WorldWideScience

Sample records for k-12 science math

  1. K-12 Math and Science Education: A Physicist Meets Reality

    Science.gov (United States)

    Eisenstein, Robert

    2009-05-01

    Can professional engineers, mathematicians, and scientists have a positive impact on K-12 math and science education? The experience of the Santa Fe Alliance for Science, and several other like-minded organizations, indicates that they can indeed. But success is by no means assured. Good scientists are not automatically good educators, but they can learn enough about pedagogy, classroom, and community to do well. For example, their experiences working on research topics of great societal interest (e.g. the energy supply or global warming) can be a great attraction to young people. This discussion will be oriented around three major points: lessons learned, prospects for the future, and how our effort fits into state-wide plans for re-inventing K-12 math and science education in New Mexico.

  2. K-12 Math and Science Education: Tales from the Santa Fe Alliance for Science

    Science.gov (United States)

    Eisenstein, Robert

    2008-10-01

    Can professional engineers, mathematicians, and scientists have a positive impact on K-12 math and science education? The experience of the Santa Fe Alliance for Science, and several other like-minded organizations, indicates that they can indeed. But success is by no means assured. Good scientists are not automatically good educators, but they can learn enough about pedagogy, classroom, and community to do well. This discussion will be oriented around three major points: lessons learned, prospects for the future, and how our effort fits into state-wide plans for re-inventing K-12 math and science education in New Mexico.

  3. Preparing the Future Workforce: Science, Technology, Engineering and Math (STEM) Policy in K-12 Education

    Science.gov (United States)

    Dickman, Anneliese; Schwabe, Amy; Schmidt, Jeff; Henken, Rob

    2009-01-01

    Last December, the Science, Technology, Engineering, and Mathematics (STEM) Education Coalition--a national organization of more than 600 groups representing knowledge workers, educators, scientists, engineers, and technicians--wrote to President-elect Obama urging him to "not lose sight of the critical role that STEM education plays in…

  4. Where can we find future K-12 science and math teachers? a search by academic year, discipline, and academic performance level

    Science.gov (United States)

    Moin, Laura J.; Dorfield, Jennifer K.; Schunn, Christian D.

    2005-11-01

    Responding to the increasing math and science teacher shortage in the United States, this study intended to determine which science, engineering, and math (SEM) majors during which years in their undergraduate education and from which academic performance levels are most interested in K-12 teaching. Results may aid policymakers and practitioners in making most effective use of this traditional undergraduate candidate pool when designing K-12 science and math teacher recruitment programs. A survey of SEM majors from two research-oriented, urban universities is used to assess participants' interest in K-12 teaching both compared to other career choices and in isolation. Results indicate that the more successful targets for K-12 teacher recruitment include (1) SEM undergraduates in their junior and senior years independent of SEM major, (2) SEM undergraduates with mid-academic performance levels independent of SEM major and academic year, and (3) math majors followed by natural science majors and, as least promising targets, engineering majors. Results remain independent from gender and ethnicity variables.

  5. Math and Science Education with English Language Learners: Contributions of the DR K-12 Program. Targeted Study Group Working Paper

    Science.gov (United States)

    Martinez, Alina; Rhodes, Hilary; Copson, Elizabeth; Tiano, Megan; DellaRocco, Nicole; Donoghue, Nathaniel; Marco, Lisa

    2011-01-01

    Although educational leaders, policy makers, and researchers have long emphasized the importance of science, technology, engineering, and mathematics (STEM) for the country's continued prosperity, increasing participation in STEM has remained a challenge for both the education and scientific communities (Pearson & Fechter, 1994; National…

  6. Enriching K-12 Science and Mathematics Education Using LEGOs

    Science.gov (United States)

    Williams, Keeshan; Igel, Irina; Poveda, Ronald; Kapila, Vikram; Iskander, Magued

    2012-01-01

    This paper presents a series of illustrative LEGO Mindstorms-based science and math activities, developed under an NSF GK-12 Fellows project, for elementary, middle, and high school grades. The activities, developed by engineering and science graduate Fellows in partnership with K-12 teachers, are grade appropriate, address pertinent learning…

  7. Nebraska Science Standards: Grades K-12

    Science.gov (United States)

    Nebraska Department of Education, 2010

    2010-01-01

    This publication presents the Nebraska Science Standards for Grades K-12. The standards are presented according to the following grades: (1) Grades K-2; (2) Grades 3-5; (3) Grades 6-8; and (4) Grades 9-12.

  8. Scientific and Engineering Practices in K-12 Classrooms: Understanding "A Framework for K-12 Science Education"

    Science.gov (United States)

    Bybee, Rodger W.

    2011-01-01

    In this article, the author presents the science and engineering practices from the recently released "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" (NRC 2011). The author recognizes the changes implied by the new framework, and eventually a new generation of science education standards will present new…

  9. Involving Practicing Scientists in K-12 Science Teacher Professional Development

    Science.gov (United States)

    Bertram, K. B.

    2011-12-01

    The Science Teacher Education Program (STEP) offered a unique framework for creating professional development courses focused on Arctic research from 2006-2009. Under the STEP framework, science, technology, engineering, and math (STEM) training was delivered by teams of practicing Arctic researchers in partnership with master teachers with 20+ years experience teaching STEM content in K-12 classrooms. Courses based on the framework were offered to educators across Alaska. STEP offered in-person summer-intensive institutes and follow-on audio-conferenced field-test courses during the academic year, supplemented by online scientist mentorship for teachers. During STEP courses, teams of scientists offered in-depth STEM content instruction at the graduate level for teachers of all grade levels. STEP graduate-level training culminated in the translation of information and data learned from Arctic scientists into standard-aligned lessons designed for immediate use in K-12 classrooms. This presentation will focus on research that explored the question: To what degree was scientist involvement beneficial to teacher training and to what degree was STEP scientist involvement beneficial to scientist instructors? Data sources reveal consistently high levels of ongoing (4 year) scientist and teacher participation; high STEM content learning outcomes for teachers; high STEM content learning outcomes for students; high ratings of STEP courses by scientists and teachers; and a discussion of the reasons scientists indicate they benefited from STEP involvement. Analyses of open-ended comments by teachers and scientists support and clarify these findings. A grounded theory approach was used to analyze teacher and scientist qualitative feedback. Comments were coded and patterns analyzed in three databases. The vast majority of teacher open-ended comments indicate that STEP involvement improved K-12 STEM classroom instruction, and the vast majority of scientist open-ended comments

  10. Graded Course of Study, Science (K-12).

    Science.gov (United States)

    Euclid City Schools, OH.

    This course of study specifies the science skills and concepts that are to be taught in the various grades of the Euclid (Ohio) City Schools. Included are instructional objectives for the life, physical, and earth sciences for grades K to 6, suggested field trips and planetarium schedules (by elementary grade levels), and scope and sequence charts…

  11. Web Adventures in K-12 Science.

    Science.gov (United States)

    Friedman, Edward A.; McGrath, Beth; Baron, Joshua

    1997-01-01

    Describes activities at the Center for Improved Engineering and Science Education at Stevens Institute of Technology (New Jersey) that have explored applications of the Internet in elementary and secondary school science classrooms. Highlights include working with real-time data, teacher training for the Web, and examples of curriculum activities.…

  12. Promoting brain-science literacy in the k-12 classroom.

    Science.gov (United States)

    Labriole, Michaela

    2010-07-01

    There are many simple ways to incorporate neuroscience into the K-12 classroom, even when the subject is not explicitly part of the curriculum. Here, Michaela Labriole, a science instructor at the New York Hall of Science, provides tangible examples of how teachers can encourage brain-science literacy in students at a time when growing knowledge of the brain is shaping our understanding of how to best foster learning.

  13. Merging University Students into K?12 Science Education Reform

    Science.gov (United States)

    2007-11-02

    limited to the K–12 classrooms but were related to the broader issue of creating university- school partnerships as a strategy for science education reform...of interest to federal policymakers who are concerned with science education reform and the development of partnerships between universities and K–12...4. TITLE AND SUBTITLE Merging University Students into K?12 Science Education Reform Unclassified 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  14. Soil Science Society of America - K-12 Outreach

    Science.gov (United States)

    Lindbo, David L.; Loynachan, Tom; Mblia, Monday; Robinson, Clay; Chapman, Susan

    2013-04-01

    The Soil Science Society of America created its K12 Committee in 2006 in part to compliment the Dig It! The Secrets of Soil exhibit that opened in July 2008 at the Smithsonian's Institution's Nation Museum of Natural History (of which SSS was a founding sponsor). The committee's work began quickly with a website designed to provide resources for K12 teachers. The first accomplishments included reviewing and posting links to web based information already available to teachers. These links were sorted by subject and grade level to make it easier for teachers to navigate the web and find what they needed quickly. Several presentations and lessons designed for K12 teachers were also posted at this time. Concurrent with this effort a subcommittee review and organized the national teaching standards to show where soils could fit into the overall K12 curriculum. As the website was being developed another subcommittee developed a soils book (Soil! Get the Inside Scoop, 2008) to further compliment the Dig It! exhibit. This was a new endeavor for SSSA having never worked with the non-academic audience in developing a book. Peer-reviews of this book included not only scientist but also students in order to make sure the book was attractive to them. Once the book was published and the website developed it became clear more outreach was needed. SSSA K12 Committee has attended both the National Science Teachers Association (since 2008) the USA Science and Engineering Festival (since 2010) with exhibits and workshops. It has cooperated and contributed to the American Geologic Institutes' Earth Science Week materials with brochures and lesson plans and with National Association of Conservation Districts by providing peer-review and distribution of materials. The most recent developments from the committee include a web redesign that is more student and teacher friendly, the development of a peer-review system to publish K12 Lesson Plans, and finally the publication of a new soils

  15. K-12 science education: A teacher`s view

    Energy Technology Data Exchange (ETDEWEB)

    Moore, P.

    1994-12-31

    Science education has experienced significant changes over the past two decades. Science is now vital to good citizenship, performance in the workplace, and everyday life.It is time to re-tool and re-design the entire K-12 science education system, employing the same principles and methods used in the practice of science itself. We can no longer ignore the special needs of science instruction. All students need a course that develops their scientific literacy and critical thinking skills every year. Each science program needs meaningful, useful content and skill standards to drive and continuously update the curriculum content and enabel usefull assessment. Science teachers must articulate their needs and develop opportunities for professional development and the strengthening of their profession. We need a national plan that gets the many different participants working coherently towards a common goal.

  16. I-LLINI Partnerships to improve K-12 Earth Science education

    Science.gov (United States)

    Tomkin, J. H.; Wong, K.; Charlevoix, D. J.

    2009-12-01

    I-LLINI Partnerships is a three-year State of Illinois funded program to initiate enhanced communication between the faculty at University of Illinois and K-12 teachers in the surrounding communities. The program focuses on math and science with a particular emphasis on the use of technology to teaching math and science to middle-school aged children. The Partnership provides participating teachers with a suite of technology including a computer, digital camera, and software, as well as a small stipend. University partners include representatives from the Departments of Mathematics as well as the Department of Atmospheric Sciences and the Department of Geology. The Atmospheric Sciences and Geology faculty have partnered to provide content using an Earth Systems Science approach to improving Earth Science education for in- and pre-service teachers through new undergraduate and graduate classes that focus on fundamental earth science content, State K-12 standards, and transferable lesson plans and materials that enable course participants to easily transfer university practice to the classroom.

  17. Undergraduate interest in K--12 teaching and the perceived 'climate' for the K--12 education profession in the natural sciences

    Science.gov (United States)

    Gerdeman, Robert Dean

    Previous research suggests that the natural science setting in universities does not offer a supportive environment for undergraduates interested in K--12 education careers, an important problem given the need for K--12 science teachers. A mixed-method approach was used to examine student perspectives toward K--12 education careers, and the influence of the college experience on perspectives, at a public research university. Quantitative data come from a cross-sectional survey sample (N = 444) of upper-division natural science majors in the university. The survey focused on student background characteristics, undergraduate experiences, perceptions of the college environment, career interests, and satisfaction. Pursuit of K--12 education as a top current career choice was rare among the respondents (3.6%). However, about one-fourth of them indicated some interest in this career and overall interest increased slightly during the college experience. Based on student perceptions, K--12 education was substantially less emphasized within the natural sciences than other career fields. Regression analyses revealed that the most important predictors (aside from initial career interests) of interest in and attitude toward K--12 teaching were self-concept and personality measures. Several college experience measures were also predictors, including perceptions about faculty and peers in the natural sciences. The effect of college experiences differed for students initially more inclined toward K--12 teaching, who reported a net decrease in interest, versus those more disinclined, who reported a net gain in interest. Satisfaction with the college experience was similar for the two groups. Qualitative data come from follow-up interviews conducted with eight survey respondents who recalled a top choice of K--12 teaching upon entering college but had decided to pursue another career. These students perceived other career fields to offer better professional opportunities for

  18. Cool Science: K-12 Climate Change Art Displayed on Buses

    Science.gov (United States)

    Chen, R. F.; Lustick, D. S.; Lohmeier, J.; Thompson, S. R.

    2015-12-01

    Cool science is an art contest where K12 students create placards (7" x 22") to educate the public about climate change. Students are prompted to create their artwork in response to questions such as: What is the evidence for climate change? How does climate change impact your local community? What can you do to reduce the impacts of climate change? In each of three years, 500-600 student entrees have been submitted from more than 12 school districts across Massachusetts. A panel of judges including scientists, artists, rapid transit representatives, and educators chooses elementary, middle, and high school winners. Winners (6), runners-up (6), and honorable mentions (12) and their families and teachers are invited to an annual Cool Science Award Ceremony to be recognized and view winning artwork. All winning artwork is posted on the Cool Science website. The winning artwork (2 per grade band) is converted into placards (11" x 28") and posters (2.5' x 12') that are placed on the inside (placards) and outside (posters) of buses. Posters are displayed for one month. So far, Cool Science was implemented in Lowell, MA where over 5000 public viewers see the posters daily on the sides of Lowell Rapid Transit Authority (LRTA) buses, making approximately 1,000,000 impressions per year. Cool Science acts to increase climate literacy in children as well as the public, and as such promotes intergenerational learning. Using art in conjunction with science learning about climate change appears to be effective at engaging not just traditionally high achieving science students, but also those interested in the creative arts. Hearing winners' stories about how they created their artwork and what this contest meant to them supports the idea that Cool Science attracts a wide diversity of students. Parents discuss climate change with their children. Multiple press releases announcing the winners further promotes the awareness of climate change throughout school districts and their

  19. Informal Math Coaching by Instant Messaging: Two Case Studies of How University Students Coach K-12 Students

    Science.gov (United States)

    Hrastinski, Stefan; Edman, Anneli; Andersson, Fredrik; Kawnine, Tanvir; Soames, Carol-Ann

    2014-01-01

    The aim of this study is to describe and explore how instant messaging (IM) can be used to support informal math coaching. We have studied two projects where university students use IM to coach K-12 students in mathematics. The coaches were interviewed with a focus on how informal coaching works by examining coaching challenges, how coaching can…

  20. Student Achievement Data and Findings, as Reported in Math and Science Partnerships' Annual and Evaluation Reports

    Science.gov (United States)

    Yin, Robert K.

    2009-01-01

    A primary feature of the Math and Science Partnership Program Evaluation (MSP PE) is the examination of K-12 student achievement changes associated with the National Science Foundation's (NSF) Math and Science Partnership (MSP) Program. This article describes one of three complementary assessments of K-12 student achievement being conducted by the…

  1. Development and Evaluation of Food Safety Modules for K-12 Science Education

    Science.gov (United States)

    Chapin, Travis K.; Pfuntner, Rachel C.; Stasiewicz, Matthew J.; Wiedmann, Martin; Orta-Ramirez, Alicia

    2015-01-01

    Career and educational opportunities in food science and food safety are underrecognized by K-12 students and educators. Additionally, misperceptions regarding nature of science understanding persist in K-12 students despite being emphasized as an important component of science education for over 100 y. In an effort to increase awareness…

  2. Engineering Efforts and Opportunities in the National Science Foundation's Math and Science Partnerships (MSP) Program

    Science.gov (United States)

    Brown, Pamela; Borrego, Maura

    2013-01-01

    The National Science Foundation's Math and Science Partnership (MSP) program (NSF, 2012) supports partnerships between K-12 school districts and institutions of higher education (IHEs) and has been funding projects to improve STEM education in K-12 since 2002. As of 2011, a total of 178 MSP projects have received support as part of a STEM…

  3. Merging University Students into K-12 Science Education Reform

    Science.gov (United States)

    2002-01-01

    consider the effects of outreach programs on university science students. Improved communication in science , increased enrollment in science courses as a...education side. Improved communication in science , increased enrollment in science courses as a result of adding an outreach component to traditional

  4. Improving Student Achievement in Math and Science

    Science.gov (United States)

    Sullivan, Nancy G.; Hamsa, Irene Schulz; Heath, Panagiota; Perry, Robert; White, Stacy J.

    1998-01-01

    As the new millennium approaches, a long anticipated reckoning for the education system of the United States is forthcoming, Years of school reform initiatives have not yielded the anticipated results. A particularly perplexing problem involves the lack of significant improvement of student achievement in math and science. Three "Partnership" projects represent collaborative efforts between Xavier University (XU) of Louisiana, Southern University of New Orleans (SUNO), Mississippi Valley State University (MVSU), and the National Aeronautics and Space Administration (NASA), Stennis Space Center (SSC), to enhance student achievement in math and science. These "Partnerships" are focused on students and teachers in federally designated rural and urban empowerment zones and enterprise communities. The major goals of the "Partnerships" include: (1) The identification and dissemination of key indices of success that account for high performance in math and science; (2) The education of pre-service and in-service secondary teachers in knowledge, skills, and competencies that enhance the instruction of high school math and science; (3) The development of faculty to enhance the quality of math and science courses in institutions of higher education; and (4) The incorporation of technology-based instruction in institutions of higher education. These goals will be achieved by the accomplishment of the following objectives: (1) Delineate significant ?best practices? that are responsible for enhancing student outcomes in math and science; (2) Recruit and retain pre-service teachers with undergraduate degrees in Biology, Math, Chemistry, or Physics in a graduate program, culminating with a Master of Arts in Curriculum and Instruction; (3) Provide faculty workshops and opportunities for travel to professional meetings for dissemination of NASA resources information; (4) Implement methodologies and assessment procedures utilizing performance-based applications of higher order

  5. Improving Student Achievement in Math and Science

    Science.gov (United States)

    Sullivan, Nancy G.; Hamsa, Irene Schulz; Heath, Panagiota; Perry, Robert; White, Stacy J.

    1998-01-01

    As the new millennium approaches, a long anticipated reckoning for the education system of the United States is forthcoming, Years of school reform initiatives have not yielded the anticipated results. A particularly perplexing problem involves the lack of significant improvement of student achievement in math and science. Three "Partnership" projects represent collaborative efforts between Xavier University (XU) of Louisiana, Southern University of New Orleans (SUNO), Mississippi Valley State University (MVSU), and the National Aeronautics and Space Administration (NASA), Stennis Space Center (SSC), to enhance student achievement in math and science. These "Partnerships" are focused on students and teachers in federally designated rural and urban empowerment zones and enterprise communities. The major goals of the "Partnerships" include: (1) The identification and dissemination of key indices of success that account for high performance in math and science; (2) The education of pre-service and in-service secondary teachers in knowledge, skills, and competencies that enhance the instruction of high school math and science; (3) The development of faculty to enhance the quality of math and science courses in institutions of higher education; and (4) The incorporation of technology-based instruction in institutions of higher education. These goals will be achieved by the accomplishment of the following objectives: (1) Delineate significant ?best practices? that are responsible for enhancing student outcomes in math and science; (2) Recruit and retain pre-service teachers with undergraduate degrees in Biology, Math, Chemistry, or Physics in a graduate program, culminating with a Master of Arts in Curriculum and Instruction; (3) Provide faculty workshops and opportunities for travel to professional meetings for dissemination of NASA resources information; (4) Implement methodologies and assessment procedures utilizing performance-based applications of higher order

  6. Identity and Biography as Mediators of Science and Mathematics Faculty's Involvement in K-12 Service

    Science.gov (United States)

    Skerrett, Allison; Sevian, Hannah

    2010-01-01

    This article explores aspects of science and mathematics faculty identities and biographies that mediated their involvement in K-12 service. Faculty expressed five motivations for participating in K-12 service--advancing their research agenda, advocating environmental consciousness, desiring to be involved in their children's schools, aspiring to…

  7. Identity and Biography as Mediators of Science and Mathematics Faculty's Involvement in K-12 Service

    Science.gov (United States)

    Skerrett, Allison; Sevian, Hannah

    2010-01-01

    This article explores aspects of science and mathematics faculty identities and biographies that mediated their involvement in K-12 service. Faculty expressed five motivations for participating in K-12 service--advancing their research agenda, advocating environmental consciousness, desiring to be involved in their children's schools, aspiring to…

  8. Outstanding Science Trade Book for Students K-12

    Science.gov (United States)

    Texley, Juliana

    2010-01-01

    What makes an outstanding book for a young reader? Although it would be hard to create a rubric for every book, experienced teachers recognize them quickly. They fascinate and captivate with both their content and style. Award-winning trade books inspire young readers to want more... more information, more books, more inquiry, more science. The…

  9. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    Science.gov (United States)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  10. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    Science.gov (United States)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  11. Developing Partnerships between Higher Education Faculty, K-12 Science Teachers, and School Administrators via MSP initiatives: The RITES Model

    Science.gov (United States)

    Caulkins, J. L.; Kortz, K. M.; Murray, D. P.

    2011-12-01

    The Rhode Island Technology Enhanced Science Project (RITES) is a NSF-funded Math and Science Partnership (MSP) project that seeks to improve science education. RITES is, at its core, a unique partnership that fosters relationships between middle and high school science teachers, district and school administrators, higher education (HE) faculty members, and science education researchers. Their common goal is to enhance scientific inquiry, increase classroom technology usage, and improve state level science test scores. In one of the more visible examples of this partnership, middle and high school science teachers work closely with HE science faculty partners to design and teach professional development (PD) workshops. The PD sessions focus on technology-enhanced scientific investigations (e.g. use of probes, online simulations, etc.), exemplify inquiry-based instruction, and relate expert content knowledge. Teachers from these sessions express substantial satisfaction in the program, report increased comfort levels in teaching the presented materials (both via post-workshop surveys), and show significant gains in content knowledge (via pre-post assessments). Other benefits to this kind of partnership, in which K-12 and HE teachers are considered equals, include: 1) K-12 teachers are empowered through interactions with HE faculty and other science teachers in the state; 2) HE instructors become more informed not only about good pedagogical practices, but also practical aspects of teaching science such as engaging students; and 3) the PD sessions tend to be much stronger than ones designed and presented solely by HE scientists, for while HE instructors provide content expertise, K-12 teachers provide expertise in K-12 classroom practice and implementation. Lastly, the partnership is mutually beneficial for the partners involved because both sides learn practical ways to teach science and inquiry at different levels. In addition to HE faculty and K-12 science teacher

  12. Outstanding Science Trade Books for Students K-12: Books Published in 2015

    Science.gov (United States)

    Science and Children, 2016

    2016-01-01

    Science teachers and mentors continue to be challenged to meet the high expectations of "A Framework for K-12 Science Education" and the "Next Generation Science Standards" ("NGSS"). Indeed the "Framework" urges to help learners "[build] progressively more sophisticated explanations of natural…

  13. Improving indicators of the quality of science and mathematics education in grades K-12

    National Research Council Canada - National Science Library

    Murnane, Richard J; Raizen, Senta A

    ... and Mathematics Education in in Grades K- -12 12 Richard J. Murnane and Senta A. Raizen, Editors Committee on Indicators of Precollege Science and Mathematics Education Commission on Behavioral and Social Sciences and Education National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1988 Copyrightthe cannot be not from book, paper however, version for...

  14. Perspectives and Visions of Computer Science Education in Primary and Secondary (K-12) Schools

    Science.gov (United States)

    Hubwieser, Peter; Armoni, Michal; Giannakos, Michail N.; Mittermeir, Roland T.

    2014-01-01

    In view of the recent developments in many countries, for example, in the USA and in the UK, it appears that computer science education (CSE) in primary or secondary schools (K-12) has reached a significant turning point, shifting its focus from ICT-oriented to rigorous computer science concepts. The goal of this special issue is to offer a…

  15. Tech-Savvy Science Education? Understanding Teacher Pedagogical Practices for Integrating Technology in K-12 Classrooms

    Science.gov (United States)

    Hechter, Richard; Vermette, Laurie Anne

    2014-01-01

    This paper examines the technology integration practices of Manitoban K-12 inservice science educators based on the Technological, Pedagogical, and Content knowledge (TPACK) framework. Science teachers (n = 433) completed a 10-item online survey regarding pedagogical beliefs about technology integration, types of technology used, and how often…

  16. Tech-Savvy Science Education? Understanding Teacher Pedagogical Practices for Integrating Technology in K-12 Classrooms

    Science.gov (United States)

    Hechter, Richard; Vermette, Laurie Anne

    2014-01-01

    This paper examines the technology integration practices of Manitoban K-12 inservice science educators based on the Technological, Pedagogical, and Content knowledge (TPACK) framework. Science teachers (n = 433) completed a 10-item online survey regarding pedagogical beliefs about technology integration, types of technology used, and how often…

  17. Interactive Teaching as a Recruitment and Training Tool for K-12 Science Teachers

    Science.gov (United States)

    Rosenberg, J. L.

    2004-12-01

    The Science, Technology, Engineering, and Mathematics Teacher Preparation (STEMTP) program at the University of Colorado has been designed to recruit and train prospective K-12 science teachers while improving student learning through interactive teaching. The program has four key goals: (1) recruit undergraduate students into K-12 science education, (2) provide these prospective teachers with hands-on experience in an interactive teaching pedagogy, (3) create an intergrated program designed to support (educationally, socially, and financially) and engage these prospective science teachers up until they obtain liscensure and/or their masters degree in education, and (4) improve student learning in large introductory science classes. Currently there are 31 students involved in the program and a total of 72 students have been involved in the year and a half it has been in existence. I will discuss the design of the STEMTP program, the success in recruiting K-12 science teachers, and the affect on student learning in a large lecture class of implementing interactive learning pedagogies by involving these prospective K-12 science teachers. J. L. Rosenberg would like to acknowledge the NSF Astronomy and Astrophysics Fellowship for support for this work. The course transformation project is also supported by grants from the National Science Foundation.

  18. Perspectives and Visions of Computer Science Education in Primary and Secondary (K-12) Schools

    Science.gov (United States)

    Hubwieser, Peter; Armoni, Michal; Giannakos, Michail N.; Mittermeir, Roland T.

    2014-01-01

    In view of the recent developments in many countries, for example, in the USA and in the UK, it appears that computer science education (CSE) in primary or secondary schools (K-12) has reached a significant turning point, shifting its focus from ICT-oriented to rigorous computer science concepts. The goal of this special issue is to offer a…

  19. How to Implement Rigorous Computer Science Education in K-12 Schools? Some Answers and Many Questions

    Science.gov (United States)

    Hubwieser, Peter; Armoni, Michal; Giannakos, Michail N.

    2015-01-01

    Aiming to collect various concepts, approaches, and strategies for improving computer science education in K-12 schools, we edited this second special issue of the "ACM TOCE" journal. Our intention was to collect a set of case studies from different countries that would describe all relevant aspects of specific implementations of…

  20. Agriculture's Role in K-12 Education: Proceedings of a Forum on the National Science Education Standards.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Board on Agriculture.

    The Board on Agriculture organized a Forum on Agriculture's Role in K-12 Education to provide an opportunity for agricultural professional societies to explore ways in which examples from agriculture, food, and environment systems can be used to enhance inquiry-based science education. Participants discussed how professional societies could…

  1. How to Implement Rigorous Computer Science Education in K-12 Schools? Some Answers and Many Questions

    Science.gov (United States)

    Hubwieser, Peter; Armoni, Michal; Giannakos, Michail N.

    2015-01-01

    Aiming to collect various concepts, approaches, and strategies for improving computer science education in K-12 schools, we edited this second special issue of the "ACM TOCE" journal. Our intention was to collect a set of case studies from different countries that would describe all relevant aspects of specific implementations of…

  2. Forum on Technology in K-12 Education: Envisioning a New Future Science.

    Science.gov (United States)

    Rakow, Steven J.

    This paper examines the impacts of instructional technologies on K-12 science instruction. The first section addresses the question, "What is technology?" The dimensions of technology identified by the International Technology Education Association are summarized, and definitions of technology from the American Association for the…

  3. Idaho Robotics Opportunities for K-12 Students: A K-12 Pipeline of Activities Promoting Careers in Science, Engineering, and Technology

    Science.gov (United States)

    Ewers, Timothy G.

    2010-01-01

    4-H youth development programs nationwide are responding to the 4-H National Science, Engineering, and Technology (4-H SET) Initiative to involve more youth in Science, Engineering, and Technology activities. The goal is to increase the numbers of youth choosing to pursue SET careers. This article describes a program that is having great success…

  4. Forging an identity: Four science doctoral students in a collaborative partnership with K--12 science teachers

    Science.gov (United States)

    Balinsky, Martin G.

    2006-12-01

    A primary conflict regarding the identity of science education is the competition between those emphasizing science aspects of science education versus those who emphasize the education. I examine a National Science Foundation funded program at "Southern State University" (pseudonym) known as the GK-12 Project that placed science doctoral students into K-12 classrooms, where they worked with practicing science teachers. My research question was: How do GK-12 Fellows forge an identity through their experiences as both teachers and doctoral students? I used the "hermeneutic dialectic circle", a process whereby I interviewed each stakeholder in turn, and conducted member checks. My primary sources were interviews, and my primary subjects were four Fellows. One of the Fellows, Jose, left the program after one year. The other three in my study, Wanda, Rebecca, and Nathan, remained for all three years. The starting point for their learning was admitting what they did not know. These three learned about science outside of their fields because they learned how to learn. They also took an interest in and enacted making connections to students. In negotiating two cultures, the Fellows achieved heightened awareness of the SSU science culture's current practices in college science teaching, particularly the problems. They noted the ineffectiveness of the didactic delivery style and the lack of formative assessment. These three Fellows manifested rational and pluralistic worldviews. Because of his frames that were derived from growing up under an authoritarian government in Cuba, Jose experienced the program differently than the other three Fellows. For Jose, his identity as a scientist and as an educator remained more static, as he identified more with the authoritarian outlook on education espoused in SSU's science departments. The science culture at SSU is centered in the authoritarian value structure sees a need for a "fixing" of education, to improve "poorly prepared

  5. Teaching K-12 teachers and students about nanoscale science through microscopy

    Science.gov (United States)

    Healy, Nancy

    2014-09-01

    The National Nanotechnology Infrastructure Network (NNIN) is an integrated partnership of 14 universities across the US funded by NSF to support nanoscale researchers. NNIN's education and outreach programs are large and varied and includes outreach to the K-12 community in the form of professional development workshops and school programs. Two important components of nanoscale science education are understanding size and scale and the tools used in nanoscale science and engineering (NSE). As part of our K-12 endeavors, we educate K-12 students and teachers about the tools of nanoscience by providing experiences with the Hitachi TM 3000 tabletop Scanning Electron Microscope (SEM). There are three of these across the network that are used in education and outreach. This paper will discuss approaches we use to engage the K-12 community at NNIN's site at Georgia Institute of Technology to understand size and scale and the applications of a variety of microscopes to demonstrate the imaging capabilities of these to see both the micro and nano scales. We not only use the tabletop SEM but also include USB digital microscopes, a Keyence VHX- 600 Digital Microscope, and even a small lens used with smart phones. The goal of this outreach is to educate students as well as teachers about the capabilities of the various instruments and their importance at different size scales.

  6. Evaluation of Online Teacher and Student Materials for the Framework for K-12 Science Education Science and Engineering Crosscutting Concepts

    Science.gov (United States)

    Schwab, Patrick

    2013-01-01

    The National Research Council developed and published the "Framework for K-12 Science Education," a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in science…

  7. Science Museum Resources and Partnerships for Public and K-12 Outreach and Engagement

    Science.gov (United States)

    Bell, Larry

    2011-03-01

    Science museums engage in a wide range of activities not apparent to exhibit hall visitors. Many of them can support research outreach to public and K-12 teachers and students. In addition to exhibits in science centers, and demonstrations on topics like electricity or cryogenics, science museums offer courses for children and adults, out-of-school programs for students, teacher professional development; some do K-12 curriculum development and some run science magnet schools. In recent years science museums have increased their capacity to communicate with the public about current research. The Museum of Science, for instance, created a Current Science and Technology Center in 2001 dedicated to science in the news and current research developments. Through this Center, the Museum partnered with Harvard University to provide a wide range of public engagement activities as part of Harvard's Nanoscale Science and Engineering Center focused on the Science of Nanoscale Systems and their Device Applications. In the past five years a number of new collaborations among science museums have developed, many in partnership with researchers and research centers. Perhaps the largest or these, the Nanoscale Informal Science Education Network (NISE Net) was launched in 2005 with funding from the National Science Foundation. The NISE Net links informal science education organizations together and to university research centers to raise the capacity of all the participant organizations to increase public awareness, understanding, and engagement with nanoscale science, engineering, and technology. Nearly 300 informal educational organizations in every state nationwide make use of NISE Net's educational materials, professional development, national and regional meetings, and online resources. NISE Net is an open source network with all of its materials freely available to everyone.

  8. CESAME: Providing High Quality Professional Development in Science and Mathematics for K-12 Teachers

    Science.gov (United States)

    Hickman, Paul

    2002-04-01

    It is appropriate that after almost half a century of Science and Mathematics education reform we take a look back and a peek forward to understand the present state of this wonderfully complex system. Each of the components of this system including teaching, professional development, assessment, content and the district K-12 curriculum all need to work together if we hope to provide quality science, mathematics and technology education for ALL students. How do the state and national standards drive the system? How do state policies on student testing and teacher licensure come into play? How do we improve the preparation, retention and job satisfaction of our K-12 teachers? What initiatives have made or are making a difference? What else needs to be done? What can the physics community do to support local efforts? This job is too big for any single organization or individual but we each can contribute to the effort. Our Center at Northeastern University, with support from the National Science Foundation, has a sharply defined focus: to get high quality, research-based instructional materials into the hands of K-12 classroom teachers and provide the support they need to use the materials effectively in their classrooms.

  9. Implications of the Next Generation Science Standards for K-12, EPO, and Higher Education

    Science.gov (United States)

    Schultz, G.; Barber, J.; Pomeroy, R.; Reagan, G.

    2014-07-01

    The newly-released Next Generation Science Standards (NGSS) have been under development for a few years with broad community input and explicit involvement of many states likely to adopt these as their own science standards. Several key features of the NGSS make these a substantial advance from the existing National Science Education Standards (NRC 1996), including focus on three dimensions previously outlined in A Framework for K-12 Science Education (NRC 2011): Science and Engineering Practices; Cross-cutting Concepts; and Disciplinary Core Ideas. What are the implications of all this now for K-12 educators, in the immediate term and in the long-term? What do the NGSS imply for EPO professionals, especially those involved in science curriculum development and teacher professional development? What should higher education faculty know about the NGSS, especially as it relates to the preparation of incoming college students, as well as the education of future elementary and secondary science teachers in college (including in Astro 101-type courses)?

  10. Role of Public Outreach in the University Science Mission: Publishing K-12 Curriculum, Organizing Tours, and Other Methods of Engagement

    Science.gov (United States)

    Dittrich, T. M.

    2015-12-01

    Much attention has been devoted in recent years to the importance of Science, Technology, Engineering, and Math (STEM) education in K-12 curriculum for developing a capable workforce. Equally important is the role of the voting public in understanding STEM-related issues that impact public policy debates such as the potential impacts of climate change, hydraulic fracturing in oil and gas exploration, mining impacts on water quality, and science funding. Since voted officials have a major impact on the future of these policies, it is imperative that the general public have an understanding of the basic science behind these issues. By engaging with the public in a more fundamental way, university students can play an important role in educating the public while at the same time enhancing their communication skills and gaining valuable teaching experience. I will talk about my own experiences in (1) evaluating and publishing water chemistry and hazardous waste cleanup curriculum on the K-12 engineering platform TeachEngineering.org, (2) organizing public tours of water and energy sites (e.g., abandoned mine sites, coal power plants, wastewater treatment plants, hazardous waste treatment facilities), and (3) other outreach and communication activities including public education of environmental issues through consultations with customers of a landscaping/lawn mowing company. The main focus of this presentation will be the role that graduate students can play in engaging and educating their local community and lessons learned from community projects (Dittrich, 2014; 2012; 2011). References: Dittrich, T.M. 2014. Adventures in STEM: Lessons in water chemistry from elementary school to graduate school. Abstract ED13E-07 presented at 2014 Fall Meeting, AGU, San Francisco, Calif., 15-19 Dec. Dittrich, T.M. 2012. Collaboration between environmental water chemistry students and hazardous waste treatment specialists on the University of Colorado-Boulder campus. Abstract ED53C

  11. Turning K-12 Science Education Inside Out, Knocking Down Walls and Empowering the Disenchanted.

    Science.gov (United States)

    Lin, A. Y. M.

    2016-12-01

    For a 'user' there are several genres of citizen science activities one can enlist themselves in, from microtasked analytics to data collection. Often times design conversation for these efforts are focused around the goal of collecting high quality data for an urgent scientific question. However, there is much to be discussed around the opportunity to expand upon the interaction experience of the 'user'. This is particularly relevant in the integration of citizen science in the classroom. Here we explore the role of citizen science in formal K-12 science education through the lens of "Project Based Learning", examining design challenges in classroom adoption (including standards alignment) as well as interaction design focused around long term user/student motivation and engagement in the science exploration.

  12. Lessons learned: Pacific CRYSTAL approaches to K-12 Pre and In-service teacher professional development in Earth science

    Science.gov (United States)

    van der Flier-Keller, E.

    2009-12-01

    Pacific CRYSTAL (Centre for Research in Youth Science Teaching and Learning) is one of five Canadian nationally funded centres (2005-2010) with the mandate to enrich the preparation of young Canadians in math and science. Pacific CRYSTAL’s goal is to link teachers and other community partners, with scientists and science education researchers to build authentic, engaging science experiences for students, and to foster teacher leadership in science literacy through teacher professional development and teacher training, based on the premise that “The fundamental factor in the improvement of students’ learning in science and technology is the quality (knowledge, skills and enthusiasm) of their teachers” (UNESCO 2008). In order to address the issues of teacher reluctance to teach the Earth science curriculum content, and commonly if they do, to rely primarily on textbooks and worksheets, Pacific CRYSTAL in partnership with EdGEO, have developed a variety of hands-on, constructivist based activities (both classroom and field based) to engage students and focus attention on the relevance and importance of Earth science to society. These activities then form the basis for our two approaches to teacher professional development; in and pre- service teacher workshops, and ‘Education’ labs for students intending to become teachers who are enrolled in first year Earth science courses. Both the teacher workshops and the ‘Education’ lab promote Earth science learning, interest and enthusiasm in three ways. Firstly, through teacher experiences with hands-on activities, experiments, fieldtrips and demonstrations transferable to the K-12 classrooms; secondly through providing teachers with classroom resources, such as rock kits, maps, fossils, posters and books which they use during the workshops; and thirdly by providing an environment for networking and mentoring to help overcome the commonly expressed apprehension about science as well as to support teachers in

  13. Project BioEYES: Accessible Student-Driven Science for K-12 Students and Teachers.

    Science.gov (United States)

    Shuda, Jamie R; Butler, Valerie G; Vary, Robert; Farber, Steven A

    2016-11-01

    BioEYES, a nonprofit outreach program using zebrafish to excite and educate K-12 students about science and how to think and act like scientists, has been integrated into hundreds of under-resourced schools since 2002. During the week-long experiments, students raise zebrafish embryos to learn principles of development and genetics. We have analyzed 19,463 participating students' pre- and post-tests within the program to examine their learning growth and attitude changes towards science. We found that at all grade levels, BioEYES effectively increased students' content knowledge and produced favorable shifts in students' attitudes about science. These outcomes were especially pronounced in younger students. Having served over 100,000 students, we find that our method for providing student-centered experiences and developing long-term partnerships with teachers is essential for the growth and sustainability of outreach and school collaborations.

  14. K--12 science educator perception of instructing students with learning disabilities in the regular classroom

    Science.gov (United States)

    Holliday-Cashwell, Janet Rose

    2000-10-01

    Selected K--12 public school science educators in 14 eastern North Carolina counties were surveyed to examine their perceptions of their undergraduate preparation programs with regard to instructing students with learning disabilities in the regular classroom. A quantitative study, this research examined science educator preparedness in instructing students with learning disabilities by evaluating educator perception in regard to mainstrearned and inclusive educational settings. Specifically, two null hypotheses were tested. Null hypothesis I stated a significant difference does not exist between selected North Carolina K--12 science educators' perceptions of their undergraduate teacher education preparation programs and their perceptions of their abilities to instruct students needing accommodations on behalf of their learning disabilities in mainstrearned or inclusive settings. Participants' responses to perception as well as value statements regarding opinions, adaptations, and undergraduate training with respect to mainstreaming and inclusion were evaluated through t-test analyses of 22 Likert-scale items. Null hypothesis 1 was not accepted because a statistically significant difference did exist between the educators' perceptions of their undergraduate training and their perceived abilities to instruct students with learning disabilities in mainstreamed or inclusive settings. Null hypothesis 2 stated a significant difference does not exist between selected North Carolina K--12 science educators' attained educational level; grade level currently taught, supervised or chaired; and years of experience in teaching science, supervising science education, and/or chairing science departments in selected North Carolina public schools and their opinions of their undergraduate teacher education program with regard to instructing students with learning disabilities in mainstreamed or inclusive educational settings. Null hypothesis 2 was evaluated through an analysis of

  15. A Tale of Two Countries: Successes and Challenges in K-12 Computer Science Education in Israel and the United States

    Science.gov (United States)

    Gal-Ezer, Judith; Stephenson, Chris

    2014-01-01

    This article tells a story of K-12 computer science in two different countries. These two countries differ profoundly in culture, language, government and state structure, and in their education systems. Despite these differences, however, they share the pursuit of excellence and high standards in K-12 education. In Israel, curriculum is…

  16. A Tale of Two Countries: Successes and Challenges in K-12 Computer Science Education in Israel and the United States

    Science.gov (United States)

    Gal-Ezer, Judith; Stephenson, Chris

    2014-01-01

    This article tells a story of K-12 computer science in two different countries. These two countries differ profoundly in culture, language, government and state structure, and in their education systems. Despite these differences, however, they share the pursuit of excellence and high standards in K-12 education. In Israel, curriculum is…

  17. BiteScis: Connecting K-12 teachers with science graduate students to produce lesson plans on modern science research

    Science.gov (United States)

    Battersby, Cara

    2016-01-01

    Many students graduate high school having never learned about the process and people behind modern science research. The BiteScis program addresses this gap by providing easily implemented lesson plans that incorporate the whos, whats, and hows of today's scienctific discoveries. We bring together practicing scientists (motivated graduate students from the selective communicating science conference, ComSciCon) with K-12 science teachers to produce, review, and disseminate K-12 lesson plans based on modern science research. These lesson plans vary in topic from environmental science to neurobiology to astrophysics, and involve a range of activities from laboratory exercises to art projects, debates, or group discussion. An integral component of the program is a series of short, "bite-size" articles on modern science research written for K-12 students. The "bite-size" articles and lesson plans will be made freely available online in an easily searchable web interface that includes association with a variety of curriculum standards. This ongoing program is in its first year with about 15 lesson plans produced to date.

  18. K-12 science education reform will take a decade, and community partnerships hold best hope for success

    Energy Technology Data Exchange (ETDEWEB)

    Keever, J.R.

    1994-12-31

    Fundamental change in K-12 science education in the United States, essential for full citizenship in an increasingly technological world, will take a decade or more to accomplish, and only the sustained, cooperative efforts of people in their own communities -- scientists, teachers, and concerned citizens -- will likely ensure success. These were among the themes at Sigma Xi`s national K-12 science education forum.

  19. Cataclysms and Catastrophes: A Case Study of Improving K-12 Science Education Through a University Partnership

    Science.gov (United States)

    Fennell, T.; Ellins, K. K.; Morris, M.; Christeson, G.

    2003-12-01

    The K-12 science teacher is always seeking ways of improving and updating their curriculum by integrating the latest research into their most effective classroom activities. However, the daily demands of delivering instruction to large numbers of students coupled with the rapid advances in some fields of science can often overwhelm this effort. The NSF-sponsored Cataclysms and Catastrophes curriculum, developed by scientists from the The University of Texas at Austin Institute for Geophysics (UTIG) and Bureau of Economic Geology (BEG), middle and high school teachers, and UT graduate students (NSF GK-12 fellows) working together through the GK-12 program, is a textbook example of how universities can facilitate this quest, benefiting education at both K-12 and university levels. In 1992, "The Great K-T Extinction Debate" was developed as an activity in the Planet Earth class at the Liberal Arts and Science Academy of Austin as an interdisciplinary approach to science. Taking advantage of the media attention generated by the impact scenario for the K-T extinction, the activity consists of students participating in a simulated senate hearing on the potential causes of the K-T extinction and their implications for society today. This activity not only exposes students to the wide range of science involved in understanding mass extinctions, but also to the social, political and economic implications when this science is brought into the public arena and the corresponding use of data in decision making and disaster preparedness. While "The Great K-T Extinction Debate" was always a popular and effective activity with students, it was in desperate need of updating to keep pace with the evolving scientific debate over the cause of the K-T extinction and the growing body of impact evidence discovered over the past decade. By adding two inquiry-based learning activities that use real geophysical data collected by scientists studying the buried Chicxulub feature as a

  20. Assessment Strategies for Implementing Ngss in K12 Earth System Science Classrooms

    Science.gov (United States)

    McAuliffe, C.

    2016-12-01

    Several science education researchers have led assessment efforts that provide strategies particularly useful for evaluating the threedimensional learning that is central to NGSS (DeBarger, A. H., Penuel, W. R., Harris, C. J., Kennedy, C. K., 2016; Knight, A. M. & McNeill, K. L., 2015; McNeill, K. L., KatshSinger, R. & Pelletier, P., 2015; McNeill K.L., et.al., 2015; McNeill, K.L., & Krajcik, J.S., 2011; Penuel, W., 2016). One of the basic premises of these researchers is that, "Assessment is a practice of argument from evidence based on what students say, do, and write" and that "the classroom is the richest place to gather evidence of what students know (Penuel, W., 2016). The implementation of the NGSS in Earth System Science provides a unique opportunity for geoscience education researchers to study student learning and contribute to the development of this research as well as for geoscience educators to apply these approaches and strategies in their own work with K12 inservice and preservice educators. DeBarger, A. H., Penuel, W. R., Harris, C. J., Kennedy, C. K. (2016). Building an Assessment Argument to Design and Use Next Generation Science Assessments in Efficacy Studies of Curriculum Interventions. American†Journal†of†Evaluation†37(2) 174192Æ Knight, A. M. & McNeill, K. L. (2015). Comparing students' individual written and collaborative oral socioscientific arguments. International Journal of Environmental and Science Education.10(5), 23647. McNeill, K. L., KatshSinger, R. & Pelletier, P. (2015). Assessing science practices-Moving your class along a continuum. Science Scope. McNeill, K.L., & Krajcik, J.S. (2011). Supporting Grade 5-8 Students in Constructing Explanations in Science: The Claim, Evidence, and Reasoning Framework for Talk and Writing. Upper Saddle River, New Jersey: Pearson. Penuel, W. (2016). Classroom Assessment Strategies for NGSS Earth and Space Sciences. Implementing†the†NGSS†Webinar†Series, February 11, 2016.

  1. Methods and Strategies: Math and Science Night

    Science.gov (United States)

    Sullivan, Joan; Hatton, Mary

    2011-01-01

    Family Math and Science Nights engage students and parents in active investigations tied to the curriculum in a fun, informal environment. Through this program, families actively explore math and science ideas, discover together through guided inquiry, and apply their discoveries to solve a problem at the end. All activities are hands-on, use…

  2. Changing the Equation: Ensuring the Common Core Math Standards Enable All Students to Excel in California Schools. K-12 Practice

    Science.gov (United States)

    Banks, Amber; LaFors, Jeannette

    2015-01-01

    Schools around California are implementing the new Common Core State Standards. In math specifically, where significant disparities in proficiency exist for African American, Latino, and low-income students as compared to their white, Asian and higher-income peers, these new standards provide an opportunity to close achievement and opportunity…

  3. Developing Young Researchers: 15 Years of Authentic Science Experiences for K-12 with NASA's S'COOL Project

    Science.gov (United States)

    Chambers, L. H.; Crecelius, S.; Rogerson, T.; Lewis, P. M.; Moore, S.; Madigan, J. J.; Deller, C.; Taylor, J.

    2012-12-01

    In late 1996, members of the Atmospheric Science Directorate at NASA's Langley Research Center decided that there had to be a better way to share the excitement of our research than black and white, text-heavy Fact Sheets. We invited a group of local teachers to a half-day session on Center to help guide an improved approach. We suggested a variety of approaches to them, and asked for feedback. They were eager for anything other than black and white Fact Sheets! Fortunately, one local middle school science teacher took us up on the offer to stick around and talk over lunch. In that conversation, she said that anything that would connect the science her kids studied in the classroom to the outside world - especially to NASA! - would be very motivating to her students. From that conversation was born the Students' Cloud Observations On-Line (S'COOL Project), now a nearly 16-year experiment in K-12 science, technology, engineering, and math (STEM) engagement. S'COOL is the Education and Public Outreach (EPO) arm of the Clouds and the Earth's Radiant Energy System (CERES) project, and involves K-12 students as a source of ground truth for satellite cloud retrievals. It was designed from the beginning as a 2-way project, with communication of information from the students to NASA, but also from NASA back to the students. With technology evolution since the project began, we have continued to enhance this focus on 2-way interaction. S'COOL involves students with observation skills, math skills (to compute cloud cover from multiple observers or convert units), geography skills (locating their school on a map and comparing to satellite imagery), and exposes them to cutting edge engineering in the form of a series of NASA satellites. As a priority Earth Observing Instrument, CERES currently flies on Terra, Aqua and NPP, with an additional instrument in development for JPSS. Students are involved in occasional Intensive Observing Periods (as with the launch of NPP), and are

  4. First Year K-12 Teachers as High Leverage Point to Implement GEMS Space Science Curriculum Sequence

    Science.gov (United States)

    Slater, Timothy F.; Mendez, B. J.; Schultz, G.; Wierman, T.

    2013-01-01

    The recurring challenge for curriculum developers is how to efficiently prepare K-12 classroom teachers to use new curricula. First-year teachers, numbering nearly 250,000 in the US each year, have the greatest potential to impact the largest number of students because they have potential to be in the classroom for thirty years. At the same time, these novice teachers are often the most open minded about adopting curricular innovation because they are not yet deeply entrenched in existing practices. To take advantage of this high leverage point, a collaborative of space scientists and science educators at the University of California, Berkeley’s Lawrence Hall of Science and Center for Science Education at the Space Sciences Laboratory with experts from the Astronomical Society of the Pacific, the University of Wyoming, and the CAPER Center for Astronomy & Physics Education experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers and trained these master teachers to use the GEMS Space Science Curriculum Sequence. Then, these master teachers were mentored in coaching interning student teachers assigned to them in using GEMS materials. Evaluation showed that novice teachers mentored by the master teachers felt knowledgeable after teaching the GEMS units. However, they seemed relatively less confident about the solar system and objects beyond the solar system. Overall, mentees felt strongly at the end of the year that they have acquired good strategies for teaching the various topics, suggesting that the support they received while teaching and working with a mentor was of real benefit to them. Funding provided in part by NASA ROSES AMANTISS NNX09AD51G

  5. Blended learning in K-12 mathematics and science instruction -- An exploratory study

    Science.gov (United States)

    Schmidt, Jason

    Blended learning has developed into a hot topic in education over the past several years. Flipped classrooms, online learning environments, and the use of technology to deliver educational content using rich media continue to garner national attention. While generally well accepted and researched in post-secondary education, not much research has focused on blended learning in elementary, middle, and high schools. This thesis is an exploratory study to begin to determine if students and teachers like blended learning and whether or not it affects the amount of time they spend in math and science. Standardized achievement test data were also analyzed to determine if blended learning had any effect on test scores. Based on student and teacher surveys, this population seems to like blended learning and to work more efficiently in this environment. There is no evidence from this study to support any effect on student achievement.

  6. Ocean Science in a K-12 setting: Promoting Inquiry Based Science though Graduate Student and Teacher Collaboration

    Science.gov (United States)

    Lodico, J. M.; Greely, T.; Lodge, A.; Pyrtle, A.; Ivey, S.; Madeiros, A.; Saleem, S.

    2005-12-01

    The University of South Florida, College of Marine Science Oceans: GK-12 Teaching Fellowship Program is successfully enriching science learning via the oceans. Funded by the National Science Foundation, the program provides a unique opportunity among scientists and K-12 teachers to interact with the intention of bringing ocean science concepts and research to the classroom environment enhance the experience of learning and doing science, and to promote `citizen scientists' for the 21st century. The success of the program relies heavily on the extensive summer training program where graduate students develop teaching skills, create inquiry based science activities for a summer Oceanography Camp for Girls program and build a relationship with their mentor teacher. For the last year and a half, two graduate students from the College of Marine Science have worked in cooperation with teachers from the Pinellas county School District, Southside Fundamental Middle School. Successful lesson plans brought into a 6th grade Earth Science classroom include Weather and climate: Global warming, The Geologic timescale: It's all about time, Density: Layering liquids, and Erosion processes: What moves water and sediment. The school and students have benefited greatly from the program experiencing hands-on inquiry based science and the establishment of an after school science club providing opportunities for students to work on their science fair projects and pursuit other science interests. Students are provided scoring rubrics and their progress is creatively assessed through KWL worksheets, concept maps, surveys, oral one on one and classroom discussions and writing samples. The year culminated with a series of hands on lessons at the nearby beach, where students demonstrated their mastery of skills through practical application. Benefits to the graduate student include improved communication of current science research to a diverse audience, a better understanding of the

  7. C-MORE Science Kits: Putting Technology in the Hands of K-12 Teachers and Students

    Science.gov (United States)

    Achilles, K.; Weersing, K.; Daniels, C.; Puniwai, N.; Matsuzaki, J.; Bruno, B. C.

    2008-12-01

    The Center for Microbial Oceanography: Research and Education (C-MORE) is a NSF Science and Technology Center based at the University of Hawaii. The C-MORE education and outreach program offers a variety of resources and professional development opportunities for science educators, including online resources, participation in oceanography research cruises, teacher-training workshops, mini-grants to incorporate microbial oceanography-related content and activities into their classroom and, most recently, C- MORE science kits. C-MORE science kits provide hands-on classroom, field, and laboratory activities related to microbial oceanography for K-12 students. Each kit comes with complete materials and instructions, and is available free of charge to Hawaii's public school teachers. Several kits are available nationwide. C-MORE science kits cover a range of topics and technologies and are targeted at various grade levels. Here is a sampling of some available kits: 1) Marine Murder Mystery: The Case of the Missing Zooxanthellae. Students learn about the effect of climate change and other environmental threats on coral reef destruction through a murder-mystery experience. Participants also learn how to use DNA to identify a suspect. Grades levels: 3-8. 2) Statistical sampling. Students learn basic statistics through an exercise in random sampling, with applications to microbial oceanography. The laptops provided with this kit enable students to enter, analyze, and graph their data using EXCEL. Grades levels: 6-12. 3) Chlorophyll Lab. A research-quality fluorometer is used to measure the chlorophyll content in marine and freshwater systems. This enables students to compare biomass concentrations in samples collected from various locations. Grades levels: 9-12. 4) Conductivity-Temperature-Depth (CTD). Students predict how certain variables (e.g., temperature, pressure, chlorophyll, oxygen) vary with depth. A CTD, attached to a laptop computer, is deployed into deep water

  8. Science achievement as an indicator of educational opportunity available in rural K--12 districts in Texas

    Science.gov (United States)

    Capehart, Cheryl Louise

    Purpose of the study. This study examined Rural K--12 Texas districts to investigate whether science achievement could serve as a gauge to measure the availability and quality of rigorous educational opportunities in Rural Texas districts. Procedure. A Case II criterion-group design was used; 2 groups of districts were selected based on their 3-year performances on the 8th grade Science Texas Assessment of Academic Skills (TAAS)---the statewide criterion-referenced test. The High Performing Group (HPG) was composed of 30 top performing districts; the Low Performing Group (LPG) was composed of 30 lowest performing districts. Data collection was limited to archived quantitative data from Texas Education Agency's open records. Achievement variables were percent passing (1) Science TASS, (2) Biology End-of-Course (EoC) test and (3) the composite passing all Reading, Writing, and Mathematics TAAS. Academic variables were percent participating in (1) advanced courses, (2) rigorous graduation programs, and (3) college entrance examinations. District quality indicators also included 3 budget variables: (1) average teacher salary, (2) per pupil instructional expenditure, (3) percent allocated for instructional leadership; and 4 staff variables: (1) percent teachers fully certified, (2) percent teachers with advanced degrees, (3) average years teacher experience, (4) average percent non-turnover of teachers. One score per variable was obtained for each district. The HPG and LPG were compared on each variable using the group means, standard deviations, standard errors of the mean, Levene's test for equality of variance, and a t test for equality of means with a 95% confidence level. The Pearson correlation with two-tailed significance calculated the relationship of each independent variable (budget and staff factors) to each dependent variable (performance measures). Science TASS and a Combined Science score (grand mean of Science TASS & Biology EoC passing rates) were

  9. Lunar and Planetary Science XXXV: Engaging K-12 Educators, Students, and the General Public in Space Science Exploration

    Science.gov (United States)

    2004-01-01

    The session "Engaging K-12 Educators, Students, and the General Public in Space Science Exploration" included the following reports:Training Informal Educators Provides Leverage for Space Science Education and Public Outreach; Teacher Leaders in Research Based Science Education: K-12 Teacher Retention, Renewal, and Involvement in Professional Science; Telling the Tale of Two Deserts: Teacher Training and Utilization of a New Standards-based, Bilingual E/PO Product; Lindstrom M. M. Tobola K. W. Stocco K. Henry M. Allen J. S. McReynolds J. Porter T. T. Veile J. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes -- Update; Utilizing Mars Data in Education: Delivering Standards-based Content by Exposing Educators and Students to Authentic Scientific Opportunities and Curriculum; K. E. Little Elementary School and the Young Astronaut Robotics Program; Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities; and Online Access to the NEAR Image Collection: A Resource for Educators and Scientists.

  10. Businesses assisting K--12 science instruction: Four case studies of long-term school partnerships

    Science.gov (United States)

    van Trieste, Lynne M.

    Businesses lack enough qualified applicants to fill the increasing need for scientists and engineers while educators lack many resources for science programs in K-12 schools. This series of case studies searched for successful collaborations between the two in four geographic locations: Boise, Idaho; Dallas, Texas; Los Angeles County, California, and Orange County, California. These science education partnerships were investigated to gain an understanding of long-term partnership structure, functioning and evaluation methods. Forty-nine individual interviews with representatives from the groups of stakeholders these programs impact were also conducted. Stakeholder groups included students, teachers, parents, school administrators, business liaisons, and non-profit representatives. Several recurring themes in these partnerships reinforced the existing literature research findings. Collaboration and communication between partners, teacher professional development, the need for more minority and female representation in physical science careers, and self-efficacy in relation to how people come to view their scientific abilities, are among these themes. Topics such as program replication, the importance of role models, programs using "hands-on" activities, reward systems for program participants, and program outcome measurement also emerged from the cases investigated. Third-party assistance by a non-profit entity is occurring within all of these partnerships. This assistance ranges from a service providing material resources such as equipment, lesson plans and meeting space, to managing the partnership fundraising, program development and evaluations. Discussions based upon the findings that support or threaten sustainment of these four partnerships, what a "perfect" partnership might look like, and areas in need of further investigation conclude this study.

  11. A Review of Computer Science Resources for Learning and Teaching with K-12 Computing Curricula: An Australian Case Study

    Science.gov (United States)

    Falkner, Katrina; Vivian, Rebecca

    2015-01-01

    To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age…

  12. A Review of Computer Science Resources for Learning and Teaching with K-12 Computing Curricula: An Australian Case Study

    Science.gov (United States)

    Falkner, Katrina; Vivian, Rebecca

    2015-01-01

    To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age…

  13. MY NASA DATA: Making Earth Science Data Accessible to the K-12 Community

    Science.gov (United States)

    Chambers, L. H.; Alston, E. J.; Diones, D. D.; Moore, S. W.; Oots, P. C.; Phelps, C. S.

    2006-12-01

    In 2004, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project began. The goal of this project is to enable K-12 and citizen science communities to make use of the large volume of Earth System Science data that NASA has collected and archived. One major outcome is to allow students to select a problem of real-life importance, and to explore it using high quality data sources without spending months looking for and then learning how to use a dataset. The key element of the MY NASA DATA project is the implementation of a Live Access Server (LAS). The LAS is an open source software tool, developed by NOAA, that provides access to a variety of data sources through a single, fairly simple, point- and- click interface. This tool truly enables use of the available data - more than 100 parameters are offered so far - in an inquiry-based educational setting. It readily gives students the opportunity to browse images for times and places they define, and also provides direct access to the underlying data values - a key feature of this educational effort. The team quickly discovered, however, that even a simple and fairly intuitive tool is not enough to make most teachers comfortable with data exploration. User feedback has led us to create a friendly LAS Introduction page, which uses the analogy of a restaurant to explain to our audience the basic concept of an LAS. In addition, we have created a "Time Coverage at a Glance" chart to show what data are available when. This keeps our audience from being too confused by the patchwork of data availability caused by the start and end of individual missions. Finally, we have found it necessary to develop a substantial amount of age appropriate documentation, including topical pages and a science glossary, to help our audience understand the parameters they are exploring and how these parameters fit into the larger picture of Earth System Science. MY NASA DATA

  14. Connecting Three Pivotal Concepts in K-12 Science State Standards and Maps of Conceptual Growth to Research in Physics Education

    CERN Document Server

    Singh, Chandralekha

    2016-01-01

    This paper describes three conceptual areas in physics that are particularly important targets for educational interventions in K-12 science. These conceptual areas are force and motion, conservation of energy, and geometrical optics, which were prominent in the US national and four US state standards that we examined. The four US state standards that were analyzed to explore the extent to which the K-12 science standards differ in different states were selected to include states in different geographic regions and of different sizes. The three conceptual areas that were common to all the four state standards are conceptual building blocks for other science concepts covered in the K-12 curriculum. Since these three areas have been found to be ripe with deep student misconceptions that are resilient to conventional physics instruction, the nature of difficulties in these areas is described in some depth, along with pointers towards approaches that have met with some success in each conceptual area.

  15. Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators

    Energy Technology Data Exchange (ETDEWEB)

    Anne Seifert; Louis Nadelson

    2011-06-01

    Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivation for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a

  16. Team Mentoring for Interdisciplinary Team Science: Lessons From K12 Scholars and Directors.

    Science.gov (United States)

    Guise, Jeanne-Marie; Geller, Stacie; Regensteiner, Judith G; Raymond, Nancy; Nagel, Joan

    2017-02-01

    Mentoring is critical for academic success. As science transitions to a team science model, team mentoring may have advantages. The goal of this study was to understand the process, benefits, and challenges of team mentoring relating to career development and research. A national survey was conducted of Building Interdisciplinary Research Careers in Women's Health (BIRCWH) program directors-current and former scholars from 27 active National Institutes of Health (NIH)-funded BIRCWH NIH K12 programs-to characterize and understand the value and challenges of the team approach to mentoring. Quantitative data were analyzed descriptively, and qualitative data were analyzed thematically. Responses were received from 25/27 (93%) program directors, 78/108 (72%) current scholars, and 91/162 (56%) former scholars. Scholars reported that team mentoring was beneficial to their career development (152/169; 90%) and research (148/169; 88%). Reported advantages included a diversity of opinions, expanded networking, development of stronger study designs, and modeling of different career paths. Challenges included scheduling and managing conflicting opinions. Advice by directors offered to junior faculty entering team mentoring included the following: not to be intimidated by senior mentors, be willing to navigate conflicting advice, be proactive about scheduling and guiding discussions, have an open mind to different approaches, be explicit about expectations and mentors' roles (including importance of having a primary mentor to help navigate discussions), and meet in person as a team. These findings suggest that interdisciplinary/interprofessional team mentoring has many important advantages, but that skills are required to optimally utilize multiple perspectives.

  17. Promoting K-12 Community Research and Service through the Washington Earth Science Initiative.

    Science.gov (United States)

    Field, John; DeBari, Susan; Gallagher, Michael

    2003-01-01

    Describes a K-12 teacher enhancement program in Washington state that provides teachers with the background knowledge, human and material resources, and time to develop community-based studies on environmental issues facing the citizens of Washington. (Author/KHR)

  18. A Strategy for Incorporating Learning Analytics into the Design and Evaluation of a K-12 Science Curriculum

    Science.gov (United States)

    Monroy, Carlos; Rangel, Virginia Snodgrass; Whitaker, Reid

    2014-01-01

    In this paper, we discuss a scalable approach for integrating learning analytics into an online K-12 science curriculum. A description of the curriculum and the underlying pedagogical framework is followed by a discussion of the challenges to be tackled as part of this integration. We include examples of data visualization based on teacher usage…

  19. Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle

    Science.gov (United States)

    2015-08-03

    AND SUBTITLE Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle...college. Three students have gone through the NRL internships and now are full time employees at NRL. This pattern of direct corporate, government and

  20. What K-12 Teachers of Earth Science Need from the Earth Science Research Community: Science Teaching and Professional Learning in the Earth Sciences (STAPLES), a Minnesota Case Study

    Science.gov (United States)

    Campbell, K. M.; Pound, K. S.; Rosok, K.; Baumtrog, J.

    2009-12-01

    NSF-style Broader Impacts activities in the Earth Sciences take many forms, from long term partnerships between universities and informal science institutions to one-time K-12 classroom visits by scientists. Broader Impacts that include K-12 teachers range from those that convey broad Earth Science concepts to others stressing direct connections to very specific current research methods and results. Design of these programs is often informed by prior successful models and a broad understanding of teacher needs, but is not specifically designed to address needs expressed by teachers themselves. In order to better understand teachers’ perceived needs for connections to Earth Science research, we have formed the Science Teaching and Professional Learning in the Earth Sciences (STAPLES) research team. Our team includes a geology faculty member experienced in undergraduate and professional Earth Science teacher training, two in-service middle school Earth Science teachers, and the Education Director of the National Center for Earth-surface Dynamics (NCED), a National Science Foundation Science and Technology Center. Members of the team have designed, taught and experienced many of these models, from the Andrill ARISE program to NCED’s summer institutes and teacher internship program. We are administering the STAPLES survey to ask Earth Science teachers in our own state (Minnesota) which of many models they use to 1) strengthen their own understanding of current Earth Science research and general Earth Science concepts and 2) deepen their students’ understanding of Earth Science content. Our goal is to share survey results to inform more effective Broader Impacts programs in Minnesota and to stimulate a wider national discussion of effective Broader Impacts programs that includes teachers’ voices.

  1. Ground Truth Studies - A hands-on environmental science program for students, grades K-12

    Science.gov (United States)

    Katzenberger, John; Chappell, Charles R.

    1992-01-01

    The paper discusses the background and the objectives of the Ground Truth Studies (GTSs), an activity-based teaching program which integrates local environmental studies with global change topics, utilizing remotely sensed earth imagery. Special attention is given to the five key concepts around which the GTS programs are organized, the pilot program, the initial pilot study evaluation, and the GTS Handbook. The GTS Handbook contains a primer on global change and remote sensing, aerial and satellite images, student activities, glossary, and an appendix of reference material. Also described is a K-12 teacher training model. International participation in the program is to be initiated during the 1992-1993 school year.

  2. Instituting a standards-based K--12 science curriculum supplement program at the National Institutes of Health: A case study

    Science.gov (United States)

    Witherly, Jeffre

    Research on student achievement indicates the U.S. K-12 education system is not adequately preparing American students to compete in the 21st century global economy in the areas of science and mathematics. Congress has asked the scientific entities of the federal government to help increase K-12 science learning by creating standards-based learning tools for science classrooms as part of a "voluntary curriculum." One problem facing federal entities, such as the National Institutes of Health (NIH), is the need to create science-learning tools that conform to the National Science Education Standards (NSES) for curriculum materials and, therefore, are standards-based and applicable to the K-12 curriculum. This case study sought to better understand the change process at one federal agency as it went from producing K-12 learning tools that were educational in nature to a program that produced K-12 standards-based learning tools: the NIH Science Curriculum Supplement Program (NIH SCSP). The NIH SCSP was studied to gain insight into how this change in educational approach occurred, what factors enabled or inhibited the change process, and what the long-term benefits of the NIH SCSP are to the NIH. Kurt Lewin's three-step theory of change guided data gathering and data analysis. Semi-structured interviews and programmatic document review served as the major data gathering sources. Details describing the process of organizational change at the NIH were revealed during analysis of these data following the coding of interview transcripts and written record documents. The study found the process of change at the NIH proceeded in a manner generally predicted by the Lewinian change model. Enablers to the change were cost-sharing with individual institutes, support of senior leadership, and crediting the role of individual institutes prominently in each supplement. The cost of creating a supplement was reported as the single inhibitor to the program. This case study yielded a

  3. Offering a Geoscience Professional Development Program to Promote Science Education and Provide Hands-on Experiences for K-12 Science Educators

    Science.gov (United States)

    Fakayode, Sayo O.; Pollard, David A.; Snipes, Vincent T.; Atkinson, Alvin

    2014-01-01

    Development of an effective strategy for promoting science education and professional development of K-12 science educators is a national priority to strengthen the quality of science, technology, engineering, and mathematics (STEM) education. This article reports the outcomes of a Geoscience Professional Development Program (GPDP) workshop…

  4. Unifying K-12 Learning Processes: Integrating Curricula through Learning

    Science.gov (United States)

    Bosse, Michael J.; Fogarty, Elizabeth A.

    2011-01-01

    This study was designed to examine whether a set of cross-curricular learning processes could be found in the respective K-12 US national standards for math, language arts, foreign language, science, social studies, fine arts, and technology. Using a qualitative research methodology, the standards from the national associations for these content…

  5. Energy Project Professional Development: Promoting Positive Attitudes about Science among K-12 Teachers

    Science.gov (United States)

    Robertson, Amy D.; Daane, Abigail R.

    2017-01-01

    Promoting positive attitudes about science among teachers has important implications for teachers' classroom practice and for their relationship to science as a discipline. In this paper, we report positive shifts in teachers' attitudes about science, as measured by the Colorado Learning Attitudes about Science (CLASS) survey, over the course of…

  6. Outstanding Science Trade Books for Students K-12: Books Published in 2002.

    Science.gov (United States)

    Science and Children, 2003

    2003-01-01

    Provides a list of outstanding science trade books for elementary and secondary students published in 2002. Focuses on the areas of archaeology, anthropology, paleontology, biography, environment and ecology, life science, physical science, and science-related careers. Presents the selection criteria. (YDS)

  7. Energy Project professional development: Promoting positive attitudes about science among K-12 teachers

    Directory of Open Access Journals (Sweden)

    Amy D. Robertson

    2017-07-01

    Full Text Available Promoting positive attitudes about science among teachers has important implications for teachers’ classroom practice and for their relationship to science as a discipline. In this paper, we report positive shifts in teachers’ attitudes about science, as measured by the Colorado Learning Attitudes about Science (CLASS survey, over the course of their participation in a professional development course that emphasized the flexible use of energy representations to understand real world scenarios. Our work contributes to the larger effort to make the case that professional development matters for teacher learning and attitudes.

  8. Integrating local environmental research into K-12 science classrooms and the value of graduate student-educator partnerships

    Science.gov (United States)

    Ward, N. D.; Petrik-Finley, R.

    2015-12-01

    Collaboration between researchers and K-12 educators enables an invaluable exchange of teaching philosophies and educational tools. Programs that partner graduate students with K-12 educators serve the dual purpose of training future educators and providing K-12 students with unique opportunities and perspectives. The benefits of this type of partnership include providing students with enhanced educational experiences and positive student-mentor relationships, training STEM graduate students in effective teaching strategies, and providing teachers with a firsthand resource for scientific information and novel educational materials. Many high school students have had little exposure to science beyond the classroom. Frequent interactions with "real-life" scientists can help make science more approachable and is an effective strategy for promoting science as a career. Here I describe my experiences and several lessons designed as a NSK GK-12 fellow. For example, a month-long unit on biogeochemical principles was framed as a crime scene investigation of a fish kill event in Hood Canal, Washington, in which students were given additional pieces of evidence to solve the mystery as they satisfied checkpoints in their understanding of key concepts. The evidence pieces included scientific plots, maps, datasets, and laboratory exercises. A clear benefit of this investigation-style unit is that students were able to learn the material at their individual pace. This structure allowed for a streamlined integration of differentiated materials such as simplified background readings or visual learning aids for struggling students or more detailed news articles and primary literature for more advanced students. Although the NSF GK-12 program has been archived, educators and researchers should pursue new partnerships, leveraging local and state-level STEM outreach programs with the goal of increasing national exposure of the societal benefits of such synergistic activities.

  9. Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    National Academies Press, 2011

    2011-01-01

    Science, technology, engineering, and mathematics (STEM) are cultural achievements that reflect our humanity, power our economy, and constitute fundamental aspects of our lives as citizens, consumers, parents, and members of the workforce. Providing all students with access to quality education in the STEM disciplines is important to our nation's…

  10. Diffusing Innovations: Adoption of Serious Educational Games by K-12 Science Teachers

    Science.gov (United States)

    Vallett, David; Annetta, Leonard; Lamb, Richard; Bowling, Brandy

    2014-01-01

    Innovation is a term that has become widely used in education; especially as it pertains to technology infusion. Applying the corporate theory of diffusing innovation to educational practice is an innovation in itself. This mixed-methods study examined 38 teachers in a science educational gaming professional development program that provided…

  11. Computer Science in K-12 School Curricula of the 2lst Century: Why, What and When?

    Science.gov (United States)

    Webb, Mary; Davis, Niki; Bell, Tim; Katz, Yaacov J.; Reynolds, Nicholas; Chambers, Dianne P.; Syslo, Maciej M.

    2017-01-01

    In this paper we have examined the position and roles of Computer Science in curricula in the light of recent calls for curriculum change and we have proposed principles and issues to consider in curriculum design as well as identifying priority areas for further research. The paper is based on discussions within and beyond the International…

  12. Outstanding Science Trade Books for Students K-12 (Books Published in 2009)

    Science.gov (United States)

    Science Teacher, 2010

    2010-01-01

    What makes an outstanding book for a young reader? Although it would be hard to create a rubric for every book, experienced teachers recognize them quickly. They fascinate and captivate with both their content and style. Award-winning trade books inspire young readers to want more... more information, more books, more inquiry, more science. The…

  13. IMPACT STATEMENTS ON THE K-12 SCIENCE PROGRAM IN THE ENHANCED BASIC EDUCATION CURRICULUM IN PROVINCIAL SCHOOLS

    Directory of Open Access Journals (Sweden)

    Marie Grace S. Cabansag,

    2014-04-01

    Full Text Available The study described the knowledge, observations, benefits, expectations or potentials and sources of misinterpretations on the K-12 science program on its first implementation in selected provincial high schools in the Philippines. The impact statements of teachers, students and parent-respondents were analyzed using thematic content coding technique. Coding frames were constructed by adopting both “a priori” and “in-vivo” codes. The results showed the respondents viewed the K-12 science program as a means of preparing students toward better employment opportunities in the country or abroad. It also reports the program is viewed for holistic development of the 21st century learners equipped with necessary life skills who can contribute for economic and social development of the family and community. The impact statements suggest the need for close monitoring of the program implementation and provision of continuous professional trainings for teachers to clear areas of misinterpretations. Misconceptions on the nature of additional years of study further suggest the provision and wide dissemination of policy standards on employment and education opportunities in the ASEAN Economic Community integration.

  14. Extending the Pathway: Building on a National Science Foundation Workforce Development Project for Underserved k-12 Students

    Science.gov (United States)

    Slattery, W.; Smith, T.

    2014-12-01

    With new career openings in the geosciences expected and a large number of presently employed geoscientists retiring in the next decade there is a critical need for a new cadre of geoscientists to fill these positions. A project funded by the National Science Foundation titled K-12 Students, Teachers, Parents, Administrators and Higher Education Faculty: Partners Helping Rural Disadvantaged Students Stay on the Pathway to a Geoscience Career involving Wright State University and the Ripley, Lewis, Union, Huntington k-12 school district in Appalachian Ohio took led to dozens of seventh and eighth grade students traveling to Sandy Hook, New Jersey for a one week field experience to study oceanography with staff of the New Jersey Sea Grant Consortium. Teachers, parent chaperones, administrators and university faculty accompanied the students in the field. Teachers worked alongside their students in targeted professional development during the weeklong field experience. During the two academic years of the project, both middle school and high school teachers received professional development in Earth system science so that all students, not just those that were on the summer field experience could receive enhanced science learning. All ninth grade high school students were given the opportunity to take a high school/college dual credit Earth system science course. Community outreach provided widespread knowledge of the project and interest among parents to have their children participate. In addition, ninth grade students raised money themselves to fund a trip to the International Field Studies Forfar Field Station on Andros Island, Bahamas to study a tropical aquatic system. Students who before this project had never traveled outside of Ohio are currently discussing ways that they can continue on the pathway to a geoscience career by applying for internships for the summer between their junior and senior years. These are positive steps towards taking charge of their

  15. Performance Task using Video Analysis and Modelling to promote K12 eight practices of science

    CERN Document Server

    Wee, Loo Kang

    2015-01-01

    We will share on the use of Tracker as a pedagogical tool in the effective learning and teaching of physics performance tasks taking root in some Singapore Grade 9 (Secondary 3) schools. We discuss the pedagogical use of Tracker help students to be like scientists in these 6 to 10 weeks where all Grade 9 students are to conduct a personal video analysis and where appropriate the 8 practices of sciences (1. ask question, 2. use models, 3. Plan and carry out investigation, 4. Analyse and interpret data, 5. Using mathematical and computational thinking, 6. Construct explanations, 7. Discuss from evidence and 8. Communicating information). We will situate our sharing on actual students work and discuss how tracker could be an effective pedagogical tool. Initial research findings suggest that allowing learners conduct performance task using Tracker, a free open source video analysis and modelling tool, guided by the 8 practices of sciences and engineering, could be an innovative and effective way to mentor authent...

  16. A Library approach to establish an Educational Data Curation Framework (EDCF) that supports K-12 data science sustainability

    Science.gov (United States)

    Branch, B. D.; Wegner, K.; Smith, S.; Schulze, D. G.; Merwade, V.; Jung, J.; Bessenbacher, A.

    2013-12-01

    It has been the tradition of the libraries to support literacy. Now in the realm of Executive Order, Making Open and Machine Readable the New Default for Government Information, May 9, 2013, the library has the responsibility to support geospatial data, big data, earth science data or cyber infrastructure data that may support STEM for educational pipeline stimulation. (Such information can be found at http://www.whitehouse.gov/the-press-office/2013/05/09/executive-order-making-open-and-machine-readable-new-default-government-.) Provided is an Educational Data Curation Framework (EDCF) that has been initiated in Purdue research, geospatial data service engagement and outreach endeavors for future consideration and application to augment such data science and climate literacy needs of future global citizens. In addition, this endorsement of this framework by the GLOBE program may facilitate further EDCF implementations, discussion points and prototypes for libraries. In addition, the ECDF will support teacher-led, placed-based and large scale climate or earth science learning systems where such knowledge transfer of climate or earth science data is effectively transferred from higher education research of cyberinfrastructure use such as, NOAA or NASA, to K-12 teachers and school systems. The purpose of this effort is to establish best practices for sustainable K-12 data science delivery system or GLOBE-provided system (http://vis.globe.gov/GLOBE/) where libraries manage the data curation and data appropriateness as data reference experts for such digital data. Here, the Purdue University Libraries' GIS department works to support soils, LIDAR and water science data experiences to support teacher training for an EDCF development effort. Lastly, it should be noted that the interdisciplinary collaboration and demonstration of library supported outreach partners and national organizations such the GLOBE program may best foster EDCF development. This trend in data

  17. Math/science education action conference report

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    On October 8--10, 1989, the US Department of Energy, the Lawrence Hall of Science, and the Lawrence Berkeley Laboratory sponsored a Math/Science Education Action Conference in Berkeley, California. The conference was co-chaired by Admiral James D. Watkins, Secretary of Energy, and Dr. Glenn T. Seaborg Chairman of the Lawrence Hall of Science. Nearly 250 scientists, educators, business executives, and government leaders came together to develop a concrete plan of action for restructuring and revitalizing mathematics and science education. Their target was to improve education for an entire cohort of children--the Class of 2007, the children born this school year--and their governing principle was one of collaboration, both between Federal agencies, and between public and private sectors. The report of the conference co-chairmen and participants is provided in this document. 41 figs.

  18. Research-infused K-12 Science at the "Uttermost Part of the Earth:" An NSF GK-12 Fellow's Perspective

    Science.gov (United States)

    Perry, E.; Ellins, K.; Ormiston, C.; Dovzak, N.; Anderson, S.; Tingle, D.; Knettel, P.; Redding, S.; Odle, K.; Dalziel, I.

    2005-12-01

    In March 2005, four students and three teachers from Boerne High School in Texas accompanied UTIG GK-12 Co-PIs Katherine Ellins and Ian Dalziel, and NSF GK-12 Fellow Ethan Perry to Tierra del Fuego to join an international team of scientists studying the climate-tectonic history recorded in Lago Fagnano, Tierra del Fuego, Argentina. For two weeks, students and teachers engaged in authentic scientific research that included geologic field mapping and reconnaissance, and student/teacher developed water and soils sampling routines. The Lago Fagnano experience enabled: (1) the Boerne High School group to be integrated into an active field research program and to bring tangible experiences, knowledge and high-quality data back to the classroom; (2) participating research scientists to convey the importance of their science to a wider audience; and (3) the NSF GK-12 Fellow to gain valuable experience in communicating the essential scientific knowledge and field skills to high school participants before field deployment. The GK-12 Fellow's bridging role through the course of the project enhanced his scientific understanding of the climate-tectonic setting of Tierra del Fuego, fostered the development of new professional contacts with research scientists and led to a fresh perspective on how research science can be integrated in high school science curriculum. The GK-12 Fellow served as the primary mentor to the K-12 participants and the liaison between UTIG research scientists and the Boerne High School group. The Fellow helped prepare the Boerne group for the field research experience and to design a research project using water and soil analyses to assess chemical and isotopic trends within the lake's watershed. Preparatory activities began three months prior to field deployment and included workshops, classroom visits and teleconferences aimed at teaching field skills (reading and creating geologic maps, compass measurements, GPS, field notebooks) and increasing

  19. Solving math and science problems in the real world with a computational mind

    Directory of Open Access Journals (Sweden)

    Juan Carlos Olabe

    2014-07-01

    Full Text Available This article presents a new paradigm for the study of Math and Sciences curriculum during primary and secondary education. A workshop for Education undergraduates at four different campuses (n=242 was designed to introduce participants to the new paradigm. In order to make a qualitative analysis of the current school methodologies in mathematics, participants were introduced to a taxonomic tool for the description of K-12 Math problems. The tool allows the identification, decomposition and description of Type-A problems, the characteristic ones in the traditional curriculum, and of Type-B problems in the new paradigm. The workshops culminated with a set of surveys where participants were asked to assess both the current and the new proposed paradigms. The surveys in this study revealed that according to the majority of participants: (i The K-12 Mathematics curricula are designed to teach students exclusively the resolution of Type-A problems; (ii real life Math problems respond to a paradigm of Type-B problems; and (iii the current Math curriculum should be modified to include this new paradigm.

  20. Science and Math in the Library Media Center Using GLOBE.

    Science.gov (United States)

    Aquino, Teresa L.; Levine, Elissa R.

    2003-01-01

    Describes the Global Learning and Observations to Benefit the Environment (GLOBE) program which helps school library media specialists and science and math teachers bring earth science, math, information literacy, information technology, and student inquiry into the classroom. Discusses use of the Internet to create a global network to study the…

  1. The Role of Scientific Societies in Math-Science Partnerships

    Science.gov (United States)

    Karsten, J. L.; Bierly, G.; Migdalski, C.

    2002-05-01

    The new NSF Math Science Partnership (MSP) program seeks to reform and strengthen elementary and secondary education by uniting the efforts of local school districts with: college level science, mathematics, engineering and education faculties; state government agencies; and other stakeholders, such as non-profit organizations and scientific societies. With recent passage of a Council position statement in support of teaching the Earth and space sciences in grades K-12 following the national science standards, AGU has affirmed its interest in contributing to efforts to improve pre-college science education. The challenge is how best to utilize AGU's resources within the context of the MSP program guidelines. One of AGU's most important roles will be to facilitate dissemination of "best practices" from successful state partnerships, thereby providing model programs for others AGU members who wish to establish MSPs in their own communities. But, AGU can also take a leadership role in bringing the groups together and helping to expand state-based programs to a broader national, and even international, audience. One example of such a partnership is a new program being initiated by AGU that focuses on the upcoming 400th anniversary of the settling of the Jamestown colony. AGU is currently working to establish a partnership with Virginia state geologists and climatologists, members of the Virginia Department of Education, researchers at William and Mary College and the Virginia Institute of Marine Science, and the GLOBE program, in order to develop education materials and programs that examine geological and environmental changes that have occurred in the Chesapeake Bay region during the last 400 years. A variety of products are under consideration that include curricular materials and hands-on research activities for K-12 students, as well as monographs that can be used in both formal and informal education settings. With the anticipated national and international

  2. Optics education for K-12

    Science.gov (United States)

    Bilbro, James W.; Gaines Walker, Janice M.

    2000-06-01

    The SPIE Education Committee has developed an outreach program aimed at enhancing the dissemination of information about optics to children in kindergarten through the 12th grade (K-12). The main impetus behind the program was that more practicing optical scientists and engineers would be willing to give lectures and demonstrations aimed at inspiring the next generation about optics if material could be made easily available. Consequently, three instructional `outreach kits' were assembled to use in teaching optics to kids in exciting and fun ways. These kits were beta-tested over the last two years at six different U.S. regional sites. Each `outreach kit' contained: (1) a workbook on Optical Demonstrations on the Overhead Projector; (2) a Science and Math Experience Manual: Light, Color and Their Uses; (3) The Optics Discovery Classroom Kit; (4) a slide show; and (5) a video on careers in optics. The best tests were aimed at evaluating the practical ways of utilizing the kits, developing easy-to-follow instructions for guiding others in their use and providing suggestions on modifications, additions, and deletions to the kits. This paper discuses this outreach program and provides details relative to the kit's composition and future plans.

  3. Science for the Masses: A Public Lecture Series and Associated Course for K-12 Educators at the University of Arizona

    Science.gov (United States)

    Mangin, K.; Wilch, M. H.; Thompson, R. M.; Ruiz, J.

    2008-12-01

    The College of Science at the University of Arizona in Tucson offers a series of free public lectures each year centered on a science theme of high general interest. Themes have been Evolution (2006), Global Climate Change (2007), and Edges of Life (2008). Speakers are UA faculty members. We have seen an overwhelming response from the public to each lecture series, with a typical audience size of 800-1200. Features that make the lecture series successful are careful choice of the themes, previews of lecture drafts by a panel, and the participation of a graphic design firm in the planning process, from the series title to the design of posters, bookmarks, and postcards used to advertise the series. This model could be successfully transferred to many universities. We offer a course for K-12 grade teachers in association with each lecture series. Teachers attend each public lecture, and participate in inquiry-based classroom activities and discussions of papers related to lecture topics. After each lecture, the speaker answers questions from the public, and then accompanies the teachers to a classroom to hold a private question and answer session lasting 45 minutes. The course and lecture series has been influential in changing attitudes about the nature of science research among teacher participants. In 2006, evolution was the lecture series topic, a science concept whose foundation in authentic science research has been difficult to communicate to the general public. Pre- and post- questionnaires on attitudes towards the science of evolution administered to the teacher participants showed a dramatic increase after the course in their view of the robustness of the theory of evolution, its testable nature, the amount of data supporting the theory, and its degree of consensus among scientists. A pre-course survey of the background of teachers in the course, mostly biology teachers, showed a need for more formal instruction in evolution: 76 percent had no formal course

  4. Some Reflections on "Going beyond the Consensus View" of the Nature of Science in K-12 Science Education

    Science.gov (United States)

    Berkovitz, Joseph

    2017-01-01

    Hodson and Wong (2017, this issue) argue that, though the nature of science (NOS) is now an established focus of school science education and a key element in defining scientific literacy, "the consensus view" of NOS misrepresents contemporary scientific practice. They then propose a number of alternative approaches to science curriculum…

  5. MAEA Interactive Science Programs: An Innovative Approach to Address the Under-representation of Minorities and Women in Science, Math, and Technological Fields.

    Science.gov (United States)

    Holloman, E. L.; Baynes, D. L.

    2004-12-01

    Minority Aviation Education Association Inc. (MAEA) was founded in 1992 by Darryl Lee Baynes to address the under-representation of minorities and women in all science, math, and technological fields. The organization is committed to exposing minorities and women to science, math, and technology in grades K-12. The first objective of MAEA is to educate teachers on how to integrate hands-on experiments in their class and include inquiry based learning in their science curriculum. A second objective is to educate students, teachers, and the community regarding the history of minorities in the fields of science, math, and technology, in order to provide role models in these fields. The last objective is to demonstrate the relevance of science in everyday life, with the intention of stimulating future career interest in the fields of science, math, and technology. MAEA currently offers more than 70 hands on inquiry-based programs that are aligned with the 2061 Bench Marks and National Science Standards. The programs are divided into four main categories: auditorium/classroom, enrichment and outreach, after school, and professional development. For the last 14 years, MAEA has served communities and schools across the country with remarkable success and therefore offers an alternative model for K-12 science education. This alternative is significant to the scientific community because it links the under-served population to an active academic and professional pipeline.

  6. Open Educational Resources from Performance Task using Video Analysis and Modeling - Tracker and K12 science education framework

    CERN Document Server

    Wee, Loo Kang

    2014-01-01

    This invited paper discusses why Physics performance task by grade 9 students in Singapore is worth participating in for two reasons; 1) the video analysis and modeling are open access, licensed creative commons attribution for advancing open educational resources in the world and 2) allows students to be like physicists, where the K12 science education framework is adopted. Personal reflections on how physics education can be made more meaningful in particular Practice 1: Ask Questions, Practice 2: Use Models and Practice 5: Mathematical and Computational Thinking using Video Modeling supported by evidence based data from video analysis. This paper hopes to spur fellow colleagues to look into open education initiatives such as our Singapore Tracker community open educational resources curate on http://weelookang.blogspot.sg/p/physics-applets-virtual-lab.html as well as digital libraries http://iwant2study.org/lookangejss/ directly accessible through Tracker 4.86, EJSS reader app on Android and iOS and EJS 5....

  7. Prospective Science Teachers' Field Experiences in K-12 STEM Academy Classrooms: Opportunities to Learn High-Leverage Science Teaching Practices

    Science.gov (United States)

    Carpenter, Stacey Lynn

    Science education reform efforts in the U.S. have emphasized shifting away from teacher-centered instruction and teaching science as isolated facts, to more student-centered instruction where students engage in disciplinary discourse and science and engineering practices to learn more connected concepts. As such, teachers need to be prepared to teach science in these reform-based ways; however, many teachers have neither experienced reform-based science instruction in their own science learning, nor witnessed reform-based science instruction in their preservice classroom field experiences. At the same time, there has been an emphasis in teacher education on organizing the preparation of new teachers around high-leverage teaching practices--equitable teaching practices that are known to result in student learning and form a strong base for future teacher learning. In this qualitative study, I investigated eight prospective secondary science teachers as they participated in the unique field experience contexts of classrooms in STEM-focused high school academies. Using a lens of situated learning theory, I examined how prospective teachers from two classroom-based field experiences engaged in high-leverage teaching practices and how their experiences in these classrooms shaped their own visions of science teaching. I analyzed video data of classroom instruction, along with prospective and mentor teacher interviews and surveys, to determine the instructional contexts of each academy and the science teaching strategies (including high-leverage practices) that prospective teachers had opportunities to observe and participate in. I also analyzed prospective teacher interviews and surveys to determine their visions of effective science teaching, what high-leverage science teaching practices prospective teachers included in their visions, and how their visions changed throughout the experience. I found that both academy contexts featured more student work, particularly

  8. The GLOBE Carbon Project: Integrating the Science of Carbon Cycling and Climate Change into K-12 Classrooms.

    Science.gov (United States)

    Ollinger, S. V.; Silverberg, S.; Albrechtova, J.; Freuder, R.; Gengarelly, L.; Martin, M.; Randolph, G.; Schloss, A.

    2007-12-01

    The global carbon cycle is a key regulator of the Earth's climate and is central to the normal function of ecological systems. Because rising atmospheric CO2 is the principal cause of climate change, understanding how ecosystems cycle and store carbon has become an extremely important issue. In recent years, the growing importance of the carbon cycle has brought it to the forefront of both science and environmental policy. The need for better scientific understanding has led to establishment of numerous research programs, such as the North American Carbon Program (NACP), which seeks to understand controls on carbon cycling under present and future conditions. Parallel efforts are greatly needed to integrate state-of-the-art science on the carbon cycle and its importance to climate with education and outreach efforts that help prepare society to make sound decisions on energy use, carbon management and climate change adaptation. Here, we present a new effort that joins carbon cycle scientists with the International GLOBE Education program to develop carbon cycle activities for K-12 classrooms. The GLOBE Carbon Cycle project is focused on bringing cutting edge research and research techniques in the field of terrestrial ecosystem carbon cycling into the classroom. Students will collect data about their school field site through existing protocols of phenology, land cover and soils as well as new protocols focused on leaf traits, and ecosystem growth and change. They will also participate in classroom activities to understand carbon cycling in terrestrial ecosystems, these will include plant- a-plant experiments, hands-on demonstrations of various concepts, and analysis of collected data. In addition to the traditional GLOBE experience, students will have the opportunity to integrate their data with emerging and expanding technologies including global and local carbon cycle models and remote sensing toolkits. This program design will allow students to explore research

  9. Increasing participation in the Earth sciences through engagement of K-12 educators in Earth system science analysis, inquiry and problem- based learning and teaching

    Science.gov (United States)

    Burrell, S.

    2012-12-01

    Given low course enrollment in geoscience courses, retention in undergraduate geoscience courses, and granting of BA and advanced degrees in the Earth sciences an effective strategy to increase participation in this field is necessary. In response, as K-12 education is a conduit to college education and the future workforce, Earth science education at the K-12 level was targeted with the development of teacher professional development around Earth system science, inquiry and problem-based learning. An NSF, NOAA and NASA funded effort through the Institute for Global Environmental Strategies led to the development of the Earth System Science Educational Alliance (ESSEA) and dissemination of interdisciplinary Earth science content modules accessible to the public and educators. These modules formed the basis for two teacher workshops, two graduate level courses for in-service teachers and two university course for undergraduate teacher candidates. Data from all three models will be presented with emphasis on the teacher workshop. Essential components of the workshop model include: teaching and modeling Earth system science analysis; teacher development of interdisciplinary, problem-based academic units for implementation in the classroom; teacher collaboration; daily workshop evaluations; classroom observations; follow-up collaborative meetings/think tanks; and the building of an on-line professional community for continued communication and exchange of best practices. Preliminary data indicate increased understanding of Earth system science, proficiency with Earth system science analysis, and renewed interest in innovative delivery of content amongst teachers. Teacher-participants reported increased student engagement in learning with the implementation of problem-based investigations in Earth science and Earth system science thinking in the classroom, however, increased enthusiasm of the teacher acted as a contributing factor. Teacher feedback on open

  10. Project TIMS (Teaching Integrated Math/Science)

    Science.gov (United States)

    Edwards, Leo, Jr.

    1993-01-01

    The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.

  11. You Asked, We Answered! A Podcasting Series by Scientists for K-12 Teachers Through the Pennsylvania Earth Science Teachers Association (PAESTA)

    Science.gov (United States)

    Guertin, L. A.; Tait, K.

    2015-12-01

    The Pennsylvania Earth Science Teachers Association (PAESTA) recently initiated a podcasting series "You Asked, We Answered!" for K-12 teachers to increase their science content knowledge through short audio podcasts, supplemented with relevant resources. The 2015-2016 PAESTA President Kathy Tait generated the idea of tapping in to the content expertise of higher education faculty, post-doctoral researchers, and graduate students to assist K-12 teachers with increasing their own Earth and space content knowledge. As time and resources for professional development are decreasing for K-12 teachers, PAESTA is committed to not only providing curricular resources through our online database of inquiry-based exercises in the PAESTA Classroom, but providing an opportunity to learn science content from professionals in an audio format.Our goal at PAESTA has been to release at least one new podcast per month that answers the questions asked by PAESTA members. Each podcast is recorded by an Earth/space science professional with content expertise and placed online with supporting images, links, and relevant exercises found in the PAESTA Classroom. Each podcast is available through the PAESTA website (http://www.paesta.psu.edu/podcasts) and PAESTA iTunes channel (https://itunes.apple.com/us/podcast/paesta-podcasts/id1017828453). For ADA compliance, the PAESTA website has a transcript for each audio file. In order to provide these podcasts, we need the participation of both K-12 teachers and science professionals. On the PAESTA Podcast website, K-12 teachers can submit discipline questions for us to pass along to our content experts, questions relating to the "what" and "how" of the Earth and space sciences, as well as questions about Earth and space science careers. We ask science professionals for help in answering the questions posed by teachers. We include online instructions and tips to help scientists generate their podcast and supporting materials.

  12. Monitoring Progress: How the 2012 National Survey of Science and Mathematics Education Can Inform a National K-12 STEM Education Indicator System

    Science.gov (United States)

    Fulkerson, William O.; Banilower, Eric R.

    2014-01-01

    "Monitoring Progress Toward Successful K-12 STEM Education: A Nation Advancing?" (National Research Council, 2013) describes a set of 14 indicators for assessing and tracking the health of pre-college STEM education in the United States. This 2012 National Survey of Science and Mathematics Education (NSSME), is the fifth in a series of…

  13. K-12 Science Education Linked to Mars and the MER Mission: A New Curriculum Entitled Making Tracks on Mars Teacher Resource and Activity Guide

    Science.gov (United States)

    Aubele, J. C.; Stanley, J.; Grochowski, A.; Jones, K.; Aragon, J.

    2006-03-01

    Students' interest in Mars can be used as a "hook" to teach a wide range of topics. Mars-related science is used as the basis of a new K-12 integrated curriculum created by the New Mexico Museum of Natural History and classroom educators.

  14. Math and science illiteracy: Social and economic impacts

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.L.

    1994-05-01

    Today`s highly competitive global economy is being driven by increasingly rapid technological development. This paper explores the problems of math and science illiteracy in the United States and the potential impact on our economic survival in this environment during the next century. Established educational methods that reward task performance, emphasize passive lecture, and fail to demonstrate relevance to real life are partly to blame. Social norms, stereotypes, and race and gender bias also have an impact. To address this crisis, we need to question the philosophy of an educational system that values task over concept. Many schools have already initiated programs at all grade levels to make math and science learning more relevant, stimulating, and fun. Teaching methods that integrate math and science learning with teamwork, social context, and other academic subjects promote the development of higher-order thinking skills and help students see math and science as necessary skills.

  15. PUMAS: The On-line journal of Math and Science Examples for Pre-College Education

    Science.gov (United States)

    Trainer, Melissa G.; Kahn, Ralph A.

    2015-11-01

    PUMAS - “Practical Uses of Math And Science” - is an on-line collection of brief examples showing how math and science topics taught in K-12 classes can be used in interesting settings, including every day life. The examples are written primarily by scientists, engineers, and other content experts having practical experience with the material. They are aimed mainly at classroom teachers to enrich their presentation of math and science topics. The goal of PUMAS is to capture, for the benefit of pre-college education, the flavor of the vast experience that working scientists have with interesting and practical uses of math and science. There are currently over 80 examples in the PUMAS collection, and they are organized by curriculum topics and tagged with relevant grade levels and curriculum topic benchmarks. The published examples cover a wide range of subject matter: from demonstrating why summer is hot, to describing the fluid dynamics of a lava lamp, to calculating the best age to collect Social Security Benefits. The examples are available to all interested parties via the PUMAS web site: http://pumas.nasa.gov/.We invite the community to participate in the PUMAS collection. We seek scientists and scientific thinkers to provide innovative examples of practical uses for teachers to use to enrich the classroom experience, and content experts to participate in peer-review. We also seek teachers to review examples for originality, accuracy of content, clarity of presentation, and grade-level appropriateness. Finally, we encourage teachers to mine this rich repository for real-world examples to demonstrate the value of math in science in everyday life.

  16. Using Virtual and In-Person Engagement Opportunities to Connect K-12 Students, Teachers, and the Public With NASA Astromaterials Research and Exploration Science Assets

    Science.gov (United States)

    Graff, P.; Foxworth, S.; Luckey, M. K.; McInturff, B.; Mosie, A.; Runco, S.; Todd, N.; Willis, K. J.; Zeigler, R.

    2017-01-01

    Engaging K-12 students, teachers, and the public with NASA Astromaterials Research and Exploration Science (ARES) assets provides an extraordinary opportunity to connect audiences with authentic aspects unique to our nation's space program. NASA ARES has effectively engaged audiences with 1) Science, Technology, Engineering and Mathematics (STEM) experts, 2) NASA specialized facilities, and 3) NASA astromaterial samples through both virtual and in-person engagement opportunities. These engagement opportunities help connect local and national audiences with STEM role models, promote the exciting work being facilitated through NASA's Science Mission Directorate, and expose our next generation of scientific explorers to science they may be inspired to pursue as a future STEM career.

  17. Science, Technology, Engineering and Math Readiness: Ethno-linguistic and gender differences in high-school course selection patterns

    Science.gov (United States)

    Adamuti-Trache, Maria; Sweet, Robert

    2014-03-01

    The study examines science-related course choices of high-school students in the culturally diverse schools of the province of British Columbia, Canada. The analysis employs K-12 provincial data and includes over 44,000 students born in 1990 who graduated from high school by 2009. The research sample reflects the presence of about 27% of students for whom English is not a first language. We construct an empirical model that examines ethno-linguistic and gender differences in Grade 12 course choices while accounting for personal and situational differences among students. The study employs a course selection typology that emphasizes readiness for science, technology, engineering and math fields of study. Findings indicate that math- and science-related course selection patterns are strongly associated with ethnicity, qualified not only by gender and prior math and science achievement but also by the individual's grade level at entry to the system and enrollment in English as a Second Language program. Students who are more likely to engage in math and science courses belong to Asian ethno-linguistic groups and entered the provincial school system during the senior high-school years. We suggest that ethnic diversity and broader academic exposure may play a crucial role in changing the gender composition of science classrooms, university fields of study and science-related occupations.

  18. The Tragedy of the Unexamined Cat: Why K-12 and University Education Are Still in the Dark Ages and How Citizen Science Allows for a Renaissance.

    Science.gov (United States)

    Dunn, Robert R; Urban, Julie; Cavelier, Darlene; Cooper, Caren B

    2016-03-01

    At the end of the dark ages, anatomy was taught as though everything that could be known was known. Scholars learned about what had been discovered rather than how to make discoveries. This was true even though the body (and the rest of biology) was very poorly understood. The renaissance eventually brought a revolution in how scholars (and graduate students) were trained and worked. This revolution never occurred in K-12 or university education such that we now teach young students in much the way that scholars were taught in the dark ages, we teach them what is already known rather than the process of knowing. Citizen science offers a way to change K-12 and university education and, in doing so, complete the renaissance. Here we offer an example of such an approach and call for change in the way students are taught science, change that is more possible than it has ever been and is, nonetheless, five hundred years delayed.

  19. Science and Math Lesson Plans to Meet the Ohio Revised Science Standards and the Next Generation of Standards for Today; Technology (Excel

    Directory of Open Access Journals (Sweden)

    Suzanne Lunsford

    2015-02-01

    Full Text Available Pre-service teachers (K-12 developed and taught lesson plans that met the state and national science and technology standards by integrating Excel and PowerPoint into their lesson. A sample of 74 pre-service teachers in our science education program were required to integrate technology (Excel as they developed science and math lesson plans with graphing as a requirement. These students took pre-test and post-test (n=74 to determine their understanding of Excel in relation to the need of current technology for todays' science classroom. The test results showed that students obtained content gains in Excel graphing in all the inquiry-based lab experiments. They also gained experience in developing math skills, inquiry-based science lesson plans, and communication and presentation skills.

  20. What good is a scientist in the classroom? Participant outcomes and program design features for a short-duration science outreach intervention in K-12 classrooms.

    Science.gov (United States)

    Laursen, Sandra; Liston, Carrie; Thiry, Heather; Graf, Julie

    2007-01-01

    Many short-duration science outreach interventions have important societal goals of raising science literacy and increasing the size and diversity of the science workforce. Yet, these long-term outcomes are inherently challenging to evaluate. We present findings from a qualitative research study of an inquiry-based, life science outreach program to K-12 classrooms that is typical in design and excellent in execution. By considering this program as a best case of a common outreach model, the "scientist in the classroom," the study examines what benefits may be realized for each participant group and how they are achieved. We find that K-12 students are engaged in authentic, hands-on activities that generate interest in science and new views of science and scientists. Teachers learn new science content and new ways to teach it, and value collegial support of their professional work. Graduate student scientists, who are the program presenters, gain teaching and other skills, greater understanding of education and diversity issues, confidence and intrinsic satisfaction, and career benefits. A few negative outcomes also are described. Program elements that lead to these benefits are identified both from the research findings and from insights of the program developer on program design and implementation choices.

  1. Hardly Rocket Science: Collaboration with Math and Science Teachers Doesn't Need to Be Complicated

    Science.gov (United States)

    Minkel, Walter

    2004-01-01

    While librarians routinely collaborate with reading and humanities teachers, they rarely partner with teachers of math and science--to the loss of students. With the current emphasis on standardized testing and declining student performance in math and science, media specialists need to remedy this situation. Why don't librarians click with…

  2. Math, Science, and Engineering Integration in a High School Engineering Course: A Qualitative Study

    Science.gov (United States)

    Valtorta, Clara G.; Berland, Leema K.

    2015-01-01

    Engineering in K-12 classrooms has been receiving expanding emphasis in the United States. The integration of science, mathematics, and engineering is a benefit and goal of K-12 engineering; however, current empirical research on the efficacy of K-12 science, mathematics, and engineering integration is limited. This study adds to this growing…

  3. Differentiated Instruction for K-8 Math and Science: Activities and Lesson Plans

    Science.gov (United States)

    Hamm, Mary; Adams, Dennis

    2008-01-01

    This book offers practical recommendations to reach every student in a K-8 classroom. Research-based and written in a teacher-friendly style, it will help teachers with classroom organization and lesson planning in math and science. Included are math and science games, activities, ideas, and lesson plans based on the math and science standards.…

  4. Social Cognitive Predictors of Mexican American High School Students' Math/Science Career Goals

    Science.gov (United States)

    Garriott, Patton O.; Raque-Bogdan, Trisha L.; Zoma, Lorrine; Mackie-Hernandez, Dylan; Lavin, Kelly

    2017-01-01

    This study tested a social cognitive model of math/science career goals in a sample (N = 258) of Mexican American high school students. Familism and proximal family supports for math/science careers were examined as predictors of math/science: performance accomplishments, self-efficacy, interests, and goals. Results showed that the hypothesized…

  5. Elements of the Next Generation Science Standards' (NGSS) New Framework for K-12 Science Education aligned with STEM designed projects created by Kindergarten, 1st and 2nd grade students in a Reggio Emilio project approach setting

    Science.gov (United States)

    Facchini, Nicole

    This paper examines how elements of the Next Generation Science Standards' (NGSS) New Framework for K-12 Science Education standards (National Research Council 2011)---specifically the cross-cutting concept "cause and effect" are aligned with early childhood students' creation of projects of their choice. The study took place in a Reggio Emilio-inspired, K-12 school, in a multi-aged kindergarten, first and second grade classroom with 14 students. Students worked on their projects independently with the assistance of their peers and teachers. The students' projects and the alignment with the Next Generation Science Standards' New Framework were analyzed by using pre and post assessments, student interviews, and discourse analysis. Results indicate that elements of the New Framework for K-12 Science Education emerged through students' project presentation, particularly regarding the notion of "cause and effect". More specifically, results show that initially students perceived the relationship between "cause and effect" to be negative.

  6. Integrating long-term science projects into K-12 curriculum: Fostering teacher-student engagement in urban environmental research through an NSF UCLA GK-12 program

    Science.gov (United States)

    Hogue, T. S.; Moldwin, M.; Nonacs, P.; Daniel, J.; Shope, R.

    2009-12-01

    A National Science Foundation Graduate Teaching Fellows in K- 12 Education program at UCLA (SEE-LA; http://measure.igpp.ucla.edu/GK12-SEE-LA) has just completed its first year (of a five-year program) and has greatly expanded UCLA’s science and engineering partnerships with LA Unified and Culver City Unified School Districts. The SEE-LA program partners UCLA faculty, graduate students (fellows), middle and high school science teachers and their students into a program of science and engineering exploration that brings the environment of Los Angeles into the classroom. UCLA graduate fellows serve as scientists-in-residence at the four partner schools to integrate inquiry-based science and engineering lessons, facilitate advancements in science content teaching, and ultimately, to improve their own science communication skills. As part of their fellowship, graduate students are required to develop three inquiry-based lessons in their partner classroom, including a lesson focused on their dissertation research, a lesson focused on the environmental/watershed theme of the project, and a lesson that involves longer-term data collection and synthesis with the grade 6-12 teachers and students. The developed long-term projects ideally involve continued observations and analysis through the five-year project and beyond. During the first year of the project, the ten SEE-LA fellows developed a range of long-term research projects, from seasonal invertebrate observations in an urban stream system, to home energy consumption surveys, to a school bioblitz (quantification of campus animals and insects). Examples of lesson development and integration in the classroom setting will be highlighted as well as tools required for sustainability of the projects. University and local pre-college school partnerships provide an excellent opportunity to support the development of graduate student communication skills while also contributing significantly to the integration of sustainable

  7. Math and science technology access and use in South Dakota public schools grades three through five

    Science.gov (United States)

    Schwietert, Debra L.

    The development of K-12 technology standards, soon to be added to state testing of technology proficiency, and the increasing presence of computers in homes and classrooms reflects the growing importance of technology in current society. This study examined math and science teachers' responses on a survey of technology use in grades three through five in South Dakota. A researcher-developed survey instrument was used to collect data from a random sample of 100 public schools throughout the South Dakota. Forced choice and open-ended responses were recorded. Most teachers have access to computers, but they lack resources to purchase software for their content areas, especially in science areas. Three-fourths of teachers in this study reported multiple computers in their classrooms and 67% reported access to labs in other areas of the school building. These numbers are lower than the national average of 84% of teachers with computers in their classrooms and 95% with access to computers elsewhere in the building (USDOE, 2000). Almost eight out of 10 teachers noted time as a barrier to learning more about educational software. Additional barriers included lack of school funds (38%), access to relevant training (32%), personal funds (30%), and poor quality of training (7%). Teachers most often use math and science software as supplemental, with practice tutorials cited as another common use. The most common interest for software was math for both boys and girls. The second most common choice for boys was science and for girls, language arts. Teachers reported that there was no preference for either individual or group work on computers for girls or boys. Most teachers do not systematically evaluate software for gender preferences, but review software over subjectively.

  8. The Social Competence of Highly Gifted Math and Science Adolescents

    Science.gov (United States)

    Lee, Seon-Young; Olszewski-Kubilius, Paula; Thomson, Dana

    2012-01-01

    Involving 740 highly gifted math and science students from two different countries, Korea and the United States, this study examined how these gifted adolescents perceived their interpersonal ability and peer relationships and whether there were differences between these two groups by demographic variables. Based on the survey data, results showed…

  9. Interactive Video: Disseminating Vital Science and Math Information.

    Science.gov (United States)

    Louie, Ray; And Others

    1991-01-01

    Describes the use of interactive videodiscs in middle schools and high schools for science and math instruction. Topics discussed include establishing multimedia workstations; positive student attitudes; combining computer software and videodiscs; decreases in failure rates; positive motivation; pacing for individual needs; and effective time…

  10. ESSEA as an Enhancement to K-12 Earth Systems Science Efforts at San José State University

    Science.gov (United States)

    Messina, P.; Metzger, E. P.; Sedlock, R. L.

    2002-12-01

    San José State University's Geology Department has implemented and maintained a two-fold approach to teacher education efforts. Both pre-service and in-service populations have been participants in a wide variety of content-area enrichment, training, and professional development endeavors. Spearheading these initiatives is the Bay Area Earth Science Institute (BAESI); organized in 1990, this program has served more than 1,000 teachers in weekend- and summer-workshops, and field trips. It sustains a network of Bay Area teachers via its Website (http://www.baesi.org), newsletter, and allows teachers to borrow classroom-pertinent materials through the Earth Science Resource Center. The Department has developed a course offering in Earth Systems Science (Geology 103), which targets pre-service teachers within SJSU's multiple-subject credential program. The curriculum satisfies California subject matter competency requirements in the geosciences, and infuses pedagogy into the syllabus. Course activities are intended for pre-service and in-service teachers' adaptation in their own classrooms. The course has been enhanced by two SJSU-NASA collaborations (Project ALERT and the Sun-Earth Connection Education Forum), which have facilitated incorporation of NASA data, imagery, and curricular materials. SJSU's M.A. in Natural Science, a combined effort of the Departments of Geology, Biology, and Program in Science Education, is designed to meet the multi-disciplinary needs of single-subject credential science teachers by providing a flexible, individually-tailored curriculum that combines science course work with a science education project. Several BAESI teachers have extended their Earth science knowledge and teaching skills through such projects as field guides to local sites of geological interest; lab-based modules for teaching about earthquakes, rocks and minerals, water quality, and weather; and interactive online materials for students and teachers of science. In

  11. Creating Effective K-12 Outreach

    Science.gov (United States)

    Hopkins, J.

    2011-12-01

    Grant opportunities require investigators to provide 'broader impacts' for their scientific research. For most researchers this involves some kind of educational outreach for the K-12 community. I have been able to participate in many different types of grant funded science teacher professional development programs. The most valuable have been outreach where the research seamlessly integrated with my classroom curriculum and was sustainable with my future classes. To accomplish these types of programs, the investigators needed to research the K-12 community and identify several key aspects of the K-12 environment where their expertise would benefit me and my students. There are a lot of different K-12 learning environments, so researchers need to be sure to match up with the right grade level and administrative environment. You might want to consider non-main stream school settings, such as magnet programs, STEM academies, and distance learning. The goal is to try to make your outreach seem natural and productive. This presentation will illustrate how researchers can create an educational outreach project that will be a win-win situation for everyone involved.

  12. Science literacy programs for K-12 teachers, public officials, news media and the public. Final report, 1994--1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    On 12 July 94, The Institute for Science and Society received the above titled grant for $300,000 with an additional $323,000 awarded 14 August 95. The Institute completed the programs provided by the Department of Energy grant on 28 February 97. These programs for teachers, public officials, news media and the public will continue through 31 December 97 with funding from other sources. The Institute is a non-profit 501-c-3 corporation. It was organized {open_quotes}... to help increase science literacy in all segments of the population and contribute to a more rational atmosphere than now exists for the public consideration of societal issues involving science and technology, both regional and national.{close_quotes} Institute personnel include the Honorable Mike McCormack, Director; Joan Harris, Associate Director; Kim Freier, Ed.D, Program Manager; and Sharon Hunt, Executive Secretary.

  13. Educating for Social Justice: Perspectives from Library and Information Science and Collaboration with K-12 Social Studies Educators

    Science.gov (United States)

    Naidoo, Jamie Campbell; Sweeney, Miriam E.

    2015-01-01

    Library and Information Science (LIS) as a discipline is guided by core values that emphasize equal access to information, freedom of expression, democracy, and education. Importantly, diversity and social responsibility are specifically called out as foundations of the profession (American Library Association, 2004). Following from this, there…

  14. Defining the requisite knowledge for providers of in-service professional development for K--12 teachers of science: Refining the construct

    Science.gov (United States)

    Tucker, Deborah L.

    Purpose. The purpose of this grounded theory study was to refine, using a Delphi study process, the four categories of the theoretical model of the comprehensive knowledge base required by providers of professional development for K-12 teachers of science generated from a review of the literature. Methodology. This grounded theory study used data collected through a modified Delphi technique and interviews to refine and validate the literature-based knowledge base required by providers of professional development for K-12 teachers of science. Twenty-three participants, experts in the fields of science education, how people learn, instructional and assessment strategies, and learning contexts, responded to the study's questions. Findings. By "densifying" the four categories of the knowledge base, this study determined the causal conditions (the science subject matter knowledge), the intervening conditions (how people learn), the strategies (the effective instructional and assessment strategies), and the context (the context and culture of formal learning environments) surrounding the science professional development process. Eight sections were added to the literature-based knowledge base; the final model comprised of forty-nine sections. The average length of the operational definitions increased nearly threefold and the number of citations per operational definition increased more than twofold. Conclusions. A four-category comprehensive model that can serve as the foundation for the knowledge base required by science professional developers now exists. Subject matter knowledge includes science concepts, inquiry, the nature of science, and scientific habits of mind; how people learn includes the principles of learning, active learning, andragogy, variations in learners, neuroscience and cognitive science, and change theory; effective instructional and assessment strategies include constructivist learning and inquiry-based teaching, differentiation of instruction

  15. Are Students with High Ability in Math More Motivated in Math and Science than Other Students?

    Science.gov (United States)

    Andersen, Lori; Cross, Tracy L.

    2014-01-01

    Expectancy-value motivation profiles were identified in a sample of US ninth-grade students in 2009 (n = 19,259) using latent profile analysis. Of four distinct profiles, two were high, one typical, and one low in math and in science. In each area, the two high profiles were distinguished by (1) high self-efficacy with lower utility value and (2)…

  16. Training Math and Science Teacher-Researchers in a Collaborative Research Environment: Implications for Math and Science Education

    Science.gov (United States)

    Kyei-Blankson, Lydia

    2014-01-01

    In this mixed-methods study, the effect of training teacher-researchers in a collaborative research environment is examined for a cohort of teachers enrolled in a Math and Science Partnership (MSP) master's degree program. The teachers describe changes in their research views and in their application of research in practice, and detail the…

  17. Training Math and Science Teacher-Researchers in a Collaborative Research Environment: Implications for Math and Science Education

    Science.gov (United States)

    Kyei-Blankson, Lydia

    2014-01-01

    In this mixed-methods study, the effect of training teacher-researchers in a collaborative research environment is examined for a cohort of teachers enrolled in a Math and Science Partnership (MSP) master's degree program. The teachers describe changes in their research views and in their application of research in practice, and detail the…

  18. 77 FR 37016 - Applications for New Awards: Upward Bound Math and Science Program

    Science.gov (United States)

    2012-06-20

    ...] [FR Doc No: 2012-15012] DEPARTMENT OF EDUCATION Applications for New Awards: Upward Bound Math and.... Overview Information: Upward Bound Math and Science Program. Notice inviting applications for new awards... UB grants, Veterans UB grants, and UB Math and Science (UBMS) grants. This notice announces...

  19. Standards for K-12 Engineering Education?

    Science.gov (United States)

    National Academies Press, 2010

    2010-01-01

    The goal of this study was to assess the value and feasibility of developing and implementing content standards for engineering education at the K-12 level. Content standards have been developed for three disciplines in STEM education--science, technology, and mathematic--but not for engineering. To date, a small but growing number of K-12

  20. Building Partnerships Between Research Institutions, University Academic Departments, Local School Districts, and Private Enterprise to Advance K-12 Science Education in Texas

    Science.gov (United States)

    Ellins, K. K.; Ganey-Curry, P.; Fennell, T.

    2003-12-01

    The University of Texas at Austin Institute for Geophysics (UTIG) is engaged in six K-12 education and outreach programs, including two NSF-sponsored projects--GK-12: Linking Graduate Fellows with K-12 Students and Teachers and Cataclysms and Catastrophes--Texas Teachers in the Field, Adopt-a-School, Geoscience in the Classroom, and UT's Science and Engineering Apprenticeship Program. The GK-12 Program is central to UTIG's effort and links the six education projects together. While the specific objectives of each project differ, the broad goals of UTIG's education and outreach are to provide high-quality professional development for teachers, develop curriculum resources aligned with state and national education standards, and promote interaction between teachers, scientists, graduate students, and science educators. To achieve these goals, UTIG has forged funded partnerships with scientific colleagues at UT's Bureau of Economic Geology, Marine Science Institute and Department of Geological Sciences; science educators at UT's Charles A. Dana Center and in the Department of Curriculum and Instruction in the College of Education; teachers in six Texas independent school districts; and 4empowerment.com, a private education company that established the "Cyberways and Waterways" Web site to integrate technology and education through an environmentally-based curriculum. These partnerships have allowed UTIG to achieve far more than would have been possible through individual projects alone. Examples include the development of more than 30 inquiry-based activities, hosting workshops and a summer institute, and participation in local science fairs. UTIG has expanded the impact of its education and outreach and achieved broader dissemination of learning activities through 4empowerment's web-based programs, which reach ethnically diverse students in schools across Texas. These partnerships have also helped UTIG and 4empowerment to secure additional funding for other education

  1. WestEd Eisenhower Regional Consortium: Helping to Build a Presence for Science With Online Professional Development Opportunities for K-12 Educators

    Science.gov (United States)

    Rognier, E.

    2002-12-01

    The WestEd Eisenhower Regional Consortium (WERC) is in its third year of offering two Earth Systems Science On-line Graduate courses from IGES - one for High School teachers, and one for Middle School teachers. These high-quality courses support WERC's commitment to "supporting increased scientific and mathematical literacy among our nation's youth through services and other support aimed at enhancing the efforts of those who provide K-12 science and mathematics education." These courses also support our NSTA-sponsored "Building a Presence for Science" program in California, providing professional development opportunities to help achieve our vision of increased quantity and quality of science education statewide. Our students have included classroom teachers from upper elementary through high school, community college science teachers, and environmental science center staff who provide inservice for teachers. Educators from Hawaii to New Jersey have provided diverse personal experiences of Earth Systems Science events, and add richness to the online discussions. Students have consistently embraced the concept of a systems-based approach to science instruction, commenting on how these courses have forever changed their teaching practices and provided a successful means for engaging and involving their students in scientific inquiry. Through offering these online courses, we have learned valuable lessons about recruitment, retention, team-building, and facilitating discussions for classes with no "face to face" component. This format is both rich and challenging, with teammates from diverse geographic regions and timezones, with a variety of connectivity and accessibility issues. In this third year of offering the courses, we are pleased to have students taking their second course with us, wanting to continue learning content and stragtegies to improve their skills as science teachers.

  2. Hazardous Asteroids: Cloaking STEM Skills Training within an Attention-Grabbing Science/Math Course

    Science.gov (United States)

    Ryan, Eileen V.; Ryan, William H.

    2015-11-01

    A graduate-level course was designed and taught during the summer months from 2009 - 2015 in order to contribute to the training and professional development of K-12 teachers residing in the Southwest. The teachers were seeking Master’s degrees via the New Mexico Institute of Mining and Technology’s (NMT’s) Masters of Science Teaching (MST) program, and the course satisfied a science or math requirement. The MST program provides opportunities for in-service teachers to enhance their content backgrounds in science, mathematics, engineering, and technology (SMET). The ultimate goal is to assist teachers in gaining knowledge that has direct application in the classroom.The engaging topic area of near-Earth object (NEO) characterization studies was used to create a fun and exciting framework for mastering basic skills and concepts in physics and astronomy. The objective was to offer a class that had the appropriate science rigor (with an emphasis on mathematics) within a non-threatening format. The course, entitled “Hazardous Asteroids”, incorporates a basic planetary physics curriculum, with challenging laboratories that include a heavy emphasis on math and technology. Since the authors run a NASA-funded NEO research and follow-up program, also folded into the course is the use of the Magdalena Ridge Observatory’s 2.4-meter telescope so participants can take and reduce their own data on a near-Earth asteroid.In exit assessments, the participants have given the course excellent ratings for design and implementation, and the overall degree of satisfaction was high. This validates that a well-constructed (and rigorous) course can be effective in receptively reaching teachers in need of basic skills refreshment. Many of the teachers taking the course were employed in school districts serving at-risk or under-prepared students, and the course helped provide them with the confidence vital to developing new strategies for successful teaching.

  3. Center Funding Research on Math, Science Cognition

    Science.gov (United States)

    Cavanagh, Sean

    2006-01-01

    Four years ago, federal officials launched an initiative to study mathematics and science cognition. Since then, that program has begun to exert its influence through the relatively modest but steady flow of public funding it provides for scholarly research. In this article, the author features the federal center entitled, Program on Mathematics…

  4. INCREASING ACHIEVEMENT AND HIGHER-EDUCATION REPRESENTATION OF UNDER-REPRESENTED GROUPS IN SCIENCE, TECHNOLOGY, ENGINEERING, AND MATHEMATICS FIELDS: A REVIEW OF CURRENT K-12 INTERVENTION PROGRAMS.

    Science.gov (United States)

    Valla, Jeffrey M; Williams, Wendy M

    2012-01-01

    The under-representation of women and ethnic minorities in Science, Technology, Engineering, and Mathematics (STEM) education and professions has resulted in a loss of human capital for the US scientific workforce and spurred the development of myriad STEM educational intervention programs. Increased allocation of resources to such programs begs for a critical, prescriptive, evidence-based review that will enable researchers to develop optimal interventions and administrators to maximize investments. We begin by providing a theoretical backdrop for K-12 STEM programs by reviewing current data on under-representation and developmental research describing individual-level social factors undergirding these data. Next, we review prototypical designs of these programs, highlighting specific programs in the literature as examples of program structures and components currently in use. We then evaluate these interventions in terms of overall effectiveness, as a function of how well they address age-, ethnicity-, or gender-specific factors, suggesting improvements in program design based on these critiques. Finally, program evaluation methods are briefly reviewed and discussed in terms of how their empirical soundness can either enable or limit our ability to delineate effective program components. "Now more than ever, the nation's changing demographics demand that we include all of our citizens in science and engineering education and careers. For the U.S. to benefit from the diverse talents of all its citizens, we must grow the pipeline of qualified, underrepresented minority engineers and scientists to fill positions in industry and academia."-Irving P. McPhail..

  5. The role of social support in students' perceived abilities and attitudes toward math and science.

    Science.gov (United States)

    Rice, Lindsay; Barth, Joan M; Guadagno, Rosanna E; Smith, Gabrielle P A; McCallum, Debra M

    2013-07-01

    Social cognitive models examining academic and career outcomes emphasize constructs such as attitude, interest, and self-efficacy as key factors affecting students' pursuit of STEM (science, technology, engineering and math) courses and careers. The current research examines another under-researched component of social cognitive models: social support, and the relationship between this component and attitude and self-efficacy in math and science. A large cross-sectional design was used gathering data from 1,552 participants in four adolescent school settings from 5th grade to early college (41 % female, 80 % white). Students completed measures of perceived social support from parents, teachers and friends as well as their perceived ability and attitudes toward math and science. Fifth grade and college students reported higher levels of support from teachers and friends when compared to students at other grade levels. In addition, students who perceived greater social support for math and science from parents, teachers, and friends reported better attitudes and had higher perceptions of their abilities in math and science. Lastly, structural equation modeling revealed that social support had both a direct effect on math and science perceived abilities and an indirect effect mediated through math and science attitudes. Findings suggest that students who perceive greater social support for math and science from parents, teachers, and friends have more positive attitudes toward math and science and a higher sense of their own competence in these subjects.

  6. Math

    CERN Document Server

    Robertson, William C

    2006-01-01

    Flummoxed by formulas? Queasy about equations? Perturbed by pi? Now you can stop cursing over calculus and start cackling over Math, the newest volume in Bill Robertson's accurate but amusing Stop Faking It! best sellers. As Robertson sees it, too many people view mathematics as a set of rules to be followed, procedures to memorize, and theorems to apply. This book focuses on the reasoning behind the rules, from math basics all the way up to a brief introduction to calculus.

  7. Professional Development for Early Childhood Educators: Efforts to Improve Math and Science Learning Opportunities in Early Childhood Classrooms.

    Science.gov (United States)

    Piasta, Shayne B; Logan, Jessica A R; Pelatti, Christina Yeager; Capps, Janet L; Petrill, Stephen A

    2015-05-01

    Because recent initiatives highlight the need to better support preschool-aged children's math and science learning, the present study investigated the impact of professional development in these domains for early childhood educators. Sixty-five educators were randomly assigned to experience 10.5 days (64 hours) of training on math and science or on an alternative topic. Educators' provision of math and science learning opportunities were documented, as were the fall-to-spring math and science learning gains of children (n = 385) enrolled in their classrooms. Professional development significantly impacted provision of science, but not math, learning opportunities. Professional development did not directly impact children's math or science learning, although science learning was indirectly affected via the increase in science learning opportunities. Both math and science learning opportunities were positively associated with children's learning. Results suggest that substantive efforts are necessary to ensure that children have opportunities to learn math and science from a young age.

  8. Alabama's Education Coalition Focuses on Supporting the State's Math, Science and Technology Initiative and on Building Distance Learning Programs

    Science.gov (United States)

    Denson, R. L.

    2003-12-01

    The Alabama Math Science Technology Educational Coalition (AMSTEC) was formed as a non-profit after a 1998 NASA Linking Leaders program brought in education and corporate leaders to address systemic education reform in Alabama public schools. AMSTEC was instrumental in the creation of the Alabama Math Science Technology Initiative (AMSTI), a K-12 program designed using data from national and international research and local teacher survey. In the face of dwindling government support in a state ranked last in education funding, AMSTEC believes that its best hope for improved STEM education lies in strengthening its community/industry partnerships and building upon the Department of Education's newly created AMSTI program. NASA's GLOBE program is the primary earth science education component being integrated into AMSTI. AMSTI is structured to provide teachers with (1) the materials, equipment, technology and supplies necessary to deliver high quality, inquiry-based instruction; (2) professional development linked directly to the educational resources with the intent of strengthening content knowledge, instructional strategies, and use of assessment tools; and (3) on-site support and mentoring throughout the year in the interest of achieving these goals. Roles for community partners to support these objectives far exceed that of mere funding - especially in the area of mentoring and professional development. Currently, AMSTEC consists of 100+ members including classroom teachers and district officers, education department representatives from higher educational institutions, policy makers and administrators, and government and industry representatives. AMSTEC remains partially tied to NASA fiscally and is administratively housed by the National Space Science and Technology Center's Earth System Science Center. AMSTEC's partnership emphasis is focused on increasing corporate and industry participation to support the implementation of AMSTI and its hub

  9. High School Student Perceptions of the Utility of the Engineering Design Process: Creating Opportunities to Engage in Engineering Practices and Apply Math and Science Content

    Science.gov (United States)

    Berland, Leema; Steingut, Rebecca; Ko, Pat

    2014-12-01

    Research and policy documents increasingly advocate for incorporating engineering design into K-12 classrooms in order to accomplish two goals: (1) provide an opportunity to engage with science content in a motivating real-world context; and (2) introduce students to the field of engineering. The present study uses multiple qualitative data sources (i.e., interviews, artifact analysis) in order to examine the ways in which engaging in engineering design can support students in participating in engineering practices and applying math and science knowledge. This study suggests that students better understand and value those aspects of engineering design that are more qualitative (i.e., interviewing users, generating multiple possible solutions) than the more quantitative aspects of design which create opportunities for students to integrate traditional math and science content into their design work (i.e., modeling or systematically choosing between possible design solutions). Recommendations for curriculum design and implementation are discussed.

  10. Bridging the Divide Between Climate and Global Change Science and Education of Public and K-12 Visitors at the National Center for Atmospheric Research

    Science.gov (United States)

    Foster, S. Q.; Johnson, R. M.; Carbone, L.; Munoz, R.; Eastburn, T.; Ammann, C.; Lu, G.; Richmond, A.; Committee, S.

    2004-12-01

    The study of climate and global change is an important on-going focus for scientists at the National Center for Atmospheric Research (NCAR). Programs overseen by the University Corporation for Atmospheric Research Office of Education and Outreach (UCAR-EO) help to translate NCAR's scientific programs, methodologies, and technologies and their societal benefits to over 80,000 visitors to the NCAR Mesa Laboratory each year, including about 10,000 K-12 students. This is currently accomplished through the implementation of an increasingly integrated system of exhibits, guided tours, an audiotour, programs for school groups, and a teachers' guide to the exhibits, which is currently in development. The Climate Discovery Exhibit unveiled in July 2003 and expanded in 2004 offers visitors visually engaging and informative text panels, graphics, artifacts, and interactives describing Sun-Earth connections, dynamic processes that contribute to and mediate climate change, and the Earth's climate history. The exhibit seeks to help visitors to understand why scientists model the global climate system and how information about past and current climate is used to validate models and build scenarios for Earth's future climate. Exhibit-viewers are challenged to ask questions and reflect upon decision making challenges while considering the roles various natural and human-induced factors play in shaping these predictions. With support from NASA and NCAR, a K-12 Teacher's Guide has been developed corresponding the Climate Discovery exhibit's sections addressing the Sun-Earth connection and past climates (the Little Ice Age, in particular). This presentation will review efforts to identify the challenges of communicating with the public and school groups about climate change, while also describing several successful strategies for utilizing visitor questionnaires and interviews to learn how to develop and refine educational resources that will target their interests, bolster their

  11. The Responsive Classroom approach and fifth grade students' math and science anxiety and self-efficacy.

    Science.gov (United States)

    Griggs, Marissa Swaim; Rimm-Kaufman, Sara E; Merritt, Eileen G; Patton, Christine L

    2013-12-01

    Self-efficacy forecasts student persistence and achievement in challenging subjects. Thus, it is important to understand factors that contribute to students' self-efficacy, a key factor in their success in math and science. The current cross-sectional study examined the contribution of students' gender and math and science anxiety as well as schools' use of Social and Emotional Learning (SEL) practices to students' math and science self-efficacy. Fifth graders (n = 1,561) completed questionnaires regarding their feelings about math and science. Approximately half of the students attended schools implementing the Responsive Classroom® (RC) approach, an SEL intervention, as part of a randomized controlled trial. Results suggested no difference in math and science self-efficacy between boys and girls. Students who self-reported higher math and science anxiety also reported less self-efficacy toward these subjects. However, the negative association between students' anxiety and self-efficacy was attenuated in schools using more RC practices compared with those using fewer RC practices. RC practices were associated with higher science self-efficacy. Results highlight anxiety as contributing to poor self-efficacy in math and science and suggest that RC practices create classroom conditions in which students' anxiety is less strongly associated with negative beliefs about their ability to be successful in math and science.

  12. The Math?Biology Values Instrument: Development of a Tool to Measure Life Science Majors? Task Values of Using Math in the Context of Biology

    OpenAIRE

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    This study describes the development of a survey grounded in expectancy-value theory, providing multiple forms of validity evidence to support its use as a measure of students? interest in using math to understand biology, the usefulness of math for one?s life science career, and the perceived cost of using math in biology courses.

  13. It's not maths; it's science: exploring thinking dispositions, learning thresholds and mindfulness in science learning

    Science.gov (United States)

    Quinnell, R.; Thompson, R.; LeBard, R. J.

    2013-09-01

    Developing quantitative skills, or being academically numerate, is part of the curriculum agenda in science teaching and learning. For many of our students, being asked to 'do maths' as part of 'doing science' leads to disengagement from learning. Notions of 'I can't do maths' speak of a rigidity of mind, a 'standoff', forming a barrier to learning in science that needs to be addressed if we, as science educators, are to offer solutions to the so-called 'maths problem' and to support students as they move from being novice to expert. Moving from novice to expert is complex and we lean on several theoretical frameworks (thinking dispositions, threshold concepts and mindfulness in learning) to characterize this pathway in science, with a focus on quantitative skills. Fluid thinking and application of numeracy skills are required to manipulate experimental data sets and are integral to our science practice; we need to stop students from seeing them as optional 'maths' or 'statistics' tasks within our discipline. Being explicit about the ways those in the discipline think, how quantitative data is processed, and allowing places for students to address their skills (including their confidence) offer some ways forward.

  14. K-12 Bolsters Ties to Engineering

    Science.gov (United States)

    Robelen, Erik W.

    2013-01-01

    When science, technology, engineering and mathematics (STEM) education is discussed in the K-12 sphere, it often seems like shorthand for mathematics and science, with perhaps a nod to technology and even less, if any, real attention to engineering. But recent developments signal that the "e" in STEM may be gaining a firmer foothold at…

  15. Feelings about Math and Science: Reciprocal Determinism and Catholic School Education

    Science.gov (United States)

    Ghee, Anna Cash; Khoury, Jane C.

    2008-01-01

    Applying Bandura's reciprocal determinism model, differences in math and science experiences influenced by individual, gender, and school variables were investigated within 1,368 elementary students who attended 21 Catholic schools. Math and science were evaluated positively and favored more than other academic subjects. However, advantages were…

  16. A Strategic Action Plan for Advancing Math and Science Education in New Mexico 2007-2010

    Science.gov (United States)

    New Mexico Public Education Department, 2007

    2007-01-01

    This Strategic Action Plan for Advancing Math and Science Education is an initial outline of strategies, actions, measures of progress, resources needed, timelines, and responsible parties. The Plan focuses on these three main goals: (1) increasing student interest, participation, and achievement in math and science; (2) raising public support and…

  17. Math and Science Social Cognitive Variables in College Students: Contributions of Contextual Factors in Predicting Goals

    Science.gov (United States)

    Byars-Winston, Angela M.; Fouad, Nadya A.

    2008-01-01

    This study investigated the influence of two contextual factors, parental involvement and perceived career barriers, on math/science goals. Using social cognitive career theory (SCCT; Lent, Brown, & Hackett, 1994), a path model was tested to investigate hypothesized relationships between math- and science-related efficacy beliefs (i.e., task and…

  18. The "Responsive Classroom" Approach and Fifth Grade Students' Math and Science Anxiety and Self-Efficacy

    Science.gov (United States)

    Griggs, Marissa Swaim; Rimm-Kaufman, Sara E.; Merritt, Eileen G.; Patton, Christine L.

    2013-01-01

    Self-efficacy forecasts student persistence and achievement in challenging subjects. Thus, it is important to understand factors that contribute to students' self-efficacy, a key factor in their success in math and science. The current cross-sectional study examined the contribution of students' gender and math and science anxiety as well as…

  19. Increasing Latino/a Representation in Math and Science: An Insider's Look

    Science.gov (United States)

    Aguirre, Jarrad

    2009-01-01

    Recent Yale alumnus Jarrad Aguirre relates his experience creating MAS Familias, a campus organization that supports Latino/a undergraduates studying math and science. Alarmed by Latino/a students' academic struggles and the lack of Latino/a role models in the fields of math and science--and increasingly aware of the social benefits of a diverse…

  20. Self-efficacy beliefs of underrepresented minorities in science, technology, engineering, and math

    Science.gov (United States)

    Garibay, Guadalupe

    The purpose of this study is to understand the self-perceptions, confidence, and self-efficacy of underrepresented minorities (URMs) as they undertake Science, Technology, Engineering and Math (STEM) courses during their K-12 years in urban-public schools. Through the lens of Bandura's self-efficacy theory, this study analyzed self-efficacious behaviors as they revealed themselves in K-12 classrooms. The participants were 11th- and 12th-grade students, their parents, their STEM teachers, and their mentor. The goal was to understand what has been inhibiting the growth of URM representation in STEM majors and in STEM fields. This qualitative study was designed to understand the participants' stories and uncover personal characteristics such as grit, perseverance, and determination in the face of obstacles. The instruments used in this study were interviews, observations, and self-efficacy surveys. The findings revealed that the participants' perceptions of the students' abilities to succeed in a STEM field were all tentatively positive. The participants focused on the many obstacles already overcome by the students and used it as precedent for future success. All the student-participants shared a similar set of adult types in their lives--adults who believed not only in their STEM abilities, but also in their abilities to face obstacles, who were willing to give their time and expertise when necessary, and who shared similar experiences in terms of the lack of educational resources or of economic struggles. It was these shared experiences that strengthened the beliefs that, if the adult participants could succeed in education or succeed in spite of poverty, the student participants could succeed, as well.

  1. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors’ Emotions about Mathematics

    Science.gov (United States)

    Wachsmuth, Lucas P.; Runyon, Christopher R.; Drake, John M.; Dolan, Erin L.

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of Mathematics Inventory (ASMI). We collected data from 359 science and math majors at two research universities and conducted a series of statistical tests that indicated that four AMSI items comprised a reasonable measure of students’ emotional satisfaction with math. We then compared life science and non–life science majors and found that major had a small to moderate relationship with students’ responses. Gender also had a small relationship with students’ responses, while students’ race, ethnicity, and year in school had no observable relationship. Using latent profile analysis, we identified three groups—students who were emotionally satisfied with math, emotionally dissatisfied with math, and neutral. These results and the emotional satisfaction with math scale should be useful for identifying differences in other undergraduate populations, determining the malleability of undergraduates’ emotional satisfaction with math, and testing effects of interventions aimed at improving life science majors’ attitudes toward math. PMID:28798211

  2. Project LAUNCH: Bringing Space into Math and Science Classrooms

    Science.gov (United States)

    Fauerbach, M.; Henry, D. P.; Schmidt, D. L.

    2005-01-01

    Project LAUNCH is a K-12 teacher professional development program, which has been created in collaboration between the Whitaker Center for Science, Mathematics and Technology Education at Florida Gulf Coast University (FGCU), and the Florida Space Research Institute (FSRI). Utilizing Space as the overarching theme it is designed to improve mathematics and science teaching, using inquiry based, hands-on teaching practices, which are aligned with Florida s Sunshine State Standards. Many students are excited about space exploration and it provides a great venue to get them involved in science and mathematics. The scope of Project LAUNCH however goes beyond just providing competency in the subject area, as pedagogy is also an intricate part of the project. Participants were introduced to the Conceptual Change Model (CCM) [1] as a framework to model good teaching practices. As the CCM closely follows what scientists call the scientific process, this teaching method is also useful to actively engage institute participants ,as well as their students, in real science. Project LAUNCH specifically targets teachers in low performing, high socioeconomic schools, where the need for skilled teachers is most critical.

  3. Evaluation of American Indian Science and Engineering Society Intertribal Middle School Science and Math Bowl Project

    Energy Technology Data Exchange (ETDEWEB)

    AISES, None

    2013-09-25

    The American Indian Science and Engineering Society (AISES) has been funded under a U.S. Department of Energy (DOE) grant (Grant Award No. DE-SC0004058) to host an Intertribal Middle-School Science and Math Bowl (IMSSMB) comprised of teams made up of a majority of American Indian students from Bureau of Indian Education-funded schools and public schools. The intent of the AISES middle school science and math bowl is to increase participation of American Indian students at the DOE-sponsored National Science Bowl. Although national in its recruitment scope, the AISES Intertribal Science and Math Bowl is considered a “regional” science bowl, equivalent to the other 50 regional science bowls which are geographically limited to states. Most regional bowls do not have American Indian student teams competing, hence the AISES bowl is meant to encourage American Indian student teams to increase their science knowledge in order to participate at the national level. The AISES competition brings together teams from various American Indian communities across the nation. Each team is provided with funds for travel to and from the event, as well as for lodging and meals. In 2011 and 2012, there were 10 teams participating; in 2013, the number of teams participating doubled to 20. Each Science and Math Bowl team is comprised of four middle school — grades 6 through 8 — students, one alternate, and a teacher who serves as advisor and coach — although in at least two cases, the coach was not a teacher, but was the Indian Education Coordinator. Each team member must have at least a 3.0 GPA. Furthermore, the majority of students in each team must be comprised of American Indian, Alaska Native or Native Hawaiian students. Under the current DOE grant, AISES sponsored three annual middle school science bowl competitions over the years 2011, 2012 and 2013. The science and math bowls have been held in late March concurrently with the National American Indian Science and

  4. Connecting Mathematics and Science: A Learning Community that Helps Math-Phobic Students

    Science.gov (United States)

    Arnett, Amy; Van Horn, Doug

    2009-01-01

    Many undergraduate students admit to having a fear of math courses. To address this issue, the authors created a learning community that teaches math content in the context of science. This paper outlines the positive learning and dispositional results of freshman enrolled in this unique interdisciplinary course. (Contains 5 tables.)

  5. Trends in International Mathematics and Science Study and Gendered Math Teaching in Kuwait

    Science.gov (United States)

    Ahmad, Fatimah; Greenhalgh-Spencer, Heather

    2017-01-01

    This paper argues for a more complex literature around gender and math performance. In order to argue for this complexity, we present a small portion of data from a case study examining the performance of Kuwaiti students on the Trends in International Mathematics and Science Study and on Kuwait national math tests. Westernized discourses suggest…

  6. Efficacy Expectations and Vocational Interests as Mediators between Sex and Choice of Math/Science College Majors: A Longitudinal Study.

    Science.gov (United States)

    Lapan, Richard T.; And Others

    1996-01-01

    Path analysis of data from 101 students before college and after declaring majors demonstrated the importance of math self-efficacy beliefs and vocational interests in predicting math/science majors. The more extroverted and those with artistic interests were less likely to major in math/science. Aspirations had solidified before college,…

  7. Evaluating RITES, a Statewide Math and Science Partnership Program

    Science.gov (United States)

    Murray, D. P.; Caulkins, J. L.; Burns, A. L.; de Oliveira, G.; Dooley, H.; Brand, S.; Veeger, A.

    2013-12-01

    The Rhode Island Technology-Enhanced Science project (RITES) is a NSF-MSP Program that seeks to improve science education by providing professional development to science teachers at the 5th through 12th grade levels. At it's heart, RITES is a complex, multifaceted project that is challenging to evaluate because of the nature of its goal: the development of a large, statewide partnership between higher education and K12 public school districts during a time when science education strategies and leadership are in flux. As a result, these difficulties often require flexibility and creativity regarding evaluation, study design and data collection. In addition, the research agenda of the project often overlaps with the evaluator's agenda, making collaboration and communication a crucial component of the project's success. In it's 5th year, RITES and it's evaluators have developed a large number of instruments, both qualitative and quantitative, to provide direction and feedback on the effectiveness of the project's activities. RITES personnel work closely with evaluators and researchers to obtain a measure of how RITES' 'theory-of-action' affects both student outcomes and teacher practice. Here we discuss measures of teacher and student content gains, student inquiry gains, and teacher implementation surveys. Using content questions based on AAAS and MOSART databases, teachers in the short courses and students in classrooms showed significant normalized learning gains with averages generally above 0.3. Students of RITES-trained teachers also outperformed their non-RITES peers on the inquiry-section of the NECAP test, and The results show, after controlling for race and economic status, a small but statistically significant increase in test scores for RITES students. Technology use in the classroom significantly increased for teachers who were 'expected implementers' where 'expected implementers' are those teachers who implemented RITES as the project was designed. This

  8. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors' Emotions about Mathematics.

    Science.gov (United States)

    Wachsmuth, Lucas P; Runyon, Christopher R; Drake, John M; Dolan, Erin L

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of Mathematics Inventory (ASMI). We collected data from 359 science and math majors at two research universities and conducted a series of statistical tests that indicated that four AMSI items comprised a reasonable measure of students' emotional satisfaction with math. We then compared life science and non-life science majors and found that major had a small to moderate relationship with students' responses. Gender also had a small relationship with students' responses, while students' race, ethnicity, and year in school had no observable relationship. Using latent profile analysis, we identified three groups-students who were emotionally satisfied with math, emotionally dissatisfied with math, and neutral. These results and the emotional satisfaction with math scale should be useful for identifying differences in other undergraduate populations, determining the malleability of undergraduates' emotional satisfaction with math, and testing effects of interventions aimed at improving life science majors' attitudes toward math. © 2017 L.P. Wachsmuth et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. HISD Magnet Evaluation: Science, Math, and Computer Enrichment Programs, 1990-91.

    Science.gov (United States)

    Kirkpatrick, Nanda D.; And Others

    Twenty-one magnet programs in the Houston Independent School District in Texas feature an enriched curriculum in science, math, and/or computers (science/math). Of these, 12 are elementary programs, 4 are middle school programs, and 5 are high school programs. In these programs, a total of 9,574 students were served during the 1990-91 school year:…

  10. Partners in Earth System Science: a Field, Laboratory and Classroom Based Professional Development Program for K-12 Teachers Designed to Build Scientific and Pedagogical Understandings of Teaching Climate Change.

    Science.gov (United States)

    Slattery, W.; Lunsford, S.; Diedrick, A.; Crane, C.

    2015-12-01

    The purpose of the Partners in Earth System Science summer and academic year professional development program for Ohio K-12 teachers is to build their understandings of the scientific observations, methods and resources that scientists use when studying past and present climate change. Participants then use these tools to develop inquiry-based activities to teach their K-12 students how the scientific method and data are used to understand the effects of global climate change. The summer portion of the program takes teachers from throughout Ohio to the Duke University Marine Laboratory in Beaufort, North Carolina. There they engage in a physical and biological exploration of the modern and ancient ocean. For example, they collect samples of sediment and test water samples collected from modern coastal environments and connect their findings with evidence of the fauna living in those environments. Then, using observations from the geological record of the Eocene through Pleistocene sediments exposed in eastern North Carolina and inferences from observations made from the modern ocean they seek to answer scientifically testable questions regarding the physical and biological characteristics of the ocean during Cenozoic climate change events. During the academic year participants connect with each other and project faculty online to support the development of inquiry based science activities for their K-12 students. These activities focus on how evidence and observations such as outcrop extent, sediment type and biological assemblages can be used to infer past climates. The activities are taught in participant's classrooms and discussed with other participants in an online discussion space. Assessment of both teachers and K-12 students document significant positive changes in science knowledge, their confidence in being able to do science and a clearer understanding of how oceans are impacted by global climate change.

  11. Software for math and science education for the deaf.

    Science.gov (United States)

    Adamo-Villani, Nicoletta; Wilbur, Ronnie

    2010-01-01

    In this article, we describe the development of two novel approaches to teaching math and science concepts to deaf children using 3D animated interactive software. One approach, Mathsigner, is non-immersive and the other, SMILE, is a virtual reality immersive environment. The content is curriculum-based, and the animated signing characters are constructed with state-of-the art technology and design. We report preliminary development findings of usability and appeal based on programme features (e.g. 2D/3D, immersiveness, interaction type, avatar and interface design) and subject features (hearing status, gender and age). Programme features of 2D/3D, immersiveness and interaction type were very much affected by subject features. Among subject features, we find significant effects of hearing status (deaf children take longer time and make more mistakes than hearing children) and gender (girls take longer than boys; girls prefer immersive environments rather than desktop presentation; girls are more interested in content than technology compared to boys). For avatar type, we found a preference for seamless, deformable characters over segmented ones. For interface comparisons, there were no subject effects, but an animated interface resulted in reduced time to task completion compared to static interfaces with and without sound and highlighting. These findings identify numerous features that affect software design and appeal and suggest that designers must be careful in their assumptions during programme development.

  12. Taking Advantage of STEM (Science, Technology, Engineering, and Math) Popularity to Enhance Student/Public Engagement

    Science.gov (United States)

    Dittrich, T. M.

    2011-12-01

    For a student group on campus, "the public" can refer to other students on campus or citizens from the community (including children, parents, teenagers, professionals, tradespeople, older people, and others). All of these groups have something to offer that can enrich the experiences of a student group. Our group focuses on science, technology, engineering and math (STEM) education in K-12 schools, university courses, and outreach activities with the general public. We will discuss the experiences of "All Things STEM" on the University of Colorado-Boulder campus and outreach in Boulder and Weld County, CO. Our experiences include (1) tours and events that offer an opportunity for student/public interaction, (2) grant requests and projects that involve community outreach, and (3) organizing conferences and events with campus/public engagement. Since our group is STEM-oriented, tours of water treatment plants, recycling centers, and science museums are a great way to create connections. Our most successful campus/public tour is our annual tour of the Valmont Station coal power plant near Boulder. We solicit students from all over campus and Boulder public groups with the goal to form a diverse and intimate 8 person group (students, school teachers, mechanics, hotel managers, etc.) that takes a 1.5 hr tour of the plant guided by the Chief Engineer. This includes a 20 minute sit-down discussion of anything the group wants to talk about including energy policy, plant history, recent failures, coal versus other fuels, and environmental issues. The tour concludes with each member placing a welding shield over their face and looking at the flames in the middle of the boiler, a little excitement that adds to the connections the group forms with each other. We have received over 11,000 to work with local K-12 schools and CU-Boulder undergraduate and graduate classes to develop a platform to help students learn and explain water quality concepts in a more practical manner

  13. Classifying K-12 Blended Learning

    Science.gov (United States)

    Staker, Heather; Horn, Michael B.

    2012-01-01

    The growth of online learning in the K-12 sector is occurring both remotely through virtual schools and on campuses through blended learning. In emerging fields, definitions are important because they create a shared language that enables people to talk about the new phenomena. The blended-learning taxonomy and definitions presented in this paper…

  14. Great Explorations in Math and Science[R] (GEMS[R]) Space Science. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2012

    2012-01-01

    "Great Explorations in Math and Science[R] (GEMS[R]) Space Science" is an instructional sequence for grades 3-5 that covers fundamental concepts, including planetary sizes and distance, the Earth's shape and movement, gravity, and moon phases and eclipses. Part of the "GEMS"[R] core curriculum, "GEMS[R] Space Science"…

  15. Effects of everyday romantic goal pursuit on women's attitudes toward math and science.

    Science.gov (United States)

    Park, Lora E; Young, Ariana F; Troisi, Jordan D; Pinkus, Rebecca T

    2011-09-01

    The present research examined the impact of everyday romantic goal strivings on women's attitudes toward science, technology, engineering, and math (STEM). It was hypothesized that women may distance themselves from STEM when the goal to be romantically desirable is activated because pursuing intelligence goals in masculine domains (i.e., STEM) conflicts with pursuing romantic goals associated with traditional romantic scripts and gender norms. Consistent with hypotheses, women, but not men, who viewed images (Study 1) or overheard conversations (Studies 2a-2b) related to romantic goals reported less positive attitudes toward STEM and less preference for majoring in math/science compared to other disciplines. On days when women pursued romantic goals, the more romantic activities they engaged in and the more desirable they felt, but the fewer math activities they engaged in. Furthermore, women's previous day romantic goal strivings predicted feeling more desirable but being less invested in math on the following day (Study 3).

  16. Creating Next Generation Teacher Preparation Programs to Support Implementation of the Next Generation Science Standards and Common Core State Standards in K-12 Schools: An Opportunity for the Earth and Space Sciences

    Science.gov (United States)

    Geary, E. E.; Egger, A. E.; Julin, S.; Ronca, R.; Vokos, S.; Ebert, E.; Clark-Blickenstaff, J.; Nollmeyer, G.

    2015-12-01

    A consortium of two and four year Washington State Colleges and Universities in partnership with Washington's Office of the Superintendent of Public Instruction (OSPI), the Teachers of Teachers of Science, and Teachers of Teachers of Mathematics, and other key stakeholders, is currently working to improve science and mathematics learning for all Washington State students by creating a new vision for STEM teacher preparation in Washington State aligned with the Next Generation Science Standards (NGSS) and the Common Core State Standards (CCSS) in Mathematics and Language Arts. Specific objectives include: (1) strengthening elementary and secondary STEM Teacher Preparation courses and curricula, (2) alignment of STEM teacher preparation programs across Washington State with the NGSS and CCSS, (3) development of action plans to support implementation of STEM Teacher Preparation program improvement at Higher Education Institutions (HEIs) across the state, (4) stronger collaborations between HEIs, K-12 schools, government agencies, Non-Governmental Organizations, and STEM businesses, involved in the preparation of preservice STEM teachers, (5) new teacher endorsements in Computer Science and Engineering, and (6) development of a proto-type model for rapid, adaptable, and continuous improvement of STEM teacher preparation programs. A 2015 NGSS gap analysis of teacher preparation programs across Washington State indicates relatively good alignment of courses and curricula with NGSS Disciplinary Core Ideas and Scientific practices, but minimal alignment with NGSS Engineering practices and Cross Cutting Concepts. Likewise, Computer Science and Sustainability ideas and practices are not well represented in current courses and curricula. During the coming year teams of STEM faculty, education faculty and administrators will work collaboratively to develop unique action plans for aligning and improving STEM teacher preparation courses and curricula at their institutions.

  17. Distributed computing network for science and math education in rural New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Palounek, A.P.T.; Witt, C.L.; Briles, M.C. [Los Alamos National Lab., NM (United States); Dulaney, J. [Estancia Middle School, NM (United States); Georgina, N. [Kirtland Middle School, NM (United States)

    1996-05-01

    This paper describes the TOPS (Teacher Opportunities to Promote Science) and TOPS Mentor programs, which focus on telecommunications and science, math, and technology content. The backbone of these programs is GeoNet, an electronic bulletin board system set up and maintained at Los Alamos National Laboratory. The TOPS experience exposes teachers to science and math in the context of a real problem of genuine scientific interest, increases their knowledge of science and math, enhances their teaching skills, provides activities for their students, and increases student and teacher abilities to communicate with other teachers and scientists. Their students, in turn, learn to approach scientific problems with enthusiasm and confidence. They perceive the beauty and joy of scientific endeavor and develop self-assurance, persistence, and enthusiasm.

  18. Decide now, pay later: Early influences in math and science education

    Energy Technology Data Exchange (ETDEWEB)

    Malcom, S.

    1995-12-31

    Who are the people deciding to major in science, math or engineering in college? The early interest in science and math education which can lead to science and engineering careers, is shaped as much by the encompassing world of the child as it is by formal education experiences. This paper documents what we know and what we need to know about the influences on children from pre-kindergarten through sixth grade, including the home, pre-school groups, science and math programs in churches, community groups, the media, cultural institutions (museums, zoos, botanical gardens), libraries, and schools (curriculum, instruction, policies and assessment). It also covers the nature and quality of curricular and intervention programs, and identifies strategies that appear to be most effective for various groups.

  19. Culturally relevant science: An approach to math science education for Hispanics

    Energy Technology Data Exchange (ETDEWEB)

    Montellano, B.O. de

    1996-11-14

    This report describes later stages of a program to develop culturally relevant science and math programs for Hispanic students. Part of this effort was follow-up with 17 teachers who participated in early stages of the program. Response was not very good. Included with the report is a first draft effort for curriculum materials which could be used as is in such a teaching effort. Several of the participating teachers were invited to a writing workshop, where lesson plans were drafted, and critiqued and following rework are listed in this publication. Further work needs to be completed and is ongoing.

  20. Nihithewak Ithiniwak, Nihithewatisiwin and science education: An exploratory narrative study examining Indigenous-based science education in K--12 classrooms from the perspectives of teachers in Woodlands Cree community contexts

    Science.gov (United States)

    Michell, Herman Jeremiah

    This study was guided by the following research questions: What do the stories of teachers in Nihithewak (Woodlands Cree) school contexts reveal about their experiences and tendencies towards cultural and linguistic-based pedagogical practices and actions in K-12 classrooms? How did these teachers come to teach this way? How do their beliefs and values from their experiences in science education and cultural heritage influence their teaching? Why do these teachers do what they do in their science classroom and instructional practices? The research explores Indigenous-based science education from the perspectives and experiences of science teachers in Nihithewak school contexts. Narrative methodology (Clandinin & Connelly, 2000) was used as a basis for collecting and analyzing data emerging from the research process. The results included thematic portraits and stories of science teaching that is connected to Nihithewak and Nihithewatisiwin (Woodlands Cree Way of Life). Major data sources included conversational interviews, out-of-class observations and occasional in-class observations, field notes, and a research journal. An interview guide with a set of open-ended and semi-structured questions was used to direct the interviews. My role as researcher included participation in storied conversations with ten selected volunteer teachers to document the underlying meanings behind the ways they teach science in Nihithewak contexts. This research is grounded in socio-cultural theory commonly used to support the examination and development of school science in Indigenous cultural contexts (Lemke, 2001; O'Loughlin, 1992). Socio-cultural theory is a framework that links education, language, literacy, and culture (Nieto, 2002). The research encapsulates a literature review that includes the history of Aboriginal education in Canada (Battiste & Barman, 1995; Kirkness, 1992; Perley, 1993), Indigenous-based science education (Cajete, 2000; Aikenhead, 2006a), multi

  1. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology.

    Science.gov (United States)

    Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. International Space Station: K-5 Hands-on Science and Math Lesson Plans.

    Science.gov (United States)

    Boeing Co., Huntsville, AL.

    The Space Station is already capturing the imaginations of American students, encouraging them to pursue careers in the sciences. The idea of living and working in space continues to spark this renewed interest. The material in this guide was developed to provide hands-on experiences in science and math in the context of an International Space…

  3. Informal Learning in Science, Math, and Engineering Majors for African American Female Undergraduates

    Science.gov (United States)

    McPherson, Ezella

    2014-01-01

    This research investigates how eight undergraduate African American women in science, math, and engineering (SME) majors accessed cultural capital and informal science learning opportunities from preschool to college. It uses the multiple case study methodological approach and cultural capital as frameworks to better understand the participants'…

  4. The Math and Science Partnership Program Evaluation: Overview of the First Two Years

    Science.gov (United States)

    Yin, Robert K.

    2008-01-01

    This study describes the Math and Science Partnership Program Evaluation (MSP-PE) during the project's first two years and provides the evaluation framework being used to assess the National Science Foundation's MSP Program. The study conveys the MSP-PE's ongoing design and implementation. To show how they reflect the nature of the MSP Program,…

  5. Math and science education programs from the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This booklet reviews math and science education programs at the Idaho National Engineering Laboratory (INEL). The programs can be categorized into six groups: teacher programs; science laboratories for students; student programs; education outreach programs; INEL Public Affairs Office; and programs for college faculty and students.

  6. Building a Science, Technology, Engineering, and Math Agenda

    Science.gov (United States)

    Toulmin, Charles N.; Groome, Meghan

    2007-01-01

    The global economy has "flattened" the world in terms of skills and technology. A new workforce of problem-solvers, innovators, and inventors who are self-reliant and able to think logically is one of the critical foundations that drive innovative capacity in a state. The K-12 (kindergarten through grade 12) education system, with the…

  7. Teachers' knowledge, beliefs, self-efficacy, and implementation of early childhood learning standards in science and math in prekindergarten and kindergarten

    Science.gov (United States)

    Pierro, Rebekah Chace

    Teacher self-efficacy and teacher beliefs play salient roles in science and math education with in-service teachers. This study seeks to understand the relationship between teacher knowledge, beliefs, and self-efficacy about science and math education in prekindergarten and kindergarten classrooms. The Prekindergarten and Kindergarten Science and Math Standards and Self-Efficacy Surveys were created to measure teacher knowledge of curriculum standards, beliefs of teaching skills, level of self-efficacy, and frequency of activities in classrooms for science and math, respectively. The self-report surveys were completed by 53 prekindergarten and 30 kindergarten teachers to examine the relationship that their knowledge of science and math standards, beliefs of science and math teaching skills, and level of science and math self-efficacy have on the frequency of science and math activities conducted in their classrooms. Beliefs of science and math teaching skills were related significantly to the reported frequency of science and math activities in prekindergarten and for science activities in kindergarten. Years of teaching prekindergarten was associated significantly with increased science and math activities. Teacher education was not associated with frequency of science or math activities. Findings revealed the more prekindergarten teachers enjoyed their science classes and math workshops the more they reported conducting science and math activities in the classroom. Both prekindergarten and kindergarten teachers reported that the less they enjoyed their previous math classes, the more time they spent on math activities in their classrooms. Results from this study have implications for professional development regarding science and math pedagogy and content knowledge.

  8. Initiating New Science Partnerships in Rural Education (INSPIRE) Brining STEM Research to 7th-12th Grade Science and Math Classrooms

    Science.gov (United States)

    Radencic, S.; McNeal, K. S.; Pierce, D.

    2012-12-01

    The Initiating New Science Partnerships in Rural Education (INSPIRE) program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on the advancement of Earth and Space science education in K-12 classrooms. INSPIRE currently in its third year of partnering ten graduate students each year from the STEM fields of Geosciences, Engineering, Physics and Chemistry at MSU with five teachers from local, rural school districts. The five year project serves to enhance graduate student's communication skills as they create interactive lessons linking their STEM research focus to the state and national standards covered in science and math classrooms for grades 7-12 through inquiry experiences. Each graduate student is responsible for the development of two lessons each month of the school year that include an aspect of their STEM research, including the technologies that they may utilize to conduct their STEM research. The plans are then published on the INSPIRE project webpage, www.gk12.msstate.edu, where they are a free resource for any K-12 classroom teacher seeking innovative activities for their classrooms and total over 300 lesson activities to date. Many of the participating teachers and graduate students share activities developed with non-participating teachers, expanding INSPIRE's outreach of incorporating STEM research into activities for K-12 students throughout the local community. Examples of STEM research connections to classroom topics related to earth and ocean science include activities using GPS with GIS for triangulation and measurement of area in geometry; biogeochemical response to oil spills compared to organism digestive system; hydrogeology water quality monitoring and GIS images used as a determinant for habitat suitability in area water; interactions of acids and bases in the Earth's environments and surfaces; and the importance of electrical circuitry in an electrode used in

  9. Professional Development for Early Childhood Educators: Efforts to Improve Math and Science Learning Opportunities in Early Childhood Classrooms

    Science.gov (United States)

    Piasta, Shayne B.; Logan, Jessica A. R.; Pelatti, Christina Yeager; Capps, Janet L.; Petrill, Stephen A.

    2015-01-01

    Because recent initiatives highlight the need to better support preschool-aged children's math and science learning, the present study investigated the impact of professional development in these domains for early childhood educators. Sixty-five educators were randomly assigned to experience 10.5 days (64 hr) of training on math and science or on…

  10. Gender in STEM Education: An Exploratory Study of Student Perceptions of Math and Science Instructors in the United Arab Emirates

    Science.gov (United States)

    Pasha-Zaidi, Nausheen; Afari, Ernest

    2016-01-01

    The current study addresses student perceptions of math and science professors in the Middle East. Gender disparity in science, technology, engineering, and math (STEM) education continues to exist in higher education, with male professors holding a normative position. This disparity can also be seen in the United Arab Emirates. As female…

  11. Professional Development for Early Childhood Educators: Efforts to Improve Math and Science Learning Opportunities in Early Childhood Classrooms

    Science.gov (United States)

    Piasta, Shayne B.; Logan, Jessica A. R.; Pelatti, Christina Yeager; Capps, Janet L.; Petrill, Stephen A.

    2015-01-01

    Because recent initiatives highlight the need to better support preschool-aged children's math and science learning, the present study investigated the impact of professional development in these domains for early childhood educators. Sixty-five educators were randomly assigned to experience 10.5 days (64 hr) of training on math and science or on…

  12. Laboratory Earth Under the Lens: Diachronic Evaluation of an Integrated Graduate-Level On-Line Earth System Science Course Series for K-12 Educators

    Science.gov (United States)

    Low, R.; Gosselin, D. C.; Haney, C.; Larson-Miller, C.; Bonnstetter, R.; Mandryk, C.

    2012-12-01

    Educational research strives to identify the pedagogies that promote student learning. However, the body of research identifying the characteristics of effective teacher preparation is "least strong for science," and is largely based on studies of the effectiveness of individual courses or workshops (NRC 2010). The National Research Council's "Preparing Teachers: Building Evidence for Strong Policy," (2010) provides a mandate for teacher education providers to conduct research on program-scale effectiveness. The high priority research agenda identified by the NRC is expected to elicit understanding of the aspects of teacher preparation that critically impact classroom student learning outcomes. The Laboratory Lens project is designed to identify effective practices in a teacher education program, with specific reference to the content domain of Earth science. Now in its fifth year, the Masters of Applied Science (MAS) program at UNL offers a variety of science courses, ranging from entomology to food science. The six-course Lab Earth series serves as the backbone of the Specialization for Science Educators within the MAS program, and provides comprehensive content coverage of all Earth science topics identified in the AAAS Benchmarks. "How People Learn," (NRC 2009) emphasizes that expert knowledge includes not only factual knowledge, but also the well-developed conceptual framework critical to the ability to, "remember, reason, and solve problems." A focus of our research is to document the process by which the transition from novice to expert takes place in Lab Earth's on-line teacher participants. A feature of our research design is the standardization of evaluation instruments across the six courses. We have used data derived from implementation of the Community of Inquiry Survey (COI) in pilot offerings to ensure that the course sequence is effective in developing a community of learners, while developing their content knowledge. A pre- and post- course

  13. Scientists Involved in K-12 Education

    Science.gov (United States)

    Robigou, V.

    2004-12-01

    The publication of countless reports documenting the dismal state of science education in the 1980s, and the Third International Mathematics and Science Study (TIMMS) report (1996) called for a wider involvement of the scientific community in K-12 education and outreach. Improving science education will not happen without the collaboration of educators and scientists working in a coordinated manner and it requires a long-term, continuous effort. To contribute effectively to K-12 education all scientists should refer to the National Science Education Standards, a set of policies that guide the development of curriculum and assessment. Ocean scientists can also specifically refer to the COSEE recommendations (www.cosee.org) that led to the creation of seven regional Centers for Ocean Sciences Education Excellence. Scientists can get involved in K-12 education in a multitude of ways. They should select projects that will accommodate time away from their research and teaching obligations, their talent, and their interest but also contribute to the education reform. A few examples of effective involvement are: 1) collaborating with colleagues in a school of education that can lead to better education of all students and future teachers, 2) acting as a resource for a national program or a local science fair, 3) serving on the advisory board of a program that develops educational material, 4) speaking out at professional meetings about the value of scientists' involvement in education, 5) speaking enthusiastically about the teaching profession. Improving science education in addition to research can seem a large, overwhelming task for scientists. As a result, focusing on projects that will fit the scientist's needs as well as benefit the science reform is of prime importance. It takes an enormous amount of work and financial and personnel resources to start a new program with measurable impact on students. So, finding the right opportunity is a priority, and stepping

  14. The Metamorphosis by K. (12)

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    In the last issue of the Bulletin we reported on the first run of the new NA62 experiment. In this issue, we go behind the scenes to take a look at the production of the experiment's new kaon beam.   The start of the K12 beam line as seen during the installation of the shielding. 10-2, 10-3, 10-4, 10-5, 10-6 mbar… send in the protons! Since Thursday 1 November, the P42 beam line of the SPS has once again been sending protons to the beryllium target to produce the K12 kaon beam line eagerly awaited by the NA62 collaboration. This was no trivial matter! The first step was to clear the decks by dismantling the entire H10 beam line and NA60 experiment, as well as most of the NA48 experiment - representing some 1000 tonnes of equipment in total! Next came the complete renovation of the infrastructure, which dated back to 1979. The operation called on the expertise of virtually all branches of the EN and GS departments, as well as the Radiation Protection group: from ...

  15. Engineering Education in K-12 Schools

    Science.gov (United States)

    Spence, Anne

    2013-03-01

    Engineers rely on physicists as well as other scientists and mathematicians to explain the world in which we live. Engineers take this knowledge of the world and use it to create the world that never was. The teaching of physics and other sciences as well as mathematics is critical to maintaining our national workforce. Science and mathematics education are inherently different, however, from engineering education. Engineering educators seek to enable students to develop the habits of mind critical for innovation. Through understanding of the engineering design process and how it differs from the scientific method, students can apply problem and project based learning to solve the challenges facing society today. In this talk, I will discuss the elements critical to a solid K-12 engineering education that integrates science and mathematics to solve challenges throughout the world.

  16. The influence of female social models in corporate STEM initiatives on girls' math and science attitudes

    Science.gov (United States)

    Medeiros, Donald J.

    The United States' Science, Technology, Engineering, and Mathematics (STEM) workforce is growing slower than in the past, in comparison to demand, and in comparison to other countries. Competitive talent conditions require the United States to develop a strong pipeline of STEM talent within its own citizens. Given the number of female college graduates and their underrepresentation in the STEM workforce, women provide the greatest opportunity for fulfilling this need. The term social model represents the individuals and media that shape children's self-perceptions. Social models have been shown to positively influence girl's perceptions of the value of math and science as well as their expectations of success. This study examined differences in attitudes towards math and science among student participants in corporate STEM programs. Differences were measured based on participant gender and ethnicity, their mentor's gender and ethnicity, and program design differences. The research purpose was to inform the design of corporate STEM programs to improve female participants' attitudes towards math and science and eventually increase the number of women in the STEM workforce. Over three hundred students in differing corporate STEM programs completed math and science attitudinal scales at the start and end of their programs. Study results revealed, prior to program start, female participants had a better attitude towards math and science than male participants. Analysis of the Trends in International Mathematics and Science Study data showed similar results. Overall program results demonstrated higher post program math and science attitudes with no differences based on gender, age, or ethnicity of the participant or mentor. Participants with high program or mentor satisfaction were found to have higher attitudes towards math and science. These results may suggest improving female academic choice requires more focus on their expectations of success than perceived task

  17. Advanced placement math and science courses: Influential factors and predictors for success in college STEM majors

    Science.gov (United States)

    Hoepner, Cynthia Colon

    President Obama has recently raised awareness on the need for our nation to grow a larger pool of students with knowledge in science mathematics, engineering, and technology (STEM). Currently, while the number of women pursuing college degrees continues to rise, there remains an under-representation of women in STEM majors across the country. Although research studies offer several contributing factors that point to a higher attrition rate of women in STEM than their male counterparts, no study has investigated the role that high school advanced placement (AP) math and science courses play in preparing students for the challenges of college STEM courses. The purpose of this study was to discover which AP math and science courses and/or influential factors could encourage more students, particularly females, to consider pursuing STEM fields in college. Further, this study examined which, if any, AP math or science courses positively contribute to a student's overall preparation for college STEM courses. This retrospective study combined quantitative and qualitative research methods. The survey sample consisted of 881 UCLA female and male students pursuing STEM majors. Qualitative data was gathered from four single-gender student focus groups, two female groups (15 females) and two male groups (16 males). This study examined which AP math and science courses students took in high school, who or what influenced them to take those courses, and which particular courses influenced student's choice of STEM major and/or best prepared her/him for the challenges of STEM courses. Findings reveal that while AP math and science course-taking patterns are similar of female and male STEM students, a significant gender-gap remains in five of the eleven AP courses. Students report four main influences on their choice of AP courses; self, desire for math/science major, higher grade point average or class rank, and college admissions. Further, three AP math and science courses were

  18. Overcoming Constraints of Building Successful Partnerships Incorporating STEM Research Into K-12 Classrooms

    Science.gov (United States)

    Radencic, S.; McNeal, K. S.; Pierce, D.; Hare, D.

    2011-12-01

    The Initiating New Science Partnerships in Rural Education (INSPIRE) program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on the advancement of Earth and Space science education in K-12 classrooms. INSPIRE is currently in its second year of partnering ten graduate students from the STEM fields of Geosciences, Engineering and Chemistry at MSU with five teachers from local, rural school districts. The five year project serves to increase inquiry and technology experiences in science and math while enhancing graduate student's communication skills as they create interactive lessons linking their STEM research focus to the state and national standards covered in the classrooms. Each graduate student is responsible for the development of two lessons each month of the school year that are then published on the INSPIRE project webpage, www.gk12.msstate.edu, where they are a free resource for any K-12 classroom teacher seeking innovative activities for their classrooms. Many of the participating teachers and graduate students share activities developed with non-participating teachers, expanding INSPIRE's outreach throughout the local community. Numerous challenges were met during the formation of the program as well as throughout the first year in which the project management team worked together to find solutions ensuring that INSPIRE maintained successful partnerships for all involved. Proposed solutions of the following key components were identified by INSPIRE through the development, implementation, and continuous evaluation (internal and external) of the first year of the program as areas that can pose challenges to the construction of strong relationships between STEM research and K-12 classrooms: initializing the partnerships with the K-12 classrooms and STEM graduate fields at the university; maintaining strong partnerships; providing appropriate training and support; developing sound

  19. International Space Station: 6-8 Hands-on Science and Math Lesson Plans.

    Science.gov (United States)

    Armstrong, Pat

    These lesson plans, designed for grades 6-8, have been developed to provide a guide to hands-on experience in science and math. They focus on an International Space Station and are designed for use with students working in groups. The three lesson plans highlighting the importance of the scientific method are: (1) International Space Station…

  20. Service Learning within a Secondary Math and Science Teacher Education Program: Preservice MAT Teachers' Perspectives

    Science.gov (United States)

    Borgerding, Lisa A.; Caniglia, Joanne

    2017-01-01

    Previous literature suggests that service learning may offer new opportunities to support the development of preservice science and math teachers, but few studies examine service learning beyond isolated teaching events. In this qualitative study, we attempt to improve upon this literature by following Master of Arts in Teaching (MAT) students'…

  1. The Effects of Differentiated Instruction on Grade 7 Math and Science Scores

    Science.gov (United States)

    Shaffer, Donna

    There has been a decline of math and science assessment scores consecutively over the past 2 years at a local middle school. This mixed method study incorporated a sequential qualitative-quantitative explanatory strategy with the intent of enhancing and altering the instructional process to increase student achievement. The qualitative portion of the study explored the process of differentiated instruction and perceptions of those who were involved within the development of a nontraditional approach to instruction in the 7th grade content areas of math and science. For the quantitative portion of the study, assessment data were collected for 2010 and 2011 for the 7th grade math and science content areas. Constructivism served as the theoretical foundation for the study. The results of the qualitative analysis suggested that the majority of the participants believed that differentiated instruction positively impacts student scores for the Tennessee Comprehensive Assessment Program (TCAP). The result of an independent t test indicated that students receiving differentiated instruction had higher math and science TCAP test scores for Grade 7 One recommendation is for future research to be conducted regarding differentiated instruction's impact on student achievement so that the gap in scientific research in this area may be bridged. Implications for social change include the potential for enhancing the instructional process that could result in improved student achievement.

  2. Persistence Motivations of Chinese Doctoral Students in Science, Technology, Engineering, and Math

    Science.gov (United States)

    Zhou, Ji

    2014-01-01

    This study explored what motivated 6 Chinese international students to complete a PhD in science, technology, engineering, and math fields in the United States despite perceived dissatisfaction. This study was grounded in the value-expectancy achievement motivation theory and incorporated a Confucian cultural lens to understand motivation. Four…

  3. Women in Physics: A Comparison to Science, Technology, Engineering, and Math Education over Four Decades

    Science.gov (United States)

    Sax, Linda J.; Lehman, Kathleen J.; Barthelemy, Ramón S.; Lim, Gloria

    2016-01-01

    The dearth of women in science, technology, engineering, and math (STEM) fields has been lamented by scholars, administrators, policymakers, and the general public for decades, and the STEM gender gap is particularly pronounced in physics. While previous research has demonstrated that this gap is largely attributable to a lack of women pursuing…

  4. The Relevance of Career Aspirations for Transfer Students Persisting in Science, Technology, Engineering and Math Disciplines

    Science.gov (United States)

    Coyote, Ruthann T.

    2013-01-01

    This qualitative study utilizes data acquired from interviews with 18 community college transfer students in Science, Technology, Engineering and Math (STEM) majors and 7 university staff people who work in direct student services with this student population. This study explores the experiences of transfer students in STEM majors regarding what…

  5. Touring Mars Online, Real-time, in 3D for Math and Science Educators and Students

    Science.gov (United States)

    Jones, Greg; Kalinowski, Kevin

    2007-01-01

    This article discusses a project that placed over 97% of Mars' topography made available from NASA into an interactive 3D multi-user online learning environment beginning in 2003. In 2005 curriculum materials that were created to support middle school math and science education were developed. Research conducted at the University of North Texas…

  6. Building Links between Early Socioeconomic Status, Cognitive Ability, and Math and Science Achievement

    Science.gov (United States)

    Blums, Angela; Belsky, Jay; Grimm, Kevin; Chen, Zhe

    2017-01-01

    The present study examined whether and how socioeconomic status (SES) predicts school achievement in science, technology, engineering, and math (STEM) using structural equation modeling and data from the National Institute of Child Health and Human Development Study of Child Care and Youth Development. The present inquiry addresses gaps in…

  7. The Relationship between Students' Exposure to Technology and Their Achievement in Science and Math

    Science.gov (United States)

    Delen, Erhan; Bulut, Okan

    2011-01-01

    The purpose of this study was to examine the effects of information and communication technologies (ICT) on students' math and science achievement. Recently, ICT has been widely used in classrooms for teaching and learning purposes. Therefore, it is important to investigate how these technological developments affect students' performance at…

  8. The Role of Social Support in Students' Perceived Abilities and Attitudes toward Math and Science

    Science.gov (United States)

    Rice, Lindsay; Barth, Joan M.; Guadagno, Rosanna E.; Smith, Gabrielle P. A.; McCallum, Debra M.

    2013-01-01

    Social cognitive models examining academic and career outcomes emphasize constructs such as attitude, interest, and self-efficacy as key factors affecting students' pursuit of STEM (science, technology, engineering and math) courses and careers. The current research examines another under-researched component of social cognitive models: social…

  9. The Relevance of Career Aspirations for Transfer Students Persisting in Science, Technology, Engineering and Math Disciplines

    Science.gov (United States)

    Coyote, Ruthann T.

    2013-01-01

    This qualitative study utilizes data acquired from interviews with 18 community college transfer students in Science, Technology, Engineering and Math (STEM) majors and 7 university staff people who work in direct student services with this student population. This study explores the experiences of transfer students in STEM majors regarding what…

  10. STEM the Tide: Reforming Science, Technology, Engineering, and Math Education in America

    Science.gov (United States)

    Drew, David E.

    2011-01-01

    One study after another shows American students ranking behind their international counterparts in the STEM fields--science, technology, engineering, and math. Business people such as Bill Gates warn that this alarming situation puts the United States at a serious disadvantage in the high-tech global marketplace of the twenty-first century, and…

  11. Demystify Math, Science, and Technology: Creativity, Innovation, and Problem-Solving

    Science.gov (United States)

    Adams, Dennis; Hamm, Mary

    2010-01-01

    Technology is viewed as a powerful force both in and out of school and has long been linked with math and science. Although concepts and activities of this book apply to any grade, the primary focus is on the elementary and middle school levels. This book provides principles and practical strategies for promoting creative and innovative work in…

  12. Building Links between Early Socioeconomic Status, Cognitive Ability, and Math and Science Achievement

    Science.gov (United States)

    Blums, Angela; Belsky, Jay; Grimm, Kevin; Chen, Zhe

    2017-01-01

    The present study examined whether and how socioeconomic status (SES) predicts school achievement in science, technology, engineering, and math (STEM) using structural equation modeling and data from the National Institute of Child Health and Human Development Study of Child Care and Youth Development. The present inquiry addresses gaps in…

  13. Women in Physics: A Comparison to Science, Technology, Engineering, and Math Education over Four Decades

    Science.gov (United States)

    Sax, Linda J.; Lehman, Kathleen J.; Barthelemy, Ramón S.; Lim, Gloria

    2016-01-01

    The dearth of women in science, technology, engineering, and math (STEM) fields has been lamented by scholars, administrators, policymakers, and the general public for decades, and the STEM gender gap is particularly pronounced in physics. While previous research has demonstrated that this gap is largely attributable to a lack of women pursuing…

  14. Persistence Motivations of Chinese Doctoral Students in Science, Technology, Engineering, and Math

    Science.gov (United States)

    Zhou, Ji

    2014-01-01

    This study explored what motivated 6 Chinese international students to complete a PhD in science, technology, engineering, and math fields in the United States despite perceived dissatisfaction. This study was grounded in the value-expectancy achievement motivation theory and incorporated a Confucian cultural lens to understand motivation. Four…

  15. University-Urban High School Partnership: Math and Science Professional Learning Communities

    Science.gov (United States)

    ndunda, mutindi; Van Sickle, Meta; Perry, Lindsay; Capelloni, Alison

    2017-01-01

    This study focused on science and math professional learning communities (PLCs) that were implemented through a university-urban high school partnership. These PLCs were part of mandated school-wide, content-based PLCs implemented as part of the reform efforts initiated in an urban school to address the school's failure to meet Adequate Yearly…

  16. ESL Mentoring for Secondary Rural Educators: Math and Science Teachers Become Second Language Specialists through Collaboration

    Science.gov (United States)

    Hansen-Thomas, Holly; Grosso Richins, Liliana

    2015-01-01

    This article draws on data from the capstone graduate course in a specially designed professional development program for rural math and science teachers that describes how participant teachers translated their newly acquired knowledge about English as a second language (ESL) into a mentoring experience for their rural content specialist peers.…

  17. It's Not Maths; It's Science: Exploring Thinking Dispositions, Learning Thresholds and Mindfulness in Science Learning

    Science.gov (United States)

    Quinnell, R.; Thompson, R.; LeBard, R. J.

    2013-01-01

    Developing quantitative skills, or being academically numerate, is part of the curriculum agenda in science teaching and learning. For many of our students, being asked to "do maths" as part of "doing science" leads to disengagement from learning. Notions of "I can't do maths" speak of a rigidity of mind, a…

  18. Math tools 500+ applications in science and arts

    CERN Document Server

    Glaeser, Georg

    2017-01-01

    In this book, topics such as algebra, trigonometry, calculus and statistics are brought to life through over 500 applications ranging from biology, physics and chemistry to astronomy, geography and music. With over 600 illustrations emphasizing the beauty of mathematics, Math Tools complements more theoretical textbooks on the market, bringing the subject closer to the reader and providing a useful reference to students. By highlighting the ubiquity of mathematics in practical fields, the book will appeal not only to students and teachers, but to anyone with a keen interest in mathematics and its applications.

  19. 美国《科学教育框架》的特点及启示%On the Characteristics of 《A Framework for K-12 Science Education》 in the United States and Its Implication

    Institute of Scientific and Technical Information of China (English)

    黄芳

    2012-01-01

    《A Framework for K-12 Science Education》 released by the National Research Council has proposed the new vision of the science education in the U. S. of the new stage, which has reflected the new tendency of the scheme of talent cultivation of the U.S. as follows : as for the understanding of science, the key points have been transformed from "exploration'! to "practice"; as for the realm of science education, the domains have been transformed from "science and technology" to the integration of "science, technology and engineering", as for the contents of disciplinary education, the key issues have been transformed from the concept of science to the core thoughts of discipline. To carry forward science education of primary and secondary schools in China, we should promote the status of the curricula of primary and secondary science education; pay attention to the enlightenment and fundamentality of science education of primary and secondary schools in the system of talent cultivation; attach great importance to the integration, comprehensiveness and practicality of science curricula to meet the requirement of social development; think highly of the research of science education and the application of the research achievements.%《科学教育框架》提出了新阶段美国科学教育的发展愿景,反映出美国人才培养方案的新动向,在对科学的理解上,实现从“探究”到“实践”的跨越,在科学教育方面,体现从“科学与技术”到“科学、技术与工程”的整合,在学科教育内容方面,体现从科学“概念”到学科核心思想的提升。推进我国中小学科学教育,应提高中小学科学课程地位、重视中小学科学教育在人才培养系统中的启蒙性和基础性作用;注重中小学科学课程的统整性、综合性与实践性,适应社会发展需求;充分重视科学教育研究及其成果运用。

  20. Teachers' Curriculum Guide to the Hayward Shoreline, K-12.

    Science.gov (United States)

    Bachle, Leo; And Others

    This teaching guide gives environmental education ideas for grades K-12. The field trips and activities all relate to the Hayward shoreline of the San Francisco, California, Bay. Included in the guide are 44 science activities, 15 social science activities, and 18 humanities activities. Each activity description gives the experience level, site…

  1. Enhancing the Math and Science Experiences of Latinas and Latinos: A Study of the Joaquin Bustoz Math-Science Honors Program

    Science.gov (United States)

    Escontrias, Gabriel, Jr.

    Latinas and Latinos are currently underrepresented in terms of our 21 st century student academic attainment and workforce, compared to the total U.S. Hispanic population. In a field such as mathematical sciences, Hispanic or Latino U.S. citizenship doctoral recipients only accounted for 3.04% in 2009--2010. While there are various initiatives to engage underrepresented STEM populations through education, there is a need to give a voice to the experiences of Latinas and Latinos engaged in such programs. This study explored the experiences of seven Arizona State University undergraduate Latina and Latino Joaquin Bustoz Math-Science Honors Program (JBMSHP) participants as well as examined how the program enhanced their math and science learning experiences. Participants attended either a five-week or eight-week program and ranged in attendance from 2006 to 2011. Students were provided an opportunity to begin university mathematics and science studies before graduating high school. Through a demographic survey and one-on-one guided interview, participants shared their personal journey, their experience in the JBMSHP, and their goals. Using grounded theory, a qualitative research approach, this study focuses on the unique experiences of Latina and Latino participants. Four major themes emerged from the analysis of the data. Each participant applied to the program with a foundation in which they sought to challenge themselves academically through mathematics and/or science. Through their involvement it the JBMSHP, participants recognized benefits during and after the program. All participants recognized the value of these benefits and their participation and praised the program. Overall, the JBMSHP provided the students the resources to grow their academic capital and if they chose seek a STEM related bachelor degree. The results of this study emphasize the need to expand the JBMSHP both within Arizona and nationally. In addition, there is a need to explore the other

  2. K-12 Students Flock To ToxTown In San Diego: Results of an SOT K-12 Education Outreach Workshop

    Science.gov (United States)

    Just prior to the start of the 2015 Annual Meeting in San Diego, hundreds of K-12 students, teachers, and science enthusiasts visited the ToxTown booth at the annual San Diego Festival of Science and Engineering grand finale event, EXPO Day. Over 20,000 attendees participated in ...

  3. K-12 Teaching and Physics Enrollment

    CERN Document Server

    Masood, Samina S

    2014-01-01

    We have collected and analyzed the relevant data from public schools in greater Houston area of Texas. Based and analyzed. Since the data is only limited to a few school, we are still working on getting more data so that we can compare and contrast the results adequately and understand the core of the enrollment issue at the national level. However, based on the raw data and partial analysis, we propose a few recommendations towards the improvement of science education in Texas Schools, in general, and greater Houston area schools in particular. Our results indicate that the quality of science education can be improved significantly if we focus on the improvement of high school education or even intermediate schools when students are first time exposed to science in a little technical way. Simply organizing teacher training programs at K-12 level as school education plays a pivotal role in the decrease in physics enrollment at the higher level. Similar analysis can actually be generalized to other states to f...

  4. Longitudinal effects of college type and selectivity on degrees conferred upon undergraduate females in physical science, life science, math and computer science, and social science

    Science.gov (United States)

    Stevens, Stacy Mckimm

    There has been much research to suggest that a single-sex college experience for female undergraduate students can increase self-confidence and leadership ability during the college years and beyond. The results of previous studies also suggest that these students achieve in the workforce and enter graduate school at higher rates than their female peers graduating from coeducational institutions. However, some researchers have questioned these findings, suggesting that it is the selectivity level of the colleges rather than the comprised gender of the students that causes these differences. The purpose of this study was to justify the continuation of single-sex educational opportunities for females at the post-secondary level by examining the effects that college selectivity, college type, and time have on the rate of undergraduate females pursuing majors in non-traditional fields. The study examined the percentage of physical science, life science, math and computer science, and social science degrees conferred upon females graduating from women's colleges from 1985-2001, as compared to those at comparable coeducational colleges. Sampling for this study consisted of 42 liberal arts women's (n = 21) and coeducational (n = 21) colleges. Variables included the type of college, the selectivity level of the college, and the effect of time on the percentage of female graduates. Doubly multivariate repeated measures analysis of variance testing revealed significant main effects for college selectivity on social science graduates, and time on both life science and math and computer science graduates. Significant interaction was also found between the college type and time on social science graduates, as well as the college type, selectivity level, and time on math and computer science graduates. Implications of the results and suggestions for further research are discussed.

  5. K-12 Teacher Professional Development

    Science.gov (United States)

    Hemenway, Mary Kay

    2013-06-01

    For many school subjects, teachers enlist in professional development activities to fulfill certification requirements to update themselves on recent developments in their field. For astronomy, in addition to certification, many teachers need to acquire basic knowledge and skills since their background is often deficient. Thus, a main goal of professional development workshops is to enhance the knowledge base of the participants. But their needs go beyond what can be acquired in a book or lecture. In response to guidelines of the National Science Education Standards (1996), the participants should actively investigate phenomena and interpret results, be introduced to resources that expand their knowledge, build on their current understanding, and incorporate reflection on the process and outcomes of understanding science through inquiry. Examples of how these elements are incorporated into workshops that emphasize activities and teacher-to-teacher interaction over lecture are offered in this presentation. Setting realistic goals for workshops of different lengths (from one day to one month) and evaluating the results are also components of teacher professional development.

  6. Girls Entering Technology, Science, Math and Research Training (get Smart): a Model for Preparing Girls in Science and Engineering Disciplines

    Science.gov (United States)

    Mawasha, P. Ruby; Lam, Paul C.; Vesalo, John; Leitch, Ronda; Rice, Stacey

    In this article, it is postulated that the development of a successful training program for women in science, math, engineering, and technology (SMET) disciplines is dependent upon a combination of several factors, including (a) career orientation: commitment to SMET as a career, reasons for pursuing SMET as a career, and opportunity to pursue a SMET career; (b) knowledge of SMET: SMET courses completed, SMET achievement, and hands-on SMET activities; (c) academic and social support: diversity initiatives, role models, cooperative learning, and peer counseling; and (d) self-concept: program emphasis on competence and peer competition. The proposed model is based on the GET SMART (Girls Entering Technology, Science, Math and Research Training) workshop program to prepare and develop female high school students as competitive future SMET professionals. The proposed model is not intended to serve as an elaborate theory, but as a general guide in training females entering SMET disciplines.

  7. Similarity of TIMSS Math and Science Achievement of Nations

    Directory of Open Access Journals (Sweden)

    Algirdas Zabulionis

    2001-09-01

    Full Text Available In 1991-97, the International Association for the Evaluation of Educational Achievement (IEA undertook a Third International Mathematics and Science Study (TIMSS in which data about the mathematics and science achievement of the thirteen year-old students in more than 40 countries were collected. These data provided the opportunity to search for patterns of students' answers to the test items: which group of items was relatively more difficult (or more easy for the students from a particular country (or group of countries. Using this massive data set an attempt was made to measure the similarities among country profiles of how students responded to the test items.

  8. Our Practice, Their Readiness: Teacher Educators Collaborate to Explore and Improve Preservice Teacher Readiness for Science and Math Instruction

    Science.gov (United States)

    Steele, Astrid; Brew, Christine; Rees, Carol; Ibrahim-Khan, Sheliza

    2013-02-01

    Since many preservice teachers (PTs) display anxiety over teaching math and science, four PT educators collaborated to better understand the PTs' background experiences and attitudes toward those subjects. The research project provided two avenues for professional learning: the data collected from the PTs and the opportunity for collaborative action research. The mixed method study focused on: the relationship between gender and undergraduate major (science versus non-science) with respect to previous and current engagement in science and math, understanding the processes of inquiry, and learning outside the classroom. A field trip to a science center provided the setting for the data collection. From a sample of 132 PTs, a multivariate analysis showed that the science major of PTs explained most of the gender differences with respect to the PTs' attitudes toward science and mathematics. The process of inquiry is generally poorly interpreted by PTs, and non-science majors prefer a more social approach in their learning to teach science and math. The four educators/collaborators reflect on the impacts of the research on their individual practices, for example, the need to: include place-based learning, attend to the different learning strategies taken by non-science majors, emphasize social and environmental contexts for learning science and math, be more explicit regarding the processes of science inquiry, and provide out-of-classroom experiences for PTs. They conclude that the collaboration, though difficult at times, provided powerful opportunities for examining individual praxis.

  9. Hands-On Astrophysics: Variable Stars in Math, Science, and Computer Education

    Science.gov (United States)

    Mattei, J. A.; Percy, J. R.

    1999-12-01

    Hands-On Astrophysics (HOA): Variable Stars in Math, Science, and Computer Education, is a project recently developed by the American Association of Variable Star Observers (AAVSO) with funds from the National Science Foundation. HOA uses the unique methods and the international database of the AAVSO to develop and integrate students' math and science skills through variable star observation and analysis. It can provide an understanding of basic astronomy concepts, as well as interdisciplinary connections. Most of all, it motivates the user by exposing them to the excitement of doing real science with real data. Project materials include: a database of 600,000 variable star observations; VSTAR (a data plotting and analysis program), and other user friendly software; 31 slides and 14 prints of five constellations; 45 variable star finder charts; an instructional videotape in three 15-minute segments; and a 560-page student's and teacher's manual. These materials support the National Standards for Science and Math education by directly involving the students in the scientific process. Hands-On Astrophysics is designed to be flexible. It is organized so that it can be used at many levels, in many contexts: for classroom use from high school to college level, or for individual projects. In addition, communication and support can be found through the AAVSO home page on the World Wide Web: http://www.aavso.org. The HOA materials can be ordered through this web site or from the AAVSO, 25 Birch Street Cambridge, MA 02138, USA. We gratefully acknowledge the education grant ESI-9154091 from the National Science Foundation which funded the development of this project.

  10. Understanding decisions Latino students make regarding persistence in the science and math pipeline

    Science.gov (United States)

    Munro, Janet Lynn

    This qualitative study focused on the knowledge and perceptions of Latino high school students, as well those of their parents and school personnel, at a southwestern, suburban high school regarding persistence in the math/science pipeline. In the context of the unique school and community setting these students experience, the decision-making process was examined with particular focus on characterizing the relationships that influence the process. While the theoretical framework that informs this study was that of social capital, its primary purpose was to inform the school's processes and policy in support of increased Latino participation in the math and science pipeline. Since course selection may be the most powerful factor affecting school achievement and college-preparedness, and since course selection is influenced by school policy, school personnel, students, parents, and teachers alike, it is important to understand the beliefs and perceptions that characterize the relationships among them. The qualitative research design involved a phenomenological study of nine Latino students, their parents, their teachers and counselors, and certain support personnel from the high school. The school's and community's environment in support of academic intensity served as context for the portrait that developed. Given rapidly changing demographics that bring more and more Latino students to suburban high schools, the persistent achievement gap experienced by Latino students, and the growing dependence of the world economy on a citizenry versed in the math- and science-related fields, a deeper understanding of the decision-making processes Latino 12 students experience can inform school policy as educators struggle to influence those decisions. This study revealed a striking lack of knowledge concerning the college-entrance ramifications of continued course work in math and science beyond that required for graduation, relationships among peers, parents, and school

  11. Exploring Pulses through Math, Science, and Nutrition Activities

    Science.gov (United States)

    Smith, Diane K.; Mandal, Bidisha; Wallace, Michael L.; Riddle, Lee Anne; Kerr, Susan; Atterberry, Kelly Ann; Miles, Carol

    2016-01-01

    Purpose/Objectives: The Healthy, Hunger-Free Kids Act of 2010 includes pulses as a required component of the school lunch menu standard. Pulses are nutritionally important staple food crops, and include dry beans, dry peas, garbanzo beans, and lentils. This current study examined the short-term effectiveness of a Science, Technology, Engineering,…

  12. Exploring Pulses through Math, Science, and Nutrition Activities

    Science.gov (United States)

    Smith, Diane K.; Mandal, Bidisha; Wallace, Michael L.; Riddle, Lee Anne; Kerr, Susan; Atterberry, Kelly Ann; Miles, Carol

    2016-01-01

    Purpose/Objectives: The Healthy, Hunger-Free Kids Act of 2010 includes pulses as a required component of the school lunch menu standard. Pulses are nutritionally important staple food crops, and include dry beans, dry peas, garbanzo beans, and lentils. This current study examined the short-term effectiveness of a Science, Technology, Engineering,…

  13. Minority Students Severely Underrepresented in Science, Technology Engineering and Math

    Science.gov (United States)

    Slovacek, Simeon P.; Whittinghill, Jonathan C.; Tucker, Susan; Rath, Kenneth A.; Peterfreund, Alan R.; Kuehn, Glenn D.; Reinke, Yvonne G.

    2011-01-01

    This study documents the system of funded interventions employed at three public universities to support minority students studying science and examines targeted students' career paths to discern the general efficacy of these interventions and other factors influencing success toward earning Ph.D.s. Interventions, including supplemental…

  14. Increasing the competitive edge in math and science

    CERN Document Server

    Kettlewell, Janet S; Coleman, Dava C; Fowler, Rosalind Barnes; Hessinger, Sabrina A; Jones, Sheila; Mast, Amy S; McGee-Brown, Mary Jo; Miller, HRichard

    2009-01-01

    The U. S. is losing its competitive edge in science, technology, engineering, and mathematics (STEM). Thomas Friedman warns that America is not producing enough young people in STEM fields that are essential for entrepreneurship and innovation in the 21st century (The World Is Flat: A Brief History of the Twenty-First Century, 2005).

  15. What Do We Know? Seeking Effective Math and Science Instruction

    Science.gov (United States)

    Clewell, Beatriz Chu; Cosentino de Cohen, Clemencia; Deterding, Nicole; Manes, Sarah; Tsui, Lisa; Campbell, Patricia B.; Perlman, Lesley; Rao, Shay N.S.; Branting, Becky; Hoey, Lesli; Carson, Rosa

    2005-01-01

    The main goal of this review was to identify mathematics and science curricula as well as professional development models at the middle and high school levels that had been deemed effective based on their success in increasing student achievement. Because of its emphasis on student achievement, this approach differs from that typically used at the…

  16. 美国基础教育理科教科书评价标准及其启示%An Overview on K-12 Science Textbook Evaluation in USA

    Institute of Scientific and Technical Information of China (English)

    杨文源; 刘恩山

    2013-01-01

    The researches on K-12 textbook evaluation were started in the mid-19th century in United States. Up to now, the studies have been increasingly mature and systematic. Compatible with the education administration system, there are both national“2061 Project”textbook evaluation criteria and state textbook evaluation criteria based on national criteria in United States, which are signiifcant references to our studies on science textbook evaluation.%美国的基础教育教科书评价研究起步较早,发展至今已相对成熟且系统化。与其地方分权的教育管理体制相适应,美国既有跨州的“2061计划”教科书评价标准,也有各州在此基础上制定的本州教科书评价标准,这些标准的研制理念与现代教育评价理论一致,很好地体现了对教科书价值的判定,并使教科书的价值得以量化并外显出来,对我国教科书评价研究及标准的制定具有借鉴和参考意义。

  17. “SIMPLE Sciernce ”——基于图像的中小学简化科学教育数字图书馆%SIMPLE Science: Image-Based Learning Digital Library for K-12 Education

    Institute of Scientific and Technical Information of China (English)

    刘燕权; 王群

    2011-01-01

    SIMPLE Science is a digital library project aiming to "overcome barriers to mainstream use of image processing and analysis (IPA) in K-12 education''. It attempts to make IPA accessible and easy to use, provide extensive and updateable archives of imaging data, and design a pedagogical structure that supports national education standards for middle school education. The article provides an extended review on the comtruction and status of the digital library, including project background, resources organization, technological structures, service features, as well as comments and suggestions made by the authors.%SIMPLE Science是一个通过利用图像处理及分析技术(IPA)辅助青少年学习的数字图书馆,通过提供图片信息、教学计划、课程活动使得图像处理和分析能够作为一种学习工具得以使用,同时也为教育工作者在教学过程中使用图像信息提供便利条件.文章对该项目的建设及现状进行了综合性的评析,包括项目概述、数字资源及组织、技术特征、服务特点等.

  18. K-12 Educational Outcomes of Immigrant Youth

    Science.gov (United States)

    Crosnoe, Robert; Turley, Ruth N. Lopez

    2011-01-01

    The children from immigrant families in the United States make up a historically diverse population, and they are demonstrating just as much diversity in their experiences in the K-12 educational system. Robert Crosnoe and Ruth Lopez Turley summarize these K-12 patterns, paying special attention to differences in academic functioning across…

  19. Gender differences in math and science choices and preferences

    Science.gov (United States)

    Alkhadrawi, Amamah A.

    The purpose of this dissertation is to discover how the myth of gender differences in STEM inform the lived experiences of male and female 12th graders in one high school in Northwest Ohio. Over the years, the observed gender gap favoring males over females in STEM ability has closed, and female students have even surpassed males in some measures. The fact that girls have met and exceeded boys in many measures of STEM ability over time suggests that the historical disparity was the result of social or psychological, and not biological, differences. Even though schools have changed throughout the years to accommodate and encourage female students in STEM, there is still a persistent disparity in participation at the highest levels of STEM in education and in careers. Males still outnumber females in the more mathematical and technical sciences, such as computer science and engineering. This study applied feminist socialization theory and phenomenology as its theoretical framework. The biggest themes that informed student"s choices and preferences were as follows: intended choices follow family influence, myth persists in subtle ways, teenagers have a limited future view, and the chicken and the egg issues of personal interests versus social influence. There are clearly more factors that contribute to this gender socialization, which may be a combination of socioeconomic status and the influence of family.

  20. The impact of an integrated math and science curriculum on third grade students' measurement achievement

    Science.gov (United States)

    Adamson, Karen

    The purpose of this study was to investigate the impact of a hands-on science curriculum, which integrates mathematics and supports the development of English language skills, on third grade students' mathematics achievement---specifically the measurement subscale of the statewide assessment. The data draws from a larger 5-year research project consisting of reform-based science curriculum units and teacher workshops designed to promote effective instruction of science while integrating mathematics and supporting English language development. The third grade curriculum places a strong emphasis on developing measurement skills in the context of scientific investigations. Third grade students' performance on the measurement subscale of the statewide mathematics assessment at experimental and comparison schools were examined using a hierarchical linear model (HLM). Students participating in the treatment performed significantly higher than students at comparison schools. The results of this study provide evidence that an integrated approach to math and science instruction can benefit diverse populations of students.

  1. Maths in Medicine: How to Survive a Science Fair

    CERN Document Server

    Pearce, Philip

    2016-01-01

    When talking to secondary school students, first impressions are crucial. Accidentally say something that sounds boring and you'll lose them in seconds. A physical demonstration can be an eye-catching way to begin an activity or spark off a conversation about mathematics. This is especially true in the context of an event like a science fair where there are hundreds of other exhibitors and stands, possibly involving loud music and/or dancing robots! In this article we describe three devices that were built to illustrate specific physical phenomena that occur in the human body. Each device corresponds to a simple mathematical model which contains both elements that are accessible to pupils in the early years of secondary education and more challenging mathematical concepts that might appeal to A-level students. Two of the devices relate to the Windkessel effect, a physical phenomenon that regulates blood flow, and the third demonstrates the elastic properties of ligaments and tendons.

  2. Exploring Gender Differences across Elementary, Middle, and High School Students' Science and Math Attitudes and Interest

    Science.gov (United States)

    LeGrand, Julie

    The issue of female underrespresentation in science, mathematics, engineering, and technology careers and courses has been well researched over the last several decades. However, as gender gaps in achievement close and representation becomes more equitable in certain academic domains, research has turned to social and cultural factors to explain why fewer women persist in STEM studies and careers than men. The purpose of this study was to examine gender differences in science and math attitudes and interests from elementary school, to middle school, to high school. To examine possible gender-specific shifts in students' interest and attitudes in science and math, 136 students from a suburban, public school district were surveyed at the elementary school level (N=31), middle school level (N=54), and high school level (N=51) and various constructs were used to assess the responses in accordance with expectancy-value theory. Utilizing a mixed-methods approach, a random sample of students from each grade level then participated in focus groups, and corollary themes were identified. Results from a logistical regression analysis and Mann-Whitney Test indicated that significant gender differences exist for interest, efficacy, expectancy, and value within science domains (p<.05), although these differences are not the same at each grade level or for each scientific discipline. Significant gender differences in mathematics are present only at the elementary school level.

  3. Connecting with Teachers and Students through K-12 Outreach Activities

    Science.gov (United States)

    Chapman, Susan; Lindbo, David; Robinson, Clay

    2014-05-01

    The Soil Science Society of America has invested heavily in a significant outreach effort to reach teachers and students in the primary/secondary grades (K-12 grades in US/Canada) to raise awareness of soil as a critical resource. The SSSA K-12 committee has been charged with increasing interest and awareness of soil science as a scientific pursuit and career choice, and providing resources that integrate more information on soil science into biology, chemistry, physics, and earth science areas taught at multiple grade levels. Activities center around five main areas: assessment and standards, learning modules/lesson plans, website development, and books and materials, and partnership activities. Members (professionals and students) of SSSA are involved through committee participation, local events, materials review, and project development.

  4. The Effect of a Zoo-Based Experiential Academic Science Program on High School Students' Math and Science Achievement and Perceptions of School Climate

    Science.gov (United States)

    Mulkerrin, Elizabeth A.

    2012-01-01

    The purpose of this study was to determine the effect of an 11th-grade and 12th-grade zoo-based academic high school experiential science program compared to a same school-district school-based academic high school experiential science program on students' pretest and posttest science, math, and reading achievement, and student perceptions of…

  5. The Effect of a Zoo-Based Experiential Academic Science Program on High School Students' Math and Science Achievement and Perceptions of School Climate

    Science.gov (United States)

    Mulkerrin, Elizabeth A.

    2012-01-01

    The purpose of this study was to determine the effect of an 11th-grade and 12th-grade zoo-based academic high school experiential science program compared to a same school-district school-based academic high school experiential science program on students' pretest and posttest science, math, and reading achievement, and student perceptions of…

  6. Life's Lessons Learned, and Taught: College of Education Initiative Fosters Lively Science and Math Teaching Grounded in Life Experiences.

    Science.gov (United States)

    Mellas, Laurie

    1998-01-01

    Funded by Lockheed Martin, the University of New Mexico College of Education conducts three-week summer science academies for elementary school teachers of populations underrepresented in science and math. Native American teachers and Hispanic teachers whose families have lived in New Mexico for generations learn to use their own local knowledge…

  7. Adolescent Girls' Experiences and Gender-Related Beliefs in Relation to Their Motivation in Math/Science and English

    Science.gov (United States)

    Leaper, Campbell; Farkas, Timea; Brown, Christia Spears

    2012-01-01

    Although the gender gap has dramatically narrowed in recent decades, women remain underrepresented in many science, technology, engineering, and mathematics (STEM) fields. This study examined social and personal factors in relation to adolescent girls' motivation in STEM (math/science) versus non-STEM (English) subjects. An ethnically diverse…

  8. Intermediate Trends in Math and Science Partnership-Related Changes in Student Achievement with Management Information System Data

    Science.gov (United States)

    Dimitrov, Dimiter M.

    2009-01-01

    This substudy in the evaluation design of the Math and Science Partnership (MSP) Program Evaluation examines student proficiency in mathematics and science for the MSPs' schools in terms of changes across three years (2003/04, 2004/05, and 2005/06) and relationships with MSP-related variables using Management Information System data with the…

  9. K-12 Project Management Education: NASA Hunch Projects

    Science.gov (United States)

    Morgan, Joe; Zhan, Wei; Leonard, Matt

    2013-01-01

    To increase the interest in science, technology, engineering, and math (STEM) among high school students, the National Aeronautics and Space Administration (NASA) created the "High Schools United with NASA to Create Hardware" (HUNCH) program. To enhance the experience of the students, NASA sponsored two additional projects that require…

  10. Translating Research Into E/PO That Addresses Real Needs in K-12 Classrooms

    Science.gov (United States)

    van der Veen, Wil E.; Belbruno, E. A.; Roelofsen Moody, T.

    2009-01-01

    One of the challenges in NASA ROSES E/PO is translating cutting edge research into products for which there is a demonstrated need. Rather than working from the premise that the "research is so cool’ that K-12 students or the public should learn about it, it is key to consult with the target audience to identify what their needs really are. The partnership between NJACE, Innovative Orbital Design, Inc., and Princeton offered a unique opportunity to translate intriguing but theoretical and mathematical research related to low energy orbits into a valuable education product. NJACE worked with educators to identify several needs with an intellectual link to this research: 1) Understanding of Gravity and Newton's Laws, 2) Understanding of Energy and Energy Transformations, 3) Integration of the sciences with math and technology, and 4) Knowledge of NASA's past accomplishments (such as the moon landings). Based on these identified needs, two science units were developed for students in grades 5-12 that integrate astronomy, physics, and the life sciences with math and technology. In addition an engaging public lecture was developed that tells a personal story of the quest for more economic space travel. In the past year, the workshops have been presented on three occasions, reaching over 75 teachers and demand exceeded available space with numerous teachers on waiting lists. The lecture has been presented numerous times at planetariums, museums, amateur astronomy and other clubs. We hope that our partnership will serve as a useful example of how to translate cutting edge research into valuable education products with an identified need. We will provide handouts with links to a website where the products and training can be downloaded in hope that others will help disseminate our product.

  11. Troubled Waters: where Multiple Streams of Inequality Converge in the Math and Science Experiences of Nonprivileged Girls

    Science.gov (United States)

    Parrott, Laurel; Spatig, Linda; Kusimo, Patricia S.; Carter, Carolyn C.; Keyes, Marian

    Water is often hardest to navigate at the confluence of individual streams. As they experience math and science, nonprivileged girls maneuver through roiling waters where the streams of gender, ethnicity, poverty, place, and teaching practices converge. Just as waters of separate streams blend, these issues - too often considered separate factors - become blended and difficult to isolate, and the resulting turbulence produces a bumpy ride. We draw on 3 years of qualitative data collected as part of an intervention program to explore the math and science experiences and perceptions of a group of ethnically diverse, low socioeconomic status rural and urban adolescent Appalachian girls. After describing program and community contexts, we explore "opportunity to leant" issues - specifically, expectations, access to content, and support networks - and examine their schooling experiences against visions of science and math reform and pressures for accountability. Data are discussed within a framework of critical educational theory.

  12. Inspiring the Next Generation: Astronomy Catalyzes K12 STEM Education

    Science.gov (United States)

    Borders, Kareen; Thaller, Michelle; Winglee, Robert; Borders, Kyla

    2017-06-01

    K-12 educators need effective and relevant astronomy professional development. NASA's Mission Science provides innovative and accessible opportunities for K-12 teachers. Science questions involve scale and distance, including Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers can gain an understanding of basic telescopes, the history of telescopes, ground and satellite based telescopes, and models of JWST Telescope. An in-depth explanation of JWST and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. During teacher training, we taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of lenticulars and diagramming of infrared data, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars.We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development.Funding was provided by Washington STEM, NASA, and the Washington Space Grant Consortium.

  13. Mathematical learning instruction and teacher motivation factors affecting science technology engineering and math (STEM) major choices in 4-year colleges and universities: Multilevel structural equation modeling

    Science.gov (United States)

    Lee, Ahlam

    2011-12-01

    Using the Educational Longitudinal Study of 2002/06, this study examined the effects of the selected mathematical learning and teacher motivation factors on graduates' science, technology, engineering, and math (STEM) related major choices in 4-year colleges and universities, as mediated by math performance and math self-efficacy. Using multilevel structural equation modeling, I analyzed: (1) the association between mathematical learning instruction factors (i.e., computer, individual, and lecture-based learning activities in mathematics) and students' STEM major choices in 4-year colleges and universities as mediated by math performance and math self-efficacy and (2) the association between school factor, teacher motivation and students' STEM major choices in 4-year colleges and universities via mediators of math performance and math self-efficacy. The results revealed that among the selected learning experience factors, computer-based learning activities in math classrooms yielded the most positive effects on math self-efficacy, which significantly predicted the increase in the proportion of students' STEM major choice as mediated by math self-efficacy. Further, when controlling for base-year math Item Response Theory (IRT) scores, a positive relationship between individual-based learning activities in math classrooms and the first follow-up math IRT scores emerged, which related to the high proportion of students' STEM major choices. The results also indicated that individual and lecture-based learning activities in math yielded positive effects on math self-efficacy, which related to STEM major choice. Concerning between-school levels, teacher motivation yielded positive effects on the first follow up math IRT score, when controlling for base year IRT score. The results from this study inform educators, parents, and policy makers on how mathematics instruction can improve student math performance and encourage more students to prepare for STEM careers. Students

  14. Advancing participation of blind students in Science, Technology, Engineering, and Math

    Science.gov (United States)

    Beck-Winchatz, Bernhard; Riccobono, Mark A.

    2008-12-01

    Like their sighted peers, many blind students in elementary, middle, and high school are naturally interested in space. This interest can motivate them to learn fundamental scientific, quantitative, and critical thinking skills, and sometimes even lead to careers in Science, Technology, Engineering, and Math (STEM) disciplines. However, these students are often at a disadvantage in science because of the ubiquity of important graphical information that is generally not available in accessible formats, the unfamiliarity of teachers with non-visual teaching methods, lack of access to blind role models, and the low expectations of their teachers and parents. We discuss joint efforts by the National Aeronautics and Space Administration (NASA) and the National Federation of the Blind’s (NFB) National Center for Blind Youth in Science (NCBYS) to develop and implement strategies to promote opportunities for blind youth in science. These include the development of tactile space science books and curriculum materials, science academies for blind middle school and high school students, and college-level internship and mentoring programs. The partnership with the NFB exemplifies the effectiveness of collaborations between NASA and consumer-directed organizations to improve opportunities for underserved and underrepresented individuals.

  15. The long-term impact of a math, science and technology program on grade school girls

    Science.gov (United States)

    Sullivan, Sandra Judd

    The purpose of this study was to determine if a math, science, and technology intervention program improved grade school girls' attitudes and stereotypes toward science and scientists, as well as participation levels in science-related activities, two years after their participating in the program. The intervention program evaluated was Operation SMART, developed by Girls Incorporated. Participants were recruited from the 6th and 7th grades from two public middle schools in Northern California. One hundred twenty-seven girls signed up for the survey and were assigned to either the SMART group (previous SMART participants) or Non-SMART group (no previous experience with SMART). The survey consisted of five parts: (1) a background information sheet, (2) the Modified Attitudes Toward Science Inventory, (3) the What Do You Do? survey, (4) the Draw-A-Scientist Test-Revised, and (5) a career interests and role models/influencer survey. Results indicated that there were no significant differences between the SMART and Non-SMART groups on any of the test measures. However, middle school attended did have a significant effect on the outcome variables. Girls from Middle School A reported more positive attitudes toward science, while girls from Middle School B reported higher participation levels in extracurricular science activities. Possible explanations for these findings suggest too much time had passed between treatment effect and time of measurement as well as the strong influence of teacher and school environment on girls' attitudes and stereotypes. Recommendations for future research are discussed.

  16. Teaching K-12 Students to Combat Obesity

    Science.gov (United States)

    Wallhead, Tristan

    2007-01-01

    Physical education is one of the most viable intervention programs to reach overweight and obese children. Since physical activity habits developed early in life are more likely to persist into adulthood, it is important for K-12 physical educators to teach the skills, knowledge, and attitudes that will motivate students to become more active. Two…

  17. Alberta K-12 ESL Proficiency Benchmarks

    Science.gov (United States)

    Salmon, Kathy; Ettrich, Mike

    2012-01-01

    The Alberta K-12 ESL Proficiency Benchmarks are organized by division: kindergarten, grades 1-3, grades 4-6, grades 7-9, and grades 10-12. They are descriptors of language proficiency in listening, speaking, reading, and writing. The descriptors are arranged in a continuum of seven language competences across five proficiency levels. Several…

  18. Legitimizing Community Engagement with K-12 Schools

    Science.gov (United States)

    Furco, Andrew

    2013-01-01

    This article examines the issue of internal legitimization and its importance in securing high-quality community engagement in K-12 schools. Drawing on the literature from the fields of community engagement, school reform, school-university partnerships, and school-community partnerships, this article describes some of the prevailing challenges…

  19. Legitimizing Community Engagement with K-12 Schools

    Science.gov (United States)

    Furco, Andrew

    2013-01-01

    This article examines the issue of internal legitimization and its importance in securing high-quality community engagement in K-12 schools. Drawing on the literature from the fields of community engagement, school reform, school-university partnerships, and school-community partnerships, this article describes some of the prevailing challenges…

  20. Copyright Updates for K-12 Librarians

    Science.gov (United States)

    Johnson, Wendell G.

    2016-01-01

    Copyright concerns continue to bedevil K-12 librarians, who are often called upon to act as the copyright officers in public schools. This article describes recent copyright developments of concern to these librarians in three areas: a recent court case involving a university library, pending legislation supported by ALA, and a regulatory update.…

  1. 34 CFR 645.13 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What additional services do Upward Bound Math and Science Centers provide and how are they organized? 645.13 Section 645.13 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF...

  2. Sharing the Vision: Curriculum Articulation in Math and Science K-U in an Urban School District.

    Science.gov (United States)

    Case, Karen I.; And Others

    This paper presents a site and project description and the conceptual framework of the Curriculum Articulation Project (CAP) and its relation to current math and science education reform initiatives. CAP is based on the notion that the teacher is the best individual to ascertain the learning needs of the urban, and often economically…

  3. Friends and Family: A Literature Review on How High School Social Groups Influence Advanced Math and Science Coursetaking

    Science.gov (United States)

    Gottfried, Michael; Owens, Ann; Williams, Darryl; Kim, Hui Yon; Musto, Michela

    2017-01-01

    In this study, we synthesized the literature on how informal contexts, namely friends and family social groups, shape high school students' likelihood of pursuing advanced math and science coursework. Extending scholarly understandings of STEM education, we turned to the body of literature with three guiding questions: (1) What influence do…

  4. Comparing the Math Anxiety of Secondary School Female Students in Groups (Science and Mathematical Physics) Public Schools

    Science.gov (United States)

    Vakili, Khatoon; Pourrazavy, Zinat alsadat

    2017-01-01

    The aim of this study is comparing math anxiety of secondary school female students in groups (Science and Mathematical Physics) Public Schools, district 2, city of Sari. The purpose of the research is applied research, it is a development branch, and in terms of the nature and method, it is a causal-comparative research. The statistical…

  5. Predicting the Math/Science Career Goals of Low-Income Prospective First-Generation College Students

    Science.gov (United States)

    Garriott, Patton O.; Flores, Lisa Y.; Martens, Matthew P.

    2013-01-01

    The present study used social cognitive career theory (SCCT; Lent, Brown, & Hackett, 1994) to predict the math/science goal intentions of a sample of low-income prospective first-generation college students (N = 305). Structural equation modeling was used to test a model depicting relationships between contextual (i.e., social class, learning…

  6. A Latent Curve Model of Parental Motivational Practices and Developmental Decline in Math and Science Academic Intrinsic Motivation

    Science.gov (United States)

    Gottfried, Adele Eskeles; Marcoulides, George A.; Gottfried, Allen W.; Oliver, Pamella H.

    2009-01-01

    A longitudinal approach was used to examine the effects of parental task-intrinsic and task-extrinsic motivational practices on academic intrinsic motivation in the subject areas of math and science. Parental task-intrinsic practices comprise encouragement of children's pleasure and engagement in the learning process, whereas task-extrinsic…

  7. How Does ICT Use Influence Students' Achievements in Math and Science over Time? Evidence from PISA 2000 to 2012

    Science.gov (United States)

    Zhang, Danhui; Liu, Luman

    2016-01-01

    This study aims to investigate the impacts of information and communication technology (ICT) use on students' math and science achievements, with a special focus on examining the trends of these relationships over the past decade. Data from all five waves of the Program for International Student Assessment (PISA) from 2000 to 2012 were used.…

  8. Differences between the Sexes among Protestant Christian Middle School Students and Their Attitudes toward Science, Technology, Engineering and Math (STEM)

    Science.gov (United States)

    Michael, Kurt Y.; Alsup, Philip R.

    2016-01-01

    Research focusing on science, technology, engineering, and math (STEM) education among conservative Protestant Christian school students is scarce. Crenshaw's intersectionality theory is examined as it pertains to religion as a group identifier. The STEM Semantic Survey was completed by 157 middle school students attending six different private…

  9. Our Practice, Their Readiness: Teacher Educators Collaborate to Explore and Improve Preservice Teacher Readiness for Science and Math Instruction

    Science.gov (United States)

    Steele, Astrid; Brew, Christine; Rees, Carol; Ibrahim-Khan, Sheliza

    2013-01-01

    Since many preservice teachers (PTs) display anxiety over teaching math and science, four PT educators collaborated to better understand the PTs' background experiences and attitudes toward those subjects. The research project provided two avenues for professional learning: the data collected from the PTs and the opportunity for collaborative…

  10. How Does ICT Use Influence Students' Achievements in Math and Science over Time? Evidence from PISA 2000 to 2012

    Science.gov (United States)

    Zhang, Danhui; Liu, Luman

    2016-01-01

    This study aims to investigate the impacts of information and communication technology (ICT) use on students' math and science achievements, with a special focus on examining the trends of these relationships over the past decade. Data from all five waves of the Program for International Student Assessment (PISA) from 2000 to 2012 were used.…

  11. A Latent Curve Model of Parental Motivational Practices and Developmental Decline in Math and Science Academic Intrinsic Motivation

    Science.gov (United States)

    Gottfried, Adele Eskeles; Marcoulides, George A.; Gottfried, Allen W.; Oliver, Pamella H.

    2009-01-01

    A longitudinal approach was used to examine the effects of parental task-intrinsic and task-extrinsic motivational practices on academic intrinsic motivation in the subject areas of math and science. Parental task-intrinsic practices comprise encouragement of children's pleasure and engagement in the learning process, whereas task-extrinsic…

  12. The Development and Validation of a Measure of Student Attitudes toward Science, Technology, Engineering, and Math (S-STEM)

    Science.gov (United States)

    Unfried, Alana; Faber, Malinda; Stanhope, Daniel S.; Wiebe, Eric

    2015-01-01

    Using an iterative design along with multiple methodological approaches and a large representative sample, this study presents reliability, validity, and fairness evidence for two surveys measuring student attitudes toward science, technology, engineering, and math (S-STEM) and interest in STEM careers for (a) 4th- through 5th-grade students…

  13. Using Art to Enhance the Learning of Math and Science: Developing an Educational Art-Science Kit about Fractal Patterns in Nature

    Science.gov (United States)

    Rao, Deepa

    This study documents the development of an educational art-science kit about natural fractals, whose aim is to unite artistic and scientific inquiry in the informal learning of science and math. Throughout this research, I argue that having an arts-integrated approach can enhance the learner of science and math concepts. A guiding metaphor in this thesis is the Enlightenment-era cabinet of curiosities that represents a time when art and science were unified in the process of inquiry about the natural world. Over time, increased specialization in the practice of arts and science led to a growing divergence between the disciplines in the educational system. Recently, initiatives like STEAM are underway at the national level to integrate "Arts and Design" into the Science, Technology, Engineering, and Math (STEM) formal education agenda. Learning artifacts like science kits present an opportunity to unite artistic and scientific inquiry in informal settings. Although science kits have been introduced to promote informal learning, presently, many science kits have a gap in their design, whereby the activities consist of recipe-like instructions that do not encourage further inquiry-based learning. In the spirit of the cabinet of curiosities, this study seeks to unify visual arts and science in the process of inquiry. Drawing from educational theories of Dewey, Piaget, and Papert, I developed a novel, prototype "art-science kit" that promotes experiential, hands-on, and active learning, and encourages inquiry, exploration, creativity, and reflection through a series of art-based activities to help users learn science and math concepts. In this study, I provide an overview of the design and development process of the arts-based educational activities. Furthermore, I present the results of a pilot usability study (n=10) conducted to receive user feedback on the designed materials for use in improving future iterations of the art-science fractal kit. The fractal kit

  14. A Framework for Quality K-12 Engineering Education: Research and Development

    Science.gov (United States)

    Moore, Tamara J.; Glancy, Aran W.; Tank, Kristina M.; Kersten, Jennifer A.; Smith, Karl A.; Stohlmann, Micah S.

    2014-01-01

    Recent U.S. national documents have laid the foundation for highlighting the connection between science, technology, engineering and mathematics at the K-12 level. However, there is not a clear definition or a well-established tradition of what constitutes a quality engineering education at the K-12 level. The purpose of the current work has been…

  15. Applying the Quadratic Usage Framework to Research on K-12 STEM Digital Learning Resources

    Science.gov (United States)

    Luetkemeyer, Jennifer R.

    2016-01-01

    Numerous policymakers have called for K-12 educators to increase their effectiveness by transforming science, technology, engineering, and mathematics (STEM) learning and teaching with digital resources and tools. In this study we outline the significance of studying pressing issues related to use of digital resources in the K-12 environment and…

  16. Women in physics: A comparison to science, technology, engineering, and math education over four decades

    Science.gov (United States)

    Sax, Linda J.; Lehman, Kathleen J.; Barthelemy, Ramón S.; Lim, Gloria

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] The dearth of women in science, technology, engineering, and math (STEM) fields has been lamented by scholars, administrators, policymakers, and the general public for decades, and the STEM gender gap is particularly pronounced in physics. While previous research has demonstrated that this gap is largely attributable to a lack of women pursuing physics in college, prior research reveals little in terms of the characteristics and career interests of women who do plan to major in physics or how these traits have evolved over time. To address these gaps, this study utilized nationwide data on first-time, full-time college students to (1) document national trends in plans to major in physics among women entering college, (2) document the career aspirations of women who intend to major in physics, and (3) explore the characteristics of women who intend to major in physics and how this population has evolved across time. This study found that women's interest in physics has been consistently very low in the past four decades. The most popular career aspiration among women who plan to major in physics is research scientist, although this career aspiration is declining in popularity, while increasing numbers of women say that they are undecided in their career choice. Further, this study identifies a distinctive profile of the average female physics student as compared to women in other STEM fields and women across all majors. Women who plan to pursue a physics major tend to be confident in their math abilities, value college as an opportunity to learn, plan to attend graduate school, and desire to make theoretical contributions to science. However, they are less likely than women in other fields to have a social activist orientation. These findings have important implications for scholars, educators, administrators, and policymakers as they seek to recruit more women into the physics field.

  17. Developing a Global Science and Math Education System Based on Real Astronomy Data

    Science.gov (United States)

    Pennypacker, Carlton

    2015-03-01

    Global Hands-On Universe (GHOU) is an educational system where students use real astronomy data from (largely optical) telescopes to learn fundamental physics, math, astronomy, and technology.GHOU is a good example of a collaborative global education project, where data, software, teacher training methods, curriculum, activities, telescopes, and human resources are developed by many members of GHOU and then shared internationally.Assessments show that in this program students learn more science and math than in conventional classroom teaching, and students change their attitudes towards choosing careers in science and technology.GHOU is an exemplar of appropriate use of computers in the classroom for real data analysis.The International Asteroid Search program of GHOU has helped students discover over 700 asteroids. Half a dozen high schools have named the asteroids they have found after their high school (some from here in Texas!).GHOU has found resonance with many teachers and students around the world, reaching approximately 20,000 global teachers in the International Year of Astronomy in 2009.In addition, activities from French HOU are part of the official French National Curriculum, and exit exam, teacher training syllabus and teacher exit exams. GHOU has found particular enthusiasms in nations with increasing technology basis - for example, GHOU is reaching many teachers in China, Chile, Indonesia, Kenya, Venezuela, with expansion plans for Cuba underway. Some nations, such as Portugal, have reached reasonable fractions of their teachers through GHOU. Workshops are planned in Iran, and HOU colleagues are starting to build a GHOU telescope in Israel. US HOU had trained approximately 1000 teachers in the United States, before the closing of the NSF Teacher Enhancement Section.But as many new large and smaller telescopes come on line - e.g., the Large Synoptic Survey Telescope - the need for GHOU around the world and even the United States will only increase.

  18. Negotiating the integration of new literacies in math and science content: The lived experience of classroom teachers

    Science.gov (United States)

    Wimmer, Jennifer Joy

    The purpose of this phenomenological study was to investigate the lived experience of integrating new literacies in math and science content by upper elementary and middle school teachers. This study highlights the lived experience of six teachers including two elementary math teachers, two middle school math teachers, and two middle school science teachers. Data sources included five in-depth interviews, teachers' weekly reflection journals, weekly classroom observations, and one principal interview at each of the three high-needs schools. Data were analyzed through an analytic and thematic approach. A reconstructed story was created for each teacher which provides insight into the teacher as an individual. Additionally, a thematic analysis resulted in the identification of five essential themes across all six stories which included: technology exclusively, rethinking who they are as teachers, stabilizing rather than challenging content, rethinking student learning, circumstances, and futures, and serving official context and discourse. The findings indicate that the teachers' lived experience of integrating new literacies in math and science content was filled with uncertainty and a search for stability. A key implication of this study is the need for quality professional development that provides teachers with the opportunity to learn about, question, and rethink the intersection of new literacies, content area literacy, and teacher knowledge.

  19. A case study of undergraduate female students majoring in math, science and engineering: An analysis of persistence and success

    Science.gov (United States)

    Hyde, Michelle Smoot

    This dissertation provides information concerning the educational experience of females studying in undergraduate fields of math, engineering and science at a large research institution in the West. The majority of the participants were Project Access students, chosen because of their high achievements in science and mathematics during their secondary education. The study identifies and attempts to understand critical factors within the academic environment of science that contribute to female persistence in math, engineering and science (MES) disciplines. The study postulates that universities can make a difference in the education of women by providing programs that assure quality education and the fostering of female interest in science domains. The study recommends the incorporation of collaborative learning processes and teaching methods, cohort involvement and the fostering of study groups, encouragement of professorial associations with students, and internship and lab programs in an attempt to provide a more holistic and less fragmented education, thus benefiting women seeking MES degrees. Also, the research presented in this paper determined that the formation of positive associations and support networks was crucial to college female population studied. The interpretive study's aim is to enhance persistence rates among undergraduate students studying in math, engineering and science fields.

  20. Mimewrighting: Preparing Students for the Real World of Science, Technology, Engineering, and Math

    Science.gov (United States)

    Shope, R. E.

    2013-12-01

    READING, WRITING, & ENACTING SCIENTIFIC & TECHNICAL LITERATURE: Mimewrighting applies the art of mime as an interpretive springboard to integrate conceptual understanding across all content areas. Mimewrighting guides students to read and express complex ideas in carefully crafted movement integrations, mediating experience, so that students obtain an intuitive grasp of difficult and abstract ideas. THE PROBLEM: Reading science writing presents obstacles for middle and high school students, to the point that many students are turned OFF to science altogether. A typical science abstract, written for colleagues, is as densely packed with concept-laden words as a black hole is densely packed with matter- and just as mysterious. What reads to a science colleague as a richly crafted paragraph, from which a myriad of elegantly interrelated concepts can unfold to point to the significance and context of the study at hand, reads as jabberwocky nonsense to the uninitiated student. So, how do we turn such kids (and teachers) back ON to the inquiry-driven desire to seek out challenging and educative experiences? How do we step up to the national challenge to prepare ALL students adequately for the REAL-WORLD demands of science, technology, engineering, math, (STEM) and communications? How do we help kids read, write, and understand scientific and technical literature? AN UNCONVENTIONAL ANSWER: Mimewrighting applies the classic art of mime to unpack the meaning of science writing. We help students view the text as sequences of action, scenarios that can be enacted theatrically for understanding. HOW DOES IT WORK? READ ALOUD, MIME ALONG: It's as simple as read aloud and mime along. And as complex, in that it requires taking the time to acknowledge each concept packed into the passage. Three opening sentences might involve twenty minutes of mimewrighting activity to ensure that students apprehend the patterns, perceive the relationships, and comprehend the dynamics of such a

  1. Cosmetology--Science. Haywood County's Vocational-Math-Science Curriculum Alignment Project.

    Science.gov (United States)

    Haywood County Consolidated Schools, Waynesville, NC.

    This guide is intended to assist vocational educators teaching a course in cosmetology to relate the skills addressed in science courses to a particular vocational education course. The guide consists of a curriculum alignment chart that cross-references vocational performance indicators to science skills/competencies. The science competency…

  2. Technology and Communications Coursework: Facilitating the Progression of Students with Learning Disabilities through High School Science and Math Coursework.

    Science.gov (United States)

    Shifrer, Dara; Callahan, Rebecca

    2010-09-01

    Students identified with learning disabilities experience markedly lower levels of science and mathematics achievement than students who are not identified with a learning disability. Seemingly compounding their disadvantage, students with learning disabilities also complete more credits in non-core coursework-traditionally considered non-academic coursework-than students who are not identified with a learning disability. The Education Longitudinal Study of 2002, a large national dataset with both regular and special education high school students, is utilized to determine whether credit accumulation in certain types of non-core coursework, such as Technology and Communications courses, is associated with improved science and math course-taking outcomes for students with learning disabilities. Results show that credit accumulation in Technology and Communications coursework uniquely benefits the science course-taking, and comparably benefits the math course-taking, of students identified with learning disabilities in contrast to students who are not identified with a learning disability.

  3. Upward Bound: An Untapped Fountain Of Youth Wanting To Learn About Math And Science

    Science.gov (United States)

    Gillis-Davis, J. J.; Sherman, S. B.; Gillis-Davis, L. C.; Svelling, K. L.

    2009-12-01

    We developed a two-phased curricula aimed at high school students in Hawaii’s Upward Bound (UB) programs. The course, called “Tour Through the Solar System”, was tested in the summer 2008-2009 programs of two of the four Hawaii UB programs. Authorized by Congress in 1965, UB is a federal program funded by the U.S. Department of Education to serve students underrepresented in higher education. Students enrolled in UB are predominantly low income, or from families in which neither parent holds a bachelor’s degree. UB programs make a measurable improvement in retaining high school students in the education pipeline in part by using innovative educational and outreach programs to spark students’ interest in learning while building academic self-confidence. Curricula developed for UB are sustainable because there are 964 programs in the United States, and U territories. Education and outreach products can be presented at regional and national meetings, which directors of the UB programs attend. Broad regulations and varied instruction formats allow curriculum developers a flexible and creative framework for developing classes. For instance, regulations stipulate that programs must provide participants with academic instruction in mathematics, laboratory sciences, composition, literature, and foreign languages in preparation for college entrance. UB meets these guidelines through school-year academic activities and a six-week summer school program. In designing our curricula the primary goals were to help students learn how to learn and encourage them to develop an interest in the fields of science, technology, engineering and math using NASA planetary data sets in a Problem-Based Learning (PBL) environment. Our focus on planetary science stems from our familiarity with the data sets, our view that NASA data sets are a naturally inspirational tool to engage high school students, and its cross-disciplinary character: encompassing geology, chemistry, astronomy

  4. National differences in gender–science stereotypes predict national sex differences in science and math achievement

    Science.gov (United States)

    Nosek, Brian A.; Smyth, Frederick L.; Sriram, N.; Lindner, Nicole M.; Devos, Thierry; Ayala, Alfonso; Bar-Anan, Yoav; Bergh, Robin; Cai, Huajian; Gonsalkorale, Karen; Kesebir, Selin; Maliszewski, Norbert; Neto, Félix; Olli, Eero; Park, Jaihyun; Schnabel, Konrad; Shiomura, Kimihiro; Tulbure, Bogdan Tudor; Wiers, Reinout W.; Somogyi, Mónika; Akrami, Nazar; Ekehammar, Bo; Vianello, Michelangelo; Banaji, Mahzarin R.; Greenwald, Anthony G.

    2009-01-01

    About 70% of more than half a million Implicit Association Tests completed by citizens of 34 countries revealed expected implicit stereotypes associating science with males more than with females. We discovered that nation-level implicit stereotypes predicted nation-level sex differences in 8th-grade science and mathematics achievement. Self-reported stereotypes did not provide additional predictive validity of the achievement gap. We suggest that implicit stereotypes and sex differences in science participation and performance are mutually reinforcing, contributing to the persistent gender gap in science engagement. PMID:19549876

  5. National differences in gender-science stereotypes predict national sex differences in science and math achievement.

    Science.gov (United States)

    Nosek, Brian A; Smyth, Frederick L; Sriram, N; Lindner, Nicole M; Devos, Thierry; Ayala, Alfonso; Bar-Anan, Yoav; Bergh, Robin; Cai, Huajian; Gonsalkorale, Karen; Kesebir, Selin; Maliszewski, Norbert; Neto, Félix; Olli, Eero; Park, Jaihyun; Schnabel, Konrad; Shiomura, Kimihiro; Tulbure, Bogdan Tudor; Wiers, Reinout W; Somogyi, Mónika; Akrami, Nazar; Ekehammar, Bo; Vianello, Michelangelo; Banaji, Mahzarin R; Greenwald, Anthony G

    2009-06-30

    About 70% of more than half a million Implicit Association Tests completed by citizens of 34 countries revealed expected implicit stereotypes associating science with males more than with females. We discovered that nation-level implicit stereotypes predicted nation-level sex differences in 8th-grade science and mathematics achievement. Self-reported stereotypes did not provide additional predictive validity of the achievement gap. We suggest that implicit stereotypes and sex differences in science participation and performance are mutually reinforcing, contributing to the persistent gender gap in science engagement.

  6. Shoring Up Math and Science in the Elementary Grades: Schools Enlist Specialists to Teach Science Lessons

    Science.gov (United States)

    Jacobson, Linda

    2004-01-01

    As science gets squeezed in the elementary curriculum, at least two Florida districts are trying a new approach to keeping hands-on lessons a part of pupils' experiences. This article reports how Broward and Palm Beach county districts have increased the number of science specialists working in their elementary schools--teachers who, like physical…

  7. A collaborative integrated stem teaching: Examination of a science and math teacher collaboration on an integrated stem unit

    Science.gov (United States)

    Ayres, Drew C.

    The integration of science, technology, engineering and mathematics curriculum in middle school science and math classrooms is a reform effort currently taking place. The teachers are being encouraged to teach integrated content through national and state standards. The teachers have not been trained to do this form of teaching, which has led to feelings of discomfort or incompetence to fulfill those standards. This has led to a need for professional developments to train these teachers. Those developing the professional developments are seeking to identify ways to encourage teachers to continue to implement integrated units. The purpose of this study was to examine the impact of a collaborative teaching relationship between a math and science teacher following a professional development. The teachers used a common integrated STEM unit to teach math and science standards by using engineering design as the integrator. The teachers provided lesson plans, were video recorded during implementation, interviewed pre and post-implementation, and made daily journal entries. These data were analyzed to document the collaboration and identify impacts of the collaboration.

  8. STEM Pathways: Examining Persistence in Rigorous Math and Science Course Taking

    Science.gov (United States)

    Ashford, Shetay N.; Lanehart, Rheta E.; Kersaint, Gladis K.; Lee, Reginald S.; Kromrey, Jeffrey D.

    2016-12-01

    From 2006 to 2012, Florida Statute §1003.4156 required middle school students to complete electronic personal education planners (ePEPs) before promotion to ninth grade. The ePEP helped them identify programs of study and required high school coursework to accomplish their postsecondary education and career goals. During the same period Florida required completion of the ePEP, Florida's Career and Professional Education Act stimulated a rapid increase in the number of statewide high school career academies. Students with interests in STEM careers created STEM-focused ePEPs and may have enrolled in STEM career academies, which offered a unique opportunity to improve their preparedness for the STEM workforce through the integration of rigorous academic and career and technical education courses. This study examined persistence of STEM-interested (i.e., those with expressed interest in STEM careers) and STEM-capable (i.e., those who completed at least Algebra 1 in eighth grade) students ( n = 11,248), including those enrolled in STEM career academies, in rigorous mathematics and science course taking in Florida public high schools in comparison with the national cohort of STEM-interested students to measure the influence of K-12 STEM education efforts in Florida. With the exception of multi-race students, we found that Florida's STEM-capable students had lower persistence in rigorous mathematics and science course taking than students in the national cohort from ninth to eleventh grade. We also found that participation in STEM career academies did not support persistence in rigorous mathematics and science courses, a prerequisite for success in postsecondary STEM education and careers.

  9. Teacher Identity and Self-efficacy Development in an Alternative Licensure Program for Middle and High School Math and Science Teachers

    Science.gov (United States)

    West, Robert J.

    This mixed-method case study focused on the phenomenon of the transition from student to teacher. The educational system in the United States is constantly shifting to provide the correct number of teachers for our nations' schools. There is no simple formula for this process and occasionally an area of need arises that is not being met. Recently, the demand for science and math teachers in the K-12 system has outpaced the supply of new teachers (Business-Higher Education Forum, 2011). To complicate the problem further, teachers are leaving the field in record numbers both through retirement and attrition (National Commission on Teaching and America's Future, 2007). Particularly hard hit are poor rural schools with low-performing students, such as the schools of Appalachia (Barley, 2009; Goodpaster, Adedokun, & Weaver, 2012). Out of this need, alternative licensure programs for teachers have developed. The alternative teacher-training program studied in this research is the Woodrow Wilson Teaching Fellowship (WWTF) website, "The Woodrow Wilson Ohio Teaching Fellowship seeks to attract talented, committed individuals with backgrounds in the STEM fields---science, technology, engineering, and mathematics---into teaching in high-need Ohio secondary schools" (para. 2) . The researcher was interested in the formation of teacher identity and self-efficacy as these constructs have been shown to manifest in highly effective teachers that are likely to remain in the field of teaching (Beaucamp & Thomas 2009; Klassen, Tze, Betts, & Gordon, 2010). The research method included in-depth interviews, mixed with pretest/posttest administrations of the Teacher Sense of Efficacy Scale (TSES) (Tschannen-Moran & Woolfolk Hoy 2001) given during the teacher-training period and again following the first year of professional teaching. Results from both the TSES and the interviews indicate that the participants had a successful transition into teaching. They both felt and demonstrated that

  10. National differences in gender-science stereotypes predict national sex differences in science and math achievement

    OpenAIRE

    Nosek, Brian A.; Smyth, Frederick L.; Sriram, N; Lindner, Nicole M.; Devos, Thierry; Ayala, Alfonso; Bar-Anan, Yavo; Bergh, Robin; Cai, Huajian; Gonsalkorale, Karen; Kesebir, Selin; Maliszewski, Norbert; Neto, Felix; Olli, Eero; Park, Jaihyun

    2009-01-01

    About 70% of more than half a million Implicit Association Tests completed by citizens of 34 countries revealed expected implicit stereotypes associating science with males more than with females. We discovered that nation-level implicit stereotypes predicted nation-level sex differences in 8th-grade science and mathematics achievement. Self-reported stereotypes did not provide additional predictive validity of the achievement gap. We suggest that implicit stereotypes and sex differences in s...

  11. Engaging Scientists in NASA Education and Public Outreach: K - 12 Formal Education

    Science.gov (United States)

    Bartolone, Lindsay; Smith, D. A.; Eisenhamer, B.; Lawton, B. L.; Universe Professional Development Collaborative, Multiwavelength; NASA Data Collaborative, Use of; SEPOF K-12 Formal Education Working Group; E/PO Community, SMD

    2014-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in the K - 12 Formal Education community. Members of the K - 12 Formal Education community include classroom educators, homeschool educators, students, and curriculum developers. The Forums’ efforts for the K - 12 Formal Education community include a literature review, appraisal of educators’ needs, coordination of audience-based NASA resources and opportunities, professional development, and support with the Next Generation Science Standards. Learn how to join in our collaborative efforts to support the K - 12 Formal Education community based upon mutual needs and interests.

  12. Prediction of Basic Math Course Failure Rate in the Physics, Meteorology, Mathematics, Actuarial Sciences and Pharmacy Degree Programs

    Directory of Open Access Journals (Sweden)

    Luis Rojas-Torres

    2014-09-01

    Full Text Available This paper summarizes a study conducted in 2013 with the purpose of predicting the failure rate of math courses taken by Pharmacy, Mathematics, Actuarial Science, Physics and Meteorology students at Universidad de Costa Rica (UCR. Using the Logistics Regression statistical techniques applied to the 2010 cohort, failure rates were predicted of students in the aforementioned programs in one of their Math introductory courses (Calculus 101 for Physics and Meteorology, Math Principles for Mathematics and Actuarial Science and Applied Differential Equations for Pharmacy. For these models, the UCR admission average, the student’s genre, and the average correct answers in the Quantitative Skills Test were used as predictor variables. The most important variable for all models was the Quantitative Skills Test, and the model with the highest correct classification rate was the Logistics Regression. For the estimated Physics-Meteorology, Pharmacy and Mathematics-Actuarial Science models, correct classifications were 89.8%, 73.6%, and 93.9%, respectively.

  13. Incremental Improvement of a K-12 Career Education Program. Final Report, July 1, 1977-June 30, 1978.

    Science.gov (United States)

    Monterey Peninsula Unified School District, Monterey, CA.

    A project was designed to promote innovation in instructional procedures, curriculum development, collaborative community involvement, and staff development for incremental improvements in a comprehensive K-12 career education program. The fifteen project components focused on (1) applications of basic skills (reading, writing, and math) in…

  14. The effect of using mind maps on the development of maths and science skills

    Directory of Open Access Journals (Sweden)

    Ozgul Polat

    2017-03-01

    Full Text Available The aim of this study is to examine the effect of mind mapping activities on the maths and science skills of children 48 to 60 months of age. The study was designed using an experimental model with a pre-test post-test and a control group. Accordingly, the hypotheses of the study was that there would be meaningful differences in the values obtained from the pre-test and post-test scores in favor of the children working with mind maps compared to the ones who did not work with mind maps. In the examination of the development of mind maps, it was observed that as the children engaged in preparing mind maps, they used skills requiring high-level mind organization. Mind maps, which can be used in all areas of life, are believed to be supportive of children's development areas and to be an important strategy for children to adopt and experience during the time of childhood.

  15. Research on Mega-Math: Discrete mathematics and computer science for children. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, M.R. [Victoria Univ., BC (Canada)

    1995-06-26

    The objective of the subcontract was to provide further research on the approach to mathematics education embodied in the workbook ``This is Mega-Mathematics!`` essentially produced under the subcontract and its preceding informal (alas!) cooperative arrangements. The workbook is now widely and freely distributed on the Internet under the copyright of the Los Alamos National Labs. This research was to consist of: (1) the development and dissemination of materials, (2) experimentation with use of the materials in classroom visits and other events, (3) communication of the ideas embodied in the materials to various forums concerned with mathematics education reform, (4) the development of connections to the computer games industry, (5) the development of new workbook-type materials, (6) publications, (7) the development of connections to Science Museums, (8) the development of uses of the Internet to make MegaMath materials and ideas available through that medium, (9) the stimulation of and coordination with other projects in mathematics education reform. All of these objectives have been accomplished in what should be regarded as one of the most interesting and cost-effective projects ever undertaken in mathematics education, a testimony to the vision and creative imagination of the Los Alamos Labs.

  16. What Goes On Inside Latin American Math and Science Classrooms: A Video Study of Teaching Practices

    Directory of Open Access Journals (Sweden)

    Emma Näslund-Hadley

    2014-09-01

    Full Text Available Beyond common associated factors, such as teacher characteristics and socio-economic background of students, little is known about how student achievement in math and science is related to differences in the teaching approaches used in Latin American classrooms. This paper highlights the main findings of a qualitative study on cross-country differences in teaching practices in three Latin American countries. Of the three countries selected for the study, Paraguay and the Dominican Republic perform at the bottom of the regional comparative test, Second Regional Comparative and Explanatory Study (SERCE, and the Mexican state of Nuevo Leon is one of the top performers. Our findings, based on a large sample of videotape recordings from sixth-grade classrooms in the three countries, indicate that inquiry based instruction appears to be associated with higher levels of learning. Teachers who actively engage students in activities that promote analytical and critical-thinking skills and move beyond a procedural understanding may lead to better performance on the SERCE assessments. However, drill, practice, and memorization predominate in all three countries.

  17. Culturally relevant science: An approach to math science education for Hispanics. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz de Montellano, B.

    1996-11-14

    As planned a letter was sent out to 17 teachers who had participated in a Summer 1994 workshop on ``Culturally Relevant Science for Hispanics`` at Michigan State. These teachers were supposed to have spent the intervening time developing lesson plans and curricula. The letter requested a report of any activities undertaken and copies of lesson plans and materials developed by February 1996 with a stipend of $400 for satisfactory reports. It was a disappointment to only get 9 responses and not all of them demonstrating a satisfactory level of activity. Diana Marinez, Dean of Science at Texas A and M University, Corpus Christi, who is the other developer of this curriculum and the author reviewed the submitted materials and chose those showing the most promise to be invited to participate in the Summer Writing Workshop. Spring of 1996 and particularly in May--June, the author wrote a partial first draft of a companion volume for the teacher`s manual which would provide a rationale for doing culturally relevant science, present the cultural and the scientific background that teachers would need in order to be able to teach. One of the goals of this curriculum is that it should be off-the-shelf ready to teach and that teachers would not have to do extra research to encourage its adoption. The outline of the book is appendix 1. The Writing Workshop was held at Texas A and M University, Corpus Christi from July 14 to July 27, 1996. Participating teachers chose topics that they were interested in developing and wrote first drafts. These were distributed to all participants and critiqued by the workshop directors before being rewritten. Some teachers were more productive than others depending on their science background. In total an impressive number of lesson plans were written. These lesson plans are listed in Appendix 3. Appendix 4 is a sample lesson. Work still needs to be done on both the source book and the teachers` manual.

  18. The impact of maths support tutorials on mathematics confidence and academic performance in a cohort of HE Animal Science students.

    Science.gov (United States)

    van Veggel, Nieky; Amory, Jonathan

    2014-01-01

    Students embarking on a bioscience degree course, such as Animal Science, often do not have sufficient experience in mathematics. However, mathematics forms an essential and integral part of any bioscience degree and is essential to enhance employability. This paper presents the findings of a project looking at the effect of mathematics tutorials on a cohort of first year animal science and management students. The results of a questionnaire, focus group discussions and academic performance analysis indicate that small group tutorials enhance students' confidence in maths and improve students' academic performance. Furthermore, student feedback on the tutorial programme provides a deeper insight into student experiences and the value students assign to the tutorials.

  19. K-12 Students' Perceptions of Scientists: Finding a Valid Measurement and Exploring Whether Exposure to Scientists Makes an Impact

    Science.gov (United States)

    Hillman, Susan J.; Bloodsworth, Kylie H.; Tilburg, Charles E.; Zeeman, Stephan I.; List, Henrietta E.

    2014-01-01

    This study was launched from a National Science Foundation GK-12 grant in which graduate fellows in Science, Technology, Engineering, and Mathematics (STEM) are placed in classrooms to engage K-12 students in STEM activities. The investigation explored whether the STEM Fellows' presence impacted the K-12 students' stereotypical image of a…

  20. Culturally relevant science: An approach to math science education for hispanics. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Montellano, B.O. de

    1996-11-14

    This progress report summarizes results of a teacher workshop. A letter sent to 17 teachers who had participated in the workshop requested a report of any activities undertaken and copies of lesson plans and materials developed. Only nine responses were received, and not all of them demonstrated a satisfactory level of activity. Teachers who submitted materials showing the most promise were invited to participate in the Summer Writing Workshop. A partial first draft of a companion volume for the teacher`s manual was written which provides a rationale for culturally relevant science and presents the cultural and scientific background needed. The outline of the book is presented in Appendix 1. Appendix 2 is a sample chapter from the book.

  1. Multilevel Structural Equation Models for Investigating the Effects of Computer-Based Learning in Math Classrooms on Science Technology Engineering and Math (STEM) Major Selection in 4-Year Postsecondary Institutions

    Science.gov (United States)

    Lee, Ahlam

    2017-01-01

    Background/Context: Because of the growing concern over the decline of bachelor degree recipients in the disciplines of science, technology, engineering, and math (STEM) in the U.S., several studies have been devoted to identifying the factors that affect students' STEM major choices. A majority of these studies have focused on factors relevant to…

  2. AIAA Educator Academy: Enriching STEM Education for K-12 Students

    Science.gov (United States)

    Slagle, E.; Bering, E. A.; Longmier, B. W.; Henriquez, E.; Milnes, T.; Wiedorn, P.; Bacon, L.

    2012-12-01

    Educator Academy is a K-12 STEM curriculum developed by the STEM K-12 Outreach Committee of the American Institute of Aeronautics and Astronautics (AIAA). Consisting of three independent curriculum modules, K-12 students participate in inquiry-based engineering challenges to improve critical thinking skills and enhance problem solving skills. The Mars Rover Celebration Curriculum Module is designed for students in grades 3-8. Throughout this module, students learn about Mars and the solar system. Working with given design criteria, students work in teams to do basic research about Mars that will determine the operational objectives and structural features of their rover. Then, students participate in the design and construction of a model of a mock-up Mars Rover to carry out a specific science mission on the surface of Mars. At the end of this project, students have the opportunity to participate in a regional capstone event where students share their rover designs and what they have learned. The Electric Cargo Plan Curriculum Module is designed for students in grades 6-12. Throughout this module, students learn about aerodynamics and the four forces of flight. Working individually or in teams, students design and construct an electrically-powered model aircraft to fly a tethered flight of at least one lap without cargo, followed by a second tethered flight of one lap carrying as much cargo as possible. At the end of this project, students have the opportunity to participate in a regional capstone event where students share what they have learned and compete with their different cargo plane designs. The Space Weather Balloon Curriculum Module is designed for students in grades 9-12. Throughout this module, students learn and refine physics concepts as well as experimental research skills. Students participate in project-based learning that is experimental in nature. Students are engaged with the world around them as they collaborate to launch a high altitude

  3. 75 FR 71465 - National Science Board; Sunshine Act Meetings

    Science.gov (United States)

    2010-11-23

    ...: Prepare and Inspire: K-12 Education in Science, Technology, Engineering, and Math (STEM) for America's... Knowledge and Understanding. SRS Data Development Activities. Chairman's Summary. Committee on Education and... Director HER. Update on NSF's Response to the STEM Innovators Report and Other Recent STEM Education Policy...

  4. Combining Graphic Arts, Hollywood and the Internet to Improve Distance Learning in Science and Math

    Science.gov (United States)

    Tso-Varela, S.; Friedberg, R.; Lipnick, D.

    We on the Navajo Reservation face the daunting problem of trying to educate a widely scattered student population over a landmass (25,000+ sq. miles) larger than all the New England states combined. Compounding this problem is the fact that English is a second language for many students and that many of our students lack basic foundation skills. One of the obvious answers is Distance Learning Programs. But, in the past Distance Learning Programs have been notably ineffective on the Navajo Reservation. An experimental Internet Astronomy that we taught last summer showed conclusively that we must specifically tailor our Distance Learning courses to a Navajo audience. As with many college level science courses, our experimental course was English intensive and there lies the crux of the problem. With the help of our colleague institutions, Los Alamos National Laboratory, University of California at Berkeley, University of New Mexico, Kennesaw State University, and New Mexico Highlands University, we undertook to replace 90% of the traditional verbiage with art, an idiom much accepted on the Navajo Reservation. We used the Walt Disney Studios as a model. Specifically, we studied the Pvt. Snafu cartoons used by the War Department in World War II. We tried to emulate their style and techniques. We developed our own cartoon characters, Astroboy, Professor Tso and Roxanne. We combined high quality graphic art, animation, cartooning, Navajo cultural elements, Internet hyperlinks and voiceovers to tell the story of Astronomy 101 Lab. In addition we have added remedial math resources and other helpful resources to our web site. We plan to test initial efforts in an experimental Internet course this summer.

  5. Test Of Astronomy STandards TOAST Survey of K-12 Teachers

    Science.gov (United States)

    Slater, Timothy F.; Slater, Stephanie; Stork, Debra J.

    2015-01-01

    Discipline-based education research in astronomy is focused on understanding the underlying mental mechanisms used by students when learning astronomy and teachers when teaching astronomy. Systematic surveys of K-12 teacher' knowledge in the domain of astronomy are conducted periodically in order to better focus and improve professional development. These surveys are most often done when doing contemporary needs assessments or when new assessment instruments are readily available. Designed by Stephanie J. Slater of the CAPER Center for Astronomy & Physics Education Research, the 29-item multiple-choice format Test Of Astronomy STandards - TOAST is a carefully constructed, criterion-referenced instrument constructed upon a solid list of clearly articulated and widely agreed upon learning objectives. The targeted learning concepts tightly align with the consensus learning goals stated by the American Astronomical Society - Chair's Conference on ASTRO 101, the American Association of the Advancement of Science's Project 2061 Benchmarks, and the National Research Council's 1996 National Science Education Standards. Without modification, the TOAST is also aligned with the significantly less ambitious 2013 Next Generation Science Standards created by Achieve, Inc., under the auspices of the National Research Council. This latest survey reveals that K-12 teachers still hold many of the same fundamental misconceptions uncovered by earlier surveys. This includes misconceptions about the size, scale, and structure of the cosmos as well as misconceptions about the nature of physical processes at work in astronomy. This suggests that professional development in astronomy is still needed and that modern curriculum materials are best served if they provide substantial support for implementation.

  6. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology

    Science.gov (United States)

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory,…

  7. Middle school girls' STEM education: Using teacher influences, parent encouragement, peer influences, and self efficacy to predict confidence and interest in math and science

    Science.gov (United States)

    Rabenberg, Tabetha A.

    Reports are clear that there is an underrepresentation of women in science, technology, engineering, and mathematics (STEM) careers. With the current and predicted future shortage of STEM workforce, it is more important than ever to encourage young women to enter these important fields of study. Using Bronfenbrenner's Bioecological Model, possible predictors of middle school girls' confidence and interest in math and science where explored. The factors in this study included the macrosystems of age and race/ethnicity and the microsystems of self-efficacy, teacher influences, parent encouragement, and peer influences. Sequential regression analysis results revealed that self-efficacy was a significant predictor for confidence in math and science. While, math/science teacher influences and peer influences were significant predictors of interest and confidence in both math and science. Sequential regression analysis also indicated age was a significant predictor of math interest. The results of this study provides information on the systemic connections among the variables and suggestions on how to impact middle school girls' STEM development, thus impacting the future STEM workforce.

  8. Telling Your Story: Ocean Scientists in the K-12 Classroom

    Science.gov (United States)

    McWilliams, H.

    2006-12-01

    Most scientists and engineers are accustomed to presenting their research to colleagues or lecturing college or graduate students. But if asked to speak in front of a classroom full of elementary school or junior high school students, many feel less comfortable. TERC, as part of its work with The Center for Ocean Sciences Education Excellence-New England (COSEE-NE) has designed a workshop to help ocean scientists and engineers develop skills for working with K-12 teachers and students. We call this program: Telling Your Story (TYS). TYS has been offered 4 times over 18 months for a total audience of approximately 50 ocean scientists. We will discuss the rationale for the program, the program outline, outcomes, and what we have learned. ne.net/edu_project_3/index.php

  9. What Is (Or Should Be) Scientific Evidence Use in K-12 Classrooms?

    Science.gov (United States)

    McNeill, Katherine L.; Berland, Leema

    2017-01-01

    Research and reform efforts frequently identify evidence as an essential component of science classroom instruction to actively engage students in science practices. Despite this agreement on the primacy of evidence, there is a lack of consensus around what counts as "evidence" in k-12 classrooms (e.g., ages 5-18): scholarship and…

  10. Monitoring Progress toward Successful K-12 STEM Education: A Nation Advancing?

    Science.gov (United States)

    National Academies Press, 2012

    2012-01-01

    Following a 2011 report by the National Research Council (NRC) on successful K-12 education in science, technology, engineering, and mathematics (STEM), Congress asked the National Science Foundation to identify methods for tracking progress toward the report's recommendations. In response, the NRC convened the Committee on an Evaluation Framework…

  11. The trials, tribulations, and triumphs of black faculty in the math and science pipeline: A life history approach

    Science.gov (United States)

    Williams, Lisa D.

    2000-12-01

    This study explores the career progression and life history of black mathematicians and scientists who teach on university faculties in the United States. It investigates the following questions: Why are there so few black mathematicians and scientists in colleges and universities in the United States? What is the experience of black students who express an interest in science and math? What barriers do black scientists and mathematicians face as they move through school towards their career in higher education? What factors facilitate their success? The current literature shows that there are few women and minorities teaching or working in math and science compared to white men, although reasons for this underrepresentation are still not well understood. I explored this phenomenon by conducting two sets of in-depth interviews with twelve black faculty, six women, six men, from both historically black and predominantly white higher educational institutions in the United States. My interviews were based upon a life history approach that identified the participants' perceptions of the barriers and obstacles, as well as the supports and facilitators encountered in their schooling and career progression. The findings from the study show the importance of a strong family, community, and teacher support for the participants throughout their schooling. Support systems continued to be important in their faculty positions. These support systems include extended family members, teachers, community members, supervisors, and classmates, who serve as role models and mentors. The life study interviews provide striking evidence of the discrimination, isolation, and harassment due to race and gender experienced by black male and female mathematicians and scientists. The racial discrimination and the compounding effect of racism and sexism play out differently for the male and female participants in this study. This study suggests directions for future research on the experiences

  12. Adolescent girls' experiences and gender-related beliefs in relation to their motivation in math/science and english.

    Science.gov (United States)

    Leaper, Campbell; Farkas, Timea; Brown, Christia Spears

    2012-03-01

    Although the gender gap has dramatically narrowed in recent decades, women remain underrepresented in many science, technology, engineering, and mathematics (STEM) fields. This study examined social and personal factors in relation to adolescent girls' motivation in STEM (math/science) versus non-STEM (English) subjects. An ethnically diverse sample of 579 girls ages 13-18 years (M = 15) in the U.S. completed questionnaires measuring their academic achievement, ability beliefs, values, and experiences. Social and personal factors were hypothesized to predict motivation (expectancy-value) differently in math/science (M/S) and English. Social factors included perceived M/S and English support from parents and peers. Personal factors included facets of gender identity (felt conformity pressure, gender typicality, gender-role contentedness), gender-related attitudes, and exposure to feminism. In addition, grades, age, parents' education, and ethnicity were controlled. Girls' M/S motivation was positively associated with mother M/S support, peer M/S support, gender-egalitarian beliefs, and exposure to feminism; it was negatively related to peer English support. Girls' English motivation was positively associated with peer English support as well as felt pressure from parents; it was negatively related to peer M/S support and felt peer pressure. The findings suggest that social and personal factors may influence girls' motivation in domain-specific ways.

  13. Development of an Attitude Scale to Assess K-12 Teachers' Attitudes toward Nanotechnology

    Science.gov (United States)

    Lan, Yu-Ling

    2012-05-01

    To maximize the contributions of nanotechnology to this society, at least 60 countries have put efforts into this field. In Taiwan, a government-funded K-12 Nanotechnology Programme was established to train K-12 teachers with adequate nanotechnology literacy to foster the next generation of Taiwanese people with sufficient knowledge in nanotechnology. In the present study, the Nanotechnology Attitude Scale for K-12 teachers (NAS-T) was developed to assess K-12 teachers' attitudes toward nanotechnology. The NAS-T included 23 Likert-scale items that can be grouped into three components: importance of nanotechnology, affective tendencies in science teaching, and behavioural tendencies to teach nanotechnology. A sample of 233 K-12 teachers who have participated in the K-12 Nanotechnology Programme was included in the present study to investigate the psychometric properties of the NAS-T. The exploratory factor analysis of this teacher sample suggested that the NAS-T was a three-factor model that explained 64.11% of the total variances. This model was also confirmed by the confirmatory factor analysis to validate the factor structure of the NAS-T. The Cronbach's alpha values of three NAS-T subscales ranged from 0.89 to 0.95. Moderate to strong correlations among teachers' NAS-T domain scores, self-perception of own nanoscience knowledge, and their science-teaching efficacy demonstrated good convergent validity of the NAS-T. As a whole, psychometric properties of the NAS-T indicated that this instrument is an effective instrument for assessing K-12 teachers' attitudes toward nanotechnology. The NAS-T will serve as a valuable tool to evaluate teachers' attitude changes after participating in the K-12 Nanotechnology Programme.

  14. Professional Parity Between Co-Teachers in Secondary Science and Math As Influenced By Administrative Support

    Science.gov (United States)

    Nordh, Camilla S.

    2011-12-01

    School improvement plans, budget constraints, and compliance mandates targeting academic progress for all students indicate a need for maximal professional efficacy at every level in the educational system, including parity between co-teachers in the co-teaching service delivery model. However, research shows that the special education co-teacher frequently assumes an assistive role while the general education co-teacher adopts a leading role in the classroom. When the participants in a co-teaching partnership fail to equitably share the professional responsibilities for which both teachers are qualified to perform, overall efficacy is compromised in that the special education teacher is not exercising his or her qualified expertise. Administrative support can be a primary influencing factor in increasing parity between the co-teachers. A qualitative study using a phenomenological design was conducted to explore the influences of co-teacher attitudes and administrative support on professional parity in co-taught secondary science and math classrooms. Content analysis was used to interpret data from interviews with five special education and 15 general education co-teachers at eight secondary schools in a suburban school district in a mid-Atlantic state. Five themes emerged from the data: content mastery by the special education co-teacher, joint planning time for co-teachers, continuity within co-teaching dyads, compatible personalities between co-teachers, and clear administrative expectations about co-teaching. Results indicate that administrative support to consider the content mastery of the special education co-teacher is the most influential factor to parity, followed by the co-teaching partners having joint planning time and that both can be implemented through scheduling and assignment considerations rather than training initiatives. The results provide an examination of each theme as it pertains to the issue of professional efficacy in co-teaching and

  15. Making the case for STEM integration at the upper elementary level: A mixed methods exploration of opportunity to learn math and science, teachers' efficacy and students' attitudes

    Science.gov (United States)

    Miller, Brianna M.

    Student achievement in science and math has been linked to per capita gross domestic product (GDP) growth propagating the belief that science, technology, engineering, and math (STEM) education is an important factor in economic prosperity. However, The No Child Left Behind Act of 2001 (NCLB), favors math over science, positioning the subjects as competitors rather than collaborators. Additionally, NCLB focuses almost exclusively on the cognitive outcome of students' achievement with the affective outcome of students' attitudes being nearly ignored. Positive attitudes toward science and math early on are essential for subsequent and cumulative decisions students make in taking courses, choosing majors, and pursuing careers. Positioning students' attitudes as a desirable educational outcome comparable to students' achievement is an emerging goal in the literature. Using the case of one school district in south-central Pennsylvania with three elementary schools, 15 upper elementary teachers, and 361 students, the purpose of this study was to better understand influences on upper elementary students' attitudes toward STEM (SA) subjects and careers. The study aimed to explore two influences on SA, opportunity to learn (OTL) and teacher's efficacy (TE), in the comparative contexts of math and science. The studied employed a mixed methods convergent design in which five data sets from four sources were collected over three phases to triangulate three constructs: OTL, TE, and SA. The goal of the study was to offer recommendations to the case school district for enhancing OTL, TE, and thus SA. Findings regarding OTL revealed that the opportunity to learn science was lower than math. Finding regarding TE revealed that outcome expectancy was lower than personal teaching efficacy in both science and math; and, teachers had low STEM career awareness, STEM integration, and technology use. Findings regarding SA revealed a lower perceived usefulness of science compared to math

  16. Barriers in the Physics Pipeline from K-12 to Tenure

    Science.gov (United States)

    Kilburn, Micha

    2016-09-01

    The lack of diversity in physics is a known problem, and yet efforts to change our demographics have only had minor effects during the last decade. I will explain some of the hidden barriers that dissuade underrepresented minorities in becoming physicists using a framework borrowed from sociology, Maslow's hierarchy of needs. I will draw from current research at the undergraduate to faculty levels over a variety of STEM fields that are also addressing a lack of diversity. I will also provide analysis from the Joint Institute for Nuclear Astrophysics Center for the Evolution of Elements (JINA-CEE) outreach programs to understand the likelihood of current K-12 students in becoming physicists. Specifically, I will present results from the pre-surveys from our Art 2 Science Camps (ages 8-14) about their attitudes towards science as well as results from analysis of teacher recommendations for our high school summer program. I will conclude with a positive outlook describing the pipeline created by JINA-CEE to retain students from middle school through college. This work was supported in part by the National Science Foundation under Grant No. PHY-1430152 (JINA Center for the Evolution of the Elements).

  17. Math and Science Pursuits: A Self-Efficacy Intervention Comparison Study

    Science.gov (United States)

    Cordero, Elizabeth D.; Porter, Sarah H.; Israel, Tania; Brown, Michael T.

    2010-01-01

    This study compared two interventions to increase math self-efficacy among undergraduate students. Ninety-nine first-year undergraduate students participated in an intervention involving performance accomplishment or an intervention combining performance accomplishment and belief-perseverance techniques in which participants constructed a…

  18. Math and Science Pursuits: A Self-Efficacy Intervention Comparison Study

    Science.gov (United States)

    Cordero, Elizabeth D.; Porter, Sarah H.; Israel, Tania; Brown, Michael T.

    2010-01-01

    This study compared two interventions to increase math self-efficacy among undergraduate students. Ninety-nine first-year undergraduate students participated in an intervention involving performance accomplishment or an intervention combining performance accomplishment and belief-perseverance techniques in which participants constructed a…

  19. Processes and Pathways: How Do Mathematics and Science Partnerships Measure and Promote Growth in Teacher Content Knowledge?

    OpenAIRE

    Moyer-Packenham, Patricia S.; Westenskow, A.

    2012-01-01

    Intense focus on student achievement results in mathematics and science has brought about claims that K-12 teachers should be better prepared to teach basic concepts in these disciplines. The focus on teachers' mathematics and science content knowledge has been met by efforts to increase teacher knowledge through funded national initiatives focusing on mathematics and science. The purpose of the present study was to look across projects in the National Science Foundation's Math and Science Pa...

  20. Encouraging Minority Students to Pursue Science, Technology, Engineering and Math Careers. A Briefing before the United States Commission on Civil Rights Held in Washington, D.C. Briefing Report

    Science.gov (United States)

    US Commission on Civil Rights, 2010

    2010-01-01

    The Commission held a briefing entitled, "Encouraging Minority Students to Pursue Science, Technology, Engineering and Math Careers." In particular, the Commission examined why minority college students who begin their college studies intending to major in science, technology, engineering or math (STEM) leave these disciplines in disproportionate…

  1. High School Student Perceptions of the Utility of the Engineering Design Process: Creating Opportunities to Engage in Engineering Practices and Apply Math and Science Content

    Science.gov (United States)

    Berland, Leema; Steingut, Rebecca; Ko, Pat

    2014-01-01

    Research and policy documents increasingly advocate for incorporating engineering design into K-12 classrooms in order to accomplish two goals: (1) provide an opportunity to engage with science content in a motivating real-world context; and (2) introduce students to the field of engineering. The present study uses multiple qualitative data…

  2. Mi fuerza/my strength. The academic and personal experiences of Chicana/Latina transfer students in math and science

    Science.gov (United States)

    Valenzuela, Yvonne

    This study unravels Chicana/Latina college students' perceptions of their experiences after transfer to two four-year universities. The study expands current research and provides a richer, detailed perspective of transfer students' experiences in the fields of math and science through the lens of a Feminist Critical Race Theory. The study specifically focuses on the experience of these students through their narratives, including their academic preparation, reasons for campus selection, and their academic and social integration after transferring to the senior institution. The study includes students who transferred from Santa Ana College, a Hispanic Serving Institution, that enrolls over 24,000 students, 42% of which are from "Hispanic" backgrounds. Female students who transferred from Santa Ana College to one of two four-year universities, University of California, Irvine, or California State University, Fullerton, were selected for participation. A comparative analysis of experiences at the two senior institutions was conducted. Also included was an examination of how each campus promoted or hindered the success of students. Findings will guide policy recommendations at the two- and four-year college level, and may impact statewide policies regarding transfer of Chicanas/Latinas into math and science fields. Moreover, this study will add to the limited research available in the field of community college students and transfer student experiences.

  3. Critical thinking in higher education: The influence of teaching styles and peer collaboration on science and math learning

    Science.gov (United States)

    Quitadamo, Ian Joseph

    Many higher education faculty perceive a deficiency in students' ability to reason, evaluate, and make informed judgments, skills that are deemed necessary for academic and job success in science and math. These skills, often collected within a domain called critical thinking (CT), have been studied and are thought to be influenced by teaching styles (the combination of beliefs, behavior, and attitudes used when teaching) and small group collaborative learning (SGCL). However, no existing studies show teaching styles and SGCL cause changes in student CT performance. This study determined how combinations of teaching styles called clusters and peer-facilitated SGCL (a specific form of SGCL) affect changes in undergraduate student CT performance using a quasi-experimental pre-test/post-test research design and valid and reliable CT performance indicators. Quantitative analyses of three teaching style cluster models (Grasha's cluster model, a weighted cluster model, and a student-centered/teacher-centered cluster model) and peer-facilitated SGCL were performed to evaluate their ability to cause measurable changes in student CT skills. Based on results that indicated weighted teaching style clusters and peer-facilitated SGCL are associated with significant changes in student CT, we conclude that teaching styles and peer-facilitated SGCL influence the development of undergraduate CT in higher education science and math.

  4. Permafrost monitoring K12 outreach program

    Science.gov (United States)

    Yoshikawa, K.; Saito, T.; Romanovsky, V.

    2007-12-01

    The objective of this project is to establish long-term permafrost monitoring sites adjacent to schools along the circum polar permafrost region. Permafrost will be one of the important indicators for monitoring climatic change in the future. Change in permafrost conditions also affects local ecosystems, hydrological regimes and natural disasters. The purpose of the long-term permafrost observation is fitting for future science objectives, and can also benefit students and teachers in remote village schools. Most remote villages depend on a subsistence lifestyle and will be directly affected by changing climate and permafrost condition. Monitoring the permafrost temperature in the arctic for a better understanding of the spatial distribution of permafrost and having students participate to collect the data is an ideal IPY project. Our outreach project involves drilling boreholes at village schools and installing the micro data logger with temperature sensors to measure hourly air and permafrost temperatures. Trained teachers help students download data several times a year and discuss the results in class. The data gathered from these stations is shared and can be viewed by anyone through the Internet (http://www.uaf.edu/permafrost). Using the Internet teachers can also compare their data with data form other monitoring stations. This project is becoming an useful science project for these remote villages, which tends to have limited exposure to science, despite the changing surroundings that they're daily lives depend on. NSF (EPSCoR) funded the previous seeding outreach program. Currently NSF/NASA and the International Polar Year (IPY) program support this project. In the 2006 field season, thirty-one schools participated in installing the monitoring stations. In 2007 we propose the expansion of this project to involve an additional 100 villages along the arctic. The broader impacts of this project are 1). This project will provide opportunities for field

  5. Supporting Geoscientists in Partnerships for K-12 Education at NSF

    Science.gov (United States)

    Leinen, M.

    2001-12-01

    NSF Directorate for Geosciences (GEO) education activities have evolved over the last decade based on advice from a broad segment of the geosciences community. These activities gained momentum when a Geosciences Education Working Group (GEWG, 1996) recognized the shift from traditional priorities that emphasized only research, to those that support education in geosciences as well. The GEWG report embraced this increased emphasis on education as a component of NSF's role in assuring the long-term health of the geosciences and endorsed the principle that research and education should be well integrated. While many geosciences education activities are funded by the Education and Human Resources Directorate (EHR) of NSF, the GEWG report highlighted the need to have more active participation by research geoscientists in K-12 education activities, and the need to train them to be able to do so. While some roles in education are clearly best left to educational professionals (e.g. large-scale systemic reform projects, pedagogical development at the K-12 level, and many teacher enhancement projects), activities such as undergraduate research, technology advancement, curriculum content development and informal science are ones in which GEO should actively seek to collaborate with programs in EHR. The GEO education program has expanded over the last decade. Our first education activity, Awards to Facilitate Geoscience Education (AFGE), was very successful in attracting some of the leading researchers in geosciences. This program evolved to become the Geoscience Education Program. An important program funded by GEO that developed from community activity is the Digital Library for Earth System Education (DLESE). This program grew out of a joint EHR/GEO award and a series of community workshops. The program will establish an Internet portal for geoscience curricular materials and other teacher resources that will enable further collaboration between the research and education

  6. The Effect of a Zoo-Based Experiential Academic Science Program on High School Students' Math and Science Achievement and Perceptions of School Climate

    Science.gov (United States)

    Mulkerrin, Elizabeth A.

    The purpose of this study was to determine the effect of an 11th-grade and 12th-grade zoo-based academic high school experiential science program compared to a same school-district school-based academic high school experiential science program on students' pretest and posttest science, math, and reading achievement, and student perceptions of program relevance, rigor, and relationships. Science coursework delivery site served as the study's independent variable for the two naturally formed groups representing students (n = 18) who completed a zoo-based experiential academic high school science program and students (n = 18) who completed a school-based experiential academic high school science program. Students in the first group, a zoo-based experiential academic high school science program, completed real world, hands-on projects at the zoo while students in the second group, those students who completed a school-based experiential academic high school science program, completed real world, simulated projects in the classroom. These groups comprised the two research arms of the study. Both groups of students were selected from the same school district. The study's two dependent variables were achievement and school climate. Achievement was analyzed using norm-referenced 11th-grade pretest PLAN and 12th-grade posttest ACT test composite scores. Null hypotheses were rejected in the direction of improved test scores for both science program groups---students who completed the zoo-based experiential academic high school science program (p composite score comparison was not statistically different ( p = .93) indicating program equipoise for students enrolled in both science programs. No overall weighted grade point average score improvement was observed for students in either science group, however, null hypotheses were rejected in the direction of improved science grade point average scores for 11th-grade (p scores and school district criterion reference math and

  7. Revolutionizing Arts Education in K-12 Classrooms through Technological Integration

    Science.gov (United States)

    Lemon, Narelle, Ed.

    2015-01-01

    Educational technologies are becoming more commonplace across the K-12 curriculum. In particular, the use of innovative digital technology is expanding the potential of arts education, presenting new opportunities--and challenges--to both curricular design and pedagogical practice. "Revolutionizing Arts Education in K-12 Classrooms through…

  8. Monitoring the CO2 injection site: K12-B

    NARCIS (Netherlands)

    Vandeweijer, V.; Meer, B. van der; Hofstee, C.; Mulders, F.; D'Hoore, D.; Graven, H.

    2011-01-01

    The K12-B gas field is located in the Dutch sector of the North Sea. The top of the reservoir lies approximately 3800 meters below sea level, and the ambient temperature of the reservoir is over 127 °C. The K12-B gas field has been producing natural gas from 1987 onwards and is currently operated by

  9. Influences of Globalization on K-12 Language Teacher Education Programs

    Science.gov (United States)

    Singh, Navin Kumar

    2012-01-01

    The purpose of this study was to explore the effects of globalization on K-12 language teacher education at Northern Arizona University (NAU) in terms of multilingual practices in the US, with reference to an English-only-state, Arizona. This study explored influences of globalization on K-12 language education practices in the US through teacher…

  10. A Critique of the Brave New World of K-12

    Science.gov (United States)

    Salmani-Nodoushan, Mohammad Ali

    2008-01-01

    Over the past few decades has changed so rapidly that remote areas of the Earth are now inhabited by human beings. Technology has also developed and people can stay at home and have access to virtual schools. This has stimulated the need for K-12 education. K-12 education has emerged from the no-child-left-behind concerns of governments for…

  11. Satellite Applications for K-12 Geoscience Education

    Science.gov (United States)

    Mooney, M.; Ackerman, S.; Lettvin, E.; Emerson, N.; Whittaker, T. M.

    2007-12-01

    This presentation will highlight interactive on-line curriculum developed at the Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin in Madison. CIMSS has been on the forefront of educational software design for over two decades, routinely integrating on-line activities into courses on satellite remote sensing. In 2006, CIMSS began collaborating with education experts and researchers from the University of Washington to create an NSF-funded distance learning course for science teachers called Satellite Applications for Geoscience Education. This course includes numerous web-based learning activities, including a distance education tool called VISITview which allows instructors to connect with multiple students simultaneously to conduct a lesson. Developed at CIMSS to facilitate training of National Weather Service forecasters economically and remotely, VISITview is especially effective for groups of people discussing and analyzing maps or images interactively from many locations. Along with an on-line chat function, VISITview participants can use a speaker phone or a networked voice-enabled application to create a learning environment similar to a traditional classroom. VISITview will be used in two capacities: first, instructors will convey topics of current relevance in geoscience disciplines via VISITview. Second, the content experts will participate in "virtual visits" to the classrooms of the educators who take the course for full credit. This will enable scientists to interact with both teachers and students to answer questions and discuss exciting or inspiring examples that link satellite data to their areas of research. As long as a school has Internet access, an LCD projector and a speakerphone, VISITview sessions can be shared with an entire classroom. The geoscientists who developed material for the course and conducting VISITview lectures include a geologist from the University of Wisconsin-Richland, an

  12. The Future of K-12 Computer Science Instruction

    Science.gov (United States)

    Bottoms, Gene; Sundell, Kirsten

    2016-01-01

    Children born since the early 1990s have never known a world in which computer and information technologies are not essential to every aspect of their lives. However, far too many young people, especially low-income and minority youth, lack opportunities to learn about the impact of computer and information technologies on their lives and become…

  13. The Future of K-12 Computer Science Instruction

    Science.gov (United States)

    Bottoms, Gene; Sundell, Kirsten

    2016-01-01

    Children born since the early 1990s have never known a world in which computer and information technologies are not essential to every aspect of their lives. However, far too many young people, especially low-income and minority youth, lack opportunities to learn about the impact of computer and information technologies on their lives and become…

  14. Outstanding Science Trade Books for Students K-12

    Science.gov (United States)

    Texley, Juliana

    2009-01-01

    Today's classrooms have no real walls! Students explore the world on field trips, during virtual journeys on the world wide web, and through the books they read. These pathways help them fly to the ends of the universe to satisfy their scientific curiosity. Again this year, the professionals of the NSTA/CBC Review Panel for Outstanding Science…

  15. Outstanding Science Trade Books for Students K-12

    Science.gov (United States)

    Texley, Juliana

    2009-01-01

    Today's classrooms have no real walls! Students explore the world on field trips, during virtual journeys on the world wide web, and through the books they read. These pathways help them fly to the ends of the universe to satisfy their scientific curiosity. Again this year, the professionals of the NSTA/CBC Review Panel for Outstanding Science…

  16. Crisis in Science and Math Education. Hearing before the Committee on Governmental Affairs, United States Senate. One Hundred First Congress, First Session.

    Science.gov (United States)

    Congress of the U.S., Washington, DC. Senate Committee on Environment and Public Works.

    This document contains the transcript of a senate hearing on the crisis in science and math education. The document includes the opening statements of Senators Glenn, Kohl, Bingaman, Lieberman, Heinz, and Sasser, and the testimony of seven witnesses including: Honorable Mark O. Hatfield, Senator from the State of Oregon; Carl Sagan, Ph.D. Cornell…

  17. Why They Leave: The Impact of Stereotype Threat on the Attrition of Women and Minorities from Science, Math and Engineering Majors

    Science.gov (United States)

    Beasley, Maya A.; Fischer, Mary J.

    2012-01-01

    This paper examines the effects of group performance anxiety on the attrition of women and minorities from science, math, and engineering majors. While past research has relied primarily on the academic deficits and lower socioeconomic status of women and minorities to explain their absence from these fields, we focus on the impact of stereotype…

  18. Why They Leave: The Impact of Stereotype Threat on the Attrition of Women and Minorities from Science, Math and Engineering Majors

    Science.gov (United States)

    Beasley, Maya A.; Fischer, Mary J.

    2012-01-01

    This paper examines the effects of group performance anxiety on the attrition of women and minorities from science, math, and engineering majors. While past research has relied primarily on the academic deficits and lower socioeconomic status of women and minorities to explain their absence from these fields, we focus on the impact of stereotype…

  19. An Analysis of High School Math, Science, Social Studies, English, and Foreign Language Teachers' Implementation of One-to-One Computing and Their Pedagogical Practices

    Science.gov (United States)

    Inserra, Albert; Short, Thomas

    2013-01-01

    The purpose of this study was to compare high school Math, Science, Social Studies, English, and Foreign Language teachers' implementation of teaching practices in terms of their pedagogical dimensions in a one-to-one computing environment. A survey was developed to measure high school teachers' implementation of teaching practices associated with…

  20. Using TPCK as a Lens to Study the Practices of Math and Science Teachers Involved in a Year-Long Technology Integration Initiative

    Science.gov (United States)

    Dawson, Kara; Ritzhaupt, Albert; Liu, Feng; Rodriguez, Prisca; Frey, Christopher

    2013-01-01

    The purpose of this study was to examine the ways teachers enact technological, pedagogical and content practices in math and science lessons and to document the change with teachers involved in a year-long technology integration initiative. Six hundred seventy-two lessons were analyzed in this research using Technological, Pedagogical Content…

  1. A Framework for Understanding Cross-National and Cross-Ethnic Gaps in Math and Science Achievement: The Case of the United States

    Science.gov (United States)

    Guglielmi, R. Sergio; Brekke, Nancy

    2017-01-01

    Comparative international assessments of academic achievement consistently indicate that US students trail behind many peers, particularly those from east Asia, in math and science. Traditional efforts to explain this finding have focused on identifying characteristics that might differentiate the United States from top-performing countries.…

  2. Effects of Self-Efficacy-Enhancing Interventions on the Math/Science Self-Efficacy and Career Interests, Goals, and Actions of Career Undecided College Students.

    Science.gov (United States)

    Luzzo, Darrell Anthony; Hasper, Patricia; Albert, Katrice A.; Bibby, Maureen A.; Martinelli, Edward A., Jr.

    1999-01-01

    Study evaluates the effects of both performance accomplishment and vicarious learning experiences on the math/science self-efficacy and career interests, goals, and actions of career-undecided college students. Undergraduate participants were assigned one of four treatment conditions for the study. Theoretical and counseling implications of the…

  3. Teaching-as-Research Internships: A Model for the Development of Future Chemistry Faculty and the Improvement of Teaching in Science, Technology, Engineering, and Math

    Science.gov (United States)

    Gillian-Daniel, Donald L.; Walz, Kenneth A.

    2016-01-01

    Over the past decade, the University of Wisconsin-Madison (UW-Madison) and Madison Area Technical College (Madison College) partnered to create an internship pathway for graduate students pursuing careers as future science, technology, engineering and math (STEM) faculty members. Since 2003, 10 doctoral students from the university completed…

  4. Streptococcus salivarius K12 Limits Group B Streptococcus Vaginal Colonization.

    Science.gov (United States)

    Patras, Kathryn A; Wescombe, Philip A; Rösler, Berenice; Hale, John D; Tagg, John R; Doran, Kelly S

    2015-09-01

    Streptococcus agalactiae (group B streptococcus [GBS]) colonizes the rectovaginal tract in 20% to 30% of women and during pregnancy can be transmitted to the newborn, causing severe invasive disease. Current routine screening and antibiotic prophylaxis have fallen short of complete prevention of GBS transmission, and GBS remains a leading cause of neonatal infection. We have investigated the ability of Streptococcus salivarius, a predominant member of the native human oral microbiota, to control GBS colonization. Comparison of the antibacterial activities of multiple S. salivarius strains by use of a deferred-antagonism test showed that S. salivarius strain K12 exhibited the broadest spectrum of activity against GBS. K12 effectively inhibited all GBS strains tested, including disease-implicated isolates from newborns and colonizing isolates from the vaginal tract of pregnant women. Inhibition was dependent on the presence of megaplasmid pSsal-K12, which encodes the bacteriocins salivaricin A and salivaricin B; however, in coculture experiments, GBS growth was impeded by K12 independently of the megaplasmid. We also demonstrated that K12 adheres to and invades human vaginal epithelial cells at levels comparable to GBS. Inhibitory activity of K12 was examined in vivo using a mouse model of GBS vaginal colonization. Mice colonized with GBS were treated vaginally with K12. K12 administration significantly reduced GBS vaginal colonization in comparison to nontreated controls, and this effect was partially dependent on the K12 megaplasmid. Our results suggest that K12 may have potential as a preventative therapy to control GBS vaginal colonization and thereby prevent its transmission to the neonate during pregnancy.

  5. Examining the Views of Undergraduate STEM Majors Regarding K-12 Teaching as a Profession

    Science.gov (United States)

    Plecki, Margaret; St. John, Elise; Elfers, Ana

    2013-01-01

    This study explores how undergraduates enrolled in STEM (science, technology, engineering, and mathematics) courses view the K-12 teaching profession. A survey was conducted with a sample of undergraduates in community college and university settings (n = 610). We examine whether undergraduates believe that teaching offers what they value in a…

  6. Empowering K-12 Students with Disabilities to Learn Computational Thinking and Computer Programming

    Science.gov (United States)

    Israel, Maya; Wherfel, Quentin M.; Pearson, Jamie; Shehab, Saadeddine; Tapia, Tanya

    2015-01-01

    This article's focus is on including computing and computational thinking in K-12 instruction within science, technology, engineering, and mathematics (STEM) education, and to provide that instruction in ways that promote access for students traditionally underrepresented in the STEM fields, such as students with disabilities. Providing computing…

  7. The USDA and K-12 Partnership: A Model Program for Federal Agencies

    Science.gov (United States)

    Scott, Timothy P.; Wilson, Craig; Upchurch, Dan R.; Goldberg, Maria; Bentz, Adrienne

    2011-01-01

    The Future Scientists Program of Texas A&M University and the Agricultural Research Service branch of USDA serves as a model program of effective collaboration between a federal agency and K-12. It demonstrates true partnership that contextualizes learning of science and provides quality professional development, benefiting teachers and their…

  8. Be a Water Watcher: A Resource Guide for Water Conservation, K-12.

    Science.gov (United States)

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    This is a resource guide (in response to the New York City water emergency) for grades K-12 on the subject of water conservation. Activities are suggested for science, industrial arts, social studies, and communications arts classes. A bibliography on water is also provided. (APM)

  9. The SERC K12 Educators Portal to Teaching Activities and Pedagogic Approaches

    Science.gov (United States)

    Larsen, K.; Kirk, K. B.; Manduca, C. A.; Ledley, T. S.; Schmitt, L.

    2013-12-01

    The Science Education Resource Center (SERC) has created a portal to information for K12 educators to provide high-quality grade level appropriate materials from a wide variety of projects and topics. These materials were compiled across the SERC site, showcasing materials that were created for, or easily adaptable to, K12 classrooms. This resource will help support implementation of Next Generation Science Standards by assisting educators in finding innovative resources to address areas of instruction that are conceptually different than previous national and state science standards. Specifically, the K12 portal assists educators in learning about approaches that address the cross-cutting nature of science concepts, increasing students quantitative reasoning and numeracy skills, incorporating technology such as GIS in the classroom, and by assisting educators of all levels of K12 instruction in using relevant and meaningful ways to teach science concepts. The K12 portal supports educators by providing access to hundreds of teaching activities covering a wide array of science topics and grade levels many of which have been rigorously reviewed for pedagogic quality and scientific accuracy. The portal also provides access to web pages that enhance teaching practices that help increase student's system thinking skills, make lectures interactive, assist instructors in conducting safe and effective indoor and outdoor labs, providing support for teaching energy and climate literacy principles, assisting educators in addressing controversial content, provide guidance in engaging students affective domain, and provides a collection of tools for making teaching relevant in 21st century classrooms including using GIS, Google Earth, videos, visualizations and simulations to model and describe scientific concepts. The portal also provides access to material for specific content and audiences by (1) Supporting AGIs 'Map your World' week to specifically highlight teaching

  10. Modélisation mathématique et assimilation de données pour les sciences de l'environnement

    OpenAIRE

    Rousseau, Antoine; Nodet, Maëlle

    2013-01-01

    National audience; Nous présenterons, au travers d'un certain nombre d'exemples illustrés, les travaux de l'équipe-projet MOISE (Modélisation, Observation et Identification pour les Sciences de l'Environnement) de l'INRIA, Institut de recherche en mathématiques appliquées et en informatique. De la simulation de l'océan à grande échelle à celle des cyclones tropicaux, en passant par les avalanches en montagne ou l'érosion du littoral, nous expliquerons comment les mathématiques appliquées (équ...

  11. Attracting students and professionals into math, science, and technology education at the elementary and middle grades: Annual report, September 1, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Flick, L.B.

    1995-12-31

    This report describes the progress of a project to encourage students and professionals to participate in math, science, and technology education at the elementary and middle grades. The topics of the report include developing a model laboratory/classroom for teacher education, providing financial incentives for students with technical majors to complete the program, and emphasizing issues of equity and minority participation in mathematics, science and technology education through recruitment procedures and in course content.

  12. Attracting students and professionals into math, science, and technology education at the elementary and middle grades: Annual report, September 1, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Flick, L.B.

    1995-12-31

    This report describes the progress of a project to encourage students and professionals to participate in math, science, and technology education at the elementary and middle grades. The topics of the report include developing a model laboratory/classroom for teacher education, providing financial incentives for students with technical majors to complete the program, and emphasizing issues of equity and minority participation in mathematics, science and technology education through recruitment procedures and in course content.

  13. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Science.gov (United States)

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  14. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Directory of Open Access Journals (Sweden)

    Rahul Uppal

    2016-01-01

    Full Text Available The Computer Science, Biology, and Biomedical Informatics (CoSBBI program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4th year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI Academy (http://www.upci.upmc.edu/summeracademy/, and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  15. "Finding the Joy in the Unknown": Implementation of STEAM Teaching Practices in Middle School Science and Math Classrooms

    Science.gov (United States)

    Quigley, Cassie F.; Herro, Dani

    2016-06-01

    In response to a desire to strengthen the economy, educational settings are emphasizing science, technology, engineering, and mathematics (STEM) curriculum and programs. Yet, because of the narrow approach to STEM, educational leaders continue to call for a more balanced approach to teaching and learning, which includes the arts, design, and humanities. This desire created space for science, technology, engineering, arts, and mathematics (STEAM) education, a transdisciplinary approach that focuses on problem-solving. STEAM-based curricula and STEAM-themed schools are appearing all over the globe. This growing national and global attention to STEAM provides an opportunity for teacher education to explore the ways in which teachers implement STEAM practices, examining the successes and challenges, and how teachers are beginning to make sense of this innovative teaching practice. The purpose of this paper is to examine the implementation of STEAM teaching practices in science and math middle school classrooms, in hopes to provide research-based evidence on this emerging topic to guide teacher educators.

  16. Development of an Innovative Interactive Virtual Classroom System for K-12 Education Using Google App Engine

    Science.gov (United States)

    Mumba, Frackson; Zhu, Mengxia

    2013-01-01

    This paper presents a Simulation-based interactive Virtual ClassRoom web system (SVCR: www.vclasie.com) powered by the state-of-the-art cloud computing technology from Google SVCR integrates popular free open-source math, science and engineering simulations and provides functions such as secure user access control and management of courses,…

  17. Singapore Math

    Science.gov (United States)

    What Works Clearinghouse, 2009

    2009-01-01

    "Singapore Math" is a collection of math curricula originally developed by Singapore's Ministry of Education and private textbook publishers for use in Singapore schools. "Singapore Math" curricula were developed under a national framework centered on problem solving that emphasizes computational skills as well as conceptual and strategic thinking…

  18. Investigating the criteria and processes used in the selection, implementation, and evaluation of STEM within K-12 education

    Science.gov (United States)

    Delp, Matthew J.

    This study utilized survey research to investigate how school districts within K-12 education select, implement, and evaluate Science, Technology, Engineering, and Mathematics (STEM) programs. Thirty school districts within the Math and Science Collaborative located in Western Pennsylvania participated in this research. In addition to characterizing the STEM programs of the participating school districts, this study also analyzed the alignment of these programs to the components of comprehensive STEM programs and critical approaches to substantiate STEM program implementation as stated in the literature (Augustine, 2005; Bybee, 2010a, 2010b; Carnevale et al., 2011; DeJarnette, 2010; Epstein & Miller, 2011b; Gardner et al., 1983; Hossain & Robinson, 2011, 2012; Kuenzi, 2008). Findings suggest that the primary goal for school districts, as it relates to STEM program implementation, is to influence students' interest and pursuit of STEM-related careers and degrees. In order to achieve this goal, results of this study indicate the focus of STEM program implementation occurs with the greatest frequency at the middle school (grades seven and eight) level, are developed as an adaptation to the curriculum, and are very diverse from one school district to the next. In addition, findings suggest that although school districts maintain they aim to promote careers and degrees in STEM, districts rely on traditional methods of evaluating STEM program implementation (i.e. standardized test scores) and do not track the longitudinal impact their STEM programs as they related to degrees and careers in STEM. Furthermore, results indicate district STEM programs are not aligned to the characteristics of comprehensive STEM programs as defined by the literature. In order to address the misalignment of school district goals and evaluation processes involved in STEM program implementation and the absence of the characteristics commensurate with comprehensive STEM programs, this study has

  19. A Comparative Study on Math's Education Rendered in the Two Communities on the Island of Cyprus

    Science.gov (United States)

    Hadjichristou, Chrysoula

    2007-01-01

    The island of Cyprus embodies two distinct communities having their own systems of education. On the road to EU certain parallelisms need to be set as it is the goal of this study on math's education. This paper will concentrate on K1-K12 math's education. The topics to be dealt with will cover math's curriculum at all levels; weekly distribution…

  20. K-12 Students' Perceptions of Scientists: Finding a Valid Measurement and Exploring Whether Exposure to Scientists Makes an Impact

    Science.gov (United States)

    Hillman, Susan J.; Bloodsworth, Kylie H.; Tilburg, Charles E.; Zeeman, Stephan I.; List, Henrietta E.

    2014-01-01

    This study was launched from a National Science Foundation GK-12 grant in which graduate fellows in Science, Technology, Engineering, and Mathematics (STEM) are placed in classrooms to engage K-12 students in STEM activities. The investigation explored whether the STEM Fellows' presence impacted the K-12 students' stereotypical image of…

  1. Santa Fe Alliance for Science: The First Eight Years

    Science.gov (United States)

    Eisenstein, Robert A.

    2013-04-01

    The Santa Fe Alliance for Science (SFAFS) was founded in May, 2005. SFAFS exists to provide assistance in K-14 math and science education in the greater Santa Fe area. It does this via extensive programs (1) in math and science tutoring at Santa Fe High School, Santa Fe Community College and to a lesser degree at other schools, (2) science fair advising and judging, (3) its ``Santa Fe Science Cafe for Young Thinkers'' series, (4) a program of professional enrichment for K-12 math and science teachers, and (5) a fledging math intervention program in middle school math. Well over 150 STEM professionals, working mostly as volunteers, have contributed since our beginning. Participation by students, parents and teachers has increased dramatically over the years, leading to much more positive views of math and science, especially among elementary school students and teachers. Support from the community and from local school districts has been very strong. I will present a brief status report on SFAFS activities, discuss some of the lessons learned along the way and describe briefly some ideas for the future. More information can be found at the SFAFS website, www.sfafs.org.

  2. Obama’s Reform on Math and Science Education%奥巴马与美国中小学数学和科学教育

    Institute of Scientific and Technical Information of China (English)

    杨光富

    2013-01-01

    President Obama has ever pointed out that the future of the USA depends on the math and science education. The education decentralization brings about chaos of the state curriculum standards and lags far behind other countries in the math and science education as well. In order to change the situation, Obama’s government released a set of state-led education standards, the Common Core State Standards. The standards integrate and improve the standard of the math and science. The plans of Race to the Top and Educate to Innovate offer the funds to support the reform of the math and science education. Respect Project attracts and trains more high qualiifed teachers of math and science. Besides, the reform is paying attention to the non-governmental sectors. Now, the math and science education is on a good way and makes more people give attention to it.%奥巴马多次指出,美国的未来取决于数学与科学教育的水平。“地方分权”制造成了各州课程标准的降低与混乱,从而导致在数学、科学等学科教育已远远落后于其他国家。为了改变这一局面,奥巴马颁布了《州共同核心课程标准》,统一并提高数学与科学教育标准;通过“竞争卓越”、“为创新而教”等计划拨款大力支持数学与科学教育改革;启动“尊重项目”等计划来吸引并培养高素质的优秀数学与科学教师;在改革中还注重吸纳民间力量的支持。目前,美国数学与科学教育正朝着预定的方向发展,也引发了各界对数学与科学教育的热潮。

  3. Females and STEM: Determining the K-12 Experiences that Influenced Women to Pursue STEM Fields

    Science.gov (United States)

    Petersen, Anne Marie

    In the United States, careers in the fields of Science, Technology, Engineering, and Mathematics (STEM) are increasing yet there are not enough trained personnel to meet this demand. In addition, of those that seek to pursue STEM fields in the United States, only 26% are female. In order to increase the number of women seeking STEM based bachelor's degrees, K-12 education must provide a foundation that prepares students for entry into these fields. The purpose of this phenomenological study was to determine the perceived K-12 experiences that influenced females to pursue a STEM field. Twelve college juniors or seniors seeking a degree in Biology, Mathematics, or Physics were interviewed concerning their K-12 experiences. These interviews were analyzed and six themes emerged. Teacher passion and classroom characteristics such as incorporating challenging activities played a significant role in the females' decisions to enter STEM fields. Extra-curricular activities such as volunteer and mentor opportunities and the females' need to benefit others also influenced females in their career choice. Both the formal (within the school) and informal (outside of the traditional classroom) pipeline opportunities that these students encountered helped develop a sense of self-efficacy in science and mathematics; this self-efficacy enabled them to persist in pursuing these career fields. Several participants cited barriers that they encountered in K-12 education, but these barriers were primarily internal as they struggled with overcoming self-imposed obstacles in learning and being competitive in the mathematics and science classrooms. The experiences from these female students can be used by K-12 educators to prepare and encourage current female students to enter STEM occupations.

  4. Are We Preparing the Next Generation? K-12 Teacher Knowledge and Engagement in Teaching Core STEM Practices

    OpenAIRE

    Nadelson, Louis; Seifert, Anne; Hendricks, J. Kade

    2015-01-01

    Background: Several of the recent reform efforts in K-12 STEM education (e.g. Next Generation Science Standards [NGSS and Common Core State Standards-Mathematics [CCSS-M]) have included significant emphasis on the practices of STEM. We argue that K-12 teachers' ability to effectively engage their students in these core STEM practices is fundamental to the success of potential and current engineering students and their subsequent careers as engineers. Practices such as identifying problems, mo...

  5. Parental Practices in Families of Super-Achieving Math and Science Students.

    Science.gov (United States)

    Lines, Patricia; Hawley, Jill Clark

    This paper examines parenting practices reported by 29 seniors who won scholarships in the 1990 Westinghouse Science Talent Search (STS) for projects in mathematics or science. It uses measures of parenting developed by Sanford Dornbusch and others: Parents are "authoritative" if they encourage family discussions of controversial topics, prefer…

  6. College Women's Performance in a Math-Science Curriculum: A Case Study.

    Science.gov (United States)

    Johnson, Elizabeth S.

    1993-01-01

    A study at a university with strong mathematics/science curricula found that at matriculation, women and men had similar high school rank, women had lower mathematics test scores; most majored in science or engineering; women had higher undergraduate degree completion rates at four years; and grade point averages differed little. (MSE)

  7. Negative School Factors and Their Influence on Math and Science Achievement in TIMSS 2003

    Science.gov (United States)

    Perse, Tina Vrsnik; Kozina, Ana; Leban, Tina Rutar

    2011-01-01

    The aim of the present study was to conduct an analysis of TIMSS (Trends in International Mathematics and Science Study) 2003 database and to determine how negative school factors, such as aggression, are associated to the mathematical and science achievement of students. The analyses were conducted separately for national and international data.…

  8. National Youth Sports Program: Math/Science. Final report, [June 1, 1992--November 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    NYSP, a partnership of NCAA, HHS, and colleges and universities, is aimed at sports instruction and physical activity for disadvantaged youth. In 1992, DOE joined in to add a mathematics/science component. Federal funds were used to conduct mathematics and science education components on a limited pilot basis at 16 sites. Recommendations for future improvements are given.

  9. STEAMakers- a global initiative to connect STEM career professionals with the public to inspire the next generation and nurture a creative approach to science, technology, maths & engineering

    Science.gov (United States)

    Shaw, Niamh; Sorkhabi, Elburz; Gasquez, Oriol; Yajima, Saho

    2016-04-01

    STEAMakers is a global initiative founded by Niamh Shaw, Elburz Sorkhabi, Oriol Gasquez & Saho Yajima, four alumni of The International Space University's Space Studies Programme 2015 who each shared a vision to inspire the next generation to embrace science, technology, engineering & maths (STEM) in new ways, by embedding the Arts within STEM, putting the 'A' in STEAM. STEAMakers invited STEM professionals around the world to join their community, providing training and a suite of STEAM events, specially designed to encourage students to perceive science, technology, engineering & maths as a set of tools with which to create, design, troubleshoot, innovate, and imagine. The ultimate goal of STEAMakers is to grow this community and create a global culture of non-linear learning among the next generation, to nurture within them a new multidisciplinary mindset and incubate new forms of innovation and thought leadership required for the future through the power of inspiration and creativity.

  10. The characteristics of effective secondary math and science instructional facilitators and the necessary support structures as perceived by practitioners and principals

    Science.gov (United States)

    Mahagan, Vikki Lynn

    Instructional facilitators are known by a variety of titles depending on the school district in which they are employed. They are sometimes called instructional coaches, teacher leaders, lead teachers, and instructional specialist (Denton & Hasbrouck, 2009). Throughout this study, the title instructional facilitator was used and will refer to secondary math or science instructional facilitators who are housed at least one day per week on a campus. This study is a mixed-methods descriptive study which has identified character traits, specials skill, and talents possessed by effective secondary math and science instructional facilitators as perceived by practicing facilitators and principals and assistant principals who work along side instructional facilitators. Specific job training to help ensure the success of a facilitator was identified as viewed by both facilitators and principals. Additionally, this study compared the perceptions of practicing facilitators and principals to determine if significant differences exist with respect to perceptions of staff development opportunities, support structures, and resources available for instructional facilitators.

  11. Integrating Robot Design Competitions into the Curriculum and K-12 Outreach Activities

    Science.gov (United States)

    Avanzato, Robert

    The Penn State Abington campus has integrated several mobile robot design competitions into project-based design activities to provide enhancement for undergraduate engineering and information sciences and technology courses and also to provide outreach to K-12 institutions. The robot competitions, which encourage interdisciplinary design, teamwork, and rapid prototyping, support a wide range of educational outcomes in a variety of courses. A survey of undergraduate students was also implemented to identify the key lessons learned and overall educational quality of the robot competition activities. Overall, the responses on the quality of the robot competition experience were very positive. The strategic selection and implementation of robot design competitions, such as described in this paper, provide a cost-effective approach to enhancing the curriculum, promoting retention, and encouraging interest in science and technology (STEM) careers in K-12 students.

  12. The School for Science and Math at Vanderbilt: An Innovative Research-Based Program for High School Students.

    Science.gov (United States)

    Eeds, Angela; Vanags, Chris; Creamer, Jonathan; Loveless, Mary; Dixon, Amanda; Sperling, Harvey; McCombs, Glenn; Robinson, Doug; Shepherd, Virginia L

    2014-01-01

    The School for Science and Math at Vanderbilt (SSMV) is an innovative partnership program between a Research I private university and a large urban public school system. The SSMV was started in 2007 and currently has 101 students enrolled in the program, with a total of 60 students who have completed the 4-yr sequential program. Students attend the SSMV for one full day per week during the school year and 3-6 wk in the summers following their ninth- to 11th-grade years, with each grade of 26 students coming to the Vanderbilt campus on a separate day. The research-based curriculum focuses on guiding students through the process of learning to develop questions and hypotheses, designing projects and performing analyses, and communicating results of these projects. The SSMV program has elevated the learning outcomes of students as evidenced by increased achievement scores relative to a comparison group of students; has provided a rigorous research-based science, technology, engineering, and mathematics elective curriculum that culminates in a Summer research internship; has produced 27 Intel and Siemens semifinalists and regional finalists over the past 4 yr; and has supported the development of writing and communication skills resulting in regional and national oral presentations and publications in scientific journals. © 2014 A. Eeds et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Integrating Technology, Science, and Math at Napoleon's School for Industry, 1806-1815.

    Science.gov (United States)

    Pannabecker, John R.

    2002-01-01

    Describes an early attempt to integrate technology, science, and mathematics education during the Napoleonic era in France. Discusses four categories of integration: physical, conceptual, social, and political. Explains the significance of historical studies for technology education. (Contains 35 references.) (SK)

  14. An Analysis of Teachers' Perceptions through Metaphors: Prospective Turkish Teachers of Science, Math and Social Science in Secondary Education

    Science.gov (United States)

    Akçay, Süleyman

    2016-01-01

    In this study, teachers' perceptions of prospective Turkish teachers (that is, those who have completed their undergraduate studies) in the fields of Science, Mathematics and Social Sciences are investigated through teacher metaphors. These perceptions were classified in accordance with their answers to two open-ended questions within a metaphoric…

  15. Modern maths

    CERN Document Server

    Thom,R

    1974-01-01

    Le Prof. R. Thom expose ses vues sur l'enseignement des mathématiques modernes et des mathémathiques de toujours. Il est un grand mathématicien et était professeur à Strasbourg; maintenant il est professeur de hautes études scientifiques et était invité par le Prof. Piaget à Genève

  16. Development of Case Stories by Interviewing Students about their Critical Moments in Science, Math, and Engineering Classes

    Directory of Open Access Journals (Sweden)

    Rachel Esselstein

    2008-01-01

    Full Text Available Dartmouth’s Critical Moments project is designed to promote discussions among faculty and graduate students about the retention of students, particularly women and minorities, in science, math, and engineering (SME disciplines. The first phase of the ongoing project has been the development of four case stories, which are fictionalized composites drawn from surveys and interviews of real Dartmouth students. The surveyed population was 125 students in general chemistry. Of the 77 who agreed to be interviewed, 61 reported having experienced a critical moment – i.e., a positive or negative event or time that had a significant impact on the student’s academic life. Leading critical moments were a poor grade on an exam; challenge from group work; excitement from an internship; and falling in love with a non-SME discipline from other coursework. Interviews of 13 students who had negative critical moments led to the development of case stories for: Antoinetta ’09, who had a disappointing group experience; Dalila ’08, who was poorly prepared; Greg ’09, who got in over his head in his first year; and Michelle ’08, who was shocked by her result in the first exam. The case stories are being discussed by graduate students, TA and faculty in various workshops at the Dartmouth Center for the Advancement of Learning.

  17. The Potential Role of Science, Technology, Engineering, and Math Programs in Reducing Teen Dating Violence and Intimate Partner Violence.

    Science.gov (United States)

    D'Inverno, Ashley Schappell; Kearns, Megan C; Reidy, Dennis E

    2016-12-01

    Science, technology, engineering, and math (STEM) are growing fields that provide job stability, financial security, and health prosperity for professionals in these fields. Unfortunately, females are underrepresented in STEM, which is potentially both a consequence and precipitant of gender inequity in the United States. In addition to the financial and health benefits, increasing the number of girls and women in STEM fields may also indirectly prevent and/or reduce teen dating violence and intimate partner violence by: (1) increasing women's financial independence, thereby reducing dependence on potentially abusive partners; (2) decreasing household poverty and financial stress, which may lead to reductions in relationship discord; and (3) increasing attitudes and beliefs about women as equals, thereby increasing gender equity. In this commentary, we discuss the potential role of primary and secondary school STEM programs in reducing violence against women. We review the literature on existing evaluations of STEM programs for educational outcomes, discuss the limitations of these evaluations, and offer suggestions for future research.

  18. A systematic review of factors linked to poor academic performance of disadvantaged students in science and maths in schools

    Directory of Open Access Journals (Sweden)

    Pallavi Amitava Banerjee

    2016-12-01

    Full Text Available Socio-economic hardships put children in an underprivileged position. This systematic review was conducted to identify factors linked to underachievement of disadvantaged pupils in school science and maths. What could be done as evidence-based practice to make the lives of these young people better? The protocol from preferred reporting items for systematic reviews and meta-analyses (PRISMA was followed. Major electronic educational databases were searched. Papers meeting pre-defined selection criteria were identified. Studies included were mainly large-scale evaluations with a clearly defined comparator group and robust research design. All studies used a measure of disadvantage such as lower SES, language barrier, ethnic minority or temporary immigrant status and an outcome measure like attainment in standardised national tests. A majority of papers capable of answering the research question were correlational studies. The review reports findings from 771 studies published from 2005 to 2014 in English language. Thirty-four studies were synthesised. Results suggest major factors linking deprivation to underachievement can be thematically categorised into a lack of positive environment and support. Recommendations from the research reports are discussed.

  19. K-12 Engineering Education Standards: Opportunities and Barriers

    Science.gov (United States)

    Bybee, Rodger W.

    2011-01-01

    Does the nation need K-12 engineering education standards? The answer to this question is paradoxically both simple and complex, and requires an examination of a rationale for such standards as well as the opportunities and barriers to developing and implementing the standards. In two decades since 1989, the idea of national standards for…

  20. Designing GIS Learning Materials for K-12 Teachers

    Science.gov (United States)

    Hong, Jung Eun

    2017-01-01

    Although previous studies have proven the usefulness and effectiveness of geographic information system (GIS) use in the K-12 classroom, the rate of teacher adoption remains low. The identified major barrier to its use is a lack of teachers' background and experience. To solve this limitation, many organisations have provided GIS-related teacher…

  1. Engaging K-12 Language Learners in Media Literacy

    Science.gov (United States)

    Egbert, Joy; Neville, Chon

    2015-01-01

    Calls to integrate media literacy into K-12 language classrooms appear to have gone largely unheeded. However, media literacy skills are seen as crucial for 21st-century learners. This article answers the calls for a focus on media literacy in the language classroom by addressing both why and how systematic attention might be brought to this issue…

  2. The Green Pages: Environmental Education Activities K-12.

    Science.gov (United States)

    Clearing, 1991

    1991-01-01

    Presented are 38 environmental education activities for grades K-12. Topics include seed dispersal, food chains, plant identification, sizes and shapes, trees, common names, air pollution, recycling, temperature, litter, water conservation, photography, insects, urban areas, diversity, natural cycles, rain, erosion, phosphates, human population,…

  3. Information Security Management Practices of K-12 School Districts

    Science.gov (United States)

    Nyachwaya, Samson

    2013-01-01

    The research problem addressed in this quantitative correlational study was the inadequacy of sound information security management (ISM) practices in K-12 school districts, despite their increasing ownership of information assets. Researchers have linked organizational and sociotechnical factors to the implementation of information security…

  4. Leadership Analysis in K-12 Case Study: "Divided Loyalties"

    Science.gov (United States)

    Alsubaie, Merfat Ayesh

    2016-01-01

    This report mainly aims to provide a critical and in-depth analysis of the K-12 Case, "Divided Loyalty" by Holy and Tartar (2004). The case recounts how the manifestation of inadequate leadership skills in a school setting could affect negatively the performance of students.

  5. Education Nation: Obama, Romney Outline Different K-12, Postsecondary Priorities

    Science.gov (United States)

    Dervarics, Charles

    2012-01-01

    With negative ads already rampant on radio and TV, it's clear that President Obama and Republican presidential nominee Mitt Romney differ on most issues. That statement carries over to education as well, as both offer starkly different views on K-12 and higher education policy for the fall campaign. Obama is touting a large increase in Pell Grants…

  6. 2008 Public Opinion Survey on K-12 Education in Indiana

    Science.gov (United States)

    Plucker, Jonathan A.; Spradlin, Terry E.; Burroughs, Nathan A.; Hiller, Stephen C.

    2008-01-01

    During the course of each calendar year since 2003, staff of the Center for Evaluation & Education Policy (CEEP) at Indiana University evaluates the benefits of continuing the Annual Public Opinion Survey on K-12 Education in Indiana. In 2008, the Indiana legislature determined that school corporations would no longer use property tax revenues…

  7. Gender Sorting across K-12 Schools in the United States

    Science.gov (United States)

    Long, Mark C.; Conger, Dylan

    2013-01-01

    This article documents evidence of nonrandom gender sorting across K-12 schools in the United States. The sorting exists among coed schools and at all grade levels, and it is highest in the secondary school grades. We observe some gender sorting across school sectors and types: for instance, males are slightly underrepresented in private schools…

  8. K-12 Marketplace Sees Major Flow of Venture Capital

    Science.gov (United States)

    Ash, Katie

    2012-01-01

    The flow of venture capital into the K-12 education market has exploded over the past year, reaching its highest transaction values in a decade in 2011, industry observers say. They attribute that rise to such factors as a heightened interest in educational technology; the decreasing cost of electronic devices such as tablet computers, laptops,…

  9. Transforming K-12 Rural Education through Blended Learning: Teacher Perspectives

    Science.gov (United States)

    Kellerer, Paula; Kellerer, Eric; Werth, Eric; Werth, Lori; Montgomery, Danielle; Clyde, Rozella; Cozart, Joe; Creach, Laura; Hibbard, Laura; LaFrance, Jason; Rupp, Nadine; Walker, Niki; Carter, Theresa; Kennedy, Kathryn

    2014-01-01

    A qualitative study exploring rural teacher perspectives on the impact of blended learning on students and teachers was conducted in Idaho during the Fall of 2013. Researchers from Northwest Nazarene University's DOCEO Center in partnership with Idaho Digital Learning Academy (IDLA) and the International Association for K-12 Online Learning…

  10. Best Practices in Administration of K-12 Dance Programs

    Science.gov (United States)

    Henneman, Suzanne E.

    2013-01-01

    The role of administering K-12 dance education programs is both exciting and invigorating. Being part of the decision-making process, problem solving with teams of colleagues, establishing routines and initiatives, creating "something from nothing," and watching programs grow is appealing to dance teachers as creative and critical…

  11. Green Power Partnership Top 30 K-12 Schools

    Science.gov (United States)

    The U.S. EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. On this list are the largest green power users among K-12 school partners within the GPP.

  12. A Framework for Educational Computer Usage. K-12.

    Science.gov (United States)

    Berry, Julia; And Others

    A framework for educational computer usage in grades K-12 is outlined. For each grade level, objectives are shown for the following knowledge areas: computer-related terminology and use; history and development of computers; the use of the computer as a tool; communicating instructions to the computer; social implications; and robotics. Suggested…

  13. Florida's Opinion on K-12 Public Education Spending

    Science.gov (United States)

    Forster, Greg

    2006-01-01

    This scientifically representative poll of 1,200 Floridians finds that public opinion about K-12 public education spending is seriously misinformed. Floridians think public schools need more money, but the main reason is that they are badly mistaken about how much money the public schools actually get. Key findings of the study include: (1) Half…

  14. The Green Pages: Environmental Education Activities K-12.

    Science.gov (United States)

    Clearing, 1991

    1991-01-01

    Presented are 38 environmental education activities for grades K-12. Topics include seed dispersal, food chains, plant identification, sizes and shapes, trees, common names, air pollution, recycling, temperature, litter, water conservation, photography, insects, urban areas, diversity, natural cycles, rain, erosion, phosphates, human population,…

  15. West Bloomfield Schools Social Studies Curriculum K-12.

    Science.gov (United States)

    Morse, James E.; And Others

    The curriculum guide outlines behavioral objectives, learning activities, evaluation methods, and resources to help K-12 classroom teachers develop and implement social studies programs. Major objectives are to extend knowledge, develop skills to make effective use of this knowledge, and to facilitate the socialization process. The first section…

  16. Best Practices in Administration of K-12 Dance Programs

    Science.gov (United States)

    Henneman, Suzanne E.

    2013-01-01

    The role of administering K-12 dance education programs is both exciting and invigorating. Being part of the decision-making process, problem solving with teams of colleagues, establishing routines and initiatives, creating "something from nothing," and watching programs grow is appealing to dance teachers as creative and critical…

  17. Designer Librarian: Embedded in K12 Online Learning

    Science.gov (United States)

    Boyer, Brenda

    2015-01-01

    Over the past two decades, shifts in technology have altered the roles of school librarians in a multitude of ways. New rigorous standards, proliferation of devices, and steady growth of online and blended learning for the K12 market now demand librarians engage with learners in online environments. Taking an instructional design approach is the…

  18. Sense and Sensibility: The Case for the Nationwide Inclusion of Engineering in the K-12 Curriculum

    Science.gov (United States)

    Lindberg, Robert E.; Pinelli, Thomas E.; Batterson, James G.

    2008-01-01

    The competitive status of the United States is inextricably linked to innovation just as innovation is inseparable from science, technology, engineering, and mathematics. To stay competitive in innovation requires that the United States produce a 21st century workforce complete with requisite education, training, skills, and motivation. If we accept a priori that science, technology, engineering, and mathematics education are crucial to competitiveness and innovation and that, in terms of innovation, mathematics, science, and engineering are interdependent, why are mathematics and science uniformly ubiquitous in the K-12 curriculum while engineering is conspicuously absent? We are passionate in our belief that the uniform addition of engineering to the K-12 curriculum will help ensure that the nation has "the right" 21st Century workforce. Furthermore, we believe that a nationwide effort, led by a coalition of engineering academics, practitioners, and societies is required to turn this goal into reality. However, accomplishing this goal necessitates, as we are reminded by the title of Jane Austen's timeless novel, "Sense and Sensibility", a workable solution that seeks the "middle ground" between passion and reason. We begin our paper by making two essential points: Engineers are not scientists. Engineering exists separate from science, has its own specialized knowledge community apart from science, and it is largely responsible for many of the most significant advancements and improvements in the quality of our life. Our workable solution requires that K-12 education, nationwide, accommodate the inclusion of engineering as a stand alone curriculum and we offer three reasons to support our position: (1) workforce development, (2) stimulating interest in STEM (science, technology, engineering, and mathematics) courses and careers, and (3) creating a technologically literate society. We conclude with some thoughts on how this important goal can be accomplished.

  19. America Can Teach Asia a Lot about Science, Technology, and Math

    Science.gov (United States)

    Bharucha, Jamshed

    2008-01-01

    There is a sense of urgency in America today, reminiscent of the "space race" rhetoric of the cold-war era, that Americans must get their act together in science, technology, engineering, and mathematics (STEM) education because the Asians are coming. Many people believe that higher-education institutions in countries like China and…

  20. MendelWeb: An Electronic Science/Math/History Resource for the WWW.

    Science.gov (United States)

    Blumberg, Roger B.

    This paper describes a hypermedia resource, called MendelWeb that integrates elementary biology, discrete mathematics, and the history of science. MendelWeb is constructed from Gregor Menders 1865 paper, "Experiments in Plant Hybridization". An English translation of Mendel's paper, which is considered to mark the birth of classical and…

  1. Redesigning and Aligning Assessment and Evaluation for a Federally Funded Math and Science Teacher Educational Program

    Science.gov (United States)

    Hardre, Patricia L.; Slater, Janis; Nanny, Mark

    2010-01-01

    This paper examines the redesign of evaluation components for a teacher professional development project funded by the National Science Foundation. It focuses on aligning evaluation instrumentation and strategies with program goals, research goals and program evaluation best practices. The study identifies weaknesses in the original (year 1)…

  2. Science, Technology, Engineering, Math (STEM) in Higher Education from the Perspective of Female Students: An Institutional Ethnography

    Science.gov (United States)

    Parson, Laura J.

    A persistent disadvantage for females is systemically embedded in Science, Technology, Engineering, and Math (STEM) education in postsecondary institutions. As a result, undergraduate women majoring in STEM fields face a uniquely difficult path; yet, for the most part, recommendations made and supported in the literature have focused on recruitment of women to STEM fields or on ways to make women more successful and comfortable in their STEM major. These recommendations have so far proved to be insufficient to remedy a gender gap and serve to replicate the existing male hierarchy. In order to truly make the STEM classroom one in which women are welcome and comfortable and to challenge the existing social and scientific systems, it is necessary to explore and understand the social and political implications embedded within teaching and learning choices. This institutional ethnography addresses that gap. The purpose of this study was to uncover and describe the institutional practices of STEM education at a Midwest research university (MRU) from the standpoint of female undergraduate students. Using the framework of feminist standpoint theory, this study explored the everyday "work" of female undergraduate STEM students to provide a unique perspective on the STEM education teaching and learning environment. Data collection began with in-depth interviews with female undergraduate math and physics students. As the institutional processes shaping undergraduate participant experiences were identified, subsequent data collection included classroom observations, additional interviews with students and faculty, and analysis of the texts that mediate these processes (e.g., syllabi and student handbooks). Data analysis followed Carspecken's process of ethnographic data analysis that began with low-level coding, followed by high-level coding, and concluded by pulling codes together through the creation of themes. Analysis of data led to three key findings. First, undergraduate

  3. Longitudinal Study of Career Cluster Persistence from 8th Grade to 12th Grade with a Focus on the Science, Technology, Engineering, & Math Career Cluster

    Science.gov (United States)

    Wagner, Judson

    Today's technology driven global economy has put pressure on the American education system to produce more students who are prepared for careers in Science, Technology, Engineering, and Math (STEM). Adding to this pressure is the demand for a more diverse workforce that can stimulate the development of new ideas and innovation. This in turn requires more female and under represented minority groups to pursue future careers in STEM. Though STEM careers include many of the highest paid professionals, school systems are dealing with exceptionally high numbers of students, especially female and under represented minorities, who begin but do not persist to STEM degree completion. Using the Expectancy-Value Theory (EVT) framework that attributes student motivation to a combination of intrinsic, utility, and attainment values, this study analyzed readily available survey data to gauge students' career related values. These values were indirectly investigated through a longitudinal approach, spanning five years, on the predictive nature of 8 th grade survey-derived recommendations for students to pursue a future in a particular career cluster. Using logistic regression analysis, it was determined that this 8 th grade data, particularly in STEM, provides significantly high probabilities of a 12th grader's average grade, SAT-Math score, the math and science elective courses they take, and most importantly, interest in the same career cluster.

  4. Parrot Math.

    Science.gov (United States)

    O'Brien, Thomas C.

    1999-01-01

    Parrot math (memorization) seeks to control children through external rewards and punishments, rather than harness their intelligence and curiosity. Recent standardized test results document parrot math's failure. Activities-based approaches, supported by a constructivist philosophy (involving classifying, inferring, generalizing, and…

  5. Review of the Draft K-12 Common Core Standards

    Science.gov (United States)

    Carmichael, Sheila Byrd; Wilson, W. Stephen; Martino, Gabrielle; Finn, Chester E., Jr.; Porter-Magee, Kathleen; Winkler, Amber M.

    2010-01-01

    American education approached a possible turning point when the National Governors Association (NGA) and Council of Chief State School Officers (CCSSO) released drafts of proposed new academic standards in English language arts and math for kindergarten through high school. Already the object of much interest--and some controversy--these are…

  6. Bringing Engineering Research Coupled With Art Into The K-12 Classroom

    Science.gov (United States)

    Cola, J.

    2016-12-01

    The Partnerships for Research, Innovation and Multi-Scale Engineering Program, a Research Experiences for K-12 Teachers at Georgia Institute of Technology demonstrates a successful program that blends the fine arts with engineering research. Teachers selected for the program improve their science and engineering content knowledge, as well as their understanding of how to use STEAM to increase student comprehension and engagement. Participants in the program designed Science, Technology, Engineering, Art, and Mathematics (STEAM)- based lessons based on faculty engineering research. Examples of some STEAM lessons created will be discussed along with lessons learned.

  7. Science Literacy Project, August 2006 - August 2008

    Energy Technology Data Exchange (ETDEWEB)

    Nasseh, Bizhan [Ball State Univ., Muncie, IN (United States)

    2008-08-01

    Ball State University (BSU) was the recipient of a U.S. Department of Energy award to develop educational games teaching science and math. The Science Media Program will merge Ball State University’s nationally recognized capabilities in education, technology, and communication to develop new, interactive, game-based media for the teaching and learning of science and scientific principles for K-12 students. BSU established a team of educators, researchers, scientists, animators, designers, technology specialists, and hired a professional media developer company (Outside Source Design) from Indianapolis. After six months discussions and assessments the project team selected the following 8 games in Math, Physics, Chemistry, and Biology, 2 from each discipline. The assembled teams were innovative and unique. This new model of development and production included a process that integrated all needed knowledge and expertise for the development of high quality science and math games for K-12 students. This new model has potential to be used by others for the development of the educational games. The uniqueness of the model is to integrate domain experts’ knowledge with researchers/quality control group, and combine a professional development team from the game development company with the academic game development team from Computer Science and Art departments at Ball State University. The developed games went through feasibility tests with selected students for improvement before use in the research activities.

  8. Technical Feasibility Study for Zero Energy K-12 Schools

    Energy Technology Data Exchange (ETDEWEB)

    Pless, Shanti D.; Torcellini, Paul A.; Bonnema, Eric; Goldwasser, David

    2016-08-26

    A simulation-based technical feasibility study was completed to show the types of technologies required to achieve ZEB status with this building type. These technologies are prioritized across the building's subsystem such that design teams can readily integrate the ideas. Energy use intensity (EUI) targets were established for U.S. climate zones such that K-12 schools can be zero-ready or can procure solar panels or other renewable energy production sources to meet the zero energy building definition. Results showed that it is possible for K-12 schools to achieve zero energy when the EUI is between 20 and 26 kBtu/ft2/yr. Temperate climates required a smaller percentage of solar panel coverage than very hot or very cold climates. The paper provides a foundation for technically achieving zero energy schools with a vision of transforming the school construction market to mainstream zero energy buildings within typical construction budgets.

  9. Technical Feasibility Study for Zero Energy K-12 Schools

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Goldwasser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Torcellini, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Shanti [National Renewable Energy Lab. (NREL), Golden, CO (United States); Studer, Daniel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-11-01

    This technical feasibility study provides documentation and research results supporting a possible set of strategies to achieve source zero energy K-12 school buildings as defined by the U.S. Department of Energy (DOE) zero energy building (ZEB) definition (DOE 2015a). Under this definition, a ZEB is an energy-efficient building in which, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy.

  10. Core Curriculum for Social Studies Education K-12.

    Science.gov (United States)

    Utah State Office of Education, Salt Lake City. Office of Curriculum and Instruction.

    The Utah social studies curriculum for grades K-12 is divided into three levels: K-6, 7-8, and 9-12. For K-6, mastery of core concepts is required; for grades 7-8, 1.5 units of United States History and Utah studies are required; and for grades 9-12, three units of world cultural geography, ancient world civilizations, European history, United…

  11. Neutrofiilisten granulosyyttien E. coli K12 -kannan fagosytoosi

    OpenAIRE

    Kautonen, Riina

    2011-01-01

    Tässä työssä tutkittiin bioluminesoivan E. coli K12 pEGFPABCDEamp -kannan viabiliteettiä, mittaamalla bakteerin emittoimaa bioluminesenssia reaaliaikaisesti. Bakteerisolujen tappamiseen käytettiin fagosytoivia neutrofiilisiä granulosyyttejä, jotka eristettiin ihmisen perifeerisestä verestä. Työssä tutkittiin myös veren soluttoman osan seerumin vaikutusta solujen viabiliteettiin ja neutrofiilisten granulosyyttien fagosytoositehokkuuteen. Bakteerisolujen kuolevuutta pyrittiin todistamaan maljaa...

  12. A comparative study of instructional efficacy between first and second-career teachers in secondary school math and science courses

    Science.gov (United States)

    Gardner, Royal Anthony

    Purpose: The purpose of this study was to use Dr. James Stronge’s taxonomy of the qualities of effective teachers to determine whether there are significant differences in the instructional efficacy between first- and second-career teachers who teach math and science. Methodology: A causal-comparative study examined the effects of variables that cannot be manipulated experimentally. The survey instrument was a 50-tem self-identifying questionnaire addressing the 6 research questions used to determine significance between first- and second-career teachers in their classroom efficacy. Findings: A Mann-Whitney U-test determined there was an overall significant difference [p based best practices for efficacy. Conclusions: The existing construct for hiring teachers should be reconsidered, so that teachers identified as effective by research-based methods are employed from the outset. Adult maturation patterns suggest that early adults serving as instructors are less effective for at least the first 3 to 5 years of the teachers’ career. This could be resolved by amending the criteria for teacher entry into the classroom. Maturity of the teacher plays a significant role in their classroom efficacy. Existing research has provided a construct for identifying effective teachers. Recommendations: Require teaching graduates to gain at least 5 years of practical experience in the disciplines in which they seek a license to teach before entering the classroom. Increase the age for teachers entering the profession to at least 26 before allowing them into the classroom to allow for adult maturation processes to occur. Increase the rigor for a teaching certification to the point where only high content knowledge instructors could pass. Require all potential teachers to be certified on a regular basis so that they have to keep up with the technology and the most current information of their professions. Develop an assessment to allow the instructor to display knowledge of the

  13. Redesigning and aligning assessment and evaluation for a federally funded math and science teacher educational program.

    Science.gov (United States)

    Hardré, Patricia L; Slater, Janis; Nanny, Mark

    2010-11-01

    This paper examines the redesign of evaluation components for a teacher professional development project funded by the National Science Foundation. It focuses on aligning evaluation instrumentation and strategies with program goals, research goals and program evaluation best practices. The study identifies weaknesses in the original (year 1) program evaluation design and implementation, develops strategies and tracks changes for year 2 implementation, and then reports enhancement of findings and recommendations for year 3. It includes lessons learned about assessment and evaluation over the project lifespan, with implications for research and evaluation of a range of related programs. This study functions as a classic illustration of how critical it is to observe first principles of assessment and evaluation for funded programs, the risks that arise when they are ignored, and the benefits that accrue when they are systematically observed.

  14. Math Stuff

    CERN Document Server

    Pappas, Theoni

    2002-01-01

    Whether it's stuff in your kitchen or garden, stuff that powers your car or your body, stuff that helps you work, communicate or play, or stuff that you've never heard of you can bet that mathematics is there. MATH STUFF brings it all in the open in the Pappas style. Not many people think of mathematics as fascinating, exciting and invaluable. Yet Pappas writes about math ideas in such a way that conveys its often overlooked fascination, excitement, and worth. MATH STUFF deals with 38 topics in an non-threatening way that piques our curiosities. Open the book at random, and learn about such to

  15. Science education standards

    Energy Technology Data Exchange (ETDEWEB)

    Alberts, B.

    1994-12-31

    This paper describes the National Science Education Standards that are being developed at the National Research Council. The Standards are being developed for the following areas: content, teaching, assessment, program, and system. The national science standards will call for the kind of science that provides both an understanding of the basic concepts needed for success in our high technology society, and the acquisition of process skills, or the ability to proceed step by step to solve a practical problem. Science should become a core subject like reading, writing and math in grades K-12. At all levels, the material taught should be interesting, both to students and to teachers. The profession of science teaching must become an attractive one, which is possible to do well without superhuman effort. The scientific community must accept responsibility for achieving these goals.

  16. The Consequences of the National Math and Science Performance Environment for Gender Differences in STEM Aspiration

    Directory of Open Access Journals (Sweden)

    Allison Mann

    2016-07-01

    Full Text Available Using the lens of expectation states theory, which we formalize in Bayesian terms, this article examines the influences of national performance and self-assessment contexts on gender differences in the rate of aspiring to science, technology, engineering, and mathematics (STEM occupations. We demonstrate that girls hold themselves to a higher performance standard than do boys before forming STEM orientations, and this gender "standards gap" grows with the strength of a country’s performance environment. We also demonstrate that a repeatedly observed paradox in this literature—namely, that the STEM gender gap increases with a more strongly gender-egalitarian national culture—vanishes when the national performance culture is taken into account. Whereas other research has proposed theories to explain the apparent paradox as an empirical reality, we demonstrate that the empirical relationship is as expected; net of the performance environment, countries with a more gender-egalitarian culture have a smaller gender gap in STEM orientations. We also find, consistent with our theory, that the proportion of high-performing girls among STEM aspirants grows with the strength of the national performance environment even as the overall gender gap in STEM orientations grows because of offsetting behavior by students at the lower end of the performance distribution.

  17. The early evolution of southwestern Pennsylvania's regional math/science collaborative from the leadership perspective

    Science.gov (United States)

    Bunt, Nancy R.

    Designed as a regional approach to the coordination of efforts and focusing of resources in fragmented southwestern Pennsylvania, the Collaborative's story is narrated by its founding director. Drawing from office archives, including letters of invitation, meeting notes, and participant evaluations of each event, the study describes the genesis of the Collaborative. It begins with identification of the problem and the resulting charge by a founding congress. It details the building of an organizational framework, the creation of a shared vision, the development of a blueprint for action, and the decision-making involved in determining how to strengthen mathematics and science education in the region. The study notes several influences on the Collaborative's leadership. Considering the role of other collaboratives, the study notes that knowledge of the Los Angeles Educational Partnership's LA SMART jump-started the Collaborative's initial planning process. Knowledge of San Francisco's SEABA influenced the size and naming of the Collaborative's Journal. Fred Newmann's definition of authentic instruction, learning and assessment are reflected in the shared vision and belief statements of the Collaborative. The five disciplines of Peter Senge influenced the nature of the organizational framework as well as the day-to-day operations of the Collaborative. The study also notes that the five organizational tensions identified in Ann Lieberman's work on "intentional learning communities" were present in every aspect of the evolution of the Collaborative. The study suggests that leaders of evolving collaboratives: (1) engage all relevant stakeholders in assessing the current situation and defining a desired future state, (2) take advantage of the lessons learned by others and the resources available at the state and national levels to design strategies and build action plans, (3) model the practices to be inspired in the learning community, (4) constantly gather feedback on

  18. The Effect of Dual-Language Immersion on Student Achievement in Math, Science, and English Language Arts

    Science.gov (United States)

    Steele, Jennifer L.; Slater, Robert; Li, Jennifer; Zamarro, Gema; Miller, Trey

    2013-01-01

    Confronted with many challenges to improving the quality of U.S. public K-12 education, many policymakers have viewed the study of a second language as a useful but nonessential ingredient of a world-class education system. However, others point out that dual-language education can be a powerful intervention for closing the achievement gap for…

  19. Using an Interdisciplinary Approach to Enhance Climate Literacy for K-12 Teachers

    Science.gov (United States)

    Hanselman, J. A.; Oches, E. A.; Sliko, J.; Wright, L.

    2014-12-01

    The Next Generation Science Standards (2014) will begin to change how K-12 teachers teach science. Using a scaffolding approach, the standards focus on a depth of knowledge across multiple content areas. This philosophy should encourage inquiry-based teaching methods, provided the teacher has both the knowledge and the confidence to teach the content. Although confidence to teach science is high among secondary science (biology, general science, chemistry) teachers, depth of knowledge may be lacking in certain areas, including climate science. To address this issue, a graduate course in climate science (Massachusetts Colleges Online Course of Distinction award winner) was developed to include inquiry-based instruction, connections to current research, and interdisciplinary approaches to teaching science. With the support of the InTeGrate program (SERC) at Carleton College, a module was developed to utilize cli-fi (climate science present in fictional literature) and related climate data. Graduate students gain an appreciation of scientific communication and an understanding of climate data and its connection to societal issues. In addition, the graduate students also gain the ability to connect interdisciplinary concepts for a deeper understanding of climate science and have the opportunity. By the end of the course, the graduate students use the content learned and the examples of pedagogical tools to develop their own activities in his or her classroom.

  20. Attracting students and professionals into math, science, and technology education at the elementary and middle grades: Final report, September 1, 1992--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Flick, L.B.

    1995-12-31

    This report describes the progress of a project to encourage students and professionals to participate in math, science, and technology education at the elementary and middle grades. The topics of the report include documenting activities and procedures for the purposes of evaluation and dissemination of descriptive information, generating case studies of the students going through this program to provide research and evaluation data on the process of attracting technically qualified people into elementary and middle school teaching, establishing a program of mentoring between scientists, engineers, and mathematicians and prospective teachers in the program, and establishing a program of mentoring between master teachers in area schools and prospective teachers.

  1. Attracting students and professionals into math, science, and technology education at the elementary and middle grades: Final report, September 1, 1992--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Flick, L.B.

    1995-12-31

    This report describes the progress of a project to encourage students and professionals to participate in math, science, and technology education at the elementary and middle grades. The topics of the report include documenting activities and procedures for the purposes of evaluation and dissemination of descriptive information, generating case studies of the students going through this program to provide research and evaluation data on the process of attracting technically qualified people into elementary and middle school teaching, establishing a program of mentoring between scientists, engineers, and mathematicians and prospective teachers in the program, and establishing a program of mentoring between master teachers in area schools and prospective teachers.

  2. Global TIE: Developing a Virtual Network of Robotic Observatories for K-12 Education

    Science.gov (United States)

    Mayo, L. A.; Clark, G.

    2001-11-01

    Astronomy in grades K-12 is traditionally taught (if at all) using textbooks and a few simple hands-on activities. In addition, most students, by High School graduation, will never have even looked through the eyepiece of a telescope. The possibility now exists to establish a network of research grade telescopes, no longer useful to the professional astronomical community, that can be made accessible to schools all across the country through existing IT technologies and applications. These telescopes could provide unparalleled research and educational opportunities for a broad spectrum of K-12 and college students and turns underutilized observatory facilities into valuable, state-of-the-art teaching centers. The NASA-sponsored Telescopes In Education (TIE, http://tie.jpl.nasa.gov) project has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy activities. Hundreds of schools in the US, Australia, Canada, England, and Japan have participated in the TIE program, remotely controlling the 24-inch telescope at the Mount Wilson Observatory from their classrooms. In recent years, several (approximately 20 to date) other telescopes have been, or are in the process of being, outfitted for remote use as TIE affiliates. Global TIE integrates these telescopes seamlessly into one virtual observatory and provides the services required to operate this facility, including a scheduling service, tools for data manipulation, an online proposal review environment, an online "Virtual TIE Student Ap J" for publication of results, and access to related educational materials provided by the TIE community. Global TIE provides unparalleled research and educational opportunities for a broad spectrum of K-12 and college students and turns essentially unused observatory facilities into valuable, state-of-the-art teaching centers. This presentation describes the Global TIE Observatory data and organizational systems and details the

  3. Infrared Astronomy Professional Development for K-12 Educators: WISE Telescope

    Science.gov (United States)

    Borders, Kareen; Mendez, B. M.

    2010-01-01

    K-12 educators need effective and relevant astronomy professional development. WISE Telescope (Wide-Field Infrared Survey Explorer) and Spitzer Space Telescope Education programs provided an immersive teacher professional development workshop at Arecibo Observatory in Puerto Rico during the summer of 2009. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of WISE lenticulars and diagramming of infrared data, listening to light by using speakers hooked up to photoreceptor cells, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars. We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development. Funding was provided by WISE Telescope, Spitzer Space Telescope, Starbucks, Arecibo Observatory, the American Institute of Aeronautics and Astronautics, and the Washington Space Grant Consortium.

  4. Proposed Model for a Streamlined, Cohesive, and Optimized K-12 STEM Curriculum with a Focus on Engineering

    Science.gov (United States)

    Locke, Edward

    2009-01-01

    This article presents a proposed model for a clear description of K-12 age-possible engineering knowledge content, in terms of the selection of analytic principles and predictive skills for various grades, based on the mastery of mathematics and science pre-requisites, as mandated by national or state performance standards; and a streamlined,…

  5. Studying Teachers' Degree of Classroom Implementation, Teachers' Implementation Practices, and Students' Learning as Outcomes of K-12 STEM Professional Development

    Science.gov (United States)

    Lin, Peiyi

    2013-01-01

    With a growing demand for an enhanced K-12 education for strengthening students' conceptual learning, interest, and career awareness in science, technology, engineering, and mathematics, teacher professional development projects have been viewed as an efficient approach. However, a variety of external and teacher factors may prevent such projects…

  6. Elementary teachers past experiences: A narrative study of the past personal and professional experiences of elementary teachers who use science to teach math and reading

    Science.gov (United States)

    Acre, Andrea M.

    This qualitative study investigated the experiences of four elementary teachers who have elected to use science to teach math and reading/language arts in an attempt to identify what motivates them to do so. Identifying what experiences have motivated these teachers to go against the gain and teach elementary science in this current era of high-stakes tests is of the upmost importance given that science is being eliminated from the elementary curriculum and it is during the elementary years that students' nurture and develop their interest in science. Additionally, the United States is failing to produce enough college graduates in STEM areas to fill the thousands of STEM jobs each year. Through a review of the literature, the past trends and current trends of elementary science education were explored as well as teacher training. Furthermore, the literature reviewed inquiry teaching which is considered to be the most effective teaching method when teaching science at any level. Using John Dewey's Interest and Effort Relationship Theory and the Self-Determination Motivation Theory to guide this study, there were five prominent themes which emerged from the reconstructed stories of the four teachers: positive experiences with science, neutral/negative experiences with science, seeks meaningful professional development, influence and support from others, and regret/wants to do more.

  7. K-12 Neuroscience Education Outreach Program: Interactive Activities for Educating Students about Neuroscience.

    Science.gov (United States)

    Deal, Alex L; Erickson, Kristen J; Bilsky, Edward J; Hillman, Susan J; Burman, Michael A

    2014-01-01

    The University of New England's Center for Excellence in the Neurosciences has developed a successful and growing K-12 outreach program that incorporates undergraduate and graduate/professional students. The program has several goals, including raising awareness about fundamental issues in neuroscience, supplementing science education in area schools and enhancing undergraduate and graduate/professional students' academic knowledge and skill set. The outreach curriculum is centered on core neuroscience themes including: Brain Safety, Neuroanatomy, Drugs of Abuse and Addiction, Neurological and Psychiatric Disorders, and Cognition and Brain Function. For each theme, lesson plans were developed based upon interactive, small-group activities. Additionally, we've organized our themes in a "Grow-up, Grow-out" approach. Grow-up refers to returning to a common theme, increasing in complexity as we revisit students from early elementary through high school. Grow-out refers to integrating other scientific fields into our lessons, such as the chemistry of addiction, the physics of brain injury and neuronal imaging. One of the more successful components of our program is our innovative team-based model of curriculum design. By creating a team of undergraduate, graduate/professional students and faculty, we create a unique multi-level mentoring opportunity that appears to be successful in enhancing undergraduate students' skills and knowledge. Preliminary assessments suggest that undergraduates believe they are enhancing their content knowledge and professional skills through our program. Additionally, we're having a significant, short-term impact on K-12 interest in science. Overall, our program appears to be enhancing the academic experience of our undergraduates and exciting K-12 students about the brain and science in general.

  8. An Indigenous Framework for Science, Technology, Engineering and Mathematics

    Science.gov (United States)

    Monette, G.

    2003-12-01

    The American Indian Higher Education Consortium, composed of 35 American Indian tribally-controlled Colleges and Universities in the U.S. and Canada, is leading a comprehensive effort to improve American Indian student achievement in STEM. A key component of this effort is the synthesis of indigenous ways of knowing and western education systems. This presentation will provide an overview of culturally responsive, place-based teaching, learning, and research and will discuss potential opportunities and strategies for helping to ensure that education systems and research programs reflect our diversity and respect our cultures. One example to be discussed is the NSF-funded "Tribal College Rural Systemic Initiative." Founded on the belief that all students can learn and should be given the opportunity to reach their full potential, Tribal Colleges are leading this effort to achieve successful and sustainable improvement of science, math, and technology education at the K-14 level in rural, economically disadvantaged, geographically challenged areas. Working with parents, tribal governments, schools and the private sector, the colleges are helping to implement math and science standards-based curriculum for students and standards-based assessment for schools; provide math and science standards-based professional development for teachers, administrators, and community leaders; and integrate local Native culture into math and science standards-based curriculum. The close working relationship between the Tribal Colleges and K-12 is paying off. According to the National Science Foundation, successful systemic reform has resulted in enhanced student achievement and participation in science and math; reductions in the achievement disparities among students that can be attributed to socioeconomic status, race, ethnicity, gender, or learning styles; implementation of a comprehensive, standards-based curriculum aligned with instructions and assessment; development of a coherent

  9. K-12 Students as Ground Observers of Contrails in Support of Scientific Research

    Science.gov (United States)

    Chambers, Lin H.; Moore, Susan W.; Fischer, Joyce D.; Sepulveda, Roberto; Clark, C.

    2004-01-01

    Scientists are very interested in the formation of contrails, both the type and the coverage. To be detected by a satellite-born instrument, the contrail must be of a certain size, which means that some contrails go undetected. The K-12 education community is assisting with the study of contrails by participating in a network of student observers. To provide a venue for student contrail observations, the GLOBE Contrails protocol was developed as part of the GLOBE Atmospheric Science protocols. The first year of observations has provided a rich resource for researcher.

  10. Sustaining K-12 professional development in geology: Recurrent participation in Rockcamp

    Science.gov (United States)

    Repine, T.E.; Hemler, D.A.; Behling, R.E.

    2004-01-01

    A reconnaissance study of the geology professional development program known as RockCamp was initiated to examine the sustained, or recurrent, participation of K-12 science teachers. Open-ended interviews, concept mapping, and creative writing assignments were used to explore the perceptions of six teachers possessing an exceptional record of participation. Efficacy, fun, right time of life, and support emerged as unanimous reasons for recurrent participation. Content, friendship, and methodology were very important. College credit was not critical. These teachers' perceptions suggest their sustained involvement in the RockCamp Program is stimulated by situated learning experiences stressing a compare, contrast, connect, and construct pedagogy within a supportive learning community.

  11. Effects of Professional Development on Infusing Engineering Design into High School Science, Technology, Engineering, and Math (STEM) Curricula

    Science.gov (United States)

    Avery, Zanj Kano

    2010-01-01

    The purpose of this study was to examine the effects of professional development (PD) on the infusion of engineering design into high school curricula. Four inservice teachers with backgrounds in physics, chemistry, industrial education, math, and electrical engineering participated in the 2006 National Center of Engineering and Technology…

  12. The comprehensive updated regulatory network of Escherichia coli K-12

    Directory of Open Access Journals (Sweden)

    Karp Peter D

    2006-01-01

    Full Text Available Abstract Background Escherichia coli is the model organism for which our knowledge of its regulatory network is the most extensive. Over the last few years, our project has been collecting and curating the literature concerning E. coli transcription initiation and operons, providing in both the RegulonDB and EcoCyc databases the largest electronically encoded network available. A paper published recently by Ma et al. (2004 showed several differences in the versions of the network present in these two databases. Discrepancies have been corrected, annotations from this and other groups (Shen-Orr et al., 2002 have been added, making the RegulonDB and EcoCyc databases the largest comprehensive and constantly curated regulatory network of E. coli K-12. Results Several groups have been using these curated data as part of their bioinformatics and systems biology projects, in combination with external data obtained from other sources, thus enlarging the dataset initially obtained from either RegulonDB or EcoCyc of the E. coli K12 regulatory network. We kindly obtained from the groups of Uri Alon and Hong-Wu Ma the interactions they have added to enrich their public versions of the E. coli regulatory network. These were used to search for original references and curate them with the same standards we use regularly, adding in several cases the original references (instead of reviews or missing references, as well as adding the corresponding experimental evidence codes. We also corrected all discrepancies in the two databases available as explained below. Conclusion One hundred and fifty new interactions have been added to our databases as a result of this specific curation effort, in addition to those added as a result of our continuous curation work. RegulonDB gene names are now based on those of EcoCyc to avoid confusion due to gene names and synonyms, and the public releases of RegulonDB and EcoCyc are henceforth synchronized to avoid confusion due to

  13. Commercial Generic Bioprocessing Apparatus Science Insert - 03

    Science.gov (United States)

    Moreno, Nancy; Stodieck, Louis; Cushing, Paula; Stowe, Mark; Hamilton, Mary Ann; Werner, Ken

    2008-01-01

    Commercial Generic Bioprocessing Apparatus Science Insert - 03 (CSI-03) is the third set of investigations in the CSI program series. The CSI program provides the K-12 community opportunities to utilize the unique microgravity environment of the International Space Station as part of the regular classroom to encourage learning and interest in science, technology, engineering and math. CSI-03 will examine the complete life cycle of the painted lady butterfly and the ability of an orb weaving spider to spin a web, eat and remain healthy in space.

  14. All you need in Maths!

    NARCIS (Netherlands)

    van de Craats, J.; Bosch, R.

    2014-01-01

    All You Need in Maths! covers the basic mathematics you need to successfully embark on a university or college career in technology, natural sciences, computer and information science, economics, business and management studies, and related disciplines. By basic mathematics we mean elementary

  15. All you need in Maths!

    NARCIS (Netherlands)

    van de Craats, J.; Bosch, R.

    2014-01-01

    All You Need in Maths! covers the basic mathematics you need to successfully embark on a university or college career in technology, natural sciences, computer and information science, economics, business and management studies, and related disciplines. By basic mathematics we mean elementary algebr

  16. All you need in Maths!

    NARCIS (Netherlands)

    van de Craats, J.; Bosch, R.

    2014-01-01

    All You Need in Maths! covers the basic mathematics you need to successfully embark on a university or college career in technology, natural sciences, computer and information science, economics, business and management studies, and related disciplines. By basic mathematics we mean elementary algebr

  17. Briefing paper for universities on Core Maths

    OpenAIRE

    Glaister, Paul

    2015-01-01

    This briefing paper outlines the rationale for and development of the new Core Maths qualifications, the characteristics of Core Maths, and why Core Maths is important for higher education. It is part of a communication to university vice-chancellors from the Department for Business, Innovation and Skills (BIS) comprising this paper and a joint Ministerial letter from Jo Johnson, Minister of State for Universities and Science in BIS, and Nick Gibb, Minister of State for Schools in the Departm...

  18. Exploring the Foundations of the Future STEM Workforce: K-12 Indicators of Postsecondary STEM Success. REL 2016-122

    Science.gov (United States)

    Hinojosa, Trisha; Rapaport, Amie; Jaciw, Andrew; Zacamy, Jenna

    2016-01-01

    The number of jobs in science, technology, engineering, and math (STEM) is growing rapidly and is expected to increase by approximately 1 million in the United States between 2012 and 2022 (Vilorio, 2014). People of many racial/ethnic minorities, however, including Hispanic people, are underrepresented among recipients of STEM degrees and among…

  19. Fatou, Julia, Montel le grand prix des sciences mathématiques de 1918, et après

    CERN Document Server

    Audin, Michèle

    2009-01-01

    Comment Fatou et Julia ont inventA(c) ce que la (TM)on appelle aujourda (TM)hui les ensembles de Julia, avant, pendant et aprA]s la premiA]re guerre mondiale? La (TM)histoire est racontA(c)e, avec ses mathA(c)matiques, ses conflits, ses personnalitA(c)s. Elle est traitA(c)e A partir de sources nouvelles, et avec rigueur. On pourra sa (TM)y initier A la (TM)itA(c)ration des fractions rationnelles et A la dynamique complexe (ensembles de Julia, de Mandelbrot, ensembles-limites). Qui A(c)taient Pierre Fatou, Gaston Julia, Paul Montel? On y trouvera en particulier des informations sur un mathA(c)m

  20. Math Problem

    Science.gov (United States)

    Oguntoyinbo, Lekan

    2012-01-01

    Many experts give the nation's schools a poor grade for their approach to teaching mathematics and for their preparation of mathematics teachers. While many policymakers make much of data that suggest children in the United States lag behind many other advanced countries in math, many experts call for a change in mathematics education,…

  1. Penguin Math

    Science.gov (United States)

    Green, Daniel; Kearney, Thomas

    2015-01-01

    Emperor penguins, the largest of all the penguin species, attain heights of nearly four feet and weigh up to 99 pounds. Many students are not motivated to learn mathematics when textbook examples contain largely nonexistent contexts or when the math is not used to solve significant problems found in real life. This article's project explores how…

  2. Talking Maths

    Science.gov (United States)

    Murray, Jenny

    2006-01-01

    Discussion in maths lessons has always been something encouraged by ATM but can be difficult to initiate for non-specialist and inexperienced teachers who may feel they need material in books to get them going. In this article, the author describes resources aimed at encouraging discussion among primary mathematicians. These resources include: (1)…

  3. Crowd-Sourcing with K-12 citizen scientists: The Continuing Evolution of the GLOBE Program

    Science.gov (United States)

    Murphy, T.; Wegner, K.; Andersen, T. J.

    2016-12-01

    Twenty years ago, the Internet was still in its infancy, citizen science was a relatively unknown term, and the idea of a global citizen science database was unheard of. Then the Global Learning and Observations to Benefit the Environment (GLOBE) Program was proposed and this all changed. GLOBE was one of the first K-12 citizen science programs on a global scale. An initial large scale ramp-up of the program was followed by the establishment of a network of partners in countries and within the U.S. Now in the 21st century, the program has over 50 protocols in atmosphere, biosphere, hydrosphere and pedosphere, almost 140 million measurements in the database, a visualization system, collaborations with NASA satellite mission scientists (GPM, SMAP) and other scientists, as well as research projects by GLOBE students. As technology changed over the past two decades, it was integrated into the program's outreach efforts to existing and new members with the result that the program now has a strong social media presence. In 2016, a new app was launched which opened up GLOBE and data entry to citizen scientists of all ages. The app is aimed at fresh audiences, beyond the traditional GLOBE K-12 community. Groups targeted included: scouting organizations, museums, 4H, science learning centers, retirement communities, etc. to broaden participation in the program and increase the number of data available to students and scientists. Through the 20 years of GLOBE, lessons have been learned about changing the management of this type of large-scale program, the use of technology to enhance and improve the experience for members, and increasing community involvement in the program.

  4. K-12 Professional Development at the Harvard Forest LTER

    Science.gov (United States)

    Bennett, K.

    2012-12-01

    As part of the Long Term Ecological Research (LTER) program, the Harvard Forest in Petersham, Massachusetts seeks to train the next generation of researchers, by involving K-12 grade students and their teachers in hands-on, field-based, ecological research in their own schoolyard and community. Students learn to collect data on important long-term ecological issues and processes. Student data are then shared on the Harvard Forest website. To prepare teachers for project protocols, teachers are given direct access to Harvard ecologists with professional development workshops and on-line resources. With the Harvard Forest Schoolyard LTER program, students can participate in three different research projects focusing on phenology, invasive insects, and vernal pools. Teachers attend the Summer Institute for Teachers to learn project content and methods. They return in fall to participate in one of three levels of data workshops to learn how to input, manage, and analyze project data. In the spring, teachers again meet with the Harvard ecologists about project protocols, and to share, through a series of teacher presentations, the ways these project themes are being integrated into class curricula. These professional development opportunities result in long term collaborative partnerships with local schools and the Harvard Forest LTER. In addition to the LTER Schoolyard Ecology Program, the Harvard Forest has supported a successful Research Experience for Teachers (RET) program for the last six years. Throughout the summer, teachers work on research projects alongside Harvard Forest and affiliated scientists, post-docs, graduate students, and REU's (Research Experience for Undergraduates). The RET program provides teachers with the opportunity to build scientific knowledge, develop an understanding of research methods, and translate their new knowledge and experiences into cutting edge classroom lessons. The past two summers I have worked with Dr. Andrew Richardson

  5. The impact of focused, long-term, and collaborative professional development in math and science participants' self-efficacy, classroom practice, and student achievement

    Science.gov (United States)

    Nottingham, Mary E.

    The purpose of this study was to investigate the impact of a 2-year professional development model in math and science on the self-efficacy of the teacher and its effects on teacher practice and student outcomes. Further, this study sought to incorporate the instructional use of Inquiry-Based Learning methods of Problem-Based Learning, Japanese Lesson Study, and Action Research. Additionally, this study examined the impacts of these interventions on teacher efficacy and student outcomes. Thirty-eight collaborating participants were purposefully selected by the Math and Science Teacher Academy (MASTA) project grant co-directors because of their content-focused classrooms of mathematics and science. This quasi-experimental study included mathematics and science in-service teachers working on their masters in education. The 2-year, bi-monthly professional development model included collaborating Inquiry-Based Learning communities with in-depth focus on Japanese Lesson Study, Problem-Based Learning instruction, and Action Research. A chi-square analysis was conducted by grade on the difference in passing rate from the Texas Assessment of Knowledge and Skills mathematics and science tests between the MASTA participants and the state passing average. In mathematics there were significant v differences only at grades 3 and 7 where the state passing average was significantly higher than the MASTA students' passing rate. Only at grade 5 was the MASTA students' passing rate higher than the state, but the difference was not significantly different. The science passing rate received from three grade 5 MASTA participants was compared to the state average and a chi-squared was conducted. Although the passing rate for the grade 5 science test was 6% higher for MASTA student that the state, the difference was not statistically significant. However, after analyzing the qualitative participant responses from data gathered during the 2-year MASTA grant the data clearly reflected that

  6. "Flipping" educational technology professional development for K-12 educators

    Science.gov (United States)

    Spencer, Daniel

    As the demand for more effective professional development increases in K-12 schools, trainers must adjust their training methods to meet the needs of their teacher learners. Just as lecture-heavy, teacher-centered instruction only meet the learning needs of a small minority of students, "sit and get" professional development rarely results in the teachers gaining the skills and confidence necessary to use technology effectively in their instruction. To resolve the frustrations of teachers related to ineffective professional development, a "Flipped PD" training model was developed based on the learning needs of adult learners, the integration of technological, pedagogical, and content knowledge (TPACK), learning activities, and the Flipped Classroom concept. Under this model, training shifts from a passive, trainer-centered format, to an active, learner-centered format where teachers learn to use technology in their classrooms by first focusing on pedagogical issues, then choosing the options that work best for addressing those issues in their unique situation, and completing "learn-by-doing" projects. Those who participate in "Flipped PD" style trainings tend to have more confidence upon completion that they can use the tools they were trained on in their teaching, as well as believe that the PD was engaging and a good use of their time.

  7. An analysis of United States K-12 stem education versus STEM workforce at the dawn of the digital revolution

    Science.gov (United States)

    Cataldo, Franca

    The world is at the dawn of a third industrial revolution, the digital revolution, that brings great changes the world over. Today, computing devices, the Internet, and the World Wide Web are vital technology tools that affect every aspect of everyday life and success. While computing technologies offer enormous benefits, there are equally enormous safety and security risks that have been growing exponentially since they became widely available to the public in 1994. Cybercriminals are increasingly implementing sophisticated and serious hack attacks and breaches upon our nation's government, financial institutions, organizations, communities, and private citizens. There is a great need for computer scientists to carry America's innovation and economic growth forward and for cybersecurity professionals to keep our nation safe from criminal hacking. In this digital age, computer science and cybersecurity are essential foundational ingredients of technological innovation, economic growth, and cybersecurity that span all industries. Yet, America's K-12 education institutions are not teaching the computer science and cybersecurity skills required to produce a technologically-savvy 21st century workforce. Education is the key to preparing students to enter the workforce and, therefore, American K-12 STEM education must be reformed to accommodate the teachings required in the digital age. Keywords: Cybersecurity Education, Cybersecurity Education Initiatives, Computer Science Education, Computer Science Education Initiatives, 21 st Century K-12 STEM Education Reform, 21st Century Digital Literacies, High-Tech Innovative Problem-Solving Skills, 21st Century Digital Workforce, Standardized Testing, Foreign Language and Culture Studies, Utica College, Professor Chris Riddell.

  8. Restructuring the relationship between STEM faculty and K-12: crafting a figured world of partnership

    Science.gov (United States)

    Fayez, Merfat

    2010-09-01

    Over the past 50 years, identity has provided us with a dynamic tool to understand and examine how people are constituted as agents as well as subjects of culturally constructed, socially enacted worlds. Pertinent to this conceptualization, Skerrett and Sevian focus on science and mathematics faculty's identities and seek to understand how certain aspects of their identities mediate certain motivations to involvement in K-12 service. While I believe that the authors presented an affluent discussion of agency from the perspective of identity, I think that if we are to understand agency from a sociocultural perspective, we have to magnify a view of identity and agency in the figured world of practice/activity. My main goal is not only to reclaim the importance of the individual dimension and agency within a profoundly social view of the self, but also to highlight the figured contextual factors that would either enable or constrain STEM faculty's involvement in K-12 outreach. After first outlining the perspective of identity and agency that was adopted by Skerrett and Sevian, I extend the discussion of Skerrett and Sevian to move forward toward a figured world of partnership. I conclude by positing that the third generation of activity theory has a potential for contributing to our understanding of how the social institutional context and its structure is important to our understanding of individual agency.

  9. Fat dogs and coughing horses: K-12 programming for veterinary workforce development.

    Science.gov (United States)

    San Miguel, Sandra F; Carleton Parker, Loran; Adedokun, Omolola A; Burgess, Wilella D; Cipriani Davis, Kauline S; Blossom, Thaddaeus D; Schneider, Jessica L; Mennonno, Ann M; Ruhl, Joseph D; Veatch, Jennifer H; Wackerly, Amy J; Shin, Soo Yeon; Ratliff, Timothy L

    2013-01-01

    Workforce development strategies to educate, inform, and diversify the veterinary profession of the future must begin with children in elementary school. This article provides a description of the Fat Dogs and Coughing Horses program, which takes a multifaceted approach toward informing young students, beginning in first grade, about the interesting work and career opportunities available in the field of veterinary medicine. The program, a collaboration among Purdue University and Indiana public schools, is supported by a Science Education Partnership Award from the Office of Research Infrastructure Programs, a component of the National Institutes of Health. The overall goal of the program is to provide formal and informal educational opportunities for students, parents, teachers, and the public about the science involved in keeping people and their animals healthy. Examples of health concerns that impact both people and their pets are used to inform and excite children about careers in the health sciences. The program resulted in (1) curricula for students in Grades 1-3, 6, and 9; (2) four children's books and a set of collectible cards which highlight veterinarians, veterinary technicians, and research scientists who work with animals; and (3) four traveling museum-level quality exhibits. Preliminary assessment data has shown that the implementation of the curricula enhanced student science learning and science attitudes and interests. The program provides evidence that partnerships among professionals in veterinary medicine and K-12 education can result in impactful workforce development programs.

  10. K-12 Education Nonprofit Employees' Perceptions of Strategies for Recruiting and Retaining Employees

    Science.gov (United States)

    Byrne, Tara Marie

    2013-01-01

    This qualitative study explored the key reasons individuals who work in K-12 education nonprofit organizations enter the field of K-12 nonprofit education and their motivations for doing so. The purpose of this study was to find new strategies for recruiting and retaining K-12 education nonprofit employees by examining the obstacles that exist to…

  11. Investigating the Potential of MOOCs in K-12 Teaching and Learning Environments

    Science.gov (United States)

    Nigh, Jennifer; Pytash, Kristine E.; Ferdig, Richard E.; Merchant, William

    2015-01-01

    The massive open online course (MOOC) is a relatively new concept in K-12 teaching and learning environments. Although significant work has been done with MOOCs since 2008, it has only been recently that MOOCs have been studied with K-12 populations. The purpose of this study was to further examine the motivation of K-12 students enrolled in a…

  12. K-12 Teachers Encounter Digital Games: A Qualitative Investigation of Teachers' Perceptions of the Potential of Digital Games for K-12 Education

    Science.gov (United States)

    Dickey, Michele D.

    2015-01-01

    The purpose of this study is to investigate teachers' perceptions of the integration of digital games for K-12 education. Specifically, this qualitative investigation focuses on reflective dialogued gathered from a group of K-12 educators about their experiences and perceptions of learning about and playing digital games for teaching and learning.…

  13. K-12 Teachers Encounter Digital Games: A Qualitative Investigation of Teachers' Perceptions of the Potential of Digital Games for K-12 Education

    Science.gov (United States)

    Dickey, Michele D.

    2015-01-01

    The purpose of this study is to investigate teachers' perceptions of the integration of digital games for K-12 education. Specifically, this qualitative investigation focuses on reflective dialogued gathered from a group of K-12 educators about their experiences and perceptions of learning about and playing digital games for teaching and learning.…

  14. The joy of x a guided tour of math, from one to infinity

    CERN Document Server

    Strogatz, Steven

    2012-01-01

    A delightful tour of the greatest ideas of math, showing how math intersects with philosophy, science, art, business, current events, and everyday life, by an acclaimed science communicator and regular contributor to the New York Times.

  15. The joy of x a guided tour of math, from one to infinity

    CERN Document Server

    Strogatz, Steven

    2012-01-01

    A delightful tour of the greatest ideas of math, showing how math intersects with philosophy, science, art, business, current events, and everyday life, by an acclaimed science communicator and regular contributor to the New York Times.

  16. Doodling in Math Class

    National Research Council Canada - National Science Library

    Arkenberg, Rebecca

    2013-01-01

      Arkenberg reviews Doodling in Math Class, an Internet resource available at www.youtube.com. Both math and art teachers have recommended the series of YouTube videos "Doodling in Math Class with Vihart...

  17. Counseling the Math Anxious

    Science.gov (United States)

    Tobias, Sheila; Donady, Bonnie

    1977-01-01

    Describes the rationale and mode of operations for a Math Clinic at Wellesley University and Wesleyan College where counselors and math specialists work together to combat "math anxiety," particularly in female students. (HMV)

  18. Strategies for Integrating Content from the USGCRP Climate and Health Assessment into the K-12 Classroom

    Science.gov (United States)

    Haine, D. B.

    2016-12-01

    That the physical environment shapes the lives and behaviors of people is certainly not news, but communicating the impact of a changing climate on human health and predicting the trajectory of these changes is an active area of study in public health. From air quality concerns to extreme heat to shifts in the range of disease vectors, there are many opportunities to make connections between Earth's changing climate and human health. While many science teachers understand that addressing human health impacts as a result of a changing climate can provide needed relevance, it can be challenging for teachers to do so given an already packed curriculum. This session will share instructional strategies for integrating content from the USGCRP Climate and Health Assessment (CHA) by enhancing, rather than displacing content related to climate science. This presentation will feature a data interpretation activity developed in collaboration with geoscientists at the University of North Carolina's Gillings School of Public Health to convey the connection between air quality, climate change and human health. This classroom activity invites students to read excerpts from the CHA and interpret data presented in the scientific literature, thus promoting scientific literacy. In summarizing this activity, I will highlight strategies for effectively engaging geoscientists in developing scientifically rigorous, STEM-focused educational activities that are aligned to state and national science standards and also address the realities of the science classroom. Collaborating with geoscientists and translating their research into classroom activities is an approach that becomes more pertinent with the advent of the Next Generation Science Standards (NGSS). Thus, the USGCRP Climate and Health Assessment represents an opportunity to cultivate science literacy among K-12 students while providing relevant learning experiences that promote integration of science and engineering practices as

  19. Research Capacity Building through Professional Development for K-12 Teachers

    Science.gov (United States)

    Sparrow, E. B.; Cable, J.; Bolton, W. R.

    2014-12-01

    Engaging teachers in field research provides opportunities to learn and use the knowledge and skills in the eight practices of science and engineering emphasized in the Next Generation Science Standards. At Global Learning and Observations to Benefit the Environment (GLOBE) professional development workshops for teachers in Alaska, we use a professional development model that we developed in the Seasons and Biomes Project. Daily activities integrate an earth system and interdisciplinary approach, science content and processes based on GLOBE measurement protocols in various fields of investigations such as weather and climate, hydrology, land cover, phenology, and soils, best teaching practices such as inquiry, and a model for student science research investigation. Besides learning and practicing the measurement protocols and the steps in conducting a science investigation inside and outside the workshop classroom, teachers conduct field research with scientists studying the ecosystems of a deciduous forest and a black spruce forest. In addition to enhancing science content and practices learning, assessment results and student work indicate increased research capacity when the trained teachers return to their classroom and engage their students in ongoing regional or global research investigations as well as in conducting their own studies at or close to their schools.

  20. Raising Climate Literacy of K-12 Teachers with Datastreme Earth's Climate System

    Science.gov (United States)

    Brey, J. A.; Geer, I.; Weinbeck, R. S.; Mills, E. W.; Nugnes, K. A.

    2014-12-01

    The American Meteorological Society (AMS) DataStreme Project is a free professional development program for in-service K-12 teachers, in which they gain considerable subject matter content and confidence in Earth science instruction. DataStreme Atmosphere, Ocean, and Earth's Climate System (ECS) are offered each fall and spring semester by Local Implementation Teams (LITs) across the country in coordination with a team of AMS Education Program scientists and educators who develop instructional materials, provide logistical support to the LITs, and administer the project. The 3-member LITs mentor about 8 teachers and in some instances an emergency manager, per semester through a given DataStreme course. Teachers may receive 3 tuition-free graduate credits through State University of New York's The College at Brockport upon completion of each DataStreme course. DataStreme is in close alignment with A Framework for K-12 Science Education and the Next Generation Science Standards (NGSS). Investigating the scientific basis of the workings of Earth's atmosphere, ocean, and climate system follows the cross-cutting theme of the Framework and the NGSS and is the cornerstone of the DataStreme courses. In particular, DataStreme ECS explores the fundamental science of Earth's climate system and addresses the societal impacts relevant to today's teachers and students. The course utilizes resources from respected organizations, such as the IPCC and U.S. Global Change Research Program. Key to the NGSS is that students learn disciplinary core ideas in the context of science and engineering practices. In order for the students to learn in this way, the AMS believes that it is important to train the teachers in this context. DataStreme ECS emphasizes investigation of real-word and current NASA and NOAA data. Participants also are made aware of NASA's EdGCM, a research-grade Global Climate Model where they can explore various future climate scenarios in the same way that actual

  1. 78 FR 18326 - Agency Information Collection Activities; Comment Request; Upward Bound and Upward Bound Math...

    Science.gov (United States)

    2013-03-26

    ... Agency Information Collection Activities; Comment Request; Upward Bound and Upward Bound Math Science... Upward Bound Math Science Annual Performance Report. OMB Control Number: 1840-NEW. Type of Review: New... under the regular Upward Bound (UB) and Upward Bound Math and Science (UBMS) Programs. The Department is...

  2. Advancing the "E" in K-12 STEM Education

    Science.gov (United States)

    Rockland, Ronald; Bloom, Diane S.; Carpinelli, John; Burr-Alexander, Levelle; Hirsch, Linda S.; Kimmel, Howard

    2010-01-01

    Technological fields, like engineering, are in desperate need of more qualified workers, yet not enough students are pursuing studies in science, technology, engineering, or mathematics (STEM) that would prepare them for technical careers. Unfortunately, many students have no interest in STEM careers, particularly engineering, because they are not…

  3. Improving K-12 STEM Education Outcomes through Technological Integration

    Science.gov (United States)

    Urban, Michael J., Ed.; Falvo, David A., Ed.

    2016-01-01

    The application of technology in classroom settings has equipped educators with innovative tools and techniques for effective teaching practice. Integrating digital technologies at the elementary and secondary levels helps to enrich the students' learning experience and maximize competency in the areas of science, technology, engineering, and…

  4. Designing and Developing Lesson Plans for K-12 Classrooms

    Science.gov (United States)

    Shores, Melanie L.; Smith, Tommy G.

    2011-01-01

    The overarching goal of this four-phase, in-service project--Girls Engaged in Mathematics and Science--was to change attitudes, behavior, pedagogy, and curriculum for girls through the provision of a vibrant, engaging, digital portal program with media that extends learning beyond the traditional classroom. Described here, Phases I and II were…

  5. MIT Orients Course Materials Online to K-12

    Science.gov (United States)

    Cavanagh, Sean

    2008-01-01

    Many science and mathematics educators across the country are taking advantage of a Web site created by the Massachusetts Institute of Technology (MIT), the famed research university located in Cambridge, Massachusetts, which offers free video, audio, and print lectures and course material taken straight from the school's classes. Those resources…

  6. Taking Math Anxiety out of Math Instruction

    Science.gov (United States)

    Shields, Darla J.

    2007-01-01

    To take math anxiety out of math instruction, teachers need to first know how to easily diagnose it in their students and second, how to analyze causes. Results of a recent study revealed that while students believed that their math anxiety was largely related to a lack of mathematical understanding, they often blamed their teachers for causing…

  7. Topics in Astrophysics and Cosmology for K-12 Classrooms

    Science.gov (United States)

    Eisenstein, Robert

    2011-04-01

    Astronomy and cosmology are wonderfully attractive subjects to people of all ages. The beauty of the night sky and the availability of a vast amount of educational material on the web and on television make it quite feasible to develop educational activities in these areas that are suitable for almost any age group. I will discuss some of the experiences we've had doing this in Santa Fe via high-school courses, evening ``Science Café'' presentations and individual elementary school classroom discussions. This material naturally demonstrates the close interdisciplinary links between physics, chemistry and biology, and also offers excellent opportunities for exercises in scientific notation, logarithms, and algebra. Supported by: Los Alamos National Bank, Los Alamos National Laboratory Foundation, McCune Charitable Foundation, National Science Foundation, Qforma Inc., Santa Fe Partners In Education, Santa Fe Public Schools, Strategic Analytics Inc.

  8. Celebrating 30 Years of K-12 Educational Programming at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, M.; Cooke, M.P.; /Fermilab

    2011-09-01

    In 1980 Leon Lederman started Saturday Morning Physics with a handful of volunteer physicists, around 300 students and all the physics teachers who tagged along. Today Fermilab offers over 30 programs annually with help from 250 staff volunteers and 50 educators, and serves around 40,000 students and 2,500 teachers. Find out why we bother. Over the years we have learned to take advantage of opportunities and confront challenges to offer effective programs for teachers and students alike. We offer research experiences for secondary school teachers and high school students. We collaborate with educators to design and run programs that meet their needs and interests. Popular school programs include classroom presentations, experience-based field trips, and high school tours. Through our work in QuarkNet and I2U2, we make real particle physics data available to high school students in datadriven activities as well as masterclasses and e-Labs. Our professional development activities include a Teacher Resource Center and workshops where teachers participate in authentic learning experiences as their students would. We offer informal classes for kids and host events where children and adults enjoy the world of science. Our website hosts a wealth of online resources. Funded by the U.S. Department of Energy, the National Science Foundation and Fermilab Friends for Science Education, our programs reach out across Illinois, throughout the United States and even around the world. We will review the program portfolio and share comments from the volunteers and participants.

  9. Math at home adds up to achievement in school.

    Science.gov (United States)

    Berkowitz, Talia; Schaeffer, Marjorie W; Maloney, Erin A; Peterson, Lori; Gregor, Courtney; Levine, Susan C; Beilock, Sian L

    2015-10-09

    With a randomized field experiment of 587 first-graders, we tested an educational intervention designed to promote interactions between children and parents relating to math. We predicted that increasing math activities at home would increase children's math achievement at school. We tested this prediction by having children engage in math story time with their parents. The intervention, short numerical story problems delivered through an iPad app, significantly increased children's math achievement across the school year compared to a reading (control) group, especially for children whose parents are habitually anxious about math. Brief, high-quality parent-child interactions about math at home help break the intergenerational cycle of low math achievement. Copyright © 2015, American Association for the Advancement of Science.

  10. Math and Movement: Practical Ways to Incorporate Math into Physical Education

    Science.gov (United States)

    Wade, Marcia

    2016-01-01

    Each year, physical educators are asked to incorporate even more math, language arts, science and social studies into their curriculum. The challenge is how to do this without sacrificing the essential health and life skills provided by a quality physical education program. One program, Math & Movement, is a great aid for physical educators to…

  11. Math and Movement: Practical Ways to Incorporate Math into Physical Education

    Science.gov (United States)

    Wade, Marcia

    2016-01-01

    Each year, physical educators are asked to incorporate even more math, language arts, science and social studies into their curriculum. The challenge is how to do this without sacrificing the essential health and life skills provided by a quality physical education program. One program, Math & Movement, is a great aid for physical educators to…

  12. Gender Compatibility, Math-Gender Stereotypes, and Self-Concepts in Math and Physics

    Science.gov (United States)

    Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut

    2016-01-01

    Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and…

  13. Pre-college Science Experiences; Timing and Causes of Gender Influence Science Interest Levels

    Science.gov (United States)

    Kaplita, E.; Reed, D. E.; McKenzie, D. A.; Jones, R.; May, L. W.

    2015-12-01

    It is known that female students tend to turn away from science during their pre-college years. Experiences during this time are not limited to the classroom, as cultural influences extend beyond K-12 science education and lead to the widely studied reduction in females in STEM fields. This has a large impact on climate science because currently relatively little effort is put into K-12 climate education, yet this is when college attitudes towards science are formed. To help quantify these changes, 400 surveys were collected from 4 different colleges in Oklahoma. Student responses were compared by gender against student experiences (positive and negative), and interest in science. Results of our work show that females tend to have their first positive experience with science at a younger age with friends, family and in the classroom, and have more of an interest in science when they are younger. Males in general like experiencing science more on their own, and surpass the interest levels of females late in high school and during college. While in college, males are more comfortable with science content than females, and males enjoy math and statistics more while those aspects of science were the largest areas of dislike in females. Understanding how to keep students (particularly female) interested in science as they enter their teen years is extremely important in preventing climate misconceptions in the adult population. Potential small changes such as hosting K-12 climate outreach events and including parents, as opposed to just inviting students, could greatly improve student experiences with science and hence, their understanding of climate science. Importantly, a greater focus on female students is warranted.

  14. Workshop Results: Teaching Geoscience to K-12 Teachers

    Science.gov (United States)

    Nahm, A.; Villalobos, J. I.; White, J.; Smith-Konter, B. R.

    2012-12-01

    A workshop for high school and middle school Earth and Space Science (ESS) teachers was held this summer (2012) as part of an ongoing collaboration between the University of Texas at El Paso (UTEP) and El Paso Community College (EPCC) Departments of Geological Sciences. This collaborative effort aims to build local Earth science literacy and educational support for the geosciences. Sixteen teachers from three school districts from El Paso and southern New Mexico area participated in the workshop, consisting of middle school, high school, early college high school, and dual credit faculty. The majority of the teachers had little to no experience teaching geoscience, thus this workshop provided an introduction to basic geologic concepts to teachers with broad backgrounds, which will result in the introduction of geoscience to many new students each year. The workshop's goal was to provide hands-on activities illustrating basic geologic and scientific concepts currently used in introductory geology labs/lectures at both EPCC and UTEP to help engage pre-college students. Activities chosen for the workshop were an introduction to Google Earth for use in the classroom, relative age dating and stratigraphy using volcanoes, plate tectonics utilizing the jigsaw pedagogy, and the scientific method as a think-pair-share activity. All activities where designed to be low cost and materials were provided for instructors to take back to their institutions. A list of online resources for teaching materials was also distributed. Before each activity, a short pre-test was given to the participants to gauge their level of knowledge on the subjects. At the end of the workshop, participants were given a post-test, which tested the knowledge gain made by participating in the workshop. In all cases, more correct answers were chosen in the post-test than the individual activity pre-tests, indicating that knowledge of the subjects was gained. The participants enjoyed participating in these

  15. Scientific/Technical Report Science Literacy Project Award number-DE-FG02-06ER64286

    Energy Technology Data Exchange (ETDEWEB)

    Nasseh, Bizhan

    2011-02-28

    Ball State University (BSU) was the recipient of a U.S. Department of Energy award to develop educational games teaching science and math. The Science Media Program will merge Ball State University’s nationally recognized capabilities in education, technology, and communication to develop new, interactive, game-based media for the teaching and learning of science and scientific principles for K-12 students. BSU established a team of educators, researchers, scientists, animators, designers, technology specialists, and hired a professional media developer company (Outside Source Design) from Indianapolis. After six months discussions and assessments the project team selected the following 8 games in Math, Physics, Chemistry, and Biology, 2 from each discipline. The assembled teams were innovative and unique. This new model of development and production included a process that integrated all needed knowledge and expertise for the development of high quality science and math games for K-12 students. This new model has potential to be used by others for the development of the educational games. The uniqueness of the model is to integrate domain experts’ knowledge with researchers/quality control group, and combine a professional development team from the game development company with the academic game development team from Computer Science and Art departments at Ball State University. The developed games went through feasibility tests with selected students for improvement before use in the research activities.

  16. Good Morning from Barrow, Alaska! Helping K-12 students understand the importance of research

    Science.gov (United States)

    Shelton, M.

    2010-12-01

    This presentation focuses on how an educator experiences scientific research and how those experiences can help foster K-12 students’ understanding of research being conducted in Barrow, Alaska. According to Zhang and Fulford (1994), real-time electronic field trips help to provide a sense of closeness and relevance. In combination with experts in the field, the electronic experience can help students to better understand the phenomenon being studied, thus strengthening the student’s conceptual knowledge (Zhang & Fulford, 1994). During a seven day research trip to study the arctic sea ice, five rural Virginia teachers and their students participated in Skype sessions with the participating educator and other members of the Radford University research team. The students were able to view the current conditions in Barrow, listen to members of the research team describe what their contributions were to the research, and ask questions about the research and Alaska in general. Collaborations between students and scientist can have long lasting benefits for both educators and students in promoting an understanding of the research process and understanding why our world is changing. By using multimedia venues such as Skype students are able to interact with researchers both visually and verbally, forming the basis for students’ interest in science. A learner’s level of engagement is affected by the use of multimedia, especially the level of cognitive processing. Visual images alone do no promote the development of good problem solving skills. However, the students are able to develop better problem solving skills when both visual images and verbal interactions are used together. As students form higher confidence levels by improving their ability to problem solve, their interest in science also increases. It is possible that this interest could turn into a passion for science, which could result in more students wanting to become scientists or science teachers.

  17. State P-20 Councils and Collaboration between K-12 and Higher Education

    Science.gov (United States)

    Rippner, Jennifer A.

    2017-01-01

    For decades, numerous observers have agreed on the value of collaboration between K-12 and higher education--especially as these sectors work toward increasing college readiness and success. While most states maintain separate agencies for K-12 and higher education, many states have worked to foster collaboration through state P-20 councils.…

  18. Problems Associated with a Lack of Cohesive Policy in K-12 Pre-College Engineering

    Science.gov (United States)

    Chandler, John; Fontenot, A. Dean; Tate, Derrick

    2011-01-01

    This article identifies a number of issues associated with current STEM education reform efforts, especially with regard to efforts to integrate engineering education into the K-12 curriculum. Precollege engineering is especially problematic in STEM reform since there is no well-established tradition of engineering in the K-12 curriculum. This…

  19. An Examination of Ideology among Selected K12 Christian School Superintendents

    Science.gov (United States)

    Dolson, Jimmy L.

    2013-01-01

    This research project focused on explaining the decision making process of K12 Christian school superintendents whose schools belong to the Association of Christian Schools International (ACSI) organization. In spite of their similar religious and philosophical beliefs, ACSI K12 Christian school superintendents differed significantly in…

  20. Development of an Attitude Scale to Assess K-12 Teachers' Attitudes toward Nanotechnology

    Science.gov (United States)

    Lan, Yu-Ling

    2012-01-01

    To maximize the contributions of nanotechnology to this society, at least 60 countries have put efforts into this field. In Taiwan, a government-funded K-12 Nanotechnology Programme was established to train K-12 teachers with adequate nanotechnology literacy to foster the next generation of Taiwanese people with sufficient knowledge in…

  1. An Exploratory Study on K-12 Teachers' Use of Technology and Multimedia in the Classroom

    Science.gov (United States)

    Martin, Florence; Carr, Marsha L.

    2015-01-01

    21st century has seen new technology and multimedia made available for integration in K-12 classrooms. This exploratory study examines K-12 teachers' use of technology and multimedia in the classroom in two southern counties in the Southeastern United States. The purpose of the study was to answer the following five research questions: 1) What…

  2. Stacks of Ideas: Activities for Library Media Center and Classroom K-12.

    Science.gov (United States)

    Oklahoma State Dept. of Education, Oklahoma City.

    Developed for library media specialists and teachers, this K-12 guide presents a model for combining library media skills with the regular instructional program. Following a K-12 scope and sequence for library and information skills, 15 elementary and junior high school units and 12 high school units are presented. The elementary and junior high…

  3. Preparing Teacher Candidates for Virtual Field Placements via an Exposure to K-12 Online Teaching

    Science.gov (United States)

    Luo, Tian; Hibbard, Laura; Franklin, Teresa; Moore, David Richard

    2017-01-01

    Aim/Purpose: The goal of this project was to determine what effects exposure to online K-12 teaching and learning activities had on teacher candidates' perceptions of K-12 online learning, how the exposure allowed teacher candidates to reach greater understanding of online pedagogy, and what effect such exposure had on teacher candidates'…

  4. Physical Education Teacher Educator's Perceptions toward and Understanding of K-12 Online Physical Education

    Science.gov (United States)

    Daum, David N.; Woods, Amelia M.

    2015-01-01

    K-12 online physical education (OLPE) is as an educational opportunity in at least 30 states in the US (NASPE, 2006; 2010; 2012). The purpose of this study was to examine physical education teacher educators' perceptions toward and understanding of K-12 OLPE. Bandura's Social Cognitive Theory (1986) served as the theoretical framework for this…

  5. Integrating Data Mining in Program Evaluation of K-12 Online Education

    Science.gov (United States)

    Hung, Jui-Long; Hsu, Yu-Chang; Rice, Kerry

    2012-01-01

    This study investigated an innovative approach of program evaluation through analyses of student learning logs, demographic data, and end-of-course evaluation surveys in an online K-12 supplemental program. The results support the development of a program evaluation model for decision making on teaching and learning at the K-12 level. A case study…

  6. An Exploratory Study on K-12 Teachers' Use of Technology and Multimedia in the Classroom

    Science.gov (United States)

    Martin, Florence; Carr, Marsha L.

    2015-01-01

    21st century has seen new technology and multimedia made available for integration in K-12 classrooms. This exploratory study examines K-12 teachers' use of technology and multimedia in the classroom in two southern counties in the Southeastern United States. The purpose of the study was to answer the following five research questions: 1) What…

  7. K-12 Teachers: Technology Use and the Second Level Digital Divide

    Science.gov (United States)

    Reinhart, Julie M.; Thomas, Earl; Toriskie, Jeanne M.

    2011-01-01

    This exploratory study examines differences in K-12 educators' use of technology for instruction across school economic factors. Survey data from 94 practicing K-12 teachers are analyzed. This study finds that schools' economic factors explain variation in how teachers use technology to promote higher-order thinking skills. Our findings support…

  8. K-12 Teacher Perceptions Regarding the Flipped Classroom Model for Teaching and Learning

    Science.gov (United States)

    Gough, Evan; DeJong, David; Grundmeyer, Trent; Baron, Mark

    2017-01-01

    A great deal of evidence can be cited from higher education literature on the effectiveness of the flipped classroom; however, very little research was discovered on the flipped classroom at the K-12 level. This study examined K-12 teachers' perceptions regarding the flipped classroom and differences in teachers' perceptions based on grade level…

  9. The Efficiency and Effectiveness of the K-12 Energy Technology Education Promotion Centers in Taiwan

    Science.gov (United States)

    Lee, Lung-Sheng

    2013-01-01

    In order to promote energy literacy for graders K-12, the Ministry of Education (MOE) in Taiwan initiated a K-12 Energy Technology Education Project in September 2010. This 40-month project has one project office affiliated to a university, and 18 promotion centers affiliated to 18 schools--including 5 regional centers for upper-secondary schools…

  10. Development of an Attitude Scale to Assess K-12 Teachers' Attitudes toward Nanotechnology

    Science.gov (United States)

    Lan, Yu-Ling

    2012-01-01

    To maximize the contributions of nanotechnology to this society, at least 60 countries have put efforts into this field. In Taiwan, a government-funded K-12 Nanotechnology Programme was established to train K-12 teachers with adequate nanotechnology literacy to foster the next generation of Taiwanese people with sufficient knowledge in…

  11. Efficacy of supercritical carbon dioxide for nonthermal inactivation of Escherichia coli K12 in apple cider

    Science.gov (United States)

    This study evaluated the efficacy of a supercritical carbon dioxide (SCCO2) system with a gas-liquid porous metal contactor for eliminating Escherichia coli K12 in apple cider. Pasteurized, preservative-free apple cider was inoculated with E. coli K12 and processed using the SCCO2 system at CO2 conc...

  12. K-12 Teachers' Perceptions of School Policy and Fear of School Violence

    Science.gov (United States)

    Ricketts, Melissa L.

    2007-01-01

    Since the 1990s, schools have focused their attention on policies designed to improve school safety. Most researches on school violence policies have concentrated on the needs of students and administrators. This study investigated the impact of school violence policies on K-12 teachers' fear. Using self-report data from 447 K-12 teachers from a…

  13. State P-20 Councils and Collaboration between K-12 and Higher Education

    Science.gov (United States)

    Rippner, Jennifer A.

    2017-01-01

    For decades, numerous observers have agreed on the value of collaboration between K-12 and higher education--especially as these sectors work toward increasing college readiness and success. While most states maintain separate agencies for K-12 and higher education, many states have worked to foster collaboration through state P-20 councils.…

  14. Value Added Models and the Implementation of the National Standards of K-12 Physical Education

    Science.gov (United States)

    Seymour, Clancy M.; Garrison, Mark J.

    2017-01-01

    The implementation of value-added models of teacher evaluation continue to expand in public education, but the effects of using student test scores to evaluate K-12 physical educators necessitates further discussion. Using the five National Standards for K-12 Physical Education from the Society of Health and Physical Educators America (SHAPE),…

  15. Extended Safety Data for the Oral Cavity Probiotic Streptococcus salivarius K12.

    Science.gov (United States)

    Burton, J P; Chilcott, C N; Wescombe, P A; Tagg, J R

    2010-10-01

    Previous studies of the bacteriocin-producing Streptococcus salivarius K12 monitored a variety of intrinsic strain characteristics of potential relevance to its application as an oral probiotic in humans. These included the content of antibiotic resistance and virulence determinants, the production of deleterious metabolic by-products and its genetic stability. In the present study, we examined additional safety factors including the responses of rats to either short- or long-term oral dosing with strain K12 preparations. In addition, the potential genotoxicity of strain K12 was tested using a bacterial reverse mutation assay. To determine the occurrence and concentrations in human saliva of S. salivarius having the same bacteriocin phenotype as strain K12, saliva samples from 780 children were evaluated. The level of dosing with strain K12 required to achieve oral cavity colonization levels similar to those occurring naturally for this type of bacteriocin-producing S. salivarius was established using 100 human subjects. Following the oral instillation of lyophilized S. salivarius K12 cells in these subjects, its persistence was not at levels higher than those found naturally for this type of bacterium. The various sets of data obtained in this study showed no evidence of genotoxicity and no acute or subacute toxicity effects associated with strain K12. Based on the previously published data, the long history of use by humans and the information presented here, it is concluded that S. salivarius K12 is safe for human consumption.

  16. Preparing Teacher Candidates for Virtual Field Placements via an Exposure to K-12 Online Teaching

    Science.gov (United States)

    Luo, Tian; Hibbard, Laura; Franklin, Teresa; Moore, David Richard

    2017-01-01

    Aim/Purpose: The goal of this project was to determine what effects exposure to online K-12 teaching and learning activities had on teacher candidates' perceptions of K-12 online learning, how the exposure allowed teacher candidates to reach greater understanding of online pedagogy, and what effect such exposure had on teacher candidates'…

  17. A Critique of the Brave New World of K-12 Education

    Science.gov (United States)

    Salmani Nodoushan, Mohammad Ali

    2008-01-01

    Over the past few decades life style has changed so rapidly that remote areas of the Earth are now inhabited by human beings. Technology has also developed and people can stay at home and have access to virtual schools. This has stimulated the need for K-12 Education. K-12 education has emerged from the no-child-left-behind concerns of governments…

  18. Work preferences, life values, and personal views of top math/science graduate students and the profoundly gifted: Developmental changes and gender differences during emerging adulthood and parenthood.

    Science.gov (United States)

    Ferriman, Kimberley; Lubinski, David; Benbow, Camilla P

    2009-09-01

    Work preferences, life values, and personal views of top math/science graduate students (275 men, 255 women) were assessed at ages 25 and 35 years. In Study 1, analyses of work preferences revealed developmental changes and gender differences in priorities: Some gender differences increased over time and increased more among parents than among childless participants, seemingly because the mothers' priorities changed. In Study 2, gender differences in the graduate students' life values and personal views at age 35 were compared with those of profoundly gifted participants (top 1 in 10,000, identified by age 13 and tracked for 20 years: 265 men, 84 women). Again, gender differences were larger among parents. Across both cohorts, men appeared to assume a more agentic, career-focused perspective than women did, placing more importance on creating high-impact products, receiving compensation, taking risks, and gaining recognition as the best in their fields. Women appeared to favor a more communal, holistic perspective, emphasizing community, family, friendships, and less time devoted to career. Gender differences in life priorities, which intensify during parenthood, anticipated differential male-female representation in high-level and time-intensive careers, even among talented men and women with similar profiles of abilities, vocational interests, and educational experiences.

  19. Educating K-12 Students about Glacier Dynamics in a Changing Climate

    Science.gov (United States)

    Stearns, L. A.; Hamilton, G. S.

    2005-12-01

    Public awareness of climate change is growing in the United States. Popular movies, books and magazines are frequently addressing the issue of global warming - some with careful scientific research, but many with unrealistic statements. Early education about the basic principles and processes of climate change is necessary for the general public to distinguish fact from fiction. The U.S. National Science Foundation's GK-12 program (GK-12; grades K to 12) currently in its sixth year, provides an opportunity for scientific enrichment for students and their teachers at the K-12 level through collaborative pairings with science and engineering graduate students (the Fellows). The NSF GK-12 program at the University of Maine has three goals: to enrich the scientific education of the students by providing role models, expertise, and equipment that may not be accessible otherwise; to provide professional development for the teachers through curriculum enrichment and participation at science conferences; and to improve the teaching and communication skills of the Fellows. The University of Maine is one of over 100 U. S. universities participating in this program. During the 2004-05 academic year, 11 graduate and one undergraduate student Fellows, advised by University faculty members, taught at schools across the state of Maine. Fellows from, biology, earth science, ecology, engineering, food science, forestry, and marine science, and taught in their area of expertise. We created a hands-on activity for middle and high school students that describes glacier mass balance in a changing climate. The students make a glacier using glue, water and detergent ('flubber') and construct a glacier valley using plastic sheeting. Flubber behaves in mechanically similar ways to glacier ice, undergoing plastic deformation at low stresses and exhibiting brittle failure at high stresses. Students are encouraged to run several tests with different values for valley slope, glacier mass

  20. Development of the Advanced Energy Design Guide for K-12 Schools -- 50% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, E.; Leach, M.; Pless, S.; Torcellini, P.

    2013-02-01

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-K12) (ASHRAE et al. 2011a). The AEDG-K12 provides recommendations for achieving 50% whole-building energy savings in K-12 schools over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-K12 was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE).