

    In this study, we quantitated kaempferol in water extract from Cudrania tricuspidata leaves (CTL) and investigated its effects on endoplasmic reticulum (ER) stress-induced inflammation and insulin resistance in HepG2 cells. The concentration of kaempferol in the CTL was 5.07 ± 0.08 mg/g. The HepG2 cells were treated with 300 µg/mL of CTL, 500 µg/mL of CTL, 1.5 µg/mL of kaempferol or 2.5 µg/mL of kaempferol, followed immediately by stimulation with 100 nM of thapsigargin for ER stress induction for 24 h. There was a marked increase in the activation of the ER stress and inflammation response in the thapsigargin-stimulated control group. The CTL treatment interrupted the ER stress response and ER stress-induced inflammation. Kaempferol partially inhibited the ER stress response and inflammation. There was a significant increase in serine phosphorylation of insulin receptor substrate (IRS)-1 and the expression of C/EBPα and gluconeogenic genes in the thapsigargin-stimulated control group compared to the normal control. Both CTL and kaempferol suppressed serine phosphorylation of IRS-1, and the treatments did not interrupt the C/EBPα/gluconeogenic gene pathway. These results suggest that kaempferol might be the active compound of CTL and that it might protect against ER stress-induced inflammation and hyperglycemia.

  1. Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance a2+-activated K+ channels

    Science.gov (United States)

    Xu, Y C; Leung, S W S; Leung, G P H; Man, R Y K

    2015-01-01

    Background and Purpose Kaempferol, a plant flavonoid present in normal human diet, can modulate vasomotor tone. The present study aimed to elucidate the signalling pathway through which this flavonoid enhanced relaxation of vascular smooth muscle. Experimental Approach The effect of kaempferol on the relaxation of porcine coronary arteries to endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) relaxing agents was studied in an in vitro organ chamber setup. The whole-cell patch-clamp technique was used to determine the effect of kaempferol on potassium channels in porcine coronary artery smooth muscle cells (PCASMCs). Key Results At a concentration without direct effect on vascular tone, kaempferol (3 × 10−6 M) enhanced relaxations produced by bradykinin and sodium nitroprusside. The potentiation by kaempferol of the bradykinin-induced relaxation was not affected by Nω-nitro-L-arginine methyl ester, an inhibitor of NO synthase (10−4 M) or TRAM-34 plus UCL 1684, inhibitors of intermediate- and small-conductance calcium-activated potassium channels, respectively (10−6 M each), but was abolished by tetraethylammonium chloride, a non-selective inhibitor of calcium-activated potassium channels (10−3 M), and iberiotoxin, a selective inhibitor of large-conductance calcium-activated potassium channel (KCa1.1; 10−7 M). Iberiotoxin also inhibited the potentiation by kaempferol of sodium nitroprusside-induced relaxations. Kaempferol stimulated an outward-rectifying current in PCASMCs, which was abolished by iberiotoxin. Conclusions and Implications The present results suggest that, in smooth muscle cells of the porcine coronary artery, kaempferol enhanced relaxations caused by endothelium-derived and exogenous NO as well as those due to endothelium-dependent hyperpolarization. This vascular effect of kaempferol involved the activation of KCa1.1 channels. PMID:25652142

  2. Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance Ca(2+) -activated K(+) channels.

    Science.gov (United States)

    Xu, Y C; Leung, S W S; Leung, G P H; Man, R Y K

    2015-06-01

    Kaempferol, a plant flavonoid present in normal human diet, can modulate vasomotor tone. The present study aimed to elucidate the signalling pathway through which this flavonoid enhanced relaxation of vascular smooth muscle. The effect of kaempferol on the relaxation of porcine coronary arteries to endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) relaxing agents was studied in an in vitro organ chamber setup. The whole-cell patch-clamp technique was used to determine the effect of kaempferol on potassium channels in porcine coronary artery smooth muscle cells (PCASMCs). At a concentration without direct effect on vascular tone, kaempferol (3 × 10(-6) M) enhanced relaxations produced by bradykinin and sodium nitroprusside. The potentiation by kaempferol of the bradykinin-induced relaxation was not affected by N(ω)-nitro-L-arginine methyl ester, an inhibitor of NO synthase (10(-4) M) or TRAM-34 plus UCL 1684, inhibitors of intermediate- and small-conductance calcium-activated potassium channels, respectively (10(-6) M each), but was abolished by tetraethylammonium chloride, a non-selective inhibitor of calcium-activated potassium channels (10(-3) M), and iberiotoxin, a selective inhibitor of large-conductance calcium-activated potassium channel (KCa 1.1; 10(-7) M). Iberiotoxin also inhibited the potentiation by kaempferol of sodium nitroprusside-induced relaxations. Kaempferol stimulated an outward-rectifying current in PCASMCs, which was abolished by iberiotoxin. The present results suggest that, in smooth muscle cells of the porcine coronary artery, kaempferol enhanced relaxations caused by endothelium-derived and exogenous NO as well as those due to endothelium-dependent hyperpolarization. This vascular effect of kaempferol involved the activation of KCa 1.1 channels. © 2015 The British Pharmacological Society.

  3. Biosynthesis of the leucine derived α-, β- and γ-hydroxynitrile glucosides in barley (Hordeum vulgare L.)

    DEFF Research Database (Denmark)

    Knoch, Eva; Motawie, Mohammed Saddik; Olsen, Carl Erik

    2016-01-01

    Barley (Hordeum vulgare L.) produces five leucine-derived hydroxynitrile glucosides (HNGs), of which only epiheterodendrin is a cyanogenic glucoside. The four non-cyanogenic HNGs are the β-HNG epidermin and the γ-HNGs osmaronin, dihydroosmaronin and sutherlandin. By analyzing 247 spring barley...

  4. Iridoid glucosides from the aerial parts of Globularia alypum L. (Globulariaceae).

    Science.gov (United States)

    Es-Safi, Nour-Eddine; Khlifi, Samira; Kollmann, Albert; Kerhoas, Lucien; El Abbouyi, Ahmed; Ducrot, Paul-Henri

    2006-01-01

    From the hydromethanolic extract of the aerial parts of Globularia alypum grown in Morocco, a new chlorinated iridoid glucoside, globularioside has been isolated beside 5 known iridoid glycosides, globularin, globularicisin, globularidin, globularinin and globularimin. This is the first report of a chlorinated iridoid in G. alypum and in the Globulareaceae. Unlike all other known 7-chlorinated iridoid glucosides where the chlorine atom exhibits an alpha configuration, globularioside incorporate the chlorine atom as a 7beta substituent. The structures of the isolated compounds were established on the basis of ESI-MS, MS-MS, 1D and 2D NMR spectral analysis.

  5. Microtropiosides A-F: ent-Labdane diterpenoid glucosides from the leaves of Microtropis japonica (Celastraceae).

    Science.gov (United States)

    Koyama, Yuka; Matsunami, Katsuyoshi; Otsuka, Hideaki; Shinzato, Takakazu; Takeda, Yoshio

    2010-04-01

    From a 1-BuOH-soluble fraction of a MeOH extract of the leaves of Microtropis japonica, collected in the Okinawa islands, six ent-labdane glucosides, named microtropiosides A-F, were isolated together with one known acyclic sesquiterpene glucoside. Their structures were elucidated by a combination of spectroscopic analyses, and their absolute configurations determined by application of the beta-D-glucopyranosylation-induced shift-trend rule in (13)C NMR spectroscopy and the modified Mosher's method. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Benchmarking two commonly used Saccharomyces cerevisiae strains for heterologous vanillin-β-glucoside production

    DEFF Research Database (Denmark)

    Strucko, Tomas; Magdenoska, Olivera; Mortensen, Uffe Hasbro

    2015-01-01

    factories for production of specific compounds. To examine this possibility, we have reconstructed a de novo vanillin-β-glucoside pathway in an identical manner in S288c and CEN.PK strains. Characterization of the two resulting strains in two standard conditions revealed that the S288c background strain...... produced up to 10-fold higher amounts of vanillin-β-glucoside compared to CEN.PK. This study demonstrates that yeast strain background may play a major role in the outcome of newly developed cell factories for production of a given product....

  7. Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells.

    Science.gov (United States)

    Lee, Geum-A; Choi, Kyung-Chul; Hwang, Kyung-A

    2017-01-01

    As a phytoestrogen, kaempferol is known to play a chemopreventive role inhibiting carcinogenesis and cancer progression. In this study, the influences of triclosan, an anti-bacterial agent recently known for an endocrine disrupting chemical (EDC), and kaempferol on breast cancer progression were examined by measuring their effects on epithelial-mesenchymal transition (EMT) and metastatic-related behaviors of MCF-7 breast cancer cells. Morphological changes of MCF-7 cells were observed, and a wound-healing assay was performed after the treatment of triclosan and kaempferol. The effects of triclosan and kaempferol on protein expression of EMT-related markers such as E-cadherin, N-cadherin, Snail, and Slug and metastasis-related markers such as cathepsin B, D, MMP-2 and -9 were investigated by Western blot assay. In microscopic observations, triclosan (10 -6 M) or E2 (10 -9 M) induced transition to mesenchymal phenotype of MCF-7 cells compared with the control. Co-treatment of ICI 182,780 (10 -8 M), an ER antagonist, or kaempferol (25μM) with E2 or triclosan restored the cellular morphology to an epithelial phenotype. In a wound-healing scratch and a transwell migration assay, triclosan enhanced migration and invasion of MCF-7 cells, but co-treatment of kaempferol or ICI 182,780 reduced the migration and invasion ability of MCF-7 cells to the control level. In addition, kaempferol effectively suppressed E2 or triclosan-induced protein expressions of EMT and metastasis promoting markers. Taken together, triclosan may be a distinct xenoestrogenic EDC to promote EMT, migration, and invasion of MCF-7 breast cancer cells through ER. On the other hand, kaempferol can be an alternative chemopreventive agent to effectively suppress the metastatic behavior of breast cancer induced by an endogenous estrogen as well as exogenous xenoestrogenic compounds including triclosan. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Kidney tubular-cell secretion of osteoblast growth factor is increased by kaempferol: a scientific basis for "the kidney controlling the bone" theory of Chinese medicine.

    Science.gov (United States)

    Long, Mian; Li, Shun-xiang; Xiao, Jiang-feng; Wang, Jian; Lozanoff, Scott; Zhang, Zhi-guang; Luft, Benjamin J; Johnson, Francis

    2014-09-01

    To study, at the cytological level, the basic concept of Chinese medicine that "the Kidney (Shen) controls the bone". Kaempferol was isolated form Rhizoma Drynariae (Gu Sui Bu, GSB) and at several concentrations was incubated with opossum kidney (OK) cells, osteoblasts (MC3T3 E1) and human fibroblasts (HF) at cell concentrations of 2×10(4)/mL. Opossum kidney cell-conditioned culture media with kaempferol at 70 nmol/L (70kaeOKM) and without kaempferol (0OKM) were used to stimulate MC3T3 E1 and HF proliferation. The bone morphological protein receptors I and II (BMPR I and II) in OK cells were identified by immune-fluorescence staining and Western blot analysis. Kaempferol was found to increase OK cell growth (Pkaempferol increases kidney cell secretion of OGF. Neither of these media had any significant effect on HF growth. Kaempferol also was found to increase the level of the BMPR II in OK cells. This lends strong support to the original idea that the Kidney has a significant influence over bone-formation, as suggested by some long-standing Chinese medical beliefs, kaempferol may also serve to stimulate kidney repair and indirectly stimulate bone formation.

  9. Cytoprotective effect of kaempferol against palmitic acid-induced pancreatic β-cell death through modulation of autophagy via AMPK/mTOR signaling pathway.

    Science.gov (United States)

    Varshney, Ritu; Gupta, Sumeet; Roy, Partha

    2017-06-15

    Lipotoxicity of pancreatic β-cells is the pathological manifestation of obesity-linked type II diabetes. We intended to determine the cytoprotective effect of kaempferol on pancreatic β-cells undergoing apoptosis in palmitic acid (PA)-stressed condition. The data showed that kaempferol treatment increased cell viability and anti-apoptotic activity in PA-stressed RIN-5F cells and murine pancreatic islets. Furthermore, kaempferol's ability to instigate autophagy was illustrated by MDC-LysoTracker red staining and TEM analysis which corroborated well with the observed increase in LC3 puncta and LC3-II protein expressions along with the concomitant decline in p62 expression. Apart from this, the data showed that kaempferol up/down-regulates AMPK/mTOR phosphorylation respectively. Subsequently, upon inhibition of AMPK phosphorylation by AMPK inhibitors, kaempferol-mediated autophagy was abolished which further led to the decline in β-cell survival. Such observations collectively lead to the conclusion that, kaempferol exerts its cytoprotective role against lipotoxicity by activation of autophagy via AMPK/mTOR pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A novel in vivo adjuvant activity of kaempferol: enhanced Tbx-21, GATA-3 expression and peritoneal CD11c+MHCII+ dendritic cell infiltration.

    Science.gov (United States)

    Singh, Divya; Tanwar, Himanshi; Das, Sudeshna; Ganju, Lilly; Singh, Shashi Bala

    2018-02-28

    Kaempferol, a natural flavonol present in various traditional medicinal plants, is known to possess potent anti-inflammatory properties. This study was designed to study the adjuvant effect of kaempferol administration along with ovalbumin antigen (K + O) in balb/c mice. Mice were immunized with kaempferol (100 and 50 mg/kg body weight) without or with ovalbumin (20 µg/mouse). After priming, booster was administered on day 21. Antigen specific IgG titers and its subtypes, on day 28, were estimated by indirect ELISA. Effect of kaempferol administration on CD11c + MHCII + peritoneal dendritic cells was studied by flow cytometry. Expression levels of proteins Tbx21, GATA-3, BLIMP-1, Caspase-1 and Oct-2 were studied by western blotting. LPS activated IL-1β production by peritoneal cells of immunized mice was estimated by sandwich ELISA. Ovalbumin specific IgG, IgG1 and IgG2a antibody titers in sera samples of K + O immunized mice increased significantly (p Kaempferol increased the infiltration of peritoneal CD11c + MHCII + dendritic cells but failed to enhance LPS activated IL-1β by peritoneal macrophages and suppressed caspase-1 protein expression as compared to that in ovalbumin immunized mice. Present study strongly demonstrates the novel adjuvant activity of kaempferol in vivo and its potential as an immunostimulatory agent.

  11. Physico-chemical and Biological Evaluation of Flavonols: Fisetin, Quercetin and Kaempferol Alone and Incorporated in beta Cyclodextrins.

    Science.gov (United States)

    Corina, Danciu; Bojin, Florina; Ambrus, Rita; Muntean, Delia; Soica, Codruta; Paunescu, Virgil; Cristea, Mirabela; Pinzaru, Iulia; Dehelean, Cristina

    2017-01-01

    Fisetin,quercetin and kaempferol are among the important representatives of flavonols, biological active phytocomounds, with low water solubility. To evaluate the antimicrobial effect, respectively the antiproliferative and pro apoptotic activity on the B164A5 murine melanoma cell line of pure flavonols and their beta cyclodextrins complexes. Incorporation of fisetin, quercetin and kaempferol in beta cyclodextrins was proved by scanning electron microscopy (SEM), differencial scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). Pure compounds and their complexes were tested for antiproliferative (MTT) and pro-apoptotic activity (Annexin V-PI) on the B164A5 murine melanoma cell line and for the antimicrobial properties (Disk Diffusion Method) on the selected strains. The phytocompounds presented in a different manner in vitro chemopreventive activity against B164A5 murine melanoma cell line and weak antimicrobial effect. The three flavonols: fisetin, quercetin and kaempferol were successfully incorporated in beta-cyclodextrin (BCD) and hydroxylpropyl-beta-cyclodextrin (HPBCD). Incorporation in beta cyclodextrins had a mix effect on the biological activity conducing to decrease, increase or consistent effect compared to pure phytocompound, depending on the screened process and on the chosen combination. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Chemoenzymatic Synthesis of beta-D-Glucosides using Cellobiose Phosphorylase from Clostridium thermocellum

    Czech Academy of Sciences Publication Activity Database

    De Winter, K.; Van Renterghem, L.; Wuyts, K.; Pelantová, Helena; Křen, Vladimír; Soetaert, W.; Desmet, T.

    2015-01-01

    Roč. 357, č. 8 (2015), s. 1961-1969 ISSN 1615-4150 R&D Projects: GA MŠk(CZ) LD13042; GA MŠk(CZ) 7E11011 Institutional support: RVO:61388971 Keywords : cellobiose phosphorylase * cross-linked enzyme aggregates * beta-glucosides Subject RIV: CE - Biochemistry Impact factor: 6.453, year: 2015

  13. Two new monoterpene glucosides from Xanthium strumarium subsp. sibiricum with their anti-inflammatory activity.

    Science.gov (United States)

    Jiang, Hai; Xing, Xudong; Yan, Meiling; Guo, Xinyue; Yang, Lin; Yang, Liu

    2018-06-01

    Two new monoterpene glucosides: xanmonoter A (1) and xanmonoter B (2) were isolated from Xanthium strumarium. Their structures were elucidated on the basis of 1D and 2D NMR, MS and CD analysis. Compounds 1 and 2 were tested for their anti-inflammatory activity with IC 50 values of 17.4, 22.1 μM, respectively.

  14. Effect of different exposed lights on quercetin and quercetin glucoside content in onion (Allium cepa L.).

    Science.gov (United States)

    Ko, Eun Young; Nile, Shivraj Hariram; Sharma, Kavita; Li, Guan Hao; Park, Se Won

    2015-07-01

    Quercetin and quercetin glucosides are the major flavonols present in onion (Allium cepa L.) and are predominantly present as quercetin, quercetin-3,4'-diglucoside and quercetin-4'-glucoside. Effect of different light wavelengths on onion after harvest and storage, with fluorescent, blue, red and ultra violet light influenced the quercetin and quercetin glucosides profile. In a peeled onion, all the light treatments elevated quercetin content in bulb. Among them, particularly fluorescent light effect was more eminent which stimulates the maximum synthesis of quercetin in onion. In case of whole onion bulb, skin and pulp showed different responses to light treatment, respectively. The pulp had the highest quercetin glucosides under blue light, whereas the lowest under fluorescent light. Onion skin showed nearly opposite pattern as compared to the pulp. In particular, light treatment proved to be a better way to increase the level of quercetin content in onions which might be utilized for industrial production of bioactive compounds from onion and onion waste products.

  15. Conversion of the Iridoid Glucoside Antirrhinoside into 3-Azabicyclo[3.3.0]-octane Building Blocks

    DEFF Research Database (Denmark)

    Franzyk, Henrik; Frederiksen, Signe Maria; Jensen, Søren Rosendal

    2000-01-01

    The iridoid glucoside antirrhinoside (1) was transformed into polysubstituted 3-azabicyclo[3.3.0]octanes 3, 12 and 13 in 4-5 steps. Ozonolysis of the diacetonide of 1 and of its 7-deoxy-derivative 8 afforded cyclopentanoids 2 and 10, respectively. Conditions for the selective conversion of 2 and 10...

  16. Stability of DON and DON-3-glucoside during baking as affected by the presence of food additives.

    Science.gov (United States)

    Vidal, Arnau; Sanchis, Vicente; Ramos, Antonio J; Marín, Sonia

    2018-03-01

    The mycotoxin deoxynivalenol (DON) is one of the most common mycotoxins of cereals worldwide, and its occurrence has been widely reported in raw wheat. The free mycotoxin form is not the only route of exposure; modified forms can also be present in cereal products. Deoxynivalenol-3-glucoside (DON-3-glucoside) is a common DON plant conjugate. The mycotoxin concentration could be affected by food processing; here, we studied the stability of DON and DON-3-glucoside during baking of small doughs made from white wheat flour and other ingredients. A range of common food additives and ingredients were added to assess possible interference: ascorbic acid (E300), citric acid (E330), sorbic acid (E200), calcium propionate (E282), lecithin (E322), diacetyltartaric acid esters of fatty acid mono- and diglycerides (E472a), calcium phosphate (E341), disodium diphosphate (E450i), xanthan gum (E415), polydextrose (E1200), sorbitol (E420i), sodium bicarbonate (E500i), wheat gluten and malt flour. The DON content was reduced by 40%, and the DON-3-glucoside concentration increased by >100%, after baking for 20 min at 180°C. This confirmed that DON and DON-3-glucoside concentrations can vary during heating, and DON-3-glucoside could even increase after baking. However, DON and DON-3-glucoside are not affected significantly by the presence of the food additives tested.

  17. Comparison of Stevia plants grown from seeds, cuttings and stem-tip cultures for growth and sweet diterpene glucosides.

    Science.gov (United States)

    Tamura, Y; Nakamura, S; Fukui, H; Tabata, M

    1984-10-01

    The growth and sweet diterpene glucosides of Stevia plants propagated by stem-tip cultures were compared with those of the control plants propagated by seeds. There was no significant difference between the two groups both in growth and in chemical composition. As for the contents of sweet diterpene glucosides, however, the clonal plants showed significantly smaller variations than the sexually propagated plants; they were almost as homogeneous as the plants propagated by cuttings. These results suggest that the clonal propagation by stem-tip culture is an effective method of obtaining a population of uniform plants for the production of sweet diterpene glucosides.

  18. Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways.

    Science.gov (United States)

    Zhang, Ruihua; Ai, Xia; Duan, Yongjie; Xue, Man; He, Wenxiao; Wang, Cunlian; Xu, Tong; Xu, Mingju; Liu, Baojian; Li, Chunhong; Wang, Zhijun; Zhang, Ruihong; Wang, Guohua; Tian, Shufei; Liu, Huifeng

    2017-05-01

    Kaempferol, a very common type of dietary flavonoids, has been found to exert antioxidative and anti-inflammatory properties. The purpose of our investigation was designed to reveal the effect of kaempferol on H9N2 influenza virus-induced inflammation in vivo and in vitro. In vivo, BALB/C mice were infected intranasally with H9N2 influenza virus with or without kaempferol treatment to induce acute lung injury (ALI) model. In vitro, MH-S cells were infected with H9N2 influenza virus with or without kaempferol treatment. In vivo, kaempferol treatment attenuated pulmonary edema, the W/D mass ratio, pulmonary capillary permeability, myeloperoxidase (MPO) activity, and the numbers of inflammatory cells. Kaempferol reduced ROS and Malondialdehyde (MDA) production, and increased the superoxide dismutase (SOD) activity. Kaempferol also reduced overproduction of TNF-α, IL-1β and IL-6. In addition, kaempferol decreased the H9N2 viral titre. In vitro, ROS, MDA, TNF-α, IL-1β and IL-6 was also reduced by kaempferol. Moreover, our data showed that kaempferol significantly inhibited the upregulation of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphorylation level of IκBα and nuclear factor-κB (NF-κB) p65, NF-κB p65 DNA binding activity, and phosphorylation level of MAPKs, both in vivo and in vitro. These results suggest that kaempferol exhibits a protective effect on H9N2 virus-induced inflammation via suppression of TLR4/MyD88-mediated NF-κB and MAPKs pathways, and kaempferol may be considered as an effective drug for the potential treatment of influenza virus-induced ALI. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake.

    Science.gov (United States)

    Azevedo, Cláudia; Correia-Branco, Ana; Araújo, João R; Guimarães, João T; Keating, Elisa; Martel, Fátima

    2015-01-01

    Our aim was to investigate the effect of several dietary polyphenols on glucose uptake by breast cancer cells. Uptake of (3)H-deoxy-D-glucose ((3)H-DG) by MCF-7 cells was time-dependent, saturable, and inhibited by cytochalasin B plus phloridzin. In the short-term (26 min), myricetin, chrysin, genistein, resveratrol, kaempferol, and xanthohumol (10-100 µM) inhibited (3)H-DG uptake. Kaempferol was found to be the most potent inhibitor of (3)H-DG uptake [IC50 of 4 µM (1.6-9.8)], behaving as a mixed-type inhibitor. In the long-term (24 h), kaempferol (30 µM) was also able to inhibit (3)H-DG uptake, associated with a 40% decrease in GLUT1 mRNA levels. Interestingly enough, kaempferol (100 µM) revealed antiproliferative (sulforhodamine B and (3)H-thymidine incorporation assays) and cytotoxic (extracellular lactate dehydrogenase activity determination) properties, which were mimicked by low extracellular (1 mM) glucose conditions and reversed by high extracellular (20 mM) glucose conditions. Finally, exposure of cells to kaempferol (30 µM) induced an increase in extracellular lactate levels over time (to 731 ± 32% of control after a 24 h exposure), due to inhibition of MCT1-mediated lactate cellular uptake. In conclusion, kaempferol potently inhibits glucose uptake by MCF-7 cells, apparently by decreasing GLUT1-mediated glucose uptake. The antiproliferative and cytotoxic effect of kaempferol in these cells appears to be dependent on this effect.

  20. The roles of CDR1, CDR2, and MDR1 in kaempferol-induced suppression with fluconazole-resistant Candida albicans.

    Science.gov (United States)

    Shao, Jing; Zhang, MengXiang; Wang, TianMing; Li, Yue; Wang, ChangZhong

    2016-01-01

    Fungal infections caused by fluconazole-resistant Candida albicans are an intractable clinical problem, calling for new efficient antifungal drugs. Kaempferol, an active flavonoid, has been considered a potential candidate against Candida species. This work investigates the resistance reversion of kaempferol in fluconazole-resistant C. albicans and the underlying mechanism. The antifungal activities of fluconazole and/or kaempferol were assessed by a series of standard procedures including broth microdilution method, checkerboard assay and time-kill (T-K) test in nine clinical strains as well as a standard reference isolate of C. albicans. Subsequently, the morphological changes, the efflux of rhodamine 6G, and the expressions of CDR 1, CDR 2, and MDR 1 were analysed by scanning electron microscope (SEM), inverted fluorescence microscope and quantitative reverse transcription polymerase chain reaction (qRT-PCR) in C. albicans z2003. For all the tested C. albicans strains, the minimum inhibitory concentrations (MICs) of fluconazole and kaempferol ranged 0.25-32 and 128-256 μg/mL with a range of fractional inhibitory concentration index of 0.257-0.531. In C. albicans z2003, the expression of both CDR 1 and CDR 2 were decreased after exposure to kaempferol alone with negligible rhodamine 6G accumulation, while the expression of CDR 1, CDR 2 and MDR 1 were all decreased when fluconazole and kaempferol were used concomitantly with notable fluorescence of rhodamine 6G observed. Kaempferol-induced reversion in fluconazole-resistant C. albicans might be likely due to the suppression of the expression of CDR1, CDR2 and MDR1.

  1. Inhibition of airway epithelial-to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice.

    Science.gov (United States)

    Gong, Ju-Hyun; Cho, In-Hee; Shin, Daekeun; Han, Seon-Young; Park, Sin-Hye; Kang, Young-Hee

    2014-03-01

    Chronic airway remodeling is characterized by structural changes within the airway wall, including smooth muscle hypertrophy, submucosal fibrosis and epithelial shedding. Epithelial-to-mesenchymal transition (EMT) is a fundamental mechanism of organ fibrosis, which can be induced by TGF-β. In the in vitro study, we investigated whether 1-20 μM kaempferol inhibited lipopolysaccharide (LPS)-induced bronchial EMT in BEAS-2B cells. The in vivo study explored demoting effects of 10-20 mg/kg kaempferol on airway fibrosis in BALB/c mice sensitized with ovalbumin (OVA). LPS induced airway epithelial TGF-β1 signaling that promoted EMT with concurrent loss of E-cadherin and induction of α-smooth muscle actin (α-SMA). Nontoxic kaempferol significantly inhibited TGF-β-induced EMT process through reversing E-cadherin expression and retarding the induction of N-cadherin and α-SMA. Consistently, OVA inhalation resulted in a striking loss of epithelial morphology by displaying myofibroblast appearance, which led to bronchial fibrosis with submucosal accumulation of collagen fibers. Oral administration of kaempferol suppressed collagen deposition, epithelial excrescency and goblet hyperplasia observed in the lung of OVA-challenged mice. The specific inhibition of TGF-β entailed epithelial protease-activated receptor-1 (PAR-1) as with 20 μM kaempferol. The epithelial PAR-1 inhibition by SCH-79797 restored E-cadherin induction and deterred α-SMA induction, indicating that epithelial PAR-1 localization was responsible for resulting in airway EMT. These results demonstrate that dietary kaempferol alleviated fibrotic airway remodeling via bronchial EMT by modulating PAR1 activation. Therefore, kaempferol may be a potential therapeutic agent targeting asthmatic airway constriction.

  2. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells

    Science.gov (United States)

    Park, SE; Sapkota, K; Kim, S; Kim, H; Kim, SJ

    2011-01-01

    BACKGROUND AND PURPOSE Kaempferol, a dietary flavonoid and phyto-oestrogen, is known to have anti-inflammatory properties. Microglial activation has been implicated in various neurodegenerative diseases. Anti-inflammatory effects of kaempferol and the underlying mechanisms were investigated by using LPS-stimulated microglial BV2 cells. EXPERIMENTAL APPROACH Cell viability was measured using MTT and neutral red assays. elisa, Western blot, immunocytochemistry and electrophoretic mobility-shift assay were used to analyse NO, PGE2, TNF-α and IL-1β production, inducible NOS (iNOS), COX-2 expression and the involvement of signalling pathways such as toll-like receptor-4 (TLR4), MAPK cascades, PKB (AKT) and NF-κB. Accumulation of reaction oxygen species (ROS) was measured by nitroblue tetrazolium and 2′7′-dichlorofluorescein diacetate assay. Matrix metalloproteinase activity was investigated by zymography and immunoblot assay. Phagocytotic activity was assessed by use of latex beads. KEY RESULTS Kaempferol significantly attenuated LPS-induced NO, PGE2, TNF-α, IL-1β and ROS production and phagocytosis in a concentration-dependent manner. Kaempferol suppressed the expression of iNOS, COX-2, MMP-3 and blocked the TLR4 activation. Moreover, kaempferol inhibited LPS-induced NF-κB activation and p38 MAPK, JNK and AKT phosphorylation. CONCLUSION AND IMPLICATIONS Kaempferol was able to reduce LPS-induced inflammatory mediators through the down-regulation of TLR4, NF-κB, p38 MAPK, JNK and AKT suggesting that kaempferol has therapeutic potential for the treatment of neuroinflammatory diseases. PMID:21449918

  3. Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore.

    Science.gov (United States)

    Zagrobelny, Mika; Olsen, Carl Erik; Pentzold, Stefan; Fürstenberg-Hägg, Joel; Jørgensen, Kirsten; Bak, Søren; Møller, Birger Lindberg; Motawia, Mohammed Saddik

    2014-01-01

    Considering the staggering diversity of bioactive natural products present in plants, insects are only able to sequester a small number of phytochemicals from their food plants. The mechanisms of how only some phytochemicals are sequestered and how the sequestration process takes place remains largely unknown. In this study the model system of Zygaena filipendulae (Lepidoptera) and their food plant Lotus corniculatus is used to advance the knowledge of insect sequestration. Z. filipendulae larvae are dependent on sequestration of the cyanogenic glucosides linamarin and lotaustralin from their food plant, and have a much lower fitness if reared on plants without these compounds. This study investigates the fate of the cyanogenic glucosides during ingestion, sequestration in the larvae, and in the course of insect ontogeny. To this purpose, double-labeled linamarin and lotaustralin were chemically synthesized carrying two stable isotopes, a (2)H labeled aglucone and a (13)C labeled glucose moiety. In addition, a small amount of (14)C was incorporated into the glucose residue. The isotope-labeled compounds were applied onto cyanogenic L. corniculatus leaves that were subsequently presented to the Z. filipendulae larvae. Following ingestion by the larvae, the destiny of the isotope labeled cyanogenic glucosides was monitored in different tissues of larvae and adults at selected time points, using radio-TLC and LC-MS analyses. It was shown that sequestered compounds are taken up intact, contrary to earlier hypotheses where it was suggested that the compounds would have to be hydrolyzed before transport across the gut. The uptake from the larval gut was highly stereo selective as the β-glucosides were retained while the α-glucosides were excreted and recovered in the frass. Sequestered compounds were rapidly distributed into all analyzed tissues of the larval body, partly retained throughout metamorphosis and transferred into the adult insect where they were

  4. Flavonoids from Pseudotsuga menziesii.

    Science.gov (United States)

    Krauze-Baranowska, Mirosława; Sowiński, Paweł; Kawiak, Anna; Sparzak, Barbara

    2013-01-01

    Four O-acylated flavonol glycosides, new in the plant kingdom, were isolated from the needles of Pseudotsuga menziesii. Their structures were established by 1D and 2D NMR and MS data as: daglesioside I [kaempferol 3-O-[2",5"-O-(4''',4(IV)-dihydroxy)-beta-truxinoyl]-alpha-L-arabinofuranoside] (1), daglesioside II [kaempferol 3-O-[2",5"-O-(4"'-hydroxy)-beta-truxinoyl]-alpha-L-arabinofuranoside] (2), daglesioside III [kaempferol 3-O-[2",5"-di-O-(E)-p-coumaroyl]-alpha-L-arabinofuranoside] (3), and daglesioside IV [kaempferol 3-O-[3",6"-di-O-(E)-cinnamoyl]-beta-D-glucopyranoside] (4). In addition, the known flavonoids (E)-tiliroside, (E)-ditiliroside, astragalin (kaempferol 3-O-beta-D-glucopyranoside), isorhamnetin, kaempferol, and quercetin were identified. The cytotoxic activity of compounds 1 and 3 was evaluated towards the HL-60, HeLa, and MDA-MB468 cell lines.

  5. Synthesis of radio-labeled caffeyl alcohol- and 5-hydroxyconiferyl alcohol-4-O-β-D-glucosides

    International Nuclear Information System (INIS)

    Matsui, Naoyuki; Fukushima, Kazuhiko; Terashima, Noritsugu; Yasuda, Seiichi

    1996-01-01

    Syntheses of caffeyl alcohol-4-O-β-D-glucoside and 5-hydroxyconiferyl alcohol-4-O-β-D-glucoside were achieved with radio-labeling with 14 C at the glucose residue and with 3 H at the side chain γ-position of aglycon. The treatment of these compounds with commercially available β-glucosidase gave the corresponding aglycons, caffeyl alcohol, and 5-hydroxyconiferyl alcohol. (author)

  6. Sequestration of Glucosinolates and Iridoid Glucosides in Sawfly Species of the Genus Athalia and Their Role in Defense Against Ants

    DEFF Research Database (Denmark)

    Opitz, Sebastian E. W.; Jensen, Søren Rosendal; Müller, Caroline

    2010-01-01

    In this study, the larval sequestration abilities and defense effectiveness of four sawfly species of the genus Athalia (Hymenoptera: Tenthredinidae) that feed as larvae either on members of the Brassicaceae or Plantaginaceae were investigated. Brassicaceae are characterized by glucosinolates (GLSs...... hemolymph of the GLSsequestering conspicuous A. rosae larvae. The results show that glucoside sequestration is widespread in the genus Athalia, but that the specific glucoside uptake can result in different defense effectiveness against a predator species....

  7. Hepatoprotective activity of twelve novel 7'-hydroxy lignan glucosides from Arctii Fructus.

    Science.gov (United States)

    Yang, Ya-Nan; Huang, Xiao-Ying; Feng, Zi-Ming; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2014-09-17

    Twelve novel 7'-hydroxy lignan glucosides (1-12), including two benzofuran-type neolignans, two 8-O-4' neolignans, two dibenzylbutyrolactone lignans, and six tetrahydrofuranoid lignans, together with six known lignan glucosides (13-18), were isolated from the fruit of Arctium lappa L. (Asteraceae), commonly known as Arctii Fructus. Their structures were elucidated using spectroscopy (1D and 2D NMR, MS, IR, ORD, and UV) and on the basis of chemical evidence. The absolute configurations of compounds 1-12 were confirmed using rotating frame nuclear overhauser effect spectroscopy (ROESY), the circular dichroic (CD) exciton chirality method, and Rh2(OCOCF3)4-induced CD spectrum analysis. All of the isolated compounds were tested for hepatoprotective effects against D-galactosamine-induced cytotoxicity in HL-7702 hepatic cells. Compounds 1, 2, 7-12, and 17 showed significantly stronger hepatoprotective activity than the positive control bicyclol at a concentration of 1 × 10(-5) M.

  8. The presence of tyrosine glucoside in the haemolymph of lepidopteran insects

    International Nuclear Information System (INIS)

    Ishizaki, Yumi; Umebachi, Yoshishige

    1980-01-01

    A ninhydrin-positive substance from the haemolymph of Papilio xuthus was purified and identified as β-glucosyl-O-tyrosine by (1) color reactions, (2) incorporation of 14 C-tyrosine, (3) identification and estimation of hydrolysis products, (4) α- and β-glucosidase tests, and (5) UV-spectrum. The concentration of the tyrosine glucoside in haemolymph reaches a maximum at the prepupal stage, then decreases, and is on a low level during the middle stage of pupa. At the late pupal stage, the level again rises and is kept high before emergence. After emergence, it rapidly decreases. The same tyrosine glucoside has proved to be also present in the haemolymph of twelve other species of Lepidoptera. (author)

  9. Total glucosides of paeony prevents juxta-articular bone loss in experimental arthritis

    OpenAIRE

    Wei, Chen Chao; You, Fan Tian; Mei, Li Yu; Jian, Sun; Qiang, Chen Yong

    2013-01-01

    Background Total glucosides of paeony (TGP) is a biologically active compound extracted from Paeony root. TGP has been used in rheumatoid arthritis therapy for many years. However, the mechanism by which TGP prevents bone loss has been less explored. Methods TGP was orally administered for 3?months to New Zealand rabbits with antigen-induced arthritis (AIA). Digital x-ray knee images and bone mineral density (BMD) measurements of the subchondral knee bone were performed before sacrifice. Chon...

  10. The multiple strategies of an insect herbivore to overcome plant cyanogenic glucoside defence

    DEFF Research Database (Denmark)

    Pentzold, Stefan; Zagrobelny, Mika; Roelsgaard, Pernille Sølvhøj

    2014-01-01

    Cyanogenic glucosides (CNglcs) are widespread plant defence compounds that release toxic hydrogen cyanide by plant bglucosidase activity after tissue damage. Specialised insect herbivores have evolved counter strategies and some sequester CNglcs, but the underlying mechanisms to keep CNglcs intact...... during feeding and digestion are unknown. We show that CNglc-sequestering Zygaena filipendulae larvae combine behavioural, morphological, physiological and biochemical strategies at different time points during feeding and digestion to avoid toxic hydrolysis of the CNglcs present in their Lotus food...

  11. Development and Evaluation of Monoclonal Antibodies for the Glucoside of T-2 Toxin (T2-Glc)

    OpenAIRE

    Maragos, Chris M.; Kurtzman, Cletus; Busman, Mark; Price, Neil; McCormick, Susan

    2013-01-01

    The interactions between fungi and plants can yield metabolites that are toxic in animal systems. Certain fungi are known to produce sesquiterpenoid trichothecenes, such as T-2 toxin, that are biotransformed by several mechanisms including glucosylation. The glucosylated forms have been found in grain and are of interest as potential reservoirs of T-2 toxin that are not detected by many analytical methods. Hence the glucosides of trichothecenes are often termed “masked” mycotoxins. The glucos...

  12. Benchmarking two commonly used Saccharomyces cerevisiae strains for heterologous vanillin-β-glucoside production

    Directory of Open Access Journals (Sweden)

    Tomas Strucko

    2015-12-01

    Full Text Available The yeast Saccharomyces cerevisiae is a widely used eukaryotic model organism and a key cell factory for production of biofuels and wide range of chemicals. From the broad palette of available yeast strains, the most popular are those derived from laboratory strain S288c and the industrially relevant CEN.PK strain series. Importantly, in recent years these two strains have been subjected to comparative “-omics” analyzes pointing out significant genotypic and phenotypic differences. It is therefore possible that the two strains differ significantly with respect to their potential as cell factories for production of specific compounds. To examine this possibility, we have reconstructed a de novo vanillin-β-glucoside pathway in an identical manner in S288c and CEN.PK strains. Characterization of the two resulting strains in two standard conditions revealed that the S288c background strain produced up to 10-fold higher amounts of vanillin-β-glucoside compared to CEN.PK. This study demonstrates that yeast strain background may play a major role in the outcome of newly developed cell factories for production of a given product. Keywords: Yeast, Cell factory, Strain choice, Heterologous production, Vanillin-glucoside, Shikimate pathway

  13. Regulation of gene expression: Cryptic β-glucoside (bgl operon of Escherichia coli as a paradigm

    Directory of Open Access Journals (Sweden)

    Dharmesh Harwani

    2014-12-01

    Full Text Available Bacteria have evolved various mechanisms to extract utilizable substrates from available resources and consequently acquire fitness advantage over competitors. One of the strategies is the exploitation of cryptic cellular functions encoded by genetic systems that are silent under laboratory conditions, such as the bgl (β-glucoside operon of E. coli. The bgl operon of Escherichia coli, involved in the uptake and utilization of aromatic β-glucosides salicin and arbutin, is maintained in a silent state in the wild type organism by the presence of structural elements in the regulatory region. This operon can be activated by mutations that disrupt these negative elements. The fact that the silent bgl operon is retained without accumulating deleterious mutations seems paradoxical from an evolutionary view point. Although this operon appears to be silent, specific physiological conditions might be able to regulate its expression and/or the operon might be carrying out function(s apart from the utilization of aromatic β-glucosides. This is consistent with the observations that the activated operon confers a Growth Advantage in Stationary Phase (GASP phenotype to Bgl+ cells and exerts its regulation on at least twelve downstream target genes.

  14. Regulation of gene expression: cryptic β-glucoside (bgl) operon of Escherichia coli as a paradigm.

    Science.gov (United States)

    Harwani, Dharmesh

    2014-01-01

    Bacteria have evolved various mechanisms to extract utilizable substrates from available resources and consequently acquire fitness advantage over competitors. One of the strategies is the exploitation of cryptic cellular functions encoded by genetic systems that are silent under laboratory conditions, such as the bgl (β-glucoside) operon of E. coli. The bgl operon of Escherichia coli, involved in the uptake and utilization of aromatic β-glucosides salicin and arbutin, is maintained in a silent state in the wild type organism by the presence of structural elements in the regulatory region. This operon can be activated by mutations that disrupt these negative elements. The fact that the silent bgl operon is retained without accumulating deleterious mutations seems paradoxical from an evolutionary view point. Although this operon appears to be silent, specific physiological conditions might be able to regulate its expression and/or the operon might be carrying out function(s) apart from the utilization of aromatic β-glucosides. This is consistent with the observations that the activated operon confers a Growth Advantage in Stationary Phase (GASP) phenotype to Bgl(+) cells and exerts its regulation on at least twelve downstream target genes.

  15. Anti-Japanese-encephalitis-viral effects of kaempferol and daidzin and their RNA-binding characteristics.

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    Full Text Available BACKGROUND: New therapeutic tools and molecular targets are needed for treatment of Japanese encephalitis virus (JEV infections. JEV requires an α-1 translational frameshift to synthesize the NS1' protein required for viral neuroinvasiveness. Several flavonoids have been shown to possess antiviral activity in vitro against a wide spectrum of viruses. To date, the antiviral activities of flavonol kaempferol (Kae and isoflavonoid daidzin (Dai against JEV have not been described. METHODOLOGY/PRINCIPAL FINDINGS: The 50% cytotoxic concentration (CC(50 and 50% effective concentration (EC(50 against JEV were investigated in BHK21 cells by MTS reduction. Activity against viral genomic RNA and proteins was measured by real-time RT-PCR and western blotting. The frameshift site RNA-binding characterization was also determined by electrospray ionization mass spectrometry, isothermal titration calorimetry and autodocking analysis. EC(50 values of Kae and Dai were 12.6 and 25.9 µM against JEV in cells pretreated before infection, whereas in cells infected before treatment, EC(50 was 21.5 and 40.4 µM, respectively. Kae exhibited more potent activity against JEV and RNA binding in cells following internalization through direct inhibition of viral replication and protein expression, indicating that its antiviral activity was principally due to direct virucidal effects. The JEV frameshift site RNA (fsRNA was selected as a target for assaying Kae and Dai. ITC of fsRNA revealed an apparent K(b value for Kae that was nine fold stronger than that for Dai. This binding was confirmed and localized to the RNA using ESI-MS and autodock analysis. Kae could form non-covalent complexes with fsRNA more easily than Dai could. CONCLUSIONS/SIGNIFICANCE: Kae demonstrates more potent antiviral activity against JEV than does Dai. The mode of action of Kae as an anti-JEV agent seems to be related to its ability to inactivate virus by binding with JEV fsRNA.

  16. Kaempferol-immobilized titanium dioxide promotes formation of new bone: effects of loading methods on bone marrow stromal cell differentiation in vivo and in vitro.

    Science.gov (United States)

    Tsuchiya, Shuhei; Sugimoto, Keisuke; Kamio, Hisanobu; Okabe, Kazuto; Kuroda, Kensuke; Okido, Masazumi; Hibi, Hideharu

    2018-01-01

    Surface modification of titanium dioxide (TiO 2 ) implants promotes bone formation and shortens the osseointegration period. Kaempferol is a flavonoid that has the capacity to promote osteogenic differentiation in bone marrow stromal cells. The aim of this study was to promote bone formation around kaempferol immobilized on TiO 2 implants. There were four experimental groups. Alkali-treated TiO 2 samples (implants and discs) were used as a control and immersed in Dulbecco's phosphate-buffered saline (DPBS) (Al-Ti). For the coprecipitation sample (Al-cK), the control samples were immersed in DPBS containing 50 µg kaempferol/100% ethanol. For the adsorption sample (Al-aK), 50 µg kaempferol/100% ethanol was dropped onto control samples. The surface topography of the TiO 2 implants was observed by scanning electron microscopy with energy-dispersive X-ray spectroscopy, and a release assay was performed. For in vitro experiments, rat bone marrow stromal cells (rBMSCs) were cultured on each of the TiO 2 samples to analyze cell proliferation, alkaline phosphatase activity, calcium deposition, and osteogenic differentiation. For in vivo experiments, TiO 2 implants placed on rat femur bones were analyzed for bone-implant contact by histological methods. Kaempferol was detected on the surface of Al-cK and Al-aK. The results of the in vitro study showed that rBMSCs cultured on Al-cK and Al-aK promoted alkaline phosphatase activity, calcium deposition, and osteogenic differentiation. The in vivo histological analysis revealed that Al-cK and Al-aK stimulated new bone formation around implants. TiO 2 implant-immobilized kaempferol may be an effective tool for bone regeneration around dental implants.

  17. Novel glyceryl glucoside is a low toxic alternative for cryopreservation agent

    Energy Technology Data Exchange (ETDEWEB)

    Su, Cathy; Allum, Allison J. [Department of Environmental & Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523 (United States); Aizawa, Yasushi [Research and Development Group, Toyo Sugar Refining Co. Ltd., Tokyo 103-0046 (Japan); Kato, Takamitsu A., E-mail: Takamitsu.Kato@Colostate.edu [Department of Environmental & Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523 (United States)

    2016-08-05

    Glyceryl glucoside (GG, α-D-glucosyglycerol) is a natural glycerol derivative found in alcoholic drinks. Recently GG has been used as an alternative for glycerol in cosmetic products. However, the safety of using GG is still unclear. Currently, dimethyl sulfoxide (DMSO) and glycerol are wildly used in cryopreservation. Despite GG being a derivative of glycerol, the ability of GG in cryopreservation is still unknown. By using a system of Chinese Hamster Ovary cells (CHO), A549 cells and AG1522 cells, the study examined the cryoprotective effects of DMSO, glycerol and GG. Cytotoxic and genotoxic responses induced by the three chemicals were also investigated with CHO to determine the safety of GG for cosmetic products. Our data suggests that GG has great cryopresearvation ability in the concentration of 30%–40% (v/v). For cytotoxic studies, DMSO showed the highest cytotoxicity above 3% (v/v) in cell doubling time delay among three chemicals. For the acute cytotoxicity with trypan blue dye exclusion assay, GG showed stronger cell killing effect within 24 h above 4% (v/v). For the continuous cytotoxicity with colony formation assay for 7 days, DMSO showed significantly reduced clonogenic ability above 2%. In genotoxicity studies, CHO treated with glycerol at 2% concentration induced three times higher frequencies of sister chromatid exchange (SCE) than background levels. GG did not induce significant amounts of SCE compared to background. Micronuclei formation was equally observed in the 2% and above concentrations of glycerol and GG. Our data showed that GG has significant effects on cryopreservation compared to DMSO. Glycerol and GG have similar cytotoxicity effects to CHO, but glycerol induced genotoxic responses in the same concentration. Therefore, we conclude that GG may be a safer alternative compound to glycerol in cosmetic products and safer alternative to DMSO in cryopreservation. -- Highlights: •Glyceryl Glucoside is low cytotoxicity and genotoxicity

  18. Quantitative Analysis of Phenylpropanoid Glycerol Glucosides in Different Organs of Easter Lily (Lilium longiflorum Thunb.).

    Science.gov (United States)

    Munafo, John P; Gianfagna, Thomas J

    2015-05-20

    The Easter lily (Lilium longiflorum Thunb.) is esteemed worldwide as an attractive ornamental plant, and the flower buds and bulbs are used for both culinary and medicinal purposes in many parts of the world. L. longiflorum contains significant amounts of phenylpropanoid glycerol glucosides, a group of compounds that may contribute to plant pathogen defense, ultraviolet/high-intensity visible light (UV/high light) protection, and the purported medicinal uses of lilies. To define the natural distribution of these compounds within the plant, a liquid chromatography-mass spectrometry (LC-MS) method performed in selected ion monitoring (SIM) mode was employed for the quantitative analysis of five phenylpropanoid glycerol glucosides, namely, (2S)-1-O-caffeoyl-2-O-β-D-glucopyranosylglycerol, 1; (2R)-1-O-β-D-glucopyranosyl-2-O-p-coumaroylglycerol, 2; (2S)-1-O-p-coumaroyl-2-O-β-D-glucopyranosylglycerol, 3; (2S)-1-O-caffeoyl-2-O-β-D-glucopyranosyl-3-O-acetylglycerol, 4; and (2S)-1-O-p-coumaroyl-2-O-β-D-glucopyranosyl-3-O-acetylglycerol, 5, in the different organs of L. longiflorum. The p-coumaroyl-based 3 and its acetylated derivative 5 were determined to be the most abundant of the phenylpropanoid glycerol glucosides found in Easter lily bulbs, at 776.3 ± 8.4 and 650.7 ± 32.6 μg/g dry weight, respectively. The acetylated p-coumaroyl- and caffeoyl-based derivatives, 5 and 4, accumulated to the highest concentration in the closed flower buds, at 4925.2 ± 512.8 and 3216.8 ± 406.4 μg/g dry weight, respectively. Compound 4, followed by 5 and 1, proved to be the most abundant in the mature flowers, occurring at 6006.2 ± 625.8, 2160.3 ± 556.5, and 1535.8 ± 174.1 μg/g dry weight, respectively. Total concentrations of the phenylpropanoid glycerol glucosides were 10-100-fold higher in the above-ground plant organs as compared to the bulbs and fleshy roots. Two of the five compounds, 1 and 2, were identified in L. longiflorum for the first time. The quantitative

  19. Inhibition of glucose intestinal absorption by kaempferol 3-O-α-rhamnoside purified from Bauhinia megalandra leaves.

    Science.gov (United States)

    Rodríguez, Patricia; González-Mujica, Freddy; Bermúdez, Jairo; Hasegawa, Masahisa

    2010-12-01

    Glucose intestinal absorption (GIA) is one of the factors that increase glycemia. Its reduction could be an important factor in decreasing hyperglycemia in diabetic patients. It has been shown that the aqueous extract of Bauhinia megalandra leaves inhibits GIA. In the present study we identified a compound present in the extract of B. megalandra responsible for the biological effect. The methanol extract of B. megalandra leaves was fractionated using different solvents, and high-speed counter-current chromatography yielding two pure compounds identified by (1)H NMR and (13)C NMR as kaempferol 3-O-α-rhamnoside and quercetin 3-O-α-rhamnoside. The first one increased the K(M) without changes in the V(MAX) of GIA. In addition it exerted an additive inhibitory effect, on GIA, when combined with phlorizin. We suggest that kaempferol 3-O-α-rhamnoside is a competitive inhibitor of intestinal SGLT1 cotransporter. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Chemical composition and evaluation of allelopathic potentials of Adiantum tetraphyllum Humb.and Bonpl. Ex. Willd (Pteridaceae); Constituintes quimicos e avaliacao do potencial alelopatico de Adiantum tetraphyllum Humb. and Bonpl. Ex. Willd (Pteridaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Melos, Jorge L.R. [Colegio Militar de Campo Grande, MS (Brazil). Secao de Ensino ' C' ; Silva, Luciana B.; Peres, Marize T. L. P.; Mapeli, Ana M.; Faccenda, Odival; Anjos, Hatino H.; Torres, Thais G.; Tiviroli, Soraia C.; Batista, Ana L.; Almeida, Felipe G. N.; Flauzino, Natasha S.; Tibana, Leticia A.; Hess, Sonia C. [Universidade Federal de Mato Grosso do Sul, Campo Grande, MS(Brazil). Dept. de Hidraulica e Transportes; Honda, Neli K. [Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil). Dept. de Quimica]. E-mail: schess@nin.ufms.br

    2007-03-15

    Chemical studies of green leaves of A. tetraphyllum afforded {beta}-sitosterol, a mixture containing the ethyl esters of long chain carboxylic acids, 30-normethyl-lupan-20-one, hopan-22-ol, phytol, phyten-3(20)-1,2-diol, quercetin and quercetin-3-O-{beta}-D-glucoside. The structures of the compounds were elucidated by spectroscopic and GC analysis. The allelopathic potentials of the crude ethanolic extract and fractions were evaluated against Lactuca sativa (letuce) and Allium cepa (onion) seeds. (author)

  1. Chemical constituents from leaves of the Qualea grandiflora: attribution of the NMR data of two diastereoisomeric acylated flavonoid glycosides; Constituintes quimicos das folhas de Qualea grandiflora: atribuicao dos dados de RMN de dois flavoides glicosilados acilados diastereoisomericos

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, Mariane Cruz Costa; Escorcio, Samuel Portela; Costa, Danielly Albuquerque da; Chaves, Mariana H. [Universidade Federal do Piaui, Teresina, PI (Brazil). Dept. de Quimica]. E-mail: mariana@ufpi.br; Gerardo, Magela Vieira Junior; Cavalheiro, Alberto J. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Quimica Organica

    2008-07-01

    Phytochemical investigation from leaves of the Qualea grandiflora (Vochysiaceae) resulted in the isolation and identification of kaempferol-3-O-alpha-L-(4{sup -}E-p-coumaroyl)-rhamnoside, kaempferol-3-O-alpha-L-(4{sup -}Z-p-coumaroyl)-rhamnoside, squalene, phytol, lupeol, alpha-amyrin, beta-amyrin, sitosterol, sitostenone, sitosterol-3-O-beta-D-glucopyranoside, ursolic and oleanolic acids. The structures of the compounds were identified by 1D- and 2D-NMR experiments, mass and UV spectrometry and comparison with literature data. (author)

  2. Chemical constituents from leaves of the Qualea grandiflora: attribution of the NMR data of two diastereoisomeric acylated flavonoid glycosides

    International Nuclear Information System (INIS)

    Ayres, Mariane Cruz Costa; Escorcio, Samuel Portela; Costa, Danielly Albuquerque da; Chaves, Mariana H.; Gerardo, Magela Vieira Junior; Cavalheiro, Alberto J.

    2008-01-01

    Phytochemical investigation from leaves of the Qualea grandiflora (Vochysiaceae) resulted in the isolation and identification of kaempferol-3-O-alpha-L-(4 - E-p-coumaroyl)-rhamnoside, kaempferol-3-O-alpha-L-(4 - Z-p-coumaroyl)-rhamnoside, squalene, phytol, lupeol, alpha-amyrin, beta-amyrin, sitosterol, sitostenone, sitosterol-3-O-beta-D-glucopyranoside, ursolic and oleanolic acids. The structures of the compounds were identified by 1D- and 2D-NMR experiments, mass and UV spectrometry and comparison with literature data. (author)

  3. Inhibition of aryl hydrocarbon receptor-dependent transcription by resveratrol or kaempferol is independent of estrogen receptor α expression in human breast cancer cells

    Science.gov (United States)

    MacPherson, Laura; Matthews, Jason

    2016-01-01

    Resveratrol and kaempferol are natural chemopreventative agents that are also aryl hydrocarbon receptor (AHR) antagonists and estrogen receptor (ER) agonists. In this study we evaluated the role of ERα in resveratrol- and kaempferol-mediated inhibition of AHR-dependent transcription. Kaempferol or resveratrol inhibited dioxin-induced cytochrome P450 1A1 (CYP1A1) and CYP1B1 expression levels and recruitment of AHR, ERα and co-activators to CYP1A1 and CYP1B1. Both phytochemicals induced the expression and recruitment of ERα to gene amplified in breast cancer 1 (GREB1). RNAi-mediated knockdown of ERα in T-47D cells did not affect the inhibitory action of either phytochemical on AHR activity. Both compounds also inhibited AHR-dependent transcription in ERα-negative MDA-MB-231 and BT-549 breast cancer cells. These data show that ERα does not contribute to the AHR-inhibitory activities of resveratrol and kaempferol. PMID:20846786

  4. Transcriptional profiling in human HaCaT keratinocytes in response to kaempferol and identification of potential transcription factors for regulating differential gene expression

    Science.gov (United States)

    Kang, Byung Young; Lee, Ki-Hwan; Lee, Yong Sung; Hong, Il; Lee, Mi-Ock; Min, Daejin; Chang, Ihseop; Hwang, Jae Sung; Park, Jun Seong; Kim, Duck Hee

    2008-01-01

    Kaempferol is the major flavonol in green tea and exhibits many biomedically useful properties such as antioxidative, cytoprotective and anti-apoptotic activities. To elucidate its effects on the skin, we investigated the transcriptional profiles of kaempferol-treated HaCaT cells using cDNA microarray analysis and identified 147 transcripts that exhibited significant changes in expression. Of these, 18 were up-regulated and 129 were down-regulated. These transcripts were then classified into 12 categories according to their functional roles: cell adhesion/cytoskeleton, cell cycle, redox homeostasis, immune/defense responses, metabolism, protein biosynthesis/modification, intracellular transport, RNA processing, DNA modification/ replication, regulation of transcription, signal transduction and transport. We then analyzed the promoter sequences of differentially-regulated genes and identified over-represented regulatory sites and candidate transcription factors (TFs) for gene regulation by kaempferol. These included c-REL, SAP-1, Ahr-ARNT, Nrf-2, Elk-1, SPI-B, NF-κB and p65. In addition, we validated the microarray results and promoter analyses using conventional methods such as real-time PCR and ELISA-based transcription factor assay. Our microarray analysis has provided useful information for determining the genetic regulatory network affected by kaempferol, and this approach will be useful for elucidating gene-phytochemical interactions. PMID:18446059

  5. A new flavonol glucoside from the aerial parts of Sida glutinosa.

    Science.gov (United States)

    Das, Niranjan; Achari, Basudev; Harigaya, Yoshihiro; Dinda, Biswanath

    2011-10-01

    Phytochemical investigation on the dried aerial parts of Sida glutinosa has led to the isolation of a new flavonol glucoside, glutinoside (1), along with seven known compounds, 24(28)-dehydromakisterone A (2), 1,2,3,9-tetrahydropyrrolo[2,1-b]-quinazolin-3-amine (3), docosanoic acid, 1-triacontanol, campesterol, stigmasterol, and β-sitosterol. The structures of these compounds were elucidated by means of extensive spectroscopic techniques as well as GC/MS analysis (for sterols) and comparison with the literature data. All these seven known compounds are reported from this plant for the first time.

  6. Thalassiolin D: a new flavone O-glucoside Sulphate from the seagrass Thalassia hemprichii.

    Science.gov (United States)

    Hawas, Usama W; Abou El-Kassem, Lamia T

    2017-10-01

    Thalassiolin D, a new flavone O-glucoside sulphate along with three flavonoids, two steroids, p-hydroxybenzoic acid, 4,4'-dihydroxybenzophenone and nitrogen compound, octopamine were isolated from the seagrass Thalassia hemprichii, collected from the Saudi Red Sea coast. By extensive spectroscopic analysis including 1D and 2D NMR and MS data, the structure of the new compound was elucidated as diosmetin 7-O-β-glucosyl-2″-sulphate. The new compound displayed moderately in vitro antiviral HCV protease activity with IC 50 value 16 μM.

  7. A new diterpenoid glucoside and two new diterpenoids from the fruit of Vitex agnus-castus.

    Science.gov (United States)

    Ono, Masateru; Eguchi, Keisuke; Konoshita, Masatarou; Furusawa, Chisato; Sakamoto, Junich; Yasuda, Shin; Ikeda, Tsuyoshi; Okawa, Masafumi; Kinjo, Junei; Yoshimitsu, Hitoshi; Nohara, Toshihiro

    2011-01-01

    A new labdane-type diterpenoid glucoside and two new labdane-type diterpenoids were isolated from the fruit (chasteberry) of Vitex agnus-castus L. (Verbenaceae) along with 14 known compounds comprising seven labdane-type diterpenoids, one halimane-type diterpenoid, two oleanane-type triterpenoids, two ursane-type triterpenoids, one aromadendrane-type sesquiterpenoid, and one flavonoid. Their structures were characterized on the basis of spectroscopic data as well as chemical evidence. Furthermore, the antioxidative activities of the flavonoid were evaluated using five different analyses.

  8. Biological activity of quercetin-3-O-glucoside, a known plant flavonoid.

    Science.gov (United States)

    Razavi, Seyed Mehdi; Zahri, Saber; Zarrini, Gholamreza; Nazemiyeh, Hossein; Mohammadi, Sariyeh

    2009-01-01

    Cytotoxic, phytotoxic, antimicrobial and antioxidant effects of quercetin 3-O-glucoside (Q3G) isolated by HPLC from aerial parts of Prangos ferulaceae was studied by MTT assay, lettuce germination assay, disk diffusion and DPPH method. Our results showed that Q3G exhibits high antioxidant effect with RC(50) of 22 microg/mL, it has low cytotoxicity and no antibacterial effects. Q3G exhibits high phytotoxic effect with IC(50) value of 282.7 microg/ml, as well. It is assumed that Q3G does not play a defense role in plants and it may act as an allelopatic agent.

  9. Leaching of cyanogenic glucosides and cyanide from white clover green manure

    DEFF Research Database (Denmark)

    Bjarnholt, Nanna; Lægdsmand, Mette; Hansen, Hans Chr. Bruun

    2008-01-01

    Use of crops for green manure as a substitute for chemical fertilizers and pesticides is an important approach towards more sustainable agricultural practices. Green manure from white clover is rich in nitrogen but white clover also produces the cyanogenic glucosides (CGs) linamarin...... and lotaustralin; CGs release toxic hydrogen cyanide (HCN) upon hydrolysis which may be utilized for pest control. We demonstrate that applying CGs in the form of a liquid extract of white clover to large columns of intact agricultural soils can result in leaching of toxic cyanide species to a depth of at least 1...

  10. Phenolic compounds in external leaves of tronchuda cabbage (Brassica oleracea L. var. costata DC)

    OpenAIRE

    Ferreres, F.; Valentão, P.; Llorach, R.; Pinheiro, C.; Cardoso, L.; Pereira, J.A.; Seabra, R.M.; Andrade, P.B.

    2005-01-01

    Glycosylated kaempferol derivatives from the external leaves of tronchuda cabbage ( Brassica oleracea L. var. costataDC) characterized by reversed-phase HPLC-DAD-MS/MS-ESI were kaempferol 3- Osophorotrioside- 7-O-glucoside, kaempferol 3-O- (methoxycaffeoyl/caffeoyl)sophoroside-7- O-glucoside, kaempferol 3-O-sophoroside-7-O-glucoside, kaempferol 3-O-sophorotrioside-7-O-sophoroside, kaempferol 3- O-sophoroside-7- O-sophoroside, kaempferol 3- O-tetraglucoside-7- O-sophoroside, kaempf...

  11. Two novel prenylated kaempferol derivatives from fresh bud's fur of Platanus acerifolia and their anti-proliferative activities.

    Science.gov (United States)

    Zuo, Bo; Liao, Zhi-Xin; Xu, Chen; Liu, Chao

    2016-01-06

    Two novel prenylated kaempferol derivatives (1, 2), together with seven known metabolites were isolated from ethanol extract of fresh Platanus acerifolia bud's fur by multistep chromatographic processing. Structure of compounds 1 and 2 was confirmed by 1D, 2D NMR spectra and HR-ESI-MS. In addition, compound 1 was further analysed by X-ray crystallography. Anti-proliferative activities in vitro against human breast carcinoma (MCF-7) and human hepatocellular carcinoma (Hep-G2) cell lines for compound 1, 2 and 8 were evaluated. Compound 1 exhibited cytotoxic activity towards MCF-7 and Hep-G2 cell lines with the IC 50 values 38.2 and 39.5 μM, respectively. Moreover, compound 2 showed weak cytotoxic activities against the two cell lines.

  12. Anti-HSV-1 and HSV-2 Flavonoids and a New Kaempferol Triglycoside from the Medicinal Plant Kalanchoe daigremontiana.

    Science.gov (United States)

    Ürményi, Fernanda Gouvêa Gomes; Saraiva, Georgia do Nascimento; Casanova, Livia Marques; Matos, Amanda Dos Santos; de Magalhães Camargo, Luiza Maria; Romanos, Maria Teresa Villela; Costa, Sônia Soares

    2016-12-01

    Kalanchoe daigremontiana (Crassulaceae) is a medicinal plant native to Madagascar. The aim of this study was to investigate the flavonoid content of an aqueous leaf extract from K. daigremontiana (Kd), and assess its antiherpetic potential. The major flavonoid, kaempferol 3-O-β-d-xylopyranosyl-(1 → 2)-α-l-rhamnopyranoside (1), was isolated from the AcOEt fraction (Kd-AC). The BuOH-soluble fraction afforded quercetin 3-O-β-d-xylopyranosyl-(1 → 2)-α-l-rhamnopyranoside (2) and the new kaempferol 3-O-β-d-xylopyranosyl-(1 → 2)-α-l-rhamnopyranoside-7-O-β-d-glucopyranoside (3), named daigremontrioside. The crude extract, Kd-AC fraction, flavonoids 1 and 2 were evaluated using acyclovir-sensitive strains of HSV-1 and HSV-2. Kd-AC was highly active against HSV-1 (EC 50  = 0.97 μg/ml, SI > 206.1) and HSV-2 (EC 50  = 0.72 μg/ml, SI > 277.7). Flavonoids 1 and 2 showed anti-HSV-1 (EC 50  = 7.4 μg/ml; SI > 27 and EC 50  = 5.8 μg/ml; SI > 8.6, respectively) and anti-HSV-2 (EC 50  = 9.0 μg/ml; SI > 22.2 and EC 50  = 36.2 μg/ml; SI > 5.5, respectively) activities, suggesting the contribution of additional substances to the antiviral activity. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  13. Metabolism of monoterpenes: early steps in the metabolism of d-neomenthyl-β-D-glucoside in peppermint (Mentha piperita) rhizomes

    International Nuclear Information System (INIS)

    Croteau, R.; Sood, V.K.; Renstroem, B.; Bhushan, R.

    1984-01-01

    Previous studies have shown that the monoterpene ketone l-[G- 3 H] menthone is reduced to the epimeric alcohols l-menthol and d-neomenthol in leaves of flowering peppermint (Mentha piperita L.), and that a portion of the menthol is converted to methyl acetate while the bulk of the neomenthol is transformed to neomenthyl-β-D-glucoside which is then transported to the rhizome. Analysis of the disposition of l-[G] 3 H]menthone applied to midstem leaves of intact flowering plants allowed the kinetics of synthesis and transport of the monoterpenyl glucoside to be determined, and gave strong indication that the glucoside was subsequently metabolized in the rhizome. Studies with d-[G- 3 H]neomenthyl-β-D-glucoside as substrate, using excised rhizomes or rhizome segments, confirmed the hydrolysis of the glucoside as an early step in metabolism at this site, and revealed that the terpenoid moiety was further converted to a series of ether-soluble, methanol-soluble, and water-soluble products. The conversion of menthone to the lactone, and of the lactone to more polar products, were confirmed in vivo using l-[G- 3 H]menthone and l-[G- 3 H]-3,4-menthone lactone as substrates. Additional oxidation products were formed in vivo via the desaturation of labeled neomenthol and/or menthone, but none of these transformations appeared to lead to ring opening of the p-menthane skeleton. Each step in the main reaction sequence, from hydrolysis of neomenthyl glucoside to lactonization of menthone, was demonstrated in cell-free extracts from the rhizomes of flowering mint plants. The lactomization step is of particular significance in providing a means of cleaving the p-methane ring to afford an acyclic carbon skeleton that can be further degraded by modifications of the well-known β-oxidation sequence. 41 references, 3 figures, 1 table

  14. Chemical behavior of methylpyranomalvidin-3-O-glucoside in aqueous solution studied by NMR and UV-visible spectroscopy.

    Science.gov (United States)

    Oliveira, Joana; Petrov, Vesselin; Parola, A Jorge; Pina, Fernando; Azevedo, Joana; Teixeira, Natércia; Brás, Natércia F; Fernandes, Pedro A; Mateus, Nuno; Ramos, Maria João; de Freitas, Victor

    2011-02-17

    In the present work, the proton-transfer reactions of the methylpyranomalvidin-3-O-glucoside pigment in water with different pH values was studied by NMR and UV-visible spectroscopies. The results showed four equilibrium forms: the methylpyranomalvidin-3-O-glucoside cation, the neutral quinoidal base, the respective anionic quinoidal base, and a dianionic base unprotonated at the methyl group. According to the NMR data, it seems that for methylpyranomalvidin-3-O-glucoside besides the acid-base equilibrium between the pyranoflavylium cation and the neutral quinoidal base, a new species is formed at pD 4.88-6.10. This is corroborated by the appearance of a new set of signals in the NMR spectrum that may be assigned to the formation of hemiketal/cis-chalcone species to a small extent. The two ionization constants (pK(a1) and pK(a2)) obtained by both methods (NMR and UV-visible) for methylpyranomalvidin-3-O-glucoside are in agreement (pK(a1) = 5.17 ± 0.03; pK(a2) = 8.85 ± 0.08; and pK(a1) = 4.57 ± 0.07; pK(a2) = 8.23 ± 0.04 obtained by NMR and UV-visible spectroscopies, respectively). Moreover, the fully dianionic unprotonated form (at the methyl group) of the methylpyranomalvidin-3-O-glucoside is converted slowly into a new structure that displays a yellow color at basic pH. On the basis of the results obtained through LC-MS and NMR, the proposed structure was found to correspond to the flavonol syringetin-3-glucoside.

  15. Kaempferol inhibits angiogenic ability by targeting VEGF receptor-2 and downregulating the PI3K/AKT, MEK and ERK pathways in VEGF-stimulated human umbilical vein endothelial cells.

    Science.gov (United States)

    Chin, Hsien-Kuo; Horng, Chi-Ting; Liu, Yi-Shan; Lu, Chi-Cheng; Su, Chen-Ying; Chen, Pei-Syuan; Chiu, Hong-Yi; Tsai, Fuu-Jen; Shieh, Po-Chuen; Yang, Jai-Sing

    2018-05-01

    Anti-angiogenesis is one of the most general clinical obstacles in cancer chemotherapy. Kaempferol is a flavonoid phytochemical found in many fruits and vegetables. Our previous study revealed that kaempferol triggered apoptosis in human umbilical vein endothelial cells (HUVECs) by ROS‑mediated p53/ATM/death receptor signaling. However, the anti‑angiogenic potential of kaempferol remains unclear and its underlying mechanism warranted further exploration in VEGF‑stimulated HUVECs. In the present study, kaempferol significantly reduced VEGF‑stimulated HUVEC viability. Kaempferol treatment also inhibited cell migration, invasion, and tube formation in VEGF‑stimulated HUVECs. VEGF receptor‑2 (VEGFR‑2), and its downstream signaling cascades (such as AKT, mTOR and MEK1/2‑ERK1/2) were reduced as determined by western blotting and kinase activity assay in VEGF‑stimulated HUVECs after treatment with kaempferol. The present study revealed that kaempferol may possess angiogenic inhibition through regulation of VEGF/VEGFR‑2 and its downstream signaling cascades (PI3K/AKT, MEK and ERK) in VEGF-stimulated endothelial cells.

  16. β-d-Glucosidase as "key enzyme" for sorghum cyanogenic glucoside (dhurrin) removal and beer bioflavouring.

    Science.gov (United States)

    Tokpohozin, Sedjro Emile; Fischer, Susann; Sacher, Bertram; Becker, Thomas

    2016-11-01

    Sorghum malt used during African beer processing contains a high level of cyanogenic glucoside (dhurrin), up to 1375 ppm. In traditional sorghum malting and mashing, dhurrin is not sufficiently hydrolyzed due to uncontrolled germination and a high gelatinization temperature. The cyanide content of traditional African beers (11 ppm) is higher than the minimum dose (1 ppm) required to form carcinogenic ethyl carbamate during alcoholic fermentation. In the detoxification process, aryl-β-d-glucosidase (dhurrinase) is the "key component". For significant dhurrin hydrolysis during mashing, optimizing dhurrinase synthesis during malting is a good solution to reduce dhurrin completely to below the harmful dose in the sorghum wort. Lactic acid bacteria which exhibit aryl-β-d-glucosidase prior to alcoholic fermentation may help to reduce ethyl carbamate content in alcoholic beverages. Moreover, some specific β-d-glucosidases have a dual property, being able to cleave and synthesize glucosides bonds and thereby generating good precursors for beer bioflavouring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Indoline Amide Glucosides from Portulaca oleracea: Isolation, Structure, and DPPH Radical Scavenging Activity.

    Science.gov (United States)

    Jiao, Ze-Zhao; Yue, Su; Sun, Hong-Xiang; Jin, Tian-Yun; Wang, Hai-Na; Zhu, Rong-Xiu; Xiang, Lan

    2015-11-25

    A polyamide column chromatography method using an aqueous ammonia mobile phase was developed for large-scale accumulation of water-soluble indoline amide glucosides from a medicinal plant, Portulaca oleracea. Ten new [oleraceins H, I, K, L, N, O, P, Q, R, S (1-10)] and four known [oleraceins A-D (11-14)] indoline amide glucosides were further purified and structurally characterized by various chromatographic and spectroscopic methods. The DPPH radical scavenging activities of oleraceins K (5) and L (6), with EC50 values of 15.30 and 16.13 μM, respectively, were twice that of a natural antioxidant, vitamin C; the EC50 values of the 12 other indoline amides, which ranged from 29.05 to 43.52 μM, were similar to that of vitamin C. Structure-activity relationships indicated that the DPPH radical scavenging activities of these indoline amides correlate with the numbers and positions of the phenolic hydroxy groups.

  18. Cyanogenic Glucosides and Derivatives in Almond and Sweet Cherry Flower Buds from Dormancy to Flowering

    Directory of Open Access Journals (Sweden)

    Jorge Del Cueto

    2017-05-01

    Full Text Available Almond and sweet cherry are two economically important species of the Prunus genus. They both produce the cyanogenic glucosides prunasin and amygdalin. As part of a two-component defense system, prunasin and amygdalin release toxic hydrogen cyanide upon cell disruption. In this study, we investigated the potential role within prunasin and amygdalin and some of its derivatives in endodormancy release of these two Prunus species. The content of prunasin and of endogenous prunasin turnover products in the course of flower development was examined in five almond cultivars – differing from very early to extra-late in flowering time – and in one sweet early cherry cultivar. In all cultivars, prunasin began to accumulate in the flower buds shortly after dormancy release and the levels dropped again just before flowering time. In almond and sweet cherry, the turnover of prunasin coincided with increased levels of prunasin amide whereas prunasin anitrile pentoside and β-D-glucose-1-benzoate were abundant in almond and cherry flower buds at certain developmental stages. These findings indicate a role for the turnover of cyanogenic glucosides in controlling flower development in Prunus species.

  19. Synthesis and biological evaluation of novel dioxa-bicycle C-aryl glucosides as SGLT2 inhibitors.

    Science.gov (United States)

    Yan, Qi; Ding, Ning; Li, Yingxia

    2016-02-08

    A series of novel C-aryl glucosides containing dioxa-bicycle were synthesized and evaluated for inhibition activity against hSGLT2. Among the compounds tested, compound 6a showed moderate SGLT2 inhibition activities at 700 nM. The results could benefit the discovery of new SGLT2 inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Synthesis of Alkylpoly glucoside from Dextrose-Decanol in the Presence of Silicotungstic Acid Sol-Gel Catalyst

    International Nuclear Information System (INIS)

    Izazi Azzahidah Amin; Mohd Ambar Yarmo; Nik Idris Nik Yusoff

    2013-01-01

    The purpose of this study is to synthesis alkylpoly glucoside via condensation of decanol with dextrose in the presence of heterogenous catalyst. In this study, silicotungstic acid sol-gel (STSG) prepared using sol-gel was used as solid acid catalyst. The catalyst was characterized using BET surface area measurement, X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) surface analysis. The final product was easy to be separated from catalyst without the need of a further neutralization. Silicotungstic acid sol-gel has been found efficient to be solid catalyst for synthesis alkylpoly glucosides. Condensation reaction was carried out 8 hours at 110-120 degree Celsius under vacuum condition at 10 mmHg. The determination of decyl glucoside has been achieved by LC/ ESI-MS/ MS (ToF) giving a mass peak at m/z = 343.2 correspond to the m/z of [M+Na] + . Alkylpoly glucoside produced was analysed by FTIR, 1 H and 13 C NMR spectrometric technique. (author)

  1. Flavonoid C-glucosides derived from flax straw extracts reduce human breast cancer cell growth in vitro and induce apoptosis.

    Directory of Open Access Journals (Sweden)

    Magdalena Czemplik

    2016-08-01

    Full Text Available Flax straw of flax varieties that are grown for oil production is a byproduct which represents a considerable biomass source. Therefore its potential application for human use is of high interest. Our research has revealed that flax straw is rich in flavonoid C-glucosides, including vitexin, orientin and isoorientin. The objective of this study was to evaluate the cytotoxicity and possible proapoptotic effect of flax straw derived C-glucosides of flavonoids in the human breast adenocarcinoma cell line (MCF-7. The effects of flax straw derived flavonoid C-glucosides on cell proliferation of MCF-7 cells were evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT and sulforhodamine B (SRB assays. The expression of apoptosis-related genes was assessed by real-time PCR. Our data revealed that flax C-glucosides as well as pure compounds are cytotoxic towards MCF-7 cells and inhibit their proliferation. Moreover, the induction of apoptosis was correlated with the changes in the mRNA level of pro-apoptotic genes. Increased expression of bax and caspase-7, -8, and -9 and decreased mRNA expression of bcl-2 was observed, whereas the mRNA levels of p53 and mdm2 were not altered. These results clearly demonstrated that flax straw metabolites effectively induced growth inhibition and apoptosis in human breast adenocarcinoma cells.

  2. Helicobacter pylori cholesteryl α-glucosides contribute to its pathogenicity and immune response by natural killer T cells.

    Directory of Open Access Journals (Sweden)

    Yuki Ito

    Full Text Available Approximately 10-15% of individuals infected with Helicobacter pylori will develop ulcer disease (gastric or duodenal ulcer, while most people infected with H. pylori will be asymptomatic. The majority of infected individuals remain asymptomatic partly due to the inhibition of synthesis of cholesteryl α-glucosides in H. pylori cell wall by α1,4-GlcNAc-capped mucin O-glycans, which are expressed in the deeper portion of gastric mucosa. However, it has not been determined how cholesteryl α-glucosyltransferase (αCgT, which forms cholesteryl α-glucosides, functions in the pathogenesis of H. pylori infection. Here, we show that the activity of αCgT from H. pylori clinical isolates is highly correlated with the degree of gastric atrophy. We investigated the role of cholesteryl α-glucosides in various aspects of the immune response. Phagocytosis and activation of dendritic cells were observed at similar degrees in the presence of wild-type H. pylori or variants harboring mutant forms of αCgT showing a range of enzymatic activity. However, cholesteryl α-glucosides were recognized by invariant natural killer T (iNKT cells, eliciting an immune response in vitro and in vivo. Following inoculation of H. pylori harboring highly active αCgT into iNKT cell-deficient (Jα18(-/- or wild-type mice, bacterial recovery significantly increased in Jα18(-/- compared to wild-type mice. Moreover, cytokine production characteristic of Th1 and Th2 cells dramatically decreased in Jα18(-/- compared to wild-type mice. These findings demonstrate that cholesteryl α-glucosides play critical roles in H. pylori-mediated gastric inflammation and precancerous atrophic gastritis.

  3. Conteúdo de miricetina, quercetina e kaempferol em chás comercializados no Brasil Myciretin, quercetin and kaempterol contents in teas commercialized in Brazil

    Directory of Open Access Journals (Sweden)

    Simara Matsubara

    2006-06-01

    Full Text Available Os teores de miricetina, quercetina e kaempferol foram determinados em uma marca de ban-chá, duas de chá verde e quatro de chá preto. Analisaram-se três lotes para cada marca em duplicata por cromatografia líquida de alta eficiência. Quercetina (2,5-3,4 mg/g folha seca predominou em todas as amostras, seguida por kaempferol (1,0-2,0 mg/g folha seca, com exceção de uma amostra na qual kaempferol e miricetina tiveram teores iguais. Houve variação entre os tipos de chás e mesmo entre marcas do mesmo tipo. Miricetina (traços - 1,9 mg/g folha seca foi o flavonol, que mais variou e que esteve em menor nível nos chás pretos. Outros chás muito consumidos no Brasil também foram investigados. A miricetina não foi encontrada em chás de frutas (maçã e morango e de ervas (erva doce, camomila, erva cidreira, hortelã, boldo, mate e erva mate, enquanto que quercetina foi encontrada em quatro chás (camomila, boldo, morango e erva mate e kaempferol, em dois chás (boldo e erva-mate, em concentrações de 0,4 a 2,5 e 0,4 a 2,6 mg/g de folha seca, respectivamente. Concluiu-se que estes chás são fontes de flavonóis na dieta brasileira, embora com teores menores que em chás verde e preto.The myricetin, quercetin and kaempferol contents of a brand of "ban-chá", two brands of green tea and four brands of black tea were determined. Three lots of each brand were analysed in duplicate by high performance liquid chromatography. Quercetin (2.5-3.4 mg/g of dry leaf predominated in all samples, followed by kaempferol (1.0-2.0 mg/g of dry leaf, with the exception of one sample, in which kaempferol and myricetin had the same levels. There was variation between different types of tea and even between brands of the same type of tea. Myricetin (trace-1.9 mg/g of dry leaf was the flavonol, that varied the most and was present at lower levels in black tea. Other teas widely consumed in Brazil were also investigated. Myricetin was not found in teas of

  4. 13C CP MAS NMR and GIAO-CHF/DFT calculations of flavonoids: Morin, kaempferol, tricin, genistein, formononetin and 3,7-dihydroxyflavone

    Science.gov (United States)

    Zielińska, Agnieszka; Paradowska, Katarzyna; Jakowski, Jacek; Wawer, Iwona

    2008-02-01

    13C CP MAS NMR spectra of the flavonoids: morin, kaempferol, 3,7-dihydroxyflavone, tricin and isoflavones: genistein and formononetin were recorded to characterize solid-state conformations. Intramolecular hydrogen bonds forming five-, six- and seven-membered rings are present in the two morin molecules in the crystals - their 13C resonances have been assigned with the aid of the calculated shielding constants. Linear relationships between the calculated shielding constants σDFT (ppm) and chemical shifts ( δCPMAS, ppm) were obtained for all studied compounds. Higher correlation coefficients suggest that the conformation with "clockwise" orientation of both OH groups is more probable in the solid 3,7-dihydroxyflavone, whereas in the solid formononetin the OH and OCH 3 substituents are directed "anticlockwise". The barrier to the rotation of phenyl ring B decreases in the order: morin (2'-OH, 3-OH) > kaempferol (3-OH) > tricin.

  5. A Nitrile Glucoside and Biflavones from the Leaves of Campylospermum excavatum (Ochnaceae).

    Science.gov (United States)

    Njock, Gaétan Bayiha Ba; Grougnet, Raphaël; Efstathiou, Antonia; Smirlis, Despina; Genta-Jouve, Grégory; Michel, Sylvie; Mbing, Joséphine Ngo; Kritsanida, Marina

    2017-11-01

    The study of the MeOH extract of the leaves of Campylospermum excavatum led to the isolation of a nitrile glucoside, named campyloside C (1) and an original derivative of ochnaflavone, 7-O-methylochnaflavone (2), along with three known biflavonoids, amentoflavone, sequoiaflavone, and sotetsuflavone (3 - 5). The linkage site of the sub-units of 2 was confirmed by chemical correlation, after semi-synthesis of a trimethoxylated derivative of ochnaflavone (2a). The structures of these compounds as well as their relative and absolute configurations were assigned by 1D- and 2D-NMR experiments, HR-ESI-MS and Electronic Circular Dichroism (ECD) calculations. A low-pass J filter HMBC experiment was performed in order to define the configuration of the double bond of 1. All of the biflavonoids were evaluated against protozoan parasites. Amentoflavone moderately inhibited the promastigote form of Leishmania infantum. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  6. Total glucosides of peony attenuates experimental autoimmune encephalomyelitis in C57BL/6 mice.

    Science.gov (United States)

    Huang, Qiling; Ma, Xiaomeng; Zhu, Dong Liang; Chen, Li; Jiang, Ying; Zhou, Linli; Cen, Lei; Pi, Rongbiao; Chen, Xiaohong

    2015-07-15

    Total glucosides of peony (TGP), an active compound extracted from the roots of Paeonia lactiflora Pall, has wide pharmacological effects on nervous system. Here we examined the effects of TGP on experimental autoimmune encephalomyelitis (EAE), an established model of multiple sclerosis (MS). The results showed that TGP can reduce the severity and progression of EAE in C57 BL/6 mice. In addition, TGP also down-regulated the Th1/Th17 inflammatory response and prevented the reduced expression of brain-derived neurotrophic factor and 2',3'-cyclic nucleotide 3'-phosphodiesterase of EAE. These findings suggest that TGP could be a potential therapeutic agent for MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Improvement of cassava for high dry matter, starch and low cyanogenic glucoside content by mutation induction

    Energy Technology Data Exchange (ETDEWEB)

    Nwachukwu, E C; Mbanaso, E N.A.; Ene, L S.O. [Plant Breeding Div., National Root Crops Research Inst., Umudike, Umuahia (Nigeria)

    1997-07-01

    Cassava (Manihot esculenta Crantz) is an important food in Nigeria. One drawback in its use as a staple food is the presence of cyanogenic glucosides which on hydrolysis produce the very toxic hydrogen cyanide (HCN). To reduce the cyanogenic levels by mutation induction, three locally adopted and high yielding varieties of cassava, TMS 30572, NR 8817 and NR 84111 were irradiated with 20, 25 and 30 Gy gamma rays. There were a wide variation in HCN, dry matter and starch content of irradiated cassava plants, screened in the MV{sub 2} propagation. Fourteen cassavavariant lines were selected for low HCN content, and 22 lines for high dry matter content. These will be further tested for yield in replicated field trials. (author). 7 refs, 3 tabs.

  8. Caffeoyl glucosides from Nandina domestica inhibit LPS-induced endothelial inflammatory responses.

    Science.gov (United States)

    Kulkarni, Roshan R; Lee, Wonhwa; Jang, Tae Su; Lee, JungIn; Kwak, Soyoung; Park, Mi Seon; Lee, Hyun-Shik; Bae, Jong-Sup; Na, MinKyun

    2015-11-15

    Endothelial dysfunction is a key pathological feature of many inflammatory diseases, including sepsis. In the present study, a new caffeoyl glucoside (1) and two known caffeoylated compounds (2 and 3) were isolated from the fruits of Nandina domestica Thunb. (Berberidaceae). The compounds were investigated for their effects against lipopolysaccharide (LPS)-mediated endothelial inflammatory responses. At 20 μM, 1 and 2 inhibited LPS-induced hyperpermeability, adhesion, and migration of leukocytes across a human endothelial cell monolayer in a dose-dependent manner suggesting that 1 and 2 may serve as potential scaffolds for the development of therapeutic agents to treat vascular inflammatory disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Rumpictuside A: Unusual 9,10-anthraquinone glucoside from Rumex pictus Forssk.

    Science.gov (United States)

    El-Kashak, Walaa A; Elshamy, Abdelsamed I; Mohamed, Tarik A; El Gendy, Abd El-Nasser G; Saleh, Ibrahim A; Umeyama, Akemi

    2017-08-07

    A new 8-ionized hydroxylated 9,10-anthraquinone namely, 1-hydroxy-3-methyl-9,10-anthraquinone-6-O-β-D-glucopyranoside-8-olate (Rumpictuside A, 1) along with five known flavonoids, apigenin 7-O-β-D-glucoside (2), vitexin (3), quercetin 3-O-β-D-glucouronide (4), orientin (5), and isorientin (6) were isolated from Rumex pictus. The structures of isolated compounds were identified by the extensive spectroscopic techniques such as, UV, FT-IR, 1D, 2D NMR and HR-FAB-ESI-MS. The ionized hydroxyl group in the new anthraquinone (1) was rarely found for anthraquinone glycosides isolated from natural sources. All the isolated compounds were found inactive against influenza A virus infection. Compounds 2-6 exhibited significant antioxidant activity against DPPH and ABTS + . The alcoholic extract exhibited moderate activity while the new anthraquinone 1 showed the lowest activity against both assays. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Improvement of cassava for high dry matter, starch and low cyanogenic glucoside content by mutation induction

    International Nuclear Information System (INIS)

    Nwachukwu, E.C.; Mbanaso, E.N.A.; Ene, L.S.O.

    1997-01-01

    Cassava (Manihot esculenta Crantz) is an important food in Nigeria. One drawback in its use as a staple food is the presence of cyanogenic glucosides which on hydrolysis produce the very toxic hydrogen cyanide (HCN). To reduce the cyanogenic levels by mutation induction, three locally adopted and high yielding varieties of cassava, TMS 30572, NR 8817 and NR 84111 were irradiated with 20, 25 and 30 Gy gamma rays. There were a wide variation in HCN, dry matter and starch content of irradiated cassava plants, screened in the MV 2 propagation. Fourteen cassavavariant lines were selected for low HCN content, and 22 lines for high dry matter content. These will be further tested for yield in replicated field trials. (author). 7 refs, 3 tabs

  11. Effect of apigenin, kaempferol and resveratrol on the gene expression and protein secretion of tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) in RAW-264.7 macrophages.

    Science.gov (United States)

    Palacz-Wrobel, Marta; Borkowska, Paulina; Paul-Samojedny, Monika; Kowalczyk, Malgorzata; Fila-Danilow, Anna; Suchanek-Raif, Renata; Kowalski, Jan

    2017-09-01

    Polyphenols such as apigenin, kaempferol or resveratrol are typically found in plants, including fruits, vegetables, herbs and spices, which have a wide range of biological functions such as antioxidative, anti-inflammatory, vasodilative, anticoagulative and proapoptotic. Discovering such multifunctional compounds in widely consumed plant-based products - ones that both inhibit the release of TNF-α from tissue macrophages and at the same time enhance the secretion of IL-10 - would be an important signpost in the quest for effective pharmacological treatment of numerous diseases that have an inflammatory etiology. The aim of the study is to investigate the impact of biologically active polyphenols such as apigenin, resveratrol and kaempferol on gene expression and protein secretion of IL-10 and TNF-α in line RAW-264.7. Cells were cultured under standard conditions. IL-10 and TNF-α genes expression were examined using QRT-PCR and to assess cytokines concentration ELISA have been used. Apigenin, kaempferol and resveratrol at a dose 30μM significantly decrease the TNF-α expression and secretion. Apigenin decrease the IL-10 expression and secretion. Furthermore, increase in IL-10 secretion after administration of kaempferol and resveratrol were observed. In the process of administration of tested compounds before LPS, which activate macrophages, decrease of TNF-α secretion after apigenin and kaempferol and increase of IL-10 secretion after resveratrol were observed. The results of present work indicate that 1) apigenin, resveratrol and kaempferol may reduce the intensity of inflammatory processes by inhibiting the secretion of proinflammatory cytokine TNF-α, and resveratrol and kaempferol additionally by increasing the secretion of anti-inflammatory cytokine IL-10 2) the studies indicate the potentially beneficial - anti-inflammatory - impact of diet rich in products including apigenin, resveratrol and kaempferol. Copyright © 2017 Elsevier Masson SAS. All rights

  12. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    Science.gov (United States)

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Kaempferol Suppresses Transforming Growth Factor-β1–Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-1791

    Science.gov (United States)

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-01-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non–small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1–induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1–mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1–mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1–induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1–mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1–induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1–induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. PMID:26297431

  14. Kaempferol-3,4'-di-O-beta-glucopyranoside-7-O-alpha-rhamnopyranoside as a new flavonoid from Iberis amara L.

    Science.gov (United States)

    Kroll, U; Reif, K; Lederer, I; Förster, G; Zapp, J

    2009-02-01

    A new flavonol glycoside, kaempferol-3,4'-di-O-beta-glucopyranoside-7-O-alpha-rhamno-pyranoside, was isolated from the ethanolic extract of the whole fresh plant of Iberis amara L., an European plant used in gastrointestinal medicine. The structure was established by a combination of 1D and 2D NMR techniques (COSY, HSQC, HMBC, NOESY) as well as UV, IR and mass spectral data.

  15. The application of continuous wavelet transform and least squares support vector machine for the simultaneous quantitative spectrophotometric determination of Myricetin, Kaempferol and Quercetin as flavonoids in pharmaceutical plants

    Science.gov (United States)

    Sohrabi, Mahmoud Reza; Darabi, Golnaz

    2016-01-01

    Flavonoids are γ-benzopyrone derivatives, which are highly regarded in these researchers for their antioxidant property. In this study, two new signals processing methods been coupled with UV spectroscopy for spectral resolution and simultaneous quantitative determination of Myricetin, Kaempferol and Quercetin as flavonoids in Laurel, St. John's Wort and Green Tea without the need for any previous separation procedure. The developed methods are continuous wavelet transform (CWT) and least squares support vector machine (LS-SVM) methods integrated with UV spectroscopy individually. Different wavelet families were tested by CWT method and finally the Daubechies wavelet family (Db4) for Myricetin and the Gaussian wavelet families for Kaempferol (Gaus3) and Quercetin (Gaus7) were selected and applied for simultaneous analysis under the optimal conditions. The LS-SVM was applied to build the flavonoids prediction model based on absorption spectra. The root mean square errors for prediction (RMSEP) of Myricetin, Kaempferol and Quercetin were 0.0552, 0.0275 and 0.0374, respectively. The developed methods were validated by the analysis of the various synthetic mixtures associated with a well- known flavonoid contents. Mean recovery values of Myricetin, Kaempferol and Quercetin, in CWT method were 100.123, 100.253, 100.439 and in LS-SVM method were 99.94, 99.81 and 99.682, respectively. The results achieved by analyzing the real samples from the CWT and LS-SVM methods were compared to the HPLC reference method and the results were very close to the reference method. Meanwhile, the obtained results of the one-way ANOVA (analysis of variance) test revealed that there was no significant difference between the suggested methods.

  16. Kaempferol Inhibits Angiogenesis by Suppressing HIF-1α and VEGFR2 Activation via ERK/p38 MAPK and PI3K/Akt/mTOR Signaling Pathways in Endothelial Cells.

    Science.gov (United States)

    Kim, Gi Dae

    2017-12-01

    Kaempferol has been shown to inhibit vascular formation in endothelial cells. However, the underlying mechanisms are not fully understood. In the present study, we evaluated whether kaempferol exerts antiangiogenic effects by targeting extracellular signal-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathways in endothelial cells. Endothelial cells were treated with various concentrations of kaempferol for 24 h. Cell viability was determined by the 3- (4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay; vascular formation was analyzed by tube formation, wound healing, and mouse aortic ring assays. Activation of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor receptor 2 (VEGFR2), ERK/p38 MAPK, and PI3K/Akt/mTOR was analyzed by Western blotting. Kaempferol significantly inhibited cell migration and tube formation in endothelial cells, and suppressed microvessel sprouting in the mouse aortic ring assay. Moreover, kaempferol suppressed the activation of HIF-1α, VEGFR2, and other markers of ERK/p38 MAPK and PI3K/Akt/mTOR signaling pathways in endothelial cells. These results suggest that kaempferol inhibits angiogenesis by suppressing HIF-1α and VEGFR2 activation via ERK/p38 MAPK and PI3K/Akt/mTOR signaling in endothelial cells.

  17. Protective Effects of Kaempferol against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart via Antioxidant Activity and Inhibition of Glycogen Synthase Kinase-3β

    Science.gov (United States)

    Zhou, Mingjie; Ren, Huanhuan; Wang, Wenjuan; Zheng, Qiusheng; Wang, Dong

    2015-01-01

    Objective. This study aimed to evaluate the protective effect of kaempferol against myocardial ischemia/reperfusion (I/R) injury in rats. Method. Left ventricular developed pressure (LVDP) and its maximum up/down rate (±dp/dt max) were recorded as myocardial function. Infarct size was detected with 2,3,5-triphenyltetrazolium chloride staining. Cardiomyocyte apoptosis was determined using terminal deoxynucleotidyl nick-end labeling (TUNEL). The levels of creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione/glutathione disulfide (GSH/GSSG) ratio, and tumor necrosis factor-alpha (TNF-α) were determined using enzyme linked immunosorbent assay (ELISA). Moreover, total glycogen synthase kinase-3β (GSK-3β), phospho-GSK-3β (P-GSK-3β), precaspase-3, cleaved caspase-3, and cytoplasm cytochrome C were assayed using Western blot analysis. Results. Pretreatment with kaempferol significantly improved the recovery of LVDP and ±dp/dt max, as well as increased the levels of SOD and P-GSK-3β and GSH/GSSG ratio. However, the pretreatment reduced myocardial infarct size and TUNEL-positive cell rate, as well as decreased the levels of cleaved caspase-3, cytoplasm cytochrome C, CK, LDH, MDA, and TNF-α. Conclusion. These results suggested that kaempferol provides cardioprotection via antioxidant activity and inhibition of GSK-3β activity in rats with I/R. PMID:26265983

  18. Genetic Variation of Flavonols Quercetin, Myricetin, and Kaempferol in the Sri Lankan Tea (Camellia sinensis L. and Their Health-Promoting Aspects

    Directory of Open Access Journals (Sweden)

    Brasathe Jeganathan

    2016-01-01

    Full Text Available Flavonol glycosides in tea leaves have been quantified as aglycones, quercetin, myricetin, and kaempferol. Occurrence of the said compounds was reported in fruits and vegetable for a long time in association with the antioxidant potential. However, data on flavonols in tea were scanty and, hence, this study aims to envisage the flavonol content in a representative pool of accessions present in the Sri Lankan tea germplasm. Significant amounts of myricetin, quercetin, and kaempferol have been detected in the beverage type tea accessions of the Sri Lankan tea germplasm. This study also revealed that tea is a good source of flavonol glycosides. The Camellia sinensis var. sinensis showed higher content of myricetin, quercetin, and total flavonols than var. assamica and ssp. lasiocalyx. Therefore flavonols and their glycosides can potentially be used in chemotaxonomic studies of tea germplasm. The nonbeverage type cultivars, especially Camellia rosaflora and Camellia japonica Red along with the exotic accessions resembling China type, could be useful in future germplasm studies because they are rich sources of flavonols, namely, quercetin and kaempferol, which are potent antioxidants. The flavonol profiles can be effectively used in choosing parents in tea breeding programmes to generate progenies with a wide range of flavonol glycosides.

  19. Kaempferol loaded lecithin/chitosan nanoparticles: preparation, characterization, and their potential applications as a sustainable antifungal agent.

    Science.gov (United States)

    Ilk, Sedef; Saglam, Necdet; Özgen, Mustafa

    2017-08-01

    Flavonoid compounds are strong antioxidant and antifungal agents but their applications are limited due to their poor dissolution and bioavailability. The use of nanotechnology in agriculture has received increasing attention, with the development of new formulations containing active compounds. In this study, kaempferol (KAE) was loaded into lecithin/chitosan nanoparticles (LC NPs) to determine antifungal activity compared to pure KAE against the phytopathogenic fungus Fusarium oxysporium to resolve the bioavailability problem. The influence of formulation parameters on the physicochemical properties of KAE loaded lecithin chitosan nanoparticles (KAE-LC NPs) were studied by using the electrostatic self-assembly technique. KAE-LC NPs were characterized in terms of physicochemical properties. KAE has been successfully encapsulated in LC NPs with an efficiency of 93.8 ± 4.28% and KAE-LC NPs showed good physicochemical stability. Moreover, in vitro evaluation of the KAE-LC NP system was made by the release kinetics, antioxidant and antifungal activity in a time-dependent manner against free KAE. Encapsulated KAE exhibited a significantly inhibition efficacy (67%) against Fusarium oxysporium at the end of the 60 day storage period. The results indicated that KAE-LC NP formulation could solve the problems related to the solubility and loss of KAE during use and storage. The new nanoparticle system enables the use of smaller quantities of fungicide and therefore, offers a more environmentally friendly method of controlling fungal pathogens in agriculture.

  20. A fragmentation study of kaempferol using electrospray quadrupole time-of-flight mass spectrometry at high mass resolution

    Science.gov (United States)

    March, Raymond E.; Miao, Xiu-Sheng

    2004-02-01

    A mass spectrometric method based on the combined use of electrospray ionization, collision-induced dissociation and tandem mass spectrometry at high mass resolution has been applied to an investigation of the structural characterization of protonated and deprotonated kaempferol (3,5,7,4'-tetrahydroxyflavone). Low-energy product ion mass spectra of [M+H]+ ions showed simple fragmentations of the C ring that permitted characterization of the substituents in the A and B rings. In addition, four rearrangement reactions accompanied by losses of C2H2O, CHO[radical sign], CO, and H2O were observed. Low-energy product ion mass spectra of [M-H]- ions showed only four rearrangement reactions accompanied by losses of OH[radical sign], CO, CH2O, and C2H2O. The use of elevated cone voltages permitted observation of product ion mass spectra of selected primary and secondary fragment ions so that each fragment ion reported was observed as a direct product of its immediate precursor ion. Product ion mass spectra examined at high mass resolution allowed unambiguous determination of the elemental composition of fragment ions and resolution of two pairs of isobars. Fragmentation mechanisms and ion structures have been proposed.

  1. Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury

    Science.gov (United States)

    Suchal, Kapil; Malik, Salma; Gamad, Nanda; Malhotra, Rajiv Kumar; Goyal, Sameer N.; Chaudhary, Uma; Bhatia, Jagriti; Ojha, Shreesh; Arya, Dharamvir Singh

    2016-01-01

    Kaempferol (KMP), a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR) model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p.) was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB), inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3), TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2). In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway. PMID:27087891

  2. Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Kapil Suchal

    2016-01-01

    Full Text Available Kaempferol (KMP, a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p. was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB, inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3, TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2. In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway.

  3. Synthesis and Protective Effects of Kaempferol-3'-sulfonate on Hydrogen Peroxide-induced injury in Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Yang, Xinbin; Wang, Qin; Wang, Chunmei; Qin, Xiaolin; Huang, Yu; Zeng, Renquan

    2016-06-01

    A novel water-soluble sulfated derivative, kaempferol-3'-sulfonate acid sodium (KS) with the composition of [C15 H9 O9 SNa]·2.5H2 O, was synthesized and characterized by elemental analysis, IR, (1) H NMR, (13) C NMR, and HRMS. Its protective effects on human vascular smooth muscle cells injured by hydrogen peroxide were evaluated by CCK-8 method, flow cytometry, and Western blotting. The experimental results indicated that the KS can significantly increase cell viability and reduce apoptosis on H2 O2 -injured VSMCs, as well as reverse the effects of H2 O2 on Bcl-2, Bad, and caspase-3 expressions. In addition, LDH leakage, MDA levels, and SOD and GSH activities were also measured with spectrophotometry. The results indicated that the KS acted as antioxidant preventing LDH leakage and MDA production, while increasing intracellular SOD and GSH activities. These findings revealed that KS might potentially serve as an effective antioxidant agent for prevention and treatment of vascular disease caused by H2 O2 -injured VSMCs. © 2015 John Wiley & Sons A/S.

  4. Synthesis, Characterization, DNA Interaction, and Antitumor Activities of La (III) Complex with Schiff Base Ligand Derived from Kaempferol and Diethylenetriamine.

    Science.gov (United States)

    Wang, Qin; Huang, Yu; Zhang, Jin-Sheng; Yang, Xin-Bin

    2014-01-01

    A novel La (III) complex, [LaL(H2O)3]NO3 ·3H2O, with Schiff base ligand L derived from kaempferol and diethylenetriamine, has been synthesized and characterized by elemental analysis, IR, UV-visible, (1)H NMR, thermogravimetric analysis, and molar conductance measurements. The fluorescence spectra, circular dichroism spectra, and viscosity measurements and gel electrophoresis experiments indicated that the ligand L and La (III) complex could bind to CT-DNA presumably via intercalative mode and the La (III) complex showed a stronger ability to bind and cleave DNA than the ligand L alone. The binding constants (K b ) were evaluated from fluorescence data and the values ranged from 0.454 to 0.659 × 10(5) L mol(-1) and 1.71 to 17.3 × 10(5) L mol(-1) for the ligand L and La (III) complex, respectively, in the temperature range of 298-310 K. It was also found that the fluorescence quenching mechanism of EB-DNA by ligand L and La (III) complex was a static quenching process. In comparison to free ligand L, La (III) complex exhibited enhanced cytotoxic activities against tested tumor cell lines HL-60 and HepG-2, which may correlate with the enhanced DNA binding and cleaving abilities of the La (III) complex.

  5. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate

    Directory of Open Access Journals (Sweden)

    Clemens Schmeitzl

    2015-08-01

    Full Text Available Deoxynivalenol (DON is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON, 15-acetyl-DON (15-ADON and 3,15-diacetyl-DON (3,15-diADON, and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G and of 15-acetyl-DON-3-sulfate (15-ADON3S as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G. This study highlights significant differences in the metabolization of DON and its acetylated derivatives.

  6. Kaempferol protects against propacetamol-induced acute liver injury through CYP2E1 inactivation, UGT1A1 activation, and attenuation of oxidative stress, inflammation and apoptosis in mice.

    Science.gov (United States)

    Tsai, Ming-Shiun; Wang, Ying-Han; Lai, Yan-Yun; Tsou, Hsi-Kai; Liou, Gan-Guang; Ko, Jiunn-Liang; Wang, Sue-Hong

    2018-06-15

    Acetaminophen (APAP) overdose can induce acute liver injury (ALI) with significant morbidity and mortality. Propacetamol is an APAP prodrug, which is clinically bioequivalent to APAP. Kaempferol, a dietary flavonoid, has antioxidant, anti-inflammatory, and anti-apoptotic effects. In this study, we investigated the protective effect of kaempferol on propacetamol-induced ALI and its underlying mechanism in mice. Kaempferol pretreatment (125 mg/kg) before propacetamol injection significantly decreased propacetamol-induced serum ALT and AST activities, and DNA fragmentation. Kaempferol administration also reduced propacetamol-induced oxidative stress by inhibiting thiobarbituric acid reactive substances (TBARS) and 3-nitrotyrosine (3-NT) formation partly through downregulation of cytochrome P450 2E1 (CYP2E1) expression, upregulation of UDP glucuronosyltransferase family 1 member A1 (UGT1A1) expression, restoration of the activities of antioxidant enzymes including SOD, GPx and catalase toward normal, recovery of propacetamol-suppressed Nrf2 and GCLC expressions, and maintenance of normal glutathione level. Furthermore, kaempferol markedly attenuated APAP-induced serum TNF-α and IL-6 productions, downregulated APAP-induced phosphorylations of JNK and ERK, and decreased early hepatic apoptosis via decreasing Bax/Bcl-2 ratio and caspase 3 activation. Furthermore, administration of N-acetylcysteine (NAC) and kaempferol significantly rescued more mice than a low dose of NAC only did when a lethal dose of propacetamol injected and therapized at a delayed time point. These data suggested that kaempferol protects the liver against propacetamol-induced injury through anti-oxidative, anti-inflammatory and anti-apoptotic activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Simultaneous determination of anthraquinones, their 8-beta-D-glucosides, and sennosides of Rhei Rhizoma by capillary electrophoresis.

    Science.gov (United States)

    Koyama, Junko; Morita, Izumi; Fujiyoshi, Hirotaka; Kobayashi, Norihiro

    2005-05-01

    The simultaneous separation and determination of major anthraquinones (emodin, chrysophanol, rhein and their glucosides, aloe-emodin, sennoside A, and sennoside B) of Rhei Rhizoma were achieved by cyclodextrin modified capillary zone electrophoresis. The running electrolyte used in this method was 0.005 M alpha-cyclodextrin in 0.03 M borate buffer (pH 10.0) containing 20% acetonitrile, with an applied voltage of 20 kV.

  8. C-Aryl glucoside SGLT2 inhibitors containing a biphenyl motif as potential anti-diabetic agents.

    Science.gov (United States)

    Ding, Yuyang; Mao, Liufeng; Xu, Dengfeng; Xie, Hui; Yang, Ling; Xu, Hongjiang; Geng, Wenjun; Gao, Yong; Xia, Chunguang; Zhang, Xiquan; Meng, Qingyi; Wu, Donghai; Zhao, Junling; Hu, Wenhui

    2015-07-15

    A series of highly active C-aryl glucoside SGLT2 inhibitors containing a biphenyl motif were designed and synthesized for biological evaluation. Among the compounds tested, compound 16l demonstrated high inhibitory activity against SGLT2 (IC50=1.9 nM) with an excellent pharmacokinetic profile. Further study indicated that the in vivo efficacy of compound 16l was comparable to that of dapagliflozin, suggesting that further development would be worthwhile. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. High-resolution MALDI mass spectrometry imaging of gallotannins and monoterpene glucosides in the root of Paeonia lactiflora

    DEFF Research Database (Denmark)

    Li, Bin; Bhandari, Dhaka Ram; Römpp, Andreas

    2016-01-01

    histochemical studies of tannins using unspecific staining reagents, individual gallotannin species were accurately localized and unequivocally discriminated from other phenolic components in the root tissues. High-quality ion images were obtained, providing significant clues for understanding the biosynthetic...... pathway of gallotannins and monoterpene glucosides and possibly helping to decipher the role of tannins in xylem cells differentiation and in the defence mechanisms of plants, as well as to investigate the interrelationship between tannins and lignins....

  10. Protective effects of total glucosides of paeony and the underlying mechanisms in carbon tetrachloride-induced experimental liver injury

    Science.gov (United States)

    Qin, Ying; Tian, Ya-ping

    2011-01-01

    Introduction We explored the protective effects of total glucosides of paeony (TGP) and the underlying mechanisms in carbon tetrachloride (CCl4)-induced experimental liver injury in mice. Material and methods Chronic liver damage was induced by intraperitoneal injection of CCl4 (0.5 µl/g) three times per week for 8 weeks. Mice also received 25, 50 or 100 mg/kg TGP. Liver sections were stained with haematoxylin/eosin. Serum amino transferases, lipid peroxidation and tumour necrosis factor-α (TNF-α) levels were determined using commercial assays. Quantitative real-time polymerase chain reaction was used to determine the changes in hepatic TNF-α, COX-2, iNOS and HO-1 expression. Protein levels of nitric oxide synthase, cyclooxygenase-2, haem oxygenase-1 and cytochrome P450 2E1 were determined by western blotting. Results Histological results showed that TGP improved the CCl4-induced changes in liver structure and alleviated lobular necrosis. The increases in serum protein and hepatic mRNA expression of TNF-α induced by CCl4 treatment were suppressed by TGP. Total glucosides of paeony also attenuated the increase the expression in iNOS and CYP2E1 but augmented the increase in HO-1.The mRNA and protein expression levels of inducible HO-1 increased significantly after CCl4 treatment. Conclusions Total glucosides of paeony protects hepatocytes from oxidative damage induced by CCl4. Total glucosides of paeony may achieve these effects by enhancing HO-1 expression and inhibiting the expression of proinflammatory mediators. PMID:22291795

  11. Stability, Antioxidant Capacity and Degradation Kinetics of Pelargonidin-3-glucoside Exposed to Ultrasound Power at Low Temperature

    OpenAIRE

    Jianxia Sun; Zhouxiong Mei; Yajuan Tang; Lijun Ding; Guichuan Jiang; Chi Zhang; Aidong Sun; Weibin Bai

    2016-01-01

    As an alternative preservation method to thermal treatment, ultrasound is a novel non-thermal processing technology that can significantly avoid undesirable nutritional changes. However, recently literature indicated that anthocyanin degradation occurred when high amplitude ultrasound was applied to juice. This work mainly studied the effect of ultrasound on the stability and antioxidant capacity of pelargonidin-3-glucoside (Pg-3-glu) and the correlation between anthocyanin degradation and •O...

  12. Diversified glucosinolate metabolism: biosynthesis of hydrogen cyanide and of the hydroxynitrile glucoside alliarinoside in relation to sinigrin metabolism in Alliaria petiolata

    Directory of Open Access Journals (Sweden)

    Tina eFrisch

    2015-10-01

    Full Text Available Alliaria petiolata (garlic mustard, Brassicaceae contains the glucosinolate sinigrin as well as alliarinoside, a γ-hydroxynitrile glucoside structurally related to cyanogenic glucosides. sinigrin may defend this plant against a broad range of enemies, while alliarinoside confers resistance to specialized (glucosinolate-adapted herbivores. Hydroxynitrile glucosides and glucosinolates are two classes of specialized metabolites, which generally do not occur in the same plant species. Administration of [UL-14C]-methionine to excised leaves of A. petiolata showed that both alliarinoside and sinigrin were biosynthesized from methionine. The biosynthesis of alliarinoside was shown not to bifurcate from sinigrin biosynthesis at the oxime level in contrast to the general scheme for hydroxynitrile glucoside biosynthesis. Instead, the aglucon of alliarinoside was formed from metabolism of sinigrin in experiments with crude extracts, suggesting a possible biosynthetic pathway in intact cells. Hence, the alliarinoside pathway may represent a route to hydroxynitrile glucoside biosynthesis resulting from convergent evolution. Metabolite profiling by LC-MS showed no evidence of the presence of cyanogenic glucosides in A. petiolata. However, we detected hydrogen cyanide (HCN release from sinigrin and added thiocyanate ion and benzyl thiocyanate in A. petiolata indicating an enzymatic pathway from glucosinolates via allyl thiocyanate and indole glucosinolate derived thiocyanate ion to HCN. Alliarinoside biosynthesis and HCN release from glucosinolate-derived metabolites expand the range of glucosinolate-related defences and can be viewed as a third line of defence, with glucosinolates and thiocyanate forming protein being the first and second lines, respectively.

  13. Cool-cultivated red leaf lettuce accumulates cyanidin-3-O-(6″-O-malonyl)-glucoside and caffeoylmalic acid.

    Science.gov (United States)

    Becker, Christine; Klaering, Hans-Peter; Kroh, Lothar W; Krumbein, Angelika

    2014-03-01

    Cultivating lettuce in greenhouses at low temperatures improves its CO2-balance and may increase its content of flavonoid glycosides and phenolic acids. We cultivated 5weeks old red leaf lettuce seedlings at 20/15°C (day/night) or 12/7°C until plants reached comparable growth stages: small heads were harvested after 13 (warm) and 26 (cool)days, while mature heads were harvested after 26 (warm) or 52 (cool)days. Additionally, some plants were cultivated first cool then warm and vice versa (39days). Cool-cultivated small heads had higher concentrations of cyanidin-3-O-(6″-O-malonyl)-glucoside and caffeoylmalic acid than warm-cultivated ones but we detected no differences concerning quercetin and luteolin glycosides or di-O-caffeoyltartaric and 5-O-caffeoylquinic acid. Regarding mature heads, there were only differences concerning cyanidin-3-O-(6″-O-malonyl)-glucoside. We therefore suggest that only cyanidin-3-O-(6″-O-malonyl)-glucoside was truly responsive to temperatures alone. Previously reported contrasting effects may rather be due to comparison of different growth stages or interactive effects with radiation. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Flavonoids of Helichrysum compactum and their antioxidant and antibacterial activity.

    Science.gov (United States)

    Süzgeç, Sevda; Meriçli, Ali H; Houghton, Peter J; Cubukçu, Bayhan

    2005-03-01

    From the capitula of Helichrysum compactum, the flavonoids apigenin, kaempferol, luteolin, naringenin, 3,5-dihydroxy-6,7,8-trimethoxyflavone, kaempferol-3-O-glucoside, luteolin-7-O-glucoside and luteolin-4',7-di-O-glucoside and from the leafy stems apigenin, kaempferol, luteolin, quercetin, apigenin-7-O-glucoside, luteolin-7-O-glucoside, and quercetin-3-O-glucoside were isolated. Extracts of the capitula of H. compactum show antioxidant activity by inhibition of lipid peroxidation and also show antibacterial activity.

  15. Pterostilbene 4′-β-Glucoside Protects against DSS-Induced Colitis via Induction of Tristetraprolin

    Directory of Open Access Journals (Sweden)

    Yingqing Chen

    2017-01-01

    Full Text Available Pterostilbene, a dimethyl ester analog of resveratrol, has anti-inflammatory and antioxidative effects and alters cell proliferation. Tristetraprolin (TTP promotes the degradation of proinflammatory mediators via binding to adenosine and uridine- (AU- rich elements (ARE located in the 3′-untranslated regions of mRNAs. Here, we utilized pterostilbene 4′-β-glucoside (4-PG, a compound derived from pterostilbene, to investigate whether it has anti-inflammatory effects on dextran sulfate sodium- (DSS- induced colitis via TTP enhancement. TTP expression was increased in 4-PG dose- and time-dependent manners in RAW264.7 cells. The production of proinflammatory cytokine, such as TNF-α, was reduced by 4-PG in vitro. To investigate the role of TTP in the anti-inflammatory effects of 4-PG, we used DSS-induced colitis in TTP WT and KO mice as models. The expression levels of TTP and proinflammatory cytokines were determined in serum and colon tissue. 4-PG increased the expression of TTP while suppressing proinflammatory cytokines both in vitro and in vivo. These findings suggest that treatment with 4-PG mediates the anti-inflammatory effects of 4-PG on DSS-induced colitis via enhancing TTP expression.

  16. Thermal treatment of luteolin-7-O-β-glucoside improves its immunomodulatory and antioxidant potencies.

    Science.gov (United States)

    Maatouk, Mouna; Mustapha, Nadia; Mokdad-Bzeouich, Imen; Chaaban, Hind; Abed, Besma; Iaonnou, Irina; Ghedira, Kamel; Ghoul, Mohamed; Ghedira, Leila Chekir

    2017-11-01

    Phytochemicals extracted from flowers, roots and bark, leaves, and other plant sources have been used extensively throughout human history with varying levels of efficacy in prevention and treatment of disease. Recently, advanced methods for characterization and clinical use of these materials have allowed modern understanding of their properties to be used as immunomodulatory agents that act by enhancement of endogenous cytoprotective mechanisms, avoiding interference with normal physiologic signaling and highly effective medical treatment with minimal adverse side effects. Simple methods have been identified for improving their biological effects, such as thermal conditioning by heating or freezing-prominent example being heat treatment of lycopene and tetrahydrocannabinol. The present investigation shows improvement of the ability of heat to augment splenocyte proliferation, natural killer (NK) cell activities, and antioxidant capacity of the flavonoid luteolin-7-O-β-glucoside (L7G) in comparison with the native (non heat-treated) molecule, while further demonstrating that both the native and the heat-treated variants exhibit comparable antioxidant properties, as evidenced by their effects in macrophages by inhibition of nitric oxide production and lysosomal enzyme activity in experiments that strengthen lysosomal membrane integrity. Outcomes of these studies suggest that heat-treated L7G shows promise for use in immunotherapy, including anti-cancer regimens, as shown by its improvement of NK cell cytotoxicity.

  17. C-glucosidic ellagitannins from Lythri herba (European Pharmacopoeia): chromatographic profile and structure determination.

    Science.gov (United States)

    Piwowarski, Jakub P; Kiss, Anna K

    2013-01-01

    Lythri herba, a pharmacopoeial plant material (European Pharmacopoea), is obtained from flowering parts of purple loosestrife (Lythrum salicaria L.). Although extracts from this plant material have been proven to possess some interesting biological activities and its pharmacopoeial standardisation is based on total tannin content determination, the phytochemical characterisation of this main group of compounds has not yet been fully conducted. To isolate ellagitannins from Lythri herba, determine their structures and develop chromatographic methods for their qualitative analysis. Five C-glucosidic ellagitannins - monomeric- vescalagin and castalagin together with new dimeric structures - salicarinins A-C, composed of vescalagin and stachyurin, vescalagin and casuarinin, castalagin and casuarinin units connected via formation of valoneoyl group, were isolated using column chromatography and preparative HPLC. Structures were determined according to (1) H and (13) C-NMR (one- and two-dimensional), electrospray ionisation-time of flight (ESI-TOF), electrospray ionisation-ion trap (ESI-MS(n) ) and circular dichroism (CD) spectra, together with acidic hydrolysis products analysis. HPTLC on RP-18 modified plates and HPLC-DAD-MS(n) on RP-18 column methods were developed for separation of the five main ellagitannins. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Proanthocyanidin profile of cowpea (Vigna unguiculata) reveals catechin-O-glucoside as the dominant compound.

    Science.gov (United States)

    Ojwang, Leonnard O; Yang, Liyi; Dykes, Linda; Awika, Joseph

    2013-08-15

    Proanthocyanidin (PA) profile and content can have important nutritional and health implications on plant foods. Six diverse cowpea phenotypes (black, red, green, white, light-brown and golden-brown) were investigated for PA composition using normal-phase HPLC and reversed-phase UPLC-TQD-MS. Catechin and (epi)afzelechin were the major flavan-3-ol units. Unusual composition was observed in all cowpea phenotypes with significant degrees of glycosylation in the monomers and dimers. The PA content of cowpea (dry basis) ranged between 2.2 and 6.3 mg/g. Monomeric flavan-3-ols were the largest group of PA (36-69%) in cowpea, with catechin-7-O-glucoside accounting for most (about 88%) of the monomers. The oligomers with degree of polymerization (DP) 2-4 ranged from 0.41 to 1.3 mg/g (15-20%), whereas DP>10 polymers accounted for only 13.5% of PA. Future studies that highlight the impact of the unusual cowpea PA profile on nutritional and bioactive properties of this important legume are warranted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Prophylactic Efficacy of Quercetin 3-β-O-d-Glucoside against Ebola Virus Infection.

    Science.gov (United States)

    Qiu, Xiangguo; Kroeker, Andrea; He, Shihua; Kozak, Robert; Audet, Jonathan; Mbikay, Majambu; Chrétien, Michel

    2016-09-01

    Ebola outbreaks occur on a frequent basis, with the 2014-2015 outbreak in West Africa being the largest one ever recorded. This outbreak has resulted in over 11,000 deaths in four African countries and has received international attention and intervention. Although there are currently no approved therapies or vaccines, many promising candidates are undergoing clinical trials, and several have had success in promoting recovery from Ebola. However, these prophylactics and therapeutics have been designed and tested only against the same species of Ebola virus as the one causing the current outbreak. Future outbreaks involving other species would require reformulation and possibly redevelopment. Therefore, a broad-spectrum alternative is highly desirable. We have found that a flavonoid derivative called quercetin 3-β-O-d-glucoside (Q3G) has the ability to protect mice from Ebola even when given as little as 30 min prior to infection. Furthermore, we have demonstrated that this compound targets the early steps of viral entry. Most promisingly, antiviral activity against two distinct species of Ebola virus was seen. This study serves as a proof of principle that Q3G has potential as a prophylactic against Ebola virus infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Effect of heat/pressure on cyanidin-3-glucoside ethanol model solutions

    International Nuclear Information System (INIS)

    Corrales, M; Lindauer, R; Butz, P; Tauscher, B

    2008-01-01

    The stability of cyanidin-3-glucoside (Cy3gl) in 50% ethanol model solutions under heat/pressure treatments was investigated. Cy3gl was rapidly degraded when solutions were subjected to a heat/pressure treatment. The higher the pressure and the temperature used, the higher the degradation. Moreover, the degradation was increased according to increasing holding times. Parallel to the degradation of Cy3gl several hydrolytic products were formed and identified by LC-DAD/ESI-MS. The degradation of Cy3gl was well fitted to a first order reaction (R=0.99). This study pointed out the rate of susceptibility of Cy3gl in model solutions to degrade when exposed to a heat/pressure treatment and the trigger effect of high hydrostatic pressure to hydrolyse Cy3gl. By contrast, the degradation of anthocyanins in a food matrix (red grape extract solutions) was negligible after a heat/pressure process at 600MPa, 70 deg. C during 1h (P >0.05)

  1. [Research progress of pharmacokinetics and pharmacodynamics of total glucosides of peony in hepatoprotective effects].

    Science.gov (United States)

    Zuo, Zhi-Yan; Zhan, Shu-Yu; Huang, Xuan; Ding, Bao-Yue; Liu, Yu-Qian; Ruan, Yu-Er; Jiang, Ning-Hua

    2017-10-01

    Total glucosides of peony (TGP), containing the effective components of paeoniflorin (Pae), albiflorin (Alb) and so on, are effective parts of Radix Paeoniae Alba. And it possesses extensive pharmacological actions, one of which is hepatoprotective effect. In recent years, abundant of pharmacokinetics and pharmacodynamics research of TGP in hepatoprotective effects have been performed. However, the relative medicine of TGP in hepatoprotective effect has not been developed for clinical application. In order to provide reference for the development and rational clinical application of TGP, the research progresses of pharmacokinetics and pharmacodynamics of TGP in hepatoprotective effect were summarized in this paper. Pharmacokinetics research has clarified the process of absorption, distribution, metabolism and excretion of TGP in vivo, and liver injury disease can significantly influence its metabolic processes. Pharmacodynamics studies suggested that TGP can protect against acute liver injury, non-alcoholic fatty liver diseases (NAFLD), chronic liver fibrosis and liver cancer. However, the action mechanism and in vivo process about hepatoprotective effects of TGP have not been clearly revealed. How liver injury influences the metabolism of TGP and its integrated regulation through multiple targets need to be further studied. The combined pharmacokinetics and pharmacodynamics studies should be performed in favour of medicine development and clinical application of TGP in hepatoprotective effects. Copyright© by the Chinese Pharmaceutical Association.

  2. [Therapeutic effect of total glucosides of paeony on lupus nephritis in MRL/lpr mice].

    Science.gov (United States)

    Ding, Zhao-Xia; Yang, Shao-Feng; Wu, Qi-Fu; Lu, Ying; Chen, Yu-Yao; Nie, Xiao-Li; Jie, Hong-Yu; Qi, Jing-Min; Wang, Fan-Sheng

    2011-04-01

    To observe the therapeutic effect of total glucosides of paeony (TGP) on lupus nephritis (LN) in MRL/lpr mice. MRL/lpr mice with lupus nephritis were randomized into model group and TGP group. The urinary protein content was detected using Coomassie brilliant blue, and the serum levels of IgG anti-double-stranded DNA (dsDNA) antibodies and antinuclear antibodies (ANA) were measured by enzyme-linked immunosorbent assay (ELISA). The changes in the renal pathology were examined microscopically, and the spleen and thymus were weighed to calculate the spleen and thymus indexes. At 15 and 30 days after TGP administration, the urinary protein content in the TGP group was significantly lower than that in the model group (PTGP treatment significantly lowered the serum levels of anti-dsDNA antibodies and ANA and the weight and index of spleen (PTGP treatment, the urinary protein content and the levels of anti-dsDNA antibodies and ANA decreased significantly at 15 and 30 days after TGP administration (PTGP administration, the urinary protein content was significantly lowered in the TGP group as compared to that at 15 days (PTGP can reduce urinary protein content and serum levels of anti-dsDNA antibodies and ANA, and lessen renal pathology in MRL/lpr mice with lupus nephritis, suggesting its therapeutic effect on lupus nephritis.

  3. Effects of total glucosides of paeony for delaying onset of Sjogren's syndrome: an animal study.

    Science.gov (United States)

    Li, Chun Lei; He, Jing; Li, Zhan Guo; Zheng, Li Wu; Hua, Hong

    2013-10-01

    To investigate the effectiveness of total glucosides of paeony (TGP) on Sjogren's syndrome (SS) using non-obese diabetic (NOD) mice model. Twenty-seven 8-week-old female NOD mice were assigned into TGP group, hydroxychloroquine (HCQ) group and normal saline (NS) group, receiving corresponding drugs respectively and sacrificed at 24-week-old. Saliva flow rate (SFR), ration of regulatory T cells, level of anti-SSA/SSB, histological changes in submandibular glands (SMG) and microarray analysis were assessed. The data were analyzed using SPSS. Compared to NS group, in TGP group, SFR, SMG index and the ration of regulatory T cells were significantly higher, while anti-SSA/SSB and lymphocytic foci were significantly lower. HCQ group demonstrated similar results except SMG index. Altered gene expression was found in 10.71% of TGP and 13.09% of HCQ of the profile. TGP demonstrated a similar effectiveness as HCQ in delaying the onset of SS-like disease in NOD mice. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Renoprotective Effects of Total Glucosides from Paeony against Nephrotoxicity Induced by Total Alkaloids from Semen Strychni

    Directory of Open Access Journals (Sweden)

    Mingming Lv

    2017-01-01

    Full Text Available Semen Strychni have been shown to have therapeutic effect in improving blood circulation, relieving rheumatic pain, and treating cancer. However, Semen Strychni could cause severe nephrotoxicity. The present study was designed to evaluate whether treatment with total glucosides from paeony (TGP has renoprotective effect against nephrotoxicity induced by total alkaloids from Semen Strychni (TAS. The levels of blood urea nitrogen (BUN and creatinine (Cr were determined and histopathological changes were also examined to evaluate renal injury. Moreover, a HPLC-MS method was developed and validated to investigate the comparative toxicokinetics of strychnine and brucine in rats plasma after oral administration of TAS and pretreatment with TGP. Results demonstrated that the levels of BUN and Cr were significantly increased (p<0.05 in TAS group, together with tubule epithelium cloudy swelling, degeneration, and glomerular atrophy in rats’ kidneys. The TAS-induced kidney damage was alleviated after pretreatment with TGP. Besides, Tmax of strychnine and brucine were increased and T1/2 of strychnine and brucine were decreased after pretreatment with TGP. The toxicokinetics study showed that pretreatment with TGP could attenuate the absorption of strychnine and brucine, as well as accelerate their elimination. These results suggest that TGP possesses renoprotective effects.

  5. Renoprotective effect of total glucosides of paeony (TGP) and its mechanism in experimental diabetes.

    Science.gov (United States)

    Wu, Yonggui; Ren, Kejun; Liang, Chao; Yuan, Liang; Qi, Xiangming; Dong, Jing; Shen, Jijia; Lin, Shanyan

    2009-01-01

    Total glucosides of paeony (TGP), extracted from the root of Paeonia lactiflora pall, has been shown to have ant-inflammatory and antioxidative actions. The aims of this study were to elucidate the renoprotective effect of TGP and its mechanism in experimental diabetes. Streptozotocin-induced diabetic rats were treated with TGP for 8 weeks. Treatment with TGP at 50, 100, and 200 mg/kg significantly lowered 24-h urinary albumin excretion rate in diabetic rats. TGP treatment in all doses markedly attenuated glomerular volume, and treatment with TGP at 100 and 200 mg/kg markedly reduced indices for tubulointerstitial injury in diabetic rats. Western blot analysis showed that the expressions of 1 alpha (IV) collagen, intercellular adhesion molecule (ICAM)-1, interleukin (IL)-1, tumor necrosis factor (TNF)-alpha, NF-kappaB p65, and 3-nitrotyrosine (3-NT) protein were increased in the kidneys of diabetic rats; the increases in these proteins were all dose-dependently and significantly inhibited by TGP treatment. The expression of nephrin protein was significantly reduced in the kidneys from diabetic rats and markedly increased by TGP treatment. The expression of transforming growth factor (TGF)-beta1 protein in the kidney was also significantly increased in diabetic rats, which was significantly inhibited by treatment with TGP at all doses. Our data suggest that TGP treatment ameliorates early renal injury via the inhibition of expression of ICAM-1, IL-1, TNF-alpha, and 3-NT in the kidneys of diabetic rats.

  6. [Study on total glucosides of peony preventing non-obese diabetic mice from sialoadenitis].

    Science.gov (United States)

    Li, Chun-Lei; He, Jing; Hua, Hong

    2011-04-01

    To investigate the immunosuppressive effect of total glucosides of peony (TGP) on sialoadenitis in non-obese diabetic mice (NOD mice) and explore its possible mechanism. 27 female five-week-old NOD mice were randomly divided into three groups: TGP, hydroxychloroquine (HCQ) and normal saline (NS) group. One week later, they were administered intragastrically in TGP, HCQ and NS respectively. Three mice from each group were sacrificed at the age of 10, 15 and 20 weeks. The saliva flow, serum and submandibular glands were collected at these time points. Histological changes of submandibular glands were examined by HE staining. The expression of autoantibodies (SSA, SSB and anti-alpha-fodrin) and associated cytokines in serum were detected by enzyme-linked immunosorbent assay (ELISA). Compared with the NS group, salivary flow was significantly increased, the extent of the histological changes were ameliorated, the autoantibodies in serum were significantly decreased and the imbalance of Th1/Th2 cytokines was remedied in the mice treated with TGP and HCQ. There were no significant differences between the two groups treated with TGP and HCQ (P > 0.05). TGP can effectively ameliorate sialoadenitis on NOD mice. The mechanism was thought to be associated with the protection of submandibular gland from intense inflammation and the correction of Th1/Th2 cytokines imbalance.

  7. Total glucosides of Paeonia lactiflora Pall inhibit vascular endothelial growth factor-induced angiogenesis.

    Science.gov (United States)

    Deng, Hui; Yan, Chunlin; Xiao, Tian; Yuan, Dingfen; Xu, Jinhua

    2010-02-17

    To evaluate the anti-angiogenesis effect of total glucosides of Paeonia lactiflora Pall. In this study, we determined the effect of TGP on the proliferation of human vascular endothelial cells through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and fluorescence-activated cell sorting analysis. A migration assay and a tube formation assay were used to investigate the migration properties and tube formation abilities of human vascular endothelial cells after being treated with TGP. Furthermore, the in vivo anti-angiogenic ability of TGP was determined through a chick chorioallantoic membrane assay. TGP (12.5, 62.5, and 312.5 microg/ml) resulted in a dose-dependent reduction in the proliferation of endothelial cells. This inhibition effect began 6h after treatment and lasted at least 24h. Fluorescence-activated cell sorting analysis data showed an accumulation of cells in the G0/G1 phase of the cell cycle, which exhibited apoptotic features indicative of cell death. The migration properties and tube forming abilities of endothelial cells were dramatically inhibited by the TGP extract. Our results show that TGP can inhibit angiogenesis in vitro and in vivo. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  8. Screening and evaluation of the glucoside hydrolase activity in Saccharomyces and Brettanomyces brewing yeasts.

    Science.gov (United States)

    Daenen, L; Saison, D; Sterckx, F; Delvaux, F R; Verachtert, H; Derdelinckx, G

    2008-02-01

    The aim of this study was to select and examine Saccharomyces and Brettanomyces brewing yeasts for hydrolase activity towards glycosidically bound volatile compounds. A screening for glucoside hydrolase activity of 58 brewing yeasts belonging to the genera Saccharomyces and Brettanomyces was performed. The studied Saccharomyces brewing yeasts did not show 1,4-beta-glucosidase activity, but a strain dependent beta-glucanase activity was observed. Some Brettanomyces species did show 1,4-beta-glucosidase activity. The highest constitutive activity was found in Brettanomyces custersii. For the most interesting strains the substrate specificity was studied and their activity was evaluated in fermentation experiments with added hop glycosides. Fermentations with Br. custersii led to the highest release of aglycones. Pronounced exo-beta-glucanase activity in Saccharomyces brewing yeasts leads to a higher release of certain aglycones. Certain Brettanomyces brewing yeasts, however, are more interesting for hydrolysis of glycosidically bound volatiles of hops. The release of flavour active compounds from hop glycosides opens perspectives for the bioflavouring and product diversification of beverages like beer. The release can be enhanced by using Saccharomyces strains with high exo-beta-glucanase activity. Higher activities can be found in Brettanomyces species with beta-glucosidase activity.

  9. Effects of glyceryl glucoside on AQP3 expression, barrier function and hydration of human skin.

    Science.gov (United States)

    Schrader, A; Siefken, W; Kueper, T; Breitenbach, U; Gatermann, C; Sperling, G; Biernoth, T; Scherner, C; Stäb, F; Wenck, H; Wittern, K-P; Blatt, T

    2012-01-01

    Aquaporins (AQPs) present in the epidermis are essential hydration-regulating elements controlling cellular water and glycerol transport. In this study, the potential of glyceryl glucoside [GG; alpha-D-glucopyranosyl-alpha-(1->2)-glycerol], an enhanced glycerol derivative, to increase the expression of AQP3 in vitro and ex vivo was evaluated. In vitro studies with real-time RT-PCR and FACS measurements were performed to test the induction by GG (3% w/v) of AQP3 mRNA and protein in cultured human keratinocytes. GG-containing formulations were applied topically to volunteer subjects and suction blister biopsies were analyzed to assess whether GG (5%) could penetrate the epidermis of intact skin, and subsequently upregulate AQP3 mRNA expression and improve barrier function. AQP3 mRNA and protein levels were significantly increased in cultured human keratinocytes. In the studies on volunteer subjects, GG significantly increased AQP3 mRNA levels in the skin and reduced transepidermal water loss compared with vehicle-controlled areas. GG promotes AQP3 mRNA and protein upregulation and improves skin barrier function, and may thus offer an effective treatment option for dehydrated skin. Copyright © 2012 S. Karger AG, Basel.

  10. PLS-Prediction and Confirmation of Hydrojuglone Glucoside as the Antitrypanosomal Constituent of Juglans Spp.

    Directory of Open Access Journals (Sweden)

    Therese Ellendorff

    2015-05-01

    Full Text Available Naphthoquinones (NQs occur naturally in a large variety of plants. Several NQs are highly active against protozoans, amongst them the causative pathogens of neglected tropical diseases such as human African trypanosomiasis (sleeping sickness, Chagas disease and leishmaniasis. Prominent NQ-producing plants can be found among Juglans spp. (Juglandaceae with juglone derivatives as known constituents. In this study, 36 highly variable extracts were prepared from different plant parts of J. regia, J. cinerea and J. nigra. For all extracts, antiprotozoal activity was determined against the protozoans Trypanosoma cruzi, T. brucei rhodesiense and Leishmania donovani. In addition, an LC-MS fingerprint was recorded for each extract. With each extract’s fingerprint and the data on in vitro growth inhibitory activity against T. brucei rhodesiense a Partial Least Squares (PLS regression model was calculated in order to obtain an indication of compounds responsible for the differences in bioactivity between the 36 extracts. By means of PLS, hydrojuglone glucoside was predicted as an active compound against T. brucei and consequently isolated and tested in vitro. In fact, the pure compound showed activity against T. brucei at a significantly lower cytotoxicity towards mammalian cells than established antiprotozoal NQs such as lapachol.

  11. 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides.

    Science.gov (United States)

    Zagrobelny, Mika; Scheibye-Alsing, Karsten; Jensen, Niels Bjerg; Møller, Birger Lindberg; Gorodkin, Jan; Bak, Søren

    2009-12-02

    An essential driving component in the co-evolution of plants and insects is the ability to produce and handle bioactive compounds. Plants produce bioactive natural products for defense, but some insects detoxify and/or sequester the compounds, opening up for new niches with fewer competitors. To study the molecular mechanism behind the co-adaption in plant-insect interactions, we have investigated the interactions between Lotus corniculatus and Zygaena filipendulae. They both contain cyanogenic glucosides which liberate toxic hydrogen cyanide upon breakdown. Moths belonging to the Zygaena family are the only insects known, able to carry out both de novo biosynthesis and sequestration of the same cyanogenic glucosides as those from their feed plants. The biosynthetic pathway for cyanogenic glucoside biosynthesis in Z. filipendulae proceeds using the same intermediates as in the well known pathway from plants, but none of the enzymes responsible have been identified. A genomics strategy founded on 454 pyrosequencing of the Z. filipendulae transcriptome was undertaken to identify some of these enzymes in Z. filipendulae. Comparisons of the Z. filipendulae transcriptome with the sequenced genomes of Bombyx mori, Drosophila melanogaster, Tribolium castaneum, Apis mellifera and Anopheles gambiae indicate a high coverage of the Z. filipendulae transcriptome. 11% of the Z. filipendulae transcriptome sequences were assigned to Gene Ontology categories. Candidate genes for enzymes functioning in the biosynthesis of cyanogenic glucosides (cytochrome P450 and family 1 glycosyltransferases) were identified based on sequence length, number of copies and presence/absence of close homologs in D. melanogaster, B. mori and the cyanogenic butterfly Heliconius. Examination of biased codon usage, GC content and selection on gene candidates support the notion of cyanogenesis as an "old" trait within Ditrysia, as well as its origins being convergent between plants and insects

  12. 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides

    Directory of Open Access Journals (Sweden)

    Jensen Niels

    2009-12-01

    Full Text Available Abstract Background An essential driving component in the co-evolution of plants and insects is the ability to produce and handle bioactive compounds. Plants produce bioactive natural products for defense, but some insects detoxify and/or sequester the compounds, opening up for new niches with fewer competitors. To study the molecular mechanism behind the co-adaption in plant-insect interactions, we have investigated the interactions between Lotus corniculatus and Zygaena filipendulae. They both contain cyanogenic glucosides which liberate toxic hydrogen cyanide upon breakdown. Moths belonging to the Zygaena family are the only insects known, able to carry out both de novo biosynthesis and sequestration of the same cyanogenic glucosides as those from their feed plants. The biosynthetic pathway for cyanogenic glucoside biosynthesis in Z. filipendulae proceeds using the same intermediates as in the well known pathway from plants, but none of the enzymes responsible have been identified. A genomics strategy founded on 454 pyrosequencing of the Z. filipendulae transcriptome was undertaken to identify some of these enzymes in Z. filipendulae. Results Comparisons of the Z. filipendulae transcriptome with the sequenced genomes of Bombyx mori, Drosophila melanogaster, Tribolium castaneum, Apis mellifera and Anopheles gambiae indicate a high coverage of the Z. filipendulae transcriptome. 11% of the Z. filipendulae transcriptome sequences were assigned to Gene Ontology categories. Candidate genes for enzymes functioning in the biosynthesis of cyanogenic glucosides (cytochrome P450 and family 1 glycosyltransferases were identified based on sequence length, number of copies and presence/absence of close homologs in D. melanogaster, B. mori and the cyanogenic butterfly Heliconius. Examination of biased codon usage, GC content and selection on gene candidates support the notion of cyanogenesis as an "old" trait within Ditrysia, as well as its origins being

  13. Effect of Ginkgo biloba extract on procarcinogen-bioactivating human CYP1 enzymes: Identification of isorhamnetin, kaempferol, and quercetin as potent inhibitors of CYP1B1

    International Nuclear Information System (INIS)

    Chang, Thomas K.H.; Chen Jie; Yeung, Eugene Y.H.

    2006-01-01

    In the present study, we investigated the effect of Ginkgo biloba extracts and some of its individual constituents on the catalytic activity of human cytochrome P450 enzymes CYP1B1, CYP1A1, and CYP1A2. G. biloba extract of known abundance of terpene trilactones and flavonol glycosides inhibited 7-ethoxyresorufin O-dealkylation catalyzed by human recombinant CYP1B1, CYP1A1, and CYP1A2, and human liver microsomes, with apparent K i values of 2 ± 0.3, 5 ± 0.5, 16 ± 1.4, and 39 ± 1.2 μg/ml (mean ± SE), respectively. In each case, the mode of inhibition was of the mixed type. Bilobalide, ginkgolides A, B, C, and J, quercetin 3-O-rutinoside, kaempferol 3-O-rutinoside, and isorhamentin 3-O-rutinoside were not responsible for the inhibition of CYP1 enzymes by G. biloba extract, as determined by experiments with these individual chemicals at the levels present in the extract. In contrast, the aglycones of quercetin, kaempferol, and isorhamentin inhibited CYP1B1, CYP1A1, and CYP1A2. Among the three flavonol aglycones, isorhamentin was the most potent in inhibiting CYP1B1 (apparent K i = 3 ± 0.1 nM), whereas quercetin was the least potent in inhibiting CYP1A2 (apparent K i 418 ± 50 nM). The mode of inhibition was competitive, noncompetitive, or mixed, depending on the enzyme and the flavonol. G. biloba extract also reduced benzo[a]pyrene hydroxylation, and the effect was greater with CYP1B1 than with CYP1A1 as the catalyst. Overall, our novel findings indicate that G. biloba extract and the flavonol aglycones isorhamnetin, kaempferol, and quercetin preferentially inhibit the in vitro catalytic activity of human CYP1B1

  14. STAT3 and NF-κB are common targets for kaempferol-mediated attenuation of COX-2 expression in IL-6-induced macrophages and carrageenan-induced mouse paw edema

    Directory of Open Access Journals (Sweden)

    Anandita Basu

    2017-12-01

    Full Text Available Cycloxygenase-2 (COX-2 is the inducible isoform of cycloxygenase enzyme family that catalyzes synthesis of inflammatory mediators, prostanoids and prostaglandins, and therefore, can be targeted by anti-inflammatory drugs. Here, we showed a plant polyphenol, kaempferol, attenuated IL-6-induced COX-2 expression in human monocytic THP-1 cells suggesting its beneficial role in chronic inflammation. Kaempferol deactivated and prevented nuclear localization of two major transcription factors STAT3 and NF-κB, mutually responsible for COX-2 induction in response to IL-6. Moreover, STAT3 and NF-κB were simultaneously deactivated by kaempferol in acute inflammation, as shown by carrageenan-induced mouse paw edema model. The concomitant reduction in COX-2 expression in paw tissues suggested kaempferol’s role in mitigation of inflammation by targeting STAT3 and NF-κB.

  15. Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury

    International Nuclear Information System (INIS)

    Jing, Xu; Ren, Dongmei; Wei, Xinbing; Shi, Huanying; Zhang, Xiumei; Perez, Ruth G.; Lou, Haiyan; Lou, Hongxiang

    2013-01-01

    Stroke is a complex disease that may involve oxidative stress-related pathways in its pathogenesis. The nuclear factor erythroid-2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and thus has been considered a potential target for neuroprotection in stroke. The aim of the present study was to determine whether eriodictyol-7-O-glucoside (E7G), a novel Nrf2 activator, can protect against cerebral ischemic injury and to understand the role of the Nrf2/ARE pathway in neuroprotection. In primary cultured astrocytes, E7G increased the nuclear localization of Nrf2 and induced the expression of the Nrf2/ARE-dependent genes. Exposure of astrocytes to E7G provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. The protective effect of E7G was abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo administration of E7G in a rat model of focal cerebral ischemia significantly reduced the amount of brain damage and ameliorated neurological deficits. These data demonstrate that activation of Nrf2/ARE signaling by E7G is directly associated with its neuroprotection against oxidative stress-induced ischemic injury and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in stroke. - Highlights: • E7G activates Nrf2 in astrocytes. • E7G stimulates expression of Nrf2-mediated cytoprotective proteins in astrocytes. • E7G protects astrocytes against OGD-induced cell death and apoptosis. • The neuroprotective effect of E7G involves the Nrf2/ARE pathway. • E7G protects rats against cerebral ischemic injury

  16. Cytotoxic and Apoptogenic Effects of Cyanidin-3-Glucoside on the Glioblastoma Cell Line.

    Science.gov (United States)

    Hosseini, Masoumeh Mansoubi; Karimi, Aliasghar; Behroozaghdam, Mitra; Javidi, Mohammad Amin; Ghiasvand, Saeedeh; Bereimipour, Ahmad; Aryan, Hoda; Nassiri, Farbod; Jangholi, Ehsan

    2017-12-01

    Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary cerebral tumor. The median survival time is 15 months despite maximum treatment because the tumor is resistant to most therapeutic modalities. Several studies have indicated chemopreventive and chemotherapeutic activity of cyanidin-3-glucoside (C3G) as an anthocyanin component. We aimed to illustrate the cytotoxic and apoptogenic effects of C3G in the U87 cell line (human GBM cell line). Cytotoxic activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium assay after treatment with C3G at different concentrations in the U87 cell line. Cisplatin was used as a positive control for 24 and 48 hours. The percentage of apoptotic cells was determined using an Annexin V/propidium iodide assay, and the expression of bax, bcl2, and p53 genes was assessed using real-time polymerase chain reaction. Treatment of U87 cells with 40 μg/mL of C3G resulted in 32% apoptotic cells after 24 hours. To further confirm that C3G treatment induced apoptosis in U87 cells, RNA expression of bax, bcl2, and p53 genes was investigated after treatment. Real-time polymerase chain reaction indicated that the expression of bax and p53 increased, whereas the expression of bcl2 decreased. C3G had an apoptogenic effect in the GBM cell line. New information regarding the therapeutic effects of C3G in GBM could ultimately lead to the production of new drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The inhibition of macrophage foam cell formation by tetrahydroxystilbene glucoside is driven by suppressing vimentin cytoskeleton.

    Science.gov (United States)

    Yao, Wenjuan; Huang, Lei; Sun, Qinju; Yang, Lifeng; Tang, Lian; Meng, Guoliang; Xu, Xiaole; Zhang, Wei

    2016-10-01

    Macrophage foam cell formation triggered by oxLDL is an important event that occurs during the development of atherosclerosis. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside (TSG) exhibits significant anti-atherosclerotic activity. Herein we used U937 cells induced by PMA and oxLDL in vitro to investigate the inhibitory effects of TSG on U937 differentiation and macrophage foam cell formation. TSG pretreatment markedly inhibited cell differentiation induced by PMA, macrophage apoptosis and foam cell formation induced by oxLDL. The inhibition of vimentin expression and cleavage was involved in these inhibitory effects of TSG. The suppression of vimentin by siRNA in U937 significantly inhibited cell differentiation, apoptosis and foam cell formation. Using inhibitors for TGFβR1 and PI3K, we found that vimentin production in U937 cells is regulated by TGFβ/Smad signaling, but not by PI3K-Akt-mTOR signaling. Meanwhile, TSG pretreatment inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by PMA and oxLDL. Furthermore, TSG attenuated the induced caspase-3 activation and adhesion molecules levels by PMA and oxLDL. PMA and oxLDL increased the co-localization of vimentin with ICAM-1, which was attenuated by pretreatment with TSG. These results suggest that TSG inhibits macrophage foam cell formation through suppressing vimentin expression and cleavage, adhesion molecules expression and vimentin-ICAM-1 co-localization. The interruption of TGFβ/Smad pathway and caspase-3 activation is responsible for the downregulation of TSG on vimentin expression and degradation, respectively. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Total glucosides of paeony for rheumatoid arthritis: A systematic review of randomized controlled trials.

    Science.gov (United States)

    Luo, Jing; Jin, Di-Er; Yang, Guo-Yan; Zhang, Ying-Ze; Wang, Jian-Ming; Kong, Wei-Ping; Tao, Qing-Wen

    2017-10-01

    Total glucosides of paeony (TGP) is commonly used to treat rheumatoid arthritis (RA) in China. However, clinical practice hasn't been well informed by evidence from appropriately conducted systematic reviews. This PRISMA-compliant systematic review aims at examining the effectiveness and safety of TGP for RA. Randomized controlled trials (RCTs) comparing TGP with placebo, no treatment, or disease-modifying antirheumatic drugs (DMARDs) for patients with RA were retrieved by searching seven databases. Primary outcomes included disease improvement and disease remission. Secondary outcomes included adverse effects, pain, health-related quality of life, C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). Data extraction and analyses were conducted according to the Cochrane standards. We assessed risk of bias for each included studies and quality of evidence on pre-specified outcomes. Eight studies enrolling 1209 patients with active RA were included in this systematic review. On the basis of traditional DMARD(s), TGP might be beneficial for patients with RA in improvement of American College of Rheumatology (ACR) 20 response rate, ACR 50 response rate, ACR70 response rate, and in reduction of adverse effects, compared with no treatment. The overall methodological quality of included studies and the quality of evidence for each outcome were limited. Current trials suggested potential benefits of TGP for RA on the basis of traditional DMARD(s). Therefore, TGP may be a good choice for RA as an adjuvant therapy. However, considering the limited methodological quality and strength of evidence, high-quality RCTs are warranted to support the use of TGP for RA. Copyright © 2017. Published by Elsevier Ltd.

  19. Hepatoprotective effect of peony total glucosides and the underlying mechanisms in diabetic rats.

    Science.gov (United States)

    Xia, Ling-Ling; Zhu, Qi-Jin; Wu, Yong-Gui

    2017-12-01

    Total glucosides of peony (TGP), compounds extracted from the dried roots of Paeonia lactiflora Pall, have been reported to have anti-inflammatory and antioxidative activities. However, the protective effect of TGP on liver injury and the underlying mechanisms remains unknown in diabetic rats. Current study investigates prevention of liver injury by TGP in diabetic rats and its mechanism was related to the inhibition of endoplasmic reticulum stress (ERS). Fifty adult male rats were randomly divided into: Normal group, diabetic group, TGP (50, 100 and 200 mg/kg/day) treatment groups (n = 10 per group). At the end of the 8th week, the liver was removed for biochemical and histological examinations. Compared with the diabetic group, administration of TGP at doses of 50, 100 and 200 mg/kg significantly prevented the increase of hepatic fibrosis score (ED 50 139.4 mg/kg). Compared with diabetic group, TGP at doses of 50, 100 and 200 mg/kg showed an inhibition on the increased macrophage infiltration. MCP-1 and TNF-α mRNA and protein expression were significantly increased in diabetic group compared with normal group; TGP administration caused significant reduction of high levels of MCP-1 and TNF-α mRNA as well as protein levels. Also, TGP at all doses showed an inhibition on the increased GRP78 levels, p-Perk levels and p-Eif2α levels in liver from diabetic group. Our results indicate that TGP has potential as a treatment for diabetic liver injury attenuating liver lipid accumulation and inflammation as well as ERS induced by diabetic condition.

  20. Total glucosides of paeony prevents juxta-articular bone loss in experimental arthritis.

    Science.gov (United States)

    Wei, Chen Chao; You, Fan Tian; Mei, Li Yu; Jian, Sun; Qiang, Chen Yong

    2013-07-21

    Total glucosides of paeony (TGP) is a biologically active compound extracted from Paeony root. TGP has been used in rheumatoid arthritis therapy for many years. However, the mechanism by which TGP prevents bone loss has been less explored. TGP was orally administered for 3 months to New Zealand rabbits with antigen-induced arthritis (AIA). Digital x-ray knee images and bone mineral density (BMD) measurements of the subchondral knee bone were performed before sacrifice. Chondrocytes were observed using transmission electron microscopy (TEM). Histological analysis and mRNA expression of receptor activator of nuclear factor-B ligand (RANKL) and osteoprotegerin (OPG) were evaluated in joint tissues. The BMD value in TGP rabbits was significantly higher compared with that seen in the AIA model rabbits. In addition, the subchondral bone plate was almost completely preserved by TGP treatment, while there was a decrease in bone plate integrity in AIA rabbits. There was less damage to the chondrocytes of the TGP treated group. Immunohistochemical examination of the TGP group showed that a higher percentage of TGP treated chondrocytes expressed OPG as compared to the chondrocytes isolated from AIA treated animals. In contrast, RANKL expression was significantly decreased in the TGP treated group compared to the AIA group. In support of the immunohistochemistry data, the expression of RANKL mRNA was decreased and OPG mRNA expression was enhanced in the TGP group when compared to that of the AIA model group. These results reveal that TGP suppresses juxta-articular osteoporosis and prevents subchondral bone loss. The decreased RANKL and increased OPG expression seen in TGP treated animals could explain how administration of TGP maintains higher BMD.

  1. Total glucosides of paeony for rheumatoid arthritis: a protocol for a systematic review.

    Science.gov (United States)

    Luo, Jing; Jin, Di-Er; Yang, Guo-Yan; Zhang, Ying-Ze; Wang, Jian-Ming; Kong, Wei-Ping; Tao, Qing-Wen

    2016-03-09

    Total glucosides of paeony (TGP) is a natural plant extract, which is widely used in China for treating rheumatoid arthritis (RA). Many relevant randomised controlled trials (RCTs) of TGP for RA are available, but they have not been systematically reviewed. This systematic review aims to examine the effectiveness and safety of TGP in patients with RA. We will search for RCTs of TGP in the treatment of RA, performed up until February 2016, in PubMed, Embase, Cochrane Central Register of Controlled Trials, and four Chinese databases (Chinese Biomedical Database, China National Knowledge Infrastructure, Wanfang Database and Chinese Scientific Journal Database). Trial registers and reference lists of retrieved articles will also be searched to identify potential articles. RCTs comparing TGP with placebo, no treatment, or disease-modifying antirheumatic drugs for patients with RA will be retrieved. The primary outcomes will be disease improvement and disease remission. The secondary outcomes will be surrogate outcomes, symptoms, adverse effects, and quality of life. Two reviewers will independently extract data on participants, interventions, comparisons, outcomes, etc. The methodological quality of each included study will be evaluated using the Cochrane risk of bias tool, and the strength of evidence on prespecified outcomes will be assessed in accordance with the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. Review Manager 5.3 software will be used for data analyses. Meta-analyses will be performed if the data are sufficiently homogeneous, both statistically and clinically. Possible publication bias will also be checked using funnel plots once the number of included studies is sufficient. Ethics approval is not required, as this study will not involve patients. The results of this study will be submitted to a peer-reviewed journal for publication, to inform both clinical practice and further research. CRD42015026345. Published by

  2. Effects of total glucosides from paeony (Paeonia lactiflora Pall) roots on experimental atherosclerosis in rats.

    Science.gov (United States)

    Li, Jing; Chen, Chang Xun; Shen, Yun Hui

    2011-05-17

    Total glucosides of paeony (TGP), compounds extracted from the roots of Paeonia lactiflora Pall, have been used as an anti-inflammatory drug for the treatment of rheumatoid arthritis (RA) in China. Inflammation plays a critical role in the development of atherosclerotic vascular disease. Risk of cardiovascular diseases is significantly higher in patients with RA than in normal population. It has a great significance to study the effects of TGP on atherosclerosis. To investigate the effects of TGP on atherosclerosis induced by excessive administration of vitamin D and cholesterol in rats and study the mechanisms involved. Atherosclerosis was induced by excessive administration of vitamin D and cholesterol in rats. TGP was intragastrically administered for 15 weeks. The serum concentrations of total cholesterol (TC), triglyceride (TG), low density lipoprotein-cholesterol (LDL-C) and high density lipoprotein-cholesterol (HDL-C) were measured by automatic biochemistry analyzer. Apolipoprotein A1 (ApoA1) and apolipoprotein B (ApoB) were determined by immunoturbidimetry method, tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and C-reactive protein (CRP) were measured by enzyme-linked immunosorbent assay (ELISA) method. The morphological changes of aorta were observed with optical microscopy. Compared to controls, TGP significantly lowered the serum level of TC, TG, LDL-C, ApoB, TNF-alpha, IL-6 and CRP, increased the ratios of HDL-C/LDL-C and ApoA1/ApoB, decreased the intima-media thickness (IMT) of abdominal aortal wall and improved the morphological change of the aorta. TGP may attenuate the development of atherosclerotic disease. The beneficial effects are associated with its lowering blood lipids and inhibiting the expression of inflammatory cytokines. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Xu [Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012 (China); Ren, Dongmei [Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, Jinan 250012 (China); Wei, Xinbing; Shi, Huanying; Zhang, Xiumei [Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012 (China); Perez, Ruth G. [Health Science Center, Paul L. Foster School of Medicine, Texas Tech University, El Paso, TX, 79905 (United States); Lou, Haiyan, E-mail: louhaiyan@sdu.edu.cn [Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012 (China); Lou, Hongxiang [Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, Jinan 250012 (China)

    2013-12-15

    Stroke is a complex disease that may involve oxidative stress-related pathways in its pathogenesis. The nuclear factor erythroid-2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and thus has been considered a potential target for neuroprotection in stroke. The aim of the present study was to determine whether eriodictyol-7-O-glucoside (E7G), a novel Nrf2 activator, can protect against cerebral ischemic injury and to understand the role of the Nrf2/ARE pathway in neuroprotection. In primary cultured astrocytes, E7G increased the nuclear localization of Nrf2 and induced the expression of the Nrf2/ARE-dependent genes. Exposure of astrocytes to E7G provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. The protective effect of E7G was abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo administration of E7G in a rat model of focal cerebral ischemia significantly reduced the amount of brain damage and ameliorated neurological deficits. These data demonstrate that activation of Nrf2/ARE signaling by E7G is directly associated with its neuroprotection against oxidative stress-induced ischemic injury and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in stroke. - Highlights: • E7G activates Nrf2 in astrocytes. • E7G stimulates expression of Nrf2-mediated cytoprotective proteins in astrocytes. • E7G protects astrocytes against OGD-induced cell death and apoptosis. • The neuroprotective effect of E7G involves the Nrf2/ARE pathway. • E7G protects rats against cerebral ischemic injury.

  4. Effects of Power Ultrasound on Stability of Cyanidin-3-glucoside Obtained from Blueberry

    Directory of Open Access Journals (Sweden)

    Guang-Long Yao

    2016-11-01

    Full Text Available Power ultrasound (US could potentially be used in the food industry in the future. However, the extent of anthocyanin degradation by US requires investigation. Cyanidin-3-glucoside (Cy-3-glu obtained from blueberry extracts was used as research material to investigate the effect of power ultrasound on food processing of anthocyanin-rich raw materials. The effects of ultrasonic waves on the stability of Cy-3-glu and on the corresponding changes in UV-Vis spectrum and antioxidant activity were investigated, and the mechanisms of anthocyanin degradation induced by ultrasonic waves were discussed. To explore Cy-3-glu degradation in different environments, we kept the Cy-3-glu solution treated with ultrasonic waves in four concentrations (0%, 10%, 20%, and 50% of ethanol aqueous solutions to simulate water, beer, wine, and liquor storage environment according to the chemical kinetics method. Results show that the basic spectral characteristics of Cy-3-glu did not significantly change after power ultrasound cell crusher application at 30 °C. However, with anthocyanin degradation, the intensity of the peak for Cy-3-glu at 504 nm significantly decreased (p < 0.05. The degradation kinetics of Cy-3-glu by ultrasonic waves (200–500 W frequency fitted well to first-order reaction kinetics, and the degradation rate constant of Cy-3-glu under power ultrasound was considerably larger than that under thermal degradation (p < 0.05. The sensitivity of the anthocyanins of blueberry to temperature increased with increasing ethanol concentration, and the longest half-life was observed in 20% ethanol aqueous solution.

  5. Effect of gamma-radiation on major aroma compounds and vanillin glucoside of cured vanilla beans (Vanilla planifolia)

    International Nuclear Information System (INIS)

    Salmah Moosa; Seri Chempaka Mohd Yusof; Ruzalina Bahrin; Maizatul Akmam Mohd Nasir

    2014-01-01

    Radiation processing of food materials by gamma-radiation is a well established method for microbial decontamination and insect disinfestation. Irradiation of spices at doses ranging from 10 to 30 kGy has been reported to result in complete elimination of microorganisms with negligible changes in the flavour quality. The effect of gamma-radiation on microflora and vanillin content of cured vanilla beans in the dose range of 5-50 kGy has been investigated, but its effect on other major aroma compounds and vanillin glucoside (vanillin aroma precursor) remaining after curing have not been studied so far. Vanillin (4-hydroxy-3-methoxybenzaldehyde) is one such compound used as a flavouring agent and as a dietary component. It is the major component of natural vanilla, which is one of the most widely used and important flavouring materials throughout the world. Vanillin is an antioxidant capable of protecting membrane against lipid peroxidation and DNA against strand breaks induced by reactive oxygen species. The present work was aimed to study the effect of gamma-radiation processing on the major aroma compounds of cured vanilla beans and also to investigate possible enhancement in vanillin content by the radiolytic breakdown of vanillin glucoside present already. Cured vanilla beans were irradiated (5, 10, 15, 20 and 30 kGy) and the vanillin content of control and irradiated samples were analysed, respectively for a possible enhancement of vanillin content by radiolysis of vanillin glucoside. Radiolytic breakdown of glycosidic precursors of aroma constituents and consequent release of free aroma was shown to result in the enhancement of aroma quality of these products. Since a considerable amount of vanillin exists as its glycosidic precursor in cured vanilla pods, a possible enhancement in yield of vanillin by radiation processing is thus expected. Hence the highly stable oxygen-carbon linkage between vanillin and glucose limits the possible enhancement of aroma

  6. Probe the Binding Mode of Aristololactam-β-D-glucoside to Phenylalanine Transfer RNA in Silico

    DEFF Research Database (Denmark)

    Xiao, Xingqing; Zhao, Binwu; Yang, Li

    2016-01-01

    Understanding the interactions of drug molecules with biomacromolecules at a micro-scale level is essential to design potent drugs for the treatments of human genome diseases. To unravel the mechanism of binding of aristololactam-β-D-glucoside (ADG) and phenylalanine transfer RNA (t...... on the tRNAPhe, and atomistic MD simulations were conducted to examine the thermal stability of five predicted binding poses for the complex of ADG and the tRNAPhe. The binding free energies of the five complexes were then calculated using the molecular mechanics/generalized born surface area approach...

  7. Modulation of proton pumping across proteoliposome membranes reconstituted with tonoplast H(+)-ATPase from cultured rice (Oryza sativa L. var. Boro) cells by acyl steryl glucoside and steryl glucoside.

    Science.gov (United States)

    Yamaguchi, Mineo; Kasamo, Kunihiro

    2002-07-01

    Tonoplast H(+)-ATPase purified from cultured rice cells (Oryza sativa L. var. Boro) was reconstituted into asolectin liposomes containing steryl glucoside (SG) or acyl steryl glucoside (ASG), and the effects of SG and ASG on proton pumping, ATP-hydrolysis activity and proton permeability of the proteoliposome membranes were investigated. In the proteoliposomes containing 10 mol% SG, proton pumping and ATP-hydrolysis activity were increased to around 140% of those in SG-free proteoliposomes. In the proteoliposomes containing ASG, proton pumping and ATP-hydrolysis activity were decreased to one-tenth of those in ASG-free proteoliposomes at 15 mol% ASG; however, activity increased again slightly in the range between 20 and 40 mol% ASG. The change in proton pumping across the proteoliposome membrane is not due to a change of proteoliposome size nor to the location of the catalytic site of the tonoplast H(+)-ATPase in the proteoliposomes. SG and ASG also reduced the passive proton permeability of the proteoliposomes. These results show that SG and ASG modulate proton pumping across the tonoplast toward stimulation and depression, respectively, and they reduce the passive proton permeability of the tonoplast.

  8. Occurrence and fate of the norsesquiterpene glucoside ptaquiloside (PTA) in soils

    Science.gov (United States)

    Zaccone, Claudio; Cavoski, Ivana; Costi, Roberta; Sarais, Giorgia; Caboni, Pierluigi; Miano, Teodoro M.; Lattanzio, Vincenzo

    2014-05-01

    The bracken fern Pteridium aquilinum (L.) Kuhn, one of the most common plant species on Earth, produces a wide range of secondary metabolites including the norsesquiterpene glucoside ptaquiloside (PTA). This bracken constituent causes acute poisoning, blindness and cancer in animals, and can be transferred to man when bracken is utilized as food. Also milk from cows eating bracken is thought to be the vector for the transfer of PTA to humans, as well as PTA-contaminated drinking waters. Although some studies on the effect of growth conditions and soil properties on the production and mobility of PTA have been carried out (mainly in the North of Europe), results are sometimes conflicting and further investigations are needed. The aim of the present work is to study the occurrence and the fate of PTA in soils showing different physico-chemical features, collected in different pedoclimatic areas (from the South of Italy), but having the extensive ("wild") livestock farming as common denominator. The PTA content was determined in both soil and fern samples by GC-MS; both the extraction protocol and recovery were previously tested through incubation studies. Soils samples were also characterizes from the physical and chemical point of view (pH, EC, texture, total carbonates, cation exchange capacity, organic C, total N, available nutrients and heavy metal concentration) in order to correlate the possible influence of soil parameters on PTA production, occurrence and mobility. PTA concentration in soil samples was always

  9. Occurrence of different trichothecenes and deoxynivalenol-3-β-D-glucoside in naturally and artificially contaminated Danish cereal grains and whole maize plants

    DEFF Research Database (Denmark)

    Rasmussen, P. H.; Nielsen, Kristian Fog; Ghorbani, F.

    2012-01-01

    toxin may again be released after hydrolysis in the digestive tracts of animals and humans. Today, our knowledge of the occurrence of these compounds in cereal grains is limited. In this paper, a LC-MS/MS method for the simultaneous determination of DON, deoxynivalenol-3-β-D-glucoside (DON-3-glucoside......), 3 acetyl-DON, nivalenol, fusarenon-X, diacetoxyscirpenol, HT-2 toxin, and T-2 toxin in naturally (n = 48) and artificially (n = 30) contaminated cereal grains (wheat, barley, oat, rye triticale) is reported. The method has also been applied to whole fresh maize plant intended for production of maize...

  10. Microtropins Q-W, ent-Labdane Glucosides: Microtropiosides G-I, Ursane-Type Triterpene Diglucoside and Flavonol Glycoside from the Leaves of Microtropis japonica.

    Science.gov (United States)

    Terazawa, Saori; Uemura, Yuka; Koyama, Yuka; Kawakami, Susumu; Sugimoto, Sachiko; Matsunami, Katsuyoshi; Otsuka, Hideaki; Shinzato, Takakazu; Kawahata, Masatoshi; Yamaguchi, Kentaro

    2017-01-01

    Microtropins Q-W, (2S,3R)-2-ethyl-2,3-dihydroxybutyrate of various glucosides and glucose, as well as three ent-labdane diterpenoid glucosides, named microtropiosides G, H and I, an ursane-type triterpene diglucoside and a flavonoid glycoside were isolated from the MeOH extract of the leaves of Microtropis japonica. The structure of microtropioside A, also isolated from the branches of M. japonica, was elucidated spectroscopically in a previous experiment and was found to possess a rare seven-membered oxyrane ring. Its structure was confirmed by X-ray crystallographic analysis of its pentaacetate.

  11. Hydrophobic, Hydrophilic, and Amphiphilic Polyglycocarbonates with Linear and Macrocyclic Architectures from Bicyclic Glycocarbonates Derived from CO2 and Glucoside

    KAUST Repository

    Pati, Debasis

    2017-02-09

    Two bicyclic glycocarbonates were synthesized in five steps from α-methyl-d-glucoside without resorting to phosgene or to its derivatives for the first time. The 4- and 6-positions of glucose were modified to introduce a six-membered carbonate ring, using CO as the carbonylating reagent; the 2- and 3-positions of the same glucoside substrate were first transformed into either methyl or triethylene glycol monomethyl ether groups to protect these positions from undesirable reactions and also to impart hydrophobicity in the first case and hydrophilicity in the second. The polymerization behavior of these bicyclic glycocarbonates was then investigated under different conditions. On the one hand, through ring-opening polymerization of the above monomers, linear polyglycocarbonate homopolymers and diblock copolymers were obtained initiated by p-methylbenzyl alcohol using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as catalyst; on the other hand, macrocyclic polyglycocarbonate homopolymers and diblock copolymers were grown using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) which served as zwitterionic initiator. The various architectures derived were all thoroughly characterized by NMR, GPC, and MALDI-tof and shown to exhibit the expected structure. Finally, the self-assembly of linear and macrocyclic amphiphilic copolyglycocarbonates in water was investigated and characterized by cryo-TEM.

  12. Hydrophobic, Hydrophilic, and Amphiphilic Polyglycocarbonates with Linear and Macrocyclic Architectures from Bicyclic Glycocarbonates Derived from CO2 and Glucoside

    KAUST Repository

    Pati, Debasis; Feng, Xiaoshuang; Hadjichristidis, Nikolaos; Gnanou, Yves

    2017-01-01

    Two bicyclic glycocarbonates were synthesized in five steps from α-methyl-d-glucoside without resorting to phosgene or to its derivatives for the first time. The 4- and 6-positions of glucose were modified to introduce a six-membered carbonate ring, using CO as the carbonylating reagent; the 2- and 3-positions of the same glucoside substrate were first transformed into either methyl or triethylene glycol monomethyl ether groups to protect these positions from undesirable reactions and also to impart hydrophobicity in the first case and hydrophilicity in the second. The polymerization behavior of these bicyclic glycocarbonates was then investigated under different conditions. On the one hand, through ring-opening polymerization of the above monomers, linear polyglycocarbonate homopolymers and diblock copolymers were obtained initiated by p-methylbenzyl alcohol using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as catalyst; on the other hand, macrocyclic polyglycocarbonate homopolymers and diblock copolymers were grown using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) which served as zwitterionic initiator. The various architectures derived were all thoroughly characterized by NMR, GPC, and MALDI-tof and shown to exhibit the expected structure. Finally, the self-assembly of linear and macrocyclic amphiphilic copolyglycocarbonates in water was investigated and characterized by cryo-TEM.

  13. Effects of Parsley (Petroselinum crispum) and its Flavonol Constituents, Kaempferol and Quercetin, on Serum Uric Acid Levels, Biomarkers of Oxidative Stress and Liver Xanthine Oxidoreductase Aactivity inOxonate-Induced Hyperuricemic Rats.

    Science.gov (United States)

    Haidari, Fatemeh; Keshavarz, Seid Ali; Mohammad Shahi, Majid; Mahboob, Soltan-Ali; Rashidi, Mohammad-Reza

    2011-01-01

    Increased serum uric acid is known to be a major risk related to the development of several oxidative stress diseases. The aim of this study was to investigate the effect of parsley, quercetin and kaempferol on serum uric acid levels, liver xanthine oxidoreductase activity and two non-invasive biomarkers of oxidative stress (total antioxidant capacity and malondialdehyde concentration) in normal and oxonate-induced hyperuricemic rats. A total of 60 male Wistar rats were randomly divided into ten equal groups; including 5 normal groups (vehicle, parsley, quercetin, kaempferol and allopurinol) and 5 hyperuricemic groups (vehicle, parsley, quercetin, kaempferol and allopurinol). Parsley (5 g/Kg), quercetin (5 mg/Kg), kaempferol (5 mg/Kg) and allopurinol (5 mg/Kg) were administrated to the corresponding groups by oral gavage once a day for 2 weeks. The results showed that parsley and its flavonol did not cause any significant reduction in the serum uric acid levels in normal rats, but significantly reduced the serum uric acid levels of hyperuricemic rats in a time-dependent manner. All treatments significantly inhibited liver xanthine oxidoreductase activity. Parsley, kaempferol and quercetin treatment led also to a significant increase in total antioxidant capacity and decrease in malondialdehyde concentration in hyperuricemic rats. Although the hypouricemic effect of allopurinol was much higher than that of parsley and its flavonol constituents, it could not significantly change oxidative stress biomarkers. These features of parsley and its flavonols make them as a possible alternative for allopurinol, or at least in combination therapy to minimize the side effects of allopurinol to treat hyperuricemia and oxidative stress diseases.

  14. Hypoglycemic Effects in Alloxan-Induced Diabetic Rats of the Phenolic Extract from Mongolian Oak Cups Enriched in Ellagic Acid, Kaempferol and Their Derivatives

    Directory of Open Access Journals (Sweden)

    Peipei Yin

    2018-04-01

    Full Text Available Our previous reports showed that crude extract prepared with 50% ethanol (ethanol crude extract, ECE from Mongolian oak cups possessed excellent in vitro antioxidant capacities as well as inhibitory activities against α-glucosidase, α-amylase and protein glycation caused by its enrichment in phenolics, including mainly ellagic acid, kaempferol and their derivatives. Nevertheless, few in vivo studies on antidiabetic activities of these phenolics were conducted. The present study investigated hypoglycemic effects with normal and diabetic rats being administrated orally without or with ECE at 200 and 800 mg/kg for 15 days. In normal rats, no significant differences were exhibited after ECE administration in body weight, fasting blood glucose level, levels of cholesterol, triglyceride, LDL and AST in serum, organ indexes, and levels of GSH and MDA in organs. In diabetic rats, the fasting blood glucose level, indexes of heart and liver, and levels of cholesterol and triglyceride in serum and MDA in heart tissue were significantly decreased. Moreover, HDL levels in serum and SOD activities in the four organs of diabetic rats were significantly improved after ECE administration at 800 mg/kg. Thus, in addition to inhibiting α-glucosidase, α-amylase and protein glycation reported previously, oak cups might contain novel dietary phytonutrients in preventing abnormal changes in blood glucose and lipid profile and attenuating oxidant stress in vivo. The results also implied that it is ellagic acid, kaempferol and their derivatives enriched in ECE that might play vital roles in managing type 1 as well as type 2 diabetes.

  15. Cocrystals of kaempferol, quercetin and myricetin with 4,4‧-bipyridine: Crystal structures, analyses of intermolecular interactions and antibacterial properties

    Science.gov (United States)

    Zhang, Yu-Nan; Yin, He-Mei; Zhang, Yu; Zhang, Da-Jun; Su, Xin; Kuang, Hai-Xue

    2017-02-01

    With an aim to explore the interactions of Osbnd H⋯N between hydroxyl moiety of the flavonoids and the pyridyl ring of N-containing aromatic amines, three flavonols with varying B-ring-hydroxyl groups (kaempferol, quercetin, and myricetin) were selected to combine with 4,4‧-bipyridine. As a result, three new cocrystals of flavonols were obtained with a solution evaporation approach. These three cocrystals were characterized by single crystal X-ray diffraction, XPRD, IR and NMR methods. The resulting cocrystals were kaempferol: 4,4‧-bipyridine (2:1) (KAE·BPY·2H2O), quercetin: 4,4‧-bipyridine (1:1.5) (QUE·BPY), and myricetin: 4,4‧-bipyridine (1:2) (MYR·BPY·H2O). Structural analyses show that an array of hydrogen bonds and π-π stacking interactions interconnect the molecules to form a two-dimensional (2D) supramolecular layer in KAE·BPY·2H2O, QUE·BPY, and MYR·BPY·H2O. In the three cocrystals, they present as three different synthons-ⅠR88(58), Ⅳ R44(42) and, Ⅶ R66(29) with 4,4‧-bipyridine, respectively-which may yield a strategy for constructing the supramolecule. Cocrystals of flavonols combined with N-containing aromatic amines, 7-OH, B-ring-hydroxyl number and/or the location of the flavonols to play a significant part in extending the dimensionality of the cocrystals. The resulting motif formation and crystal packing in these flavonols cocrystals has combined with N-containing aromatic amines. Additionally, the antibacterial properties of the three cocrystals against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) have been investigated.

  16. A new natural auaternary indole slkaloid isolated from Tabernaemontana laeta Mart. (Apocynaceae

    Directory of Open Access Journals (Sweden)

    Medeiros Walter L. B.

    2001-01-01

    Full Text Available A new natural quaternary alkaloid, Nb-methylvoachalotine (1, was obtained from the root bark of Tabernaemontana laeta together with three dimeric indole alkaloids, conodurine (2, voacamine (3 and tabernamine (4, and the monomeric indole alkaloids 19S-heyneanine (5, coronaridine (6 and voacangine (7. The known triterpenes alpha-amyrin acetate, beta-amyrin acetate, lupeol acetate and taraxasterol acetate and the phytosterol beta-sitosterol and its 3-O-beta-D-glucoside were also identified. The structures of the compounds were elucidated based on spectroscopic studies.

  17. Isoquercitrin: Pharmacology, toxicology, and metabolism

    Czech Academy of Sciences Publication Activity Database

    Valentová, Kateřina; Vrba, J.; Bancířová, M.; Ulrichová, J.; Křen, Vladimír

    2014-01-01

    Roč. 68, JUN 2014 (2014), s. 267-282 ISSN 0278-6915 R&D Projects: GA ČR GPP301/12/P381; GA MŠk(CZ) LD13041; GA MŠk(CZ) 7E11011; GA ČR(CZ) GAP301/11/0767 Grant - others:GA ČR(CZ) GAP303/12/G163 Program:GA Institutional support: RVO:61388971 Keywords : Quercetin-3-glucoside * Quercetin-3-O-beta-D-glucopyranoside * Enzymatically modified isoquercitrin Subject RIV: CE - Biochemistry Impact factor: 2.895, year: 2014

  18. Chemical constituents and antioxidant activity from leaves extracts of Terminalia fagifolia Mart. et Zucc; Constituintes quimicos e atividade antioxidante de extratos das folhas de Terminalia fagifolia Mart. et Zucc

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, Mariane Cruz Costa; Chaves, Mariana H. [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Dept. de Quimica], e-mail: mariana@ufpi.br; Rinaldo, Daniel; Vilegas, Wagner; Vieira Junior, Gerardo Magela [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Quimica Organica

    2009-07-01

    Phytochemical investigation of ethanolic leaves extracts of T. fagifolia led to the isolation of (+)-catechin, sitosterol-3-O-{beta}-D-glucopyranoside, {alpha} and {beta} tocopherol, a mixture of lupeol, {alpha} and {beta}-amyrin, sitosterol and a mixture of glucoside flavonoids (CP-13). The structures of these compounds were identified by {sup 1}H and {sup 13}C NMR spectral analysis and comparison with literature data. Absolute configuration of the catechin was determinate by circular dichroism. Antioxidant activity (EC{sub 50}), evaluated by 2,2-diphenyl-1-picrylhidrazyl (DPPH) assay system, decreased in the order: (+)-catechin > hydroalcoholic fraction > CP-13 > aqueous fraction > EtOH extract. (author)

  19. Synthesis and biological evaluation of novel tetrahydroisoquinoline-C-aryl glucosides as SGLT2 inhibitors for the treatment of type 2 diabetes.

    Science.gov (United States)

    Pan, Xuan; Huan, Yi; Shen, Zhufang; Liu, Zhanzhu

    2016-05-23

    A series of novel tetrahydroisoquinoline-C-aryl glucosides has been synthesized and evaluated for the inhibition of human SGLT2. Compared with dapagliflozin, compound 13h exhibited equivalent in vitro inhibitory activity against SGLT2, which might become a promising candidate for the treatment of type 2 diabetes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Determination of citrus limonoid glucosides by high performance liquid chromatography coupled to post-column reaction with Ehrlich’s Reagent

    Science.gov (United States)

    A method for the identification and quantification of citrus limonoid glucosides in juices based upon high performance liquid chromatography (HPLC) separation coupled to post-column reaction with Ehrlichs’s reagent has been developed. This method utilizes a phenyl stationary phase and an isocratic ...

  1. Detection of Type A Trichothecene Di-Glucosides Produced in Corn by High-Resolution Liquid Chromatography-Orbitrap Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Hitoshi Nagashima

    2013-03-01

    Full Text Available The existence of di-glucosylated derivative of T-2 toxin in plant (corn powder was confirmed for the first time in addition to that of HT-2 toxin. These masked mycotoxins (mycotoxin glucosides were identified as T-2 toxin-di-glucoside (T2GlcGlc and HT-2 toxin-di-glucoside (HT2GlcGlc based on accurate mass measurements of characteristic ions and fragmentation patterns using high-resolution liquid chromatography-Orbitrap mass spectrometric (LC-Orbitrap MS analysis. Although the absolute structure of T2GlcGlc was not clarified, two glucose molecules were suggested to be conjugated at 3-OH position in tandem when considering the structure of T-2 toxin. On the other hand, the specification of the structure seems to be more complicated in the case of HT2GlcGlc, since HT-2 toxin has two possible positions (at 3-OH and 4-OH to be glusocylated. In addition, 15-monoacetoxyscirpenol-glucoside (MASGlc was also detected in the identical sample.

  2. Adaption of Ehrlich’s Reagent to a HPLC post-column reaction system for the quantification of limonoid glucosides (abstract)

    Science.gov (United States)

    Citrus limonoid glucosides are found in large quantities in citrus fruits and seeds. Characterization and quantification of these compounds is important because they contribute to citrus quality and are reported to be biologically active. Unlike other bioactive compounds (e.g., flavonoids) present...

  3. Raman spectroscopic analysis of cyanogenic glucosides in plants: development of a Flow Injection Surface-Enhanced Raman Scatter (FI-SERS) method for determination of cyanide

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Jørgensen, Kirsten; Møller, Birger Lindberg

    2004-01-01

    Cyanogenic glucosides were studied using Raman spectroscopy. Spectra of the crystal forms of linamarin, linustatin, neolinustatin, amygdalin, sambunigrin, and dhurrin were obtained using a Raman spectrograph microscope equipped with a 532 nm laser. The position of the signal from the CdropN tripl...

  4. Luteolin-7-O-Glucoside Present in Lettuce Extracts Inhibits Hepatitis B Surface Antigen Production and Viral Replication by Human Hepatoma Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Xiao-Xian Cui

    2017-12-01

    Full Text Available Hepatitis B virus (HBV infection is endemic in Asia and chronic hepatitis B (CHB is a major public health issue worldwide. Current treatment strategies for CHB are not satisfactory as they induce a low rate of hepatitis B surface antigen (HBsAg loss. Extracts were prepared from lettuce hydroponically cultivated in solutions containing glycine or nitrate as nitrogen sources. The lettuce extracts exerted potent anti-HBV effects in HepG2 cell lines in vitro, including significant HBsAg inhibition, HBV replication and transcription inhibition, without exerting cytotoxic effects. When used in combination interferon-alpha 2b (IFNα-2b or lamivudine (3TC, the lettuce extracts synergistically inhibited HBsAg expression and HBV replication. By using differential metabolomics analysis, Luteolin-7-O-glucoside was identified and confirmed as a functional component of the lettuce extracts and exhibited similar anti-HBV activity as the lettuce extracts in vitro. The inhibition rate on HBsAg was up to 77.4%. Moreover, both the lettuce extracts and luteolin-7-O-glucoside functioned as organic antioxidants and, significantly attenuated HBV-induced intracellular reactive oxygen species (ROS accumulation. Luteolin-7-O-glucoside also normalized ROS-induced mitochondrial membrane potential damage, which suggests luteolin-7-O-glucoside inhibits HBsAg and HBV replication via a mechanism involving the mitochondria. Our findings suggest luteolin-7-O-glucoside may have potential value for clinical application in CHB and may enhance HBsAg and HBV clearance when used as a combination therapy.

  5. Entropy-driven complex formation of malvidin-3- O-glucoside with common polyphenols in ethanol-water binary solutions

    Science.gov (United States)

    Kunsági-Máté, Sándor; Ortmann, Erika; Kollár, László; Nikfardjam, Martin Pour

    2008-09-01

    The complex formation of malvidin-3- O-glucoside with several polyphenols, the so-called "copigmentation" phenomenon, was studied in aqueous solutions. To simulate the copigmentation process during fermentation, the stability of the formed complexes was examined in dependence of the ethanol content of the aqueous solution. Results indicate that stronger and larger complexes are formed, when the ethanol content exceeds a critical margin of 8 vol.% However, the size of complexes of malvidin/procyanidin and malvidin/epicatechin is drastically reduced above this critical concentration. Fluorescence lifetime and solvent relaxation measurements give insight into the particular processes at molecular level and will help us comprehend the first important steps during winemaking in order to recommend an optimized winemaking technology to ensure extraordinary colour stability in red wines.

  6. A New 8′ ,9 ′ -Dinor 8,4 ′ -Oxy neolignan Glucoside from Dendrobium Aurantiacum var. Denneanum

    Directory of Open Access Journals (Sweden)

    Xiao-hong Li

    2016-01-01

    Full Text Available An investigation of n-BuOH extract of Dendrobium aurantiacum var. denneanum stems has led to the isolation of a new 8′,9′-dinor 8,4′-oxyneolignane glucoside, (–-(7 S ,8 S -4-hydroxy-3,3′,5,5′-tetramethoxy-8′,9′-dinor - 8,4′-oxyneolign a -7,9-diol- 7 ′-al 4-O-β-D-glucopyranoside (1, and four phenylpropanoid glycosides (2– 5 . The structures of the isolated compounds were elucidated by chemical and spectroscopic methods . This is the first report of norlignane from the genus Dendrobium.

  7. Separation and Identification of 1,2,4-Trihydroxynaphthalene-1-O-glucoside in Impatiens glandulifera Royle

    Directory of Open Access Journals (Sweden)

    Martin Moos

    2013-07-01

    Full Text Available Methanolic extract from lyophilized roots of Impatiens glandulifera Royle was analyzed by high performance liquid chromatography using DAD and FLD detection and this revealed one dominant highly fluorescent very unstable substance. The stability of this derivative is strongly dependent on the plant material drying procedure and extraction procedure used. The structure of the substance was established as 1,2,4-trihydroxynaphthalene-1-O-glucoside (THNG according LC-MS and NMR measurements. When lyophilized plant material was extracted with methanol an almost four times higher amount of THNG was found in the extract, compared to the amount of 2-hydroxy-1,4-naphthoquinone obtained, while in the case of the same lyophilized plant material extracted with water there was no THNG in the extract. The main compounds in this case was 2-hydroxy-1,4-naphthoquinone. In the plant material dried at the laboratory temperature and extracted by methanol there are only traces of THNG.

  8. [Effects of total glucosides of paeony on enhancing insulin sensitivity and antagonizing nonalcoholic fatty liver in rats].

    Science.gov (United States)

    Zheng, Lin-Ying; Pan, Jing-Qiang; Lv, Jun-Hua

    2008-10-01

    To study the pathological changes of blood glucose, serum lipid, insulin resistance, liver function, liver cell denaturalization of total glucosides of paeony on nonalcoholic fatty liver rats caused by insulin resistance and discuss the acting mechanism. Adult SD rats were maintained on high-fat-sugar-salt diet for 56 days. In the 57th day, their fasting blood glucose (FBG) and 2-hours blood glucose after oral glucose tolerance test (OGTT-2 hBG) were mensurated, according to which and the weight the rats were divided randomly into nonalcoholic fatty liver model group, metformin group (0.2 g x kg(-1)) and total glucosides of paeony group (high dosage 0.15 g x kg(-1), low dosage 0.05 g x kg(-1)). All the rats were still administered the same diet and given different drugs by intragastric administration for 28 days. In the 29th day, all of them were killed and the blood was sampled to measure the levels of blood glucose [FBG, OGTT-2 hBG, fasting insulin (Fins)] and serum lipid [free fatty acids (FFA), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C)], then the HOMA insulin resistance index (HOMA-IRI, fasting glucosexinsulin) and insulin sensitivity index (ISI) were counted. The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), cholinesterase (ChE), superoxide dismutase (SOD) and the contents of malondialdehyde (MDA) were measured also. Livers were weighed and collected to be observed the pathological changes. Compared with normal group, in nonalcoholic fatty liver model group the levels of Fins and IRI were increased obviously (P insulin resistence were resisted (P insulin resistance, and its action mechanism may be concerned with enhancing insulin sensitivity and antioxidative ability, decreasing serum lipid.

  9. Anti-Inflammatory Effect of the Blueberry Anthocyanins Malvidin-3-Glucoside and Malvidin-3-Galactoside in Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Wu-Yang Huang

    2014-08-01

    Full Text Available Blueberry fruits have a wide range of health benefits because of their abundant anthocyanins, which are natural antioxidants. The purpose of this study was to investigate the inhibitory effect of blueberry’s two main anthocyanins (malvidin-3-glucoside and malvidin-3-galactoside on inflammatory response in endothelial cells. These two malvidin glycosides could inhibit tumor necrosis factor-alpha (TNF-α induced increases of monocyte chemotactic protein-1 (MCP-1, intercellular adhesion molecule-1 (ICAM-1, and vascular cell adhesion molecule-1 (VCAM-1 production both in the protein and mRNA levels in a concentration-dependent manner. Mv-3-glc at the concentration of 1 μM could inhibit 35.9% increased MCP-1, 54.4% ICAM-1, and 44.7% VCAM-1 protein in supernatant, as well as 9.88% MCP-1 and 48.6% ICAM-1 mRNA expression (p < 0.05. In addition, they could decrease IκBα degradation (Mv-3-glc, Mv-3-gal, and their mixture at the concentration of 50 μM had the inhibition rate of 84.8%, 75.3%, and 43.2%, respectively, p < 0.01 and block the nuclear translocation of p65, which suggested their anti-inflammation mechanism was mediated by the nuclear factor-kappa B (NF-κB pathway. In general malvidin-3-glucoside had better anti-inflammatory effect than malvidin-3-galactoside. These results indicated that blueberry is good resource of anti-inflammatory anthocyanins, which can be promising molecules for the development of nutraceuticals to prevent chronic inflammation in many diseases.

  10. [Studies on the chemical constituents of the stems of Piper betle].

    Science.gov (United States)

    Yin, Yan; Huang, Xiang-Zhong; Wang, Jiong; Dai, Jian-Hui; Liang, Hui; Dai, Yun

    2009-06-01

    To study the chemical constituents from the stems of Piper betle. Various chromatographic techniques were used to isolate and purify the constituents. The structures of these compounds were elucidated on the basis of spectral analysis. Nine compounds were isolated from the petroleum ester and ethyl acetate soluble fractions of the 70% acetone extract and their structures were identified as 6beta-hydroxystigmast-4-en-3-one (1), beta-sitosterol (2), stigmasterol (3), oleanolic acid (4), 23-hydroxyursan-12-en-28-oic acid (5), beta-sitosterol-3-O-beta-D-glucoside-6'-O-palmitate (6), beta-daucosterol (7), (2S) -4'-hydroxy- 2,3-dihydroflavonone-7-O-beta-D-glucoside (8) and alpha-ethyl glucoside (9). Among these compounds, 1, 3 -9 are isolated from this plant for the first time.

  11. Identification of rice Os4BGlu13 as a β-glucosidase which hydrolyzes gibberellin A4 1-O-β-d-glucosyl ester, in addition to tuberonic acid glucoside and salicylic acid derivative glucosides.

    Science.gov (United States)

    Hua, Yanling; Ekkhara, Watsamon; Sansenya, Sompong; Srisomsap, Chantragan; Roytrakul, Sittiruk; Saburi, Wataru; Takeda, Ryosuke; Matsuura, Hideyuki; Mori, Haruhide; Ketudat Cairns, James R

    2015-10-01

    Gibberellin 1-O-β-d-glucose ester hydrolysis activity has been detected in rice seedling extracts, but no enzyme responsible for this activity has ever been purified and identified. Therefore, gibberellin A4 glucosyl ester (GA4-GE) β-d-glucosidase activity was purified from ten-day rice seedling stems and leaves. The family 1 glycoside hydrolase Os4BGlu13 was identified in the final purification fraction. The Os4BGlu13 cDNA was amplified from rice seedlings and expressed as an N-terminal thioredoxin-tagged fusion protein in Escherichia coli. The purified recombinant Os4BGlu13 protein (rOs4BGlu13) had an optimum pH of 4.5, for hydrolysis of p-nitrophenyl β-d-glucopyranoside (pNPGlc), which was the best substrate identified, with a kcat/Km of 637 mM(-1) s(-1). rOs4BGlu13 hydrolyzed helicin best among natural glycosides tested (kcat/Km of 74.4 mM(-1) s(-1)). Os4BGlu13 was previously designated tuberonic acid glucoside (TAG) β-glucosidase (TAGG), and here the kcat/Km of rOsBGlu13 for TAG was 6.68 mM(-1) s(-1), while that for GA4-GE was 3.63 mM(-1) s(-1) and for salicylic acid glucoside (SAG) is 0.88 mM(-1) s(-1). rOs4BGlu13 also hydrolyzed oligosaccharides, with preference for short β-(1 → 3)-linked over β-(1 → 4)-linked glucooligosaccharides. The enzymatic data suggests that Os4BGlu13 may contribute to TAG, SAG, oligosaccharide and GA4-GE hydrolysis in the rice plant, although helicin or a similar compound may be its primary target. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A new Kaempferol-based Ru(II) coordination complex, Ru(kaem)Cl(DMSO){sub 3}: Structure and absorption-emission spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Ming Wei; Gang, Jong Back; Kim, Sang Ho; Yoon, Min Young [Gachon University, Sungnam (Korea, Republic of)

    2016-10-15

    Recent interest in developing a new anticancer drug with low side effects has led to the study of the combination of two new anticancer drugs. Although both kaempferol (kaem) and Ru-based metal complexes have not been proven as effective drugs, their unique anticancer activities with reduced side effects have drawn our attention to the need for further studies on their potential in anticancer application. Herein, we report the synthesis, characterization, structure, and spectroscopic properties of a kaem-based Ru (II) complex, RuCl(kaem)(DMSO){sub 3} (1). Because of the presence of a catechol-like functional group in its dihydropyran ring, kaem can strongly bind to the Ru(II) metal center in a basic medium. The molecular structure of the complex was characterized by spectroscopic studies and X-ray crystal structure analysis. In addition, the complex forms a molecular dimer as a result of the cooperative effect of H-bonding and π–π stacking interactions. Moreover, the molecular dimer forms a ladder-like one-dimensional network structure by water mediated H-bonding that further extended into a three-dimensional packing structure. UV–Vis spectroscopy studies of the complex demonstrated the appearance of a strong metal to ligand charge transfer (MLCT) band in the visible region with strong fluorescence emission derived from the MLCT. Further studies are now in progress to demonstrate synergetic anticancer activity.

  13. A new Kaempferol-based Ru(II) coordination complex, Ru(kaem)Cl(DMSO)3: Structure and absorption-emission spectroscopy study

    International Nuclear Information System (INIS)

    Shao, Ming Wei; Gang, Jong Back; Kim, Sang Ho; Yoon, Min Young

    2016-01-01

    Recent interest in developing a new anticancer drug with low side effects has led to the study of the combination of two new anticancer drugs. Although both kaempferol (kaem) and Ru-based metal complexes have not been proven as effective drugs, their unique anticancer activities with reduced side effects have drawn our attention to the need for further studies on their potential in anticancer application. Herein, we report the synthesis, characterization, structure, and spectroscopic properties of a kaem-based Ru (II) complex, RuCl(kaem)(DMSO) 3 (1). Because of the presence of a catechol-like functional group in its dihydropyran ring, kaem can strongly bind to the Ru(II) metal center in a basic medium. The molecular structure of the complex was characterized by spectroscopic studies and X-ray crystal structure analysis. In addition, the complex forms a molecular dimer as a result of the cooperative effect of H-bonding and π–π stacking interactions. Moreover, the molecular dimer forms a ladder-like one-dimensional network structure by water mediated H-bonding that further extended into a three-dimensional packing structure. UV–Vis spectroscopy studies of the complex demonstrated the appearance of a strong metal to ligand charge transfer (MLCT) band in the visible region with strong fluorescence emission derived from the MLCT. Further studies are now in progress to demonstrate synergetic anticancer activity

  14. Isolation, structural elucidation, MS profiling, and evaluation of triglyceride accumulation inhibitory effects of benzophenone C-glucosides from leaves of Mangifera indica L.

    Science.gov (United States)

    Zhang, Yi; Han, Lifeng; Ge, Dandan; Liu, Xuefeng; Liu, Erwei; Wu, Chunhua; Gao, Xiumei; Wang, Tao

    2013-02-27

    Seventy percent ethanol-water extract from the leaves of Mangifera indica L. (Anacardiaceae) was found to show an inhibitory effect on triglyceride (TG) accumulation in 3T3-L1 cells. From the active fraction, six new benzophenone C-glucosides, foliamangiferosides A(3) (1), A(4) (2), C(4) (3), C(5) (4), C(6) (5), and C(7) (6) together with 11 known benzophenone C-glucosides (7-17) were obtained. In this paper, isolation, structure elucidation (1-6), and MS fragment cleavage pathways of all 17 isolates were studied. 1-6 showed inhibitory effects on TG and free fatty acid accumulation in 3T3-L1 cells at 10 μM.

  15. Synthesis and Detailed Examination of Spectral Properties of (S and (R-Higenamine 4′-O-β-d-Glucoside and HPLC Analytical Conditions to Distinguish the Diastereomers

    Directory of Open Access Journals (Sweden)

    Eisuke Kato

    2017-08-01

    Full Text Available Higenamine is a tetrahydroisoquinoline present in several plants that has β-adrenergic receptor agonist activity. Study of the biosynthesis of higenamine has shown the participation of norcoclaurine synthase, which controls the stereochemistry to construct the (S-isomer. However, when isolated from nature, higenamine is found as the racemate, or even the (R-isomer. We recently reported the isolation of higenamine 4′-O-β-d-glucoside. Herein, its (R- and (S-isomers were synthesized and compared to precisely determine the stereochemistry of the isolate. Owing to their similar spectral properties, determination of the stereochemistry based on NMR data was considered inappropriate. Therefore, a high-performance liquid chromatography method was established to separate the isomers, and natural higenamine 4′-O-β-d-glucoside was determined to be a mixture of isomers.

  16. Spatial separation of the cyanogenic β-glucosidase ZfBGD2 and cyanogenic glucosides in the haemolymph of Zygaena larvae facilitates cyanide release

    DEFF Research Database (Denmark)

    Pentzold, Stefan; Jensen, Mikael Kryger; Matthes, Annemarie

    2017-01-01

    . Cyanogenic plants contain cyanogenic glucosides and release hydrogen cyanide due to such a well-characterized two-component system. Some arthropods are also cyanogenic, but comparatively little is known about their system. Here, we identify a specific β-glucosidase (ZfBGD2) involved in cyanogenesis from...... larvae of Zygaena filipendulae (Lepidoptera, Zygaenidae), and analyse the spatial organization of cyanide release in this specialized insect. High levels of ZfBGD2 mRNA and protein were found in haemocytes by transcriptomic and proteomic profiling. Heterologous expression in insect cells showed that Zf......BGD2 hydrolyses linamarin and lotaustralin, the two cyanogenic glucosides present in Z. filipendulae. Linamarin and lotaustralin as well as cyanide release were found exclusively in the haemoplasma. Phylogenetic analyses revealed that ZfBGD2 clusters with other insect β...

  17. Assessment of Extraction Parameters on Antioxidant Capacity, Polyphenol Content, Epigallocatechin Gallate (EGCG, Epicatechin Gallate (ECG and Iriflophenone 3-C-β-Glucoside of Agarwood (Aquilaria crassna Young Leaves

    Directory of Open Access Journals (Sweden)

    Pei Yin Tay

    2014-08-01

    Full Text Available The effects of ethanol concentration (0%–100%, v/v, solid-to-solvent ratio (1:10–1:60, w/v and extraction time (30–180 min on the extraction of polyphenols from agarwood (Aquilaria crassna were examined. Total phenolic content (TPC, total flavonoid content (TFC and total flavanol (TF assays and HPLC-DAD were used for the determination and quantification of polyphenols, flavanol gallates (epigallocatechin gallate—EGCG and epicatechin gallate—ECG and a benzophenone (iriflophenone 3-C-β-glucoside from the crude polyphenol extract (CPE of A. crassna. 2,2'-Diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity was used to evaluate the antioxidant capacity of the CPE. Experimental results concluded that ethanol concentration and solid-to-solvent ratio had significant effects (p < 0.05 on the yields of polyphenol and antioxidant capacity. Extraction time had an insignificant influence on the recovery of EGCG, ECG and iriflophenone 3-C-β-glucoside, as well as radical scavenging capacity from the CPE. The extraction parameters that exhibited maximum yields were 40% (v/v ethanol, 1:60 (w/v for 30 min where the TPC, TFC, TF, DPPH, EGCG, ECG and iriflophenone 3-C-β-glucoside levels achieved were 183.5 mg GAE/g DW, 249.0 mg QE/g DW, 4.9 mg CE/g DW, 93.7%, 29.1 mg EGCG/g DW, 44.3 mg ECG/g DW and 39.9 mg iriflophenone 3-C-β-glucoside/g DW respectively. The IC50 of the CPE was 24.6 mg/L.

  18. Dianthosaponins G-I, triterpene saponins, an anthranilic acid amide glucoside and a flavonoid glycoside from the aerial parts of Dianthus japonicus and their cytotoxicity.

    Science.gov (United States)

    Kanehira, Yuka; Kawakami, Susumu; Sugimoto, Sachiko; Matsunami, Katsuyoshi; Otsuka, Hideaki

    2016-10-01

    Extensive isolation work on the 1-BuOH-soluble fraction of a MeOH extract of the aerial parts of Dianthus japonicus afforded three further triterpene glycosyl estsers, termed dianthosaponins G-I, an anthranilic acid amide glucoside and a C-glycosyl flavonoid along with one known triterpene saponin. Their structures were elucidated from spectroscopic evidence. The cytotoxicity of the isolated compounds toward A549 cells was evaluated.

  19. Chemical constituents of leaves from Riedeliella graciliflora Harms (Leguminosae); Constituintes quimicos das folhas de Riedeliella graciliflora Harms (Leguminosae)

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Mayker Lazaro Dantas; Souza, Alex Fonseca; Rodrigues, Edilene Delphino; Garcez, Fernanda Rodrigues; Garcez, Walmir Silva, E-mail: walmir.garcez@ufms.br [Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil). Dept. de Quimica; Abot, Alfredo [Universidade Estadual de Mato Grosso do Sul (UEMGS), Aquidauana, MS (Brazil). Unidade Universitaria de Aquidauana

    2012-07-01

    A new salicylic acid derivative, pentacosanyl salicylate, was isolated from the leaves of the plant toxic to cattle, Riedeliella graciliflora, in addition to a digalactosyldiacylglycerol (DGDG), 1,2-di-O-{alpha}-linolenoy1-3-O-{alpha}-D-galactopyranosy1 -(1{yields}6)-{beta}-D-galactopyranosyl-glycerol, kaempferol-3-O-{beta}-D-glucopyranoside, kaempferol-3-O-{alpha}-L-rhamnopyranoside, quercetin-3-O-{alpha}-L-rhamnopyranoside, rutin, (+)-catechin and the dimer (+)-catechin-(4{beta}-8)-catechin, glutinol, squalene, {beta}-sitosterol, stigmasterol, phytol, {beta}-carotene, a-tocopherol and ficaprenol-12. Their structures were determined using spectral techniques (MS, IR, and NMR-1D and 2D) and based on literature data. (author)

  20. Antifungal glycoalkaloids, flavonoids and other chemical constituents of Solanum asperum Rich (Solanaceae)

    International Nuclear Information System (INIS)

    Pinto, Francisco das Chagas L.; Uchoa, Daniel Esdras de A.; Silveira, Edilberto R.; Pessoa, Otilia Deusdenia L.; Braz-Filho, Raimundo; Silva, Fernanda M. e; Theodoro, Phellipe N.E.T.; Espindola, Laila S.

    2011-01-01

    Two glycoalkaloids: solamargine and solasonine; three flavonoids: tiliroside, 7-O-alpha-L-ramnopyranosyl-kaempferol and 3-O-[beta-D-glucopyranosyl-(1->6)-alpha-L-ramnopyranosyl ]-7-O-alpha-L-ramnopyranosyl-kaempferol, in addition to the tripeptide Leu-Ile-Val, the aminoacid proline and the eicosanoic acid were isolated from Solanum asperum (Solanaceae). The structures of all compounds were determined by interpretation of their spectra (IR, MS, 1 H and 13 C NMR) and comparison with the literature data. All compounds, except the glycoalkaloids, are being reported for the first time for S. asperum. Solasonine showed strong activity (MIC < 0.24 mug/mL) against four filamentous fungi species of the genera Microsporum and Trichophyton. (author)

  1. Antifungal glycoalkaloids, flavonoids and other chemical constituents of Solanum asperum Rich (Solanaceae); Glicoalcaloides antifugincos, flavonoides e outros constituintes quimicos de Solanum asperum

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Francisco das Chagas L.; Uchoa, Daniel Esdras de A.; Silveira, Edilberto R.; Pessoa, Otilia Deusdenia L.; Braz-Filho, Raimundo, E-mail: opessoa@ufc.b [Universidade Federal do Ceara (DQOI/UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica; Silva, Fernanda M. e; Theodoro, Phellipe N.E.T.; Espindola, Laila S. [Universidade de Brasilia (FCS/UnB), DF (Brazil). Fac. de Ciencias da Saude

    2011-07-01

    Two glycoalkaloids: solamargine and solasonine; three flavonoids: tiliroside, 7-O-alpha-L-ramnopyranosyl-kaempferol and 3-O-[beta-D-glucopyranosyl-(1->6)-alpha-L-ramnopyranosyl ]-7-O-alpha-L-ramnopyranosyl-kaempferol, in addition to the tripeptide Leu-Ile-Val, the aminoacid proline and the eicosanoic acid were isolated from Solanum asperum (Solanaceae). The structures of all compounds were determined by interpretation of their spectra (IR, MS, {sup 1}H and {sup 13}C NMR) and comparison with the literature data. All compounds, except the glycoalkaloids, are being reported for the first time for S. asperum. Solasonine showed strong activity (MIC < 0.24 mug/mL) against four filamentous fungi species of the genera Microsporum and Trichophyton. (author)

  2. Glass transition behavior of octyl β-D-glucoside and octyl β-D-thioglucoside/water binary mixtures.

    Science.gov (United States)

    Ogawa, Shigesaburo; Asakura, Kouichi; Osanai, Shuichi

    2010-11-22

    The lyotropic behavior and glass-forming properties of octyl β-D-glucoside (C8Glu) and octyl β-D-thioglucoside (C8SGlu)/water binary mixtures were evaluated using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). The results clearly indicate that the mixture forms a glass in the supercooling state of liquid crystalline phases such as cubic, lamellar, and smectic. The glass transition temperature (T(g)) of the mixture was strongly dependent on solute concentration, with a higher concentration correlating with a higher T(g). The experimental T(g) was consistent with the predicted value calculated using the Couchman-Karasz equation in both the C8Glu and C8SGlu/water mixtures. The change of heat capacity at T(g) showed the two bending points under variation of concentrations. And the highest temperature of phase transition from lamellar to isotropic solution was observed at around 50% molar concentration. It was expected that non-percolated state of water existed in extremely higher concentration ranges. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Deoxynivalenol & Deoxynivalenol-3-Glucoside Mitigation through Bakery Production Strategies: Effective Experimental Design within Industrial Rusk-Making Technology

    Directory of Open Access Journals (Sweden)

    Silvia Generotti

    2015-07-01

    Full Text Available In the scientific field, there is a progressive awareness about the potential implications of food processing on mycotoxins especially concerning thermal treatments. High temperatures may cause, in fact, transformation or degradation of these compounds. This work is aimed to study the fate of mycotoxins during bakery processing, focusing on deoxynivalenol (DON and deoxynivalenol-3-glucoside (DON3Glc, along the chain of industrial rusk production. Starting from naturally contaminated bran, we studied how concentrations of DON and DON3Glc are influenced by modifying ingredients and operative conditions. The experiments were performed using statistical Design of Experiment (DoE schemes to synergistically explore the relationship between mycotoxin reduction and the indicated processing transformation parameters. All samples collected during pilot plant experiments were analyzed with an LC-MS/MS multimycotoxin method. The obtained model shows a good fitting, giving back relevant information in terms of optimization of the industrial production process, in particular suggesting that time and temperature in baking and toasting steps are highly relevant for minimizing mycotoxin level in rusks. A reduction up to 30% for DON and DON3Glc content in the finished product was observed within an acceptable technological range.

  4. Deoxynivalenol & Deoxynivalenol-3-Glucoside Mitigation through Bakery Production Strategies: Effective Experimental Design within Industrial Rusk-Making Technology.

    Science.gov (United States)

    Generotti, Silvia; Cirlini, Martina; Malachova, Alexandra; Sulyok, Michael; Berthiller, Franz; Dall'Asta, Chiara; Suman, Michele

    2015-07-24

    In the scientific field, there is a progressive awareness about the potential implications of food processing on mycotoxins especially concerning thermal treatments. High temperatures may cause, in fact, transformation or degradation of these compounds. This work is aimed to study the fate of mycotoxins during bakery processing, focusing on deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON3Glc), along the chain of industrial rusk production. Starting from naturally contaminated bran, we studied how concentrations of DON and DON3Glc are influenced by modifying ingredients and operative conditions. The experiments were performed using statistical Design of Experiment (DoE) schemes to synergistically explore the relationship between mycotoxin reduction and the indicated processing transformation parameters. All samples collected during pilot plant experiments were analyzed with an LC-MS/MS multimycotoxin method. The obtained model shows a good fitting, giving back relevant information in terms of optimization of the industrial production process, in particular suggesting that time and temperature in baking and toasting steps are highly relevant for minimizing mycotoxin level in rusks. A reduction up to 30% for DON and DON3Glc content in the finished product was observed within an acceptable technological range.

  5. Deoxynivalenol & Deoxynivalenol-3-Glucoside Mitigation through Bakery Production Strategies: Effective Experimental Design within Industrial Rusk-Making Technology

    Science.gov (United States)

    Generotti, Silvia; Cirlini, Martina; Malachova, Alexandra; Sulyok, Michael; Berthiller, Franz; Dall’Asta, Chiara; Suman, Michele

    2015-01-01

    In the scientific field, there is a progressive awareness about the potential implications of food processing on mycotoxins especially concerning thermal treatments. High temperatures may cause, in fact, transformation or degradation of these compounds. This work is aimed to study the fate of mycotoxins during bakery processing, focusing on deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON3Glc), along the chain of industrial rusk production. Starting from naturally contaminated bran, we studied how concentrations of DON and DON3Glc are influenced by modifying ingredients and operative conditions. The experiments were performed using statistical Design of Experiment (DoE) schemes to synergistically explore the relationship between mycotoxin reduction and the indicated processing transformation parameters. All samples collected during pilot plant experiments were analyzed with an LC-MS/MS multimycotoxin method. The obtained model shows a good fitting, giving back relevant information in terms of optimization of the industrial production process, in particular suggesting that time and temperature in baking and toasting steps are highly relevant for minimizing mycotoxin level in rusks. A reduction up to 30% for DON and DON3Glc content in the finished product was observed within an acceptable technological range. PMID:26213969

  6. Effects of baking on cyanidin-3-glucoside content and antioxidant properties of black and yellow soybean crackers.

    Science.gov (United States)

    Slavin, Margaret; Lu, Yingjian; Kaplan, Nicholas; Yu, Liangli Lucy

    2013-11-15

    Black soybean is a potential functional food ingredient with high anthocyanin content, but the ability to maintain anthocyanin content under dry heat processing has not been reported. This study investigated the effects of soybean seed coat colour and baking time-temperature combinations on the extractable antioxidant properties of a soy cracker food model. Crackers prepared with black soybeans had significantly higher TPC, total isoflavones, and peroxyl, hydroxyl, and ABTS(+) radical scavenging abilities than their yellow counterparts, at all time-temperature combinations. Cyanidin-3-glucoside (C3G) was detected only in black soybean crackers, and all baking treatments significantly decreased C3G. The greatest losses occurred at the low temperature×long time and high temperature×short time, the smallest loss with moderate temperature×short/medium time. The high temperature treatment altered phenolic acid and isoflavone profiles; however, total isoflavones were unaffected. Overall results suggest that moderate baking temperature at minimal time may best preserve anthocyanin and other phenolics in baked black soybean crackers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Fate of deoxynivalenol and deoxynivalenol-3-glucoside during cereal-based thermal food processing: a review study.

    Science.gov (United States)

    Wu, Qinghua; Kuča, Kamil; Humpf, Hans-Ulrich; Klímová, Blanka; Cramer, Benedikt

    2017-02-01

    Deoxynivalenol (DON), the most commonly occurring trichothecene in nature, may affect animal and human health through causing diarrhea, vomiting, gastrointestinal inflammation, and immunomodulation. DON-3-glucoside (DON-3G) as a major plant metabolite of the mycotoxin is another "emerging" food safety issue in recent years. Humans may experience potential health risks by consuming DON-contaminated food products. Thus, it is crucial for human and animal health to study also the degradation of DON and DON-3G during thermal food processing. Baking, boiling, steaming, frying, and extrusion cooking are commonly used during thermal food processing and have promising effects on the reduction of mycotoxins in food. For DON, however, the observed effects of these methods, as reported in numerous studies, are ambiguous and do not present a clear picture with regard to reduction or transformation. This review summarized the influence of thermal processing on the stability of DON and the formation of degradation/conversion products. Besides this, also a release of DON and DON-3G from food matrix as well as the release of DON from DON-3G during processing is discussed. In addition, some conflicting findings as reported from the studies on thermal processing as well as cause-effect relationships of the different thermal procedures are explored. Finally, the potential toxic profiles of DON degradation products are discussed as well when data are available.

  8. Analysis of deoxynivalenol and deoxynivalenol-3-glucosides content in Canadian spring wheat cultivars inoculated with Fusarium graminearum.

    Science.gov (United States)

    Amarasinghe, Chami C; Simsek, Senay; Brûlé-Babel, Anita; Fernando, W G Dilantha

    2016-07-01

    Contamination of wheat grains with Fusarium mycotoxins and their modified forms is an important issue in wheat industry. The objective of this study was to analyse the deoxynivalenol (DON) and deoxynivalenol-3-glucosides (D3G) content in Canadian spring wheat cultivars grown in two locations, inoculated with a mixture of 3-acetyldeoxynivalenol (3-ADON)-producing Fusarium graminearum strains and a mixture of 15-acetlyldeoxynivalenol (15-ADON)-producing F. graminearum strains. According to the analysis of variance, significant differences were observed among the cultivars for Fusarium head blight (FHB) disease index, Fusarium-damaged kernel percentage (%FDK), DON content and D3G content. When the effect of chemotype was considered, significant differences were observed for FHB disease index, FDK percentage and DON content. The D3G content and D3G/DON ratio were not significantly different between the chemotypes, except for D3G content at the Winnipeg location. The Pearson correlation coefficient between DON and D3G was 0.84 and 0.77 at Winnipeg and Carman respectively. The highest D3G/DON ratio was observed in cultivars Carberry (44%) in Carman and CDC Kernen (63.8%) in Winnipeg. The susceptible cultivars showed lower D3G/DON ratio compared with the cultivars rated as moderately resistant and intermediate. The current study indicated that Canadian spring cultivars produce D3G upon Fusarium infection.

  9. Tetrahydroxystilbene glucoside improves TNF-α-induced endothelial dysfunction: involvement of TGFβ/Smad pathway and inhibition of vimentin expression.

    Science.gov (United States)

    Yao, Wenjuan; Gu, Chengjing; Shao, Haoran; Meng, Guoliang; Wang, Huiming; Jing, Xiang; Zhang, Wei

    2015-01-01

    Endothelial dysfunction plays an important role in the pathogenesis of atherogenesis. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component of the rhizome extract from Polygonum multiflorum (PM), exhibits significant anti-atherosclerotic activity. Here, we used human umbilical vein endothelial cells (HUVECs) induced by tumor necrosis factor-α (TNF-α) in vitro to investigate the cytoprotective effects of TSG on TNF-α-induced endothelial injury and the related mechanisms. Pretreatment with 50 and 100 μM TSG markedly attenuated TNF-α-induced loss of cell viability and release of lactate dehydrogenase (LDH) and inhibited TNF-α-induced cell apoptosis. The inhibition of vimentin expression was involved in the cytoprotection afforded by TSG. Using inhibitors for PI3K and TGFβ or siRNA for Akt and Smad2, we found that vimentin production in HUVECs is regulated by TGFβ/Smad signaling, but not by PI3K-Akt-mTOR signaling. Meanwhile, TSG inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by TNF-α. These results suggest that TSG protects HUVECs against TNF-α-induced cell damage by inhibiting vimentin expression via the interruption of the TGFβ/Smad signaling pathway.

  10. Total glucosides of paeony attenuated functional maturation of dendritic cells via blocking TLR4/5 signaling in vivo.

    Science.gov (United States)

    Zhou, Zhou; Lin, Jinpiao; Huo, Rongfen; Huang, Wenkang; Zhang, Jian; Wang, Li; Sun, Yue; Shen, Baihua; Li, Ningli

    2012-11-01

    It is well known that dendritic cells (DCs) play a critical role in the initiation and development of an immune response. Inhibitory effect on DC maturation alters immune-mediated inflammatory reaction in vivo. Total glucosides of paeony (TGP) are active compounds extracted from the roots of Paeonia lactiflora and have been widely used to ameliorate inflammation in therapy for autoimmune diseases. However, whether TGP act on DC maturation remains unknown. In this study, we investigated the effect of TGP on DC maturation in ovalbumin (OVA) immunized mice. Ear inflammation was inhibited by TGP (150 mgkg(-1), i.p.×11 days) obviously. The antigen presenting capacity of DC derived from TGP-treated mice was arrested. Meanwhile, OVA specific T cell proliferation was inhibited. In addition, we found that maturation of DCs was decreased by TGP treatment. Furthermore, OVA specific T cell proliferation was rescued by the adoptive transfer of mature DCs (mDCs) into TGP treated OVA-challenged mice. The research on the mechanism showed that TGP significantly inhibited activation of TLR4/5 singling. All these results demonstrated that TGP inhibited DC maturation and function by selectively blocking TLR4/5 activation in vivo, which in turn leads to reduce immune-mediated inflammation in vivo, adding a novel mechanism and therapeutic target of TGP for inflammatory and autoimmune disease treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Total glucosides of paeony inhibits Th1/Th17 cells via decreasing dendritic cells activation in rheumatoid arthritis.

    Science.gov (United States)

    Lin, Jinpiao; Xiao, Lianbo; Ouyang, Guilin; Shen, Yu; Huo, Rongfen; Zhou, Zhou; Sun, Yue; Zhu, Xianjin; Zhang, Jie; Shen, Baihua; Li, Ningli

    2012-12-01

    Total glucoside of paeony (TGP), an active compound extracted from paeony root, has been used in therapy for rheumatoid arthritis (RA). Th1 and Th17 cells are now believed to play crucial roles in the lesions of RA. However, the molecular mechanism of TGP in inhibition of Th1 and Th17 cells remains unclear. In this study, we found that TGP treatment significantly decreased percentage and number of Th1 and Th17 cells in collagen induced arthritis (CIA) mice. Consistently, treatment with TGP decreased expression of T-bet and RORγt as well as phosphorylation of STAT1 and STAT3. In particular, TGP treatment inhibited dendritic cells (DCs) maturation and reduced production of IL-12 and IL-6. Moreover, TGP-treatment RA patients showed shank population of matured DCs and IFN-γ-, IL-17-producing cells. Taken together, our results demonstrated that TGP inhibited maturation and activation of DCs, which led to impaired Th1 and Th17 differentiation in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Total glucosides of paeony inhibits lipopolysaccharide-induced proliferation, migration and invasion in androgen insensitive prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Zhi-Hui Zhang

    Full Text Available Previous studies demonstrated that inflammatory microenvironment promoted prostate cancer progression. This study investigated whether total glucosides of paeony (TGP, the active constituents extracted from the root of Paeonia Lactiflora Pall, suppressed lipopolysaccharide (LPS-stimulated proliferation, migration and invasion in androgen insensitive prostate cancer cells. PC-3 cells were incubated with LPS (2.0 μg/mL in the absence or presence of TGP (312.5 μg /mL. As expected, cells at S phase and nuclear CyclinD1, the markers of cell proliferation, were increased in LPS-stimulated PC-3 cells. Migration activity, as determined by wound-healing assay and transwell migration assay, and invasion activity, as determined by transwell invasion assay, were elevated in LPS-stimulated PC-3 cells. Interestingly, TGP suppressed LPS-stimulated PC-3 cells proliferation. Moreover, TGP inhibited LPS-stimulated migration and invasion of PC-3 cells. Additional experiment showed that TGP inhibited activation of nuclear factor kappa B (NF-κB and mitogen-activated protein kinase (MAPK/p38 in LPS-stimulated PC-3 cells. Correspondingly, TGP attenuated upregulation of interleukin (IL-6 and IL-8 in LPS-stimulated PC-3 cells. In addition, TGP inhibited nuclear translocation of signal transducer and activator of transcription 3 (STAT3 in LPS-stimulated PC-3 cells. These results suggest that TGP inhibits inflammation-associated STAT3 activation and proliferation, migration and invasion in androgen insensitive prostate cancer cells.

  13. Total glucosides of peony ameliorates Sjögren's syndrome by affecting Th1/Th2 cytokine balance.

    Science.gov (United States)

    Wu, Guolin; Wu, Nayuan; Li, Tianyi; Lu, Wenwen; Yu, Guoyou

    2016-03-01

    The present study aimed to investigate the molecular mechanisms underlying the effects of total glucosides of peony (TGP) in the treatment of Sjögren's syndrome (SS). A total of 40 mice with SS were evenly assigned into four groups, including: Control group; TGP group, receiving 1 mg TGP daily; hydroxychloroquine (HCQ) group, receiving 0.25 mg HCQ daily; and a combined group, receiving 1 mg TGP and 0.25 mg HCQ daily. After 8 weeks, quantitative polymerase chain reaction and an enzyme-linked immunosorbent assay were used to detect the levels of interferon-γ (IFN-γ), interleukin-4 (IL-4), Fas and FasL in each group of mice. In addition, immunohistochemical analysis was used to determine the expression levels of IFN-γ and IL-4. IFN-γ, IL-4, Fas and FasL levels were significantly increased in the control group compared with the other three groups (PTGP and combined groups compared with the control group (PTGP ameliorates SS by affecting the Th1/Th2 cytokine balance and decreasing the expression levels of IFN-γ, IL-4, Fas and FasL. Therefore, TGP may represent a potential novel therapeutic agent for the treatment of SS.

  14. Stability, Antioxidant Capacity and Degradation Kinetics of Pelargonidin-3-glucoside Exposed to Ultrasound Power at Low Temperature

    Directory of Open Access Journals (Sweden)

    Jianxia Sun

    2016-08-01

    Full Text Available As an alternative preservation method to thermal treatment, ultrasound is a novel non-thermal processing technology that can significantly avoid undesirable nutritional changes. However, recently literature indicated that anthocyanin degradation occurred when high amplitude ultrasound was applied to juice. This work mainly studied the effect of ultrasound on the stability and antioxidant capacity of pelargonidin-3-glucoside (Pg-3-glu and the correlation between anthocyanin degradation and •OH generation in a simulated system. Results indicated that the spectral intensities of Pg-3-glu decreased with increasing ultrasound power (200–500 W and treatment time (0–60 min. The degradation trend was consistent with first-order reaction kinetics (R2 > 0.9100. Further study showed that there was a good linear correlation between Pg-3-glu degradation and •OH production (R2 = 0.8790, which indicated the important role of •OH in the degradation of anthocyanin during ultrasound exposure. Moreover, a decrease in the antioxidant activity of solution(s containing Pg-3-glu as evaluated by the DPPH and FRAP methods was observed after ultrasound treatment.

  15. Stability, Antioxidant Capacity and Degradation Kinetics of Pelargonidin-3-glucoside Exposed to Ultrasound Power at Low Temperature.

    Science.gov (United States)

    Sun, Jianxia; Mei, Zhouxiong; Tang, Yajuan; Ding, Lijun; Jiang, Guichuan; Zhang, Chi; Sun, Aidong; Bai, Weibin

    2016-08-24

    As an alternative preservation method to thermal treatment, ultrasound is a novel non-thermal processing technology that can significantly avoid undesirable nutritional changes. However, recently literature indicated that anthocyanin degradation occurred when high amplitude ultrasound was applied to juice. This work mainly studied the effect of ultrasound on the stability and antioxidant capacity of pelargonidin-3-glucoside (Pg-3-glu) and the correlation between anthocyanin degradation and •OH generation in a simulated system. Results indicated that the spectral intensities of Pg-3-glu decreased with increasing ultrasound power (200-500 W) and treatment time (0-60 min). The degradation trend was consistent with first-order reaction kinetics (R² > 0.9100). Further study showed that there was a good linear correlation between Pg-3-glu degradation and •OH production (R² = 0.8790), which indicated the important role of •OH in the degradation of anthocyanin during ultrasound exposure. Moreover, a decrease in the antioxidant activity of solution(s) containing Pg-3-glu as evaluated by the DPPH and FRAP methods was observed after ultrasound treatment.

  16. Enhancement of water soluble wheat bran polyphenolic compounds using different steviol glucosides prepared by thermostable β-galactosidase

    Directory of Open Access Journals (Sweden)

    Hee-jung Lim

    2016-10-01

    Full Text Available Background: Production of wheat bran (WB for human consumption is estimated to be about 90 million tons per year. WB contains an abundant source of dietary fiber, minerals, vitamins, and bioactive compounds. WB is a by-product of milling and contains an abundant source of carbohydrate (60%, protein (12%, fat (0.5%, minerals (2%, and bioactive compounds such as phenolic acids, arabinoxylans, flavonoids, caroteinoids alkylresorcinol and phytosterols. These are known for health promoting properties such as controlling glycemic index, reducing plasma cholesterol level, antioxidant, anti-inflammatory, and anticarcinogenic activities. Several terpene glycosides such as mogroside V, paenoiflorin, geniposide, rubusoside (Ru, stevioside (Ste, rebaudioside A (RebA, steviol monoside, and stevioside glucoside have been discovered to enhance the solubility of a number of pharmaceutically and medically important compounds that normally show poor solubility in water. Context and purpose of this study: In this study, in order to increase soluble extraction of polyphenol compounds of WB using Ru, the expression of β-galactosidase from Thermus thermophilus (T. thermophilus was optimized using different E. coli hosts and a different concentration of lactose inducer rather than of isopropyl-1- thio-β-D-galactopyranoside (IPTG for industrial production. Additionally, the effect of different steviol glucosides (Ru, Ste, RebA, and SG on the enhancement of polyphenol compounds extraction from wheat bran was studied. Results: β-galactosidase from T. thermophilus was used for the specific conversion of stevioside (Ste to rubusoside (Ru with 92% productivity. The enzyme was optimized to be expressed in E. coli. With 7 mM lactose, the β-galactosidase activity expressed was 34.3, 14.2, or 34.4 ± 0.5 U/mL in E. coli BL21(DE3pLysS, Rosetta(DE3pLysS, or BL21(DE3 at 37°C, and 9.8 ± 0.2, 7.0 ± 0.5, or 7.4 ± 0.2 U/mL at 28°C respectively. The expression of

  17. Facile preparation of water soluble curcuminoids extracted from turmeric (Curcuma longa L.) powder by using steviol glucosides.

    Science.gov (United States)

    Nguyen, Thi Thanh Hanh; Si, Jinbeom; Kang, Choongil; Chung, Byoungsang; Chung, Donghwa; Kim, Doman

    2017-01-01

    Curcuminoids from rhizomes of Curcuma longa possess various biological activities. However, low aqueous solubility and consequent poor bioavailability of curcuminoids are major limitations to their use. In this study, curcuminoids extracted from turmeric powder using stevioside (Ste), rebaudioside A (RebA), or steviol glucosides (SG) were solubilized in water. The optimum extraction condition by Ste, RebA, or SG resulted in 11.3, 9.7, or 6.7mg/ml water soluble curcuminoids. Curcuminoids solubilized in water showed 80% stability at pH from 6.0 to 10.0 after 1week of storage at 25°C. The particle sizes of curcuminoids prepared with Ste, RebA, and SG were 110.8, 95.7, and 32.7nm, respectively. The water soluble turmeric extracts prepared with Ste, RebA, and SG showed the 2,2-diphenyl-1-picrylhydrazyl radical scavenging (SC50) activities of 127.6, 105.4, and 109.8μg/ml, and the inhibition activities (IC50) against NS2B-NS3(pro) from dengue virus type IV of 14.1, 24.0 and 15.3μg/ml, respectively. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Total Glucosides of Danggui Buxue Tang Attenuate BLM-Induced Pulmonary Fibrosis via Regulating Oxidative Stress by Inhibiting NOX4

    Science.gov (United States)

    Zhao, Ping; Zhou, Wen-Cheng; Li, De-Lin; Mo, Xiao-Ting; Xu, Liang; Li, Liu-Cheng; Cui, Wen-Hui; Gao, Jian

    2015-01-01

    Pulmonary fibrosis (PF) is a serious chronic lung disease with unknown pathogenesis. Researches have confirmed that oxidative stress which is regulated by NADPH oxidase-4 (NOX4), a main source of reactive oxygen species (ROS), is an important molecular mechanism underlying PF. Previous studies showed that total glucosides of Danggui Buxue Tang (DBTG), an extract from a classical traditional Chinese herbal formula, Danggui Buxue Tang (DBT), attenuated bleomycin-induced PF in rats. However, the mechanisms of DBTG are still not clear. We hypothesize that DBTG attenuates PF through regulating the level of oxidative stress by inhibiting NOX4. And we found that fibrosis indexes hydroxyproline (HYP) and type I collagen (Col-I) were lower in DBTG groups compared with the model group. In addition, the expression of transforming growth factor-β1 (TGF-β1) and expression of alpha smooth muscle actin (α-SMA) were also much more decreased than the model group. For oxidative stress indicators, DBTG blunted the decrease of superoxide dismutase (SOD) activity, total antioxidant capacity (T-AOC), and the increase in malondialdehyde (MDA), 8-iso-prostaglandin in lung homogenates. Treatment with DBTG restrained the expression of NOX4 compared to the model group. Present study confirms that DBTG inhibits BLM-induced PF by modulating the level of oxidative stress via suppressing NOX4. PMID:26347805

  19. Ursolic acid and luteolin-7-glucoside improve lipid profiles and increase liver glycogen content through glycogen synthase kinase-3.

    Science.gov (United States)

    Azevedo, Marisa F; Camsari, Cagri; Sá, Carla M; Lima, Cristovao F; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2010-06-01

    In the present study, two phytochemicals - ursolic acid (UA) and luteolin-7-glucoside (L7G) - were assessed in vivo in healthy rats regarding effects on plasma glucose and lipid profile (total cholesterol, HDL and LDL), as well as liver glycogen content, in view of their importance in the aetiology of diabetes and associated complications. Both UA and L7G significantly decreased plasma glucose concentration. UA also significantly increased liver glycogen levels accompanied by phosphorylation of glycogen synthase kinase-3 (GSK3). The increase in glycogen deposition induced by UA (mediated by GSK3) could have contributed to the lower plasma glucose levels observed. Both compounds significantly lowered total plasma cholesterol and low-density lipoprotein levels, and, in addition, UA increased plasma high-density lipoprotein levels. Our results show that UA particularly may be useful in preventable strategies for people at risk of developing diabetes and associated cardiovascular complications by improving plasma glucose levels and lipid profile, as well as by promoting liver glycogen deposition.

  20. Supplementary data for the mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical

    Directory of Open Access Journals (Sweden)

    Yujie Dai

    2017-12-01

    Full Text Available The data presented in this article are related to the research article entitled “The mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical” (Dai et al., 2017 [1]. This article includes the structures of three kinds of disaccharides such as maltose, fructose and cellobiose, the diagrammatic sketch of the hydrogen abstraction reaction of the disaccharides by hydroxyl radical, the structure of the transition states for pyran ring opening of moiety A and cleavage of α(1→2 glycosidic bond starting from the hydrogen abstraction of C6–H in moiety A of sucrose, the transition state structure for cleavage of α(1→2 glycosidic bond starting from the hydrogen abstraction of C1′-H in moiety B of sucrose, the transition state structure, sketch for the reaction process and relative energy change of the reaction pathway for direct cleavage of α(1→4 glycosidic bond starting from hydrogen abstraction of C6′–H of moiety B of maltose.

  1. Kaempferol Sensitizes Human Ovarian Cancer Cells-OVCAR-3 and SKOV-3 to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)-Induced Apoptosis via JNK/ERK-CHOP Pathway and Up-Regulation of Death Receptors 4 and 5.

    Science.gov (United States)

    Zhao, Yingmei; Tian, Binqiang; Wang, Yong; Ding, Haiying

    2017-10-26

    BACKGROUND Ovarian cancer is the most common gynecological malignancies in women, with high mortality rates worldwide. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) superfamily which preferentially induces apoptosis of cancer cells. However, acquired resistance to TRAIL hampers its therapeutic application. Identification of compounds that sensitize cancer cells to TRAIL is vital in combating resistance to TRAIL. The effect of kaempferol, a flavonoid enhancing TRAIL-induced apoptosis in ovarian cancer cells, was investigated in this study. MATERIAL AND METHODS The cytotoxic effects of TRAIL (25 ng/mL) and kaempferol (20-100 µM) on human ovarian cancer cells OVCAR-3 and SKOV-3 were assessed. Effect of kaempferol on the expression patterns of cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, c-FLIP) and apoptotic proteins (caspase-3, caspase-8, caspase-9, Bax) were studied. The influence of kaempferol on expression of DR4 and DR5 death receptors on the cell surface and protein and mRNA levels was also analyzed. Apoptosis following silencing of DR5 and CHOP by small interfering RNA (siRNA), and activation of MAP kinases were analyzed as well. RESULTS Kaempferol enhanced apoptosis and drastically up-regulated DR4, DR5, CHOP, JNK, ERK1/2, p38 and apoptotic protein expression with decline in the expression of anti-apoptotic proteins. Further transfection with siRNA specific to CHOP and DR5 indicated the involvement of CHOP in DR5 up-regulation and also the contribution of DR5 in kaempferol-enhanced TRAIL-induced apoptosis. CONCLUSIONS Kaempferol sensitized ovarian cancer cells to TRAIL-induced apoptosis via up-regulation of DR4 and DR5 through ERK/JNK/CHOP pathways.

  2. Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees.

    Science.gov (United States)

    Holler, Jes Gitz; Christensen, S Brøgger; Slotved, Hans-Christian; Rasmussen, Hasse B; Gúzman, Alfonso; Olsen, Carl-Erik; Petersen, Bent; Mølgaard, Per

    2012-05-01

    To isolate a plant-derived compound with efflux inhibitory activity towards the NorA transporter of Staphylococcus aureus. Bioassay-guided isolation was used, with inhibition of ethidium bromide efflux via NorA as a guide. Characterization of activity was carried out using MIC determination and potentiation studies of a fluoroquinolone antibiotic in combination with the isolated compound. Everted membrane vesicles of Escherichia coli cells enriched with NorA were prepared to study efflux inhibitory activity in an isolated manner. The ethanolic extract of Persea lingue was subjected to bioassay-guided fractionation and led to the isolation of the known compound kaempferol-3-O-α-L-(2,4-bis-E-p-coumaroyl)rhamnoside (compound 1). Evaluation of the dose-response relationship of compound 1 showed that ethidium bromide efflux was inhibited, with an IC(50) value of 2 μM. The positive control, reserpine, was found to have an IC(50) value of 9 μM. Compound 1 also inhibited NorA in enriched everted membrane vesicles of E. coli. Potentiation studies revealed that compound 1 at 1.56 mg/L synergistically increased the antimicrobial activity of ciprofloxacin 8-fold against a NorA overexpresser, and the synergistic activity was exerted at a fourth of the concentration necessary for reserpine. Compound 1 was not found to exert a synergistic effect on ciprofloxacin against a norA deletion mutant. The 2,3-coumaroyl isomer of compound 1 has been shown previously not to cause acute toxicity in mice at 20 mg/kg/day. Our results show that compound 1 acts through inhibition of the NorA efflux pump. Combination of compound 1 with subinhibitory concentrations of ciprofloxacin renders a wild-type more susceptible and a NorA overexpresser S. aureus susceptible.

  3. Cyanidin-3-O-Glucoside Modulates the In Vitro Inflammatory Crosstalk between Intestinal Epithelial and Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Daniela Ferrari

    2017-01-01

    Full Text Available Intestinal epithelium represents a protective physical barrier and actively contributes to the mucosal immune system. Polarized basolateral intestinal secretion of inflammatory mediators, followed by activation of NF-κB signaling and inflammatory pathways in endothelial cells, efficiently triggers extravasation of neutrophils from the vasculature, therefore contributing to the development and maintenance of intestinal inflammation. Proper regulation of NF-κB activation at the epithelial interface is crucial for the maintenance of physiological tissue homeostasis. Many papers reported that anthocyanins, a group of compounds belonging to flavonoids, possess anti-inflammatory effects and modulate NF-κB activity. In this study, by using a coculture in vitro system, we aimed to evaluate the effects of TNF-α-stimulated intestinal cells on endothelial cells activation, as well as the protective effects of cyanidin-3-glucoside (C3G. In this model, TNF-α induced nuclear translocation of NF-κB and TNF-α and IL-8 gene expression in Caco-2 cells, whereas C3G pretreatment dose-dependently reduced these effects. Furthermore, TNF-α-stimulated Caco-2 cells induced endothelial cells activation with increased E-selectin and VCAM-1 mRNA, leukocyte adhesion, and NF-κB levels in HUVECs, which were inhibited by C3G. We demonstrated that selective inhibition of the NF-κB pathway in epithelial cells represents the main mechanism by which C3G exerts these protective effects. Thus, anthocyanins could contribute to the management of chronic gut inflammatory diseases.

  4. Effects and mechanisms of total glucosides of paeony on joint damage in rat collagen-induced arthritis.

    Science.gov (United States)

    Zhu, L; Wei, W; Zheng, Y-Q; Jia, X-Y

    2005-05-01

    To investigate the therapeutic effects and mechanisms of total glucosides of paeony (TGP), an effective compound of Chinese traditional herbal medicine (CTM), on collagen -induced arthritis (CIA) in rats. CIA was induced in male Sprague-Dawley rats immunized with chicken type II collagen in Freund's complete adjuvant. TGP (25, 50, 100 mg/kg/d) was orally administered to rats from day 14 to 28 after immunization. Arthritis was evaluated by hind paw swelling, polyarthritis index, and histological examination. Activities of interleukin-1 (IL-1) and tumor necrosis factor alpha (TNFalpha) were determined and the ultrastructure of synoviocytes was observed. The proliferation and the production of vascular epidermal growth factor (VEGF), basic fibroblast growth factor (bFGF), matrix metalloproteinase 1 (MMP-1) and MMP-3 in fibroblast-like synoviocytes (FLS) were detected. The administration of TGP (25, 50, 100 mg/kg, ig x 14 days) suppressed secondary inflammatory reactions and histological changes in CIA model. The ultrastructure of synoviocytes from CIA rats was changed, and the level of IL-1 and TNF alpha produced by macrophage-like synoviocytes (MLS) from CIA rats was elevated. TGP (50, 100 mg/kg, ig x 14 days) inhibited above changes significantly. The MLS supernatants of CIA rats induced more cell proliferation and more production of VEGF, bFGF, MMP-1 and MMP-3 in FLS of CIA than those supernatants from CIA rats treated with TGP (50, 100 mg/kg, ig x 14 days). These results indicate that TGP exerts a suppressive effect on joint destruction in rat CIA. The therapeutic effect of TGP could be associated with its ability to ameliorate the secretion and metabolism of synoviocytes and to inhibit the abnormal proliferation and VEGF, bFGF, MMP-1 and MMP-3 production by FLS.

  5. Total Glucosides of Paeony Promote Intestinal Motility in Slow Transit Constipation Rats through Amelioration of Interstitial Cells of Cajal.

    Directory of Open Access Journals (Sweden)

    Feiye Zhu

    Full Text Available Using an atropine-diphenoxylate-induced slow transit constipation (STC model, this study explored the effects of the total glucosides of paeony (TGP in the treatment of STC and the possible mechanisms.A prospective experimental animal study.The constipation model was set up in rats with an oral gavage of atropine-diphenoxylate and then treated with the TGP. The volume and moisture content of the faeces were observed and the intestinal kinetic power was evaluated. Meanwhile, the colorimetric method and enzyme linked immunosorbent assay (ELISA were employed to determine the changes of nitric oxide (NO, nitric oxide synthase (NOS, vasoative intestinal peptide (VIP and the P substance (SP in the serum, respectively. The protein expressions of c-kit and stem cell factor (SCF were assessed by immunohistochemical analysis and western blot, respectively, and the mRNA level of c-kit was measured by a reverse transcription polymerase chain reaction (RT-PCR.The TGP attenuated STC responses in terms of an increase in the fecal volume and moisture content, an enhancement of intestinal transit rate and the reduction of NO, NOS and VIP in the serum. In addition, the c-kit, a labeling of interstitial cells of Cajal (ICC increased at both protein and mRNA levels. SCF, which serves as a ligand of c-kit also increased at protein level.The analysis of our data indicated that the TGP could obviously attenuate STC through improving the function of ICC and blocking the inhibitory neurotransmitters such as NO, NOS and VIP.

  6. Total Glucosides of Paeony Promote Intestinal Motility in Slow Transit Constipation Rats through Amelioration of Interstitial Cells of Cajal

    Science.gov (United States)

    Zhu, Feiye; Xu, Shan; Zhang, Yongsheng; Chen, Fangming; Ji, Jinjun; Xie, Guanqun

    2016-01-01

    Objectives Using an atropine-diphenoxylate-induced slow transit constipation (STC) model, this study explored the effects of the total glucosides of paeony (TGP) in the treatment of STC and the possible mechanisms. Study Design A prospective experimental animal study. Methods The constipation model was set up in rats with an oral gavage of atropine-diphenoxylate and then treated with the TGP. The volume and moisture content of the faeces were observed and the intestinal kinetic power was evaluated. Meanwhile, the colorimetric method and enzyme linked immunosorbent assay (ELISA) were employed to determine the changes of nitric oxide (NO), nitric oxide synthase (NOS), vasoative intestinal peptide (VIP) and the P substance (SP) in the serum, respectively. The protein expressions of c-kit and stem cell factor (SCF) were assessed by immunohistochemical analysis and western blot, respectively, and the mRNA level of c-kit was measured by a reverse transcription polymerase chain reaction (RT-PCR). Results The TGP attenuated STC responses in terms of an increase in the fecal volume and moisture content, an enhancement of intestinal transit rate and the reduction of NO, NOS and VIP in the serum. In addition, the c-kit, a labeling of interstitial cells of Cajal (ICC) increased at both protein and mRNA levels. SCF, which serves as a ligand of c-kit also increased at protein level. Conclusion The analysis of our data indicated that the TGP could obviously attenuate STC through improving the function of ICC and blocking the inhibitory neurotransmitters such as NO, NOS and VIP. PMID:27478893

  7. Clinical Efficacy and Safety of Total Glucosides of Paeony for Primary Sjögren’s Syndrome: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Liang Jin

    2017-01-01

    Full Text Available Objective. To evaluate the clinical efficacy and safety of total glucosides of paeony (TGP for primary Sjögren’s syndrome (pSS. Methods. Eight electronic databases were searched from their inception to July 2016. Clinical randomized controlled trials (RCTs were included. The study quality was evaluated according to the standard suggested in the Cochrane Handbook. RevMan 5.1 was used for statistical analysis. Results. Seven RCTs involving 443 patients were included. The results showed that TGP combined with an immunosuppressant (IS showed greater efficacy for improving the saliva flow test of pSS compared to immunosuppressant alone (WMD −6.88, 95% CI −9.02 to −4.74, and P<0.00001. And the same trend favouring TGP-IS dual combination was found in Schirmer test (WMD 1.63, 95% CI 0.26 to 3.01, and P=0.02, ESR (WMD 7.33, 95% CI −10.08 to −4.59, and P<0.00001, CRP (WMD −6.00, 95% CI −7.17 to −4.83, and P<0.00001, IgM (WMD = −0.42, 95% CI −0.70 to 0.13, and P=0.004, and IgG (WMD −3.22, 95% CI −4.32 to −2.12, and P<0.00001 analysis. However, TGP did not affect IgA (WMD 0.53, 95% CI −1.34 to −0.29, and P=0.20. The adverse events manifested no significant differences between the two groups. Conclusions. The TGP-IS combination is superior to IS alone in the treatment of pSS. However, due to the low quality of included studies, high-quality RCTs are needed to confirm the beneficial effects of TGP.

  8. Total glucosides of paeony can reduce the hepatotoxicity caused by Methotrexate and Leflunomide combination treatment of active rheumatoid arthritis.

    Science.gov (United States)

    Xiang, Nan; Li, Xiao-Mei; Zhang, Miao-Jia; Zhao, Dong-Bao; Zhu, Ping; Zuo, Xiao-Xia; Yang, Min; Su, Yin; Li, Zhan-Guo; Chen, Zhu; Li, Xiang-Pei

    2015-09-01

    Total glucosides of paeony (TGP) have been confirmed to exert anti-inflammatory and hepatoprotective effects. Methotrexate (MTX) and Leflunomide (LEF) combination has a better efficacy in the treatment of active rheumatoid arthritis (RA), but hepatotoxicity was observed. In this study, we investigated the effect of TGP on hepatic dysfunction caused by MTX and LEF in patients with active RA. A total of 268 patients with active RA (disease activity score in 28 joints, DAS28>3.2) were enrolled in this study. All patients were randomly assigned to two groups, the therapeutic group in which patients were treated with TGP (1.8 g/day) combined with MTX and LEF (MTX 10mg/week plus LEF 20mg/day) while in the control group, patients were treated without TGP up to 12 weeks. The efficacy and liver abnormalities were observed. The incidence of abnormal liver function within 12 weeks in TGP group was significantly lower than that in control group (11.38% vs 23.26%, P=0.013). The proportion of patients with ALT/AST >3 times ULN (upper limits of normal) was significantly lower in TGP group than control group (1.63% vs 7.75%, P=0.022). More patients achieved remission, good and moderate response in TGP group than control group at 4, 8 and 12 weeks, but the difference was not significant (P>0.05). The proportions of all adverse events were comparable in the two groups except for diarrhea. Our study demonstrates that TGP can significantly reduce the incidence and severity of liver damage caused by MTX+LEF in the treatment of active RA patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Reduced hepatotoxicity by total glucosides of paeony in combination treatment with leflunomide and methotrexate for patients with active rheumatoid arthritis.

    Science.gov (United States)

    Chen, Zhu; Li, Xiang-Pei; Li, Zhi-Jun; Xu, Liang; Li, Xiao-Mei

    2013-03-01

    Combination use of methotrexate (MTX) and leflunomide (LEF) has been proved effective in the treatment of active rheumatoid arthritis (RA). However, previous trials have documented that both are associated with increased incidence of liver toxicity. As active compounds extracted from the roots of the traditional Chinese herb Paeonia lactiflora Pall, total glucosides of paeony (TGP) have been shown to have anti-inflammatory, hepatoprotective and immuno-regulatory activities, without evident toxicity or side effects. In this 24-week, open label, randomized multicenter clinical trial, we investigated the efficacy of TGP and the protective effect on hepatotoxicity in the combination treatment with LEF and MTX for patients with active RA. A total of 204 patients with active RA (DAS28>3.2) recruited from 3 regional referral centers were enrolled and received MTX and LEF combination therapy (MTX 10 mg/week plus LEF 20 mg/day) with or without TGP for up to 24 weeks by randomization. Hepatotoxicity was defined as an increase of at least 1.5-fold the upper limits of normal (ULN) of alanine aminotransferase (ALT) or aspartate aminotransferase (AST). Significantly less frequent hepatotoxicity was observed in patients with TGP than those without (9.5% vs 34.8%, p 1.5 to ≤2 times and >2 to ≤3 times the ULN were lower in TGP group than the control (1.9% vs 10.1%, 2.9% vs 12.4%, p TGP group achieved a European League Against Rheumatism (EULAR) good response or moderate response at 12 weeks, although there is no statistical significance. Similar results were observed at 24 weeks. Our preliminary study demonstrates the hepatoprotective and additive role of TGP in combination with MTX and LEF in the treatment of active RA. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Synergistic interaction between total glucosides and total flavonoids on chronic constriction injury induced neuropathic pain in rats.

    Science.gov (United States)

    Zhang, Juan; Lv, Chen; Wang, Hai-na; Cao, Yi

    2013-04-01

    Shaoyao Gancao Decoction (SGD), a famous herbal medicine, consists of two herbs (Paeoniae Radix and Glycyrrhizae Radix) and is traditionally used for the treatment of pain. To investigate the synergistic potential of total glucosides of Paeoniae Radix (TGP) and total flavonoids of Glycyrrhizae Radix (TFL). Oral administration of TGP and TFL alone at the doses of 60,120 and 240 mg/kg or in combination were given only one time to the neuropathic pain rat induced by chronic constriction injury. Paw pressure and heat immersion tests were performed to assess degrees of mechanical allodynia and thermal hyperalgesia, respectively. Synergistic interactions between TGP and TFL were characterized using isobolographic analysis. Expressions of Sirt1 protein were detected by immunohistochemistry. On day 14 after surgery, single oral administration of TGP and TFL both produced significant anti-allodynic and anti-hyperalgesic effects in dose-dependent and time-dependent manners. The ED(50) value of TGP was 249.4 ± 10.8 mg/kg while TFL was 871.4 ± 30.5 mg/kg. Isobolographic analysis revealed that the combination of TGP with TFL at the fixed ratios of 3:1 exerted the highest sub-additive (synergistic) interaction, of which the experimental ED(50) value was 95.1 ± 9.0 mg/kg. SGD could also downregulate Sirt1 protein expression, which was 4.2-fold higher than that of model rats in dorsal root ganglion. Analgesic effects of SGD may contribute to simultaneous inhibition of Sirt1 overexpression and could warrant further evaluation as a possible agent for the treatment of neuropathic pain.

  11. Total glucosides of paeony regulates JAK2/STAT3 activation and macrophage proliferation in diabetic rat kidneys.

    Science.gov (United States)

    Wang, Kun; Wu, Yong-Gui; Su, Jing; Zhang, Jing-Jing; Zhang, Pei; Qi, Xiang-Ming

    2012-01-01

    Total glucosides of paeony (TGP) is the major active constituent of Paeonia lactiflora Pall., which has shown renoprotection in experimental diabetic nephropathy. Activation of Janus kinase/signal transducers and activators of transcription (JAK/STAT) is an important mechanism by which hyperglycemia contributes to renal damage. Macrophages also play an essential role in the pathogenesis of diabetic nephropathy. Herein, we investigated the ability of TGP to modulate JAK2/STAT3 activation and macrophage proliferation in rats with streptozotocin (STZ)-induced diabetes. TGP (50, 100, and 200 mg/kg) was administered orally once a day for eight weeks. Levels of p-JAK2 and p-STAT3 were determined by Western blot analysis. Immunohistochemistry and double immunohistochemistry were used to identify p-STAT3, ED-1, PCNA/ED-1, and p-STAT3/ED-1-positive (+) cells. The elevated 24-h urinary albumin excretion rate was markedly attenuated by treatment with 50, 100, and 200 mg/kg TGP. Western blot analysis showed that the significantly increased levels of p-JAK2, p-STAT3 proteins in the kidneys of diabetic rats were significantly inhibited by 50, 100, and 200 mg/kg TGP treatment. The marked accumulation and proliferation of macrophages in diabetic kidneys were significantly inhibited by TGP treatment. ED-1+/p-STAT3+ cells were significantly increased in the kidneys from the model group but were significantly inhibited by TGP treatment. These results show that TGP significantly inhibited diabetic nephropathy progression and suggest that these protective effects are associated with the ability of TGP to inhibit the JAK2/STAT3 pathway and macrophage proliferation and action.

  12. Deoxynivalenol, deoxynivalenol-3-glucoside, and enniatins: the major mycotoxins found in cereal-based products on the Czech market.

    Science.gov (United States)

    Malachova, Alexandra; Dzuman, Zbynek; Veprikova, Zdenka; Vaclavikova, Marta; Zachariasova, Milena; Hajslova, Jana

    2011-12-28

    Fusarium toxins, Alternaria toxins, and ergot alkaloids represent common groups of mycotoxins that can be found in cereals grown under temperate climatic conditions. Because most of them are chemically and thermally stable, these toxic fungal secondary metabolites might be transferred from grains into the final products. To get information on the commensurate contamination of various cereal-based products collected from the Czech retail market in 2010, the occurrence of "traditional" mycotoxins such as groups of A and B trichothecenes and zearalenone, less routinely determined Alternaria toxins (alternariol, alternariol monomethyl ether and altenuene), ergot alkaloids (ergosine, ergocryptine, ergocristine, and ergocornine) and "emerging" mycotoxins (enniatins A, A1, B, and B1 and beauvericin) were monitored. In a total 116 samples derived from white flour and mixed flour, breakfast cereals, snacks, and flour, only trichothecenes A and B and enniatins were found. Deoxynivalenol was detected in 75% of samples with concentrations ranging from 13 to 594 μg/kg, but its masked form, deoxynivalenol-3-β-d-glucoside, has an even higher incidence of 80% of samples, and concentrations ranging between 5 and 72 μg/kg were detected. Nivalenol was found only in three samples at levels of 30 μg/kg. For enniatins, all of the samples investigated were contaminated with at least one of four target enniatins. Enniatin A was detected in 97% of samples (concentration range of 20-2532 μg/kg) followed by enniatin B with an incidence in 91% of the samples (concentration range of 13-941 μg/kg) and enniatin B1 with an incidence of 80% in the samples tested (concentration range of 8-785 μg/kg). Enniatin A1 was found only in 44% of samples at levels ranging between 8 and 851 μg/kg.

  13. Charge Transfer Dynamics of Highly Efficient Cyanidin-3-O- Glucoside Sensitizer for Dye-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Prima, E C; Yuliarto, B; Suyatman; Dipojono, H K

    2016-01-01

    This paper reports the novel efficiency achievement of black rice-based natural dye- sensitized solar cells. The higher dye concentration, the longer dye extraction as well as dye immersion onto a TiO 2 film, and the co-adsorption addition are key strategies for improved-cell performance compared to the highest previous achievement. The black rice dye containing 1.38 mM cyanidin-3-O-glucoside has been extracted without purification for 3 weeks at dark condition and room temperature. The anatase TiO 2 photoanode was dipped into dye solution within 4 days. Its electrode was firmly sealed to be a cell and was filled by I - /I 3 - electrolyte using vacuum technique. As a result, the overall solar-to-energy conversion efficiency was 1.49% at AM 1.5 illumination (100 mW.cm -2 ). The voltametric analysis has reported the interfacial electronic band edges of TiO 2 -Dye-Electrolyte. Furthermore, electrochemical impedance spectroscopy has shown the kinetic of interfacial electron transfer dynamics among TiO 2 -dye-electrolyte. The cell has the transfer resistance (Rt) of 12.5 ω, the recombination resistance (Rr) of 266.8 ω, effective electron diffusion coefficients (Dn) of 1.4 × 10 -3 cm 2 /s, Dye-TiO 2 effective electron transfer (τ d ) of 26.6 μs, effective diffusion length (L n )of 33.78 μm, chemical capacitance (C μ ) of 12.43 μF, and electron lifetime (τ n ) of 3.32 ms. (paper)

  14. Isoflavone Malonyltransferases GmIMaT1 and GmIMaT3 Differently Modify Isoflavone Glucosides in Soybean (Glycine max under Various Stresses

    Directory of Open Access Journals (Sweden)

    Muhammad Z. Ahmad

    2017-05-01

    Full Text Available Malonylated isoflavones are the major forms of isoflavonoids in soybean plants, the genes responsible for their biosyntheses are not well understood, nor their physiological functions. Here we report a new benzylalcohol O-acetyltransferase, anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase, deacetylvindoline 4-O-acetyltransferase (BAHD family isoflavone glucoside malonyltransferase GmIMaT1, and GmIMaT3, which is allelic to the previously characterized GmMT7 and GmIF7MaT. Biochemical studies showed that recombinant GmIMaT1 and GmIMaT3 enzymes used malonyl-CoA and several isoflavone 7-O-glucosides as substrates. The Km values of GmIMaT1 for glycitin, genistin, and daidzin were 13.11, 23.04, and 36.28 μM, respectively, while these of GmIMaT3 were 12.94, 26.67, and 30.12 μM, respectively. Transgenic hairy roots overexpressing both GmIMaTs had increased levels of malonyldaidzin and malonylgenistin, and contents of daidzin and glycitin increased only in GmIMaT1-overexpression lines. The increased daidzein and genistein contents were detected only in GmIMaT3-overexpression lines. Knockdown of GmIMaT1 and GmIMaT3 reduced malonyldaidzin and malonylgenistin contents, and affected other isoflavonoids differently. GmIMaT1 is primarily localized to the endoplasmic reticulum while GmIMaT3 is primarily in the cytosol. By examining their transcript changes corresponding to the altered isoflavone metabolic profiles under various environmental and hormonal stresses, we probed the possible functions of GmIMaTs. Two GmIMaTs displayed distinct tissue expression patterns and respond differently to various factors in modifying isoflavone 7-O-glucosides under various stresses.

  15. Enhancement of Exposure and Reduction of Elimination for Paeoniflorin or Albiflorin via Co-Administration with Total Peony Glucosides and Hypoxic Pharmacokinetics Comparison

    Directory of Open Access Journals (Sweden)

    Weizhe Xu

    2016-07-01

    Full Text Available There is evidence suggesting that herbal extracts demonstrate greater bioactivities than their isolated constituents at an equivalent dose. This phenomenon could be attributed to the absence of interacting substances present in the extracts. By measuring the pharmacokinetic parameters of paeoniflorin (PF and albiflorin (AF after being orally administered to rats in isolated form, in combination with each other and within total peony glucosides (TPG, respectively, the current study aimed to identify positive pharmacokinetic interactions between components of peony radix extracts. Moreover, the pharmacokinetic profiles of PF and AF under normoxia and hypoxia were also investigated and compared. In order to achieve these goals, a highly sensitive and reproducible ultra-peformance liquid chromatography–mass spectrometry (UPLC-MS method was developed and validated for simultaneously quantitation of PF and AF in rat plasma. This study found that compared with that of single component (PF/AF, the exposure of PF in rat plasma after combination administration or TPG administration was significantly increased, meanwhile the elimination of PF/AF was remarkably reduced. It was also noticed that AUC and Cmax of PF in hypoxia rats were significantly decreased compared with that of normaxia rats, suggesting that there was a decreased exposure of PF in rats under hypoxia. The current study, for the first time, revealed the pharmacokinetic interactions between PF/AF and other constitutes in TGP and the pharmacokinetic profiles of PF and AF under hypoxia. In view of the current findings, it could be supposed that the clinical performance of total peony glucosides would be better than that of single constitute (PF/AF. The outcomes of this animal study are expected to serve as a basis for development of clinical guidelines on total peony glucosides usage.

  16. Biological Activities of 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-Glucoside in Antiaging and Antiaging-Related Disease Treatments

    Directory of Open Access Journals (Sweden)

    Shuang Ling

    2016-01-01

    Full Text Available 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG is active component of the Chinese medicinal plant Polygonum multiflorum Thunb. (THSG. Pharmacological studies have demonstrated that THSG exhibits numerous biological functions in treating atherosclerosis, lipid metabolism, vascular and cardiac remodeling, vascular fibrosis, cardiac-cerebral ischemia, learning and memory disorders, neuroinflammation, Alzheimer and Parkinson diseases, diabetic complications, hair growth problems, and numerous other conditions. This review focuses on the biological effects of THSG in antiaging and antiaging-related disease treatments and discusses its molecular mechanisms.

  17. The use of alpha-methyl-D-glucoside, a synthetic analogue of maltose, as inducer of amylase by Aspergillus sp in solid-state and submerged fermentations

    OpenAIRE

    Moreira, Fabiana G.; Lenartovicz, Veridiana; Souza, Cristina G.M. de; Ramos, Edivan P.; Peralta, Rosane M.

    2001-01-01

    The use of a methyl-D-glucoside (alphaMG), a synthetic analogue of maltose, as carbon source and inducer of amylase synthesis to several species of Aspergillus was studied in submerged and solid-state fermentations. Among a group of ten species, A. tamarii, A. fumigatus and A. flavus were able to produce biomass and high specific amylolytic activity in submerged cultures containing alphaMG as the only carbon source. In solid state fermentation, the enrichment of basal wheat bran or corn cob m...

  18. Reactivity of Cork Extracts with (+)-Catechin and Malvidin-3-O-glucoside in Wine Model Solutions: Identification of a New Family of Ellagitannin-Derived Compounds (Corklins).

    Science.gov (United States)

    Azevedo, Joana; Fernandes, Ana; Oliveira, Joana; Brás, Natércia F; Reis, Sofia; Lopes, Paulo; Roseira, Isabel; Cabral, Miguel; Mateus, Nuno; de Freitas, Victor

    2017-10-04

    The aim of this study was to evaluate the reactivity of phenolic compounds extracted from cork stoppers to wine model solutions with two major wine components, namely, (+)-catechin and malvidin-3-O-glucoside. Besides the formation of some compounds already described in the literature, these reactions also yielded a new family of ellagitannin-derived compounds, named herein as corklins. This new family of compounds that were found to result from the interaction between ellagitannins in alcoholic solutions and (+)-catechin were structurally characterized by mass spectroscopy, nuclear magnetic resonance, and computational methods.

  19. Kaempferol attenuates COX-2 expression in IL-6-induced macrophages and carrageenan-induced mouse paw edema by targeting STAT3 and NF-kB

    Directory of Open Access Journals (Sweden)

    Anandita Basu

    2017-10-01

    Full Text Available Dietary polyphenols are reported to possess varied pharmacological activities, viz. antioxidant, anti-inflammatory, anti-cancer, anti-allergic actions. Here, we report the efficacy of Kaempferol (kae to attenuate expression of IL-6 induced cycloxygenase-2 (COX-2, an inducible isoform of cycloxygenase enzyme family that catalyzes synthesis of inflammatory mediators, prostanoids and prostaglandins. IL-6 is a pleiotropic cytokine involved in both acute and chronic inflammation. Our results showed that kae attenuated COX-2 expression at both mRNA and protein level in IL-6-induced THP1 macrophages. This attenuation of COX-2 expression by kae involved dose-dependent inhibition of phosphorylation of STAT3 (Tyr 705 and NF-kB p65 (Ser 536 leading to their deactivation and reduced nuclear localization in THP-1 macrophages. Moreover, kae modulates COX-2 expression as well as STAT3 and NF-kB activation in carrageenan-induced mouse paw edema model. RT-PCR and western blot analysis from paw tissues were harvested after kae injection (i.p followed by carrageenan-treatment in sub-plantar region of right hind paw. Results showed that kae attenuated COX-2 expression and STAT3 and NF-kB activation in carrageenan-induced mouse paw edema, suggesting that inhibition of both IL-6-STAT3-COX-2 and IL-6-NFkB-COX-2 axes by kae might be stimulus-independent. To understand binding affinity of kae with NF-kB and STAT3, docking analysis was performed using Patchdock server. From our findings, we observed strong binding affinity and transient interaction in both NF-kB/kae and STAT3/kae complexes. We noticed negative atomic contact energy and greater interface area for both the complexes. Selected complexes obtained from Patchdock were refined using Firedock online server which also suggested similar negative binding energy profile. It is plausible that kae attenuates COX-2 expression by directly binding to both STAT3 and NF-kB proteins and inhibiting their activation and

  20. [Effect of total glucosides of paeony on Wnt/β-catenin signal transduction pathway expression in kidney of diabetic rats].

    Science.gov (United States)

    Chang, Bao-Chao; Chen, Wei-Dong; Zhang, Yan; Yang, Ping; Liu, Lei; Wang, Jing

    2014-10-01

    The study is to explore the effect of total glucosides of paeony (TGP)on Wnt/β-catenin signal transduction pathway expression in kidney of diabetic rats, and discuss the protection of TGP in diabetic nephropathy and possible mechanism. Ninety male SD rats of 8 weeks age were randomly divided into normal control group (n = 10) and model group (n = 80). Rats of the normal control group were fed with regular diet, while rats of the model group were fed with high-fat high-sugar diet and 4 weeks later were given an intraperitoneal injection of 35 mg x kg(-1) streptozotocin (STZ). The successfully induced type 2 diabetic rat models were then randomly divided into DM group, three TGP (50, 100, 200 mg x kg(-1) x d(-1)) treatment group and tripterygium wilfordii glycosides (8 mg x kg(-1) x d(-1)) control group. Rats of DM group and each treatment group were given high-fat high-sugar diet. At week 14, the levels of blood sugar, 24 hour urine protein, serum creatinine and blood urea nitrogen were tested. The rats were then sacrificed. Renal pathological changes were examined. Renal tissue Wnt-1 and β-catenin expressions were detected by immunohistochemical assay. Wnt-1 mRNA and β-catenin mRNA expression was semi-quantified by RT-PCR. Wnt-1 protein and β-catenin protein expression was semi-quantified by Western blot. The Result show that Wnt-1 and β-catenin expression increased in kidney of high-fat high-sugar induced type 2 diabetic rats. Compared with diabetic group, the level of serum creatinine, blood urea nitrogen, 24 h urine protein, mean glomerular area and mean glomerular volume were decreased, renal histopathology were improved, expression of Wnt-1 and β-catenin mRNA and protein was reduced in TGP group. Tripterygium wilfordii glycosides had the similar effect. In conclusion, these results showed that Wnt/β-catenin abnormal activation in kidney of type 2 diabetic rats, TGP can improve kidney damage in diabetic rats and delay the development of diabetic

  1. Effect of total glucosides of paeony on the expression of nephrin in the kidneys from diabetic rats.

    Science.gov (United States)

    Zhang, Pei; Zhang, Jing-Jing; Su, Jing; Qi, Xiang-Ming; Wu, Yong-Gui; Shen, Ji-Jia

    2009-01-01

    Total glucosides of paeony (TGP), extracted from the traditional Chinese herb root of Paeonia lactiflora pall, have been shown to have a therapeutic role in experimental diabetic nephropathy including albuminuria. Recent investigation has identified nephrin, a podocyte-specific transmembrane protein, as a key regulator in the pathogenesis of diabetic albuminuria. The aim of this study was to investigate whether TGP can attenuate albuminuria through prevention of nephrin loss in the experimental diabetic nephropathy. Fifty male Munich-Wistar rats were obtained from the Experimental Animal Center of Anhui Medical University. These rats were divided into 5 groups (n = 10); normal group, control diabetic group, and 3 TGP treated diabetic groups at different concentrations. Diabetes was induced by streptozotocin, and TGP (50, 100, 200 mg/kg) was orally administered to the 3 TGP treated diabetic groups once a day for 8 weeks, respectively. Blood glucose and 24 hour urinary albumin excretion rate (AER) were measured. The expressions of nephrin, tumor necrosis factor-alpha (TNF-alpha), NF-kappaB p65 and 3-nitrotyrosine (3-NT) protein were determined by immunoinfluorescence or Western blot analysis in the kidneys. Elevated AER was markedly attenuated by TGP treatment in diabetic rats. There was a finely dotted linear epithelial staining of nephrin in normal group glomeruli. In contrast, the staining of glomeruli from untreated diabetic rats was attenuated, more diapersed, and clustered. This diabetic-induced loss of glomerular nephrin expression was prevented in a large degree in TGP-treated diabetic rats. Western blot analysis showed that the expression of nephrin protein was reduced in the kidneys of diabetic rats, but significantly increased in the TGP treatment groups. The expressions of TNF-alpha, NF-kappaB p65 and 3-NT protein were significantly increased in the kidneys of diabetic rats, which were all significantly inhibited by TGP treatment. Our results showed that

  2. Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae.

    Science.gov (United States)

    Onkokesung, Nawaporn; Reichelt, Michael; van Doorn, Arjen; Schuurink, Robert C; van Loon, Joop J A; Dicke, Marcel

    2014-05-01

    Anthocyanins and flavonols are secondary metabolites that can function in plant defence against herbivores. In Arabidopsis thaliana, anthocyanin and flavonol biosynthesis are regulated by MYB transcription factors. Overexpression of MYB75 (oxMYB75) in Arabidopsis results in increasing anthocyanin and flavonol levels which enhances plant resistance to generalist caterpillars. However, how these metabolites affect specialist herbivores has remained unknown. Performance of a specialist aphid (Brevicoryne brassicae) was unaffected after feeding on oxMYB75 plants, whereas a specialist caterpillar (Pieris brassicae) gained significantly higher body mass when feeding on this plant. An increase in anthocyanin and total flavonol glycoside levels correlated negatively with the body mass of caterpillars fed on oxMYB75 plants. However, a significant reduction of kaempferol-3,7-dirhamnoside (KRR) corresponded to an increased susceptibility of oxMYB75 plants to caterpillar feeding. Pieris brassicae caterpillars also grew less on an artificial diet containing KRR or on oxMYB75 plants that were exogenously treated with KRR, supporting KRR's function in direct defence against this specialist caterpillar. The results show that enhancing the activity of the anthocyanin pathway in oxMYB75 plants results in re-channelling of quercetin/kaempferol metabolites which has a negative effect on the accumulation of KRR, a novel defensive metabolite against a specialist caterpillar.

  3. Validation of UHPLC-MS/MS methods for the determination of kaempferol and its metabolite 4-hydroxyphenyl acetic acid, and application to in vitro blood-brain barrier and intestinal drug permeability studies.

    Science.gov (United States)

    Moradi-Afrapoli, Fahimeh; Oufir, Mouhssin; Walter, Fruzsina R; Deli, Maria A; Smiesko, Martin; Zabela, Volha; Butterweck, Veronika; Hamburger, Matthias

    2016-09-05

    Sedative and anxiolytic-like properties of flavonoids such as kaempferol and quercetin, and of some of their intestinal metabolites, have been demonstrated in pharmacological studies. However, routes of administration were shown to be critical for observing in vivo activity. Therefore, the ability to cross intestinal and blood-brain barriers was assessed in cell-based models for kaempferol (KMF), and for the major intestinal metabolite of KMF, 4-hydroxyphenylacetic acid (4-HPAA). Intestinal transport studies were performed with Caco-2 cells, and blood-brain barrier transport studies with an immortalized monoculture human model and a primary triple-co-culture rat model. UHPLC-MS/MS methods for KMF and 4-HPAA in Ringer-HEPES buffer and in Hank's balanced salt solution were validated according to industry guidelines. For all methods, calibration curves were fitted by least-squares quadratic regression with 1/X(2) as weighing factor, and mean coefficients of determination (R(2)) were >0.99. Data obtained with all barrier models showed high intestinal and blood-brain barrier permeation of KMF, and no permeability of 4-HPAA, when compared to barrier integrity markers. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Computational and in vitro insights on snake venom phospholipase A2 inhibitor of phytocompound ikshusterol3-O-glucoside of Clematis gouriana Roxb. ex DC.

    Science.gov (United States)

    Muthusamy, Karthikeyan; Chinnasamy, Sathishkumar; Nagarajan, Subbiah; Sivaraman, Thirunavukkarasu

    2017-12-14

    Ikshusterol3-O-glucoside was isolated from Clematis gouriana Roxb. ex DC. root. A structure of the isolated compound was determined on the basis of various spectroscopic interpretations (UV, NMR, FTIR, and GC-MS-EI). This structure was submitted in the PubChem compound database (SID 249494133). SID 249494133 was carried out by density functional theory calculation to observe the chemical stability and electrostatic potential of this compound. The absorption, distribution, metabolism, and excretion property of this compound was predicted to evaluate the drug likeness and toxicity. In addition, molecular docking, quantum polarized ligand docking, prime MMGBSA calculation, and induced fit docking were performed to predict the binding status of SID 249494133 with the active site of phospholipase A 2 (PLA 2 ) (PDB ID: 1A3D). The stability of the compound in the active site of PLA 2 was carried out using molecular dynamics simulation. Further, the anti-venom activity of the compound was assessed using the PLA 2 assay against Naja naja (Indian cobra) crude venom. The results strongly show that Ikshusterol3-O-glucoside has a potent snake-venom neutralizing capacity and it might be a potential molecule for the therapeutic treatment for snakebites.

  5. Studies on metabolism of total glucosides of paeony from Paeoniae Radix Alba in rats by UPLC-Q-TOF-MS/MS.

    Science.gov (United States)

    Cao, Wenli; Wang, Xinguo; Li, Haojie; Shi, Xuliang; Fan, Wencheng; Zhao, Shaohua; Liu, Minyan; Niu, Liying

    2015-11-01

    Total glucosides of paeony are the active constituents of Paeoniae Radix Alba. In this study, a novel strategy was proposed to find more metabolites and the differences between paeoniflorin, albiflorin and total glucosides of paeony (TGP). This strategy was characterized as follows: firstly, the animals were divided into three groups (paeoniflorin, albiflorin and TGP) to identify the source of TGP metabolites from paeoniflorin or albiflorin; secondly, a generic information-dependent acquisition scan for the low-level metabolites was triggered by the multiple mass defect filter and dynamic background subtraction; thirdly, the metabolites were identified with a combination of data-processing methods including mass defect filtering, neutral loss filtering and product ion filtering; finally, a comparative study was used in the metabolism of paeoniflorin, albiflorin and TGP. Based on the strategy, 18 metabolites of TGP, 10 metabolites of paeoniflorin and 13 metabolites of albiflorin were identified respectively. The results indicated that the hydrolysis, conjugation reaction and oxidization were the major metabolic pathways, and the metabolic sites were the glycosidic linkage, the ester bond and the benzene ring. This study is first to explore the metabolism of TGP, and these findings enhance our understanding of the metabolism and the interactions of paeoniflrin and albiflorin in TGP. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Simultaneous determination of cucurbitacin B, E, I and E-glucoside in plant material and body fluids by HPLC-MS.

    Science.gov (United States)

    Bajcsik, Nicole; Pfab, Rudolf; Pietsch, Jörg

    2017-05-01

    A selective and sensitive analytical method for the simultaneous determination of cucurbitacin B, E, I and E-glucoside in plant material and body fluids by HPLC-MS was developed. After liquid-liquid extraction with dichlormethane, separation was achieved on a Phenomenex Luna Pentafluorophenyl Column (150mm×2mm, 5μm) using acetonitrile-water (90:10, v/v) as mobile phase system. Detection was performed using a 3200 Q Trap mass spectrometer (AB Sciex). For analysis Q1 Scans with negative ionisation were chosen. The method was validated for serum as the matrix of choice. Limits of detection are in the picogram range, limits of quantification are between 0.05 and 0.42ng/mL, recoveries are above 50%. The assay was linear in the calibration range from 1.0 to 50ng/mL for cucurbitacin E and from 0.10 to 50ng/mL for the cucurbitacins B, I and E-glucoside. The applicability of the method was demonstrated by the determination of cucurbitacins in zucchini plant material and body fluids from intoxication cases. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Characterization and identification of iridoid glucosides, flavonoids and anthraquinones in Hedyotis diffusa by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Liu, E-Hu; Zhou, Ting; Li, Guo-Bin; Li, Jing; Huang, Xiu-Ning; Pan, Feng; Gao, Ning

    2012-01-01

    The multiple bioactive constituents in Hedyotis diffusa Willd. (H. diffusa) were extracted and characterized by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS(n)). The optimized separation condition was obtained using an Agilent ZorBax SB-C18 column (4.6×150 mm, 5 μm) and gradient elution with water (containing 0.1% formic acid) and acetonitrile (containing 0.1% formic acid), under which baseline separation for the majority of compounds was achieved. Among the compounds detected, 14 iridoid glucosides, 10 flavonoids, 7 anthraquinones, 1 coumarin and 1 triterpene were unambiguously identified or tentatively characterized based on their retention times and mass spectra in comparison with the data from standards or references. The fragmentation behavior for different types of constituents was also investigated, which could contribute to the elucidation of these constituents in H. diffusa. The present study reveals that even more iridoid glycosides were found in H. diffusa than hitherto assumed. The occurrence of two iridoid glucosides and five flavonoids in particular has not yet been described. This paper marks the first report on the structural characterization of chemical compounds in H. diffusa by a developed HPLC-ESI-MS(n) method. Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Linear-dichroism measurements on the LH2 antenna complex of Rhodopseudomonas Acidophila strain 10050 show that the transition dipole moment of the Carotenoid Rhodopin Glucoside us nit collinair with the long molecular axis

    NARCIS (Netherlands)

    Georgakopoulou, S.; Gogdell, R.J.; Grondelle, van R.; Amerongen, van H.

    2003-01-01

    We have applied linear-dichroism experiments to determine the orientation of the transition dipole moment, corresponding to the main absorption band of the carotenoid, rhodopin glucoside, in the light-harvesting complex LH2 from Rhodopseudomonas acidophila strain 10050. The crystal structure of this

  9. β-D-Glucoside utilization by Mycoplasma mycoides subsp. mycoides SC: possible involvement in the control of cytotoxicity towards bovine lung cells

    Directory of Open Access Journals (Sweden)

    Bischof Daniela F

    2007-04-01

    Full Text Available Abstract Background Contagious bovine pleuropneumonia (CBPP caused by Mycoplasma mycoides subsp. mycoides small-colony type (SC is among the most serious threats for livestock producers in Africa. Glycerol metabolism-associated H2O2 production seems to play a crucial role in virulence of this mycoplasma. A wide number of attenuated strains of M. mycoides subsp. mycoides SC are currently used in Africa as live vaccines. Glycerol metabolism is not affected in these vaccine strains and therefore it does not seem to be the determinant of their attenuation. A non-synonymous single nucleotide polymorphism (SNP in the bgl gene coding for the 6-phospho-β-glucosidase (Bgl has been described recently. The SNP differentiates virulent African strains isolated from outbreaks with severe CBPP, which express the Bgl isoform Val204, from strains to be considered less virulent isolated from CBPP outbreaks with low mortality and vaccine strains, which express the Bgl isoform Ala204. Results Strains of M. mycoides subsp. mycoides SC considered virulent and possessing the Bgl isoform Val204, but not strains with the Bgl isoform Ala204, do trigger elevated levels of damage to embryonic bovine lung (EBL cells upon incubation with the disaccharides (i.e., β-D-glucosides sucrose and lactose. However, strains expressing the Bgl isoform Val204 show a lower hydrolysing activity on the chromogenic substrate p-nitrophenyl-β-D-glucopyranoside (pNPbG when compared to strains that possess the Bgl isoform Ala204. Defective activity of Bgl in M. mycoides subsp. mycoides SC does not lead to H2O2 production. Rather, the viability during addition of β-D-glucosides in medium-free buffers is higher for strains harbouring the Bgl isoform Val204 than for those with the isoform Ala204. Conclusion Our results indicate that the studied SNP in the bgl gene is one possible cause of the difference in bacterial virulence among strains of M. mycoides subsp. mycoides SC. Bgl does not act as

  10. The use of a-methyl-D-glucoside, a synthetic analogue of maltose, as inducer of amylase by Aspergillus sp in solid-state and submerged fermentations

    Directory of Open Access Journals (Sweden)

    Moreira Fabiana G.

    2001-01-01

    Full Text Available The use of a methyl-D-glucoside (alphaMG, a synthetic analogue of maltose, as carbon source and inducer of amylase synthesis to several species of Aspergillus was studied in submerged and solid-state fermentations. Among a group of ten species, A. tamarii, A. fumigatus and A. flavus were able to produce biomass and high specific amylolytic activity in submerged cultures containing alphaMG as the only carbon source. In solid state fermentation, the enrichment of basal wheat bran or corn cob medium with alphaMG increased up to 3 times the production of amylases. In both submerged and solid state fermentations, alphaMG was more effective inducer of amylases than maltose and starch.

  11. The use of alpha-methyl-D-glucoside, a synthetic analogue of maltose, as inducer of amylase by Aspergillus sp in solid-state and submerged fermentations

    Directory of Open Access Journals (Sweden)

    Fabiana G. Moreira

    2001-03-01

    Full Text Available The use of a methyl-D-glucoside (alphaMG, a synthetic analogue of maltose, as carbon source and inducer of amylase synthesis to several species of Aspergillus was studied in submerged and solid-state fermentations. Among a group of ten species, A. tamarii, A. fumigatus and A. flavus were able to produce biomass and high specific amylolytic activity in submerged cultures containing alphaMG as the only carbon source. In solid state fermentation, the enrichment of basal wheat bran or corn cob medium with alphaMG increased up to 3 times the production of amylases. In both submerged and solid state fermentations, alphaMG was more effective inducer of amylases than maltose and starch.

  12. Stilbene Glucoside, a Putative Sleep Promoting Constituent from Polygonum multiflorum Affects Sleep Homeostasis by Affecting the Activities of Lactate Dehydrogenase and Salivary Alpha Amylase.

    Science.gov (United States)

    Wei, Qian; Ta, Guang; He, Wenjing; Wang, Wei; Wu, Qiucheng

    2017-01-01

    Chinese herbal medicine (CHM) has been used for treating insomnia for centuries. The most used CHM for insomnia was Polygonum multiflorum. However, the molecular mechanism for CHM preventing insomnia is unknown. Stilbene glucoside (THSG), an important active component of P. multiflorum, may play an important role for treating insomnia. To test the hypothesis, Kunming mice were treated with different dosages of THSG. To examine the sleep duration, a computer-controlled sleep-wake detection system was implemented. Electroencephalogram (EEG) and electromyogram (EMG) electrodes were implanted to determine sleep-wake state. RT-PCR and Western blot was used to measure the levels of lactate dehydrogenase (LDH) and saliva alpha amylase. Spearman's rank correlation coefficient was used to identify the strength of correlation between the variables. The results showed that THSG significantly prolonged the sleep time of the mice (palpha amylase (palpha amylase (pamylase were negatively associated with sleep duration (palpha amylase.

  13. Anthocyanins standards (cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside isolation from freeze-dried açaí (Euterpe oleraceae Mart. by HPLC

    Directory of Open Access Journals (Sweden)

    Ana Cristina Miranda Senna Gouvêa

    2012-03-01

    Full Text Available Availability of analytical standards is a critical aspect in developing methods for quantitative analysis of anthocyanins. The anthocyanins cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside were isolated from samples of freeze-dried açaí (Euterpe oleraceae Mart., which is a round and purple well-known palm fruit in Brazil, and then used as standards. The isolation of the anthocyanins was performed by High Performance Liquid Chromatography (HPLC, using an adapted six-channel selection valve. The identification of anthocyanin pigments in açaí was based on mass spectrometric data for molecular ions and MS-MS product ions and on previous published data. After the collection procedure, standards with a high purity grade were obtained and an external standard curve of each anthocyanin was plotted.

  14. A new flavone glucoside together with known ellagitannins and flavones with anti-diabetic and anti-obesity activities from the flowers of pomegranate (Punica granatum).

    Science.gov (United States)

    Wu, Sheng; Tian, Li

    2018-03-03

    A new flavone glucoside tricetin 4'-O-β-glucopyranoside (1) and four known ellagitannins and flavones tricetin (2), luteolin (3), ellagic acid (4), and granatin B (5) were isolated from the flowers of Punica granatum L. (Lythraceae). Their structures were established by 1D and 2D NMR as well as mass spectrometry analyses. Among all tested compounds, tricetin (2) exhibited the strongest α-glucosidase inhibitory activity that was comparable to the anti-diabetic drug acarbose. Comparative structure-function analysis of tri-, tetra-, and pentahydroxy flavones [apigenin, luteolin (3), and tricetin (2), respectively] suggested that a greater number of hydroxyl groups on the flavone molecule enhanced its suppression of α-glucosidase, α-amylase, and lipase activities.

  15. Tetrahydroxystilbene glucoside modulates amyloid precursor protein processing via activation of AKT-GSK3β pathway in cells and in APP/PS1 transgenic mice.

    Science.gov (United States)

    Yin, Xiaomin; Chen, Chen; Xu, Ting; Li, Lin; Zhang, Lan

    2018-01-01

    Alternative splicing of amyloid precursor protein (APP) exon 7 generates the isoforms containing a Kunitz protease inhibitor (KPI) domain. APP-KPI levels in the brain are correlated with amyloid beta (Aβ) production. Here, we determined the effect of Tetrahydroxystilbene glucoside (TSG) on the AKT-GSK3β pathway. We found GSK3β increased APP-KPI inclusion level and interacted with the splicing factor ASF. TSG was intragastrically administered to 5-month-old APP/PS1 transgenic mice for 12 months. We found that the activated the AKT-GSK3β signaling pathway suppressed APP-KPI inclusion. Moreover, TSG treatment attenuated amyloid deposition in APP/PS1 mice. This study demonstrates the neuroprotective effect of TSG on APP expression, suggesting that TSG may be beneficial for AD prevention and treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Identification of regioisomers of methylated kaempferol and quercetin by ultra high performance liquid chromatography quadrupole time-of-flight (UHPLC–QTOF) tandem mass spectrometry combined with diagnostic fragmentation pattern analysis

    International Nuclear Information System (INIS)

    Ma, Chengying; Lv, Haipeng; Zhang, Xinzhong; Chen, Zongmao; Shi, Jiang; Lu, Meiling; Lin, Zhi

    2013-01-01

    Highlights: •Found methane elimination is position-specific for methylated flavonols. •Found retro Diels–Alder fragments retained methoxy at original ring of flavonols. •Proposed a diagnostic pattern for discriminating regioisomers of flavonols. •Identified the specificity of three novel flavonol O-methyltransferases. •Identified six biologically active compounds and four new compounds. -- Abstract: The O-methylation of active flavonoids can enhance their antiallergic, anticancerous, and cardioprotective effects depending on the methylation position. Thus, it is biologically and pharmacologically important to differentiate methylated flavonoid regioisomers. In this study, we examined the regioisomers of methylated kaempferol and quercetin using ultra high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry. The methyl groups on the flavonoids can generally be cleaved as methyl radicals in a position-independent manner. We found that methyl groups can be cleaved as methane. If there are protons adjacent the methoxy on the flavonol rings, intra-molecule proton transfer can occur via collision-induced dissociation, and one molecule of methane can then be eliminated. The remaining charged fragment ([M+H−CH 4 ] + ) reflects the adjacent structure and is specific to the methoxy position. Furthermore, the retro Diels–Alder (RDA) fragmentation of methylated flavonols can generate fragments with the methoxy at the original methylated ring. Combining the position-specific [M+H−CH 4 ] + fragment with the RDA fragments provides a diagnostic pattern for rapidly identifying methylated regioisomeric flavonols. Along with their retention behaviour, we have successfully identified ten regioisomers of methylated kaempferol and quercetin, which include six compounds previously reported in plants and shown to be biologically active. The developed approach is sensitive, rapid, reliable, and requires few standard compounds. It is highly

  17. The expression change of β-arrestins in fibroblast-like synoviocytes from rats with collagen-induced arthritis and the effect of total glucosides of paeony.

    Science.gov (United States)

    Wang, Qing-Tong; Zhang, Ling-Ling; Wu, Hua-Xun; Wei, Wei

    2011-01-27

    To investigate the expression of β-arrestins in fibroblast-like synoviocytes (FLS) from collagen-induced arthritis (CIA) rats and the effect of total glucosides of paeony (TGP). TGP and glucosides of tripterygium wilfordii (GTW) were intragastriclly administrated to collagen-induced arthritis (CIA) rats after immunization. The secondary inflammatory reaction was evaluated by hind paw swelling, polyarthritis index and histopathological changes. Antibodies to type II collagen (CII) were determined by enzyme-linked immunosorbent assay (ELISA). Synoviocyte proliferations were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl (MTT) assay. The expression of β-arrestins in synoviocytes from CIA rats was measured by western blot. The administration of TGP (25, 50, 100 mg/kg) depressed hind paw swelling and decreased the arthritis scores of CIA rats. TGP improved the pathologic manifestations of CIA. Serum anti-CII antibodies level increased significantly in CIA rats, while TGP had no effect on it. Fibroblast-like synoviocytes (FLS) proliferation was inhibited by TGP (50, 100 mg/kg). On d14, d28 after immunization, β-arrestins expression greatly up-regulated in synoviocytes from CIA rats and then returned to baseline levels on d42 after immunization. TGP (50, 100 mg/kg) significantly reduced the expression of β-arrestins. An inflammatory process in vivo induces an up-regulation of β-arrestins in synoviocytes from CIA rats while TGP can inhibit this change, which might be one of the important mechanisms for TGP to produce a marked therapeutic effect on RA. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Metabolic study of paeoniflorin and total paeony glucosides from Paeoniae Radix Rubra in rats by high-performance liquid chromatography coupled with sequential mass spectrometry.

    Science.gov (United States)

    Zhu, Lijun; Sun, Shanshan; Hu, Yanxi; Liu, Yufeng

    2018-04-01

    A clear understanding of the metabolism of Traditional Chinese Medicines is extremely important in their rational clinical application and effective material foundation research. A novel and reliable strategy was performed to find more metabolites of paeoniflorin, determine the metabolites of total paeony glucosides (TPG) by means of determining those metabolites of paeoniflorin, and compare the metabolism differences between paeoniflorin and TPG by intragastric administration. This strategy was characterized as follows. Firstly, the rats were divided into two groups (the paeoniflorin group and the TPG group) to find differences in metabolism mechanisms between paeoniflorin and TPG. Secondly, UPLC-FT-ICR MS and UPLC-Q-TOF MS 2 were applied to obtain accurate molecular weight and structural information, respectively. Thirdly, the metabolites were tentatively identified by a combination of data-processing methods including mass defect screening, characteristic neutral loss screening and product ion screening. Finally, a comparative study was employed in the metabolism of paeoniflorin and TPG. Based on the strategy, 18 metabolites of paeoniflorin (including four new compounds) and 11 metabolites of TPG (including two new compounds) were identified. In all of the identified metabolites of paeoniflorin, two metabolites in rat plasma, four metabolites in rat urine and six metabolites in rat feces were found for the first time after paeoniflorin administration. The results indicate that hydrolyzation of the ester bond and glucosidic band and conjugation with glucuronide were the major metabolic pathways of paeoniflorin. The metabolites of paeoniflorin and TPG in rat plasma, urine and feces have been detected for the first time after intragastric administration. The results may contribute to a better understanding of the metabolism mechanism and provide a scientific rationale for researching the material basis of paeoniflorin and TPG in vivo. Copyright © 2017 John Wiley

  19. A new ferulic acid ester and other constituents from Tamarix nilotica leaves.

    Science.gov (United States)

    Abouzid, Sameh Fekry; Ali, Sajjad Ahmed; Choudhary, Muhammad Iqbal

    2009-07-01

    Phytochemical investigation of the leaves of Tamarix nilotica (Tamaricaceae) has led to isolation of methyl ferulate 3-O-sulphate (1) for the first time from natural sources. In addition, coniferyl alcohol 4-O-sulphate (2), kaempferol 4'-methyl ether (3), tamarixetin (4) and quercetin 3-O-beta-D-glucupyranuronide (5) were isolated from the n-butanol soluble fraction of the extract. The pentacyclic triterpenoid, 3alpha-(3'',4''-dihydroxy-trans-cinnamoyloxy)-D-friedoolean-14-en-28-oic acid (6) was isolated from the n-hexane soluble fraction of the extract. The structures of these compounds were determined on the basis of spectroscopic analyses including 2 dimensional NMR. Compounds 3, 4 and 6 exhibited 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity with IC(50) values of 35.2, 37.0 and 21.2 muM, respectively.

  20. Bioactive secondary metabolites from tecomella undulata

    International Nuclear Information System (INIS)

    Ahmad, S.; Saleem, M.; Fatima, S.

    2014-01-01

    Chromatographic purification of the methanolic extract of Tecomella undulata yielded a new flavonoid glycoside; di-p-E-coumaroyl-alpha-L-rhamnosyl(16)) ,4 kaempferol-3-O-beta-D-(3 galactoside (1), two new megastigmanes; (6R 7Z)-9,10-dihydroxy-4,7-megastigmadien-3-one (2) and (6E)-9,10-dihydroxy-4,6-megastigmadien-3-one (3) along with three known compounds; (6R 9S)-9,10-dihydroxy-4-megastigmaen-3-one (4) quercetin-3-galactoside (5) and 3-dimethoxy-5,6,4-trihydroxyflavon (6). All the isolates 1-6 were characterized by the combination of 1D (1H, 13C), 2D (COSY, HSQC and HMBC) NMR data and high resolution mass spectrometric analysis. In antibacterial assay, compound 1 showed moderate inhibitory activity against Escherichia coli and Salmonalla typhi. (author)

  1. Antimicrobial constituents from aerva javanica

    International Nuclear Information System (INIS)

    Sharif, A.; Ahmed, E.; Hussain, M.U.; Malik, A.; Ashraf, M.

    2011-01-01

    In the course of screening program we have isolated six natural products from the whole plant of Aerva javanica. Iso quercetrin (1), 5-methylmellein (2), 2-hydroxy-3-O-beta -primeveroside naphthalene-1,4-dione (3), Apigenin 7-O-glucuronide (4), Kaempferol-3-O-beta-D-glucopyranosyl-(1 -- 2)-alpha-L-rhamnopyranoside-7-O-alpha-L-rhamnopyranoside (5), 7-(1 hydroxyethyl)-2-(2-hydroxyethyl)-3,4-dihydrobenzopyran (6) were isolated for the first time from Aerva javanica. Structural evidences were made by the extensive use of chemical and spectral studies. Different crude extracts (n-hexane, chloroform, ethyl acetate, methanol and water) and the all known isolated compounds were tested for their antimicrobial activity which displayed moderate to weak inhibitory activity. (author)

  2. Modulation of nuclear factor-κB signaling and reduction of neural tube defects by quercetin-3-glucoside in embryos of diabetic mice.

    Science.gov (United States)

    Tan, Chengyu; Meng, Fantong; Reece, E Albert; Zhao, Zhiyong

    2018-05-04

    Diabetes mellitus in early pregnancy increases the risk of birth defects in infants. Maternal hyperglycemia stimulates the expression of nitric oxide (NO) synthase 2 (NOS2), which can be regulated by transcription factors of the nuclear factor-κB (NF-κB) family. Increases in reactive nitrogen species (RNS) generate intracellular stress conditions, including nitrosative, oxidative, and endoplasmic reticulum (ER) stresses, and trigger programmed cell death (or apoptosis) in the neural folds, resulting in neural tube defects (NTDs) in the embryo. Inhibiting NOS2 can reduce NTDs; however, the underlying mechanisms require further delineation. Targeting NOS2 and associated nitrosative stress using naturally occurring phytochemicals is a potential approach to preventing birth defects in diabetic pregnancies. This study aims to investigate the effect of quercetin-3-glucoside (Q3G), a polyphenol flavonoid found in fruit, in reducing maternal diabetes-induced NTDs in an animal model, and to delineate the molecular mechanisms underlying Q3G action in regulating NOS2 expression. Female mice (C57BL/6) were induced to develop diabetes using streptozotocin before pregnancy. Diabetic pregnant mice were administered Q3G (100 mg/kg) daily via gavage feeding, introduction of drug to the stomach directly via a feeding needle, during neurulation from embryonic (E) day 6.5 to E9.5. After treatment, E10.5 embryos were collected and examined for the presence of NTDs and apoptosis in the neural tube. Expression of Nos2 and superoxide dismutase 1 (Sod1; an antioxidative enzyme) was quantified using Western blot assay. Nitrosative, oxidative, and endoplasmic reticulum (ER) stress conditions were assessed using specific biomarkers. Expression and posttranslational modification of factors in the NF-κB system were investigated. Treatment with Q3G (suspended in water) significantly decreased NTD rate (24.7%) and apoptosis in the embryos of diabetic mice, compared with those in the water

  3. Soymilk residue (okara) as a natural immobilization carrier for Lactobacillus plantarum cells enhances soymilk fermentation, glucosidic isoflavone bioconversion, and cell survival under simulated gastric and intestinal conditions.

    Science.gov (United States)

    Xiudong, Xia; Ying, Wang; Xiaoli, Liu; Ying, Li; Jianzhong, Zhou

    2016-01-01

    Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. However, artificial immobilization carriers are expensive and pose a high safety risk. Okara, a food-grade byproduct from soymilk production, is rich in prebiotics. Lactobacilli could provide health enhancing effects to the host. This study aimed to evaluate the potential of okara as a natural immobilizer for L. plantarum 70810 cells. The study also aimed to evaluate the effects of okara-immobilized L. plantarum 70810 cells (IL) on soymilk fermentation, glucosidic isoflavone bioconversion, and cell resistance to simulated gastric and intestinal stresses. Scanning electron microscopy (SEM) was used to show cells adherence to the surface of okara. Lactic acid, acetic acid and isoflavone analyses in unfermented and fermented soymilk were performed by HPLC with UV detection. Viability and growth kinetics of immobilized and free L. plantarum 70810 cells (FL) were followed during soymilk fermentation. Moreover, changes in pH, titrable acidity and viscosity were measured by conventional methods. For in vitro testing of simulated gastrointestinal resistance, fermented soymilk was inoculated with FL or IL and an aliquot incubated into acidic MRS broth which was conveniently prepared to simulate gastric, pancreatic juices and bile salts. Survival to simulated gastric and intestinal stresses was evaluated by plate count of colony forming units on MRS agar. SEM revealed that the lactobacilli cells attached and bound to the surface of okara. Compared with FL, IL exhibited a significantly higher specific growth rate, shorter lag phase of growth, higher productions of lactic and acetic acids, a faster decrease in pH and increase in titrable acidity, and a higher soymilk viscosity. Similarly, IL in soymilk showed higher productions of daizein and genistein compared with the control. Compared with FL, IL showed reinforced resistance to simulatedgastric and intestinal

  4. Soymilk residue (okara as a natural immobilization carrier for Lactobacillus plantarum cells enhances soymilk fermentation, glucosidic isoflavone bioconversion, and cell survival under simulated gastric and intestinal conditions

    Directory of Open Access Journals (Sweden)

    Xia Xiudong

    2016-11-01

    Full Text Available Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. However, artificial immobilization carriers are expensive and pose a high safety risk. Okara, a food-grade byproduct from soymilk production, is rich in prebiotics. Lactobacilli could provide health enhancing effects to the host. This study aimed to evaluate the potential of okara as a natural immobilizer for L. plantarum 70810 cells. The study also aimed to evaluate the effects of okara-immobilized L. plantarum 70810 cells (IL on soymilk fermentation, glucosidic isoflavone bioconversion, and cell resistance to simulated gastric and intestinal stresses. Scanning electron microscopy (SEM was used to show cells adherence to the surface of okara. Lactic acid, acetic acid and isoflavone analyses in unfermented and fermented soymilk were performed by HPLC with UV detection. Viability and growth kinetics of immobilized and free L. plantarum 70810 cells (FL were followed during soymilk fermentation. Moreover, changes in pH, titrable acidity and viscosity were measured by conventional methods. For in vitro testing of simulated gastrointestinal resistance, fermented soymilk was inoculated with FL or IL and an aliquot incubated into acidic MRS broth which was conveniently prepared to simulate gastric, pancreatic juices and bile salts. Survival to simulated gastric and intestinal stresses was evaluated by plate count of colony forming units on MRS agar. SEM revealed that the lactobacilli cells attached and bound to the surface of okara. Compared with FL, IL exhibited a significantly higher specific growth rate, shorter lag phase of growth, higher productions of lactic and acetic acids, a faster decrease in pH and increase in titrable acidity, and a higher soymilk viscosity. Similarly, IL in soymilk showed higher productions of daizein and genistein compared with the control. Compared with FL, IL showed reinforced resistance to simulatedgastric and

  5. A new dermocosmetic containing retinaldehyde, delta-tocopherol glucoside and glycylglycine oleamide for managing naturally aged skin: results from in vitro to clinical studies

    Directory of Open Access Journals (Sweden)

    Rouvrais C

    2017-02-01

    Full Text Available Céline Rouvrais,1,* Daniel Bacqueville,2,* Patrick Bogdanowicz,2,* Marie-José Haure,2 Laure Duprat,2 Christine Coutanceau,3 Nathalie Castex-Rizzi,2 Hélène Duplan,2 Valérie Mengeaud,1 Sandrine Bessou-Touya2 1Clinical Skin Research Center, 2Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse, 3Laboratoire Dermatologique Avène, Lavaur, France *These authors contributed equally to this work Introduction: Natural aging of skin tissues, the addition of the cumulative action of the time and radiation exposure result in skin atrophy, wrinkles and degeneration of the extracellular matrix (ECM. The aim of the study was to investigate the beneficial effect of a combination containing retinaldehyde (RAL, delta-tocopherol glucoside (delta-TC and glycylglycine oleamide (GGO and of a dermocosmetic containing the combination. Materials and methods: The protective effect of the combination was assessed through in vitro gene expression of ultraviolet (UV-irradiated fibroblasts. A skin aging assay using UV light on ex vivo skin samples and a clinical study conducted in 36 women aged from 35 to 55 years with a minimum of level 4 to a maximum of level 6 on the crow’s feet photoscale assessed the antiaging effect of the dermocosmetic. Results: When added to UV-irradiated fibroblasts, the combination substantially improved the ECM in activating the elastin fiber production (fibrillin 2, fibulin 1 and 5 and lysyl ­oxidase-like 2 as well as that of proteins involved in the cellular ECM interactions (integrin β1, paxillin and actin a2. An ex vivo photodamaged human skin model showed that the dermocosmetic formulation containing the combination of the active ingredients protected the elastic network against UV-induced alterations including both elastin and fibrillin-rich fibers in the dermis. A daily application of the dermocosmetic for 2 months on naturally aged skin resulted in a statistically significant improvement (p<0.05 of visible

  6. Identification of regioisomers of methylated kaempferol and quercetin by ultra high performance liquid chromatography quadrupole time-of-flight (UHPLC–QTOF) tandem mass spectrometry combined with diagnostic fragmentation pattern analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chengying; Lv, Haipeng; Zhang, Xinzhong; Chen, Zongmao; Shi, Jiang [Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008 (China); Lu, Meiling, E-mail: meilinglu@hotmail.com [Chemical Analysis Group, Agilent Technologies, No. 3 Wangjing North Road, Chaoyang Distr., Beijing 100102 (China); Lin, Zhi, E-mail: linz@mail.tricaas.com [Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008 (China)

    2013-09-17

    Highlights: •Found methane elimination is position-specific for methylated flavonols. •Found retro Diels–Alder fragments retained methoxy at original ring of flavonols. •Proposed a diagnostic pattern for discriminating regioisomers of flavonols. •Identified the specificity of three novel flavonol O-methyltransferases. •Identified six biologically active compounds and four new compounds. -- Abstract: The O-methylation of active flavonoids can enhance their antiallergic, anticancerous, and cardioprotective effects depending on the methylation position. Thus, it is biologically and pharmacologically important to differentiate methylated flavonoid regioisomers. In this study, we examined the regioisomers of methylated kaempferol and quercetin using ultra high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry. The methyl groups on the flavonoids can generally be cleaved as methyl radicals in a position-independent manner. We found that methyl groups can be cleaved as methane. If there are protons adjacent the methoxy on the flavonol rings, intra-molecule proton transfer can occur via collision-induced dissociation, and one molecule of methane can then be eliminated. The remaining charged fragment ([M+H−CH{sub 4}]{sup +}) reflects the adjacent structure and is specific to the methoxy position. Furthermore, the retro Diels–Alder (RDA) fragmentation of methylated flavonols can generate fragments with the methoxy at the original methylated ring. Combining the position-specific [M+H−CH{sub 4}]{sup +} fragment with the RDA fragments provides a diagnostic pattern for rapidly identifying methylated regioisomeric flavonols. Along with their retention behaviour, we have successfully identified ten regioisomers of methylated kaempferol and quercetin, which include six compounds previously reported in plants and shown to be biologically active. The developed approach is sensitive, rapid, reliable, and requires few standard

  7. Synergistic effect of apple extracts and quercetin 3-beta-d-glucoside combination on antiproliferative activity in MCF-7 human breast cancer cells in vitro.

    Science.gov (United States)

    Yang, Jun; Liu, Rui Hai

    2009-09-23

    Breast cancer is the most frequently diagnosed cancer in women. An alternative strategy to reduce the risk of cancer is through dietary modification. Although phytochemicals naturally occur as complex mixtures, little information is available regarding possible additive, synergistic, or antagonistic interactions among compounds. The antiproliferative activity of apple extracts and quercetin 3-beta-d-glucoside (Q3G) was assessed by measurement of the inhibition of MCF-7 human breast cancer cell proliferation. Cell cytotoxicity was determined by the methylene blue assay. The two-way combination of apple plus Q3G was conducted. In this two-way combination, the EC(50) values of apple extracts and Q3G were 2- and 4-fold lower, respectively, than those of apple extracts and Q3G alone. The combination index (CI) values at 50 and 95% inhibition rates were 0.76 +/- 0.16 and 0.42 +/- 0.10, respectively. The dose-reduction index (DRI) values of the apple extracts and Q3G to achieve a 50% inhibition effect were reduced by 2.03 +/- 0.55 and 4.28 +/- 0.39-fold, respectively. The results suggest that the apple extracts plus Q3G combination possesses a synergistic effect in MCF-7 cell proliferation.

  8. CoMFA and CoMSIA studies on C-aryl glucoside SGLT2 inhibitors as potential anti-diabetic agents.

    Science.gov (United States)

    Vyas, V K; Bhatt, H G; Patel, P K; Jalu, J; Chintha, C; Gupta, N; Ghate, M

    2013-01-01

    SGLT2 has become a target of therapeutic interest in diabetes research. CoMFA and CoMSIA studies were performed on C-aryl glucoside SGLT2 inhibitors (180 analogues) as potential anti-diabetic agents. Three different alignment strategies were used for the compounds. The best CoMFA and CoMSIA models were obtained by means of Distill rigid body alignment of training and test sets, and found statistically significant with cross-validated coefficients (q²) of 0.602 and 0.618, respectively, and conventional coefficients (r²) of 0.905 and 0.902, respectively. Both models were validated by a test set of 36 compounds giving satisfactory predicted correlation coefficients (r² pred) of 0.622 and 0.584 for CoMFA and CoMSIA models, respectively. A comparison was made with earlier 3D QSAR study on SGLT2 inhibitors, which shows that our 3D QSAR models are better than earlier models to predict good inhibitory activity. CoMFA and CoMSIA models generated in this work can provide useful information to design new compounds and helped in prediction of activity prior to synthesis.

  9. Micellar Surfactant Association in the Presence of a Glucoside-based Amphiphile Detected via High-Throughput Small Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Stanic, Vesna [Brazilian Synchrotron Light Source, Campinas (Brazil); Broadbent, Charlotte [Columbia Univ., New York, NY (United States). Engineering Dept.; DiMasi, Elaine [Brookhaven National Lab. (BNL), Upton, NY (United States). Photon Sciences Division; Galleguillos, Ramiro [Lubrizol Advanced Materials, Cleveland, OH (United States); Woodward, Valerie [Lubrizol Advanced Materials, Cleveland, OH (United States)

    2016-11-14

    The interactions of mixtures of anionic and amphoteric surfactants with sugar amphiphiles were studied via high throughput small angle x-ray scattering (SAXS). The sugar amphiphile was composed of Caprate, Caprylate, and Oleate mixed ester of methyl glucoside, MeGCCO. Optimal surfactant interactions are sought which have desirable physical properties, which must be identified in a cost effective manner that can access the large phase space of possible molecular combinations. X-ray scattering patterns obtained via high throughput SAXS can probe a combinatorial sample space and reveal the incorporation of MeGCCO into the micelles and the molecular associations between surfactant molecules. Such data make it possible to efficiently assess the effects of the new amphiphiles in the formulation. A specific finding of this study is that formulations containing comparatively monodisperse and homogeneous surfactant mixtures can be reliably tuned by addition of NaCl, which swells the surfactant micelles with a monotonic dependence on salt concentration. In contrast, the presence of multiple different surfactants destroys clear correlations with NaCl concentration, even in otherwise similar series of formulations.

  10. Assessment of the Therapeutic Effect of Total Glucosides of Peony for Juvenile Idiopathic Arthritis: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Yongsong Cai

    2016-01-01

    Full Text Available Juvenile idiopathic arthritis (JIA is the most common rheumatic disease in children; some clinical trials have reported the effects of total glucosides of peony (TGP in the treatment of JIA. However, no systematic review has yet been conducted. In this study, we assessed the efficacy and safety in patients with JIA enrolled in randomized controlled trials (RCTs of TGP. We extracted data for studies searched from 8 electronic databases that were searched and also evaluated the methodological quality of the included studies. We assessed the following outcome measures: overall response rate, pain, tender joint count (TJC, swollen joint count (SJC, duration of morning stiffness (DMS, grip strength (GS, rheumatoid factor (RF, erythrocyte sedimentation rate (ESR, C-reactive protein (CRP, and adverse effects (AEs in short term (4–8 weeks, intermediate term (9–26 weeks, and long term (>26 weeks. The final analysis showed that TGP acted as a unique nonbiologic disease-modifying antirheumatic drug (nonbiologic DMARD, and its therapeutic effects were safe and efficacious for the treatment of JIA with few AEs. However, more high-quality RCTs are needed to confirm these therapeutic effects.

  11. [Polyketone Reaction in Biosynthetic Pathways of 2, 3, 5, 4'-Tetrahydroxy Stilhene-2-O-β-D-glucoside in Polygonum multiflorum by Biocatalysis].

    Science.gov (United States)

    Lei, Lei; Xia, Wan-xia; Shao, Li; Zhao, Shu-jin

    2015-10-01

    2, 3, 5, 4'-Tetrahydroxy stilbene-2-O-β-D-glucoside (THSG), the active ingredient of Polygonum multiflorum, its polyketone reaction in the biosynthesis pathways was studied by biocatalysis method. The substrates 4-coumaroyl-CoA and malonyl-CoA were catalyzed in vitro by the crude enzyme extracted from Polygonum multiflorum callus, then the products were verified by HPLC and LC-MS methods. And the crude enzyme was analyzed by ammonium sulfate precipitation method and SDS-PAGE. HPLC chromatogram showed the same retention time of both the product and resveratrol standards; LC-MS spectra showed that the m/z of product was 227, which was consistent with resveratrol standards under the mode of negative ion; Ammonium sulfate (AS) precipitation method showed AS of 40% - 70% had catalytic activity,and 50% - 60% was the optimum; SDS-PAGE showed protein bands were obviously different among different AS concentration between 20% - 80%, the protein band of 42 kDa was found in AS of 50% - 60%, which had the same molecular weight with stilbene synthase. The product of polyketone reaction in the biosynthesis of THSG is resveratrol rather than THSG, so it is speculated that THSG is the conversion product of resveratrol instead of the direct product of the polyketone reaction.

  12. Interactions of milk α- and β-casein with malvidin-3-O-glucoside and their effects on the stability of grape skin anthocyanin extracts.

    Science.gov (United States)

    He, Zhiyong; Xu, Mingzhu; Zeng, Maomao; Qin, Fang; Chen, Jie

    2016-05-15

    The interactions of α- and β-casein with malvidin-3-O-glucoside (MG), the major anthocyanin in grape skin anthocyanin extracts (GSAE), were examined at pH 6.3 by fluorescence, fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy. The binding constant (KS), binding force and effects of the interactions on the caseins conformation and GSAE stability were investigated. The results showed that α- and β-casein bound with MG via hydrophilic (van der Waals forces or hydrogen bonding) and hydrophobic interactions, respectively. α-Casein had a slightly stronger binding affinity toward MG than β-casein, with respective KS values of 0.51×10(3)M(-1) and 0.46×10(3)M(-1) at 297K. The secondary structures of α- and β-casein were changed by MG binding, with a decrease in α-helix and an increase in turn for α-casein and no change in α-helix and a decrease in turn for β-casein. The casein-anthocyanin interaction appeared to have a positive effect on the thermal, oxidation and photo stability of GSAE. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Total glucosides of paeony (TGP) inhibits the production of inflammatory cytokines in oral lichen planus by suppressing the NF-κB signaling pathway.

    Science.gov (United States)

    Wang, Yanni; Zhang, Han; Du, Guanhuan; Wang, Yufeng; Cao, Tianyi; Luo, Qingqiong; Chen, Junjun; Chen, Fuxiang; Tang, Guoyao

    2016-07-01

    Total glucosides of paeony (TGP) is a bioactive compound extracted from paeony roots and has been widely used to ameliorate inflammation in several autoimmune and inflammatory diseases. However, the anti-inflammatory effect of TGP on oral lichen planus (OLP), a chronic inflammatory oral condition characterized by T-cell infiltration and abnormal epithelial keratinization cycle remains unclear. In this study, we found that TLR4 was highly expressed and activation of the NF-κB signaling pathway was obviously observed in the OLP tissues. Moreover, there was significant higher mRNA expression of inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in OLP keratinocytes than normal oral epithelial keratinocytes. With the help of the cell culture model by stimulating the keratinocyte HaCaT cells with lipopolysaccharides (LPS), we mimicked the local inflammatory environment of OLP. And we further confirmed that TGP could inhibit LPS-induced production of IL-6 and TNF-α in HaCaT cells via a dose-dependent manner. TGP treatment decreased the phosphorylation of IκBα and NF-κB p65 proteins, thus leading to less nuclear translocation of NF-κB p65 in HaCaT cells. Therefore, our data suggested that TGP may be a new potential candidate for the therapy of OLP. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Isolation and Purification of Unstable Iridoid Glucosides from Traditional Chinese Medicine by Preparative High Performance Liquid Chromatography Coupled with Solid-phase Extraction

    Institute of Scientific and Technical Information of China (English)

    LI Cun-man; XIAO Yuan-sheng; XUE Xing-ya; FENG Jia-tao; ZHANG Xiu-li; LIANG Xin-miao

    2011-01-01

    An efficient preparative method was successfully developed for isolation and purification of unstable components from medicinal plant extracts, using a combined method of preparative high performance liquid chro matography(HPLC) and solid-phase extraction(SPE). The aim of this study was to obtain an effective method with high preparative efficiency and importantly to avoid the transformation of unstable compounds. The preparative HPLC system was based on an LC/MS controlled four-channel autopurification system. The SPE method was per formed with a C1s packing material to trap the target compounds and to remove the acidic additive derived from the mobile phase. Using this method, the unstable iridoid glucosides(IGs) as model compounds were successfully iso lated and purified from the extract of Hedyotis diffusa Willd. Six IGs(including one new minor IG) and one nucleo tide compound were simultaneously obtained, each with a purity of >91% as determined by HPLC. The structures of the isolated compounds were identified by UPLC/Q-TOF MS, UV, ID and/or 2D NMR. It was demonstrated that the combination of preparative HPLC with SPE is a versatile tool for preparative purification of unstable compounds from complex natural products.

  15. The Efficacy and Safety of the Combination of Total Glucosides of Peony and Leflunomide for the Treatment of Rheumatoid Arthritis: A Systemic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Zhitao Feng

    2016-01-01

    Full Text Available Objective. To evaluate the efficacy and safety of the total glucosides of peony (TGP and leflunomide (LEF for the treatment of rheumatoid arthritis (RA. Methods. Randomized controlled trials (RCTs on the efficacy and safety of the combination of TGP and LEF versus LEF alone for the treatment of RA were retrieved by searching PubMed, EMBASE, Cochrane Library, the China National Knowledge Infrastructure database, and Wanfang database. Results. Eight RCTs including 643 RA patients were included in the present meta-analysis. The quality of included studies was poor. The levels of ESR (P<0.0001, CRP (P<0.0001, and RF (P<0.0001 in RA patients who received the combination of TGP and LEF were significantly lower than RA patients who received LEF therapy alone. The pooled results suggest that the combination of TGP and LEF caused less abnormal liver function than LEF alone (P=0.02. No significant difference in the gastrointestinal discomfort was identified between the combination of TGP and LEF and LEF alone groups (P=0.18. Conclusion. The combination of TGP and LEF in treatment of RA presented the characteristics of notably decreasing the levels of laboratory indexes and higher safety in terms of liver function. However, this conclusion should be further investigated based on a larger sample size.

  16. Prophylactic Neuroprotection of Total Glucosides of Paeoniae Radix Alba against Semen Strychni-Induced Neurotoxicity in Rats: Suppressing Oxidative Stress and Reducing the Absorption of Toxic Components.

    Science.gov (United States)

    Li, Shujuan; Chu, Yanjie; Zhang, Ruowen; Sun, Linjia; Chen, Xiaohui

    2018-04-20

    Strychnos alkaloids (SAs) are the main toxic constituents in Semen Strychni, a traditional Chinese medicine, which is known for its fatal neurotoxicity. Hence, the present study was carried out to evaluate the neurotoxicity induced by SAs and the pre-protective effects of the total glucosides of Paeoniae Radix Alba (TGP). An SA brain damage model was firstly established. The neurotoxicity induced by SAs and the pre-protective effects of TGP were confirmed by physical and behavioral testing, biochemical assay, and histological examination. Then, a liquid chromatography-tandem mass spectrometry method was developed and validated to investigate the time-course change and distribution of strychnine and brucine (two main SAs) in the brain after oral SA administration with or without TGP pretreatment. Biochemical analysis results indicated that TGP could ameliorate the oxidative stress status caused by SAs. Time-course change and distribution studies demonstrated that strychnine and brucine were rapidly absorbed into the brain, peaked early at 0.5 h, and were mainly located in the hippocampus and cerebellum. TGP showed a pre-protective effect against neurotoxicity by reducing the absorption of toxic alkaloids into the brain. These findings could provide beneficial information in facilitating future studies of Semen Strychni neurotoxicity and developing herbal medicines to alleviate neurotoxicity in the clinic.

  17. A systemic review and meta-analysis of the clinical efficacy and safety of total glucosides of peony combined with methotrexate in rheumatoid arthritis.

    Science.gov (United States)

    Feng, Zhi-Tao; Xu, Juan; He, Guo-Chao; Cai, San-Jin; Li, Juan; Mei, Zhi-Gang

    2018-01-01

    To assess the efficacy and safety of the combination of total glucoside of peony (TGP) and methotrexate (MTX) for the treatment of rheumatoid arthritis (RA). Randomized controlled trial (RCT) data on the traditional Chinese active component TGP combined with MTX vs. MTX alone for the treatment of RA was collected by searching the Pubmed, Embase, Cochrane Library, CNKI, VIP Journals database, and Wanfang database up to February 2017. Study selection, data extraction, data synthesis, and data analyses were performed according to the Cochrane standards. A total of eight RCTs involving 522 participants were included in this meta-analysis. Compared with MTX alone, the use of TGP combined with MTX exhibited better therapeutic effects for the treatment of RA (P = 0.004). In addition, TGP combined with MTX caused a more significant decrease in erythrocyte sedimentation rate (ESR) (P TGP and MTX combination group (P = 0.0007). Our study demonstrates that TGP combined with MTX is more effective than MTX alone for the treatment of RA. Nevertheless, the adverse effects of the combination of TGP and MTX need to be further assessed. Due to the poor methodological quality of included trials, well-designed, multi-center, and large-scale RCTs are necessary to draw a more definitive conclusion.

  18. Prophylactic Neuroprotection of Total Glucosides of Paeoniae Radix Alba against Semen Strychni-Induced Neurotoxicity in Rats: Suppressing Oxidative Stress and Reducing the Absorption of Toxic Components

    Directory of Open Access Journals (Sweden)

    Shujuan Li

    2018-04-01

    Full Text Available Strychnos alkaloids (SAs are the main toxic constituents in Semen Strychni, a traditional Chinese medicine, which is known for its fatal neurotoxicity. Hence, the present study was carried out to evaluate the neurotoxicity induced by SAs and the pre-protective effects of the total glucosides of Paeoniae Radix Alba (TGP. An SA brain damage model was firstly established. The neurotoxicity induced by SAs and the pre-protective effects of TGP were confirmed by physical and behavioral testing, biochemical assay, and histological examination. Then, a liquid chromatography-tandem mass spectrometry method was developed and validated to investigate the time-course change and distribution of strychnine and brucine (two main SAs in the brain after oral SA administration with or without TGP pretreatment. Biochemical analysis results indicated that TGP could ameliorate the oxidative stress status caused by SAs. Time-course change and distribution studies demonstrated that strychnine and brucine were rapidly absorbed into the brain, peaked early at 0.5 h, and were mainly located in the hippocampus and cerebellum. TGP showed a pre-protective effect against neurotoxicity by reducing the absorption of toxic alkaloids into the brain. These findings could provide beneficial information in facilitating future studies of Semen Strychni neurotoxicity and developing herbal medicines to alleviate neurotoxicity in the clinic.

  19. Protective Effects of Total Glucosides of Paeony on N-nitrosodiethylamine-induced Hepatocellular Carcinoma in Rats via Down-regulation of Regulatory B Cells.

    Science.gov (United States)

    Song, S S; Yuan, P F; Li, P P; Wu, H X; Ni, W J; Lu, J T; Wei, W

    2015-01-01

    Total glucoside of paeony (TGP), extracted from the root of Paeonia Lactiflora, has been known to show anti-inflammatory, anti-oxidative, hepato-protective and immuno-regulatory activities. The aim of this present study was to determine the anti-tumor effect of TGP against N-nitrosodiethylamine (DEN)-induced hepatocellular carcinoma (HCC) in rats, and to find the related mechanisms. Rat HCC model was established by intragastrically administrating with DEN (8 mg/kg). We found the number of tumor nodules and the index of liver and spleen were increased in the model group compared with the normal group, and was significantly decreased by TGP. Additionally, TGP obviously improved the hepatic pathological lesions induced by DEN, and decreased the elevated levels of serum alanine aminotransferase (ALT), glutamic oxalacetic transaminase (AST), alkaline phosphatase (ALP) and alpha fetoprotein (AFP) by DEN. Moreover, TGP decreased the level of B cell-activating factor (BAFF) and the proportion of IL-10-producing regulatory B cells (Bregs), and the decrease of BAFF by TGP is positively correlated to the decrease of IL-10-producing Bregs by TGP. These results suggest that TGP had a good therapeutic action on DEN-induced HCC rats, which might be due to its down-regulation of Bregs through reducing the level of BAFF.

  20. [Effect of total glucosides of peony on expression and DNA methylation status of ITGAL gene in CD4(+) T cells of systemic lupus erythematosus].

    Science.gov (United States)

    Zhao, Ming; Liang, Gongping; Luo, Shuangyan; Lu, Qianjin

    2012-05-01

    To investigate the effect of total glucosides of peony (TGP) on expression and DNA methylation status of ITGAL gene (CD11a) in CD4(+) T cells from patients with systemic lupus erythematosus (SLE). CD4(+) T cells were isolated by positive selection using CD4 beads. CD4(+) T cells were treated by TGP at 0, 62.5, 312.5 and 1562.5 mg/L for 48 h. The MTT method was used to assess cell viability; mRNA expression level was measured by realtime-PCR; protein level of CD11a was measured by flow cytometric analysis; DNA methylation status was assayed by bisulfite sequencing. No significant change in cell viability was found in CD4(+) T cells among the different concentration groups (P>0.05). Compared with control, the mRNA and protein levels of ITGAL were down-regulated significantly in SLE CD4(+) T cells treated with TGP (1562.5 mg/L) (PTGP (1562.5 mg/L) treated CD4(+) T cells compared with control group (PTGP can repress CD11a gene expression through enhancing DNA methylation of ITGAL promoter in CD4(+) T cells from patients with SLE. This observation represents a preliminary step in understanding the mechanism of TGP in SLE therapy.

  1. Total glucosides of paeony induces regulatory CD4(+)CD25(+) T cells by increasing Foxp3 demethylation in lupus CD4(+) T cells.

    Science.gov (United States)

    Zhao, Ming; Liang, Gong-ping; Tang, Mei-ni; Luo, Shuang-yan; Zhang, Jing; Cheng, Wen-jing; Chan, Tak-mao; Lu, Qian-jin

    2012-05-01

    Total glucosides of paeony (TGP), an active compound extracted from Paeony root, has been used in therapy for autoimmune diseases. However the molecular mechanism of TGP in the prevention of autoimmune response remains unclear. In this study, we found that TGP treatment significantly increased the percentage and number of Treg cells in lupus CD4(+) T cells. Further investigation revealed that treatment with TGP increased the expression of Foxp3 in lupus CD4(+) T cells by down-regulating Foxp3 promoter methylation levels. However, we couldn't observe similar results in healthy control CD4(+) T cells treated by TGP. Moreover, our results also showed that IFN-γ and IL-2 expression was enhanced in TGP-treated lupus CD4(+) T cells. These findings indicate that TGP inhibits autoimmunity in SLE patients possibly by inducing Treg cell differentiation, which may in turn be due to its ability to regulate the methylation status of the Foxp3 promoter and activate IFN-γ and IL-2 signaling. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The Efficacy and Safety of the Combination of Total Glucosides of Peony and Leflunomide for the Treatment of Rheumatoid Arthritis: A Systemic Review and Meta-Analysis.

    Science.gov (United States)

    Feng, Zhitao; Xu, Juan; He, Guochao; Cao, Meiqun; Duan, Lihong; Chen, Liguo; Wu, Zhengzhi

    2016-01-01

    Objective. To evaluate the efficacy and safety of the total glucosides of peony (TGP) and leflunomide (LEF) for the treatment of rheumatoid arthritis (RA). Methods. Randomized controlled trials (RCTs) on the efficacy and safety of the combination of TGP and LEF versus LEF alone for the treatment of RA were retrieved by searching PubMed, EMBASE, Cochrane Library, the China National Knowledge Infrastructure database, and Wanfang database. Results. Eight RCTs including 643 RA patients were included in the present meta-analysis. The quality of included studies was poor. The levels of ESR (P TGP and LEF were significantly lower than RA patients who received LEF therapy alone. The pooled results suggest that the combination of TGP and LEF caused less abnormal liver function than LEF alone (P = 0.02). No significant difference in the gastrointestinal discomfort was identified between the combination of TGP and LEF and LEF alone groups (P = 0.18). Conclusion. The combination of TGP and LEF in treatment of RA presented the characteristics of notably decreasing the levels of laboratory indexes and higher safety in terms of liver function. However, this conclusion should be further investigated based on a larger sample size.

  3. Assessment of the Therapeutic Effect of Total Glucosides of Peony for Juvenile Idiopathic Arthritis: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Cai, Yongsong; Yuan, Qiling; Xu, Ke; Zhu, Jialin; Li, Yuanbo; Wu, Xiaoqing; Yang, Le

    2016-01-01

    Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in children; some clinical trials have reported the effects of total glucosides of peony (TGP) in the treatment of JIA. However, no systematic review has yet been conducted. In this study, we assessed the efficacy and safety in patients with JIA enrolled in randomized controlled trials (RCTs) of TGP. We extracted data for studies searched from 8 electronic databases that were searched and also evaluated the methodological quality of the included studies. We assessed the following outcome measures: overall response rate, pain, tender joint count (TJC), swollen joint count (SJC), duration of morning stiffness (DMS), grip strength (GS), rheumatoid factor (RF), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and adverse effects (AEs) in short term (4–8 weeks), intermediate term (9–26 weeks), and long term (>26 weeks). The final analysis showed that TGP acted as a unique nonbiologic disease-modifying antirheumatic drug (nonbiologic DMARD), and its therapeutic effects were safe and efficacious for the treatment of JIA with few AEs. However, more high-quality RCTs are needed to confirm these therapeutic effects. PMID:27525026

  4. Urinary and Serum Metabolomics Analyses Uncover That Total Glucosides of Paeony Protect Liver against Acute Injury Potentially via Reprogramming of Multiple Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Haojie Li

    2017-01-01

    Full Text Available Total glucosides of paeony (TGP have been confirmed to be hepatoprotective. However, the underlying mechanism is largely unclear. In this study, we investigated the metabolic profiles of urine and serum in rats with carbon tetrachloride- (CCl4- induced experimental liver injury and TGP administration by using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS. The vehicle or a single dose of TGP was intragastrically administered to Wistar rats once a day for 14 consecutive days. To induce ALI, 50% CCl4 was injected intraperitoneally into these rats 2 hours after the last time administration of saline of TGP at the 14th day. The results indicated that TGP administration could protect rats from CCl4-induced ALI and alanine aminotransferase (ALT and aspartate aminotransferase (AST elevation, as well as hepatocyte apoptosis and inflammation. Furthermore, metabolomics analysis showed that TGP treatment significantly attenuated CCl4-triggered deregulation of multiple metabolites in both urine and serum, including glycine, alanine, proline, and glutamine. Metabolite set enrichment and pathway analyses demonstrated that amino acid cycling and glutathione metabolism were two main pathways involved in CCl4-induced experimental liver injury and TGP administration. Taken together, these findings revealed that regulation of metabolites potentially plays a pivotal role in the protective effect of TGP on ALI.

  5. Seasonal alteration in amounts of lignans and their glucosides and gene expression of the relevant biosynthetic enzymes in the Forsythia suspense leaf.

    Science.gov (United States)

    Morimoto, Kinuyo; Satake, Honoo

    2013-01-01

    Lignans of Forsythia spp. are essential components of various Chinese medicines and health diets. However, the seasonal alteration in lignan amounts and the gene expression profile of lignan-biosynthetic enzymes has yet to be investigated. In this study, we have assessed seasonal alteration in amounts of major lignans, such as pinoresinol, matairesinol, and arctigenin, and examined the gene expression profile of pinoresinol/lariciresinol reductase (PLR), pinoresinol-glucosylating enzyme (UGT71A18), and secoisolariciresinol dehydrogenase (SIRD) in the leaf of Forsythia suspense from April to November. All of the lignans in the leaf continuously increased from April to June, reached the maximal level in June, and then decreased. Ninety percent of pinoresinol and matairesinol was converted into glucosides, while approximately 50% of arctigenin was aglycone. PLR was stably expressed from April to August, whereas the PLR expression was not detected from September to November. In contrast, the UGT71A18 expression was found from August to November, but not from April to July. The SIRD expression was prominent from April to May, not detected in June to July, and then increased again from September to November. These expression profiles of the lignan-synthetic enzymes are largely compatible with the alteration in lignan contents. Furthermore, such seasonal lignan profiles are in good agreement with the fact that the Forsythia leaves for Chinese medicinal tea are harvested in June. This is the first report on seasonal alteration in lignans and the relevant biosynthetic enzyme genes in the leaf of Forsythia species.

  6. Inhibition of Carrageenan-Induced Acute Inflammation in Mice by Oral Administration of Anthocyanin Mixture from Wild Mulberry and Cyanidin-3-Glucoside

    Directory of Open Access Journals (Sweden)

    Neuza Mariko Aymoto Hassimotto

    2013-01-01

    Full Text Available Anthocyanins are flavonoids which demonstrated biological activities in in vivo and in vitro models. Here in the anti-inflammatory properties of an anthocyanin-enriched fraction (AF extracted from wild mulberry and the cyanidin-3-glucoside (C3G, the most abundant anthocyanin in diet, were studied in two acute inflammation experimental models, in the peritonitis and in the paw oedema assays, both of which were induced by carrageenan (cg in mice. In each trial, AF and C3G (4 mg/100 g/animal were orally administered in two distinct protocols: 30 min before and 1 h after cg stimulus. The administration of both AF and C3G suppresses the paw oedema in both administration times (P<0.05. In the peritonitis, AF and C3G reduced the polymorphonuclear leukocytes (PMN influx in the peritoneal exudates when administered 1 h after cg injection. AF was more efficient reducing the PMN when administered 30 min before cg. Both AF and C3G were found to suppress mRNA as well as protein levels of COX-2 upregulated by cg in both protocols, but the inhibitory effect on PGE2 production in the peritoneal exudates was observed when administered 30 min before cg (P<0.05. Our findings suggest that AF and C3G minimize acute inflammation and they present positive contributions as dietary supplements.

  7. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-glucoside Isolated from Polygoni Multiflori Ameliorates the Development of Periodontitis

    Directory of Open Access Journals (Sweden)

    Yu-Tang Chin

    2016-01-01

    Full Text Available Periodontitis, a chronic infection by periodontopathic bacteria, induces uncontrolled inflammation, which leads to periodontal tissue destruction. 2,3,5,4′-Tetrahydroxystilbene-2-O-beta-glucoside (THSG, a polyphenol extracted from Polygoni Multiflori, reportedly has anti-inflammatory properties. In this study, we investigated the mechanisms of THSG on the Porphyromonas gingivalis-induced inflammatory responses in human gingival fibroblasts and animal modeling of ligature-induced periodontitis. Human gingival fibroblast cells were treated with lipopolysaccharide (LPS extracted from P. gingivalis in the presence of resveratrol or THSG to analyze the expression of TNF-α, IL-1β, and IL-6 genes. Increased AMP-activated protein kinase (AMPK activation and SirT1 expression were induced by THSG. Treatment of THSG decreased the expression of LPS-induced inflammatory cytokines, enhanced AMPK activation, and increased the expression of SirT1. In addition, it suppressed the activation of NF-κB when cells were stimulated with P. gingivalis LPS. The anti-inflammatory effect of THSG and P. Multiflori crude extracts was reproduced in ligature-induced periodontitis animal modeling. In conclusion, THSG inhibited the inflammatory responses of P. gingivalis-stimulated human gingival fibroblasts and ameliorated ligature-induced periodontitis in animal model.

  8. Chronic cyanidin-3-glucoside administration improves short-term spatial recognition memory but not passive avoidance learning and memory in streptozotocin-diabetic rats.

    Science.gov (United States)

    Nasri, Sima; Roghani, Mehrdad; Baluchnejadmojarad, Tourandokht; Balvardi, Mahboubeh; Rabani, Tahereh

    2012-08-01

    This research study was conducted to evaluate the efficacy of chronic cyanidin-3-glucoside (C3G) on alleviation of learning and memory deficits in diabetic rats as a result of the observed antidiabetic and antioxidant activity of C3G. Male Wistar rats were divided into control, diabetic, C3G-treated-control and -diabetic groups. The C3G was administered i.p. at a dose of 10 mg/kg on alternate days for eight weeks. For evaluation of learning and memory, initial latency (IL) and step-through latency (STL) were determined at the end of study using passive avoidance test. Meanwhile, spatial recognition memory was assessed as alternation in the Y-maze task. Oxidative stress markers in brain tissue were also measured. It was found that the alternation score of the diabetic rats was lower than that of control (p chronic C3G could improve short-term spatial recognition memory disturbance in the Y-maze test but not retention and recall capability in passive avoidance test in STZ-diabetic rats. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Flavonoides e sesquiterpenos de Croton pedicellatus Kunth

    OpenAIRE

    Lopes, Elton Luz; Andrade Neto, Manoel; Silveira, Edilberto Rocha; Pessoa, Otilia Deusdênia Loiola; Braz-Filho, Raimundo

    2012-01-01

    The chemical investigation of the ethanolic extract from leaves of Croton pedicellatus yielded the bis-nor-sesquiterpenes blumenol A and blumenol A glucoside, along with the flavonoids: tiliroside, 6"-O-p-coumaroyl-β-galactopyranosyl- kaempferol, 6"-O-p-coumaroyl-β-glucopyranosyl-3"-methoxy- kaempferol, kaempferol, 3-glucopyranosyl-quercetin and alpinumisoflavone, as well as 4-hydroxy-3,5-dimethoxybenzoic acid. The identification of all isolated compounds was performed by spectrometric method...

  10. Chemical constituents from Bakeridesia pickelii Monteiro (Malvaceae) and the relaxant activity of kaempferol-3-O-β-D-(6''-E-p -coumaroyl) glucopyranoside on guinea-pig ileum

    International Nuclear Information System (INIS)

    Costa, Danielly Albuquerque da; Silva, Davi Antas e; Cavalcanti, Aline Coutinho; Medeiros, Marcos Antonio Alves de; Lima, Julianeli Tolentino de; Cavalcante, Jose Marcilio Sobral; Silva, Bagnolia Araujo da; Agra, Maria de Fatima; Souza, Maria de Fatima Vanderlei de

    2007-01-01

    The phytochemical investigation of Bakeridesia pickelii Monteiro led to the isolation of seven compounds: β-sitosterol, a mixture of sitosteryl-3-O-β-D-glucopyranoside and stigmasteryl-3-O-β-D-glucopyranoside, vanillic acid, p-coumaric acid, quercetin 3-O-β-D-glucopyranoside (isoquercitrin) and kaempferol-3-O-β-D-(6 - E-p -coumaroyl) glucopyranoside (tiliroside), which was isolated as the major component. Their structures were elucidated on the basis of spectroscopic data such as IR, 1 H and 13 C NMR, including two-dimensional techniques. Tiliroside relaxed the guinea-pig ileum pre-contracted with KCl 40 mM (EC 50 = 9.5 ± 1.0 x 10 -5 M), acetylcholine 10 -6 M (EC 50 = 2.3 ± 0.9 x 10 -5 M) or histamine 10 -6 M (EC 50 = 4.1 ± 1.0 x 10 -5 M) in a concentration-dependent manner. (author)

  11. Untitled

    African Journals Online (AJOL)

    3,7-disulphates of kaempferol and isorhamnetin have been reported (3). RESULTS AND DISCUSSION. The flavonoids isolated from C. alexandrina were apigenin-7-glucoside, luteolin-7-glucoside, quercetin-3,7-disulphate as well as a number of methylated flavonols and C-glycosides, Preliminary results indicated that ...

  12. Semiquinone glucoside derivative isolated from Bacillus sp. INM-1 offers protection to male reproductive system of mice against γ-radiation induced toxicity

    International Nuclear Information System (INIS)

    Singh, Praveen K.; Malhotra, Poonam; Gupta, Ashutosh; Chhachhia, Neha; Singh, Shravan K.; Kumar, Raj; Dubey, Kashyap Kumar

    2014-01-01

    Ionizing radiation causes reversible/irreversible damages to the testis by inducing oxidative stress through reactive oxygen species lead to impotency in young cancer patients undergoing lower abdomen radiotherapy. Therefore, protection of testicular cells against gamma radiation is of utmost significance. Present study was focused to evaluate radioprotective efficacy of a semiquinone rich fraction isolated from radioresistant bacterium Bacillus sp. INM-1. In the present study, mice were pre-treated with semiquinone glucoside derivative (SQGD; 50 mg/ kg.b.wt. i.p.) 2h before irradiation (5Gy) and various radioprotective cellular parameters including histology, quantitative analysis of spermatids, spermatocytes, sperm counts, sperm abnormalities, structural and morphological analysis of seminiferous tubules were observed for complete two cycles (70 days) of spermatogenesis and compared with irradiated (5 Gy) control group. Results of the study demonstrated that untreated control and SQGD treated groups showed no significant difference in sperm counts even after 70 days post treatment time. However, whole body irradiation reduced the sperm count significantly (p<0.05%) from the day 1 st to day 70 th . SQGD treatment to irradiated mice significantly increased the sperm count, reduced morphological abnormality in the sperms as compared to irradiated group. Untreated control mice showed a higher seminiferous tubular area compared to irradiation control at 35 th and 70 th day post irradiation time. SQGD pretreatment to irradiated mice led to significant increase in seminiferous tubule area compared to irradiated control. Concomitantly, seminiferous lumen size increases in radiation control mice compared to SQGD pre-treated mice at 35 th and 70 th day due to germ cells depletion. Qualitative histological study of testis at all tested time points suggests that drug treatment protects the spermatogenesis by enhancing the spermatogonial proliferation, enhancing the stem cell

  13. A new dermocosmetic containing retinaldehyde, delta-tocopherol glucoside and glycylglycine oleamide for managing naturally aged skin: results from in vitro to clinical studies.

    Science.gov (United States)

    Rouvrais, Céline; Bacqueville, Daniel; Bogdanowicz, Patrick; Haure, Marie-José; Duprat, Laure; Coutanceau, Christine; Castex-Rizzi, Nathalie; Duplan, Hélène; Mengeaud, Valérie; Bessou-Touya, Sandrine

    2017-01-01

    Natural aging of skin tissues, the addition of the cumulative action of the time and radiation exposure result in skin atrophy, wrinkles and degeneration of the extracellular matrix (ECM). The aim of the study was to investigate the beneficial effect of a combination containing retinaldehyde (RAL), delta-tocopherol glucoside (delta-TC) and glycylglycine ole-amide (GGO) and of a dermocosmetic containing the combination. The protective effect of the combination was assessed through in vitro gene expression of ultraviolet (UV)-irradiated fibroblasts. A skin aging assay using UV light on ex vivo skin samples and a clinical study conducted in 36 women aged from 35 to 55 years with a minimum of level 4 to a maximum of level 6 on the crow's feet photoscale assessed the antiaging effect of the dermocosmetic. When added to UV-irradiated fibroblasts, the combination substantially improved the ECM in activating the elastin fiber production ( fibrillin 2 , fibulin 1 and 5 and lysyl oxidase-like 2 ) as well as that of proteins involved in the cellular ECM interactions ( integrin b1 , paxillin and actin a2 ). An ex vivo photodamaged human skin model showed that the dermocosmetic formulation containing the combination of the active ingredients protected the elastic network against UV-induced alterations including both elastin and fibrillin-rich fibers in the dermis. A daily application of the dermocosmetic for 2 months on naturally aged skin resulted in a statistically significant improvement ( p care of naturally aged skin in women aged 35-55 years.

  14. Effects of total glucosides of peony on AQP-5 and its mRNA expression in submandibular glands of NOD mice with Sjogren's syndrome.

    Science.gov (United States)

    Wu, G-L; Pu, X-H; Yu, G-Y; Li, T-Y

    2015-01-01

    The aim of this study was to observe the effects of total glucosides of peony (TGP) on pathological change, Aquaporin-5 (AQP-5) and its mRNA expression in submandibular glands of non-obese diabetic (NOD) mice with Sjogren's Syndrome, to investigate its regulation on secretion of salivary glands. 40 NOD mice were randomly divided into model group, TGP group, hydroxychloroquine group, combination group (n = 10). For TGP group, the mice were intragastrically administrated with 0.4 ml TGP dilution per day in accordance with 300 g/kg dose; for hydroxychloroquine group, the mice were intragastrically administrated with 0.4 ml hydroxychloroquine per day in accordance with 60 mg/kg dose; for the combination group, the mice were intragastrically administrated with 0.4 ml TGP dilution and 0.4 ml hydroxychloroquine. 8 weeks later, the mice were sacrificed, and submandibular glands were collected by anatomy. Pathological changes of submandibular gland were observed under a light microscope; AQP-5 protein in submandibular glands was detected by immunohistochemical staining; and AQP-5 mRNA expression in submandibular glands was detected by RT-PCR. The lymphocytic infiltration score of model mice was significantly higher than that of other groups. The pathological morphology and score of NOD mice were significantly improved after administration, and the combination group was superior to the hydroxychloroquine group and TGP group (p TGP group and the combination group were higher than the hydroxychloroquine group (p TGP may improve pathological damage of submandibular glands of NOD mouse with Sjogren's syndrome by upregulating AQP-5 and its mRNA expression in submandibular glands.

  15. Total glucosides of peony attenuates 2,4,6-trinitrobenzene sulfonic acid/ethanol-induced colitis in rats through adjustment of TH1/TH2 cytokines polarization.

    Science.gov (United States)

    Zhang, Yabing; Zhou, Rui; Zhou, Feng; Cheng, Hong; Xia, Bing

    2014-01-01

    The present study is to investigate effects of total glucosides of peony (TGP) on 2,4,6-trinitrobenzene sulfonic acid (TNBS)/ethanol-induced colitis in rats and to explore potential clinical use of TGP for treatment of inflammatory bowel disease. Sixty Sprague-Dawley rats were randomly grouped into normal controls, model controls, sulfasalazine (SASP) controls (100 mg/kg/day), and low, medium, and high-dose TGP groups (25, 50, and 100 mg/kg/day, respectively). 24 h following colonic instillation of TNBS, TGP, and SASP were given by gastric gavage three times a day for 7 days. Disease activity index (DAI), colon macroscopic damage index (CMDI), histopathological score (HPS), and myeloperoxidase (MPO) activity were evaluated. Levels of serum TNF-α, IL-1β, and IL-10 were measured by ELISA, and expression of TNF-α, IL-1β, and IL-10 mRNA and protein in colonic tissues was detected by RT-PCR and western blot, respectively. Compared with rats in the model controls, TGP (50 or 100 mg/kg/day)-treated rats with TNBS/ethanol-induced colitis showed significant improvements of DAI, CMDI, HPS, and MPO activity. Moreover, administration of TGP (50 or 100 mg/kg/day) decreased the up-regulated levels of serum TNF-α and IL-1β, and expression of TNF-α and IL-1β mRNA and protein in colonic tissues, and increased the serum IL-10 and colonic IL-10 mRNA and protein level. And there was no significant difference compared with administration of SASP (P > 0.05). TGP attenuates TNBS/ethanol-induced colitis in rats and its efficacy is similar to SASP, the potential mechanism might be related to the adjustment of Th1/Th2 cytokines polarization by decreasing pro-inflammatory cytokine TNF-α and IL-1β, and increasing anti-inflammatory cytokine IL-10.

  16. Total glucosides of paeony attenuate renal tubulointerstitial injury in STZ-induced diabetic rats: role of Toll-like receptor 2.

    Science.gov (United States)

    Zhang, Wei; Zhao, Li; Su, Shuang-Quan; Xu, Xing-Xin; Wu, Yong-Gui

    2014-01-01

    Accumulating evidence suggested that macrophages induce tubulointerstitial injury. Total glucosides of paeony (TGP), extracted from Paeonia lactiflora, has presented anti-inflammatory activities in diabetic kidney disease. This research will investigate the protective effect of TGP on renal tubulointerstitium and its mechanism in streptozotocin-induced diabetic rats. TGP was administered orally at a dose of 50, 100, and 200 mg·kg(-1)·d(-1) for 8 weeks. Tubulointerstitial injury was quantified, followed by immunohistochemistry analysis of renal α-smooth muscle actin (α-SMA), E-cadherin (E-cad) expression, nuclear factor kappa B (NF-κB)-p-p-65(+), Toll-like receptor (TLR)2(+), and ED-1(+) cell infiltration in renal tubulointerstitium. Renal TLR2(+) macrophages were detected by double immunohistochemical staining. Western blotting was used to detect the TLR2 expression. Histologically, there was marked accumulation of TLR2(+), NF-κB-p-p-65(+), ED-1(+) cells, and ED-1(+)TLR2(+) cells (macrophages) in the diabetic kidney and TGP treatment could alleviate it. Accompanying with that, the tubulointerstitial injury was ameliorated, α-SMA expression was lower, and E-cad expression was higher compared with the diabetic rats. Western blot analysis showed that the expression of TLR2 protein was significantly increased in the kidney of the diabetic rats, whereas TGP treatment reduced it. Our study showed that TGP could prevent renal tubulointerstitium injury in diabetic rats through a mechanism that may be at least partly correlated with suppression of increased macrophage infiltration and the expression of TLR2.

  17. Total glucosides of paeony inhibit the proliferation of fibroblast-like synoviocytes through the regulation of G proteins in rats with collagen-induced arthritis.

    Science.gov (United States)

    Jia, Xiao-Yi; Chang, Yan; Sun, Xiao-Jing; Wu, Hua-Xun; Wang, Chun; Xu, Hong-Mei; Zhang, Lei; Zhang, Ling-Ling; Zheng, Yong-Qiu; Song, Li-Hua; Wei, Wei

    2014-01-01

    The aim of this study was to investigate the expression of G proteins in fibroblast-like synoviocytes (FLSs) from rats with collagen-induced arthritis (CIA) and to determine the effect of total glucosides of paeony (TGP). CIA rats were induced with chicken type II collagen (CCII) in Freund's complete adjuvant. The rats with experimental arthritis were randomly separated into five groups and then treated with TGP (25, 50, and 100mg/kg) from days 14 to 35 after immunization. The secondary inflammatory reactions were evaluated through the polyarthritis index and histopathological changes. The level of cyclic adenosine monophosphate (cAMP) was measured by radioimmunoassay. The FLS proliferation response was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The toxin-catalyzed ADP-ribosylation of G proteins was performed through autoradiography. The results show that TGP (25, 50, and 100mg/kg) significantly decreased the arthritis scores of CIA rats and improved the histopathological changes. TGP inhibited the proliferation of FLSs and increased the level of cAMP. Moreover, the FLS proliferation and the level of Gαi expression were significantly increased, but the level of Gαs expression was decreased after stimulation with IL-1β (10ng/ml) in vitro. TGP (12.5 and 62.5μg/ml) significantly inhibited the FLS proliferation and regulated the balance between Gαi and Gαs. These results demonstrate that TGP may exert its anti-inflammatory effects through the suppression of FLS proliferation, which may be associated with its ability to regulate the balance of G proteins. Thus, TGP may have potential as a therapeutic agent for the treatment of rheumatoid arthritis. © 2013.

  18. Total glucosides of paeony inhibit the inflammatory responses of mice with allergic contact dermatitis by restoring the balanced secretion of pro-/anti-inflammatory cytokines.

    Science.gov (United States)

    Wang, Chun; Yuan, Jun; Wu, Hua-Xun; Chang, Yan; Wang, Qing-Tong; Wu, Yu-Jing; Zhou, Peng; Yang, Xiao-Dan; Yu, Jun; Wei, Wei

    2015-02-01

    The present study aimed to investigate the regulation exerted by the total glucosides of paeony (TGP) on the production of interleukin-2 (IL-2), IL-4, IL-10 and IL-17 in the serum and lymphocytes of mice with allergic contact dermatitis (ACD). ACD in mice was induced by the repeated application of 2,4-dinitrochlorobenzene (DNCB) to their skins. The mice were orally administered TGP (35, 70, and 140mg/kg/d) and prednisone (Pre, 5mg/kg/d) from day 1 to day 7 after immunization. The inflammatory responses were evaluated by ear swelling and histological examination. Thymocyte proliferation was assayed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H tetrazolium bromide assay. The cytokine production in the serum and lymphocytes supernatant was measured by enzyme-linked immunosorbent assay. The results indicated that the topical application of DNCB to the skin provoked obvious inflammatory responses. The oral administration of TGP (70 and 140mg/kg/d) and Pre (5mg/kg/d) significantly inhibited skin inflammation, decreased the thymus and spleen indices, and inhibited thymocyte proliferation in mice treated with DNCB. Further study indicated that TGP increased IL-4 and IL-10 production but decreased the production of IL-2 and IL-17 in the serum and lymphocyte supernatant. The correlation analysis suggested significantly positive correlations between IL-2 and IL-17 production and the severity of skin inflammation, whereas negative correlations were obtained for IL-4 and IL-10 production and skin inflammation. In summary, these results suggest that the therapeutic effects of TGP on ACD may result from its regulation of the imbalanced secretion of IL-2/IL-4 and IL-10/IL-17. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Total glucosides of paeony suppresses experimental autoimmune uveitis in association with inhibition of Th1 and Th2 cell function in mice.

    Science.gov (United States)

    Huang, Xue-Tao; Wang, Bin; Zhang, Wen-Hua; Peng, Man-Qiang; Lin, Ding

    2018-01-01

    Total glucosides of paeony (TGP) are active components extracted from the roots of Paeonia lactiflora Pall. In this study, we investigated the role and mechanisms of TGP in experimental autoimmune uveitis (EAU) model of mice. The C57BL/6 mice were randomly divided into three groups: sham group, EAU-control group, and EAU-TGP group. Clinical score of images of the eye fundus were taken on 7, 14, 21, and 28 days after induction of EAU. The concentrations of proinflammatory cytokines in intraocular fluid were measured at 14 days after EAU induction with the use of a multiplex assay system. Flow cytometry was used to analyze the frequency of CD4+, CD8+, interferon-gamma (IFN-γ), and CD4+/CD8+ ratio in spleen and lymph nodes. Western blotting was used to measure expressions of mitogen-activated protein kinase (MAPK) pathway-related proteins in retina. Clinical scores for uveitis were lower in TGP-treated EAU mice than those without TGP treatment. Importantly, the concentrations of cytokines induced by T-helper 1 (Th1) and T-helper 2 (Th2) cells in intraocular fluid were reduced in EAU mice treated with TGP. Furthermore, the frequency of CD4+, IFN-γ, and CD4+/CD8+ ratio was decreased and the frequency of CD8+ was increased in spleen and lymph nodes of mice treated with TGP. The anti-inflammatory effects of TGP were mediated by inhibiting the MAPK signaling pathways. Our results showed that TGP suppressed uveitis in mice via the inhibition of Th1 and Th2 cell function. Thus, TGP may be a promising therapeutic strategy for uveitis, as well as other ocular inflammatory diseases.

  20. Cytotoxicity, Antioxidant and Apoptosis Studies of Quercetin-3-O Glucoside and 4-(β-D-Glucopyranosyl-1→4-α-L-Rhamnopyranosyloxy)-Benzyl Isothiocyanate from Moringa oleifera.

    Science.gov (United States)

    Maiyo, Fiona C; Moodley, Roshila; Singh, Moganavelli

    2016-01-01

    Moringa oleifera, from the family Moringaceae, is used as a source of vegetable and herbal medicine and in the treatment of various cancers in many African countries, including Kenya. The present study involved the phytochemical analyses of the crude extracts of M.oleifera and biological activities (antioxidant, cytotoxicity and induction of apoptosis in-vitro) of selected isolated compounds. The compounds isolated from the leaves and seeds of the plant were quercetin-3-O-glucoside (1), 4-(β-D-glucopyranosyl-1→4-α-L-rhamnopyranosyloxy)-benzyl isothiocyanate (2), lutein (3), and sitosterol (4). Antioxidant activity of compound 1 was significant when compared to that of the control, while compound 2 showed moderate activity. The cytotoxicity of compounds 1 and 2 were tested in three cell lines, viz. liver hepatocellular carcinoma (HepG2), colon carcinoma (Caco-2) and a non-cancer cell line Human Embryonic Kidney (HEK293), using the MTT cell viability assay and compared against a standard anticancer drug, 5-fluorouracil. Apoptosis studies were carried out using the acridine orange/ethidium bromide dual staining method. The isolated compounds showed selective in vitro cytotoxic and apoptotic activity against human cancer and non-cancer cell lines, respectively. Compound 1 showed significant cytotoxicity against the Caco-2 cell line with an IC50 of 79 μg mL(-1) and moderate cytotoxicity against the HepG2 cell line with an IC50 of 150 μg mL(-1), while compound 2 showed significant cytotoxicity against the Caco- 2 and HepG2 cell lines with an IC50 of 45 μg mL(-1) and 60 μg mL(-1), respectively. Comparatively both compounds showed much lower cytotoxicity against the HEK293 cell line with IC50 values of 186 μg mL(-1) and 224 μg mL(-1), respectively.