WorldWideScience

Sample records for jwst science working

  1. Status of the JWST Integrated Science Instrument Module

    Science.gov (United States)

    Greenhouse, Matthew A.; Dunn, Jamie; Kimble, Randy A.; Lambros, Scott; Lundquist, Ray; Rauscher, Bernard J.; Van Campen, Julie

    2015-01-01

    The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) is the science instrument payload of the JWST. It is one of three system elements that comprise the JWST space vehicle. It consists of four science sensors, a fine guidance sensor, and nine other subsystems that support them. At 1.4 metric tons, it comprises approximately 20% of the JWST mass. The ISIM is currently at 100% integration and has completed 2 of 3 planned element-level space simulation tests. The ISIM is on schedule to be delivered for integration with the Optical Telescope Element during 2015. In this poster, we present an overview of the ISIM and its status.

  2. Bringing the Science of JWST to the Public

    Science.gov (United States)

    Green, Joel D.; Smith, Denise A.; Lawton, Brandon L.; Meinke, Bonnie K.; Jirdeh, Hussein

    2017-01-01

    The James Webb Space Telescope is the successor to the Hubble Space Telescope. STScI and the Office of Public Outreach are committed to bringing awareness of the technology, the excitement, and the future science potential of this great observatory to the public and to the scientific community, prior to its 2018 launch. The challenges in ensuring the high profile of JWST (understanding the infrared, the vast distance to the telescope's final position, and the unfamiliar science territory) requires us to lay the proper background, particularly in the area of spectroscopy. We currently engage the full range of the public and scientific communities using a variety of high impact, memorable initiatives, in combination with modern technologies to extend reach, linking the science goals of Webb to the ongoing discoveries being made by Hubble. Webbtelescope.org, the public hub for scientific information related to JWST, is now open. We have injected Webb-specific content into ongoing outreach programs: for example, partnering with high impact science communicators such as MinutePhysics to produce timely and concise content; partnering with musicians and artists to link science and art. Augmented reality apps showcase NASA’s telescopes in a format usable by anyone with a smartphone, and visuals from increasingly affordable 3D VR technologies.

  3. System Definition of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Science.gov (United States)

    Lundquist, Ray; Aymergen, Cagatay; VanCampen, Julie; Abell, James; Smith, Miles; Driggers, Phillip

    2008-01-01

    The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical functions and the environment for the four science instruments on JWST. This complex system development across many international organizations presents unique challenges and unique solutions. Here we describe how the requirement flow has been coordinated through the documentation system, how the tools and processes are used to minimize impact to the development of the affected interfaces, how the system design has matured, how the design review process operates, and how the system implementation is managed through reporting to ensure a truly world class scientific instrument compliment is created as the final product.

  4. Community Targets for JWST's Early Release Science Program: Evaluation of Transiting Exoplanet WASP-63b.

    Science.gov (United States)

    Kilpatrick, Brian; Cubillos, Patricio; Bruno, Giovanni; Lewis, Nikole K.; Stevenson, Kevin B.; Wakeford, Hannah; Blecic, Jasmina; Burrows, Adam Seth; Deming, Drake; Heng, Kevin; Line, Michael R.; Madhusudhan, Nikku; Morley, Caroline; Waldmann, Ingo P.; Transiting Exoplanet Early Release Science Community

    2017-06-01

    We present observations of the Hubble Space Telescope (HST) ``A Preparatory Program to Identify the Single Best Transiting Exoplanet for JWST Early Release Science" for WASP-63b, one of the community targets proposed for the James Webb Space Telescope (JWST) Early Release Science (ERS) program. A large collaboration of transiting exoplanet scientists identified a set of ``community targets" which meet a certain set of criteria for ecliptic latitude, period, host star brightness, well constrained orbital parameters, and strength of spectroscopic features. WASP-63b was one of the targets identified as a potential candidate for the ERS program. It is presented as an inflated planet with a large signal. It will be accessible to JWST approximately six months after the planned start of Cycle 1/ERS in April 2019 making it an ideal candidate should there be any delays in the JWST timetable. Here, we observe WASP-63b to evaluate its suitability as the best target to test the capabilities of JWST. Ideally, a clear atmosphere will be best suited for bench marking the instruments ability to detect spectroscopic features. We can use the strength of the water absorption feature at 1.4 μm as a way to determine the presence of obscuring clouds/hazes. The results of atmospheric retrieval are presented along with a discussion on the suitability of WASP-63b as the best target to be observed during the ERS Program.

  5. Planning JWST NIRSpec MSA spectroscopy using NIRCam pre-images

    Science.gov (United States)

    Beck, Tracy L.; Ubeda, Leonardo; Kassin, Susan A.; Gilbert, Karoline; Karakla, Diane M.; Reid, I. N.; Blair, William P.; Keyes, Charles D.; Soderblom, D. R.; Peña-Guerrero, Maria A.

    2016-07-01

    The Near-Infrared Spectrograph (NIRSpec) is the work-horse spectrograph at 1-5microns for the James Webb Space Telescope (JWST). A showcase observing mode of NIRSpec is the multi-object spectroscopy with the Micro-Shutter Arrays (MSAs), which consist of a quarter million tiny configurable shutters that are 0. ''20×0. ''46 in size. The NIRSpec MSA shutters can be opened in adjacent rows to create flexible and positionable spectroscopy slits on prime science targets of interest. Because of the very small shutter width, the NIRSpec MSA spectral data quality will benefit significantly from accurate astrometric knowledge of the positions of planned science sources. Images acquired with the Hubble Space Telescope (HST) have the optimal relative astrometric accuracy for planning NIRSpec observations of 5-10 milli-arcseconds (mas). However, some science fields of interest might have no HST images, galactic fields can have moderate proper motions at the 5mas level or greater, and extragalactic images with HST may have inadequate source information at NIRSpec wavelengths beyond 2 microns. Thus, optimal NIRSpec spectroscopy planning may require pre-imaging observations with the Near-Infrared Camera (NIRCam) on JWST to accurately establish source positions for alignment with the NIRSpec MSAs. We describe operational philosophies and programmatic considerations for acquiring JWST NIRCam pre-image observations for NIRSpec MSA spectroscopic planning within the same JWST observing Cycle.

  6. The Transiting Exoplanet Community Early Release Science Program for JWST

    Science.gov (United States)

    Berta-Thompson, Zachory K.; Batalha, Natalie M.; Stevenson, Kevin B.; Bean, Jacob; Sing, David K.; Crossfield, Ian; Knutson, Heather; Line, Michael R.; Kreidberg, Laura; Desert, Jean-Michel; Wakeford, Hannah; Crouzet, Nicolas; Moses, Julianne I.; Benneke, Björn; Kempton, Eliza; Lopez-Morales, Mercedes; Parmentier, Vivien; Gibson, Neale; Schlawin, Everett; Fraine, Jonathan; Kendrew, Sarah; Transiting Exoplanet Community ERS Team

    2018-06-01

    The James Webb Space Telescope offers astronomers the opportunity to observe the composition, structure, and dynamics of transiting exoplanet atmospheres with unprecedented detail. However, such observations require very precise time-series spectroscopic monitoring of bright stars and present unique technical challenges. The Transiting Exoplanet Community Early Release Science Program for JWST aims to help the community understand and overcome these technical challenges as early in the mission as possible, and to enable exciting scientific discoveries through the creation of public exoplanet atmosphere datasets. With observations of three hot Jupiters spanning a range of host star brightnesses, this program will exercise time-series modes with all four JWST instruments and cover a full suite of transiting planet characterization geometries (transits, eclipses, and phase curves). We designed the observational strategy through an open and transparent community effort, with contributions from an international collaboration of over 100 experts in exoplanet observations, theory, and instrumentation. Community engagement with the project will be centered around open Data Challenge activities using both simulated and real ERS data, for exoplanet scientists to cross-validate and improve their analysis tools and theoretical models. Recognizing that the scientific utility of JWST will be determined not only by its hardware and software but also by the community of people who use it, we take an intentional approach toward crafting an inclusive collaboration and encourage new participants to join our efforts.

  7. Characterizing Rosetta Stone Exoplanets with JWST Transit Spectroscopy

    Science.gov (United States)

    Lewis, Nikole K.; Clampin, Mark; Seager, Sara; Valenti, Jeff A.; Mountain, Matt; JWST Telescope Scientist GTO Team

    2017-06-01

    JWST will for the first time provide for spectroscopic (R > 100) observation of systems hosting transiting exoplanets over the critical wavelength range from 0.6 to 28.5 microns. Our team will take advantage of JWST's spectral coverage and resolution to characterize a small number of exoplanets in exquisite detail. We plan to focus our efforts on single representative members of the hot-Jupiter, warm-Neptune, and temperate-Earth populations in both transmission and emission over the full wavelength range of JWST. Our JWST observations will hopefully become 'Rosetta Stones' that will serve as benchmarks for further observations of planets within each representative population and a lasting legacy of the JWST mission. Here we will describe our observational plan and how we turned our science goals into an implemented Cycle 1 JWST program.

  8. Critical Science Instrument Alignment of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Science.gov (United States)

    Rohrbach, Scott O.; Kubalak, David A.; Gracey, Renee M.; Sabatke, Derek S.; Howard, Joseph M.; Telfer, Randal C.; Zielinski, Thomas P.

    2016-01-01

    This paper describes the critical instrument alignment terms associated with the six-degree of freedom alignment of each the Science Instrument (SI) in the James Webb Space Telescope (JWST), including focus, pupil shear, pupil clocking, and boresight. We present the test methods used during cryogenic-vacuum tests to directly measure the performance of each parameter, the requirements levied on each, and the impact of any violations of these requirements at the instrument and Observatory level.

  9. Synergy with HST and JWST Data Management Systems

    Science.gov (United States)

    Greene, Gretchen; Space Telescope Data Management Team

    2014-01-01

    The data processing and archive systems for the JWST will contain a petabyte of science data and the best news is that users will have fast access to the latest calibrations through a variety of new services. With a synergistic approach currently underway with the STScI science operations between the Hubble Space Telescope and James Webb Space Telescope data management subsystems (DMS), operational verification is right around the corner. Next year the HST archive will provide scientists on-demand fully calibrated data products via the Mikulski Archive for Space Telescopes (MAST), which takes advantage of an upgraded DMS. This enhanced system, developed jointly with the JWST DMS is based on a new CONDOR distributed processing system capable of reprocessing data using a prioritization queue which runs in the background. A Calibration Reference Data System manages the latest optimal configuration for each scientific instrument pipeline. Science users will be able to search and discover the growing MAST archive calibrated datasets from these missions along with the other multiple mission holdings both local to MAST and available through the Virtual Observatory. JWST data systems will build upon the successes and lessons learned from the HST legacy and move us forward into the next generation of multi-wavelength archive research.

  10. Beyond JWST: Science Drivers for the Next Great UVOIR Space Telescope

    Science.gov (United States)

    Tumlinson, Jason; Seager, Sara; Dalcanton, Julianne; Postman, Marc; Aigrain, Suzanne; battel, Steven; Brandt, W. Niel; Conroy, Charlie; Feinberg, Lee; Gezari, Suvi; Guyon, Olivier; Harris, Walter M.; Hirata, Chris; Mather, John C.; Redding, David; Schiminovich, David; Stahl, H. Philip

    2015-01-01

    We report on the AURA 'Beyond JWST' committee's considerations and conclusions regarding the science case for the development of a large UVOIR observatory, to be launched following JWST and WFIRST-AFTA. We find that a space-based UVOIR telescope of 10 meters or more in aperture will uniquely enable a wide range of transformational science investigations by itself and in tandem with ground-based OIR and radio facilities in its era. The chief goal of this facility is to assess the possibility of life beyond our Solar System by discovering Earth-like planets in the habitable zones of their host stars, via direct imaging, and by searching spectroscopically for biosignature gases in the atmospheres of the best exo-Earth candidates. The large aperture and mission architecture required to characterize the atmospheres of a significant number of potentially life-bearing planets will also transform studies of the galaxies and stars that led up to them. At 10 meters or larger, the telescope will spatially resolve scales of 100 AU everywhere in the Milky Way, 0.1 parsec everywhere in the Local Group, and 100 parsec everywhere in the observable Universe. This unprecedented spatial resolution over large fields, with stable optics and low backgrounds, will allow astronomers to follow, in high definition, the formation and evolution of the star forming regions inside galaxies over the past 10 Gyr, to robustly determine the complete star formation histories in every galaxy within the local volume (to 10 Mpc), and to track the motions of virtually any star in the Milky Way. High spectral resolution and multi-object spectroscopy in the UV will enable revolutionary new studies of gas flows in galaxies, bodies in the outer solar system, and the evolution of the most massive stars. We present these compelling science drivers and their associated observational requirements here; we summarize the technology requirements for high angular resolution, sensitivity, wavefront stability

  11. James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Cryo-Vacuum (CV) Test Campaign Summary

    Science.gov (United States)

    Yew, Calinda; Whitehouse, Paul; Lui, Yan; Banks, Kimberly

    2016-01-01

    JWST Integrated Science Instruments Module (ISIM) has completed its system-level testing program at the NASA Goddard Space Flight Center (GSFC). In March 2016, ISIM was successfully delivered for integration with the Optical Telescope Element (OTE) after the successful verification of the system through a series of three cryo-vacuum (CV) tests. The first test served as a risk reduction test; the second test provided the initial verification of the fully-integrated flight instruments; and the third test verified the system in its final flight configuration. The complexity of the mission has generated challenging requirements that demand highly reliable system performance and capabilities from the Space Environment Simulator (SES) vacuum chamber. As JWST progressed through its CV testing campaign, deficiencies in the test configuration and support equipment were uncovered from one test to the next. Subsequent upgrades and modifications were implemented to improve the facility support capabilities required to achieve test requirements. This paper: (1) provides an overview of the integrated mechanical and thermal facility systems required to achieve the objectives of JWST ISIM testing, (2) compares the overall facility performance and instrumentation results from the three ISIM CV tests, and (3) summarizes lessons learned from the ISIM testing campaign.

  12. High Contrast Imaging of Exoplanets and Exoplanetary Systems with JWST

    Science.gov (United States)

    Hinkley, Sasha; Skemer, Andrew; Biller, Beth; Baraffe, I.; Bonnefoy, M.; Bowler, B.; Carter, A.; Chen, C.; Choquet, E.; Currie, T.; Danielski, C.; Fortney, J.; Grady, C.; Greenbaum, A.; Hines, D.; Janson, M.; Kalas, P.; Kennedy, G.; Kraus, A.; Lagrange, A.; Liu, M.; Marley, M.; Marois, C.; Matthews, B.; Mawet, D.; Metchev, S.; Meyer, M.; Millar-Blanchaer, M.; Perrin, M.; Pueyo, L.; Quanz, S.; Rameau, J.; Rodigas, T.; Sallum, S.; Sargent, B.; Schlieder, J.; Schneider, G.; Stapelfeldt, K.; Tremblin, P.; Vigan, A.; Ygouf, M.

    2017-11-01

    JWST will transform our ability to characterize directly imaged planets and circumstellar debris disks, including the first spectroscopic characterization of directly imaged exoplanets at wavelengths beyond 5 microns, providing a powerful diagnostic of cloud particle properties, atmospheric structure, and composition. To lay the groundwork for these science goals, we propose a 39-hour ERS program to rapidly establish optimal strategies for JWST high contrast imaging. We will acquire: a) coronagraphic imaging of a newly discovered exoplanet companion, and a well-studied circumstellar debris disk with NIRCam & MIRI; b) spectroscopy of a wide separation planetary mass companion with NIRSPEC & MIRI; and c) deep aperture masking interferometry with NIRISS. Our primary goals are to: 1) generate representative datasets in modes to be commonly used by the exoplanet and disk imaging communities; 2) deliver science enabling products to empower a broad user base to develop successful future investigations; and 3) carry out breakthrough science by characterizing exoplanets for the first time over their full spectral range from 2-28 microns, and debris disk spectrophotometry out to 15 microns sampling the 3 micron water ice feature. Our team represents the majority of the community dedicated to exoplanet and disk imaging and has decades of experience with high contrast imaging algorithms and pipelines. We have developed a collaboration management plan and several organized working groups to ensure we can rapidly and effectively deliver high quality Science Enabling Products to the community.

  13. UV--Visible observations with HST in the JWST North Ecliptic Pole Time-Domain Field

    Science.gov (United States)

    Jansen, Rolf A.; Windhorst, Rogier; Grogin, Norman; Koekemoer, Anton; Royle, Patricia; Hathi, Nimish; Jones, Victoria; Cohen, Seth; Ashcraft, Teresa; Willmer, Christopher; Conselice, Christopher; White, Cameron; Frye, Brenda; HST-GO-15278 team; and the Webb Medium Deep Fields IDS GTO team.

    2018-01-01

    We report the first results from a UV–Visible HST imaging survey of the JWST North Ecliptic Pole (NEP) Time-Domain Field (TDF). Using CVZ and near-CVZ opportunities we observed the first two out of nine tiles with WFC3/UVIS in F275W and with ACS/WFC in F435W and F606W. Over the course of the next 13 months, this survey is designed to provide near-contiguous 3-filter coverage of the central r ≤ 5‧ of this new community field for time-domain science with JWST. The JWST NEP TDF is located within JWST's northern Continuous Viewing Zone, will span ~14‧ in diameter (~10‧ with NIRISS coverage), is devoid of sources bright enough to saturate the NIRCam detectors, has low Galactic foreground extinction, and will be roughly circular in shape (initially sampled during Cycle 1 at 4 distinct orientations with JWST/NIRCam — the JWST “windmill”). NIRISS slitless grism spectroscopy will be taken in parallel, overlapping an alternate NIRCam orientation. This is the only region in the sky where JWST can observe a clean extragalactic deep survey field of this size at arbitrary cadence or at arbitrary orientation. This will crucially enable a wide range of new and exciting time-domain science, including high redshift transient searches and monitoring (e.g., SNe), variability studies from Active Galactic Nuclei to brown dwarf atmospheres, as well as proper motions of extreme scattered Kuiper Belt and Oort Cloud Objects, and of nearby Galactic brown dwarfs, low-mass stars, and ultracool white dwarfs. Ancillary data across the electromagnetic spectrum will exist for this field when JWST science operations commence in the second half of 2019. This includes deep (mAB ~ 26 mag) wide-field (~23‧×25‧) Ugriz photometry of this field and its surroundings from LBT/LBC and Subaru/HSC, JHK from MMT/MMIRS, VLA 3 GHz and VLBA 4.5 GHz radio observations, and Chandra/ACIS X-ray images. Proposals for (sub)mm observations and spectroscopy to mAB ~ 24 mag are pending.

  14. Calibration results using highly aberrated images for aligning the JWST instruments to the telescope

    Science.gov (United States)

    Smith, Koby Z.; Acton, D. Scott; Gallagher, Ben B.; Knight, J. Scott; Dean, Bruce H.; Jurling, Alden S.; Zielinski, Thomas P.

    2016-07-01

    The James Webb Space Telescope (JWST) project is an international collaboration led by NASA's Goddard Space Flight Center (GSFC) in Greenbelt, MD. JWST is NASA's flagship observatory that will operate nearly a million miles away from Earth at the L2 Lagrange point. JWST's optical design is a three-mirror anastigmat with four main optical components; 1) the eighteen Primary Mirror Segment Assemblies (PMSA), 2) a single Secondary Mirror Assembly (SMA), 3) an Aft-Optics Subsystem (AOS) consisting of a Tertiary Mirror and Fine Steering Mirror, and 4) an Integrated Science Instrument Module consisting of the various instruments for JWST. JWST's optical system has been designed to accommodate a significant amount of alignment capability and risk with the PMSAs and SMA having rigid body motion available on-orbit just for alignment purposes. However, the Aft-Optics Subsystem (AOS) and Integrated Science Instrument Module (ISIM) are essentially fixed optical subsystems within JWST, and therefore the cryogenic alignment of the AOS to the ISIM is critical to the optical performance and mission success of JWST. In support of this cryogenic alignment of the AOS to ISIM, an array of fiber optic sources, known as the AOS Source Plate Assembly (ASPA), are placed near the intermediate image location of JWST (between the secondary and tertiary mirrors) during thermal vacuum ground-test operations. The AOS produces images of the ASPA fiber optic sources at the JWST focal surface location, where they are captured by the various science instruments. In this manner, the AOS provides an optical yardstick by which the instruments within ISIM can evaluate their relative positions to and the alignment of the AOS to ISIM can be quantified. However, since the ASPA is located at the intermediate image location of the JWST three-mirror anastigmat design, the images of these fiber optic sources produced by the AOS are highly aberrated with approximately 2-3μm RMS wavefront error consisting

  15. TRL-6 for JWST Wavefront Sensing and Control

    Science.gov (United States)

    Feinberg, Lee; Dean, Bruce; Smith, Scott; Aronstein, David; Shiri, Ron; Lyon, Rick; Hayden, Bill; Bowers, Chuck; Acton, D. Scott; Shields, Duncan; hide

    2007-01-01

    NASA's Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed

  16. Observing outer planet satellites (except Titan) with JWST: Science justification and observational requirements

    Science.gov (United States)

    Kestay, Laszlo P.; Grundy, Will; Stansberry, John; Sivaramakrishnan, Anand; Thatte, Deepashri; Gudipati, Murthy; Tsang, Constantine; Greenbaum, Alexandra; McGruder, Chima

    2016-01-01

    The James Webb Space Telescope (JWST) will allow observations with a unique combination of spectral, spatial, and temporal resolution for the study of outer planet satellites within our Solar System. We highlight the infrared spectroscopy of icy moons and temporal changes on geologically active satellites as two particularly valuable avenues of scientific inquiry. While some care must be taken to avoid saturation issues, JWST has observation modes that should provide excellent infrared data for such studies.

  17. Integrated Modeling for the James Webb Space Telescope (JWST) Project: Structural Analysis Activities

    Science.gov (United States)

    Johnston, John; Mosier, Mark; Howard, Joe; Hyde, Tupper; Parrish, Keith; Ha, Kong; Liu, Frank; McGinnis, Mark

    2004-01-01

    This paper presents viewgraphs about structural analysis activities and integrated modeling for the James Webb Space Telescope (JWST). The topics include: 1) JWST Overview; 2) Observatory Structural Models; 3) Integrated Performance Analysis; and 4) Future Work and Challenges.

  18. Simulated JWST/NIRISS Spectroscopy of Anticipated TESS Planets and Selected Super-Earths Discovered from K2 and Ground-Based Surveys

    Science.gov (United States)

    Louie, Dana; Albert, Loic; Deming, Drake

    2017-01-01

    The 2018 launch of James Webb Space Telescope (JWST), coupled with the 2017 launch of the Transiting Exoplanet Survey Satellite (TESS), heralds a new era in Exoplanet Science, with TESS projected to detect over one thousand transiting sub-Neptune-sized planets (Ricker et al, 2014), and JWST offering unprecedented spectroscopic capabilities. Sullivan et al (2015) used Monte Carlo simulations to predict the properties of the planets that TESS is likely to detect, and published a catalog of 962 simulated TESS planets. Prior to TESS launch, the re-scoped Kepler K2 mission and ground-based surveys such as MEarth continue to seek nearby Earth-like exoplanets orbiting M-dwarf host stars. The exoplanet community will undoubtedly employ JWST for atmospheric characterization follow-up studies of promising exoplanets, but the targeted planets for these studies must be chosen wisely to maximize JWST science return. The goal of this project is to estimate the capabilities of JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS)—operating with the GR700XD grism in Single Object Slitless Spectrography (SOSS) mode—during observations of exoplanets transiting their host stars. We compare results obtained for the simulated TESS planets, confirmed K2-discovered super-Earths, and exoplanets discovered using ground-based surveys. By determining the target planet characteristics that result in the most favorable JWST observing conditions, we can optimize the choice of target planets in future JWST follow-on atmospheric characterization studies.

  19. Lessons from Coronagraphic Imaging with HST that may apply to JWST

    Science.gov (United States)

    Grady, C. A.; Hines, Dean C.; Schneider, Glenn; McElwain, Michael W.

    2017-06-01

    One of the major capabilities offered by JWST is coronagraphic imaging from space, covering the near through mid-IR and optimized for study of planet formation and the evolution of planetary systems. Planning for JWST has resulted in expectations for instrument performance, observation strategies and data reduction approaches. HST with 20 years of coronagraphic imaging offers some experience which may be useful to those planning for JWST. 1) Real astronomical sources do not necessarily conform to expectations. Debris disks may be accompanied by more distant material, and some systems may be conspicuous in scattered light when offering only modest IR excesses. Proto-planetary disks are not constantly illuminated, and thus a single epoch observation of the source may not be sufficient to reveal everything about it. 2) The early expectation with NICMOS was that shallow, 2-roll observations would reveal a wealth of debris disks imaged in scattered light, and that only a limited set of PSF observations would be required. Instead, building up a library of spatially resolved disks in scattered light has proven to require alternate observing strategies, is still on-going, and has taken far longer than expected. 3) A wealth of coronagraphic options with an instrument may not be scientifically informative, unless there is a similar time investment in acquisition of calibration data in support of the science observations. 4) Finally, no one anticipated what can be gleaned from coronagraphic imaging. We should expect similar, unexpected, and ultimately revolutionary discoveries with JWST.

  20. The James Webb STEM Innovation Project: Bringing JWST to the Education Community

    Science.gov (United States)

    Eisenhamer, Bonnie; Harris, J.; Ryer, H.; Taylor, J.; Bishop, M.

    2012-01-01

    Building awareness of a NASA mission prior to launch and connecting that mission to the education community can be challenging. In order to address this challenge, the Space Telescope Science Institute's Office of Public Outreach has developed the James Webb STEM innovation Project (SIP) - an interdisciplinary project that focuses on the engineering aspects and potential scientific discoveries of JWST, while incorporating elements of project-based learning. Students in participating schools will use skills from multiple subject areas to research an aspect of the JWST's design or potential science and create models, illustrated essays, or technology-based projects to demonstrate their learning. Student projects will be showcased during special events at select venues in the project states - thus allowing parents and community members to also be benefactors of the project. Currently, the SIP is being piloted in New York, California, and Maryland. In addition, we will be implementing the SIP in partnership with NASA Explorer Schools in the states of New Mexico, Michigan, Texas, Tennessee, and Iowa.

  1. Commentary: JWST near-infrared detector degradation— finding the problem, fixing the problem, and moving forward

    Directory of Open Access Journals (Sweden)

    Bernard J. Rauscher

    2012-06-01

    Full Text Available The James Webb Space Telescope (JWST is the successor to the Hubble Space Telescope. JWST will be an infrared-optimized telescope, with an approximately 6.5 m diameter primary mirror, that is located at the Sun-Earth L2 Lagrange point. Three of JWST’s four science instruments use Teledyne HgCdTe HAWAII-2RG (H2RG near infrared detector arrays. During 2010, the JWST Project noticed that a few of its 5 μm cutoff H2RG detectors were degrading during room temperature storage, and NASA chartered a “Detector Degradation Failure Review Board” (DD-FRB to investigate. The DD-FRB determined that the root cause was a design flaw that allowed indium to interdiffuse with the gold contacts and migrate into the HgCdTe detector layer. Fortunately, Teledyne already had an improved design that eliminated this degradation mechanism. During early 2012, the improved H2RG design was qualified for flight and JWST began making additional H2RGs. In this article, we present the two public DD-FRB “Executive Summaries” that: (1 determined the root cause of the detector degradation and (2 defined tests to determine whether the existing detectors are qualified for flight. We supplement these with a brief introduction to H2RG detector arrays, some recent measurements showing that the performance of the improved design meets JWST requirements, and a discussion of how the JWST Project is using cryogenic storage to retard the degradation rate of the existing flight spare H2RGs.

  2. The Impact of JWST Broadband Filter Choice on Photometric Redshift Estimation

    DEFF Research Database (Denmark)

    Bisigello, L.; Caputi, K. I.; Colina, L.

    2016-01-01

    The determination of galaxy redshifts in the James Webb Space Telescope's (JWST) blank-field surveys will mostly rely on photometric estimates, based on the data provided by JWST's Near-Infrared Camera (NIRCam) at 0.6–5.0 μm and Mid Infrared Instrument (MIRI) at λ 5.0 μm. In this work we analyze...... the impact of choosing different combinations of NIRCam and MIRI broadband filters (F070W to F770W), as well as having ancillary data at λ 0.6 μm, on the derived photometric redshifts (z phot) of a total of 5921 real and simulated galaxies, with known input redshifts z = 0–10....

  3. Nurturing The STEM Pipeline: Graduate Student Leadership In NIRCam's Ongoing E/PO Mission For JWST

    Science.gov (United States)

    Schlingman, Wayne M.; Stock, N.; Teske, J.; Tyler, K.; Biller, B.; Donley, J.; Hedden, A.; Knierman, K.; Young, P.

    2011-01-01

    The Astronomy Camp for Girl Scout Leaders is an education and public outreach (E/PO) program offered by the science team of the Near-InfraRed Camera (NIRCam) for NASA's 6.5-meter James Webb Space Telescope (JWST). Since 2003, astronomy graduate students have helped design and lead biannual "Train the Trainer” workshops for adults from the Girl Scouts of the USA (GSUSA), engaging these trainers in the process of scientific inquiry and equipping them to host astronomy-related activities at the troop level. These workshops have helped revise the national GSUSA badge curriculum and directly benefitted thousands of young girls of all ages, not only in general science and math education but also in specific astronomical and technological concepts relating to JWST. To date, nine graduate students have become members of NIRCam's E/PO team. They have developed curriculum and activities used to teach concepts in stellar nucleosynthesis, lookback time, galaxy classification, etc. They have also contributed to the overall strategic approach and helped lead more general activities in basic astronomy (night sky, phases of the Moon, the scale of the Solar System and beyond, stars, galaxies, telescopes, etc.) as well as JWST-specific research areas in extrasolar planetary systems and cosmology, to pave the way for girls and women to understand the first images from JWST. The resulting experience has empowered these students to propose and to develop their own E/PO programs after graduation as postdocs and young faculty. They also continue as part of NIRCam's growing worldwide network of 160 trainers teaching young women essential STEM-related concepts using astronomy, the night sky environment, applied math, engineering, and critical thinking. NIRCam and its E/PO program are funded by NASA under contract NAS5-02105.

  4. JWST Wavefront Sensing and Control: Operations Plans, Demonstrations, and Status

    Science.gov (United States)

    Perrin, Marshall; Acton, D. Scott; Lajoie, Charles-Philippe; Knight, J. Scott; Myers, Carey; Stark, Chris; JWST Wavefront Sensing & Control Team

    2018-01-01

    After JWST launches and unfolds in space, its telescope optics will be aligned through a complex series of wavefront sensing and control (WFSC) steps to achieve diffraction-limited performance. This iterative process will comprise about half of the observatory commissioning time (~ 3 out of 6 months). We summarize the JWST WFSC process, schedule, and expectations for achieved performance, and discuss our team’s activities to prepare for an effective & efficient telescope commissioning. During the recently-completed OTIS cryo test at NASA JSC, WFSC demonstrations showed the flight-like operation of the entire JWST active optics and WFSC system from end to end, including all hardware and software components. In parallel, the same test data were processed through the JWST Mission Operations Center at STScI to demonstrate the readiness of ground system components there (such as the flight operations system, data pipelines, archives, etc). Moreover, using the Astronomer’s Proposal Tool (APT), the entire telescope commissioning program has been implemented, reviewed, and is ready for execution. Between now and launch our teams will continue preparations for JWST commissioning, including further rehearsals and testing, to ensure a successful alignment of JWST’s telescope optics.

  5. Benchmarking GJ436b for JWST

    Science.gov (United States)

    Parmentier, Vivien; Stevenson, Kevin; Crossfield, Ian; Morley, Caroline; Fortney, Jonathan; Showman, Adam; Lewis, Nikole; Line, Mike

    2017-10-01

    GJ436b is a slightly eccentric, Neptune size planet with an equilibrium temperature of approximately 770K, it is the only Neptune size planet with a thermal emission measurement. With the coming JWST GTO observations of it's emission spectrum, GJ436b will become a benchmark object of the population of Neptune-size planets that will be discovered by TESS and characterized by JWST in the coming years. The current set of 19 secondary eclipses observed by Spitzer points toward a metal-rich, well mixed, tidally heated atmosphere in disequilibrium chemistry. However, no self-consistent forward models are currently able to fit the dayside spectrum of the planet, whereas retrieval models lead to solutions that are inconsistent with the observed planet density. Clearly, some piece of the puzzle is missing to understand the atmospheric properties of this planet. Although the coming JWST observations will likely improve our understanding of this planet, it won't be able to break the degeneracies between metallicity, internal flux and energy redistribution. We propose to observe a full phase curve of GJ436b at 3.6 microns. We will obtain a measurement of the nightside flux of GJ436b at 3.6 microns. Combined with the already observed 8 microns phase curve, we will obtain the first low resolution spectrum of the nightside of a Neptune size exoplanet. By comparing the nightside flux at 3.6 and 8 microns, we will be able to place constraints on the tidal heating and the metallicity of GJ436b that will be complimentary to the the dayside spectrum that will be obtained with JWST. As seen with the example of hot Jupiters, for which much more data is available, measurements of the nightside spectrum is fundamental to understand the planet atmosphere as a whole and correctly interpret the dayside emission. As a consequence, the proposed observation is crucial for the interpretation of the coming JWST observations. As a secondary goal, our observation should be able to confirm the

  6. Phase-Retrieval Uncertainty Estimation and Algorithm Comparison for the JWST-ISIM Test Campaign

    Science.gov (United States)

    Aronstein, David L.; Smith, J. Scott

    2016-01-01

    Phase retrieval, the process of determining the exitpupil wavefront of an optical instrument from image-plane intensity measurements, is the baseline methodology for characterizing the wavefront for the suite of science instruments (SIs) in the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST). JWST is a large, infrared space telescope with a 6.5-meter diameter primary mirror. JWST is currently NASA's flagship mission and will be the premier space observatory of the next decade. ISIM contains four optical benches with nine unique instruments, including redundancies. ISIM was characterized at the Goddard Space Flight Center (GSFC) in Greenbelt, MD in a series of cryogenic vacuum tests using a telescope simulator. During these tests, phase-retrieval algorithms were used to characterize the instruments. The objective of this paper is to describe the Monte-Carlo simulations that were used to establish uncertainties (i.e., error bars) for the wavefronts of the various instruments in ISIM. Multiple retrieval algorithms were used in the analysis of ISIM phase-retrieval focus-sweep data, including an iterativetransform algorithm and a nonlinear optimization algorithm. These algorithms emphasize the recovery of numerous optical parameters, including low-order wavefront composition described by Zernike polynomial terms and high-order wavefront described by a point-by-point map, location of instrument best focus, focal ratio, exit-pupil amplitude, the morphology of any extended object, and optical jitter. The secondary objective of this paper is to report on the relative accuracies of these algorithms for the ISIM instrument tests, and a comparison of their computational complexity and their performance on central and graphical processing unit clusters. From a phase-retrieval perspective, the ISIM test campaign includes a variety of source illumination bandwidths, various image-plane sampling criteria above and below the Nyquist- Shannon

  7. Detecting First Supernovae with JWST

    Science.gov (United States)

    Regos, Eniko; FLARE

    2018-01-01

    We have applied for a JWST ERS First Transients Survey, FLARE to answer empirically how the Universe made its first stars. To quest the epoch of reionization we target what happened to these first stars by observing the most luminous events, supernovae. These transients provide direct constraints on star formation rates and the initial mass function.These very rare events can be reached by JWST at 27 mag AB in 2 micron and 4.4 micron over a field of 0.1 square degree visited multiple times each year.The survey may detect massive Pop III SNe at redshifts up to 10, pinpointing the redshift of first stars, a key scientific goal of JWST.We explore all models of star formation history (derived from UV luminosity densities and IR data), DTD, top heavy IMF of early, low metallicity stars, and normalizations to data of SN Ia, II rates (SNLS, CLASH, CANDELS, SDSS, SVISS), as well as SLSN (ROTSE, SNLS) to estimate the expected SN rates as function of redshift.Population synthesis of double degenerate and single degenerate scenarios of SN Ia shows that the shape of the DTD is rather insensitive to the assumptions (common envelope prescription and metallicities, or retention efficiency of accreted H to white dwarf core and mass transfer rate).Indeed GOODS High z SN Ia rates imply substantial delay in their progenitor model, and Hubble Higher z SN search constrains delay time distribution models as well.SLSN (I, II /H/ and extreme rare pulsational pair instability) are magnetars (ULGRB) in high local star formation rate, faint, low metallicity galaxies.

  8. Emerging Technologies and Outreach with JWST

    Science.gov (United States)

    Green, Joel D.; Smith, Denise A.; Meinke, Bonnie K.; Lawton, Brandon L.; Kenney, Jessica; Jirdeh, Hussein

    2017-06-01

    The James Webb Space Telescope (JWST), NASA’s next great observatory launching in October 2018, required a dozen new technologies to develop. How will we maintain the prestige and cultural impact of Hubble as the torch passes to Webb? Emerging technologies such as augmented and virtual reality bring the viewer into the data and the concept in previously unimaginable immersive detail. Adoption of mobile devices has expanded access to information for wide swaths of the public. Software like Worldwide Telescope to hardware like the Occulus Rift are providing new avenues for learning. If we develop materials properly tailored to this medium, we can reach more diverse audiences than ever before. STScI is pioneering some tools related to JWST for showcasing at AAS, and in local events, which I highlight here.

  9. Optimal Strategies for Probing Terrestrial Exoplanet Atmospheres with JWST

    Science.gov (United States)

    Batalha, Natasha E.; Lewis, Nikole K.; Line, Michael

    2018-01-01

    It is imperative that the exoplanet community determines the feasibility and the resources needed to yield high fidelity atmospheric compositions from terrestrial exoplanets. In particular, LHS 1140b and the TRAPPIST-1 system, already slated for observations by JWST’s Guaranteed Time Observers, will be the first two terrestrial planets observed by JWST. I will discuss optimal observing strategies for observing these two systems, focusing on the NIRSpec Prism (1-5μm) and the combination of NIRISS SOSS (1-2.7μm) and NIRSpec G395H (3-5μm). I will also introduce currently unsupported JWST readmodes that have the potential to greatly increase the precision on our atmospheric spectra. Lastly, I will use information content theory to compute the expected confidence interval on the retrieved abundances of key molecular species and temperature profiles as a function of JWST observing cycles.

  10. Prospects for Habitable World Detections Using James Webb Space Telescope (JWST)

    Science.gov (United States)

    Deming, Drake

    2010-01-01

    Doppler and transit surveys are finding extrasolar planets of ever smaller mass and radius, and are now sampling the domain of superEarths. Recent results from the Doppler surveys suggest that discovery of a transiting superEarth in the habitable zone of a lower main sequence star may be possible. We evaluate the prospects for an all-sky transit survey targeted to the brightest stars I that would find the most favorable cases for photometric and spectroscopic characterization using the James Webb Space Telescope. We use the proposed Transiting Exoplanet Survey Satellite (TESS) as representative of an all-sky survey. We couple the simulated TESS yield to a sensitivity model for the MIRI and NIRSpec instruments on JWST. Our sensitivity model includes all currently known and anticipated sources of random and systematic error for these instruments. We focus on the TESS planets with radii between Earth and Neptune. Our simulations consider secondary eclipse filter photometry using JWST/MIRI, comparing the 11- and 15- micron bands to measure carbon dioxide absorption in superEarths, as well as JWST!NIRSpec spectroscopy of water absorption from 1.7-3.0 microns, and carbon dioxide absorption at 4.3 microns. We find that JWST will be capable of characterizing dozens of TESS superEarths with temperatures above the habitable range, using both MIRI and NIRspec. We project that TESS will discover about eight nearby habitable transiting superEarths, all orbiting lower main sequence stars. The principal sources of uncertainty in the prospects for JWST characterization of habitable superEarths are superEarth frequency and the nature of superEarth atmospheres. Based on our estimates of these uncertainties, we project that JWST will be able to measure the temperature, and identify molecular absorptions (water, carbon dioxide) in one to four nearby habitable TESS superEarths orbiting lower main sequence stars.

  11. Astrophysics in the Next Decade: JWST and Concurrent Facilities

    CERN Document Server

    Thronson, Harley A; Tielens, Alexander; The James Webb Space Telescope and Concurrent Facilities

    2009-01-01

    NASA’s James Webb Space Telescope (JWST), planned for operation in about five years, will have the capability to investigate – and answer – some of the most challenging questions in astronomy. Although motivated and designed to study the very early Universe, the performance of the observatory’s instruments over a very wide wavelength range will allow the world’s scientific community unequaled ability to study cosmic phenomena as diverse as small bodies in the Solar System and the formation of galaxies. As part of preparation to use JWST, a conference was held in Tucson, Arizona in 2007 that brought together astronomers from around the world to discuss the mission, other major facilities that will operate in the coming decade, and major scientific goals for them. This book is a compilation of those presentations by some of the leading researchers from all branches of astronomy. This book also includes a "pre-history" of JWST, describing the lengthy process and some of the key individuals that initiat...

  12. From the Big Bang to the Nobel Prize and the JWST

    Science.gov (United States)

    Mather, John C.

    2007-01-01

    I will describe the history of the universe, from the Big Bang to 2013, when the JWST is to be launched to look back towards our beginnings. I will discuss how the COBE results led to the Nobel Prize, how the COBE results have been confirmed and extended, and their implications for future observations. The James Webb Space Telescope will be used to examine every part of our history from the first stars and galaxies to the formation of individual stars and planets and the delivery of life-supporting materials to the Earth. I will describe the plans for the JWST and how observers may use it. With luck, the JWST may produce a Nobel Prize for some discovery we can only guess today.

  13. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    Science.gov (United States)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the

  14. The Resolved Stellar Populations Early Release Science Program

    Science.gov (United States)

    Weisz, Daniel; Anderson, J.; Boyer, M.; Cole, A.; Dolphin, A.; Geha, M.; Kalirai, J.; Kallivayalil, N.; McQuinn, K.; Sandstrom, K.; Williams, B.

    2017-11-01

    We propose to obtain deep multi-band NIRCam and NIRISS imaging of three resolved stellar systems within 1 Mpc (NOI 104). We will use this broad science program to optimize observational setups and to develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will combine our expertise in HST resolved star studies with these observations to design, test, and release point spread function (PSF) fitting software specific to JWST. PSF photometry is at the heart of resolved stellar populations studies, but is not part of the standard JWST reduction pipeline. Our program will establish JWST-optimized methodologies in six scientific areas: star formation histories, measurement of the sub-Solar mass stellar IMF, extinction maps, evolved stars, proper motions, and globular clusters, all of which will be common pursuits for JWST in the local Universe. Our observations of globular cluster M92, ultra-faint dwarf Draco II, and star-forming dwarf WLM, will be of high archival value for other science such as calibrating stellar evolution models, measuring properties of variable stars, and searching for metal-poor stars. We will release the results of our program, including PSF fitting software, matched HST and JWST catalogs, clear documentation, and step-by-step tutorials (e.g., Jupyter notebooks) for data reduction and science application, to the community prior to the Cycle 2 Call for Proposals. We will host a workshop to help community members plan their Cycle 2 observations of resolved stars. Our program will provide blueprints for the community to efficiently reduce and analyze JWST observations of resolved stellar populations.

  15. Optical Coating Performance for Heat Reflectors of the JWST-ISIM Electronic Component

    Science.gov (United States)

    Rashford, Robert A.; Perrygo, Charles M.; Garrison, Matthew B.; White, Bryant K.; Threat, Felix T.; Quijada, Manuel A.; Jeans, James W.; Huber, Frank K.; Bousquet, Robert R.; Shaw, Dave

    2011-01-01

    A document discusses a thermal radiator design consisting of lightweight composite materials and low-emittance metal coatings for use on the James Webb Space Telescope (JWST) structure. The structure will have a Thermal Subsystem unit to provide passive cooling to the Integrated Science Instrument Module (ISIM) control electronics. The ISIM, in the JWST observatory, is the platform that provides the mounting surfaces for the instrument control electronics. Dissipating the control electronic generated-heat away from JWST is of paramount importance so that the spacecraft s own heat does not interfere with the infrared-light gathering of distant cosmic sources. The need to have lateral control in the emission direction of the IEC (ISIM Electronics Compartment) radiators led to the development of a directional baffle design that uses multiple curved mirrorlike surfaces. This concept started out from the so-called Winston non-imaging optical concentrators that use opposing parabolic reflector surfaces, where each parabola has its focus at the opposite edge of the exit aperture. For this reason they are often known as compound parabolic concentrators or CPCs. This radiator system with the circular section was chosen for the IEC reflectors because it offers two advantages over other designs. The first is that the area of the reflector strips for a given radiator area is less, which results in a lower mass baffle assembly. Secondly, the fraction of energy emitted by the radiator strips and subsequently reflected by the baffle is less. These fewer reflections reduced the amount of energy that is absorbed and eventually re-emitted, typically in a direction outside the design emission range angle. A baffle frame holds the mirrors in position above a radiator panel on the IEC. Together, these will direct the majority of the heat from the IEC above the sunshield away towards empty space.

  16. The Building Blocks for JWST I and T (Integrations and Test) to Operations - From Simulator to Flight Units

    Science.gov (United States)

    Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace

    2012-01-01

    The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.

  17. Leveraging Emerging Technologies in Outreach for JWST

    Science.gov (United States)

    Meinke, Bonnie K.; Green, Joel D.; Smith, Louis Chad; Smith, Denise A.; Lawton, Brandon L.; Gough, Michael

    2017-10-01

    The James Webb Space Telescope (JWST) is NASA’s next great observatory, launching in October 2018. How will we maintain the prestige and cultural impact of the Hubble Space Telescope as the torch passes to Webb? Emerging technologies such as augmented (AR) and virtual reality (VR) bring the viewer into the data and introduce the telescope in previously unimaginable immersive detail. Adoption of mobile devices, many of which easily support AR and VR, has expanded access to information for wide swaths of the public. From software like Worldwide Telescope to hardware like the HTC Vive, immersive environments are providing new avenues for learning. If we develop materials properly tailored to these media, we can reach more diverse audiences than ever before. STScI is piloting tools related to JWST to showcase at DPS, and in local events, which I highlight here.

  18. CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Thomas P. [NASA Ames Research Center, Space Science and Astrobiology Division, M.S. 245-6, Moffett Field, CA 94035 (United States); Line, Michael R.; Montero, Cezar; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lustig-Yaeger, Jacob [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Luther, Kyle, E-mail: tom.greene@nasa.gov [Department of Physics, University of California, 366 LeConte Hall MC 7300, Berkeley, CA 94720 (United States)

    2016-01-20

    We explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with atmospheres that are clear, cloudy, or of high mean molecular weight (HMMW). Next we simulate the λ = 1–11 μm transmission and emission spectra of these systems for several JWST instrument modes for single-transit or single-eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH{sub 4}, CO, CO{sub 2}, H{sub 2}O, NH{sub 3}) can be constrained. We find that λ = 1–2.5 μm transmission spectra will often constrain the major molecular constituents of clear solar-composition atmospheres well. Cloudy or HMMW atmospheres will often require full 1–11 μm spectra for good constraints, and emission data may be more useful in cases of sufficiently high F{sub p} and high F{sub p}/F{sub *}. Strong temperature inversions in the solar-composition hot-Jupiter atmosphere should be detectable with 1–2.5+ μm emission spectra, and 1–5+ μm emission spectra will constrain the temperature–pressure profiles of warm planets. Transmission spectra over 1–5+ μm will constrain [Fe/H] values to better than 0.5 dex for the clear atmospheres of the hot and warm planets studied. Carbon-to-oxygen ratios can be constrained to better than a factor of 2 in some systems. We expect that these results will provide useful predictions of the scientific value of single-event JWST spectra until its on-orbit performance is known.

  19. Transit Recovery of Kepler-167e: Providing JWST with an Unprecedented Jupiter-analog Exoplanet Target

    Science.gov (United States)

    Dalba, Paul; Muirhead, Philip; Tamburo, Patrick

    2018-05-01

    The Kepler Mission has uncovered a handful of long-period transiting exoplanets that orbit in the cold outer reaches of their systems, despite their low transit probabilities. Recent work suggests that cold gas giant exoplanet atmospheres are amenable to transmission spectroscopy (the analysis of the transit depth versus wavelength) enabling novel tests of planetary formation and evolution theories. Of particular scientific interest is Kepler-167e, a low-eccentricity Jupiter-analog exoplanet with a 1,071-day orbital period residing well beyond the snow-line. Transmission spectroscopy of Kepler-167e from JWST can reveal the composition of this planet's atmosphere, constrain its heavy-element abundance, and identify atmospheric photochemical processes. JWST characterization also enables unprecedented direct comparison with Jupiter and Saturn, which show a striking diversity in physical properties that is best investigated through comparative exoplanetology. Since Kepler only observed two transits of Kepler-167e, it is not known if this exoplanet exhibits transit timing variations (TTVs). About half of Kepler's long-period exoplanets have TTVs of up to 40 hours. Such a large uncertainty jeopardizes attempts to characterize the atmosphere of this unique Jovian exoplanet with JWST. To mitigate this risk, the upcoming third transit of Kepler-167e must be observed to test for TTVs. We propose a simple 10-hour, single-channel observation to capture ingress or egress of the next transit of Kepler-167e in December 2018. In the absence of TTVs, our observation will reduce the ephemeris uncertainty from an unknown value to approximately 3 minutes, thereby removing the risk in future transit observations with JWST. The excellent photometric precision of Spitzer is sufficient to identify the transit of Kepler-167e. Given the timing and nature of this program, Spitzer is the only observatory--on the ground or in space--that can make this pivotal observation.

  20. Advancing Absolute Calibration for JWST and Other Applications

    Science.gov (United States)

    Rieke, George; Bohlin, Ralph; Boyajian, Tabetha; Carey, Sean; Casagrande, Luca; Deustua, Susana; Gordon, Karl; Kraemer, Kathleen; Marengo, Massimo; Schlawin, Everett; Su, Kate; Sloan, Greg; Volk, Kevin

    2017-10-01

    We propose to exploit the unique optical stability of the Spitzer telescope, along with that of IRAC, to (1) transfer the accurate absolute calibration obtained with MSX on very bright stars directly to two reference stars within the dynamic range of the JWST imagers (and of other modern instrumentation); (2) establish a second accurate absolute calibration based on the absolutely calibrated spectrum of the sun, transferred onto the astronomical system via alpha Cen A; and (3) provide accurate infrared measurements for the 11 (of 15) highest priority stars with no such data but with accurate interferometrically measured diameters, allowing us to optimize determinations of effective temperatures using the infrared flux method and thus to extend the accurate absolute calibration spectrally. This program is integral to plans for an accurate absolute calibration of JWST and will also provide a valuable Spitzer legacy.

  1. Can JWST Follow Up on Gravitational-Wave Detections?

    Science.gov (United States)

    Kohler, Susanna

    2016-02-01

    Bitten by the gravitational-wave bug? While we await Thursdays press conference, heres some food for thought: if LIGO were able to detect gravitational waves from compact-object mergers, how could we follow up on the detections? A new study investigates whether the upcoming James Webb Space Telescope (JWST) will be able to observe electromagnetic signatures of some compact-object mergers.Hunting for MergersStudying compact-object mergers (mergers of black holes and neutron stars) can help us understand a wealth of subjects, like high-energy physics, how matter behaves at nuclear densities, how stars evolve, and how heavy elements in the universe were created.The Laser Interferometer Gravitational-Wave Observatory (LIGO) is searching for the signature ripples in spacetime identifying these mergers, but gravitational waves are squirrelly: LIGO will only be able to localize wave sources to tens of square degrees. If we want to find out more about any mergers LIGO discovers in gravitational waves, well need a follow-up search for electromagnetic counterparts with other observatories.The Kilonova KeyOne possible electromagnetic counterpart is kilonovae, explosions that can be produced during a merger of a binary neutron star or a neutron starblack hole system. If the neutron star is disrupted during the merger, some of the hot mass is flung outward and shines brightly by radioactive decay.Kilonovae are especially promising as electromagnetic counterparts to gravitational waves for three reasons:They emit isotropically, so the number of observable mergers isnt limited by relativistic beaming.They shine for a week, giving follow-up observatories time to search for them.The source location can beeasily recovered.The only problem? We dont currently have any sensitive survey instruments in the near-infrared band (where kilonova emission peaks) that can provide coverage over tens of square degrees. Luckily, we will soon have just the thing: JWST, launching in 2018!JWSTs

  2. HST PanCET Program: A Cloudy Atmosphere for the Promising JWST Target WASP-101b

    Energy Technology Data Exchange (ETDEWEB)

    Wakeford, H. R.; Mandell, A. [Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Stevenson, K. B.; Lewis, N. K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sing, D. K.; Evans, T. [Astrophysics Group, Physics Building, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); López-Morales, M. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Marley, M. [NASA Ames Research Center, MS 245-5, Moffett Field, CA 94035 (United States); Kataria, T. [NASA Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Ballester, G. E. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, 1541 E Univ. Boulevard, Tucson, AZ 85721 (United States); Barstow, J. [Physics and Astronomy, University College London, London (United Kingdom); Ben-Jaffel, L. [Institut d’Astrophysique de Paris, CNRS, UMR 7095 and Sorbonne Universités, UPMC Paris 6, 98 bis bd Arago, F-75014 Paris (France); Bourrier, V.; Ehrenreich, D. [Observatoire de l’Université de Genève, 51 chemin des Maillettes, CH-1290 Sauverny (Switzerland); Buchhave, L. A. [Centre for Star and Planet Formation, Niels Bohr Institute and Natural History Museum, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K (Denmark); García Muñoz, A., E-mail: hannah.wakeford@nasa.gov [Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, D-10623 Berlin (Germany); and others

    2017-01-20

    We present results from the first observations of the Hubble Space Telescope (HST) Panchromatic Comparative Exoplanet Treasury program for WASP-101b, a highly inflated hot Jupiter and one of the community targets proposed for the James Webb Space Telescope ( JWST ) Early Release Science (ERS) program. From a single HST Wide Field Camera 3 observation, we find that the near-infrared transmission spectrum of WASP-101b contains no significant H{sub 2}O absorption features and we rule out a clear atmosphere at 13 σ . Therefore, WASP-101b is not an optimum target for a JWST ERS program aimed at observing strong molecular transmission features. We compare WASP-101b to the well-studied and nearly identical hot Jupiter WASP-31b. These twin planets show similar temperature–pressure profiles and atmospheric features in the near-infrared. We suggest exoplanets in the same parameter space as WASP-101b and WASP-31b will also exhibit cloudy transmission spectral features. For future HST exoplanet studies, our analysis also suggests that a lower count limit needs to be exceeded per pixel on the detector in order to avoid unwanted instrumental systematics.

  3. Practical Lessons From the First Decade of EPO Partnership Between NIRCam/JWST and the GSUSA

    Science.gov (United States)

    McCarthy, D.; Lebofsky, L. A.; Schlingman, W. M.; Higgins, M. L.

    2013-04-01

    Ten years ago the NIRCam science team proposed to conduct “Train the Trainer” workshops for adult leaders from all Girl Scout Councils in the U.S. with an aim to improving basic astronomy materials and to conveying mission-specific information about the science and technologies associated with the James Webb Space Telescope (JWST). To date we have conducted 20 workshops involving 225 adult leaders (41 U.S. states, Guam, Japan). During this time, the infrastructure of the GSUSA has evolved considerably, as has its approach to STEM education. Here we discuss how our ongoing workshops, educational activities, and our network of trained leaders have evolved to meet the continuing needs of girls and young women within the GSUSA's new framework of Journeys.

  4. A Mid-IR Census of Dusty Supernovae From the Past Decade In Preparation for JWST

    Science.gov (United States)

    Fox, Ori; Andrews, Jennifer; Arendt, Rick; Clayton, Geoff; Dwek, Eli; Filippenko, Alex; Johansson, Joel; Kelly, Patrick; Krafton, Kelsie; Marston, Tony; Mauerhan, Jon; Szalai, Tamas; Van Dyk, Schuyler

    2018-05-01

    Over the past decade, our team has shown that a surprising number of different supernova (SN) subclasses have members that exhibit mid-infrared (mid-IR) emission from warm dust at late times (>100 days post-explosion). This work has used Spitzer 3.6 and 4.5 micron imaging to constrain the dust origin and heating mechanisms, but a number of questions still remain. How much dust can SNe IIP produce in their ejecta? What progenitor can produce such extreme mass-loss events required to form the large, dense, pre-existing dust shells observed in so many cases? Many of these SNe remain bright today, in some cases more than a decade after discovery. Continued mid-IR monitoring is necessary to answer these questions by measuring the full extent of either the newly formed dust mass or pre-existing dust shell. Furthermore, Spitzer observations of both old and new SNe will provide up to date flux estimates as we prepare for continued observations with JWST. This proposal will cap off nearly a decade of work and bridge the gap to the first few cycles of JWST.

  5. Strategies for Constraining the Atmospheres of Temperate Terrestrial Planets with JWST

    Science.gov (United States)

    Batalha, Natasha E.; Lewis, Nikole K.; Line, Michael R.; Valenti, Jeff; Stevenson, Kevin

    2018-04-01

    The Transiting Exoplanet Survey Satellite (TESS) is expected to discover dozens of temperate terrestrial planets orbiting M-dwarfs with atmospheres that could be followed up with the James Webb Space Telescope (JWST). Currently, the TRAPPIST-1 system serves as a benchmark for determining the feasibility and resources required to yield atmospheric constraints. We assess these questions and leverage an information content analysis to determine observing strategies for yielding high-precision spectroscopy in transmission and emission. Our goal is to guide observing strategies of temperate terrestrial planets in preparation for the early JWST cycles. First, we explore JWST’s current capabilities and expected spectral precision for targets near the saturation limits of specific modes. In doing so, we highlight the enhanced capabilities of high-efficiency readout patterns that are being considered for implementation in Cycle 2. We propose a partial saturation strategy to increase the achievable precision of JWST's NIRSpec Prism. We show that JWST has the potential to detect the dominant absorbing gas in the atmospheres of temperate terrestrial planets by the 10th transit using transmission spectroscopy techniques in the near-infrared (NIR). We also show that stacking ⪆10 transmission spectroscopy observations is unlikely to yield significant improvements in determining atmospheric composition. For emission spectroscopy, we show that the MIRI Low Resolution Spectroscopy (LRS) is unlikely to provide robust constraints on the atmospheric composition of temperate terrestrial planets. Higher-precision emission spectroscopy at wavelengths longward of those accessible to MIRI LRS, as proposed in the Origins Space Telescope concept, could help improve the constraints on molecular abundances of temperate terrestrial planets orbiting M-dwarfs.

  6. Observing the Atmospheres of Known Temperate Earth-sized Planets with JWST

    Science.gov (United States)

    Morley, Caroline V.; Kreidberg, Laura; Rustamkulov, Zafar; Robinson, Tyler; Fortney, Jonathan J.

    2017-12-01

    Nine transiting Earth-sized planets have recently been discovered around nearby late-M dwarfs, including the TRAPPIST-1 planets and two planets discovered by the MEarth survey, GJ 1132b and LHS 1140b. These planets are the smallest known planets that may have atmospheres amenable to detection with the James Webb Space Telescope (JWST). We present model thermal emission and transmission spectra for each planet, varying composition and surface pressure of the atmosphere. We base elemental compositions on those of Earth, Titan, and Venus and calculate the molecular compositions assuming chemical equilibrium, which can strongly depend on temperature. Both thermal emission and transmission spectra are sensitive to the atmospheric composition; thermal emission spectra are sensitive to surface pressure and temperature. We predict the observability of each planet’s atmosphere with JWST. GJ 1132b and TRAPPIST-1b are excellent targets for emission spectroscopy with JWST/MIRI, requiring fewer than 10 eclipse observations. Emission photometry for TRAPPIST-1c requires 5-15 eclipses; LHS 1140b and TRAPPIST-1d, TRAPPIST-1e, and TRAPPIST-1f, which could possibly have surface liquid water, may be accessible with photometry. Seven of the nine planets are strong candidates for transmission spectroscopy measurements with JWST, although the number of transits required depends strongly on the planets’ actual masses. Using the measured masses, fewer than 20 transits are required for a 5σ detection of spectral features for GJ 1132b and six of the TRAPPIST-1 planets. Dedicated campaigns to measure the atmospheres of these nine planets will allow us, for the first time, to probe formation and evolution processes of terrestrial planetary atmospheres beyond our solar system.

  7. Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST /MIRI

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Olivia C.; Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Justtanont, Kay [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Glasse, Alistair [UK Astronomy Technology Centre, Royal Observatory, Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)

    2017-05-20

    The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope ( JWST ) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer -IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)–Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes to explore the JWST /MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.

  8. An Information-theoretic Approach to Optimize JWST Observations and Retrievals of Transiting Exoplanet Atmospheres

    Science.gov (United States)

    Howe, Alex R.; Burrows, Adam; Deming, Drake

    2017-01-01

    We provide an example of an analysis to explore the optimization of observations of transiting hot Jupiters with the James Webb Space Telescope (JWST) to characterize their atmospheres based on a simple three-parameter forward model. We construct expansive forward model sets for 11 hot Jupiters, 10 of which are relatively well characterized, exploring a range of parameters such as equilibrium temperature and metallicity, as well as considering host stars over a wide range in brightness. We compute posterior distributions of our model parameters for each planet with all of the available JWST spectroscopic modes and several programs of combined observations and compute their effectiveness using the metric of estimated mutual information per degree of freedom. From these simulations, clear trends emerge that provide guidelines for designing a JWST observing program. We demonstrate that these guidelines apply over a wide range of planet parameters and target brightnesses for our simple forward model.

  9. AN INFORMATION-THEORETIC APPROACH TO OPTIMIZE JWST OBSERVATIONS AND RETRIEVALS OF TRANSITING EXOPLANET ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Alex R.; Burrows, Adam [Department of Astronomy, University of Michigan, 1085 S. University, Ann Arbor, MI 48109 (United States); Deming, Drake, E-mail: arhowe@umich.edu, E-mail: burrows@astro.princeton.edu, E-mail: ddeming@astro.umd.edu [Department of Astronomy, University of Maryland College Park, MD 20742 (United States)

    2017-01-20

    We provide an example of an analysis to explore the optimization of observations of transiting hot Jupiters with the James Webb Space Telescope ( JWST ) to characterize their atmospheres based on a simple three-parameter forward model. We construct expansive forward model sets for 11 hot Jupiters, 10 of which are relatively well characterized, exploring a range of parameters such as equilibrium temperature and metallicity, as well as considering host stars over a wide range in brightness. We compute posterior distributions of our model parameters for each planet with all of the available JWST spectroscopic modes and several programs of combined observations and compute their effectiveness using the metric of estimated mutual information per degree of freedom. From these simulations, clear trends emerge that provide guidelines for designing a JWST observing program. We demonstrate that these guidelines apply over a wide range of planet parameters and target brightnesses for our simple forward model.

  10. Spitzer/JWST Cross Calibration: IRAC Observations of Potential Calibrators for JWST

    Science.gov (United States)

    Carey, Sean J.; Gordon, Karl D.; Lowrance, Patrick; Ingalls, James G.; Glaccum, William J.; Grillmair, Carl J.; E Krick, Jessica; Laine, Seppo J.; Fazio, Giovanni G.; Hora, Joseph L.; Bohlin, Ralph

    2017-06-01

    We present observations at 3.6 and 4.5 microns using IRAC on the Spitzer Space Telescope of a set of main sequence A stars and white dwarfs that are potential calibrators across the JWST instrument suite. The stars range from brightnesses of 4.4 to 15 mag in K band. The calibration observations use a similar redundancy to the observing strategy for the IRAC primary calibrators (Reach et al. 2005) and the photometry is obtained using identical methods and instrumental photometric corrections as those applied to the IRAC primary calibrators (Carey et al. 2009). The resulting photometry is then compared to the predictions based on spectra from the CALSPEC Calibration Database (http://www.stsci.edu/hst/observatory/crds/calspec.html) and the IRAC bandpasses. These observations are part of an ongoing collaboration between IPAC and STScI investigating absolute calibration in the infrared.

  11. Extrasolar Planets Observed with JWST and the ELTs

    Science.gov (United States)

    Deming, L. Drake

    2010-01-01

    The advent of cryogenic space-borne infrared observatories such as the Spitzer Space Telescope has lead to a revolution in the study of planets and planetary systems orbiting sun-like stars. Already Spitzer has characterized the emergent infrared spectra of close-in giant exoplanets using transit and eclipse techniques. The James Webb Space Telescope (JWST) will be able to extend these studies to superEarth exoplanets orbiting in the habitable zones of M-dwarf stars in the near solar neighborhood. The forthcoming ground-based Extremely Large Telescopes (ELTs) will playa key role in these studies, being especially valuable for spectroscopy at higher spectral resolving powers where large photon fluxes are needed. The culmination of this work within the next two decades will be the detection and spectral characterization of the major molecular constituents in the atmosphere of a habitable superEarth orbiting a nearby lower main sequence star.

  12. Galaxies in the Diffuse Baryon Field Approaching Reionization: A Joint Study with JWST, HST, and Large Telescopes

    Science.gov (United States)

    Simcoe, Robert

    2017-08-01

    Our team is conducting a dedicated survey for emission-line galaxies at 5 6 quasars, using JWST/NIRCAM's slitless grism in a 110 hour GTO allocation. We have acquired deep near-IR spectra of the QSOs, revealing multiple heavy-element absorption systems and probing the HI optical depth within each object's survey volume. These data will provide the first systematic view of the circumgalactic medium at z > 4, allowing us to study early metal enrichment, correlations of the intergalactic HI optical depth with galaxy density, and the environment of the quasar hosts. These fields generally do not have deep multicolor photometry that would facilitate selection of broadband dropout galaxies for future observation with JWST/NIRSPEC. However during long spectroscopic integrations with NIRCAM's long channel we will obtain deep JWST photometry in F115W and F200W, together with F356W for wavelength calibration. Here we request 30 orbits with HST/ACS to acquire deep optical photometry that (together with the JWST IR bands) will constrain SED models and enable dropout selection of fainter objects. For lower redshift objects the rest-UV ACS data will improve estimates of star formation rate and stellar mass. Within a Small-GO program scope we will obtain sensitivity similar to CANDELS-Deep in all six fields, and approximately double the size of our galaxy sample appropriate for JWST/NIRSPEC followup at redshifts approaching the reionization epoch.

  13. Contamination control requirements implementation for the James Webb Space Telescope (JWST), part 2: spacecraft, sunshield, observatory, and launch

    Science.gov (United States)

    Wooldridge, Eve M.; Schweiss, Andrea; Henderson-Nelson, Kelly; Woronowicz, Michael; Patel, Jignasha; Macias, Matthew; McGregor, R. Daniel; Farmer, Greg; Schmeitzky, Olivier; Jensen, Peter; Rumler, Peter; Romero, Beatriz; Breton, Jacques

    2014-09-01

    This paper will continue from Part 1 of JWST contamination control implementation. In addition to optics, instruments, and thermal vacuum testing, JWST also requires contamination control for a spacecraft that must be vented carefully in order to maintain solar array and thermal radiator thermal properties; a tennis court-sized sunshield made with 1-2 mil Kapton™ layers that must be manufactured and maintained clean; an observatory that must be integrated, stowed and transported to South America; and a rocket that typically launches commercial payloads without contamination sensitivity. An overview of plans developed to implement contamination control for the JWST spacecraft, sunshield, observatory and launch vehicle will be presented.

  14. JWST Associations overview: automated generation of combined products

    Science.gov (United States)

    Alexov, Anastasia; Swade, Daryl; Bushouse, Howard; Diaz, Rosa; Eisenhamer, Jonathan; Hack, Warren; Kyprianou, Mark; Levay, Karen; Rahmani, Christopher; Swam, Mike; Valenti, Jeff

    2018-01-01

    We are presenting the design of the James Webb Space Telescope (JWST) Data Management System (DMS) automated processing of Associations. An Association captures the relationship between exposures and higher level data products, such as combined mosaics created from dithered and tiled observations. The astronomer’s intent is captured within the Proposal Planning System (PPS) and provided to DMS as candidate associations. These candidates are converted into Association Pools and Association Generator Tables that serve as input to automated processing which create the combined data products. Association Pools are generated to capture a list of exposures that could potentially form associations and provide relevant information about those exposures. The Association Generator using definitions on groupings creates one or more Association Tables from a single input Association Pool. Each Association Table defines a set of exposures to be combined and the ruleset of the combination to be performed; the calibration software creates Associated data products based on these input tables. The initial design produces automated Associations within a proposal. Additionally this JWST overall design is conducive to eventually produce Associations for observations from multiple proposals, similar to the Hubble Legacy Archive (HLA).

  15. Unveiling the First Black Holes With JWST:Multi-wavelength Spectral Predictions

    Science.gov (United States)

    Natarajan, Priyamvada; Pacucci, Fabio; Ferrara, Andrea; Agarwal, Bhaskar; Ricarte, Angelo; Zackrisson, Erik; Cappelluti, Nico

    2017-04-01

    Growing supermassive black holes (˜ {10}9 {M}⊙ ) that power luminous z> 6 quasars from light seeds—the remnants of the first stars—within a Gyr of the Big Bang poses a timing challenge. The formation of massive black hole seeds via direct collapse with initial masses ˜ {10}4{--}{10}5 {M}⊙ alleviates this problem. Viable direct-collapse black hole formation sites, the satellite halos of star-forming galaxies, merge and acquire stars to produce a new, transient class of high-redshift objects, obese black hole galaxies (OBGs). The accretion luminosity outshines that of the stars in OBGs. We predict the multi-wavelength energy output of OBGs and growing Pop III remnants at z = 9 for standard and slim disk accretion, as well as high and low metallicities of the associated stellar population. We derive robust selection criteria for OBGs—a pre-selection to eliminate blue sources, followed by color-color cuts ([{F}090W-{F}220W]> 0;-0.3sift out OBGs from other bright, high- and low-redshift contaminants in the infrared. OBGs with predicted {M}{AB}< 25 are unambiguously detectable by the Mid-Infrared Instrument (MIRI), on the upcoming James Webb Space Telescope (JWST). For parameters explored here, growing Pop III remnants with predicted {M}{AB}< 30 will likely be undetectable by JWST. We demonstrate that JWST has the power to discriminate between initial seeding mechanisms.

  16. Simbol-X: Synergies with JWST, ALMA and Herschel

    Science.gov (United States)

    Maiolino, R.

    2009-05-01

    I discuss the synergies between Simbol-X and three among the major astronomical facilities that, in the next decade, will be operative in the infrared-millimeter spectral range, namely JWST, Herschel and ALMA. I first provide a brief overview of the main features and observing capabilities offered by these facilities. Then I will discuss a few research fields (mostly extragalactic) that will geatly benefit of the joint exploitation of Simbol-X and these IR-mm observatories.

  17. Deciphering the Hot Giant Atmospheres Orbiting Nearby Extrasolar Systems with JWST

    Science.gov (United States)

    Afrin Badhan, Mahmuda; Batalha, Natasha; Deming, Drake; Domagal-Goldman, Shawn; HEBRARD, Eric; Kopparapu, Ravi Kumar; Irwin, Patrick Gerard Joseph

    2016-10-01

    Unique and exotic planets give us an opportunity to understand how planetary systems form and evolve over their lifetime, by placing our own planetary system in the context of the vastly different extrasolar systems that are being continually discovered by present space missions. With orbital separations that are less than one-tenth of the Mercury-Sun distance, these close-in planets provide us with valuable insights about the host stellar atmosphere and planetary atmospheres subjected to their enormous stellar insolation. Observed spectroscopic signatures reveal all spectrally active species in a planet, along with information about its thermal structure and dynamics, allowing us to characterize the planet's atmosphere. NASA's upcoming missions will give us the high-resolution spectra necessary to constrain the atmospheric properties with unprecedented accuracy. However, to interpret the observed signals from exoplanetary transit events with any certainty, we need reliable atmospheric retrieval tools that can model the expected observables adequately. In my work thus far, I have built a Markov Chain Monte Carlo (MCMC) convergence scheme, with an analytical radiative equilibrium formulation for the thermal structures, within the NEMESIS atmospheric modeling tool, to allow sufficient (and efficient) exploration of the parameter space. I also augmented the opacity tables to improve the speed and reliability of retrieval models. I then utilized this upgraded version to infer the pressure-temperature (P-T) structures and volume-mixing ratios (VMRs) of major gas species in hot Jupiter dayside atmospheres, from their emission spectra. I have employed a parameterized thermal structure to retrieve plausible P-T profiles, along with altitude-invariant VMRs. Here I show my retrieval results on published datasets of HD189733b, and compare them with both medium and high spectral resolution JWST/NIRSPEC simulations. In preparation for the upcoming JWST mission, my current work

  18. Cryo-Vacuum Testing of the Integrated Science Instrument Module for the James Webb Space Telescope

    Science.gov (United States)

    Kimble, Randy A.; Davila, P. S.; Drury, M. P.; Glazer, S. D.; Krom, J. R.; Lundquist, R. A.; Mann, S. D.; McGuffey, D. B.; Perry, R. L.; Ramey, D. D.

    2011-01-01

    With delivery of the science instruments for the James Webb Space Telescope (JWST) to Goddard Space Flight Center (GSFC) expected in 2012, current plans call for the first cryo-vacuum test of the Integrated Science Instrument Module (ISIM) to be carried out at GSFC in early 2013. Plans are well underway for conducting this ambitious test, which will perform critical verifications of a number of optical, thermal, and operational requirements of the IS 1M hardware, at its deep cryogenic operating temperature. We describe here the facilities, goals, methods, and timeline for this important Integration & Test milestone in the JWST program.

  19. Preservation of Thermal Control Specular Gold Baffle Surface on the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC)

    Science.gov (United States)

    MonteedeGarcia, Kristina; Patel, Jignasha; Perry, Radford, III

    2010-01-01

    Extremely tight thermal control property degradation allowances on the vapor-deposited, gold-coated IEC baffle surface, made necessary by the cryogenic JWST Observatory operations, dictate tight contamination requirements on adjacent surfaces. Theoretical degradation in emittance with contaminant thickness was calculated. Maximum allowable source outgassing rates were calculated using worst case view factors from source to baffle surface. Tight requirements pushed the team to change the design of the adjacent surfaces to minimize the outgassing sources

  20. JWST Lifting System

    Science.gov (United States)

    Tolleson, William

    2012-01-01

    A document describes designing, building, testing, and certifying a customized crane (Lifting Device LD) with a strong back (cradle) to facilitate the installation of long wall panels and short door panels for the GHe phase of the James Webb Space Telescope (JWST). The LD controls are variable-frequency drive controls designed to be adjustable for very slow and very-short-distance movements throughout the installation. The LD has a lift beam with an electric actuator attached at the end. The actuator attaches to a rectangular strong back (cradle) for lifting the long wall panels and short door panels from a lower angle into the vertical position inside the chamber, and then rotating around the chamber for installation onto the existing ceiling and floor. The LD rotates 360 (in very small increments) in both clockwise and counterclockwise directions. Eight lifting pads are on the top ring with 2-in. (.5-cm) eye holes spaced evenly around the ring to allow for the device to be suspended by three crane hoists from the top of the chamber. The LD is operated by remote controls that allow for a single, slow mode for booming the load in and out, with slow and very slow modes for rotating the load.

  1. The JWST Extragalactic Mock Catalog: Modeling Galaxy Populations from the UV through the Near-IR over 13 Billion Years of Cosmic History

    Science.gov (United States)

    Williams, Christina C.; Curtis-Lake, Emma; Hainline, Kevin N.; Chevallard, Jacopo; Robertson, Brant E.; Charlot, Stephane; Endsley, Ryan; Stark, Daniel P.; Willmer, Christopher N. A.; Alberts, Stacey; Amorin, Ricardo; Arribas, Santiago; Baum, Stefi; Bunker, Andrew; Carniani, Stefano; Crandall, Sara; Egami, Eiichi; Eisenstein, Daniel J.; Ferruit, Pierre; Husemann, Bernd; Maseda, Michael V.; Maiolino, Roberto; Rawle, Timothy D.; Rieke, Marcia; Smit, Renske; Tacchella, Sandro; Willott, Chris J.

    2018-06-01

    We present an original phenomenological model to describe the evolution of galaxy number counts, morphologies, and spectral energy distributions across a wide range of redshifts (0.2colors, sizes, star formation, and chemical properties of the observed galaxy population. Unlike other existing approaches, our model includes a self-consistent treatment of stellar and photoionized gas emission and dust attenuation based on the BEAGLE tool. The mock galaxy catalogs generated with our new model can be used to simulate and optimize extragalactic surveys with future facilities such as the James Webb Space Telescope (JWST), and to enable critical assessments of analysis procedures, interpretation tools, and measurement systematics for both photometric and spectroscopic data. As a first application of this work, we make predictions for the upcoming JWST Advanced Deep Extragalactic Survey (JADES), a joint program of the JWST/NIRCam and NIRSpec Guaranteed Time Observations teams. We show that JADES will detect, with NIRCam imaging, 1000s of galaxies at z ≳ 6, and 10s at z ≳ 10 at {m}{AB}≲ 30 (5σ) within the 236 arcmin2 of the survey. The JADES data will enable accurate constraints on the evolution of the UV luminosity function at z > 8, and resolve the current debate about the rate of evolution of galaxies at z ≳ 8. Ready-to-use mock catalogs and software to generate new realizations are publicly available as the JAdes extraGalactic Ultradeep Artificial Realizations (JAGUAR) package.

  2. Social Work and Science

    Science.gov (United States)

    Gehlert, Sarah

    2016-01-01

    Interest has grown in the past few years about the place of social work in science. Questions remain, such as whether social work should be considered a science, and if so, where it fits into the constellation of sciences. This article attempts to shed light on these questions. After briefly considering past and present constructions of science…

  3. Optical modeling activities for NASA's James Webb Space Telescope (JWST): IV. Overview and introduction of MATLAB based toolkits used to interface with optical design software

    Science.gov (United States)

    Howard, Joseph M.

    2007-09-01

    This paper is part four of a series on the ongoing optical modeling activities for the James Webb Space Telescope (JWST). The first two papers discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The third paper investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory. The work here introduces some of the math software tools used to perform the work of the previous three papers of this series. NASA has recently approved these in-house tools for public release as open source, so this presentation also serves as a quick tutorial on their use. The tools are collections of functions written for use in MATLAB to interface with optical design software (CODE V, OSLO, and ZEMAX) using either COM or DDE communication protocol. The functions are discussed, and examples are given.

  4. The James Webb Space Telescope Mission

    Science.gov (United States)

    Sonneborn, George

    2010-01-01

    The James Webb Space Telescope (JWST) is a large aperture, cryogenic, infrared-optimized space observatory under development by NASA for launch in 2014. The European and Canadian Space Agencies are mission partners. JWST will find and study the first galaxies that formed in the early universe, peer through dusty clouds to see AGN environments and stars forming planetary systems at high spatial resolution. The breakthrough capabilities of JWST will enable new studies of star formation and evolution in the Milky Way, including the Galactic Center, nearby galaxies, and the early universe. JWST's instruments are designed to work primarily in the infrared range of 1 - 28 microns, with some capability in the visible. JWST will have a segmented primary mirror, approximately 6.5 meters in diameter, and will be diffraction-limited at wavelength of 2 microns (0.1 arcsec resolution). The JWST observatory will be placed in a L2 orbit by an Ariane 5 launch vehicle provided by ESA. The observatory is designed for a 5-year prime science mission, with propellant for 10 years of science operations. The instruments will provide broad- and narrow-band imaging, coronography, and multi-object and integral-field spectroscopy (spectral resolution of 100 to 3,000) across the 1 - 28 micron wavelength range. Science and mission operations will be conducted from the Space Telescope Science Institute in Baltimore, Maryland.

  5. Simulated JWST/NIRISS Transit Spectroscopy of Anticipated TESS Planets Compared to Select Discoveries from Space-Based and Ground-Based Surveys

    Science.gov (United States)

    Louie, Dana; Deming, Drake; Albert, Loic; Bouma, Luke; Bean, Jacob; Lopez-Morales, Mercedes

    2018-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will embark in 2018 on a 2-year wide-field survey mission of most of the celestial sky, discovering over a thousand super-Earth and sub-Neptune-sized exoplanets potentially suitable for follow-up observations using the James Webb Space Telescope (JWST). Bouma et al. (2017) and Sullivan et al. (2015) used Monte Carlo simulations to predict the properties of the planetary systems that TESS is likely to detect, basing their simulations upon Kepler-derived planet occurrence rates and photometric performance models for the TESS cameras. We employed a JWST Near InfraRed Imager and Slitless Spectrograph (NIRISS) simulation tool to estimate the signal-to-noise (S/N) that JWST/NIRISS will attain in transmission spectroscopy of these anticipated TESS discoveries, and we then compared the S/N for anticipated TESS discoveries to our estimates of S/N for 18 known exoplanets. We analyzed the sensitivity of our results to planetary composition, cloud cover, and presence of an observational noise floor. We find that only a few anticipated TESS discoveries in the terrestrial planet regime will result in better JWST/NIRISS S/N than currently known exoplanets, such as the TRAPPIST-1 planets, GJ1132b, or LHS1140b. However, we emphasize that this outcome is based upon Kepler-derived occurrence rates, and that co-planar compact systems (e.g. TRAPPIST-1) were not included in predicting the anticipated TESS planet yield. Furthermore, our results show that several hundred anticipated TESS discoveries in the super-Earth and sub-Neptune regime will produce S/N higher than currently known exoplanets such as K2-3b or K2-3c. We apply our results to estimate the scope of a JWST follow-up observation program devoted to mapping the transition region between high molecular weight and primordial planetary atmospheres.

  6. JWST-MIRI spectrometer main optics design and main results

    Science.gov (United States)

    Navarro, Ramón; Schoenmaker, Ton; Kroes, Gabby; Oudenhuysen, Ad; Jager, Rieks; Venema, Lars

    2017-11-01

    MIRI ('Mid InfraRed Instrument') is the combined imager and integral field spectrometer for the 5-29 micron wavelength range under development for the James Webb Space Telescope JWST. The flight acceptance tests of the Spectrometer Main Optics flight models (SMO), part of the MIRI spectrometer, are completed in the summer of 2008 and the system is delivered to the MIRI-JWST consortium. The two SMO arms contain 14 mirrors and form the MIRI optical system together with 12 selectable gratings on grating wheels. The entire system operates at a temperature of 7 Kelvin and is designed on the basis of a 'no adjustments' philosophy. This means that the optical alignment precision depends strongly on the design, tolerance analysis and detailed knowledge of the manufacturing process. Because in principle no corrections are needed after assembly, continuous tracking of the alignment performance during the design and manufacturing phases is important. The flight hardware is inspected with respect to performance parameters like alignment and image quality. The stability of these parameters is investigated after exposure to various vibration levels and successive cryogenic cool downs. This paper describes the philosophy behind the acceptance tests, the chosen test strategy and reports the results of these tests. In addition the paper covers the design of the optical test setup, focusing on the simulation of the optical interfaces of the SMO. Also the relation to the SMO qualification and verification program is addressed.

  7. AN IMAGE-PLANE ALGORITHM FOR JWST'S NON-REDUNDANT APERTURE MASK DATA

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Alexandra Z. [Johns Hopkins University Department of Physics and Astronomy 3400 North Charles, Baltimore, MD 21218 (United States); Pueyo, Laurent; Sivaramakrishnan, Anand [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lacour, Sylvestre [LESIA, CNRS/UMR-8109, Observatoire de Paris, UPMC, Université Paris Diderot 5 place Jules Janssen, 92195 Meudon (France)

    2015-01-10

    The high angular resolution technique of non-redundant masking (NRM) or aperture masking interferometry (AMI) has yielded images of faint protoplanetary companions of nearby stars from the ground. AMI on James Webb Space Telescope (JWST)'s Near Infrared Imager and Slitless Spectrograph (NIRISS) has a lower thermal background than ground-based facilities and does not suffer from atmospheric instability. NIRISS AMI images are likely to have 90%-95% Strehl ratio between 2.77 and 4.8 μm. In this paper we quantify factors that limit the raw point source contrast of JWST NRM. We develop an analytic model of the NRM point spread function which includes different optical path delays (pistons) between mask holes and fit the model parameters with image plane data. It enables a straightforward way to exclude bad pixels, is suited to limited fields of view, and can incorporate effects such as intra-pixel sensitivity variations. We simulate various sources of noise to estimate their effect on the standard deviation of closure phase, σ{sub CP} (a proxy for binary point source contrast). If σ{sub CP} < 10{sup –4} radians—a contrast ratio of 10 mag—young accreting gas giant planets (e.g., in the nearby Taurus star-forming region) could be imaged with JWST NIRISS. We show the feasibility of using NIRISS' NRM with the sub-Nyquist sampled F277W, which would enable some exoplanet chemistry characterization. In the presence of small piston errors, the dominant sources of closure phase error (depending on pixel sampling, and filter bandwidth) are flat field errors and unmodeled variations in intra-pixel sensitivity. The in-flight stability of NIRISS will determine how well these errors can be calibrated by observing a point source. Our results help develop efficient observing strategies for space-based NRM.

  8. Optical Coating Performance and Thermal Structure Design for Heat Reflectors of JWST Electronic Control Unit

    Science.gov (United States)

    Quijada, Manuel A.; Threat, Felix; Garrison, Matt; Perrygo, Chuck; Bousquet, Robert; Rashford, Robert

    2008-01-01

    The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling system.

  9. The Resolved Stellar Populations Early Release Science Program

    Science.gov (United States)

    Gilbert, Karoline; Weisz, Daniel; Resolved Stellar Populations ERS Program Team

    2018-06-01

    The Resolved Stellar Populations Early Release Science Program (PI D. Weisz) will observe Local Group targets covering a range of stellar density and star formation histories, including a globular cluster, and ultra-faint dwarf galaxy, and a star-forming dwarf galaxy. Using observations of these diverse targets we will explore a broad science program: we will measure star formation histories, the sub-solar stellar initial mass function, and proper motions, perform studies of evolved stars, and map extinction in the target fields. Our observations will be of high archival value for other science such as calibrating stellar evolution models, studying variable stars, and searching for metal-poor stars. We will determine optimal observational setups and develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will also design, test, and release point spread function (PSF) fitting software specific to NIRCam and NIRISS, required for the crowded stellar regime. Prior to the Cycle 2 Call for Proposals, we will release PSF fitting software, matched HST and JWST catalogs, and clear documentation and step-by-step tutorials (such as Jupyter notebooks) for reducing crowded stellar field data and producing resolved stellar photometry catalogs, as well as for specific resolved stellar photometry science applications.

  10. The AGN-Star Formation Connection: Future Prospects with JWST

    Science.gov (United States)

    Kirkpatrick, Allison; Alberts, Stacey; Pope, Alexandra; Barro, Guillermo; Bonato, Matteo; Kocevski, Dale D.; Pérez-González, Pablo; Rieke, George H.; Rodríguez-Muñoz, Lucia; Sajina, Anna; Grogin, Norman A.; Mantha, Kameswara Bharadwaj; Pandya, Viraj; Pforr, Janine; Salvato, Mara; Santini, Paola

    2017-11-01

    The bulk of the stellar growth over cosmic time is dominated by IR-luminous galaxies at cosmic noon (z=1{--}2), many of which harbor a hidden active galactic nucleus (AGN). We use state-of-the-art infrared color diagnostics, combining Spitzer and Herschel observations, to separate dust-obscured AGNs from dusty star-forming galaxies (SFGs) in the CANDELS and COSMOS surveys. We calculate 24 μm counts of SFGs, AGN/star-forming “Composites,” and AGNs. AGNs and Composites dominate the counts above 0.8 mJy at 24 μm, and Composites form at least 25% of an IR sample even to faint detection limits. We develop methods to use the Mid-Infrared Instrument (MIRI) on JWST to identify dust-obscured AGNs and Composite galaxies from z˜ 1{--}2. With the sensitivity and spacing of MIRI filters, we will detect >4 times as many AGN hosts as with Spitzer/IRAC criteria. Any star formation rates based on the 7.7 μm PAH feature (likely to be applied to MIRI photometry) must be corrected for the contribution of the AGN, or the star formation rate will be overestimated by ˜35% for cases where the AGN provides half the IR luminosity and ˜50% when the AGN accounts for 90% of the luminosity. Finally, we demonstrate that our MIRI color technique can select AGNs with an Eddington ratio of {λ }{Edd}˜ 0.01 and will identify AGN hosts with a higher specific star formation rate than X-ray techniques alone. JWST/MIRI will enable critical steps forward in identifying and understanding dust-obscured AGNs and the link to their host galaxies.

  11. Observing the Spectra of MEarth and TRAPPIST Planets with JWST

    Science.gov (United States)

    Morley, Caroline; Kreidberg, Laura; Rustamkulov, Zafar; Robinson, Tyler D.; Fortney, Jonathan J.

    2017-10-01

    During the past two years, nine planets close to Earth in radius have been discovered around nearby M dwarfs cooler than 3300 K. These planets include the 7 planets in the TRAPPIST-1 system and two planets discovered by the MEarth survey, GJ 1132b and LHS 1140b (Dittmann et al. 2017; Berta-Thompson et al. 2015; Gillon et al. 2017). These planets are the smallest planets discovered to date that will be amenable to atmospheric characterization with JWST. They span equilibrium temperatures from ˜130 K to >500 K, and radii from 0.7 to 1.43 Earth radii. Some of these planets orbit as distances potentially amenable to surface liquid water, though the actual surface temperatures will depend strongly on the albedo of the planet and the thickness and composition of its atmosphere. The stars they orbit also vary in activity levels, from the quiet LHS 1140b host star to the more active TRAPPIST-1 host star. This set of planets will form the testbed for our first chance to study the diversity of atmospheres around Earth-sized planets. Here, we will present model spectra of these 9 planets, varying the composition and the surface pressure of the atmosphere. We base our elemental compositions on three outcomes of planetary atmosphere evolution in our own solar system: Earth, Titan, and Venus. We calculate the molecular compositions in chemical equilibrium. We present both thermal emission spectra and transmission spectra for each of these objects, and make predictions for the observability of these spectra with different instrument modes with JWST.

  12. The Science of Social Work and Its Relationship to Social Work Practice

    Science.gov (United States)

    Anastas, Jeane W.

    2014-01-01

    As John Brekke has observed, social work does not use the word "science" to define itself, suggesting a need to articulate a science of social work. This article discusses the science of social work and its relationship to social work practice in the United States, arguing that a "rapprochement" between practice and science…

  13. Simulated JWST/NIRISS Transit Spectroscopy of Anticipated Tess Planets Compared to Select Discoveries from Space-based and Ground-based Surveys

    Science.gov (United States)

    Louie, Dana R.; Deming, Drake; Albert, Loic; Bouma, L. G.; Bean, Jacob; Lopez-Morales, Mercedes

    2018-04-01

    The Transiting Exoplanet Survey Satellite (TESS) will embark in 2018 on a 2 year wide-field survey mission, discovering over a thousand terrestrial, super-Earth and sub-Neptune-sized exoplanets ({R}pl}≤slant 4 {R}\\oplus ) potentially suitable for follow-up observations using the James Webb Space Telescope (JWST). This work aims to understand the suitability of anticipated TESS planet discoveries for atmospheric characterization by JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS) by employing a simulation tool to estimate the signal-to-noise (S/N) achievable in transmission spectroscopy. We applied this tool to Monte Carlo predictions of the TESS expected planet yield and then compared the S/N for anticipated TESS discoveries to our estimates of S/N for 18 known exoplanets. We analyzed the sensitivity of our results to planetary composition, cloud cover, and presence of an observational noise floor. We find that several hundred anticipated TESS discoveries with radii 1.5 {R}\\oplus R}pl}≤slant 2.5 {R}\\oplus will produce S/N higher than currently known exoplanets in this radius regime, such as K2-3b or K2-3c. In the terrestrial planet regime, we find that only a few anticipated TESS discoveries will result in higher S/N than currently known exoplanets, such as the TRAPPIST-1 planets, GJ1132b, and LHS1140b. However, we emphasize that this outcome is based upon Kepler-derived occurrence rates, and that co-planar compact multi-planet systems (e.g., TRAPPIST-1) may be under-represented in the predicted TESS planet yield. Finally, we apply our calculations to estimate the required magnitude of a JWST follow-up program devoted to mapping the transition region between hydrogen-dominated and high molecular weight atmospheres. We find that a modest observing program of between 60 and 100 hr of charged JWST time can define the nature of that transition (e.g., step function versus a power law).

  14. Workshop “Science with the VLT in the ELT Era”

    CERN Document Server

    Astrophysics and Space Science Proceedings

    2008-01-01

    The Workshop ‘Science with the VLT in the ELT era’ was organised by ESO as a forum for the astronomical community to debate its expected future use of ESO’s Very Large Telescope ( and its VLTI interferometric mode) when other facilities such as ALMA, JWST and, hopefully, at least one extremely large 30-40m class telescope will be operating. VLT/I science highlights were presented, future science priorities argued, synergies between the VLT and the future facilities confirmed and specific new VLT/I instruments proposed.

  15. Solar System Observations with the James Webb Space Telescope

    Science.gov (United States)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; hide

    2016-01-01

    The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012.

  16. Operationalizing Social Work Science through Research-Practice Partnerships: Lessons from Implementation Science

    Science.gov (United States)

    Palinkas, Lawrence A.; He, Amy S.; Choy-Brown, Mimi; Hertel, Amy Locklear

    2017-01-01

    Recent efforts to identify and promote a distinct science for the discipline of social work have led to an ongoing debate regarding the nature and function of such a science. Central to this debate is a lack of consensus as to how to operationalize a social work science. Drawing from the field of implementation science and its application in…

  17. James Webb Space Telescope Optical Simulation Testbed: Segmented Mirror Phase Retrieval Testing

    Science.gov (United States)

    Laginja, Iva; Egron, Sylvain; Brady, Greg; Soummer, Remi; Lajoie, Charles-Philippe; Bonnefois, Aurélie; Long, Joseph; Michau, Vincent; Choquet, Elodie; Ferrari, Marc; Leboulleux, Lucie; Mazoyer, Johan; N’Diaye, Mamadou; Perrin, Marshall; Petrone, Peter; Pueyo, Laurent; Sivaramakrishnan, Anand

    2018-01-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a hardware simulator designed to produce JWST-like images. A model of the JWST three mirror anastigmat is realized with three lenses in form of a Cooke Triplet, which provides JWST-like optical quality over a field equivalent to a NIRCam module, and an Iris AO segmented mirror with hexagonal elements is standing in for the JWST segmented primary. This setup successfully produces images extremely similar to NIRCam images from cryotesting in terms of the PSF morphology and sampling relative to the diffraction limit.The testbed is used for staff training of the wavefront sensing and control (WFS&C) team and for independent analysis of WFS&C scenarios of the JWST. Algorithms like geometric phase retrieval (GPR) that may be used in flight and potential upgrades to JWST WFS&C will be explored. We report on the current status of the testbed after alignment, implementation of the segmented mirror, and testing of phase retrieval techniques.This optical bench complements other work at the Makidon laboratory at the Space Telescope Science Institute, including the investigation of coronagraphy for segmented aperture telescopes. Beyond JWST we intend to use JOST for WFS&C studies for future large segmented space telescopes such as LUVOIR.

  18. Weaving a Webb story: Communicating Science for JWST

    Science.gov (United States)

    Lockwood, Alexandra

    2018-01-01

    NASA’s next great observatory is an impressive and complex mission with many tales to tell. Science is a collection of stories and Webb will be a storytelling machine. How are we preparing to share the scientific news to come from this amazing telescope? From news releases to multimedia content to a vast online presence, the stories of the James Webb Space Telescope will require crafting in order to impact the widest audience. We discuss the art of storytelling based on messaging, goals, mediums, and audience, and how you can apply the same principles to communicating your own research.

  19. Collecting the Puzzle Pieces: Completing HST's UV+NIR Survey of the TRAPPIST-1 System ahead of JWST

    Science.gov (United States)

    de Wit, Julien

    2017-08-01

    Using the Spitzer Space Telescope, our team has discovered 7 Earth-sized planets around the nearby Ultra-cool dwarf star TRAPPIST-1. These planets are the first to be simultaneously Earth-sized, temperate, and amenable for in-depth atmospheric studies with space-based observatories (notably, JWST). TRAPPIST-1's system thus provides us with the first opportunity to probe the atmospheres of Earth-sized exoplanets and search for signs of habitability beyond our solar system, which will require spectral information from the UV to the IR to complete their atmospheric puzzles.We request 114 HST orbits to complete the UV+NIR survey of the 7 planets in preparation for their in-depth followup with JWST. The suggested low-density of the planets combined with their complex orbital resonance chain indicate that they migrated inward to their current positions and may harbor large water rich reservoir or leftover primordial H2 atmospheres. We have already ruled out the presence of clear H2 atmospheres for the 5 innermost planets using WFC3 and are requesting 16 WFC3 orbits to complete the TRAPPIST-1 NIR reconnaissance survey. Our primary request consists in 98 STIS orbits to complete the survey for extended H-exospheres around each of the planets. H-exospheres are the most accessible observables for volatile reservoirs, which have not been ruled out by our WFC3 observations. Exosphere detection is only amenable using HST unique capabilities in the UV and are pivotal to guide JWST's in-depth followup. The combined information from HST's UV and NIR observations will allow us put the first critical pieces of the atmospheric puzzle in place for these temperate earth-sized worlds.

  20. The UV attenuation in JWST target VV 191

    Science.gov (United States)

    Holwerda, Benne

    2017-08-01

    We aim to map the UV-near-IR attenuation curve along many sightlines within nearby disk galaxies to resolve a large fundamental uncertainty in galaxy evolution studies: the variance in the attenuation curve within an indivual galaxy disk on linear scales relatively blue elliptical beautifully backlights the outer disk of a foreground face-on spiral galaxy.Dither strategy:We opt for a 2-point dither in the case of the F336W observations (1 orbit) and a 3pt dither strategy for the F225W observations. The 9 orbits for the F225W observations are broken into three groupings of 3 orbits in the 3 dither pattern. This is to ensure correction of cosmics and detector artifacts. Our secondary aim is an HST/JWST image with good public outreach potential and our aim is to maximize image quality for this reason as well.

  1. Recovering the Properties of High-redshift Galaxies with Different JWST Broadband Filters

    DEFF Research Database (Denmark)

    Bisigello, L.; Caputi, K. I.; Colina, L.

    2017-01-01

    Imaging with the James Webb Space Telescope (JWST) will allow observations of the bulk of distant galaxies at the epoch of reionization. The recovery of their properties, such as age, color excess , specific star formation rate (sSFR), and stellar mass, will mostly rely on spectral energy...... of these galaxy properties. We performed our tests on a sample of 1542 simulated galaxies, with known input properties, at z = 7–10. We found that, with only eight NIRCam broadbands, we can recover the galaxy age within 0.1 Gyr and the color excess within 0.06 mag for 70% of the galaxies. Additionally...

  2. Prospects for Detecting Thermal Emission from Terrestrial Exoplanets with JWST

    Science.gov (United States)

    Kreidberg, Laura

    2018-01-01

    A plethora of nearby, terrestrial exoplanets has been discovered recently by ground-based surveys. Excitingly, some of these are in the habitable zones of their host stars, and may be hospitable for life. However, all the planets orbit small, cool stars and have considerably different irradiation environments from the Earth, making them vulnerable to atmospheric escape, erosion and collapse. Atmosphere characterization is therefore critical to assessing the planets' habitability. I will discuss possible JWST thermal emission measurements to determine the atmospheric properties of nearby terrestrial planets. I will focus on prospects for detecting physically motivated atmospheres for planets orbiting LHS 1140, GJ 1132, and TRAPPIST-1. I will also discuss the potential for using phase curve observations to determine whether an atmosphere has survived on the non-transiting planet Proxima b.

  3. EXPLORING BIASES OF ATMOSPHERIC RETRIEVALS IN SIMULATED JWST TRANSMISSION SPECTRA OF HOT JUPITERS

    International Nuclear Information System (INIS)

    Rocchetto, M.; Waldmann, I. P.; Tinetti, G.; Venot, O.; Lagage, P.-O.

    2016-01-01

    With a scheduled launch in 2018 October, the James Webb Space Telescope ( JWST ) is expected to revolutionize the field of atmospheric characterization of exoplanets. The broad wavelength coverage and high sensitivity of its instruments will allow us to extract far more information from exoplanet spectra than what has been possible with current observations. In this paper, we investigate whether current retrieval methods will still be valid in the era of JWST , exploring common approximations used when retrieving transmission spectra of hot Jupiters. To assess biases, we use 1D photochemical models to simulate typical hot Jupiter cloud-free atmospheres and generate synthetic observations for a range of carbon-to-oxygen ratios. Then, we retrieve these spectra using TauREx, a Bayesian retrieval tool, using two methodologies: one assuming an isothermal atmosphere, and one assuming a parameterized temperature profile. Both methods assume constant-with-altitude abundances. We found that the isothermal approximation biases the retrieved parameters considerably, overestimating the abundances by about one order of magnitude. The retrieved abundances using the parameterized profile are usually within 1 σ of the true state, and we found the retrieved uncertainties to be generally larger compared to the isothermal approximation. Interestingly, we found that by using the parameterized temperature profile we could place tight constraints on the temperature structure. This opens the possibility of characterizing the temperature profile of the terminator region of hot Jupiters. Lastly, we found that assuming a constant-with-altitude mixing ratio profile is a good approximation for most of the atmospheres under study.

  4. EXPLORING BIASES OF ATMOSPHERIC RETRIEVALS IN SIMULATED JWST TRANSMISSION SPECTRA OF HOT JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Rocchetto, M.; Waldmann, I. P.; Tinetti, G. [Department of Physics and Astronomy, University College London, Gower Street, WC1E6BT London (United Kingdom); Venot, O. [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Lagage, P.-O., E-mail: m.rocchetto@ucl.ac.uk [Irfu, CEA, Université Paris-Saclay, F-9119 Gif-sur Yvette (France)

    2016-12-10

    With a scheduled launch in 2018 October, the James Webb Space Telescope ( JWST ) is expected to revolutionize the field of atmospheric characterization of exoplanets. The broad wavelength coverage and high sensitivity of its instruments will allow us to extract far more information from exoplanet spectra than what has been possible with current observations. In this paper, we investigate whether current retrieval methods will still be valid in the era of JWST , exploring common approximations used when retrieving transmission spectra of hot Jupiters. To assess biases, we use 1D photochemical models to simulate typical hot Jupiter cloud-free atmospheres and generate synthetic observations for a range of carbon-to-oxygen ratios. Then, we retrieve these spectra using TauREx, a Bayesian retrieval tool, using two methodologies: one assuming an isothermal atmosphere, and one assuming a parameterized temperature profile. Both methods assume constant-with-altitude abundances. We found that the isothermal approximation biases the retrieved parameters considerably, overestimating the abundances by about one order of magnitude. The retrieved abundances using the parameterized profile are usually within 1 σ of the true state, and we found the retrieved uncertainties to be generally larger compared to the isothermal approximation. Interestingly, we found that by using the parameterized temperature profile we could place tight constraints on the temperature structure. This opens the possibility of characterizing the temperature profile of the terminator region of hot Jupiters. Lastly, we found that assuming a constant-with-altitude mixing ratio profile is a good approximation for most of the atmospheres under study.

  5. Probing the TRAPPIST-1 System with K2, JWST, and Beyond

    Science.gov (United States)

    Luger, Rodrigo; Lustig-Yaeger, Jacob; Agol, Eric; TRAPPIST-1 Collaboration

    2018-01-01

    I will discuss recent work I have done to characterize TRAPPIST-1, a nearby exoplanet system hosting seven terrestrial-size planets, three of which are in the habitable zone. In the first part of this talk, I will report on my efforts to constrain the orbital properties of the smallest and farthest out planet in the system, TRAPPIST-1h, from K2 data de-trended with my systematics correction pipeline, EVEREST. I will further discuss how the detection of TRAPPIST-1h with K2 confirmed the intricate resonant structure of the system, whose planets are all linked to their neighbors via three-body Laplace resonances. This is the longest known chain in any exoplanet system and holds important clues for the formation and migration of the TRAPPIST-1 planets. In the second part of this talk, I will discuss ongoing work to characterize the TRAPPIST-1 system via planet-planet occultations (PPOs), events during which one planet occults the disk of another, imparting a small photometric signal as its thermal or reflected light is blocked. Because of the extreme coplanarity of the system, PPOs should occur on average 1 - 2 times per day in TRAPPIST-1. I will discuss how the upcoming James Webb Space Telescope (JWST) will likely be able to detect PPOs in this system in the mid-infrared, and how these can be used to place exquisite constraints on the masses, eccentricities, and mutual inclinations of its planets. I will also show how photodynamical modeling of these events can eventually be used to reveal a planet's day/night temperature contrast, infer various atmospheric properties, and construct crude two-dimensional surface maps of alien worlds.

  6. Social Work Science and Knowledge Utilization

    Science.gov (United States)

    Marsh, Jeanne C.; Reed, Martena

    2016-01-01

    Objective: This article advances understanding of social work science by examining the content and methods of highly utilized or cited journal articles in social work. Methods: A data base of the 100 most frequently cited articles from 79 social work journals was coded and categorized into three primary domains: content, research versus…

  7. Working Alongside Scientists. Impacts on Primary Teacher Beliefs and Knowledge About Science and Science Education

    Science.gov (United States)

    Anderson, Dayle; Moeed, Azra

    2017-05-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the impact on teacher beliefs about science and science education of a programme where 26 New Zealand primary (elementary) teachers worked fulltime for 6 months alongside scientists, experiencing the nature of work in scientific research institutes. During the 6 months, teachers were supported, through a series of targeted professional development days, to make connections between their experiences working with scientists, the curriculum and the classroom. Data for the study consisted of mid- and end-of-programme written teacher reports and open-ended questionnaires collected at three points, prior to and following 6 months with the science host and after 6 to 12 months back in school. A shift in many teachers' beliefs was observed after the 6 months of working with scientists in combination with curriculum development days; for many, these changes were sustained 6 to 12 months after returning to school. Beliefs about the aims of science education became more closely aligned with the New Zealand curriculum and its goal of developing science for citizenship. Responses show greater appreciation of the value of scientific ways of thinking, deeper understanding about the nature of scientists' work and the ways in which science and society influence each other.

  8. The MEarth Project: Finding the Best Targets for Atmospheric Characterization with JWST

    Science.gov (United States)

    Berta-Thompson, Z.

    2014-04-01

    If we want to directly observe the radius, orbit, mass, and atmosphere of a small, cool, habitable exoplanet, our best opportunity is to find such a planet transiting a small, cool, nearby M dwarf star. The MEarth Project is an ongoing all-sky survey for Earth-like planets transiting the closest, smallest M dwarfs in the Galaxy. MEarth aims to find good targets for atmospheric characterization with JWST and the next generation of enormous ground-based telescopes. This poster provides a status update on the MEarth Project, including the progress we've made over the past five years with 8 telescopes in the Northern hemisphere and promising early results from our new installation of 8 more telescopes in the Southern hemisphere.

  9. Science, Innovation, and Social Work: Purpose: Clash or Convergence?

    Science.gov (United States)

    Flynn, Marilyn L.

    2017-01-01

    Social work as a human services profession has been distinctive for its inclusion of research as a required element of practice and instrument in instigating reform. At the present time, the relationship of social work to science and a redefinition of social work as a science have reentered our national dialogue with new force. This expansion of…

  10. Response: From Fish and Bicycles to a Science of Social Work

    Science.gov (United States)

    Marsh, Jeanne Cay

    2012-01-01

    John Brekke challenges the field and profession of social work to define and develop the "science of social work". This response to Brekke's paper identifies the premises undergirding a discussion of the science of social work related to (1) a definition of "science";; (2 ) an organizing principle for social work; (3) a…

  11. Estimatining biases in the stellar dynamical black hole mass measurements in barred galaxies and prospects for measuring SMBH masses with JWST

    Science.gov (United States)

    Valluri, Monica; Vasiliev, Eugene; Bentz, Misty; Shen, Juntai

    2018-04-01

    Although 60% of disk galaxies are barred, stellar dynamical measurements of the masses of supermassive black holes (SMBH) in barred galaxies have always been obtained under the assumption that the bulges are axisymmetric. We use N-body simulations with self-consistently grown SMBHs in barred and unbarred galaxies to create a suite of mock Integral Field Spectrographic (IFS) datasets for galaxies with various observed orientations. We then apply an axisymmetric orbit superposition code to these mock IFS datasets to assess the reliability with which SMBH masses can be recovered. We also assess which disk and bar orientations give rise to biases. We use these simulations to assess whether or not existing SMBH measurements in barred galaxies are likely to be biased. We also present a brief preview of our JWST Early Release Science proposal to study the nuclear dynamics of nearby Seyfert I galaxy NGC 4151 with the NIRSpec Integral Field Spectrograph and describe how simulations of disk galaxies will used to create mock NIRSpec data to prepare for the real data.

  12. Teaching Political Science through Memory Work

    Science.gov (United States)

    Jansson, Maria; Wendt, Maria; Ase, Cecilia

    2009-01-01

    In this article, we present the results of a research project where we have tried to elaborate more socially inclusive ways of teaching and learning political science by making use of a specific feminist method of analyzing social relations--memory work. As a method, memory work involves writing and interpreting stories of personal experience,…

  13. Space Interferometry Science Working Group

    Science.gov (United States)

    Ridgway, Stephen T.

    1992-12-01

    Decisions taken by the astronomy and astrophysics survey committee and the interferometry panel which lead to the formation of the Space Interferometry Science Working Group (SISWG) are outlined. The SISWG was formed by the NASA astrophysics division to provide scientific and technical input from the community in planning for space interferometry and in support of an Astrometric Interferometry Mission (AIM). The AIM program hopes to measure the positions of astronomical objects with a precision of a few millionths of an arcsecond. The SISWG science and technical teams are described and the outcomes of its first meeting are given.

  14. Extra Solar Planetary Imaging Coronagraph and Science Requirements for the James Webb Telescope Observatory

    Science.gov (United States)

    Clampin, Mark

    2004-01-01

    1) Extra solar planetary imaging coronagraph. Direct detection and characterization of Jovian planets, and other gas giants, in orbit around nearby stars is a necessary precursor to Terrestrial Planet Finder 0 in order to estimate the probability of Terrestrial planets in our stellar neighborhood. Ground based indirect methods are biased towards large close in Jovian planets in solar systems unlikely io harbor Earthlike planets. Thus to estimate the relative abundances of terrestrial planets and to determine optimal observing strategies for TPF a pathfinder mission would be desired. The Extra-Solar Planetary Imaging Coronagraph (EPIC) is such a pathfinder mission. Upto 83 stellar systems are accessible with a 1.5 meter unobscured telescope and coronagraph combination located at the Earth-Sun L2 point. Incorporating radiometric and angular resolution considerations show that Jovians could be directly detected (5 sigma) in the 0.5 - 1.0 micron band outside of an inner working distance of 5/D with integration times of -10 - 100 hours per observation. The primary considerations for a planet imager are optical wavefront quality due to manufacturing, alignment, structural and thermal considerations. pointing stability and control, and manufacturability of coronagraphic masks and stops to increase the planetary-to- stellar contrast and mitigate against straylight. Previously proposed coronagraphic concepts are driven to extreme tolerances. however. we have developed and studied a mission, telescope and coronagraphic detection concept, which is achievable in the time frame of a Discovery class NASA mission. 2) Science requirements for the James Webb Space Telescope observatory. The James Webb Space Observatory (JWST) is an infrared observatory, which will be launched in 201 1 to an orbit at L2. JWST is a segmented, 18 mirror segment telescope with a diameter of 6.5 meters, and a clear aperture of 25 mA2. The telescope is designed to conduct imaging and spectroscopic

  15. THE ROLE OF SCHOOL TECHNICIANS IN PROMOTING SCIENCE THROUGH PRACTICAL WORK

    Directory of Open Access Journals (Sweden)

    Anne T. Helliar

    2011-11-01

    Full Text Available This is a review of the role of practical work in UK’s secondary school science lessons, the impact that practical work has in the promotion of science, the challenges created through use of non-specialist science teachers and a possible additional role for science technicians. The paper considers how improved deployment of suitably experienced school science technicians and their recognition, by schools’ management, for their involvement in the delivery of training in the use of practical work, for less experienced teachers, could benefit schools and their students. This together with its companion paper endeavours to show how the more effective use of practical work and technicians can encourage more students to select science at higher, non-compulsory levels.

  16. Reliable Transport over SpaceWire for James Webb Space Telescope (JWST) Focal Plane Electronics (FPE) Network

    Science.gov (United States)

    Rakow, Glenn; Schnurr, Richard; Dailey, Christopher; Shakoorzadeh, Kamdin

    2003-01-01

    NASA's James Webb Space Telescope (JWST) faces difficult technical and budgetary challenges to overcome before it is scheduled launch in 2010. The Integrated Science Instrument Module (ISIM), shares these challenges. The major challenge addressed in this paper is the data network used to collect, process, compresses and store Infrared data. A total of 114 Mbps of raw information must be collected from 19 sources and delivered to the two redundant data processing units across a twenty meter deployed thermally restricted interface. Further data must be transferred to the solid-state recorder and the spacecraft. The JWST detectors are kept at cryogenic temperatures to obtain the sensitivity necessary to measure faint energy sources. The Focal Plane Electronics (FPE) that sample the detector, generate packets from the samples, and transmit these packets to the processing electronics must dissipate little power in order to help keep the detectors at these cold temperatures. Separating the low powered front-end electronics from the higher-powered processing electronics, and using a simple high-speed protocol to transmit the detector data minimize the power dissipation near the detectors. Low Voltage Differential Signaling (LVDS) drivers were considered an obvious choice for physical layer because of their high speed and low power. The mechanical restriction on the number cables across the thermal interface force the Image packets to be concentrated upon two high-speed links. These links connect the many image packet sources, Focal Plane Electronics (FPE), located near the cryogenic detectors to the processing electronics on the spacecraft structure. From 12 to 10,000 seconds of raw data are processed to make up an image, various algorithms integrate the pixel data Loss of commands to configure the detectors as well as the loss of science data itself may cause inefficiency in the use of the telescope that are unacceptable given the high cost of the observatory. This

  17. Predicting the High Redshift Galaxy Population for JWST

    Science.gov (United States)

    Flynn, Zoey; Benson, Andrew

    2017-01-01

    The James Webb Space Telescope will be launched in Oct 2018 with the goal of observing galaxies in the redshift range of z = 10 - 15. As redshift increases, the age of the Universe decreases, allowing us to study objects formed only a few hundred million years after the Big Bang. This will provide a valuable opportunity to test and improve current galaxy formation theory by comparing predictions for mass, luminosity, and number density to the observed data. We have made testable predictions with the semi-analytical galaxy formation model Galacticus. The code uses Markov Chain Monte Carlo methods to determine viable sets of model parameters that match current astronomical data. The resulting constrained model was then set to match the specifications of the JWST Ultra Deep Field Imaging Survey. Predictions utilizing up to 100 viable parameter sets were calculated, allowing us to assess the uncertainty in current theoretical expectations. We predict that the planned UDF will be able to observe a significant number of objects past redshift z > 9 but nothing at redshift z > 11. In order to detect these faint objects at redshifts z = 11-15 we need to increase exposure time by at least a factor of 1.66.

  18. The James Webb Space Telescope's Plan for Operations and Instrument Capabilities for Observations in the Solar System

    Science.gov (United States)

    Milam, Stefanie N.; Stansberry, John A.; Sonneborn, George; Thomas, Cristina

    2016-01-01

    The James Webb Space Telescope (JWST) is optimized for observations in the near- and mid-infrared and will provide essential observations for targets that cannot be conducted from the ground or other missions during its lifetime. The state-of-the-art science instruments, along with the telescope's moving target tracking, will enable the infrared study, with unprecedented detail, for nearly every object (Mars and beyond) in the Solar System. The goals of this special issue are to stimulate discussion and encourage participation in JWST planning among members of the planetary science community. Key science goals for various targets, observing capabilities for JWST, and highlights for the complementary nature with other missions/observatories are described in this paper.

  19. SCASim: A Flexible and Reusable Detector Simulator for the MIRI instrument of the JWST

    Science.gov (United States)

    Beard, S.; Morin, J.; Gastaud, R.; Azzollini, R.; Bouchet, P.; Chaintreuil, S.; Lahuis, F.; Littlejohns, O.; Nehme, C.; Pye, J.

    2012-09-01

    The JWST Mid Infrared Instrument (MIRI) operates in the 5-28μm wavelength range and can be configured for imaging, coronographic imaging, long-slit, low-resolution spectroscopy or medium resolution spectroscopy with an integral field unit. SCASim is one of a suite of simulators which operate together to simulate all the different modes of the instrument. These simulators are essential for the efficient operation of MIRI; allowing more accurate planning of MIRI observations on sky or during the pre-launch testing of the instrument. The data generated by the simulators are essential for testing the data pipeline software. The simulators not only need to reproduce the behaviour of the instrument faithfully, they also need to be adaptable so that information learned about the instrument during the pre-launch testing and in-orbit commissioning can be fed back into the simulation. SCASim simulates the behaviour of the MIRI detectors, taking into account cosmetic effects, quantum efficiency, shot noise, dark current, read noise, amplifier layout, cosmic ray hits, etc... The software has benefited from three major design choices. First, the development of a suite of MIRI simulators, rather than single simulator, has allowed MIRI simulators to be developed in parallel by different teams, with each simulator able to concentrate on one particular area. SCASim provides a facility common to all the other simulators and saves duplication of effort. Second, SCASim has a Python-based object-oriented design which makes it easier to adapt as new information about the instrument is learned during testing. Third, all simulator parameters are maintained in external files, rather than being hard coded in the software. These design choices have made SCASim highly reusable. In its present form it can be used to simulate any JWST detector, and it can be adapted for future instruments with similar, photon-counting detectors.

  20. Exploring science teachers' perceptions of experimentation: implications for restructuring school practical work

    Science.gov (United States)

    Wei, Bing; Li, Xiaoxiao

    2017-09-01

    It is commonly recognised that practical work has a distinctive and central role in science teaching and learning. Although a large number of studies have addressed the definitions, typologies, and purposes of practical work, few have consulted practicing science teachers. This study explored science teachers' perceptions of experimentation for the purpose of restructuring school practical work in view of science practice. Qualitative interviews were conducted with 87 science teachers at the secondary school level. In the interviews, science teachers were asked to make a comparison between students' experiments and scientific experiments. Eight dimensions of experimentation were generated from the qualitative data analysis, and the distributions of these eight dimensions between the two types of experiments were compared and analysed. An ideal model of practical work was suggested for restructuring practical work at the secondary school level, and some issues related to the effective enactment of practical work were discussed.

  1. Active galactic nucleus and quasar science with aperture masking interferometry on the James Webb Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ford, K. E. Saavik; McKernan, Barry [Department of Science, Borough of Manhattan Community College, City University of New York, New York, NY 10007 (United States); Sivaramakrishnan, Anand; Martel, André R.; Koekemoer, Anton [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lafrenière, David [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, QC H3C 3J7 (Canada); Parmentier, Sébastien [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2014-03-10

    Due to feedback from accretion onto supermassive black holes (SMBHs), active galactic nuclei (AGNs) are believed to play a key role in ΛCDM cosmology and galaxy formation. However, AGNs extreme luminosities and the small angular size of their accretion flows create a challenging imaging problem. We show that the James Webb Space Telescope's Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) Aperture Masking Interferometry (AMI) mode will enable true imaging (i.e., without any requirement of prior assumptions on source geometry) at ∼65 mas angular resolution at the centers of AGNs. This is advantageous for studying complex extended accretion flows around SMBHs and in other areas of angular-resolution-limited astrophysics. By simulating data sequences incorporating expected sources of noise, we demonstrate that JWST-NIRISS AMI mode can map extended structure at a pixel-to-pixel contrast of ∼10{sup –2} around an L = 7.5 point source, using short exposure times (minutes). Such images will test models of AGN feedback, fueling, and structure (complementary with ALMA observations), and are not currently supported by any ground-based IR interferometer or telescope. Binary point source contrast with NIRISS is ∼10{sup –4} (for observing binary nuclei in merging galaxies), significantly better than current ground-based optical or IR interferometry. JWST-NIRISS's seven-hole non-redundant mask has a throughput of 15%, and utilizes NIRISS's F277W (2.77 μm), F380M (3.8 μm), F430M (4.3 μm), and F480M (4.8 μm) filters. NIRISS's square pixels are 65 mas per side, with a field of view ∼2' × 2'. We also extrapolate our results to AGN science enabled by non-redundant masking on future 2.4 m and 16 m space telescopes working at long-UV to near-IR wavelengths.

  2. Challenges with Electrical, Electronics, and Electromechanical Parts for James Webb Space Telescope

    Science.gov (United States)

    Jah, Muzar A.; Jeffers, Basil S.

    2016-01-01

    James Webb Space Telescope (JWST) is the space-based observatory that will extend the knowledge gained by the Hubble Space Telescope (HST). Hubble focuses on optical and ultraviolet wavelengths while JWST focuses on the infrared portion of the electromagnetic spectrum, to see the earliest stars and galaxies that formed in the Universe and to look deep into nearby dust clouds to study the formation of stars and planets. JWST, which commenced creation in 1996, is scheduled to launch in 2018. It includes a suite of four instruments, the spacecraft bus, optical telescope element, Integrated Science Instrument Module (ISIM, the platform to hold the instruments), and a sunshield. The mass of JWST is approximately 6200 kg, including observatory, on-orbit consumables and launch vehicle adaptor. Many challenges were overcome while providing the electrical and electronic components for the Goddard Space Flight Center hardware builds. Other difficulties encountered included developing components to work at cryogenic temperatures, failures of electronic components during development and flight builds, Integration and Test electronic parts problems, and managing technical issues with international partners. This paper will present the context of JWST from a EEE (electrical, electronic, and electromechanical) perspective with examples of challenges and lessons learned throughout the design, development, and fabrication of JWST in cooperation with our associated partners including the Canadian Space Agency (CSA), the European Space Agency (ESA), Lockheed Martin and their respective associated partners. Technical challenges and lessons learned will be discussed.

  3. The International Space Life Sciences Strategic Planning Working Group

    Science.gov (United States)

    White, Ronald J.; Rabin, Robert; Lujan, Barbara F.

    1993-01-01

    Throughout the 1980s, ESA and the space agencies of Canada, Germany, France, Japan, and the U.S. have pursued cooperative projects bilaterally and multilaterally to prepare for, and to respond to, opportunities in space life sciences research previously unapproachable in scale and sophistication. To cope effectively with likely future space research opportunities, broad, multilateral, coordinated strategic planning is required. Thus, life scientists from these agencies have allied to form the International Space Life Sciences Strategic Planning Working Group. This Group is formally organized under a charter that specifies the purpose of the Working Group as the development of an international strategic plan for the space life sciences, with periodic revisions as needed to keep the plan current. The plan will be policy-, not operations-oriented. The Working Group also may establish specific implementation teams to coordinate multilateral science policy in specific areas; such teams have been established for space station utilization, and for sharing of flight equipment.

  4. Many Paths toward Discovery: A Module for Teaching How Science Works

    Science.gov (United States)

    Price, Rebecca M.; Perez, Kathryn E.

    2018-01-01

    Improving students' understanding of how science works requires explicit instruction. Here, we test the efficacy of a module based on two previously published activities (the "Cube Puzzle" and the case study "Asteroids and Dinosaurs") that teach how science works to college science majors. Students also use the How Science…

  5. A WIDER ROLE FOR TECHNICIANS IN SCIENCE PRACTICAL WORK WITH SCHOOL STUDENTS?

    Directory of Open Access Journals (Sweden)

    Timothy G. Harrison

    2011-12-01

    Full Text Available This paper reports the results of a study made on the impact of improved deployment of science technicians in the classroom could directly benefit students in practical science investigations. Science technicians are skilled individuals whose understanding of practical work is a valuable resource not being used of in support of students understanding of science. Aspects of practical work and technician support were scrutinised, through information attained from a post-16 student survey to improve understanding about this teaching tool, to establish if it was being used to its full potential within science lessons. Analysis was also made of students’ perceptions of school science. The main outcomes were that the majority of students enjoyed science practical work and felt that science could not be taught without it. Students studying science at pre-university level attained a greater understanding, through participating in relevant practical work, than students who had studied it at earlier, compulsory levels. Students reported that science technicians provide impact on student learning when contact time was the greatest.

  6. Sciencey Girls: Discourses Supporting Working-Class Girls’ to Identify with Science

    Directory of Open Access Journals (Sweden)

    Spela Godec

    2018-01-01

    Full Text Available Women from working class and some ethnic minority backgrounds continue to be underrepresented in science, particularly in areas such as physical sciences and engineering. Many find it difficult to see science as something that is “for them”, which then has implications for their learning and participation in science. In this paper, I discuss findings from a U.K.-based qualitative study with 15 working-class girls, aged 11 to 13, from diverse ethnic backgrounds. Data were collected over the course of one academic year, through interviews and discussion groups with the girls and interviews with their science teachers, and analysed through a post-structural gender lens. The paper foregrounds five science-identifying girls, who negotiated their identification and engagement with science through the following discursive strategies: (i rendering gender invisible, (ii drawing attention to the presence of women in science, (iii reframing “science people” as caring and nurturing, and (iv cultural discourses of desirability of science. The findings contribute to the understanding of how working class girls—who are often “othered” and constructed as “unintelligible” within the dominant discursive regime of prototypical science—find identification with science possible. The paper discusses the affordances and challenges of each discursive strategy.

  7. Modernization of NASA's Johnson Space Center Chamber: A Payload Transport Rail System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    Science.gov (United States)

    Garcia, Sam; Homan, Jonathan; Speed, John

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the "Great Observatories", scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describe the challenges of developing, integrating and modifying new payload rails capable of transporting payloads within the thermal vacuum chamber up to 65,000 pounds. Ambient and Cryogenic Operations required to configure for testing will be explained. Lastly review historical payload configurations stretching from the Apollo program era to current James Webb Space Telescope testing.

  8. Practical work in secondary science a minds-on approach

    CERN Document Server

    Abrahams, Ian

    2011-01-01

    Practical work is an essential feature of secondary science education. However, questions have been raised by some science educators about its effectiveness as a teaching and learning strategy. Whilst such an approach is generally effective in getting pupils to do things with objects and materials, it is seen as relatively ineffective in developing their conceptual understanding of the associated scientific ideas and concepts. Ian Abrahams argues that this is because it is practiced as a 'hands-on' rather than 'minds-on' activity. Abrahams draws together theory and practice on effective teaching and learning in practical work in science - covering biology, chemistry and physics. He provides clear guidance to ensure that students are encouraged and supported to be 'minds-on' as well as a 'hands-on' so that they can make the most of this learning experience. An invaluable text for inspiringaspiring andexperienced secondary science professionals, especially for those on M-level secondary science PGCE programmes.

  9. Sciencey Girls: Discourses Supporting Working-Class Girls’ to Identify with Science

    OpenAIRE

    Spela Godec

    2018-01-01

    Women from working class and some ethnic minority backgrounds continue to be underrepresented in science, particularly in areas such as physical sciences and engineering. Many find it difficult to see science as something that is “for them”, which then has implications for their learning and participation in science. In this paper, I discuss findings from a U.K.-based qualitative study with 15 working-class girls, aged 11 to 13, from diverse ethnic backgrounds. Data were collected over the co...

  10. How Science Works: Bringing the World of Science into the Classroom through Innovative Blended Media Approaches

    Science.gov (United States)

    Windale, Mark

    2010-01-01

    During the past three years, a team from the Centre for Science Education at Sheffield Hallam University, the University of Salford, the University of York, Glasshead and Teachers TV, has been working in collaboration to develop a series of blended media resources to support the teaching and learning of How Science Works (HSW) at Key Stages 3 and…

  11. Modernization of NASA's Johnson Space Center Chamber: A Liquid Nitrogen System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    Science.gov (United States)

    Garcia, Sammy; Homan, Jonathan; Montz, Michael

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the “Great Observatories”, scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describes the steps performed in efforts to convert the existing the 60’s era Liquid Nitrogen System from a forced flow (pumped) process to a natural circulation (thermo-siphon) process. In addition, the paper will describe the dramatic conservation of liquid nitrogen to support the long duration thermal vacuum testing. Lastly, describe the simplistic and effective control system which results in zero to minimal human inputs during steady state conditions.

  12. 3rd Annual NASA Ames Space Science and Astrobiology Jamboree

    Science.gov (United States)

    Dotson, Jessie

    2015-01-01

    The Space Science and Astrobiology Division at NASA Ames Research Center consists of over 50 civil servants and more than 110 contractors, co-­-ops, post-­-docs and associates. Researchers in the division are pursuing investigations in a variety of fields including exoplanets, planetary science, astrobiology and astrophysics. In addition, division personnel support a wide variety of NASA missions including (but not limited to) Kepler, SOFIA, LADEE, JWST, and New Horizons. With such a wide variety of interesting research going on, distributed among three branches in at least 5 different buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientists within the division, and to give center management and other ARC researchers and engineers an opportunity to see what scientific research and science mission work is being done in the division. We are also continuing the tradition within the Space Science and Astrobiology Division to honor one senior and one early career scientist with the Pollack Lecture and the Early Career Lecture, respectively. With the Pollack Lecture, our intent is to select a senior researcher who has made significant contributions to any area of research within the space sciences, and we are pleased to honor Dr. William Borucki this year. With the Early Career Lecture, our intent is to select a young researcher within the division who, by their published scientific papers, shows great promise for the future in any area of space science research, and we are pleased to honor Dr. Melinda Kahre this year

  13. Three voices: women working in nuclear science and technology

    International Nuclear Information System (INIS)

    1999-01-01

    Nuclear science and technology is a fascinating and growing work area for women. This short video portrays three professional women working within this field for the International Atomic Energy Agency

  14. The Hunt for Low-Mass Black Holes in the JWST Era

    Science.gov (United States)

    Cann, Jenna; Satyapal, Shobita; Abel, Nicholas; Ricci, Claudio; Gliozzi, Mario; Blecha, Laura; Secrest, Nathan

    2018-01-01

    Most, if not all, massive galaxies have a central supermassive black hole (SMBH) millions to billions of times the mass of the Sun. While the properties of SMBHs and their host galaxies have been well-studied in massive galaxies, very few SMBHs have been found in galaxies with low masses and those with small bulges. This is a significant deficiency, because the study of this population allows us to gain an understanding of merger-free pathways to black hole growth, and to gain insight into the origin and growth of SMBH ‘seeds’, thought to have formed at high redshift. Most studies aimed at finding SMBHs have been conducted using optical spectroscopic studies, where active SMBHs (active galactic nuclei or AGNs) display distinctive optical emission lines indicative of accreting SMBHs. However, in low mass (dwarf) galaxies, the SMBHs will likely be less massive, and can be energetically weak and possibly deeply embedded in their host galaxies. As a result, the optical emission lines may be dominated by star formation regions, severely limiting the diagnostic power of optical surveys in finding and characterizing the properties of the AGN in dwarf galaxies. In such galaxies, infrared coronal lines provide a robust method of finding AGNs. Furthermore, as the black hole mass decreases, the Schwarzschild radius of the black hole decreases, and in response, the temperature of the surrounding accretion disk increases. The shape of the ionizing radiation spectral energy distribution therefore changes with black hole mass, which will affect the emission line spectrum from the surrounding gas. In this work, we investigate the diagnostic power of infrared coronal lines and the effect of black hole mass on the emission line spectra from AGNs, with a particular focus on the emission lines accessible by JWST.

  15. Solar System Observations with the James Webb Space Telescope

    OpenAIRE

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; Ferruit, Pierre

    2014-01-01

    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar...

  16. Educators Who Work in Science: The Narratives of Women Negotiating Careers in Academic Science

    Science.gov (United States)

    Tullos, Kimberly C.

    2011-12-01

    The purpose of this life story narrative study was to explore how women scientists develop views of self that enable them to negotiate careers within academic science. I framed the study using feminist standpoint theory as my theoretical foundation, and used possible selves theory as my conceptual framework. Eight women scientists working in academe described their journey regarding their views of self and career-related experiences. The study produced two key findings. First, seven themes emerged from my data analysis; these themes suggest that these women shared significant experiences in their quest to become scientists. Second, my feminist analysis of the participants' narratives indicates that distinct, but submerged gender-related tensions shaped their views of themselves as scientists and their science career decisions. These tensions include career choice and advancement constrained by family obligations, work environments that do not recognize or undervalue their skills and contributions to the profession, and perceived pressure to de-feminize their behavior to blend in to their work environment. Not unlike other women negotiating careers in academic science, they generally accepted their status as women to be an inherent part of their career pursuits and viewed workplace challenges as an opportunity to prove their competency. Seven of the eight women did not attribute their challenges to gender differences. However, the combined narratives revealed underlying conflicts between their views of self as women and as scientists resulting from their experiences in, and perceptions of, academic science environments. The study's principal theoretical contribution, from the feminist standpoint perspective, highlights the pervasive and unseen influence of gender dynamics. In this study, the participants developed views of themselves, not as scientists, but as "educators who work in science." This critical distinction enabled these participants, perhaps unknowingly

  17. Work Values of Mortuary Science Students

    Science.gov (United States)

    Shaw, Thomas; Duys, David K.

    2005-01-01

    This article describes a descriptive study in an area significantly lacking validation. The focus of the study was the work values held by mortuary science students from 3 educational programs in the Midwest. The Values Scale (D. Nevill & D. Super, 1989) was used to measure the career-related values of a sample group of 116. According to…

  18. Boundary-Work in Science Education: A Case Study of GM Food

    Science.gov (United States)

    Lin, Yin-Ling

    2016-01-01

    The term "boundary-work" is used to refer to the constant effort to draw and re-draw the boundary of science; it has long been portrayed as constructed by the stakeholders of science to demarcate science from non-science to establish the authority of science. Twenty-nine semi-structured interviews were carried out with students from one…

  19. Implementation Science: Why It Matters for the Future of Social Work

    Science.gov (United States)

    Cabassa, Leopoldo J.

    2016-01-01

    Bridging the gap between research and practice is a critical frontier for the future of social work. Integrating implementation science into social work can advance our profession's effort to bring research and practice closer together. Implementation science examines the factors, processes, and strategies that influence the uptake, use, and…

  20. Analyzing the Scientific Evolution of Social Work Using Science Mapping

    Science.gov (United States)

    Martínez, Ma Angeles; Cobo, Manuel Jesús; Herrera, Manuel; Herrera-Viedma, Enrique

    2015-01-01

    Objectives: This article reports the first science mapping analysis of the social work field, which shows its conceptual structure and scientific evolution. Methods: Science Mapping Analysis Software Tool, a bibliometric science mapping tool based on co-word analysis and h-index, is applied using a sample of 18,794 research articles published from…

  1. Response: Social Work, Science, Social Impact--Crafting an Integrative Conversation

    Science.gov (United States)

    Nurius, Paula S.; Kemp, Susan P.

    2012-01-01

    Shifts in the ways that science is being undertaken and marshaled toward social change argue for a new kind of professional competence. Taking the view that the science of social work is centrally about the relationship of research to social impact, the authors extend Fong's focus on transdisciplinary and translational approaches to science,…

  2. Improving Group Work Practices in Teaching Life Sciences: Trialogical Learning

    Science.gov (United States)

    Tammeorg, Priit; Mykkänen, Anna; Rantamäki, Tomi; Lakkala, Minna; Muukkonen, Hanni

    2017-08-01

    Trialogical learning, a collaborative and iterative knowledge creation process using real-life artefacts or problems, familiarizes students with working life environments and aims to teach skills required in the professional world. We target one of the major limitation factors for optimal trialogical learning in university settings, inefficient group work. We propose a course design combining effective group working practices with trialogical learning principles in life sciences. We assess the usability of our design in (a) a case study on crop science education and (b) a questionnaire for university teachers in life science fields. Our approach was considered useful and supportive of the learning process by all the participants in the case study: the students, the stakeholders and the facilitator. Correspondingly, a group of university teachers expressed that the trialogical approach and the involvement of stakeholders could promote efficient learning. In our case in life sciences, we identified the key issues in facilitating effective group work to be the design of meaningful tasks and the allowance of sufficient time to take action based on formative feedback. Even though trialogical courses can be time consuming, the experience of applying knowledge in real-life cases justifies using the approach, particularly for students just about to enter their professional careers.

  3. Sciencey Girls: Discourses Supporting Working-Class Girls to Identify with Science

    Science.gov (United States)

    Godec, Spela

    2018-01-01

    Women from working class and some ethnic minority backgrounds continue to be underrepresented in science, particularly in areas such as physical sciences and engineering. Many find it difficult to see science as something that is "for them", which then has implications for their learning and participation in science. In this paper, I…

  4. Secondary school students' perceptions of working life skills in science-related careers

    Science.gov (United States)

    Salonen, Anssi; Hartikainen-Ahia, Anu; Hense, Jonathan; Scheersoi, Annette; Keinonen, Tuula

    2017-07-01

    School students demonstrate a lack of interest in choosing science studies and science-related careers. To better understand the underlying reasons, this study aims to examine secondary school students' perceptions of working life skills and how these perceptions relate to the skills of the twenty-first century. The participants in this study were 144 Finnish 7th graders (aged 13-14 years). Using a questionnaire and qualitative content analysis, we examined their perceptions of working life skills in 'careers in science' and 'careers with science'. Results reveal that although students have a great deal of knowledge about working life skills, it is often just stereotyped. Sector-specific knowledge and skills were highlighted in particular but skills related to society, organisation, time and higher order thinking, were often omitted. Results also indicate that students do not associate 'careers in science' with creativity, innovation, collaboration or technology and ICT skills. Conversely, according to the students, these careers demand more sector-specific knowledge and responsibility than 'careers with science'. We conclude that students need more wide-ranging information about scientific careers and the competencies demanded; such information can be acquired by e.g. interacting with professionals and their real working life problems.

  5. Students' Views About Secondary School Science Lessons: The Role of Practical Work

    Science.gov (United States)

    Toplis, Rob

    2012-06-01

    This paper reports an interpretive study that sought students' views about the role that practical work plays in their school science lessons. Twenty-nine students aged between 13 and 16 years were selected from three secondary schools in England. Data were collected from initial lesson observations and in-depth interviews in order to explore students' views about practical work. The findings suggest that students have three main reasons why practical work is important in their school science lessons: for interest and activity, including social and personal features such as participation and autonomy; as an alternative to other forms of science teaching involving a pedagogy of transmission, and as a way of learning, including memorizing and recall. The findings are discussed in the context of a critical view of previous work on the role of practical work, work on attitudes to science and on the student voice. The paper concludes that practical work is seen to provide opportunities for students to engage with and influence their own learning but that learning with practical work remains a complex issue that needs further research and evaluation about its use, effectiveness and of the role of scientific inquiry as a component of practical activity.

  6. A Science of Social Work, and Social Work as an Integrative Scientific Discipline: Have We Gone Too Far, or Not Far Enough?

    Science.gov (United States)

    Brekke, John S.

    2014-01-01

    There are two purposes to this article. The first is to update the science of social work framework. The second is to use recent discussions on the nature of realist science and on social work science to propose a definition of social work as an integrative scientific discipline that complements its definition as a profession.

  7. NASA Astrophysics EPO Resources For Engaging Girls in Science

    Science.gov (United States)

    Sharma, M.; Mendoza, D.; Smith, D.; Hasan, H.

    2011-09-01

    A new collaboration among the NASA Science Mission Directorate (SMD) Astrophysics EPO community is to engage girls in science who do not self-select as being interested in science, through the library setting. The collaboration seeks to (i) improve how girls view themselves as someone who knows about, uses, and sometimes contributes to science, and (ii) increase the capacity of EPO practitioners and librarians (both school and public) to engage girls in science. As part of this collaboration, we are collating the research on audience needs and best practices, and SMD EPO resources, activities and projects that focus on or can be recast toward engaging girls in science. This ASP article highlights several available resources and individual projects, such as: (i) Afterschool Universe, an out-of-school hands-on astronomy curriculum targeted at middle school students and an approved Great Science for Girls curriculum; (ii) Big Explosions and Strong Gravity, a Girl Scout patch-earning event for middle school aged girls to learn astronomy through hands-on activities and interaction with actual astronomers; and (iii) the JWST-NIRCAM Train the Trainer workshops and activities for Girl Scouts of USA leaders; etc. The NASA Astrophysics EPO community welcomes the broader EPO community to discuss with us how best to engage non-science-attentive girls in science, technology, engineering, and mathematics (STEM), and to explore further collaborations on this theme.

  8. The Grand Challenges Discourse: Transforming Identity Work in Science and Science Policy.

    Science.gov (United States)

    Kaldewey, David

    2018-01-01

    This article analyzes the concept of "grand challenges" as part of a shift in how scientists and policymakers frame and communicate their respective agendas. The history of the grand challenges discourse helps to understand how identity work in science and science policy has been transformed in recent decades. Furthermore, the question is raised whether this discourse is only an indicator, or also a factor in this transformation. Building on conceptual history and historical semantics, the two parts of the article reconstruct two discursive shifts. First, the observation that in scientific communication references to "problems" are increasingly substituted by references to "challenges" indicates a broader cultural trend of how attitudes towards what is problematic have shifted in the last decades. Second, as the grand challenges discourse is rooted in the sphere of sports and competition, it introduces a specific new set of societal values and practices into the spheres of science and technology. The article concludes that this process can be characterized as the sportification of science, which contributes to self-mobilization and, ultimately, to self-optimization of the participating scientists, engineers, and policymakers.

  9. Interdisciplinary technology assessment of service robots: the psychological/work science perspective.

    Science.gov (United States)

    Fischer, Martin

    2012-12-01

    The article sheds light on psychological and work science aspects of the design and utilization of service robots. An initial presentation of the characteristics of man-robot interaction is followed by a discussion of the principles of the division of functions between human beings and robots in service area work systems. The following aspects are to be considered: (1) the organisation of societal work (such as the different employment and professional profiles of service employees), (2) the work tasks to be performed by humans and robots (such as handling, monitoring or decision-making tasks), (3) the possibilities and the limitations of realizing such tasks by means of information technology (depending, for example, on the motoric capabilities, perception and cognition of the robot). Consideration of these three design perspectives gives rise to criteria of usability. Current debate focuses on the (work science) principles of man-machine communication, though in future these should be supplemented with robot-specific criteria such as "motoric capabilities" or "relationship quality." The article concludes by advocating the convergence and combination of work science criteria with ideas drawn from participative design approaches in the development and utilization of service robots.

  10. SPHEREx: Science Opportunities for the Astronomical Community

    Science.gov (United States)

    Cooray, Asantha; SPHEREx Science Team

    2018-01-01

    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A study in August 2017, will perform an all-sky near-infrared spectral survey between 0.75 - 5.0 microns. The survey will reach 18.3 AB mag (5 sigma) in R=41 filters, with R=135 coverage between 4.2 - 5.0 microns. The key science topics of the SPHEREx team are: (a) primordial non-Gaussianity through 3-dimensional galaxy clustering; (b) extragalactic background light fluctuations; and (c) ices and biogenic molecules in the interstellar medium and towards protoplanetary environments.The large legacy dataset of SPHEREx will enable a large number of scientific studies and find interesting targets for follow-up observations with Hubble, JWST, ALMA, among other facilities. The SPHEREx catalog will include 1.4 billion galaxies, with redshifts secured for more than 10 and 120 million with fractional accuracies in error/(1+z) better than 0.3% and 3%, respectively. The spectral coverage and resolution provided by SPHEREx are adequate to determine redshifts for most WISE-detected sources with an accuracy better than 3%. The catalog will contain close to 1.5 million quasars including 300 bright QSOs at z > 7 during the epoch of reionization, based on observational extrapolations. The catalog will be adequate to obtain redshifts for all 25,000 galaxy clusters expected to be detected in X-rays with e-Rosita. SPHEREx produces all-sky maps of the Galactic emission lines, including hydrocarbon emission around 3 microns.In this poster, we will show example science studies the broader astronomical community will be able to lead using the SPHEREx database. We will also outline existing plans within the SPHEREx team to develop software tools to enable easy access to the data and to conduct catalog searches, and ways in which the community can provide input to the SPHEREx Science Team on scientific studies and data/software requirements for those studies. The team is eager to develop best software

  11. Mathematics education a spectrum of work in mathematical sciences departments

    CERN Document Server

    Hsu, Pao-sheng; Pollatsek, Harriet

    2016-01-01

    Many in the mathematics community in the U.S. are involved in mathematics education in various capacities. This book highlights the breadth of the work in K-16 mathematics education done by members of US departments of mathematical sciences. It contains contributions by mathematicians and mathematics educators who do work in areas such as teacher education, quantitative literacy, informal education, writing and communication, social justice, outreach and mentoring, tactile learning, art and mathematics, ethnomathematics, scholarship of teaching and learning, and mathematics education research. Contributors describe their work, its impact, and how it is perceived and valued. In addition, there is a chapter, co-authored by two mathematicians who have become administrators, on the challenges of supporting, evaluating, and rewarding work in mathematics education in departments of mathematical sciences. This book is intended to inform the readership of the breadth of the work and to encourage discussion of its val...

  12. Shaping Social Work Science: What Should Quantitative Researchers Do?

    Science.gov (United States)

    Guo, Shenyang

    2015-01-01

    Based on a review of economists' debates on mathematical economics, this article discusses a key issue for shaping the science of social work--research methodology. The article describes three important tasks quantitative researchers need to fulfill in order to enhance the scientific rigor of social work research. First, to test theories using…

  13. Revising laboratory work: sociological perspectives on the science classroom

    Science.gov (United States)

    Jobér, Anna

    2017-09-01

    This study uses sociological perspectives to analyse one of the core practices in science education: schoolchildren's and students' laboratory work. Applying an ethnographic approach to the laboratory work done by pupils at a Swedish compulsory school, data were generated through observations, field notes, interviews, and a questionnaire. The pupils, ages 14 and 15, were observed as they took a 5-week physics unit (specifically, mechanics). The analysis shows that the episodes of laboratory work could be filled with curiosity and exciting challenges; however, another picture emerged when sociological concepts and notions were applied to what is a very common way of working in the classroom. Laboratory work is characterised as a social activity that is expected to be organised as a group activity. This entails groups becoming, to some extent, `safe havens' for the pupils. On the other hand, this way of working in groups required pupils to subject to the groups and the peer effect, sometimes undermining their chances to learn and perform better. In addition, the practice of working in groups when doing laboratory work left some pupils and the teacher blaming themselves, even though the outcome of the learning situation was a result of a complex interplay of social processes. This article suggests a stronger emphasis on the contradictions and consequences of the science subjects, which are strongly influenced by their socio-historical legacy.

  14. Making Science Work.

    Science.gov (United States)

    Thomas, Lewis

    1981-01-01

    Presents a viewpoint concerning the impact of recent scientific advances on society. Discusses biological discoveries, space exploration, computer technology, development of new astronomical theories, the behavioral sciences, and basic research. Challenges to keeping science current with technological advancement are also discussed. (DS)

  15. The Work of Popper and Kuhn on the Nature of Science.

    Science.gov (United States)

    Donnelly, James

    1979-01-01

    Discusses the work of T. S. Kuhn and Sir Karl Popper. Current views on the nature of science and some current ideology of scientific education are also analyzed with regard to the views of science due to Kuhn and Popper. (HM)

  16. An organizing model for recent cognitive science work on the self.

    Science.gov (United States)

    Pageler, Ben

    2016-10-01

    An organizing model of 'the self' emerges from applying various kinds of brain injury to recent cognitive science and philosophical work on 'the self'. This model unifies various contents and mechanisms central to current notions of the self. The article then highlights several criteria and aspects of this notion of self. Qualities of the right type and level of psychological significance delineate 'the self' as an organizing concept useful for recent philosophical work and cognitive science research. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Scientists and Science Education: Working at the Interface

    Science.gov (United States)

    DeVore, E. K.

    2004-05-01

    "Are we alone?" "Where did we come from?" "What is our future?" These questions lie at the juncture of astronomy and biology: astrobiology. It is intrinsically interdisciplinary in its study of the origin, evolution and future of life on Earth and beyond. The fundamental concepts of origin and evolution--of both living and non-living systems--are central to astrobiology, and provide powerful themes for unifying science teaching, learning, and appreciation in classrooms and laboratories, museums and science centers, and homes. Research scientists play a key role in communicating the nature of science and joy of scientific discovery with the public. Communicating the scientific discoveries with the public brings together diverse professionals: research scientists, graduate and undergraduate faculty, educators, journalists, media producers, web designers, publishers and others. Working with these science communicators, research scientists share their discoveries through teaching, popular articles, lectures, broadcast and print media, electronic publication, and developing materials for formal and informal education such as textbooks, museum exhibits and documentary television. There's lots of activity in science communication. Yet, the NSF and NASA have both identified science education as needing improvement. The quality of schools and the preparation of teachers receive national attention via "No Child Left Behind" requirements. The number of students headed toward careers in science, technology, engineering and mathematics (STEM) is not sufficient to meet national needs. How can the research community make a difference? What role can research scientists fulfill in improving STEM education? This talk will discuss the interface between research scientists and science educators to explore effective roles for scientists in science education partnerships. Astronomy and astrobiology education and outreach projects, materials, and programs will provide the context for

  18. 75 FR 57520 - NASA Advisory Council; Planetary Science Subcommittee; Supporting Research and Technology Working...

    Science.gov (United States)

    2010-09-21

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-112)] NASA Advisory Council; Planetary Science Subcommittee; Supporting Research and Technology Working Group; Meeting AGENCY: National... announces a meeting of the Supporting Research and Technology Working Group of the Planetary Science...

  19. Accelerator science and its civil and utility engineering work

    International Nuclear Information System (INIS)

    Yoshioka, Masakazu

    2006-01-01

    In large-scale accelerator projects such as TRISTAN and J-PARC, approximately half of the total project costs are spent on the civil and utility engineering work for the accelerator. In addition, the quality of civil and utility engineering has a large effect on the quality of the beam. With increasing scale of projects, there is growing specialization of the people in charge of the accelerator on the one hand, and the people in charge of civil and utility engineering on the other. Mutual understanding between the people in charge is therefore important in such cases. From the experience I have accumulated working on the facilities of many large projects, I have become keenly aware of the necessity for both accelerator-literate civil engineering specialists and civil engineering-literate accelerator researchers. A straight-forward method for satisfying this requirement is to systematize accelerator science as a science with civil and utility engineering for accelerators recognized as its sub-field. When new projects launched, the methodology of the natural sciences should be incorporated whereby past experience is fully utilized and then new technologies and knowledge are accumulated. (author)

  20. Communicating Ocean Sciences College Courses: Science Faculty and Educators Working and Learning Together

    Science.gov (United States)

    Halversen, C.; Simms, E.; McDonnell, J. D.; Strang, C.

    2011-12-01

    scientists with experience using exemplary, research-based instructional materials that incorporate current learning theories and teaching strategies; 5) promote mutually beneficial collaborations between scientists and educators co-teaching the course; and 6) provide underrepresented K-12 students and visitors to informal science institutions with ocean sciences instruction and the opportunity to interact with the next generation of scientists. Evaluation findings over five years show that the course can be an effective mechanism to introduce scientists to education research and improve post-secondary science instruction. Students improved in their understanding of how people learn and how to effectively communicate. Science faculty reported that the course provided them with a heightened awareness and practical knowledge of learning theory and education research, and as a result, they felt they became more effective educators and communicators. This has implications for their work with future and fellow scientists, and the general public.

  1. New Frontiers for Massive Star Winds: Imaging and Spectroscopy with the James Webb Space Telescope

    Science.gov (United States)

    Sonneborn, George

    2007-01-01

    The James Webb Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2013. JWST will find the first stars and galaxies that formed in the early universe, connecting the Big Bang to our own Milky Way galaxy. JWST will peer through dusty clouds to see stars forming planetary systems, connecting the Milky Way to our own Solar System. JWST's instruments are designed to work primarily in the infrared range of 1 - 28 microns, with some capability in the visible range. JWST will have a large mirror, 6.5 meters in diameter, and will be diffraction-limited at 2 microns (0.1 arcsec resolution). JWST will be placed in an L2 orbit about 1.5 million km from the Earth. The instruments will provide imaging, coronography, and multi-object and integral-field spectroscopy across the full 1 - 28 micron wavelength range. The breakthrough capabilities of JWST will enable new studies of massive star winds from the Milky Way to the early universe.

  2. Work flows in life science

    NARCIS (Netherlands)

    Wassink, I.

    2010-01-01

    The introduction of computer science technology in the life science domain has resulted in a new life science discipline called bioinformatics. Bioinformaticians are biologists who know how to apply computer science technology to perform computer based experiments, also known as in-silico or dry lab

  3. How to Teach High-School Students "How Science Really Works?"

    Science.gov (United States)

    Losiak, Anna; Students, High-School; Winiarska, Anna; Parys-Wasylkiewicz, Magdalena

    2016-04-01

    One of the largest problems in Poland (as well as in the large part of the developed world) is that people do not understand how science works. Based on what they learned at school, they think that science is an aggregation of facts that you need to learn by heart. Based on media coverage of the science topics, they think it is a collection of curiosities about the two-headed-snakes. Based on the way in which science is shown in movies and TV series, they envision science as a magic performed in a white coat with usage of colorful fluids and magic spells such as "transformative hermeneutics of quantum gravity". As a result, our societies include a large number of people who "do not believe" in evolution, think that vaccinations are causing autism and that anthropogenic global warming is a myth. This is not very surprising, given that most people never had a chance to perform a real scientific experiment. Most of people, if they are lucky, are able to see some science demonstrations in the classrooms. They are of course very useful, but it is quite clear for everyone that (if everything goes well) the demonstration can end up in one, pre-defined way. The "real" scientific experiment, as a part of the scientific process, is when the outcome is unknown until the end of the entire process. In order to teach high-school students "How Science Really Works" we have developed a project lasting one year (grant from Foundation for Polish Science 26/UD/SKILLS/2015): 1) At first students learned about scientific method, science history and performed a simple scientific experiment. 2) Later, students developed an experiment that was answering a real, unanswered scientific problem (the problem was given by the Leading Scientist). The aim of the project was to determine influence of albedo and emissivity of rock particles laying on a surface of a glacier on the rate of cryoconite holes formation. The results of this experiment can be used to better determine the rate of melting

  4. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    Science.gov (United States)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  5. Applying gene flow science to environmental policy needs: a boundary work perspective.

    Science.gov (United States)

    Ridley, Caroline E; Alexander, Laurie C

    2016-08-01

    One application of gene flow science is the policy arena. In this article, we describe two examples in which the topic of gene flow has entered into the U.S. national environmental policymaking process: regulation of genetically engineered crops and clarification of the jurisdictional scope of the Clean Water Act. We summarize both current scientific understanding and the legal context within which gene flow science has relevance. We also discuss the process by which scientific knowledge has been synthesized and communicated to decision-makers in these two contexts utilizing the concept of 'boundary work'. Boundary organizations, the work they engage in to bridge the worlds of science, policy, and practice, and the boundary objects they produce to translate scientific knowledge existed in both examples. However, the specific activities and attributes of the objects produced varied based on the needs of the decision-makers. We close with suggestions for how scientists can contribute to or engage in boundary work with policymakers.

  6. Impact of clouds in the JWST and LUVOIR simulated transmission spectra of TRAPPIST-1 planets in the habitable zone

    Science.gov (United States)

    Fauchez, Thomas; Turbet, Martin; Mandell, Avi; Kopparapu, Ravi Kumar; Arney, Giada; Domagal-Goldman, Shawn

    2018-06-01

    M-dwarfs are the most common type of stars in our galaxy. Ultra-cool dwarfs (T Earth and frequent planetary transits.Atmospheric properties are major components of planet habitability. However, the detectability of gaseous features on rocky planets in the HZ may be severely impacted by the presence of clouds and/or hazes in their atmosphere. We have already seen this phenomenon in the “flat” transit transmission spectra of larger exoplanets such as GJ 1214b, WASP-31b, WASP-12b and HATP-12b.In this work, we use the LMDG global climate model to simulate several possibilities of atmospheres for TRAPPIST-1 e, f and 1g: 1) Archean Earth, 2) modern Earth and 3) CO2-dominated atmospheres. We also calculate synthetic transit spectra using the GSFC Planetary Spectrum Generator (PSG), and determine the number of transits needed to observe key spectral features for both JWST and future telescopes (ARIEL, LUVOIR, HabEx). We will identify differences in the spectra of cloudy vs non-cloudy, and determine how much information on spatial variability in atmosphere characteristics can be extracted from time-resolved transit and eclipse mapping. A particular attention will be given to the impact of the atmospheric variability when adding transit spectra, and how this may affect atmospheric parameter retrievals.

  7. Teaching science problem solving: an overview of experimental work

    NARCIS (Netherlands)

    Taconis, R.; Ferguson-Hessler, M.G.M.; Broekkamp, H.

    2001-01-01

    The traditional approach to teaching science problem solving is having the students work individually on a large number of problems. This approach has long been overtaken by research suggesting and testing other methods, which are expected to be more effective. To get an overview of the

  8. Python data science handbook essential tools for working with data

    CERN Document Server

    VanderPlas, Jake

    2016-01-01

    For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues.

  9. NASA 3D Models: James Webb Space Telescope

    Data.gov (United States)

    National Aeronautics and Space Administration — The James Webb Space Telescope (JWST) will be a large infrared telescope with a 6.5-meter primary mirror. The project is working to a 2018 launch date. The JWST will...

  10. Goddard's Astrophysics Science Divsion Annual Report 2014

    Science.gov (United States)

    Weaver, Kimberly (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2015-01-01

    The Astrophysics Science Division (ASD, Code 660) is one of the world's largest and most diverse astronomical organizations. Space flight missions are conceived, built and launched to observe the entire range of the electromagnetic spectrum, from gamma rays to centimeter waves. In addition, experiments are flown to gather data on high-energy cosmic rays, and plans are being made to detect gravitational radiation from space-borne missions. To enable these missions, we have vigorous programs of instrument and detector development. Division scientists also carry out preparatory theoretical work and subsequent data analysis and modeling. In addition to space flight missions, we have a vibrant suborbital program with numerous sounding rocket and balloon payloads in development or operation. The ASD is organized into five labs: the Astroparticle Physics Lab, the X-ray Astrophysics Lab, the Gravitational Astrophysics Lab, the Observational Cosmology Lab, and the Exoplanets and Stellar Astrophysics Lab. The High Energy Astrophysics Science Archive Research Center (HEASARC) is an Office at the Division level. Approximately 400 scientists and engineers work in ASD. Of these, 80 are civil servant scientists, while the rest are resident university-based scientists, contractors, postdoctoral fellows, graduate students, and administrative staff. We currently operate the Swift Explorer mission and the Fermi Gamma-ray Space Telescope. In addition, we provide data archiving and operational support for the XMM mission (jointly with ESA) and the Suzaku mission (with JAXA). We are also a partner with Caltech on the NuSTAR mission. The Hubble Space Telescope Project is headquartered at Goddard, and ASD provides Project Scientists to oversee operations at the Space Telescope Science Institute. Projects in development include the Neutron Interior Composition Explorer (NICER) mission, an X-ray timing experiment for the International Space Station; the Transiting Exoplanet Sky Survey (TESS

  11. Minutes of TOPEX/POSEIDON Science Working Team Meeting and Ocean Tides Workshop

    Science.gov (United States)

    Fu, Lee-Lueng (Editor)

    1995-01-01

    This third TOPEX/POSEIDON Science Working Team meeting was held on December 4, 1994 to review progress in defining ocean tide models, precision Earth orbits, and various science algorithms. A related workshop on ocean tides convened to select the best models to be used by scientists in the Geophysical Data Records.

  12. Framing Education for a Science of Social Work: Missions, Curriculum, and Doctoral Training

    Science.gov (United States)

    Fong, Rowena

    2012-01-01

    Social work education has historically been grounded in professional practice but recent discussions have urged a reconsideration of social work as a science. Social work is progressively doing more intervention work, service systems research, implementation research, and translational research which are elevating research standards to new levels…

  13. Secondary School Students' Perceptions of Working Life Skills in Science-Related Careers

    Science.gov (United States)

    Salonen, Anssi; Hartikainen-Ahia, Anu; Hense, Jonathan; Scheersoi, Annette; Keinonen, Tuula

    2017-01-01

    School students demonstrate a lack of interest in choosing science studies and science-related careers. To better understand the underlying reasons, this study aims to examine secondary school students' perceptions of working life skills and how these perceptions relate to the skills of the twenty-first century. The participants in this study were…

  14. Undergraduate honors students' images of science: Nature of scientific work and scientific knowledge

    Science.gov (United States)

    Wallace, Michael L.

    This exploratory study assessed the influence of an implicit, inquiry-oriented nature of science (NOS) instructional approach undertaken in an interdisciplinary college science course on undergraduate honor students' (UHS) understanding of the aspects of NOS for scientific work and scientific knowledge. In this study, the nature of scientific work concentrated upon the delineation of science from pseudoscience and the value scientists place on reproducibility. The nature of scientific knowledge concentrated upon how UHS view scientific theories and how they believe scientists utilize scientific theories in their research. The 39 UHS who participated in the study were non-science majors enrolled in a Honors College sponsored interdisciplinary science course where the instructors took an implicit NOS instructional approach. An open-ended assessment instrument, the UFO Scenario, was designed for the course and used to assess UHS' images of science at the beginning and end of the semester. The mixed-design study employed both qualitative and quantitative techniques to analyze the open-ended responses. The qualitative techniques of open and axial coding were utilized to find recurring themes within UHS' responses. McNemar's chi-square test for two dependent samples was used to identify whether any statistically significant changes occurred within responses from the beginning to the end of the semester. At the start of the study, the majority of UHS held mixed NOS views, but were able to accurately define what a scientific theory is and explicate how scientists utilize theories within scientific research. Postinstruction assessment indicated that UHS did not make significant gains in their understanding of the nature of scientific work or scientific knowledge and their overall images of science remained static. The results of the present study found implicit NOS instruction even with an extensive inquiry-oriented component was an ineffective approach for modifying UHS

  15. Fiscal 1982 plans of works in National Institute of Radiological Sciences, Science and Technology Agency

    International Nuclear Information System (INIS)

    1982-01-01

    National Institute of Radiological Sciences, since its establishment in 1957, has engaged in the research and other works on the radiation injuries in human bodies, the medical utilization of radiation and the training and education of personnel in the field. The plans of works in fiscal 1982 in the NIRS are described. As special research works, there are the estimation of the degree of danger due to low level radiation for human bodies, environmental radiation exposure due to nuclear facilities, etc., the medical utilization of particle accelerators, and the biological effects of tritium in nuclear fusion reactor development. Ordinary research works include physics, chemistry, genetics, pharmacy, clinical research, etc. In other areas of activities are radiation risk evaluation, radioactivity investigation, technological aid, personnel education and training, and medical work. (Mori, K.)

  16. Rómulo de Carvalho's Work on the Popularization of Science During Salazarism

    Science.gov (United States)

    Galamba, Arthur

    2013-10-01

    This article provides an account of Rómulo de Carvalho's most prominent works on the popularization of science during the Salazarist regime in Portugal. Carvalho has been praised for his `unique' writing style, for his uncommon ability to communicate scientific knowledge with clarity to a wide audience: he wrote to teachers, to secondary students, to the layman and even to the rural peasantry. Most of his books and articles on popularization explored the History and Philosophy of Science, and it has been claimed that he influenced many youngsters to pursue scientific careers. Given the repressive political context imposed by Salazarism, it is argued that Carvalho's work on the popularization of science had a humanist and libertarian connotation. However, intriguingly, different from some of his contemporaries who also promoted humanistic education for all, Carvalho was never targeted by the Dictatorship. The article seeks to shed light on this matter. It points out the educational reach of Carvalho's writings and suggests that popularization of science in repressive regimes is not necessarily a problematic issue as long as it does not threat the status quo.

  17. A Science of Social Work? Response to John Brekke

    Science.gov (United States)

    Shaw, Ian

    2014-01-01

    I take the opportunity provided by John Brekke's (2012) article to respond to the general assumptions and approaches that may be brought when considering the question of a science of social work. I consider first, what should be our frames of reference, our communities of interest, or our boundaries of inclusion, for such a discussion?…

  18. Innovations in Community-Based and Interdisciplinary Research: A Network Perspective on Innovation in Social Work Science

    Science.gov (United States)

    Rice, Eric; Petering, Robin; Stringfellow, Erin; Craddock, Jaih B.

    2017-01-01

    We present a preliminary theory of innovation in social work science. The focus of the piece is two case studies from our work that illustrate the social nature of innovations in the science of social work. This inductive theory focuses on a concept we refer to as transformative innovation, wherein two sets of individuals who possess different…

  19. Goethe's Conception of "Experiment as Mediator" and Implications for Practical Work in School Science

    Science.gov (United States)

    Park, Wonyong; Song, Jinwoong

    2018-03-01

    There has been growing criticism over the aims, methods, and contents of practical work in school science, particularly concerning their tendency to oversimplify the scientific practice with focus on the hypothesis-testing function of experiments. In this article, we offer a reading of Johann Wolfgang von Goethe's scientific writings—particularly his works on color as an exquisite articulation of his ideas about experimentation—through the lens of practical school science. While avoiding the hasty conclusions made from isolated experiments and observations, Goethe sought in his experiments the interconnection among diverse natural phenomena and rejected the dualistic epistemology about the relation of humans and nature. Based on a close examination of his color theory and its underlying epistemology, we suggest three potential contributions that Goethe's conception of scientific experimentation can make to practical work in school science.

  20. Science, Social Work, and Intervention Research: The Case of "Critical Time Intervention"

    Science.gov (United States)

    Jenson, Jeffrey M.

    2014-01-01

    Intervention research is an important, yet often neglected, focus of social work scholars and investigators. The purpose of this article is to review significant milestones and recent advances in intervention research. Methodological and analytical developments in intervention research are discussed in the context of science and social work.…

  1. A Response to Anastas and Coffey: The Science of Social Work and Its Relationship to Social Work Education and Professional Organizations

    Science.gov (United States)

    Voisin, Dexter R.; Wong, Marleen; Samuels, Gina Miranda

    2014-01-01

    Relationships are central to the profession of social work; relationships with allied disciplines, among professional social work organizations, and between classroom and field education. However, embedded within these relationships are historical tensions, and contemporary opportunities that can advance both the science of social work and the…

  2. Detecting Proxima b’s Atmosphere with JWST Targeting CO{sub 2} at 15 μ m Using a High-pass Spectral Filtering Technique

    Energy Technology Data Exchange (ETDEWEB)

    Snellen, I. A. G.; Van Dishoeck, E. F.; Brandl, B. R.; Van Eylen, V. [Leiden Observatory, Leiden University, Postbus 9513, 2300 RA Leiden (Netherlands); Désert, J.-M.; Waters, L. B. F. M.; Dominik, C.; Birkby, J. L. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Robinson, T. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Meadows, V. [Astronomy Department, University of Washington (United States); Henning, T.; Bouwman, J. [Max-Planck-Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Lahuis, F.; Min, M. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Lovis, C. [Observatoire de Genève, Université de Genève, 51 chemin des Maillettes, 1290 Versoix (Switzerland); Sing, D. [School of Physics, University of Exeter, Exeter (United Kingdom); Anglada-Escudé, G. [School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London E1 4NS (United Kingdom); Brogi, M., E-mail: snellen@strw.leidenuniv.nl [Center for Astrophysics and Space Astronomy, University of Colorado at Boulder, Boulder, CO 80309 (United States)

    2017-08-01

    Exoplanet Proxima b will be an important laboratory for the search for extraterrestrial life for the decades ahead. Here, we discuss the prospects of detecting carbon dioxide at 15 μ m using a spectral filtering technique with the Medium Resolution Spectrograph (MRS) mode of the Mid-Infrared Instrument (MIRI) on the James Webb Space Telescope ( JWST ). At superior conjunction, the planet is expected to show a contrast of up to 100 ppm with respect to the star. At a spectral resolving power of R  = 1790–2640, about 100 spectral CO{sub 2} features are visible within the 13.2–15.8 μ m (3B) band, which can be combined to boost the planet atmospheric signal by a factor of 3–4, depending on the atmospheric temperature structure and CO{sub 2} abundance. If atmospheric conditions are favorable (assuming an Earth-like atmosphere), with this new application to the cross-correlation technique, carbon dioxide can be detected within a few days of JWST observations. However, this can only be achieved if both the instrumental spectral response and the stellar spectrum can be determined to a relative precision of ≤1 × 10{sup −4} between adjacent spectral channels. Absolute flux calibration is not required, and the method is insensitive to the strong broadband variability of the host star. Precise calibration of the spectral features of the host star may only be attainable by obtaining deep observations of the system during inferior conjunction that serve as a reference. The high-pass filter spectroscopic technique with the MIRI MRS can be tested on warm Jupiters, Neptunes, and super-Earths with significantly higher planet/star contrast ratios than the Proxima system.

  3. Children Working with Text in Science: disparities with 'Literacy Hour' practice

    Science.gov (United States)

    Peacock, Alan; Weedon, Helen

    2002-02-01

    The National Literacy Strategy (NLS) provides a coherent plan of what and how children should be taught about non-fiction text. Nevertheless, the difficulties that children actually experience when using science texts are not fully addressed: in particular, the use and interpretation of the visual elements of science text is given limited attention in the prescriptions for teaching the 'Literacy Hour'. Such disparities identified by prior research and by a content analysis of the NLS Framework Document are considered alongside evidence of the difficulties encountered by a class of Year 5 pupils working with a range of non-fiction texts during science lessons. Pupils' text use is studied through observations and interviews with children, through interviews with their teachers and through a questionnaire about text use strategies. The findings suggest that (1) the pupils experienced considerable difficulty in making sense of the science content of non-fiction text, particularly in terms of interpretation of visual elements and their links to written text and (2) use of retrieval strategies taught during the Literacy Hour was not transferred to learning from text during science lessons. The study proposes closer planning of text use in science and literacy lessons.

  4. Women Working in Engineering and Science

    Science.gov (United States)

    Luna, Bernadette; Kliss, Mark (Technical Monitor)

    1998-01-01

    The presentation will focus on topics of interest to young women pursuing an engineering or scientific career, such as intrinsic personality traits of most engineers, average salaries for the various types of engineers, appropriate preparation classes at the high school and undergraduate levels, gaining experience through internships, summer jobs and graduate school, skills necessary but not always included in engineering curricula (i.e., multimedia, computer skills, communication skills), the work environment, balancing family and career, and sexual harassment. Specific examples from the speaker's own experience in NASA's Space Life Sciences Program will be used to illustrate the above topics. In particular, projects from Extravehicular Activity and Protective Systems research and Regenerative Life Support research will be used as examples of real world problem-solving to enable human exploration of the solar system.

  5. An Exploration of Teachers' Efforts to Understand Identity Work and its Relevance to Science Instruction

    Science.gov (United States)

    Smith, M. Cecil; Darfler, Anne

    2012-06-01

    US educators express concern that students are turning away from the study of science and have little interest in pursuing science careers. Nationally, science achievement scores for 8th graders are unchanged since 1996, but 12th graders' scores have significantly decreased. A shortcoming of education reform efforts is lack of attention to students' developmental needs. Science study should enable students to learn about themselves—to develop and refine their skills, define their values, explore personal interests, and understand the importance of science to themselves and others. Effective secondary science instruction requires attention to students' identity development—the key developmental task of adolescence. Secondary science teachers participated in an 8-week course focused on understanding adolescent identity development and methods for addressing identity. Transcripts of the teachers' online discussions of salient issues were analyzed to determine their perceptions regarding classroom identity work. Teachers identified several assets and obstacles to identity work that were organized into two broad categories: teacher knowledge, training opportunities, and administrative support, or lack of these; and, presence of inflexible curricula, standardized testing regimes, and increased teacher accountability. Implications for student growth and science teacher professional development are discussed.

  6. Working with Science Teachers to Transform the Opportunity Landscape for Regional and Rural Youth: A Qualitative Evaluation of the Science in Schools Program

    Science.gov (United States)

    Sheehan, Grania R.; Mosse, Jennifer

    2013-01-01

    This article reports on a qualitative evaluation of the Science in Schools program; a suite of science based activities delivered by staff of a regional university campus and designed to provide professional development for science teachers working in non-metropolitan schools in a socioeconomically disadvantaged region of Australia. The research…

  7. Production of a Science Documentary and Its Usefulness in Teaching the Nature of Science: Indirect Experience of How Science Works

    Science.gov (United States)

    Kim, Sun Young; Yi, Sang Wook; Cho, Eun Hee

    2014-01-01

    In this study, we produced a documentary which portrays scientists at work and critically evaluated the use of this film as a teaching tool to help students develop an understanding of the nature of science. The documentary, "Life as a Scientist: People in Love with 'Caenorhabditis elegans,' a Soil Nematode" encompasses the…

  8. Effect of project work on secondary school students science process ...

    African Journals Online (AJOL)

    The study investigated the effect of students' project work on secondary school science process skills acquisition in Biology. The study was carried out in Owerri North Local Government Area of Imo State. Three research questions guided the study and three null hypotheses were postulated and tested at 0.05 level of ...

  9. Group monopolization & collaborative work: the making of a science video project

    NARCIS (Netherlands)

    Jayme, B.; Roth, W.-M.; Reis, G.; Eijck, van M.W.

    2007-01-01

    ABSTRACT: In the present ethnographic case study, we investigate how monopolization emerges and is maintained during collaborative working situations in elementary science classroom tasks. Our analysis suggests that monopolization is achieved in part by the position of the students around the

  10. Science as Content, Science as Context: Working in the Science Department

    Science.gov (United States)

    Wildy, Helen; Wallace, John

    2004-01-01

    In this study we explored how the science department shaped the relationship between a science department head, Mr Greg, and a teacher, Ms Horton, as they grappled with their expectations of, and responsibilities for, teaching and leadership in the daily life in the department. We found that, from their life histories and their positions in the…

  11. 77 FR 31592 - Notice of Proposed Information Collection Requests; Institute of Education Sciences; What Works...

    Science.gov (United States)

    2012-05-29

    ... Sciences; What Works Clearinghouse SUMMARY: The What Works Clearinghouse (WWC) was established to develop... of Collection: What Works Clearinghouse. OMB Control Number: 1850-0788. Type of Review: Extension.... Abstract: The What Works Clearinghouse (WWC) was established to develop, maintain, and make accessible a...

  12. Navigating the science-policy spectrum: Opportunities to work on policies related to your research

    Science.gov (United States)

    Licker, R.; Ekwurzel, B.; Goldman, G. T.; DeLonge, M. S.

    2017-12-01

    Many scientists conduct research with direct policy relevance, whether it be producing sea-level projections that are taken-up by local decision-makers, or developing new agricultural technologies. All scientists are affected by policies made by their respective local, regional, and federal governments. For example, budgets affect the grant resources available to conduct research and policies on visas influence the accessibility of new positions for foreign scientists. As a result, many scientists would like to engage with the policy domain, and either bring their science to bear on new policies that are in the works (science-for-policy) or inform policies on the scientific research enterprise (policy-for-science). Some scientists prefer to engage and be neutral to the policy outcome, serving primarily as an information resource. Many may choose to also advocate for a particular outcome based on their expertise and experience. Research shows that policy decisions benefit greatly from the input of scientific experts. We explore the spectrum between informing policies in a "non-prescriptive" manner to working on policies in an advocacy space. We highlight tips for successful engagement along this spectrum. Finally, we review current science-for-policy and policy-for-science issues of relevance to the geophysical sciences.

  13. Work-Based Curriculum to Broaden Learners' Participation in Science: Insights for Designers

    Science.gov (United States)

    Bopardikar, Anushree; Bernstein, Debra; Drayton, Brian; McKenney, Susan

    2018-05-01

    Around the globe, science education during compulsory schooling is envisioned for all learners regardless of their educational and career aspirations, including learners bound to the workforce upon secondary school completion. Yet, a major barrier in attaining this vision is low learner participation in secondary school science. Because curricula play a major role in shaping enacted learning, this study investigated how designers developed a high school physics curriculum with positive learning outcomes in learners with varied inclinations. Qualitative analysis of documents and semistructured interviews with the designers focused on the curriculum in different stages—from designers' ideas about learning goals to their vision for enactment to the printed materials—and on the design processes that brought them to fruition. This revealed designers' emphases on fostering workplace connections via learning goals and activities, and printed supports. The curriculum supported workplace-inspired, hands-on design-and-build projects, developed to address deeply a limited set of standards aligned learning goals. The curriculum also supported learners' interactions with relevant workplace professionals. To create these features, the designers reviewed other curricula to develop vision and printed supports, tested activities internally to assess content coverage, surveyed states in the USA receiving federal school-to-work grants and reviewed occupational information to choose unit topics and career contexts, and visited actual workplaces to learn about authentic praxis. Based on the worked example, this paper offers guidelines for designing work-based science curriculum products and processes that can serve the work of other designers, as well as recommendations for research serving designers and policymakers.

  14. Fighting for life: Religion and science in the work of fish and wildlife biologists

    Science.gov (United States)

    Geffen, Joel Phillip

    Philosophers, historians, and sociologists of science have argued that it is impossible to separate fact from value. Even so, Americans generally demand that scientists be "objective." No bias is permitted in their work. Religious motivations in particular are widely considered anathema within the halls of science. My dissertation addresses both theoretical and practical aspects concerning objectivity in science through an examination of fish and wildlife biologists. I hypothesized that they use the language of objective science as a tool to convince others to protect habitats and species. Further, I claimed that this "rhetoric of science" is employed either consciously or unconsciously on behalf of personal values, and that religious and/or spiritual values figure significantly among these. Regarding the issue's practical applications, I argued in support of Susan Longino's assertion that while subjective influences exist in science, they do not necessarily indicate that objectivity has been sacrificed. My primary methodology is ethnographic. Thirty-five biologists working in the Pacific Northwest were interviewed during the course of summer 2001. Participant ages ranged from 23 to 78. Both genders were represented, as were various ethnic and cultural backgrounds, including Native American. I used a questionnaire to guide respondents through a consistent set of open-ended queries. I organized their answers under four categories: the true, the good, the beautiful, and the holy. The first three were borrowed from the theoretical writings of philosopher Immanuel Kant. The last came from Rudolf Otto's theological work. These categories provided an excellent analytical framework. I found that the great majority of fish and wildlife biologists strive for objectivity. However, they are also informed by powerful contextual values. These are derived from environmental ethics, aesthetic preferences pertaining to ecosystem appearance and function, and visceral experiences of

  15. Nursing's Boundary Work: Theory Development and the Making of Nursing Science, ca. 1950-1980.

    Science.gov (United States)

    Tobbell, Dominique A

    Beginning in the late 1950s and intensifying through the 1960s and 1970s, nurse educators, researchers, and scholars worked to establish nursing as an academic discipline. These nursing leaders argued that the development of nursing theory was not only critical to nursing's academic project but also to improving nursing practice and patient care. The purpose of the article is to examine the context for the development of nursing theory and the characteristics of early theory development from the 1950s through the early 1980s. The methods used were historical research and analysis of the social, cultural, and political context of nursing theory development from the 1950s through the early 1980s. How this context influenced the work of nurse theorists and researchers in these decades was addressed. The development of nursing theory was influenced by a context that included the increasing complexity of patient care, the relocation of nursing education from hospital-based diploma schools to colleges and universities, and the ongoing efforts of nurses to secure more professional autonomy and authority in the decades after World War II. In particular, from the 1960s through the early 1980s, nurse theorists, researchers, and educators viewed the establishment of nursing science, underpinned by nursing theory, as critical to establishing nursing as an academic discipline. To define nursing science, nurse theorists and researchers engaged in critical boundary work in order to draw epistemic boundaries between nursing science and the existing biomedical and behavioral sciences. By the early 1980s, the boundary work of nurse theorists and researchers was incomplete. Their efforts to define nursing science and establish nursing as an academic discipline were constrained by generational and intraprofessional politics, limited resources, the gendered and hierarchical politics, and the complexity of drawing disciplinary boundaries for a discipline that is inherently

  16. Mercury Orbiter: Report of the Science Working Team

    Science.gov (United States)

    Belcher, John W.; Slavin, James A.; Armstrong, Thomas P.; Farquhar, Robert W.; Akasofu, Syun I.; Baker, Daniel N.; Cattell, Cynthia A.; Cheng, Andrew F.; Chupp, Edward L.; Clark, Pamela E.

    1991-01-01

    The results are presented of the Mercury Orbiter Science Working Team which held three workshops in 1988 to 1989 under the auspices of the Space Physics and Planetary Exploration Divisions of NASA Headquarters. Spacecraft engineering and mission design studies at the Jet Propulsion Lab were conducted in parallel with this effort and are detailed elsewhere. The findings of the engineering study, summarized herein, indicate that spin stabilized spacecraft carrying comprehensive particles and fields experiments and key planetology instruments in high elliptical orbits can survive and function in Mercury orbit without costly sun shields and active cooling systems.

  17. Graduate teaching assistants' perceptions of teaching competencies required for work in undergraduate science labs

    Science.gov (United States)

    Deacon, Christopher; Hajek, Allyson; Schulz, Henry

    2017-11-01

    Many post-secondary institutions provide training and resources to help GTAs fulfil their teaching roles. However, few programmes focus specifically on the teaching competencies required by GTAs who work with undergraduate students in laboratory settings where learning tends to be more active and inquiry based than in classroom settings. From a review of 8 GTA manuals, we identified 20 competencies and then surveyed faculty and lab coordinators (FIS) and GTAs from a Faculty of Science at a comprehensive Canadian university to identify which of those competencies are required of GTAs who work in undergraduate science labs. GTAs and FIS did not significantly differ in the competencies they view as required for GTAs to work effectively in undergraduate labs. But, when comparing the responses of GTAs and FIS to TA manuals, 'Clearly and effectively communicates ideas and information with students' was the only competency for which there was agreement on the level of requirement. We also examined GTAs' self-efficacy for each of the identified competencies and found no overall relationship between self-efficacy and demographic characteristics, including experience and training. Our results can be used to inform the design of training programmes specifically for GTAs who work in undergraduate science labs, for example, programmes should provide strategies for GTAs to obtain feedback which they can use to enhance their teaching skills. The goal of this study is to improve undergraduate lab instruction in faculties of science and to enhance the teaching experience of GTAs by better preparing them for their role.

  18. The potential improvement of team-working skills in Biomedical and Natural Science students using a problem-based learning approach

    OpenAIRE

    Forough L. Nowrouzian; Anne Farewell

    2013-01-01

    Teamwork has become an integral part of most organisations today, and it is clearly important in Science and other disciplines. In Science, research teams increase in size while the number of single-authored papers and patents decline. Team-work in laboratory sciences permits projects that are too big or complex for one individual to be tackled. This development requires that students gain experience of team-work before they start their professional career. Students working in teams this may ...

  19. The potential improvement of team-working skills in Biomedical and Natural Science students using a problem-based learning approach

    Directory of Open Access Journals (Sweden)

    Forough L. Nowrouzian

    2013-08-01

    Full Text Available Teamwork has become an integral part of most organisations today, and it is clearly important in Science and other disciplines. In Science, research teams increase in size while the number of single-authored papers and patents decline. Team-work in laboratory sciences permits projects that are too big or complex for one individual to be tackled. This development requires that students gain experience of team-work before they start their professional career. Students working in teams this may increase productivity, confidence, innovative capacity and improvement of interpersonal skills. Problem-based learning (PBL is an instructional approach focusing on real analytical problems as a means of training an analytical scientist. PBL may have a positive impact on team-work skills that are important for undergraduates and postgraduates to enable effective collaborative work. This survey of the current literature explores the development of the team-work skills in Biomedical Science students using PBL.

  20. The James Webb Space Telescope's Near-Infrared Camera (NIRCam): Making Models, Building Understanding

    Science.gov (United States)

    McCarthy, D. W., Jr.; Lebofsky, L. A.; Higgins, M. L.; Lebofsky, N. R.

    2011-09-01

    Since 2003, the Near Infrared Camear (NIRCam) science team for the James Webb Space Telescope (JWST) has conducted "Train the Trainer" workshops for adult leaders of the Girl Scout of the USA (GSUSA), engaging them in the process of scientific inquiry and equipping them to host astronomy-related activities at the troop level. Training includes topics in basic astronomy (night sky, phases of the Moon, the scale of the Solar System and beyond, stars, galaxies, telescopes, etc.) as well as JWST-specific research areas in extra-solar planetary systems and cosmology, to pave the way for girls and women to understand the first images from JWST. Participants become part of our world-wide network of 160 trainers teaching young women essential STEM-related concepts using astronomy, the night sky environment, applied math, engineering, and critical thinking.

  1. Crafting a Future in Science: Tracing Middle School Girls' Identity Work over Time and Space

    Science.gov (United States)

    Barton, Angela Calabrese; Kang, Hosun; Tan, Edna; O'Neill, Tara B.; Bautista-Guerra, Juanita; Brecklin, Caitlin

    2013-01-01

    The underrepresentation of girls from nondominant backgrounds in the sciences and engineering continues despite recent gains in achievement. This longitudinal ethnographic study traces the identity work that girls from nondominant backgrounds do as they engage in science-related activities across school, club, and home during the middle school…

  2. "Solidarity and Support": Feminist Memory Work Focus Groups with Working-Class Women Studying Social Science Degrees in Australia

    Science.gov (United States)

    Michell, Dee; Beddoe, Liz; Fraser, Heather; Jarldorn, Michele

    2017-01-01

    This paper reports on our use of a two-phased, feminist memory work in a project conducted with 11 women, social science students at an Australian university. We begin by describing government-led attempts to widen participation in Australian universities because 10 of the 11 women who participated in our project were from…

  3. The Federation of Earth Science Information Partners (ESIP Federation): Facilitating Partnerships that Work to Bring Earth Science Data into Educational Settings

    Science.gov (United States)

    Freuder, R.; Ledley, T. S.; Dahlman, L.

    2004-12-01

    The Federation of Earth Science Information Partners (ESIP Federation, http://www.esipfed.org) formed seven years ago and now with 77 member organizations is working to "increase the quality and value of Earth science products and services .for the benefit of the ESIP Federation's stakeholder communities." Education (both formal and informal) is a huge audience that we serve. Partnerships formed by members within the ESIP Federation have created bridges that close the gap between Earth science data collection and research and the effective use of that Earth science data to explore concepts in Earth system science by the educational community. The Earth Exploration Toolbook is one of those successful collaborations. The Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) grew out of a need of the educational community (articulated by the Digital Library for Earth System Education (DLESE) community) to have better access to Earth science data and data analysis tools and help in effectively using them with students. It is a collection of web-accessible chapters, each featuring step-by-step instructions on how to use an Earth science dataset and data analysis tool to investigate an issue or concept in Earth system science. Each chapter also provides the teacher information on the outcome of the activity, grade level, standards addressed, learning goals, time required, and ideas for exploring further. The individual ESIP Federation partners alone could not create the EET. However, the ESIP Federation facilitated the partnering of members, drawing from data providers, researchers and education tool developers, to create the EET. Interest in the EET has grown since it went live with five chapters in July 2003. There are currently seven chapters with another six soon to be released. Monthly online seminars in which over a hundred educators have participated have given very positive feedback. Post workshop surveys from our telecon-online workshops indicate that

  4. Satellite stories: capturing professional experiences of academic health sciences librarians working in delocalized health sciences programs.

    Science.gov (United States)

    Phinney, Jackie; Horsman, Amanda Rose

    2018-01-01

    Health sciences training programs have progressively expanded onto satellite campuses, allowing students the opportunity to learn in communities away from an academic institution's main campus. This expansion has encouraged a new role for librarians to assume, in that a subset of health sciences librarians identify as "satellite librarians" who are permanently located at a distance from the main campus. Due to the unique nature of this role and lack of existing data on the topic, the authors investigated the experiences and perceptions of this unique group of information professionals. An electronic survey was distributed to health sciences librarians via two prominent North American email discussion lists. Questions addressed the librarians' demographics, feelings of social inclusion, technological support, autonomy, professional support, and more. Eighteen surveys were analyzed. While several respondents stated that they had positive working relationships with colleagues, many cited issues with technology, scheduling, and lack of consideration as barriers to feeling socially included at both the parent and local campuses. Social inclusion, policy creation, and collection management issues were subject to their unique situations and their colleagues' perceptions of their roles as satellite librarians. The results from this survey suggest that the role of the academic health sciences librarian at the satellite campus needs to be clearly communicated and defined. This, in turn, will enhance the experience for the librarian and provide better service to the client.

  5. The Community-based Organizations Working Group of the Space Science Education Support Network

    Science.gov (United States)

    Lutz, J. H.; Lowes, L. L.; Asplund, S.

    2004-12-01

    The NASA Space Science Support Network Community-based Organizations Working Group (CBOWG) has been working for the past two years on issues surrounding afterschool programs and programs for youth (e.g., Girl Scouts, Boy Scouts, Boys and Girls Clubs, 4-H, summer camps, afterschool and weekend programs for various ages, programs with emphases on minority youth). In this session the co-leaders of the CBOWG will discuss the challenges of working with community-based organizations on a regional or national level. We will highlight some ties that we have forged with the National Institute for Out of School Time (NIOST) and the National Afterschool Association (NAA). We will also talk about efforts to coordinate how various entities within NASA cooperate with community-based organizations to serve the best interests of these groups. We will give a couple of examples of how NASA space science organizations have partnered with community-based organizations. The session will include some handouts of information and resources that the CBOWG has found useful in developing an understanding of this segment of informal education groups. We would like to thank NASA for providing resources to support the work of the CBOWG.

  6. Education of natural science in the work of the Municipal Center for Extracurricular Activities

    Science.gov (United States)

    Jokin, I.

    2012-04-01

    In the description of my work I presented my own experience in the organizing and carrying out of extracurricular activities with the students, the used modes and methods of work, the obtained results and some good practices in the field of natural sciences. Organizing and carrying out of scientific festivals, participation in joint projects together with scientific organizations. Key words: European dimension, interactive methods, key competences, natural sciences, extracurricular activities. We are witnesses of a fundamental change in the pedagogical culture and practice in our schools to establish the parameters of the quality of training. The good scientific culture is an important part of the students' education. Unfortunately, at the present time the scientific and technological culture is on a low level. One of the contemporary problems and realities of the education in natural science school subjects, as a whole and in particular in the secondary education, is the decreased interest for the training in them and in particular in physics, as well as synchronization of the interrelations: school environment - society. In many countries there is a drop in the orientation of the students towards the science and technology - the problem of Science and Technology (S&T). The training of the young people often creates some problems. The teachers meet with the problem of insufficient motivation of the learners for study and difficulties that they encounter in the process of training. The students find it difficult to apply the mastered knowledge to an applied context. The knowledge is rather academic and rather remote from the context, in which the children live and communicate, which makes it nonfunctional. At present there are not enough extracurricular activities that should meet these necessities of the Bulgarian school. The reasons are various, but they mainly consist in the lack of a material base, an exchange of experience and good practices and motivation

  7. Gender-heterogeneous working groups produce higher quality science.

    Directory of Open Access Journals (Sweden)

    Lesley G Campbell

    Full Text Available Here we present the first empirical evidence to support the hypothesis that a gender-heterogeneous problem-solving team generally produced journal articles perceived to be higher quality by peers than a team comprised of highly-performing individuals of the same gender. Although women were historically underrepresented as principal investigators of working groups, their frequency as PIs at the National Center for Ecological Analysis and Synthesis is now comparable to the national frequencies in biology and they are now equally qualified, in terms of their impact on the accumulation of ecological knowledge (as measured by the h-index. While women continue to be underrepresented as working group participants, peer-reviewed publications with gender-heterogeneous authorship teams received 34% more citations than publications produced by gender-uniform authorship teams. This suggests that peers citing these publications perceive publications that also happen to have gender-heterogeneous authorship teams as higher quality than publications with gender uniform authorship teams. Promoting diversity not only promotes representation and fairness but may lead to higher quality science.

  8. Gender-heterogeneous working groups produce higher quality science.

    Science.gov (United States)

    Campbell, Lesley G; Mehtani, Siya; Dozier, Mary E; Rinehart, Janice

    2013-01-01

    Here we present the first empirical evidence to support the hypothesis that a gender-heterogeneous problem-solving team generally produced journal articles perceived to be higher quality by peers than a team comprised of highly-performing individuals of the same gender. Although women were historically underrepresented as principal investigators of working groups, their frequency as PIs at the National Center for Ecological Analysis and Synthesis is now comparable to the national frequencies in biology and they are now equally qualified, in terms of their impact on the accumulation of ecological knowledge (as measured by the h-index). While women continue to be underrepresented as working group participants, peer-reviewed publications with gender-heterogeneous authorship teams received 34% more citations than publications produced by gender-uniform authorship teams. This suggests that peers citing these publications perceive publications that also happen to have gender-heterogeneous authorship teams as higher quality than publications with gender uniform authorship teams. Promoting diversity not only promotes representation and fairness but may lead to higher quality science.

  9. Participation in Science Practices while Working in a Multimedia Case-Based Environment

    Science.gov (United States)

    Kang, Hosun; Lundeberg, Mary A.

    2010-01-01

    The purpose of this study was to investigate how two female students participated in science practices as they worked in a multimedia case-based environment: interpreting simulated results, reading and writing multiple texts, role-playing, and Internet conferencing. Using discourse analysis, the following data were analyzed: students' published…

  10. Sixth Annual NASA Ames Space Science and Astrobiology Jamboree

    Science.gov (United States)

    Hollingsworth, Jeffery; Howell, Steve; Fonda, Mark; Dateo, Chris; Martinez, Christine M.

    2018-01-01

    Welcome to the Sixth Annual NASA Ames Research Center, Space Science and Astrobiology Jamboree at NASA Ames Research Center (ARC). The Space Science and Astrobiology Division consists of over 60 Civil Servants, with more than 120 Cooperative Agreement Research Scientists, Post-Doctoral Fellows, Science Support Contractors, Visiting Scientists, and many other Research Associates. Within the Division there is engagement in scientific investigations over a breadth of disciplines including Astrobiology, Astrophysics, Exobiology, Exoplanets, Planetary Systems Science, and many more. The Division's personnel support NASA spacecraft missions (current and planned), including SOFIA, K2, MSL, New Horizons, JWST, WFIRST, and others. Our top-notch science research staff is spread amongst three branches in five buildings at ARC. Naturally, it can thus be difficult to remain abreast of what fellow scientific researchers pursue actively, and then what may present and/or offer regarding inter-Branch, intra-Division future collaborative efforts. In organizing this annual jamboree, the goals are to offer a wholesome, one-venue opportunity to sense the active scientific research and spacecraft mission involvement within the Division; and to facilitate communication and collaboration amongst our research scientists. Annually, the Division honors one senior research scientist with a Pollack Lecture, and one early career research scientist with an Outstanding Early Career Space Scientist Lecture. For the Pollack Lecture, the honor is bestowed upon a senior researcher who has made significant contributions within any area of research aligned with space science and/or astrobiology. This year we are pleased to honor Linda Jahnke. With the Early Career Lecture, the honor is bestowed upon an early-career researcher who has substantially demonstrated great promise for significant contributions within space science, astrobiology, and/or, in support of spacecraft missions addressing such

  11. First-order error budgeting for LUVOIR mission

    Science.gov (United States)

    Lightsey, Paul A.; Knight, J. Scott; Feinberg, Lee D.; Bolcar, Matthew R.; Shaklan, Stuart B.

    2017-09-01

    Future large astronomical telescopes in space will have architectures that will have complex and demanding requirements to meet the science goals. The Large UV/Optical/IR Surveyor (LUVOIR) mission concept being assessed by the NASA/Goddard Space Flight Center is expected to be 9 to 15 meters in diameter, have a segmented primary mirror and be diffraction limited at a wavelength of 500 nanometers. The optical stability is expected to be in the picometer range for minutes to hours. Architecture studies to support the NASA Science and Technology Definition teams (STDTs) are underway to evaluate systems performance improvements to meet the science goals. To help define the technology needs and assess performance, a first order error budget has been developed. Like the JWST error budget, the error budget includes the active, adaptive and passive elements in spatial and temporal domains. JWST performance is scaled using first order approximations where appropriate and includes technical advances in telescope control.

  12. Pathways Towards Habitable Planets: Capabilities of the James Webb Space Telescope

    Science.gov (United States)

    Clampin, Mark

    2009-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 m to 28 m. JWST s primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. We also review the expected scientific performance of the observatory for observations of exosolar planets by means of transit photometry and spectroscopy, and direct coronagraphic imaging and address its role in the search for habitable planets.

  13. [The CSI effect and its impact on the perceptions of forensic science experts' work].

    Science.gov (United States)

    Stojer, Joanna

    2011-01-01

    The issue that has been analyzed in this work is the potential effect of crime films and TV series on people's perceptions of forensic medicine and science, and especially on the forming of expectations towards forensic science experts. This syndrome is being called the "CSI effect" after the popular franchise Crime Scene Investigation (CSI). Questionnaire surveys that have been conducted included "experts": 50 experts in various specialities, 77 prosecutors, 119 judges, 64 lay judges, 161 police staff and 80 members of general public. In-depth interviews have been conducted with 20 police staff, and also a focus group has been carried out with 15 law students. In the opinion of the respondents, people's perceptions and expectations of forensic science--as it can be observed during criminal trials--are largely inflated by the entertainment media. Among the surveyed persons, the category that declares watching crime series most rarely, is forensic science experts. Around half of the surveyed experts pointed out to excessive expectations towards they work instigated by TV crime series. The most common expectations towards forensic medicine experts are: immediate conclusiveness of post mortem examinations (going as far as indicating the cause of death at the crime scene), precision of death time estimation and a routine use of sophisticated methods known from TV.

  14. On gestation periods of creative work: an interface of Doig's art and science.

    Science.gov (United States)

    Erren, Thomas C

    2010-01-01

    This article is meant for, but not confined to, younger scientists who may have a series of ideas, hypotheses and projects--be they small or big--and might grapple with the objective to pursue and complete at least some, and preferably most, work in due course. And yet, the very generation, development and completion of numerous projects takes gestation periods which can be long and painful. Importantly, this simple but important truth is valid for any creative process, be it in the sciences or in the arts. With reference to luminaries like Max Perutz and George Wald, more general interfaces between science and the arts are identified. With reference to how some of Peter Doig's paintings evolve over long times and to how John Eccles and Isaac Newton worked, extended gestation periods as a key similarity of creative work by both artists and scientists are exemplified and vindicated. It is concluded that long gestation periods of creative work should be viewed as the expectation rather than the exception. Importantly, the evolutionary and somewhat intuitive commitment to several projects at the same, and often extended, periods of time can be a recipe for revolutionary results fostered by the required variation and diversity of thinking and cross-fertilization of--seemingly--unrelated themes and fields.

  15. Chairmanship of the Neptune/Pluto outer planets science working group

    Science.gov (United States)

    Stern, S. Alan

    1993-11-01

    The Outer Planets Science Working Group (OPSWG) is the NASA Solar System Exploration Division (SSED) scientific steering committee for the Outer Solar System missions. OPSWG consists of 19 members and is chaired by Dr. S. Alan Stern. This proposal summarizes the FY93 activities of OPSWG, describes a set of objectives for OPSWG in FY94, and outlines the SWG's activities for FY95. As chair of OPSWG, Dr. Stern will be responsible for: organizing priorities, setting agendas, conducting meetings of the Outer Planets SWG; reporting the results of OPSWG's work to SSED; supporting those activities relating to OPSWG work, such as briefings to the SSES, COMPLEX, and OSS; supporting the JPL/SAIC Pluto study team; and other tasks requested by SSED. As the Scientific Working Group (SWG) for Jupiter and the planets beyond, OPSWG is the SSED SWG chartered to study and develop mission plans for all missions to the giant planets, Pluto, and other distant objects in the remote outer solar system. In that role, OPSWG is responsible for: defining and prioritizing scientific objectives for missions to these bodies; defining and documenting the scientific goals and rationale behind such missions; defining and prioritizing the datasets to be obtained in these missions; defining and prioritizing measurement objectives for these missions; defining and documenting the scientific rationale for strawman instrument payloads; defining and prioritizing the scientific requirements for orbital tour and flyby encounter trajectories; defining cruise science opportunities plan; providing technical feedback to JPL and SSED on the scientific capabilities of engineering studies for these missions; providing documentation to SSED concerning the scientific goals, objectives, and rationale for the mission; interfacing with other SSED and OSS committees at the request of SSED's Director or those committee chairs; providing input to SSED concerning the structure and content of the Announcement of Opportunity

  16. Cystic fibrosis: Beyond the airways. Report on the meeting of the basic science working group in Loutraki, Greece.

    Science.gov (United States)

    Amaral, Margarida D; Boj, Sylvia F; Shaw, James; Leipziger, Jens; Beekman, Jeffrey M

    2018-06-01

    The European Cystic Fibrosis Society (ECFS) Basic Science Working Group (BSWG) organized a session on the topic "Cystic Fibrosis: Beyond the Airways", within the 15th ECFS Basic Science Conference which gathered around 200 researchers working in the basic science of CF. The session was organized and chaired by Margarida Amaral (BioISI, University of Lisboa, Portugal) and Jeffrey Beekman (University Medical Centre Utrecht, Netherlands) as Chair and Vice-Chair of the BSWG and its purpose was to bring attention of participants of the ECFS Basic Science Conference to "more forgotten" organs in CF disease. In this report we attempt to review and integrate the ideas that emerged at the session. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.

  17. Work and family conflict in academic science: patterns and predictors among women and men in research universities.

    Science.gov (United States)

    Fox, Mary Frank; Fonseca, Carolyn; Bao, Jinghui

    2011-10-01

    This article addresses work-family conflict as reported among women and men academic scientists in data systematically collected across fields of study in nine US research universities. Arguing that academic science is a particularly revealing case for studying work-family conflict, the article addresses: (1) the bi-directional conflict of work with family, and family with work, reported among the scientists; (2) the ways that higher, compared with lower, conflict, is predicted by key features of family, academic rank, and departments/institutions; and (3) patterns and predictors of work-family conflict that vary, as well as converge, by gender. Results point to notable differences, and commonalties, by gender, in factors affecting interference in both directions of work-family conflict reported by scientists. These findings have implications for understandings of how marriage and children, senior compared with junior academic rank, and departmental climates shape work-family conflict among women and men in US academic science.

  18. TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star formation

    Science.gov (United States)

    Spilker, Justin; Rigby, Jane R.; Vieira, Joaquin D.; TEMPLATES Team

    2018-06-01

    TEMPLATES is a JWST Early Release Science program designed to produce high signal-to-noise imaging and IFU spectroscopic data cubes for four gravitationally lensed galaxies at high redshift. The program will spatially resolve the star formation in galaxies across the peak of cosmic star formation in an extinction-robust manner. Lensing magnification pushes JWST to the highest spatial resolutions possible at these redshifts, to map the key spectral diagnostics of star formation and dust extinction: H-alpha, Pa-alpha, and 3.3um PAH emission within individual distant galaxies. Our targets are among the brightest, best-characterized lensed systems known, and include both UV-bright 'normal' galaxies and heavily dust-obscured submillimeter galaxies, at a range of stellar masses and luminosities. I will describe the scientific motivation for this program, detail the targeted galaxies, and describe the planned data products to be delivered to the community in advance of JWST Cycle 2.

  19. Working for a not-for-Profit Research and Development Organization in the Earth Sciences

    Science.gov (United States)

    McKague, h L

    2001-12-01

    The Southwest Research Institute (SwRI) is an independent not-for-profit applied engineering and physical sciences research and development organization. This means that SwRI owes no allegiance to organizations other than its clients. As a not-for-profit organization, SwRI reinvests its net income into the organization to improve, strengthen, and expand facilities and to support internal research and development projects. Located in San Antonio, Texas, on 1200 acres, SwRI employs nearly 2800 staff and occupies nearly 2,000,000 square feet of office space. Its business is about equally divided between commercial and government clients, most of whom have specific scientific and technical problems that need to be solved in a timely, cost-effective manner. Governmental clients include local, state, and federal agencies and foreign governments. Commercial clients include local, national, and international businesses. Earth science disciplines at SwRI include geology, geophysics, hydrology, geochemistry, rock mechanics, mining engineering, and natural hazard assessment. Our overall approach is to systematically examine client problems and develop solutions that may include field work, laboratory work, numerical modeling, or some combination of these approaches. This method of problem solving places a strong emphasis on interdisciplinary teamwork. The work environment at SwRI strikes a balance among the freedom to attack technically important problems, consistent support to professional development, and a strong commitment to meeting client's deadlines and goals. Real problems with real consequences are routinely solved on a tight schedule. The diversity of clients gives exposure to an extraordinarily wide range of problems. Successful employees have sound technical backgrounds, are flexible in accommodating varying clients needs, bring creativity and energy to problem solving and applications of technologies, can work on multiple tasks in parallel, and can communicate

  20. Using science to improve the dissemination and evaluation of scientific work.

    Directory of Open Access Journals (Sweden)

    Brett Thomas Buttliere

    2014-08-01

    Full Text Available Here we examine what science can tell us about the problems in psychological publishing and how to best address those problems. First, the motivation behind questionable research practices is examined (the desire to get ahead or, at least, not fall behind. Next, behavior modification strategies are discussed, pointing out that the carrot works better than the stick. Finally, we suggest that the best way to achieve real change is to make a tool so useful that academics make time to learn and utilize it on their own. Implementation of current change initiatives is hindered by a lack of norms, high initial buy-in costs, and uncertain payoffs. With this in mind, we pull together current open science tools to increase the utility while lowering effort and risk. One, centralized, easy to use, platform, with a profile, a feed of targeted science stories based on previous system interaction, a sophisticated (public comment and rating section, and impact metrics which use the available data can be used to realign individual and group motives. Some advantages of centrally digitizing communications are outlined, including ways the data could be used to improve the peer review process.

  1. NASA LWS Institute GIC Working Group: GIC science, engineering and applications readiness

    Science.gov (United States)

    Pulkkinen, A. A.; Thomson, A. W. P.; Bernabeu, E.

    2016-12-01

    In recognition of the rapidly growing interest on the topic, this paper is based on the findings of the very first NASA Living With a Star (LWS) Institute Working Group that was specifically targeting the GIC issue. The new LWS Institutes program element was launched 2014 and the concept is built around small working group style meetings that focus on well defined problems that demand intense, direct interactions between colleagues in neighboring disciplines to facilitate the development of a deeper understanding of the variety of processes that link the solar activity to Earth's environment. The LWS Institute Geomagnetically Induced Currents (GIC) Working Group (WG) led by A. Pulkkinen (NASA GSFC) and co-led by E. Bernabeu (PJM) and A. Thomson (BGS) was selected competitively as the pilot activity for the new LWS element. The GIC WG was tasked to 1) identify, advance, and address the open scientific and engineering questions pertaining to GIC, 2) advance predictive modeling of GIC, 3) advocate and act as a catalyst to identify resources for addressing the multidisciplinary topic of GIC. In this paper, we target the goal 1) of the GIC WG. More specifically, the goal of this paper is to review the current status and future challenges pertaining to science, engineering and applications of the GIC problem. Science is understood here as the basic space and Earth sciences research that allow improved understanding and physics-based modeling of physical processes behind GIC. Engineering in turn is understood here as the "impact" aspect of GIC. The impact includes any physical effects GIC may have on the performance of the manmade infrastructure. Applications is understood as the models, tools and activities that can provide actionable information to entities such as power systems operators for mitigating the effects of GIC and government for managing any potential consequences from GIC impact to critical infrastructure. In this sense, applications can be considered as

  2. Social and natural sciences differ in their research strategies, adapted to work for different knowledge landscapes.

    Science.gov (United States)

    Jaffe, Klaus

    2014-01-01

    Do different fields of knowledge require different research strategies? A numerical model exploring different virtual knowledge landscapes, revealed two diverging optimal search strategies. Trend following is maximized when the popularity of new discoveries determine the number of individuals researching it. This strategy works best when many researchers explore few large areas of knowledge. In contrast, individuals or small groups of researchers are better in discovering small bits of information in dispersed knowledge landscapes. Bibliometric data of scientific publications showed a continuous bipolar distribution of these strategies, ranging from natural sciences, with highly cited publications in journals containing a large number of articles, to the social sciences, with rarely cited publications in many journals containing a small number of articles. The natural sciences seem to adapt their research strategies to landscapes with large concentrated knowledge clusters, whereas social sciences seem to have adapted to search in landscapes with many small isolated knowledge clusters. Similar bipolar distributions were obtained when comparing levels of insularity estimated by indicators of international collaboration and levels of country-self citations: researchers in academic areas with many journals such as social sciences, arts and humanities, were the most isolated, and that was true in different regions of the world. The work shows that quantitative measures estimating differences between academic disciplines improve our understanding of different research strategies, eventually helping interdisciplinary research and may be also help improve science policies worldwide.

  3. 77 FR 48506 - Notice of Submission for OMB Review; Institute of Education Sciences; What Works Clearinghouse

    Science.gov (United States)

    2012-08-14

    ... DEPARTMENT OF EDUCATION Notice of Submission for OMB Review; Institute of Education Sciences; What... request to continue a currently approved collection under OMB Control Number 1850-0788 for the What Works... considered public records. Title of Collection: What Works Clearinghouse. OMB Control Number: 1850-0788. Type...

  4. Post-doctoral research work developed at the National Institute for Fusion Science - Japan

    International Nuclear Information System (INIS)

    Ueda, M.

    1992-05-01

    This is a research report report on the work developed at the National Institute for Fusion Science - Japan, involving study of Beam Emission Spectroscopy. It describes the use of a fast neutral lithium beam (8 KeV) to measure the density profile in a Compact Helical Device. (A.C.A.S.)

  5. Understanding How Science Works: The Nature of Science as The Foundation for Science Teaching and Learning

    Science.gov (United States)

    McComas, William F.

    2017-01-01

    The nature of science (NOS) is a phrase used to represent the rules of the game of science. Arguably, NOS is the most important content issue in science instruction because it helps students understand the way in which knowledge is generated and validated within the scientific enterprise. This article offers a proposal for the elements of NOS that…

  6. Let’s Talk about Citizen Science: What Doesn’t Work

    Directory of Open Access Journals (Sweden)

    Allison B. Kaufman

    2014-11-01

    Full Text Available “Citizen Science,” or the idea of using interested laypeople to assist in data collection, has the potential to be a valuable resource to those who study animal cognition. This is largely due to the potential increase in sample size it can provide. However, this technique also has the potential to introduce a significant amount of error to an experiment. As a result, before citizen science can be used as a tool, it is important to determine how it best works; specifically, what methods best motivate people to participate and to provide the most accurate data. This includes sharing situations in which data collection was not successful. Presented here is a failed attempt at collecting data on mirror self-recognition (MSR in pet parrots, orchestrated via yahoo groups listservs. The goals in presenting this unsuccessful methodology are to encourage discussion, to prevent others from repeating the same ill-fated methodology, and to encourage others to attempt variations on said methods which might be more successful.

  7. James Webb Telescope's Near Infrared Camera: Making Models, Building Understanding

    Science.gov (United States)

    Lebofsky, Larry A.; McCarthy, D. W.; Higgins, M. L.; Lebofsky, N. R.

    2010-10-01

    The Astronomy Camp for Girl Scout Leaders is a science education program sponsored by NASA's next large space telescope: The James Webb Space Telescope (JWST). The E/PO team for JWST's Near Infrared Camera (NIRCam), in collaboration with the Sahuaro Girl Scout Council, has developed a long-term relationship with adult leaders from all GSUSA Councils that directly benefits troops of all ages, not only in general science education but also specifically in the astronomical and technology concepts relating to JWST. We have been training and equipping these leaders so they can in turn teach young women essential concepts in astronomy, i.e., the night sky environment. We model what astronomers do by engaging trainers in the process of scientific inquiry, and we equip them to host troop-level astronomy-related activities. It is GSUSA's goal to foster girls’ interest and creativity in Science, Technology, Engineering, and Math, creating an environment that encourages their interests early in their lives while creating a safe place for girls to try and fail, and then try again and succeed. To date, we have trained over 158 leaders in 13 camps. These leaders have come from 24 states, DC, Guam, and Japan. While many of the camp activities are related to the "First Light” theme, many of the background activities relate to two of the other JWST and NIRCam themes: "Birth of Stars and Protoplanetary Systems” and "Planetary Systems and the Origin of Life.” The latter includes our own Solar System. Our poster will highlight the Planetary Systems theme: 1. Earth and Moon: Day and Night; Rotation and Revolution. 2. Earth/Moon Comparisons. 3. Size Model: The Diameters of the Planets. 4. Macramé Planetary (Solar) Distance Model. 5.What is a Planet? 6. Planet Sorting Cards. 7. Human Orrery 8. Lookback Time in Our Daily Lives NIRCam E/PO website: http://zeus.as.arizona.edu/ dmccarthy/GSUSA

  8. Thinking about information work of nuclear science and technology in the age of big data: speaking of the information analysis and research

    International Nuclear Information System (INIS)

    Chen Tieyong

    2014-01-01

    Human society is entering a 'PB' (1024TB) the new era as the unit of structured and unstructured data, In the network era, with the development of mobile communications, electronic commerce, the emergence and development of social network. Now, a large-scale production, sharing and application data era is opening. How to explore the value of data, to conquer big data, to get useful information, is an important task of our science and technology information workers. This paper tries to analyze the development of the nuclear science and technology information work from big data obtain, analysis, application. Our analysis and research work for information will be increasingly based on all data and analysis, Instead of random sampling. The data 'sound' is possible. A lot of results of information analysis and research can be expressed quantitatively. We should attach great importance to data collection, careful analysis of the big data. We involves the professional division of labor, but also to cooperation In nuclear science and technology information analysis and research process. In addition, we should strengthen the nuclear science and technology information resource construction, improve Information supply; strengthen the analysis and research of nuclear science and technology information, improve the information service; strengthen information management of nuclear science and technology, pay attention to the security problems and intellectual property rights in information sharing; strengthen personnel training, continuously improve the nuclear science and technology information work efficiency and performance. In the age of big data, our nuclear science and technology information workers shall be based on the information analysis and study as the core, one hand grasping information collection, another hand grasping information service, forge ahead and innovation, continuous improvement working ability of nuclear science and technology information, improve the

  9. General experiences + race + racism = Work lives of Black faculty in postsecondary science education

    Science.gov (United States)

    Parsons, Eileen R. C.; Bulls, Domonique L.; Freeman, Tonjua B.; Butler, Malcolm B.; Atwater, Mary M.

    2016-12-01

    Existent research indicates that postsecondary Black faculty members, who are sorely underrepresented in the academy especially in STEM fields, assume essential roles; chief among these roles is diversifying higher education. Their recruitment and retention become more challenging in light of research findings on work life for postsecondary faculty. Research has shown that postsecondary faculty members in general have become increasingly stressed and job satisfaction has declined with dissatisfaction with endeavors and work overload cited as major stressors. In addition to the stresses managed by higher education faculty at large, Black faculty must navigate diversity-related challenges. Illuminating and understanding their experiences can be instrumental in lessening stress and job dissatisfaction, outcomes that facilitate recruitment and retention. This study featured the experiences and perceptions of Black faculty in science education. This study, framed by critical race theory, examines two questions: What characterizes the work life of some Black faculty members who teach, research, and serve in science education? How are race and racism present in the experiences of these postsecondary Black faculty members? A phenomenological approach to the study situates the experiences of the Black participants as valid phenomena worthy of investigation, illuminates their experiences, and seeks to retain the authenticity of their voices.

  10. Exploring ESASky

    Science.gov (United States)

    De Marchi, Guido; ESASky Team

    2017-06-01

    ESASky is a science-driven discovery portal for all ESA space astronomy missions. It also includes missions from international partners such as Suzaku and Chandra. The first public release of ESASky features interfaces for sky exploration and for single and multiple target searches. Using the application requires no prior-knowledge of any of the missions involved and gives users world-wide simplified access to high-level science-ready data products from space-based Astronomy missions, plus a number of ESA-produced source catalogues, including the Gaia Data Release 1 catalogue. We highlight here the latest features to be developed, including one that allows the user to project onto the sky the footprints of the JWST instruments, at any chosen position and orientation. This tool has been developed to aid JWST astronomers when they are defining observing proposals. We aim to include other missions and instruments in the near future.

  11. Viewing past science from the point of view of present science, thereby illuminating both: Philosophy versus experiment in the work of Robert Boyle.

    Science.gov (United States)

    Chalmers, Alan

    2016-02-01

    The seventeenth century witnessed the replacement of an Aristotelian worldview by a mechanical one. It also witnessed the beginnings of significant experimental enquiry. Alerted by the fact that the methods involved in the latter, but not in the former, resemble those employed in later science, I argue the historical case that the emergence of the mechanical worldview and the emergence of science were not closely related and that it was the latter that was to develop into science as we have come to know it. The details are explored in the context of the philosophical and experimental work of Robert Boyle and the relationship between them. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The Potential Improvement of Team-Working Skills in Biomedical and Natural Science Students Using a Problem-Based Learning Approach

    Science.gov (United States)

    Nowrouzian, Forough L.; Farewell, Anne

    2013-01-01

    Teamwork has become an integral part of most organisations today, and it is clearly important in Science and other disciplines. In Science, research teams increase in size while the number of single-authored papers and patents decline. Team-work in laboratory sciences permits projects that are too big or complex for one individual to be tackled.…

  13. Personnel and working area monitoring at the Department of Nuclear Science, Universiti Kebangsaan Malaysia

    International Nuclear Information System (INIS)

    Amran Abd Majid; Muhamad Samudi Yasir; Che Rosli Che Mat

    1995-01-01

    Personnel (staff and student) and working area absorbed dose monitoring at the Department of Nuclear Science from 1984 until September 1993 is reported. Generally average absorbed dose received by the staff and working area were less than 0.5 and 2.0 mSv/yr respectively. The application of low activity of radioactive materials and complying the UKM (Universiti Kebangsaan Malaysia) and LPTA (AELB) - Atomic Energy Licensing Board regulations contributing to the low rate recorded. (author)

  14. Assessment of Predictable Productivity of Nurses Working in Kerman University of Medical Sciences' Teaching Hospitals via the Dimensions of Quality of Work Life.

    Science.gov (United States)

    Borhani, Fariba; Arbabisarjou, Azizollah; Kianian, Toktam; Saber, Saman

    2016-10-01

    Despite the existence of a large community of nurses, specific mechanisms have not been developed yet to consider their needs and the quality of their work life. Moreover, few studies have been conducted to analyze the nature of nursing, nursing places or nurses' quality of work life. In this regard, the present study aimed to assess predictable productivity of nurses working in Kerman University of Medical Sciences' teaching hospitals via the dimensions of Quality of Work Life. The present descriptive-correlational study was conducted to assess predictable productivity of nurses via the dimensions of Quality of Work Life. The study's population consisted of all nurses working in different wards of teaching hospitals associated with Kerman University of Medical Sciences. Out of the whole population, 266 nurses were selected based on the simple random sampling method. To collect data, the questionnaires of 'Quality of Nursing Work Life' and 'Productivity' were used after confirming their reliability (test-retest) and content validity. Finally, the collected data were analyzed through the SPSS software (version 16). Although the quality of work life for nurses was average and their productivity was low but the results showed that quality of life is directly related to nurses' productivity. Quality of life and its dimensions are predictive factors in the in the nurses' productivity. It can conclude that by recognizing the nurses' quality of work life situation, it can realize this group productivity and their values to the efficiency of the health system. For the quality of working life improvement and increasing nurses' productivity more efforts are needed by authorities. The findings can be applied by managers of hospitals and nursing services along with head nurses to enhance the quality of health services and nursing profession in general.

  15. Citizen Science: Opportunities for Girls' Development of Science Identity

    Science.gov (United States)

    Brien, Sinead Carroll

    Many students in the United States, particularly girls, have lost interest in science by the time they reach high school and do not pursue higher degrees or careers in science. Several science education researchers have found that the ways in which youth see themselves and position themselves in relation to science can influence whether they pursue science studies and careers. I suggest that participation in a citizen science program, which I define as a program in which girls interact with professional scientists and collect data that contributes to scientific research, could contribute to changing girls' perceptions of science and scientists, and promote their science identity work. I refer to science identity as self-recognition and recognition by others that one thinks scientifically and does scientific work. I examined a case study to document and analyze the relationship between girls' participation in a summer citizen science project and their development of science identity. I observed six girls between the ages of 16 and 18 during the Milkweed and Monarch Project, taking field notes on focal girls' interactions with other youth, adults, and the scientist, conducted highly-structured interviews both pre-and post- girls' program participation, and interviewed the project scientist and educator. I qualitatively analyzed field notes and interview responses for themes in girls' discussion of what it meant to think scientifically, roles they took on, and how they recognized themselves as thinking scientifically. I found that girls who saw themselves as thinking scientifically during the program seemed to demonstrate shifts in their science identity. The aspects of the citizen science program that seemed to most influence shifts in these girls' science identities were 1) the framing of the project work as "real science, 2) that it involved ecological field work, and 3) that it created a culture that valued data and scientific work. However, some of the girls only

  16. Cryogenic Pupil Alignment Test Architecture for Aberrated Pupil Images

    Science.gov (United States)

    Bos, Brent; Kubalak, David A.; Antonille, Scott; Ohl, Raymond; Hagopian, John G.

    2009-01-01

    A document describes cryogenic test architecture for the James Webb Space Telescope (JWST) integrated science instrument module (ISIM). The ISIM element primarily consists of a mechanical metering structure, three science instruments, and a fine guidance sensor. One of the critical optomechanical alignments is the co-registration of the optical telescope element (OTE) exit pupil with the entrance pupils of the ISIM instruments. The test architecture has been developed to verify that the ISIM element will be properly aligned with the nominal OTE exit pupil when the two elements come together. The architecture measures three of the most critical pupil degrees-of-freedom during optical testing of the ISIM element. The pupil measurement scheme makes use of specularly reflective pupil alignment references located inside the JWST instruments, ground support equipment that contains a pupil imaging module, an OTE simulator, and pupil viewing channels in two of the JWST flight instruments. Pupil alignment references (PARs) are introduced into the instrument, and their reflections are checked using the instrument's mirrors. After the pupil imaging module (PIM) captures a reflected PAR image, the image will be analyzed to determine the relative alignment offset. The instrument pupil alignment preferences are specularly reflective mirrors with non-reflective fiducials, which makes the test architecture feasible. The instrument channels have fairly large fields of view, allowing PAR tip/tilt tolerances on the order of 0.5deg.

  17. Conceptual Demand of Practical Work in Science Curricula. A Methodological Approach

    Science.gov (United States)

    Ferreira, Sílvia; Morais, Ana M.

    2014-02-01

    This article addresses the issue of the level of complexity of practical work in science curricula and is focused on the discipline of Biology and Geology at high school. The level of complexity is seen in terms of the emphasis on and types of practical work and, most importantly, in terms of its level of conceptual demand as given by the complexity of scientific knowledge, the degree of inter-relation between knowledges, and the complexity of cognitive skills. The study also analyzes recontextualizing processes that may occur within the official recontextualizing field. The study is psychologically and sociologically grounded, particularly on Bernstein's theory of pedagogic discourse. It uses a mixed methodology. The results show that practical work is poorly represented in the curriculum, particularly in the case of laboratory work. The level of conceptual demand of practical work varies according to the text under analysis, between the two subjects Biology and Geology, and, within each of them, between general and specific guidelines. Aspects studied are not clearly explicated to curriculum receivers (teachers and textbooks authors). The meaning of these findings is discussed in the article. In methodological terms, the study explores assumptions used in the analysis of the level of conceptual demand and presents innovative instruments constructed for developing this analysis.

  18. Exoplanet Observing: From Art to Science

    Science.gov (United States)

    Conti, Dennis M.; Gleeson, Jack

    2017-06-01

    This paper will review the now well-established best practices for conducting high precision exoplanet observing with small telescopes. The paper will also review the AAVSO's activities in promoting these best practices among the amateur astronomer community through training material and online courses, as well as through the establishment of an AAVSO Exoplanet Database. This latter development will be an essential element in supporting followup exoplanet observations for upcoming space telescope missions such as TESS and JWST.

  19. Individual to collaborative: guided group work and the role of teachers in junior secondary science classrooms

    Science.gov (United States)

    Fung, Dennis; Lui, Wai-mei

    2016-05-01

    This paper, through discussion of a teaching intervention at two secondary schools in Hong Kong, demonstrates the learning advancement brought about by group work and dissects the facilitating role of teachers in collaborative discussions. One-hundred and fifty-two Secondary Two (Grade 8) students were divided into three pedagogical groups, namely 'whole-class teaching', 'self-directed group work' and 'teacher-supported group work' groups, and engaged in peer-review, team debate, group presentation and reflection tasks related to a junior secondary science topic (i.e. current electricity). Pre- and post-tests were performed to evaluate students' scientific conceptions, alongside collected written responses and audio-recorded discussions. The results indicate that students achieved greater cognitive growth when they engaged in cooperative learning activities, the interactive and multi-sided argumentative nature of which is considered to apply particularly well to science education and Vygotsky's zone of proximal development framework. Group work learning is also found to be most effective when teachers play a role in navigating students during the joint construction of conceptual knowledge.

  20. Science or Science Fiction?

    DEFF Research Database (Denmark)

    Lefsrud, Lianne M.; Meyer, Renate

    2012-01-01

    This paper examines the framings and identity work associated with professionals’ discursive construction of climate change science, their legitimation of themselves as experts on ‘the truth’, and their attitudes towards regulatory measures. Drawing from survey responses of 1077 professional......, legitimation strategies, and use of emotionality and metaphor. By linking notions of the science or science fiction of climate change to the assessment of the adequacy of global and local policies and of potential organizational responses, we contribute to the understanding of ‘defensive institutional work...

  1. Canadian space agency discipline working group for space dosimetry and radiation science

    International Nuclear Information System (INIS)

    Waker, Anthony; Waller, Edward; Lewis, Brent; Bennett, Leslie; Conroy, Thomas

    2008-01-01

    Full text: One of the great technical challenges in the human and robotic exploration of space is the deleterious effect of radiation on humans and physical systems. The magnitude of this challenge is broadly understood in terms of the sources of radiation, however, a great deal remains to be done in the development of instrumentation, suitable for the space environment, which can provide real-time monitoring of the complex radiation fields encountered in space and a quantitative measure of potential biological risk. In order to meet these research requirements collaboration is needed between experimental nuclear instrumentation scientists, theoretical scientists working on numerical modeling techniques and radiation biologists. Under the auspices of the Canadian Space Agency such a collaborative body has been established as one of a number of Discipline Working Groups. Members of the Space Dosimetry and Radiation Science working group form a collaborative network across Canada including universities, government laboratories and the industrial sector. Three central activities form the core of the Space Dosimetry and Radiation Science DWG. An instrument sub-group is engaged in the development of instruments capable of gamma ray, energetic charged particle and neutron dosimetry including the ability to provide dosimetric information in real-time. A second sub-group is focused on computer modeling of space radiation fields in order to assess the performance of conceptual designs of detectors and dosimeters or the impact of radiation on cellular and sub-cellular biological targets and a third sub-group is engaged in the study of the biological effects of space radiation and the potential of biomarkers as a method of assessing radiation impact on humans. Many working group members are active in more than one sub-group facilitating communication throughout the whole network. A summary progress-report will be given of the activities of the Discipline Working Group and the

  2. Status report on the land processes aircraft science management operations working group

    Science.gov (United States)

    Lawless, James G.; Mann, Lisa J.

    1991-01-01

    Since its inception three years ago, the Land Processes Aircraft Science Management Operations Working Group (MOWG) provided recommendations on the optimal use of the Agency's aircraft in support of the Land Processes Science Program. Recommendations covered topics such as aircraft and sensor usage, development of long-range plans, Multisensor Airborne Campaigns (MAC), program balance, aircraft sensor databases, new technology and sensor development, and increased University scientist participation in the program. Impacts of these recommendations improved the efficiency of various procedures including the flight request process, tracking of flight hours, and aircraft usage. The group also created a bibliography focused on publications produced by Land Processes scientists from the use of the aircraft program, surveyed NASA funded PI's on their participation in the aircraft program, and developed a planning template for multi-sensor airborne campaigns. Benefits from these activities are summarized.

  3. Working Alongside Scientists: Impacts on Primary Teacher Beliefs and Knowledge about Science and Science Education

    Science.gov (United States)

    Anderson, Dayle; Moeed, Azra

    2017-01-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the…

  4. Developing networks to support science teachers work

    DEFF Research Database (Denmark)

    Sillasen, Martin Krabbe; Valero, Paola

    2012-01-01

    In educational research literature constructing networks among practitioners has been suggested as a strategy to support teachers’ professional development (Huberman, 1995; Jackson & Temperley, 2007; Van Driel, Beijaard, & Verloop, 2001). The purpose of this paper is to report on a study about how...... networks provide opportunities for teachers from different schools to collaborate on improving the quality of their own science teaching practices. These networks exist at the meso-level of the educational system between the micro-realities of teachers’ individual practice and the macro-level, where...... to develop collaborative activities in primary science teacher communities in schools to improve individual teachers practice and in networks between teachers from different schools in each municipality. Each network was organized and moderated by a municipal science coordinator....

  5. The advent of canine performance science: offering a sustainable future for working dogs.

    Science.gov (United States)

    Cobb, Mia; Branson, Nick; McGreevy, Paul; Lill, Alan; Bennett, Pauleen

    2015-01-01

    Working and sporting dogs provide an essential contribution to many industries worldwide. The common development, maintenance and disposal of working and sporting dogs can be considered in the same way as other animal production systems. The process of 'production' involves genetic selection, puppy rearing, recruitment and assessment, training, housing and handling, handler education, health and working life end-point management. At present, inefficiencies throughout the production process result in a high failure rate of dogs attaining operational status. This level of wastage would be condemned in other animal production industries for economic reasons and has significant implications for dog welfare, as well as public perceptions of dog-based industries. Standards of acceptable animal use are changing and some historically common uses of animals are no longer publicly acceptable, especially where harm is caused for purposes deemed trivial, or where alternatives exist. Public scrutiny of animal use appears likely to increase and extend to all roles of animals, including working and sporting dogs. Production system processes therefore need to be transparent, traceable and ethically acceptable for animal use to be sustainable into the future. Evidence-based approaches already inform best practice in fields as diverse as agriculture and human athletic performance. This article introduces the nascent discipline of canine performance science, which aims to facilitate optimal product quality and production efficiency, while also assuring evidence-based increments in dog welfare through a process of research and development. Our thesis is that the model of canine performance science offers an objective, transparent and traceable opportunity for industry development in line with community expectations and underpins a sustainable future for working dogs. This article is part of a Special Issue entitled: Canine Behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Defining the public, defining sociology: hybrid science-public relations and boundary-work in early American sociology.

    Science.gov (United States)

    Evans, Michael S

    2009-01-01

    In this paper, I examine how scientific disciplines define their boundaries by defining the publics with whom they engage. The case study is an episode in the development of early American sociology. In response to the dual challenge of credibility set up by the conflict between religious Baconian science and secular positivist science, key actors engaged in specific strategies of boundary-work to create their desired "sociological public"--a hybrid form of science-public relations that appealed to hostile university scientists while excluding a supportive religious audience from participation in the production of scientific knowledge. Using this case, I offer two specific insights. First I illustrate how, in the pursuit of scientific credibility, actors engage in boundary-work to differentiate audiences, not just practitioners. Such defining of publics is constitutive of scientific disciplines in their formative stage. Second, I demonstrate how audience boundaries can be redefined through the capture of existing boundary objects. Specifically, the removal of informational content in key boundary objects creates durable boundaries that are difficult to overcome.

  7. Using science and psychology to improve the dissemination and evaluation of scientific work.

    Science.gov (United States)

    Buttliere, Brett T

    2014-01-01

    Here I outline some of what science can tell us about the problems in psychological publishing and how to best address those problems. First, the motivation behind questionable research practices is examined (the desire to get ahead or, at least, not fall behind). Next, behavior modification strategies are discussed, pointing out that reward works better than punishment. Humans are utility seekers and the implementation of current change initiatives is hindered by high initial buy-in costs and insufficient expected utility. Open science tools interested in improving science should team up, to increase utility while lowering the cost and risk associated with engagement. The best way to realign individual and group motives will probably be to create one, centralized, easy to use, platform, with a profile, a feed of targeted science stories based upon previous system interaction, a sophisticated (public) discussion section, and impact metrics which use the associated data. These measures encourage high quality review and other prosocial activities while inhibiting self-serving behavior. Some advantages of centrally digitizing communications are outlined, including ways the data could be used to improve the peer review process. Most generally, it seems that decisions about change design and implementation should be theory and data driven.

  8. Interagency Working Group on Ocean Social Science: Incorporating ecosystem services approaches into ocean and coastal decision-making and governance

    Science.gov (United States)

    The application of social science has been recognized as a priority for effective ocean and coastal management, driving much discussion and fostering emerging efforts in several areas. The Interagency Working Group on Ocean Social Science (IWG-OSS) is tasked with assisting the Su...

  9. What Does It Take for Social Work to Evolve to Science Status? Discussing Definition, Structure, and Contextual Challenges and Opportunities

    Science.gov (United States)

    Guerrero, Erick G.

    2014-01-01

    The emerging discourse on science in social work (SW) has generated much-needed analysis of the profession's status as a scientific enterprise. Brekke raised critical issues that must be addressed for SW to become a science. This response examines the contextual factors that led to the call for SW science. It also relies on a comparative…

  10. Systemic Thinking and Partnership Working: A Cross Sectional Study in a Medical Sciences University in Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Khammarnia

    2016-01-01

    Full Text Available Background: Systemic thinking can provide practice in multidisciplinary team working and improve the organizational efficacy. This study aimed to determine the association between systemic thinking and partnership working in the employees of a medical sciences university in the south of Iran. Methods: A cross-sectional study was performed in Zahedan University of Medical Sciences (ZAUMS in 2015. The study population consisted of all employees in ZAUMS; 370 participants were selected through stratified random sampling. Two standard questionnaires were used for data gathering. The data were analyzed in SPSS (v21 using Pearson, One way ANOVA, and logistic regression. The level of significance was considered as 0.05. Results: In this study, 225 participants (60.8% were female and their mean age was 34.7±8.7. The score of partnership working for 362 participants was higher than the mean standard (40. Systemic thinking had a positive association with partnership working (p=0.001 and married status of the participants (p=0.04. Partnership working in male and older staff was more than others in ZAUMS (p<0.001 and p=0.01, respectively. Conclusion: Systematic thinking had a positive association with the employees’ working partnership. Moreover, the male staff had better systematic thinking. It is recommended that the managers should promote systematic thinking in staff, especially in females, for better partnership and efficacy in organizations.

  11. Review of Cold war social science: Knowledge production, liberal democracy, and human nature, and Working knowledge: Making the human sciences from Parsons to Kuhn.

    Science.gov (United States)

    Erickson, Paul

    2013-11-01

    Reviews the books, Cold War Social Science: Knowledge Production, Liberal Democracy, and Human Nature by Mark Solovey and Hamilton Cravens (2012) and Working Knowledge: Making the Human Sciences From Parsons to Kuhn by Joel Isaac (see record 2012-13212-000). Taken together, these two important books make intriguing statements about the way to write the histories of fields like psychology, sociology, anthropology, and economics in the Anglo American world during the 20th century. To date, histories of these fields have drawn on a number of fairly well-established punctuation marks to assist in periodization: the shift from interwar institutionalism in economics to postwar neoclassicism, with its physics-like emphasis on mathematical theory-building; the transition from the regnant prewar behaviorism through a postwar "cognitive revolution" in American psychology; and the move in fields like sociology and anthropology away from positivism and the pursuit of what has sometimes been called "grand theory" in the early postwar era toward a period defined by intellectual and political fragmentation, the reemergence of interpretive approaches and a reaction to the scientistic pretensions of the earlier period. These books, by contrast, provide perspectives orthogonal to such existing narrative frameworks by adopting cross-cutting lenses like the "Cold War" and the working practices of researchers in the social and behavioral sciences. As a result, they do much to indicate the value of casting a historiographical net beyond individual disciplines, or even beyond the "social sciences" or the "human sciences" sensu stricto, in the search for deeper patterns of historical development in these fields. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  12. Exoplanet Observing: from Art to Science (Abstract)

    Science.gov (United States)

    Conti, D. M.; Gleeson, J.

    2017-12-01

    (Abstract only) This paper will review the now well-established best practices for conducting high precision exoplanet observing with small telescopes. The paper will also review the AAVSO's activities in promoting these best practices among the amateur astronomer community through training material and online courses, as well as through the establishment of an AAVSO Exoplanet Database. This latter development will be an essential element in supporting followup exoplanet observations for upcoming space telescope missions such as TESS and JWST.

  13. An Investigation of Zimbabwe High School Chemistry Students' Laboratory Work-Based Images of the Nature of Science

    Science.gov (United States)

    Vhurumuku, Elaosi; Holtman, Lorna; Mikalsen, Oyvind; Kolsto, Stein D.

    2006-01-01

    This study investigates the proximal and distal images of the nature of science (NOS) that A-level students develop from their participation in chemistry laboratory work. We also explored the nature of the interactions among the students' proximal and distal images of the NOS and students' participation in laboratory work. Students' views of the…

  14. Report on the work of the Institute of Nuclear Sciences 27 January - December 1976

    International Nuclear Information System (INIS)

    1977-10-01

    The work of the New Zealand Institute of Nuclear Sciences during the period January-June 1975 is summarized under the following headings: A) Nuclear Physics; B) Radiation Research; C) Isotope Geochemistry - Stable Isotopes; D) Radiocarbon Dating and Fallout; E) Radioisotope Applications; F) Instrumentation. Appendices on current research projects, staff publications and library holdings are included. (D.C.R.)

  15. Report on the work of the Institute of Nuclear Sciences 26 July - December 1975

    International Nuclear Information System (INIS)

    1976-04-01

    The work of the New Zealand Institute of Nuclear Sciences during the period January-June 1975 is summarized under the following headings: A) Nuclear Physics; B) Radiation Research; C) Isotope Geochemistry - Stable Isotopes; D) Radiocarbon Dating and Fallout; E) Radioisotope Applications; F) Instrumentation. Appendices on current research projects, staff publications and library holdings are included. (D.C.R.)

  16. EOS Aqua: Mission Status at the Earth Science Constellation (ESC) Mission Operations Working Group (MOWG) Meeting at the Kennedy Space Center (KSC)

    Science.gov (United States)

    Guit, Bill

    2017-01-01

    This presentation at the Earth Science Constellation Mission Operations Working Group meeting at KSC in December 2017 to discuss EOS (Earth Observing System) Aqua Earth Science Constellation status. Reviewed and approved by Eric Moyer, ESMO (Earth Science Mission Operations) Deputy Project Manager.

  17. Using Mathematics in Science: Working with Your Mathematics Department

    Science.gov (United States)

    Lyon, Steve

    2014-01-01

    Changes to the mathematics and science curriculums are designed to increase rigour in mathematics, and place greater emphasis on mathematical content in science subjects at key stages 3, 4 and 5 (ages 11-18). One way to meet the growing challenge of providing increased emphasis on mathematics in the science curriculum is greater collaboration…

  18. Particle Physics as a way to bring different cultures to work together in Science

    CERN Document Server

    Mikenberg, G

    2016-01-01

    Science has traditionally played an important role in sharing knowledge among people. Particle Physics, with its large experiments, has shown that one not only can share the knowledge among different cultures, but that one can also work together to achieve this knowledge. The present article gives a few examples where this has been possible among people that are sometimes in conflict situations.

  19. Teaching planetary sciences to elementary school teachers: Programs that work

    Science.gov (United States)

    Lebofsky, Larry A.; Lebofsky, Nancy R.

    1993-01-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. Planetary sciences also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80 percent feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K-3 and 38 minutes per day in 4-6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. It was pointed out that science is not generally given high priority by either teachers or school districts, and is certainly not considered on a par with language arts and mathematics. Therefore, in order to teach science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. In our earlier workshops, several of our teachers taught in classrooms where the majority of the students were Hispanic (over 90 percent). However, few space sciences materials existed in Spanish. Therefore, most of our materials could not be used effectively in the classroom. To address this issue, NASA materials were translated into Spanish and a series of workshops for bilingual classroom teachers from Tucson and surrounding cities was conducted. Our space sciences workshops and our bilingual classroom workshops and how they address the needs of elementary school teachers in Arizona are

  20. Training Students’ Science Process Skills through Didactic Design on Work and Energy

    Science.gov (United States)

    Ramayanti, S.; Utari, S.; Saepuzaman, D.

    2017-09-01

    Science Process Skills (SPS) has not been optimally trained to the students in the learning activity. The aim of this research is finding the ways to train SPS on the subject of Work and Energy. One shot case study design is utilized in this research that conducted on 32 students in one of the High Schools in Bandung. The students’ SPS responses were analyzed by the development SPS based assessment portfolios. The results of this research showed the didactic design that had been designed to training the identifying variables skills, formulating hypotheses, and the experiment activity shows the development. But the didactic design to improve the students’ predicting skills shows that the development is still not optimal. Therefore, in the future studies need to be developed the didactic design on the subject Work and Energy that exercising these skills.

  1. Information Content Analysis for Selection of Optimal JWST  Observing Modes for Transiting Exoplanet Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Batalha, Natasha E. [Department of Astronomy and Astrophysics, Pennsylvania State University, State College, PA 16802 (United States); Line, M. R., E-mail: neb149@psu.edu [School of Earth and Space Exploration, Arizona State University, Phoenix, AZ 85282 (United States)

    2017-04-01

    The James Webb Space Telescope ( JWST ) is nearing its launch date of 2018, and is expected to revolutionize our knowledge of exoplanet atmospheres. In order to specifically identify which observing modes will be most useful for characterizing a diverse range of exoplanetary atmospheres, we use an information content (IC) based approach commonly used in the studies of solar system atmospheres. We develop a system based upon these IC methods to trace the instrumental and atmospheric model phase space in order to identify which observing modes are best suited for particular classes of planets, focusing on transmission spectra. Specifically, the atmospheric parameter space we cover is T  = 600–1800 K, C/O = 0.55–1, [M/H] = 1–100 × Solar for an R  = 1.39 R{sub J}, M  = 0.59 M{sub J} planet orbiting a WASP-62-like star. We also explore the influence of a simplified opaque gray cloud on the IC. We find that obtaining broader wavelength coverage over multiple modes is preferred over higher precision in a single mode given the same amount of observing time. Regardless of the planet temperature and composition, the best modes for constraining terminator temperatures, C/O ratios, and metallicity are NIRISS SOSS+NIRSpec G395. If the target’s host star is dim enough such that the NIRSpec prism is applicable, then it can be used instead of NIRISS SOSS+NIRSpec G395. Lastly, observations that use more than two modes should be carefully analyzed because sometimes the addition of a third mode results in no gain of information. In these cases, higher precision in the original two modes is favorable.

  2. Finding Citations to Social Work Literature: The Relative Benefits of Using "Web of Science," "Scopus," or "Google Scholar"

    Science.gov (United States)

    Bergman, Elaine M. Lasda

    2012-01-01

    Past studies of citation coverage of "Web of Science," "Scopus," and "Google Scholar" do not demonstrate a consistent pattern that can be applied to the interdisciplinary mix of resources used in social work research. To determine the utility of these tools to social work researchers, an analysis of citing references to well-known social work…

  3. Science of science.

    Science.gov (United States)

    Fortunato, Santo; Bergstrom, Carl T; Börner, Katy; Evans, James A; Helbing, Dirk; Milojević, Staša; Petersen, Alexander M; Radicchi, Filippo; Sinatra, Roberta; Uzzi, Brian; Vespignani, Alessandro; Waltman, Ludo; Wang, Dashun; Barabási, Albert-László

    2018-03-02

    Identifying fundamental drivers of science and developing predictive models to capture its evolution are instrumental for the design of policies that can improve the scientific enterprise-for example, through enhanced career paths for scientists, better performance evaluation for organizations hosting research, discovery of novel effective funding vehicles, and even identification of promising regions along the scientific frontier. The science of science uses large-scale data on the production of science to search for universal and domain-specific patterns. Here, we review recent developments in this transdisciplinary field. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Science for Diplomacy, Diplomacy for Science

    Science.gov (United States)

    Colglazier, E. Wiliam

    2015-04-01

    I was a strong proponent of ``science diplomacy'' when I became Science and Technology Adviser to the Secretary of State in 2011. I thought I knew a lot about the subject after being engaged for four decades on international S&T policy issues and having had distinguished scientists as mentors who spent much of their time using science as a tool for building better relations between countries and working to make the world more peaceful, prosperous, and secure. I learned a lot from my three years inside the State Department, including great appreciation and respect for the real diplomats who work to defuse conflicts and avoid wars. But I also learned a lot about science diplomacy, both using science to advance diplomacy and diplomacy to advance science. My talk will focus on the five big things that I learned, and from that the one thing where I am focusing my energies to try to make a difference now that I am a private citizen again.

  5. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    Science.gov (United States)

    2003-01-01

    This photo (a frontal view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  6. Science in and out of the classroom: A look at Water Resource at Gammams Water Care Works, Namibia

    Science.gov (United States)

    Iileka-Shinavene, Leena

    2016-04-01

    Primary school pupils in Van Rhyn School in Namibia are taught Natural Sciences from grade 4 at the age of 9. The curriculum is mainly theory/classroom based and natural science is taught through theory and various practical activities. However occasionally teachers have opportunities to supplement the pupils' learning experience through outdoor activities such as excursions to museums, municipal works and science fairs. Apart from enhancing the learning experience and improving understanding, such activities make the Natural science subject more interesting subject to learners. Water, a scarce/limited resource in Namibia, is one of the topics we cover in Natural sciences. Sustainable management of water is one of the top priorities of the government, which through various initiatives including the National Development Plan supports innovative ideas and technologies to reclaim water from sewage, recycling of industry and mining water and use semi-purified water for public recreational places. Most of the water used in Windhoek is reclaimed by City of Windhoek. To better illustrate this to the pupils, a school trip with 40 pupils of seventh grade was taken to the City of Windhoek's Gammams Water Care works. The aim of the trip was to show how the sewage purification process works and how the water is reclaimed from sewage. A guided tour of the water works was given by the resident scientists and the pupils were provided with the worksheet to complete after the tour around the Centre. They were encouraged to ask questions in all stages of water purification process and write down short notes. Most learners completed their worksheet during the tour session as they are getting information from the tour guide. The rest had to retrieve information and do further research as they got back to class so they could complete their worksheets. After the tour to Gammams, learners were asked to share what they had learned with the lower grades, 5 and 6, in a classroom

  7. James Webb Space Telescope Observations of Stellar Occultations by Solar System Bodies and Rings

    Science.gov (United States)

    Santos-Sanz, P.; French, R. G.; Pinilla-Alonso, N.; Stansberry, J.; Lin, Z-Y.; Zhang, Z-W.; Vilenius, E.; Mueller, Th.; Ortiz, J. L.; Braga-Ribas, F.; hide

    2016-01-01

    In this paper, we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of Solar System bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWST's unique capabilities. We identify several possible JWST occultation events by minor bodies and rings and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun–Earth Lagrange point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a byproduct of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWST's orbit and instrumentation that should be taken into account during JWST's development.

  8. SPHEREx: Science Opportunities for Solar System Astronomy

    Science.gov (United States)

    Lisse, Carey Michael; SPHEREx Science Team

    2018-01-01

    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A study in August 2017, will perform an all-sky near-infrared spectral survey between 0.75 - 5.0 µm in R = 41 filters, and with R = 135 coverage from 4.2 - 5.0 µm, reaching L ~ 19 (5-sigma).SPHEREx has high potential for solar system science. The 96-band survey will cover the entire sky 4 times over the course of 2 years, including thousands of foreground solar system asteroids, comets, Trojans, and KBOs. By canvassing the entire solar system for 2 years, SPHEREx has the potential not only to achieve a relatively complete sensitivity limited survey of the solar system's bodies, but also some capability to search for variation in these bodies over time.For example, the large legacy dataset of SPHEREx will update the WISE catalogue of asteroid sizes and albedos by providing a spectral survey of tens of thousands of bodies. It will provide spectral classification of hundreds of Trojan asteroids, allowing for direct comparison to the asteroid results. It will extend optical surveys of comet composition by dynamical type to hundreds of objects in the NIR, while determining water/dust/CO/CO2 activity vs distance. SPHEREx will also map in great temporal and spatial detail the zodiacal dust debris disk cloud that these bodies produce, providing an unprecedented level of information concerning the sources and sinks of this material.In this paper, we discuss the data release schedule and some example science studies the planetary astronomy community will be able to access using the SPHEREx database. We also outline existing plans within the SPHEREx team to develop software tools to enable easy access to the data and to conduct catalog searches, and ways in which the community can provide input to the SPHEREx Science Team on scientific studies and data/software requirements for those studies, enabling a large number of scientific studies while finding interesting targets for follow

  9. Network science, nonlinear science and infrastructure systems

    CERN Document Server

    2007-01-01

    Network Science, Nonlinear Science and Infrastructure Systems has been written by leading scholars in these areas. Its express purpose is to develop common theoretical underpinnings to better solve modern infrastructural problems. It is felt by many who work in these fields that many modern communication problems, ranging from transportation networks to telecommunications, Internet, supply chains, etc., are fundamentally infrastructure problems. Moreover, these infrastructure problems would benefit greatly from a confluence of theoretical and methodological work done with the areas of Network Science, Dynamical Systems and Nonlinear Science. This book is dedicated to the formulation of infrastructural tools that will better solve these types of infrastructural problems. .

  10. The Third Annual NASA Science Internet User Working Group Conference

    Science.gov (United States)

    Lev, Brian S. (Editor); Gary, J. Patrick (Editor)

    1993-01-01

    The NASA Science Internet (NSI) User Support Office (USO) sponsored the Third Annual NSI User Working Group (NSIUWG) Conference March 30 through April 3, 1992, in Greenbelt, MD. Approximately 130 NSI users attended to learn more about the NSI, hear from projects which use NSI, and receive updates about new networking technologies and services. This report contains material relevant to the conference; copies of the agenda, meeting summaries, presentations, and descriptions of exhibitors. Plenary sessions featured a variety of speakers, including NSI project management, scientists, and NSI user project managers whose projects and applications effectively use NSI, and notable citizens of the larger Internet community. The conference also included exhibits of advanced networking applications; tutorials on internetworking, computer security, and networking technologies; and user subgroup meetings on the future direction of the conference, networking, and user services and applications.

  11. Relationship between partnership working and employees’ productivity in a University of Medical Sciences in the South of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Khammarnia

    2016-07-01

    Full Text Available Introduction: Partnership working plays an important role in the health system, results in delivery of coordinated packages of services to patients, and reduces the impact of organizational fragmentation. Method: The study aimed to determine the relationship between partnership working and productivity in the employees of a university of medical sciences in the south of Iran. Results: According to the result, partnership and productivity scores were 51.1 + 6.7 and 51.9 + 13.4, respectively. Partnership working had a positive relationship with productivity (r = 0.333, P = 0.001 and age of the employees (r = 0.142, P = 0.007. There was a negative relationship between the employees’ productivity with age and job position in ZAUMS (P= 0.009 and P= 0.001, respectively. The nurses had the highest score of productivity (mean=60.7±13.3. Moreover, employees with an Ph.D. degree (9 persons had the highest scores of partnership and productivity in ZAUMS (53.6±3.1 and 56.8±6.3, respectively. Conclusion: Enhancement of partnership working could increase the employees’ productivity in the health system. It is recommended that younger persons should be used in universities of medical science. Moreover, supportive staff should increase their partnership working to enhance the individual and organizational productivity.

  12. Jovian System as a Demonstration of JWST’s Capabilities for Solar System Science: Status Update

    Science.gov (United States)

    Conrad, Al; Fouchet, Thierry

    2018-06-01

    Characterize Jupiter’s cloud layers, winds, composition, auroral activity, and temperature structureProduce maps of the atmosphere and surface of volcanically-active Io and icy satellite Ganymede to constrain their thermal and atmospheric structure, and search for plumesCharacterize the ring structure, and its sources, sinks and evolution.We will present our progress to date in planning these observations and provide an update on our expectations.Our program will utilize all JWST instruments in different observing modes to demonstrate the capabilities of JWST’s instruments on one of the largest and brightest sources in the Solar System and on very faint targets next to it. We will also observe weak emission/absorption bands on strong continua, and with NIRIS/AMI we will maximize the Strehl ratio on unresolved features, such as Io’s volcanoes.We will deliver a number of science enabling products that will facilitate community science, including, e.g.: i) characterizing Jupiter’s scattered light in the context of scientific observations, ii) resolve point sources with AMI in a crowded field (Io’s volcanoes), and compare this to classical observations, iii) develop tools to mosaic/visualize spectral datacubes using MIRI and NIRSpec on Jupiter. Finally, our program will also set a first temporal benchmark to study time variations in the jovian system and any interconnectivity (e.g., through its magnetic field) during JWST’s lifetime.

  13. Science Credit for Agriculture: Perceived Support, Preferred Implementation Methods and Teacher Science Course Work.

    Science.gov (United States)

    Johnson, Donald M.

    1996-01-01

    Arkansas agriculture teachers (213 of 259 surveyed) expressed support for granting science credit for agriculture (88.8%); 65.6% supported science credit for a limited number of agriculture courses. Blanket endorsement for all certified agriculture teachers was favored by 71.5%; 56.6% preferred endorsement only for certified teachers completing an…

  14. Cross-disciplinary working in the sciences and humanities: historical data rescue activities in Southeast Asia and beyond

    Science.gov (United States)

    Williamson, Fiona

    2016-12-01

    This paper argues that more work is needed to facilitate cross-disciplinary collaborations by scholars across the physical sciences and humanities to improve Data Rescue Activities (DARE). Debate over the scale and potential impact of anthropogenic global warming is one of the dominant narratives of the twenty-first century. Predicting future climates and determining how environment and society might be affected by climate change are global issues of social, economic and political importance. They require responses from different research communities and necessitate closer inter-disciplinary working relationships for an integrated approach. Improving the datasets required for long-term climate models is an important part of this process. Establishing a multi-disciplinary dialogue and approach to DARE activities is increasingly being recognised as the best way to achieve this. This paper focuses on the recovery of the long-term instrumental weather observations used for models and reconstructions of the climate over the past two-hundred years. Written from the perspective of an historian working in the field, it does not seek to explore the reconstructions themselves but the process of data gathering, advocating a closer working relationship between the arts, social sciences, and sciences to extend the geographic and temporal coverage of extant datasets. This is especially important for regions where data gaps exist currently. First, it will offer a justification for extending data recovery activities for Southeast Asia and the China Seas region. Second, it will offer a brief overview of the data recovery projects currently operating in that area and the typesof historic source material that are used. Third, it will explore the work currently being undertaken for Southeast Asia and China under the Atmospheric Circulation Reconstructions over the Earth initiative as an example of a successful cross-disciplinary program. Finally, it will argue the importance of

  15. Cross-disciplinary working in the sciences and humanities: historical data rescue activities in Southeast Asia and beyond

    Directory of Open Access Journals (Sweden)

    Fiona Williamson

    2016-11-01

    Full Text Available Abstract This paper argues that more work is needed to facilitate cross-disciplinary collaborations by scholars across the physical sciences and humanities to improve Data Rescue Activities (DARE. Debate over the scale and potential impact of anthropogenic global warming is one of the dominant narratives of the twenty-first century. Predicting future climates and determining how environment and society might be affected by climate change are global issues of social, economic and political importance. They require responses from different research communities and necessitate closer inter-disciplinary working relationships for an integrated approach. Improving the datasets required for long-term climate models is an important part of this process. Establishing a multi-disciplinary dialogue and approach to DARE activities is increasingly being recognised as the best way to achieve this. This paper focuses on the recovery of the long-term instrumental weather observations used for models and reconstructions of the climate over the past two-hundred years. Written from the perspective of an historian working in the field, it does not seek to explore the reconstructions themselves but the process of data gathering, advocating a closer working relationship between the arts, social sciences, and sciences to extend the geographic and temporal coverage of extant datasets. This is especially important for regions where data gaps exist currently. First, it will offer a justification for extending data recovery activities for Southeast Asia and the China Seas region. Second, it will offer a brief overview of the data recovery projects currently operating in that area and the typesof historic source material that are used. Third, it will explore the work currently being undertaken for Southeast Asia and China under the Atmospheric Circulation Reconstructions over the Earth initiative as an example of a successful cross-disciplinary program. Finally, it will

  16. Investigation of the Relationship Between Mental Health and Organizational Employees’ work Fatigue and Deputyships of Yasouj Medical Science University

    Directory of Open Access Journals (Sweden)

    A Mahmoodi

    2015-08-01

    Full Text Available Background & aim: Peoples’ mental health in improvement of society’s national and ideal aims have the main and most importance such as thriftiness in material and spiritual costs. Work fatigue is the result of severe decrease of person’s capabilities sources that counter with long –time stress, especially work stress. This study was designed with the aim of investigating the relationship between mental health and work fatigue at Yasuj University of Medical Sciences. Method of investigation: The present co-operation – descriptive study was conducted on 274 participants from 961 organization employees and deputyships of Yasuj University of Medical Sciences in 2013-2014 who were chosen randomly. In order to collect data, Maslach questionnaire of mental health condition and work fatigue was used. Data were analysed with statistical tests of the interconnection index Pearson and Friedman’s test. Findings: There was no significant relationship between mental health and work fatigue dimensions (p<0/05. A meaningful relationship was observed between studied models after usage. High attention and metamorphosis of personality had the least importance. Conclusion: When employees have full mental health and job satisfaction, the ability to achieve maximum efficiency in the organization is reachable.

  17. Working knowledges before and after circa 1800: practices and disciplines in the history of science, technology, and medicine.

    Science.gov (United States)

    Pickstone, John V

    2007-09-01

    Historians of science, inasmuch as they are concerned with knowledges and practices rather than institutions, have tended of late to focus on case studies of common processes such as experiment and publication. In so doing, they tend to treat science as a single category, with various local instantiations. Or, alternatively, they relate cases to their specific local contexts. In neither approach do the cases or their contexts build easily into broader histories, reconstructing changing knowledge practices across time and space. This essay argues that by systematically deconstructing the practices of science and technology and medicine (STM) into common, recurrent elements, we can gain usefully "configurational" views, not just of particular cases and contexts but of synchronic variety and diachronic changes, both short term and long. To this end, we can begin with the customary actors' disciplines of early modern knowledge (natural philosophy, natural history, mixed mathematics, and experimental philosophy), which can be understood as elemental "ways of knowing and working," variously combined and disputed. I argue that these same working knowledges, together with a later mode-synthetic experimentation and systematic invention-may also serve for the analysis of STM from the late eighteenth century to the present. The old divisions continued explicitly and importantly after circa 1800, but they were also "built into" an array of new sciences. This historiographic analysis can help clarify a number of common problems: about the multiplicity of the sciences, the importance of various styles in science, and the relations between science and technology and medicine. It suggests new readings of major changes in STM, including the first and second scientific revolutions and the transformations of biomedicine from the later twentieth century. It offers ways of recasting both microhistories and macrohistories, so reducing the apparent distance between them. And it may thus

  18. Impact of Undergraduate Research Mentorship Affects on Student Desire, Confidence and Motivation to Continue Work in Science

    Science.gov (United States)

    Salm, Ann E.

    2015-01-01

    The quantitative Undergraduate Research Questionnaire (URQ) is used to assess the impact of undergraduate research mentorship affects, such as informal conversations, supportive faculty and/or peer interactions, on student confidence and motivation to continue working, learning or researching in the sciences (Taraban & Logue, 2012). Research…

  19. Science + Maths = A Better Understanding of Science!

    Science.gov (United States)

    Markwick, Andy; Clark, Kris

    2016-01-01

    Science and mathematics share a common purpose: to explore, understand and explain the pure beauty of our universe and how it works. Using mathematics in science enquiry can enhance children's understanding of science and also provide opportunities for children to apply their mathematical knowledge to "real" contexts. The authors…

  20. Gender in Science without Numbers: From academia to work-life balance. Main Results of Case Studies

    OpenAIRE

    Maria Thanopoulou; Joanna Tsiganou

    2016-01-01

    The present volume titled «Gender in Science without Numbers: from academia to work-life balance» refers to the qualitative research undertaken by the National Centre for Social Research, in the context of a project on «Work-life balance in the context of changing families and labour market in Greece». This project has been part of the European Area’s Financial Mechanism WORLBAL, with code EEA GR07/3939. The volume includes short reviews of the main results of case studies focusing on the w...

  1. The need for laboratory work to aid in the understanding of exoplanetary atmospheres

    OpenAIRE

    Fortney, Jonathan J.; Robinson, Tyler D.; Domagal-Goldman, Shawn; Amundsen, David Skålid; Brogi, Matteo; Claire, Mark; Crisp, David; Hebrard, Eric; Imanaka, Hiroshi; Kok, Remco de; Marley, Mark S.; Teal, Dillon; Barman, Travis; Bernath, Peter; Burrows, Adam

    2016-01-01

    Advancements in our understanding of exoplanetary atmospheres, from massive gas giants down to rocky worlds, depend on the constructive challenges between observations and models. We are now on a clear trajectory for improvements in exoplanet observations that will revolutionize our ability to characterize the atmospheric structure, composition, and circulation of these worlds. These improvements stem from significant investments in new missions and facilities, such as JWST and the several pl...

  2. Crude Life: The Art-Science Engagement Work of Brandon Ballengee

    Science.gov (United States)

    Ballengee, B.; Kirn, M.

    2017-12-01

    Crude Life is an interdisciplinary art, science and outreach project focused on raising public awareness of Gulf of Mexico species, ecosystems, and regional environmental challenges through community "citizen science" surveys and a portable art-science museum of Gulf coastal biodiversity. A primary research focus is gathering data on endemic fishes affected by the 2010 Gulf of Mexico Oil Spill and attempting to locate 14 species that have been `missing' following the spill. Programming emphasis has been given to rural coastal communities that due to changing climate and alteration of geophysical systems (mostly from the oil and gas industry) are populations particularly at risk to tidal inundation. In addition these communities generally lack access to science literacy (as Louisiana ranks as among the worst in the nation for science education) and have little access to contemporary art.

  3. The relationship between quality of work life and job satisfaction of faculty members in Zahedan University of Medical Sciences.

    Science.gov (United States)

    Kermansaravi, Fatihe; Navidian, Ali; Navabi Rigi, Shahindokht; Yaghoubinia, Fariba

    2014-10-29

    Quality of work life is one of the most important factors for human motivating and improving of job satisfaction. The current study was carried out aimed to determine the relationship between quality of work life and job satisfaction in faculty members of Zahedan University of Medical Sciences. In this descriptive-analytic study, 202 faculty members of Zahedan University of Medical Sciences in 2012 were entered the study through census. The job satisfaction questionnaire of Smith and Kendall and Walton Quality of Work Life questionnaire were used for data collection. Validity and reliability of questionnaires were confirmed in previous studies. Data analysis was done using SPSS 18. The Pearson correlation coefficient and multiple regression tests were used for data analysis. The mean score of quality of work life was 121/30±37/08 and job satisfaction was 135/98 ±33/78. There was a significant and positive correlation between job satisfaction of faculty members and their quality of work life (P=0.003). In addition, two components of quality of work life "adequate and fair compensation" (β=0.3) and "Social Integration" (β=0.4) can predict job satisfaction of faculty members. According to correlation between job satisfaction and quality of work life in faculty members, job satisfaction can be improved through the changing and manipulating the components of quality of work life and in this way; the suitable environment for organization development should be provided.

  4. Backyard Worlds: Finding Nearby Brown Dwarfs Through Citizen Science

    Science.gov (United States)

    Kuchner, Marc

    as co-authors. Backyard Worlds: Planet 9 was launched with seed funding from a NASA Science Innovation Fund grant, but is no longer funded. This proposed ADAP project will allow us to finish building the website, communicate with our large user community to improve their skills and foster participation, harvest, analyze, and publish the classification data output by the site, research the objects we discover, and as work, as appropriate, and aim to complete the project in time for JWST follow-up of the best discoveries.

  5. Informal science education at Science City

    Science.gov (United States)

    French, April Nicole

    The presentation of chemistry within informal learning environments, specifically science museums and science centers is very sparse. This work examines learning in Kansas City's Science City's Astronaut Training Center in order to identify specific behaviors associated with visitors' perception of learning and their attitudes toward space and science to develop an effective chemistry exhibit. Grounded in social-constructivism and the Contextual Model of Learning, this work approaches learning in informal environments as resulting from social interactions constructed over time from interaction between visitors. Visitors to the Astronaut Training Center were surveyed both during their visit and a year after the visit to establish their perceptions of behavior within the exhibit and attitudes toward space and science. Observations of visitor behavior and a survey of the Science City staff were used to corroborate visitor responses. Eighty-six percent of visitors to Science City indicated they had learned from their experiences in the Astronaut Training Center. No correlation was found between this perception of learning and visitor's interactions with exhibit stations. Visitor attitudes were generally positive toward learning in informal settings and space science as it was presented in the exhibit. Visitors also felt positively toward using video game technology as learning tools. This opens opportunities to developing chemistry exhibits using video technology to lessen the waste stream produced by a full scale chemistry exhibit.

  6. A culturally appropriate program that works: Native Americans in Marine and Space Sciences

    Science.gov (United States)

    Vergun, J. R.

    2001-05-01

    For more than ten years, the College of Oceanic and Atmospheric Sciences at Oregon State University has carried out the Native Americans in Marine and Space Sciences (NAMSS) Program. Its long-term goal is to increase the number of American Indian and Native Alaskan undergraduates in science who complete degrees, continue to graduate school and enter the professional scientific work force. Ninety-eight percent of NAMSS students have earned BS degrees and almost forty percent have continued in graduate school. These are impressive results considering the high national drop-out rate for Native American studentsaround 70% according to the Chronicle of Higher Education (26 May 1993, page A29). Most often, Native students wishing to earn degrees in science find few programs that fit with their traditional sense of place and community. Most programs are narrowly focused and do not support or nurture Native views of interrelationship of all things. While Western science's recent ecological systems thinking approach more closely resembles the traditional Native view, Traditional Ecological Knowledge is often perceived as anecdotal or storytelling and not real science. This is a problem for Native students who are strongly underrepresented in the U.S. scientific community as a whole and nearly absent from the marine sciences. Undergraduates from this group are without scientific career models or mentors from their ethnic group and experience difficulty establishing contacts with majority scientists. They have limited access to opportunities to explore career possibilities in the sciences through research participation. Once on campus they have difficulty establishing a sense of belonging in the University community and do not have an organized way to enter into the scientific activities that initially attracted them. Representation of Native Americans in the ranks of U.S. scientists will not be increased without special efforts to retain them as undergraduates and to recruit

  7. The Impact of Work-Integrated Learning Experiences on Attaining Graduate Attributes for Exercise and Sports Science Students

    Science.gov (United States)

    Hall, Melinda; Pascoe, Deborah; Charity, Megan

    2017-01-01

    Exercise and Sports Science (E&SS) programs at Federation University Australia provide work-integrated learning (WIL) opportunities for students to develop, apply and consolidate theoretical knowledge in the workplace. This study aimed to determine the influence of WIL experiences on achieving common graduate attributes for E&SS students.…

  8. Fascinating! Popular Science Communication and Literary Science Fiction

    DEFF Research Database (Denmark)

    Meyer, Gitte

    2017-01-01

    Some see literary Science Fiction as a possible vehicle for critical discussions about the future development and the ethical implications of science-based technologies. According to that understanding, literary Science Fiction constitutes a variety of science communication. Along related lines, ......, popular science communication with science fiction features might be expected to serve a similar purpose. Only, it is far from obvious that it actually works that way.......Some see literary Science Fiction as a possible vehicle for critical discussions about the future development and the ethical implications of science-based technologies. According to that understanding, literary Science Fiction constitutes a variety of science communication. Along related lines...

  9. Views about scientists and scientific work in the novel Deception Point by Dan Brown: possibilities to insert History and Philosophy of Science elements

    Directory of Open Access Journals (Sweden)

    Wilmo Ernesto Francisco Junior

    2015-02-01

    Full Text Available Considering the influence of literature on people lives, this study investigates elements concerning views about scientists and scientific work presented in Deception Point, a novel by Dan Brown. Multiple aspects to represent the scientist figure, life and work, emerge from the novel and problematize characteristics that can be considered as a common sense view, or others perspectives based on more contemporaneous philosophical thoughts on science. Reading and analyzing this novel could be an interesting opportunity to insert elements of history and philosophy of science under different focus. This study discusses some elements, from excerpts of the novel, which may become possibilities for debates in Science classes at schools, and in teacher education.

  10. Asurvey on depression and its related factors in Nurses who work in Namazi Hospital of Shiraz University of Medical Sciences-2008

    Directory of Open Access Journals (Sweden)

    A. Jabbarnejad

    2009-10-01

    Full Text Available Background and aimsThe extensive domains of Nurses' activities and Nursing nature as interdisciplinary science can cause Work pressure and mood disturbance especially depression in Nurses. According to this fact that patient safety was correlated with work place situation and well being of health care providers, this study was aimed to determine Nurses' depression and its associated factors in Namazi Hospital of Shiraz University of Medical Sciences.MethodsParticipants in this descriptive cross sectional study were 311 Nurses who work in Namazi Hospital of Shiraz University of Medical Sciences. In this research, the data collecting tools were Zung Self-Rating Depression Scale and demographic information form. These data were analyzed by SPSS.win 11 software with using descriptive and inferential statistic such as Chi-square and one way ANOVA.ResultsFindings indicate that 41.2% of Nurses are normal and the others suffer from mild (42.4%, moderate (13.8% and severe depression(2.6%.Analyses using Chi-square showed that depression intensity of Nurses who work in emergency ward and critical care units were morethan depression level of the rest(P=0.001. Also, there was significant statistical relationship between depression severity and Nurses' satisfaction of their sleep (P=0.015.ConclusionCurrent Nursing work place situation can cause emotional strain and depression. Thus researchers suggest that Hospital Nurse Offices should be use the psychiatric mental health nurse for consult services and education to nurses about coping strategies and management ofdepressed mood.

  11. The NIRspec assembly integration and test status

    Science.gov (United States)

    Wettemann, Thomas; Ehrenwinkler, Ralf; Johnson, Thomas E.; Maschmann, Marc; Mosner, Peter; te Plate, Maurice; Rödel, Andreas

    2017-11-01

    The Near-Infrared Spectrograph (NIRSpec) is one of the four instruments on the James Webb Space Telescope (JWST) scheduled for launch in 2018. NIRSpec has been manufactured and tested by an European industrial consortium led by Airbus Defence and Space and delivered to the European Space Agency (ESA) and NASA in September 2013. Since then it has successfully been integrated into the JWST Integrated Science Instrument Module (ISIM) and is currently in ISIM Cryo-Vacuum Test#2. Since however two of its most important assemblies, the Focal Plane Assembly (FPA) and the Micro-Shutter Assembly (MSA) need to be replaced by new units we will present the status of the instrument, the status of its new flight assemblies in manufacturing and testing and give an outlook on the planned exchange activities and the following instrument re-verification.

  12. Municipal consultants’ participation in building networks to support science teachers’ work

    DEFF Research Database (Denmark)

    Sillasen, Martin Krabbe; Valero, Paola

    2013-01-01

    This paper focuses particularly on the role of municipal science consultants in developing and maintaining network activities and connections among primary school science teachers. The hypothesis is that consultants play a crucial role in supporting strategic planning, and sustaining contacts...... and activities within professional learning networks. The research is framed by a project that involved 80 primary science teachers in 20 schools. The aim of the project was to develop network activities that facilitate sustainable change of the participating schools’ collective culture and practice of science...... science consultants’ participation in supporting network activities enable the participants to share and develop teaching activities....

  13. Science sharpens your mind

    NARCIS (Netherlands)

    Jongman, R.H.G.

    2003-01-01

    Working in research gives the need to define your thinking. Your own field of work determines your scope of thinking. Science means generalisation of personal experiences in generally accepted models and paradigms. The difference between working in a project with stakeholders and science is the

  14. Relationship between work - family conflict and marital satisfaction among nurses and midwives in hospitals of Zabol university of medical sciences

    OpenAIRE

    A. Mansouri; Y. Jahani; H. Shahdadi; M. Khammari

    2016-01-01

    Background: Work-family conflicts described as incompatibility between work and family roles. There is mutual relationship between marital satisfaction and job so that the tension in one of two areas of career and family are affected. Objective: To examine the relationship between marital satisfaction and work-family conflict among nurses and midwives. Methods: All of 289 employees of married nursing and midwifery of Zabol University of Medical Sciences hospitals participated in the stu...

  15. Communicating Science; a collaborative approach through Art, Dance, Music and Science

    Science.gov (United States)

    Smart, Sarah-Jane; Mortimer, Hugh

    2016-04-01

    A collaborative approach to communicating our amazing science. RAL Space at the Rutherford Appleton Lab, has initiated a unique collaboration with a team of award-winning performing artists with the aim of making space science research engaging and accessible to a wide audience. The collaboration has two distinct but connected strands one of which is the development of a contemporary dance work inspired by solar science and including images and data from the Space Physics Division of STFC RAL Space. The work has been commissioned by Sadler's Wells, one of the world's leading dance venues. It will be created by choreographer Alexander Whitley, video artist Tal Rosner and composers Ella Spira and Joel Cadbury and toured throughout the UK and internationally by the Alexander Whitley Dance Company (AWDC). The work will come about through collaboration with the work of the scientists of RAL Space and in particular the SOHO, CDS and STEREO missions, taking a particular interest in space weather. Choreographer Alexander Whitley and composers Ella Spira and Joel Cadbury will take their inspiration from the images and data that are produced by the solar science within RAL Space. Video artist Tal Rosner will use these spectacular images to create an atmospheric backdrop to accompany the work, bringing the beauty and wonder of space exploration to new audiences. Funding for the creation and touring of the work will be sought from Arts Council England, the British Council, partner organisations, trusts and foundations and private donors.The world premiere of the work will take place at Sadler's Wells in June 2017. It will then tour throughout the UK and internationally to theatres, science conferences and outreach venues with the aim of bringing the work of STFC RAL Space and the science behind solar science and space weather to new audiences. An education programme will combine concepts of choreography and space science aimed at young people in year 5 Key Stage 2 and be

  16. Science and anti-science

    CERN Document Server

    Holton, Gerald

    1997-01-01

    What is good science? What goal--if any--is the proper end of scientific activity? Is there a legitimating authority that scientists mayclaim? Howserious athreat are the anti-science movements? These questions have long been debated but, as Gerald Holton points out, every era must offer its own responses. This book examines these questions not in the abstract but shows their historic roots and the answers emerging from the scientific and political controversies of this century. Employing the case-study method and the concept of scientific thematathat he has pioneered, Holton displays the broad scope of his insight into the workings of science: from the influence of Ernst Mach on twentiethcentury physicists, biologists, psychologists, and other thinkers to the rhetorical strategies used in the work of Albert Einstein, Niels Bohr, and others; from the bickering between Thomas Jefferson and the U.S. Congress over the proper form of federal sponsorship of scientific research to philosophical debates since Oswald...

  17. Promoting Children's Understanding And Interest In Science Through Informal Science Education

    Science.gov (United States)

    Bartley, Jessica E.; Mayhew, Laurel M.; Finkelstein, Noah D.

    2009-11-01

    We present results from the University of Colorado's Partnership for Informal Science Education in the Community (PISEC) in which university participants work in afterschool programs on inquiry-based activities with primary school children from populations typically under represented in science. This university-community partnership is designed to positively impact youth, university students, and the institutions that support them while improving children's attitudes towards and understanding of science. Children worked through circuit activities adapted from the Physics and Everyday Thinking (PET) curriculum and demonstrated increased understanding of content area as well as favorable beliefs about science.

  18. European agreement on James Webb Space Telescope's Mid-Infrared Instrument (MIRI) signed

    Science.gov (United States)

    2004-06-01

    secure the successful and timely completion of scientific space projects. ESA’s co-ordination of the MIRI European consortium represents the first time such an approach has been used, which will be applied to the future missions of the ESA long-term Science Programme - the ‘Cosmic Vision’. The technology package for LISA (LTP), an ESA/NASA mission to detect gravitational waves, is already being prepared under the same scheme. Sergio Volonte, ESA Co-ordinator for Astrophysics and Fundamental Physics Missions, comments: “I’m delighted for such an achievement between ESA and its Member States. With MIRI we will start an even more effective co-ordination on developing our scientific instruments, setting a new framework to further enhance their excellence.” Note to Editors The James Webb Space Telescope (JWST), is a partnership between ESA, NASA and the Canadian Space Agency. Formerly known as the Next Generation Space Telescope (NGST), it is due to be launched in August 2011, and it is considered the successor of the NASA/ESA Hubble Space Telescope. It is three times larger and more powerful than its predecessor and it is expected to shed light on the 'Dark Ages of the Universe' by studying the very distant Universe, observing infrared light from the first stars and galaxies that ever emerged. MIRI (Mid-Infrared Camera-Spectrograph) is essential for the study of the old and distant stellar population; regions of obscured star formation; hydrogen emission from previously unthinkable distances; the physics of protostars; and the sizes of ‘Kuiper belt’ objects and faint comets. Further to the contribution to MIRI, Europe through ESA is contributing to JWST with the NIRSPEC (Near-Infrared multi-object Spectrograph) instrument (fully funded and managed by ESA) and, as agreed in principle with NASA, with the Ariane 5 launcher. The ESA financial contribution to JWST will be about 300 million Euros, including the launcher. The European institutions involved in MIRI

  19. DEVELOPMENT OF PHYSICS STUDENT WORK SHEET (SWS TO BUILD SCIENCE PROCESS SKILL VALUED CONSERVATION

    Directory of Open Access Journals (Sweden)

    D. Yulianti

    2015-07-01

    Full Text Available Student Work Sheet (SWS which contains only a summary of the material and exercises does not train students to investigate and develop conservation values. The research objective is to also prepared worksheets guided inquiry that can enhance science process skills, understanding of the concept and develop conservation value. Elements of inquiry and conservation value generated through work instructions and investigation. The study was performed by using one group pretest-posttest design. Research procedures include observation and identification of weaknesses worksheets, planning, early product development and initial field trials. Feasibility and legibility using questionnaires and tests hiatus. The value of understanding the concept derived from the pretest-posttest. Data science process skills gained from the observation during the lesson. Conservation values obtained from the students' self-assessment questionnaire and assessment questionnaire between friends. The analysis showed guided inquiry SWS easy to understand and very fit for use as teaching materials. Test gain showed guided inquiry SWS can enhance science process skills and conceptual understanding, and can be used as a medium to develop conservation value.LKS yang hanya berisi ringkasan materi dan latihan soal tidak melatih siswa melakukan penyelidikan dan mengembangkan nilai konservasi. Tujuan penelitian R&D ini adalah menyususn LKS yang mampu meningkatkan keterampilan proses sains, pemahaman konsep dan nilai konservasi. Nilai konservasi dimunculkan melalui petunjuk kerja dan kegiatan penyelidikan.Ujicoba menggunakanOne Group Pretest-Posttest Design. Prosedur penelitian meliputi observasi dan identifikasi kelemahan LKS, perencanaan, pengembangan produk awal dan uji coba lapangan awal. Uji kelayakan dan keterbacaan menggunakan angket dan tes rumpang. Nilai pemahaman konsep  diperoleh dari pretest-posttest. Data keterampilan proses sains diperoleh dari hasil observasi

  20. White Paper on the Status and Future of Ground-based Gamma-Ray Astronomy - Extragalactic Science Working Group

    Science.gov (United States)

    Krawczynski, H.; Coppi, P.; Dermer, C.; Dwek, E.; Georganopoulos, M.; Horan, D.; Jones, T.; Krennrich, F.; Mukherjee, R.; Perlman, E.; Vassiliev, V.

    2007-04-01

    In fall 2006, the Division of Astrophysics of the American Physical Society requested a white paper about the status and future of ground based gamma-ray astronomy. The white paper will largely be written in the year 2007. Interested scientists are invited to join the science working groups. In this contribution, we will report on some preliminary results of the extragalactic science working group. We will discuss the potential of future ground based gamma-ray experiments to elucidate how supermassive black holes accrete matter, form jets, and accelerate particles, and to study in detail the acceleration and propagation of cosmic rays in extragalactic systems like infrared galaxies and galaxy clusters. Furthermore, we discuss avenues to constrain the spectrum of the extragalactic infrared to optical background radiation, and to measure the extragalactic magnetic fields based on gamma-ray observations. Eventually, we discuss the potential of ground based experiments for conducting gamma-ray source surveys. More information about the white paper can be found at: http://cherenkov.physics.iastate.edu/wp/

  1. Plans of mice and men: from bench science to science policy.

    Science.gov (United States)

    Simon, Ian D

    2011-09-01

    The transition from bench science to science policy is not always a smooth one, and my journey stretched as far as the unemployment line to the hallowed halls of the U.S. Capitol. While earning my doctorate in microbiology, I found myself more interested in my political activities than my experiments. Thus, my science policy career aspirations were born from merging my love of science with my interest in policy and politics. After receiving my doctorate, I accepted the Henry Luce Scholarship, which allowed me to live in South Korea for 1 year and delve into the field of science policy research. This introduction into science policy occurred at the South Korean think tank called the Science and Technology Policy Institute (STEPI). During that year, I used textbooks, colleagues, and hands-on research projects as my educational introduction into the social science of science and technology decision-making. However, upon returning to the United States during one of the worst job markets in nearly 80 years, securing a position in science policy proved to be very difficult, and I was unemployed for five months. Ultimately, it took more than a year from the end of the Luce Scholarship to obtain my next science policy position with the American Society for Microbiology Congressional Fellowship. This fellowship gave me the opportunity to work as the science and public health advisor to U.S. Senator Harry Reid. While there were significant challenges during my transition from the laboratory to science policy, those challenges made me tougher, more appreciative, and more prepared to move from working at the bench to working in the field of science policy. Copyright © 2011.

  2. Effect of workload on quality of work life among staff of the teaching hospitals of Shahid Beheshti University of Medical Sciences (2014

    Directory of Open Access Journals (Sweden)

    S. Marzban

    2016-04-01

    Full Text Available Background: Quality of work life is the reaction of employees to their work specially the individual results at work and mental health that affects their personal experience and work results. Objective: The aim of this study was to determine the effect of workload on quality of work life in staff of the teaching hospitals affiliated to Shahid Beheshti University of Medical Sciences, Tehran. Methods: This analytical study was conducted in 530 staff of four hospitals affiliated to the Shahid Beheshti University of Medical Sciences that were selected by Cochrane sampling method during 2014. The measurement tools were demographic questionnaire, Walton's quality of work life questionnaire (including 32 questions and eight dimensions, and the NASA TLX workload scale. Data were analyzed using Pearson’s correlation coefficient. Findings: The mean scores of quality of work life and workload were 48.21±13.34 and 64.70±11.44, respectively. There was negative significant correlation between workload and quality of work life (r= -0.0161. Conclusion: With regards to the results, it seems that high workload is one of the most important factors of reduced quality of work life that can be reduced through proper organization and planning.

  3. Line of Sight Stabilization of James Webb Space Telescope

    Science.gov (United States)

    Meza, Luis; Tung, Frank; Anandakrishnan, Satya; Spector, Victor; Hyde, Tupper

    2005-01-01

    The James Webb Space Telescope (JWST) builds upon the successful flight experience of the Chandra Xray Telescope by incorporating an additional LOS pointing servo to meet the more stringent pointing requirements. The LOS pointing servo, referred to in JWST as the Fine Guidance Control System (FGCS), will utilize a Fine Guidance Sensor (FGS) as the sensor, and a Fine Steering Mirror (FSM) as the actuator. The FSM is a part of the Optical Telescope Element (OTE) and is in the optical path between the tertiary mirror and the instrument focal plane, while the FGS is part of the Integrated Science Instrument Module (ISIM). The basic Chandra spacecraft bus attitude control and determination architecture, utilizing gyros, star trackers/aspect camera, and reaction wheels, is retained for JWST. This system has achieved pointing stability of better than 0.5 arcseconds. To reach the JWST requirements of milli-arcsecond pointing stability with this ACS hardware, the local FGCS loop is added to the optical path. The FGCS bandwidth is about 2.0 Hz and will therefore attenuate much of the spacecraft ACS induced low frequency jitter. In order to attenuate the higher frequency (greatet than 2.0 Hz) disturbances associated with reaction wheel static and dynamic imbalances, as well as bearing run-out, JWST will employ a two-stage passive vibration isolation system consisting of (1) 7.0 Hz reaction wheel isolators between each reaction wheel and the spacecraft bus, and (2) a 1.0 Hz tower isolator between the spacecraft bus and the Optical Telescope Element (OTE). In order to sense and measure the LOS, the FGS behaves much like an autonomous star tracker that has a very small field of view and uses the optics of the telescope. It performs the functions of acquisition, identification and tracking of stars in its 2.5 x 2.5 arcminute field of view (FOV), and provides the centroid and magnitude of the selected star for use in LOS control. However, since only a single star is being tracked

  4. How nature works the science of self-organized criticality

    CERN Document Server

    Bak, Per

    1996-01-01

    This is an acclaimed book intended for the general reader who is interested in science. The author is a physicist who is well-known for his development of the property called "self-organized criticality", a property or phenomenon that lies at the heart of large dynamical systems. It can be used to analyse systems that are complicated, and which are part of the new science of complexity. It is a unifying concept that can be used to study phenomena in fields as diverse as economics, astronomy, the earth sciences, and physics. The author discusses his discovery of self-organized criticality; its relation to the world of classical physics; computer simulations and experiments which aid scientists' understanding of the property; and the relation of the subject to popular areas such as fractal geometry and power laws; cellular automata, and a wide range of practical applications.

  5. Enhancing fire science exchange: The Northern Rockies Fire Science Network [poster

    Science.gov (United States)

    Vita Wright

    2011-01-01

    The Joint Fire Science Program is developing a national network of knowledge exchange consortia comprised of interested management and science stakeholders working together to tailor and actively demonstrate existing fire science information to benefit management.

  6. FOREWORD: Some thoughts about Jürgen Hafner's work in computational materials science Some thoughts about Jürgen Hafner's work in computational materials science

    Science.gov (United States)

    Heine, Volker

    2011-10-01

    Jürgen Hafner started in the early 1970s with pseudopotential calculations on the structures and properties of sp-bonded metals, improving on work done elsewhere [1]. This expanded in four directions: transition metals, molten metals, magnetism and alloys, and combinations of these. As well as electronic structure calculations, he helped to advance the statistical mechanical classical theory of liquids for the molten metals [2]. In magnetism he was one of the pioneers of calculations with non-collinear spins [3, 4]. As well as simple (solid and molten) alloys, he also treated materials with strong chemical interaction such as sulphides and liquids such as arsenic and tellurium [5, 6]. All this fed into two directions which dominated much of his work for many years, namely the theory of glassy metals [7] and that of quasicrystals [8]. One notable result in the latter was to show that it was possible to construct hypothetical materials for which the quasicrystalline state is indeed the lowest energy structure. This displaced the established wisdom of the time that quasicrystals were necessarily metastable forms. In more recent years he has turned to calculations in surface science [9, 10], including catalysis of chemical reactions on surfaces [11, 12]. What really brought Jürgen first to my attention was that he had managed to do a better job than we had of calculations with the new approach of pseudopotentials, particularly regarding the screening part of the calculation. This is very important in alloys where there is a large difference in the electron density in the two types of atom due to their different volumes or valences such as in the phase diagram and structure of LiK or KPb [5, 13]. We have been in contact over many years including one close collaboration and I always learned something new in talking with Jürgen. In the late 1970s in Cambridge we performed phonon calculations on models of amorphous silicon [14], to see if these could distinguish between

  7. States, Earth Science, and Decision-Making: Five Years of Lessons Learned by the NASA DEVELOP National Program Working with a State Government

    Science.gov (United States)

    Favors, J.; Ruiz, M. L.; Rogers, L.; Ross, K. W.; Childs-Gleason, L. M.; Allsbrook, K. N.

    2017-12-01

    Over a five-year period that spanned two administrations, NASA's DEVELOP National Program engaged in a partnership with the Government of the Commonwealth of Virginia to explore the use of Earth observations in state-level decision making. The partnership conducted multiple applied remote sensing projects with DEVELOP and utilized a shared-space approach, where the Virginia Governor's Office hosted NASA DEVELOP participants to mature the partnership and explore additional science opportunities in the Commonwealth. This presentation will provide an overview of various lessons learned from working in an administrative and policy environment, fostering the use of science in such an environment, and building substantive relationships with non-technical partners. An overview of the projects conducted in this partnership will provide an opportunity to explore specific best practices that enhanced the work and provide tips to enhance the potential for success for other science and technology organizations considering similar partnerships.

  8. Science and technology awareness for preschool children: a working model

    CSIR Research Space (South Africa)

    Van Deventer, A

    2009-05-01

    Full Text Available Skills shortages exist in the areas of Science and Technology, not only in South Africa but globally. This creates a need for more people to follow careers in Science and Technology. We need to do something to make sure that we do not loose...

  9. Working Memory and Attitudes

    Science.gov (United States)

    Jung, Eun Sook; Reid, Norman

    2009-01-01

    Working memory capacity has been shown to be an important factor in controlling understanding in the sciences. Attitudes related to studies in the sciences are also known to be important in relation to success in learning. It might be argued that if working memory capacity is a rate controlling feature of learning and success in understanding…

  10. The Nature of Science and Science Education: A Bibliography

    Science.gov (United States)

    Bell, Randy; Abd-El-Khalick, Fouad; Lederman, Norman G.; Mccomas, William F.; Matthews, Michael R.

    Research on the nature of science and science education enjoys a long history, with its origins in Ernst Mach's work in the late nineteenth century and John Dewey's at the beginning of the twentieth century. As early as 1909 the Central Association for Science and Mathematics Teachers published an article - A Consideration of the Principles that Should Determine the Courses in Biology in Secondary Schools - in School Science and Mathematics that reflected foundational concerns about science and how school curricula should be informed by them. Since then a large body of literature has developed related to the teaching and learning about nature of science - see, for example, the Lederman (1992)and Meichtry (1993) reviews cited below. As well there has been intense philosophical, historical and philosophical debate about the nature of science itself, culminating in the much-publicised Science Wars of recent time. Thereferences listed here primarily focus on the empirical research related to the nature of science as an educational goal; along with a few influential philosophical works by such authors as Kuhn, Popper, Laudan, Lakatos, and others. While not exhaustive, the list should prove useful to educators, and scholars in other fields, interested in the nature of science and how its understanding can be realised as a goal of science instruction. The authors welcome correspondence regarding omissions from the list, and on-going additions that can be made to it.

  11. Information Science Roles in the Emerging Field of Data Science

    Directory of Open Access Journals (Sweden)

    Gary Marchionini

    2016-06-01

    Full Text Available The article discusses how data science emerges from information science,statistics, computer science, and knowledge domain. Schools of information stand as meaningful and substantive entities that are critical to the education of scholars and practitioners who work across a wide range of enterprises. Data science is but one emerging field that will benefit from information school engagement.

  12. Wetlands Work

    Science.gov (United States)

    Messina, Linda; Blanchard, Pamela Borne

    2004-01-01

    This article describes how a biology teacher's search for a cross-curricular project in science, math, history, and environmental science, that would help her students connect what they were learning in the classroom to their everyday life, resulted in an ongoing stewardship project. Working together with the Louisiana Sea Grant College Program…

  13. clearScience: Infrastructure for Communicating Data-Intensive Science.

    Science.gov (United States)

    Bot, Brian M; Burdick, David; Kellen, Michael; Huang, Erich S

    2013-01-01

    Progress in biomedical research requires effective scientific communication to one's peers and to the public. Current research routinely encompasses large datasets and complex analytic processes, and the constraints of traditional journal formats limit useful transmission of these elements. We are constructing a framework through which authors can not only provide the narrative of what was done, but the primary and derivative data, the source code, the compute environment, and web-accessible virtual machines. This infrastructure allows authors to "hand their machine"- prepopulated with libraries, data, and code-to those interested in reviewing or building off of their work. This project, "clearScience," seeks to provide an integrated system that accommodates the ad hoc nature of discovery in the data-intensive sciences and seamless transitions from working to reporting. We demonstrate that rather than merely describing the science being reported, one can deliver the science itself.

  14. Science laboratory behavior strategies of students relative to performance in and attitude to laboratory work

    Science.gov (United States)

    Okebukola, Peter Akinsola

    The relationship between science laboratory behavior strategies of students and performance in and attitude to laboratory work was investigated in an observational study of 160 laboratory sessions involving 600 class five (eleventh grade) biology students. Zero-order correlations between the behavior strategies and outcome measures reveal a set of low to strong relationships. Transmitting information, listening and nonlesson related behaviors exhibited low correlations with practical skills and the attitude measure. The correlations between manipulating apparatus and observation with practical skills measures were found to be strong. Multiple correlation analysis revealed that the behaviors of students in the laboratories observed accounted for a large percentage of the variance in the scores on manipulative skills and a low percentage on interpretation of data, responsibility, initiative, and work habits. One significant canonical correlation emerged. The loadings on this canonical variate indicate that the practical skills measures, i.e., planning and design, manipulative skills and conduct of experiments, observation and recording of data, and attitude to laboratory work made primary contributions to the canonical relationship. Suggestions as to how students can be encouraged to go beyond cookbook-like laboratories and develop a more favorable attitude to laboratory work are made.

  15. Collaborative Action Research in the Context of Developmental Work Research: A Methodological Approach for Science Teachers' Professional Development

    Science.gov (United States)

    Piliouras, Panagiotis; Lathouris, Dimitris; Plakitsi, Katerina; Stylianou, Liana

    2015-01-01

    The paper refers to the theoretical establishment and brief presentation of collaborative action research with the characteristics of "developmental work research" as an effective methodological approach so that science teachers develop themselves professionally. A specific case study is presented, in which we aimed to transform the…

  16. XML: James Webb Space Telescope Database Issues, Lessons, and Status

    Science.gov (United States)

    Detter, Ryan; Mooney, Michael; Fatig, Curtis

    2003-01-01

    This paper will present the current concept using extensible Markup Language (XML) as the underlying structure for the James Webb Space Telescope (JWST) database. The purpose of using XML is to provide a JWST database, independent of any portion of the ground system, yet still compatible with the various systems using a variety of different structures. The testing of the JWST Flight Software (FSW) started in 2002, yet the launch is scheduled for 2011 with a planned 5-year mission and a 5-year follow on option. The initial database and ground system elements, including the commands, telemetry, and ground system tools will be used for 19 years, plus post mission activities. During the Integration and Test (I&T) phases of the JWST development, 24 distinct laboratories, each geographically dispersed, will have local database tools with an XML database. Each of these laboratories database tools will be used for the exporting and importing of data both locally and to a central database system, inputting data to the database certification process, and providing various reports. A centralized certified database repository will be maintained by the Space Telescope Science Institute (STScI), in Baltimore, Maryland, USA. One of the challenges for the database is to be flexible enough to allow for the upgrade, addition or changing of individual items without effecting the entire ground system. Also, using XML should allow for the altering of the import and export formats needed by the various elements, tracking the verification/validation of each database item, allow many organizations to provide database inputs, and the merging of the many existing database processes into one central database structure throughout the JWST program. Many National Aeronautics and Space Administration (NASA) projects have attempted to take advantage of open source and commercial technology. Often this causes a greater reliance on the use of Commercial-Off-The-Shelf (COTS), which is often limiting

  17. About role of 'Nuclear sciences' and other trends of scientific and technological works in innovation development of phenomena and globalization processes in XX and XXI centuries

    International Nuclear Information System (INIS)

    Arifov, P.V.; Azimova, D.S.; Trostyanskij, D.V.; Umarov, A.G.

    2005-01-01

    It is concluded, that just successful development of scientific and technological works in the field 'Nuclear Sciences' results economy advantages for USA and some West countries compared with USSR and the rest countries of East Europe. In the following decades this advantage allows to a leader-countries develop with success principally new trends of scientific, technological workings in the a wide-scale sphere of natural, technical, biomedical, and other related sciences. Here soon the USA gap from other world countries was achieved. In the field of fundamental sciences there are such fields: Computer Sciences (1940 and then), Space Sciences (1950 and then), Life Sciences (1960 and then), Computer tomography Sciences (1970 and then). Material Researches Sciences (1980 and then), Internet Sciences (1994 and then), Nanosciences and Nanotechnologies (1999 and then). In the end of XX century these advantages allow to USA to realize two known global innovation initiatives having National character: Ballistic Missile Defense - from 1983, Internet - from 1994, and to declare the third one - targeting to the XXI century - Nanosciences and Nanotechnologies - from 1999. It is noted, that due to unexampled high temps of development of phenomena and globalization in the XXI century the specialists and professionals of Uzbekistan in the shortest time have to learn the newest world experience in order to ensure worthy status for the young independent state in the world developed countries commonwealth in new age

  18. LEMDist: e-learning and e-science work space

    International Nuclear Information System (INIS)

    Cruz Gurman, J.; Hernandez Duarte, M.; Garza Rivera, J.; Arjona Raoman, J. L.

    2007-01-01

    LEMDist is an implementation for remote access to laboratory equipment in a grid environment. The actual functionality for these applications includes the remote data acquisition from real laboratory equipment in the grid environment. The access has been implemented for instruments with standard serial or USB interface. Experiments for Basic Chemistry and Food Engineering will be presented. The instruments are reached via authentication and authorization grid services and a interface grid device commands. Other services had been implemented for Food Engineering; they include a modeling process for freezing times of meat calculation and texture analysis from frozen meat images. Taking advantage of Grid infrastructure and experimental laboratory equipment the design model based on a categorical approach had been driven to build a technological platform to support different pedagogical approach in natural science teaching and e-science applications, implementing other services. (Author)

  19. LEMDist: e-learning and e-science work space

    Energy Technology Data Exchange (ETDEWEB)

    Cruz Gurman, J.; Hernandez Duarte, M.; Garza Rivera, J.; Arjona Raoman, J. L.

    2007-07-01

    LEMDist is an implementation for remote access to laboratory equipment in a grid environment. The actual functionality for these applications includes the remote data acquisition from real laboratory equipment in the grid environment. The access has been implemented for instruments with standard serial or USB interface. Experiments for Basic Chemistry and Food Engineering will be presented. The instruments are reached via authentication and authorization grid services and a interface grid device commands. Other services had been implemented for Food Engineering; they include a modeling process for freezing times of meat calculation and texture analysis from frozen meat images. Taking advantage of Grid infrastructure and experimental laboratory equipment the design model based on a categorical approach had been driven to build a technological platform to support different pedagogical approach in natural science teaching and e-science applications, implementing other services. (Author)

  20. An Operations Concept for the Next Generation VLA

    Science.gov (United States)

    Kepley, Amanda; McKinnon, Mark; Selina, Rob; Murphy, Eric Joseph; ngVLA project

    2018-01-01

    This poster presents an operations plan for the next generation VLA (ngVLA), which is a proposed 214 element interferometer operating from ~1-115GHz, located in the southwestern United States. The operations requirements for this instrument are driven by the large number of antennas spread out over a multi-state area and a cap on the operations budget of 3 times that of the current VLA. These constraints require that the maintenance is a continuous process and that individual antennas are self-sufficient, making flexible subarrays crucial. The ngVLA will produce science ready data products for its users, building on the pioneering work being currently done at ALMA and the JVLA. Finally, the ngVLA will adopt a user support model similar to those at other large facilities (ALMA, HST, JWST, etc).

  1. Does science education need the history of science?

    Science.gov (United States)

    Gooday, Graeme; Lynch, John M; Wilson, Kenneth G; Barsky, Constance K

    2008-06-01

    This essay argues that science education can gain from close engagement with the history of science both in the training of prospective vocational scientists and in educating the broader public about the nature of science. First it shows how historicizing science in the classroom can improve the pedagogical experience of science students and might even help them turn into more effective professional practitioners of science. Then it examines how historians of science can support the scientific education of the general public at a time when debates over "intelligent design" are raising major questions over the kind of science that ought to be available to children in their school curricula. It concludes by considering further work that might be undertaken to show how history of science could be of more general educational interest and utility, well beyond the closed academic domains in which historians of science typically operate.

  2. Nuclear Dynamics of a Nearby Seyfert with NIRSpec Integral Field Spectroscopy

    Science.gov (United States)

    Bentz, Misty; Batiste, M.; Onken, C.; Roberts, C.; Valluri, M.; Vasiliev, E.

    2017-11-01

    Integral field spectroscopy has become an invaluable tool for investigating the physical conditions and dynamics deep inside galaxy nuclei. The integral field spectrograph on JWST provides some crucial advantages over those on AO- assisted ground-based telescopes like Gemini and VLT. In particular, JWST will provide a stable and diffraction limited point spread function (PSF) with no seeing halo, and the background will be significantly reduced resulting in shorter exposure times to achieve a benchmark signal-to-noise ratio, even for late-type galaxies that have shallower central cusps and fainter central surface brightnesses, and for which the exposure times required from the ground may be prohibitive. We are particularly interested in comparing black hole masses derived from the modeling of nuclear stellar dynamics to masses derived from reverberation mapping in the same galaxies. With this Early Release Science proposal, we request a small investment of time to clearly demonstrate JWST's capabilities in spatial and spectral resolution relative to the stringent technical requirements for direct black hole mass measurements. The technically demanding nature of the requisite measurements will allow us to explore the limits of what is possible to achieve with the NIRSpec IFU, thus providing technical guidance for a wide range of studies that seek to probe the physics of black hole feeding and feedback and their links to galaxy and black hole co-evolution.

  3. NASA GSFC Science Communication Working Group: Addressing Barriers to Scientist and Engineer Participation in Education and Public Outreach Activities

    Science.gov (United States)

    Bleacher, L.; Hsu, B. C.; Campbell, B. A.; Hess, M.

    2011-12-01

    The Science Communication Working Group (SCWG) at NASA Goddard Space Flight Center (GSFC) has been in existence since late 2007. The SCWG is comprised of education and public outreach (E/PO) professionals, public affairs specialists, scientists, and engineers. The goals of the SCWG are to identify barriers to scientist and engineer engagement in E/PO activities and to enable those scientists and engineers who wish to contribute to E/PO to be able to do so. SCWG members have held meetings with scientists and engineers across GSFC to determine barriers to their involvement in E/PO. During these meetings, SCWG members presented examples of successful, ongoing E/PO projects, encouraged active research scientists and engineers to talk about their own E/PO efforts and what worked for them, discussed the E/PO working environment, discussed opportunities for getting involved in E/PO (particularly in high-impact efforts that do not take much time), handed out booklets on effective E/PO, and asked scientists and engineers what they need to engage in E/PO. The identified barriers were consistent among scientists in GSFC's four science divisions (Earth science, planetary science, heliophysics, and astrophysics). Common barriers included 1) lack of time, 2) lack of funding support, 3) lack of value placed on doing E/PO by supervisors, 4) lack of training on doing appropriate/effective E/PO for different audiences, 5) lack of awareness and information about opportunities, 6) lack of understanding of what E/PO really is, and 7) level of effort required to do E/PO. Engineers reported similar issues, but the issues of time and funding support were more pronounced due to their highly structured work day and environment. Since the barriers were identified, the SCWG has taken a number of steps to address and rectify them. Steps have included holding various events to introduce scientists and engineers to E/PO staff and opportunities including an E/PO Open House, brown bag seminars on

  4. Increasing Engagement in Science through an Authentic Crop Protection Experiment for Year 9 School Students Working with Scientists

    Science.gov (United States)

    Oliver, Richard; Rybak, Kasia; Gruber, Cornelia; Nicholls, Graeme; Roberts, Graeme; Mengler, Janet; Oliver, Mary

    2011-01-01

    Practical work is often considered to be a highlight of science classes for students. However, there are few opportunities for students to engage in an investigation which is situated in a real world problem and students are required to contribute their own ideas to the design and conduct of an experiment. This paper reports on a Scientists in…

  5. Career, Family, and Institutional Variables in the Work Lives of Academic Women in the Chemical Sciences

    Science.gov (United States)

    Fassinger, Ruth E.; Scantlebury, Kathryn; Richmond, Geraldine

    This article presents quantitative results of a study of 139 academic women in the chemical sciences who participated in a professional development program sponsored by the Committee on the Advancement of Women Chemists. The study investigated variables frequently examined in the vocational psychology of women: approaches to achievement, coping strategies, career advancement, the home-work interface, workplace climate, and mentoring. The article presents and discusses results in the context of unique issues faced by women in scientific careers.

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Science Education Programmes · Women in Science · Committee on Scientific ... Critical Reviews of important fields and Perspective articles in emerging areas will ... work, mandatory for Rapid Communication, and suggest 2 to 3 names of Referees. ... The Jurisdiction for all disputes concerning submitted articles, published ...

  7. John of Salisbury on Aristotelian Science

    DEFF Research Database (Denmark)

    Bloch, David

    The First substantial treatment of John of Salisbury's views on Aristotelian science. Important for our understanding of the reception of Aristotle's works and for the history of theories of science.......The First substantial treatment of John of Salisbury's views on Aristotelian science. Important for our understanding of the reception of Aristotle's works and for the history of theories of science....

  8. Where civics meets science: building science for the public good through Civic Science.

    Science.gov (United States)

    Garlick, J A; Levine, P

    2017-09-01

    Public understanding of science and civic engagement on science issues that impact contemporary life matter more today than ever. From the Planned Parenthood controversy, to the Flint water crisis and the fluoridation debate, societal polarization about science issues has reached dramatic levels that present significant obstacles to public discussion and problem solving. This is happening, in part, because systems built to support science do not often reward open-minded thinking, inclusive dialogue, and moral responsibility regarding science issues. As a result, public faith in science continues to erode. This review explores how the field of Civic Science can impact public work on science issues by building new understanding of the practices, influences, and cultures of science. Civic Science is defined as a discipline that considers science practice and knowledge as resources for civic engagement, democratic action, and political change. This review considers how Civic Science informs the roles that key participants-scientists, public citizens and institutions of higher education-play in our national science dialogue. Civic Science aspires to teach civic capacities, to inform the responsibilities of scientists engaged in public science issues and to inspire an open-minded, inclusive dialogue where all voices are heard and shared commitments are acknowledged. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. A Working Framework for Enabling International Science Data System Interoperability

    Science.gov (United States)

    Hughes, J. Steven; Hardman, Sean; Crichton, Daniel J.; Martinez, Santa; Law, Emily; Gordon, Mitchell K.

    2016-07-01

    For diverse scientific disciplines to interoperate they must be able to exchange information based on a shared understanding. To capture this shared understanding, we have developed a knowledge representation framework that leverages ISO level reference models for metadata registries and digital archives. This framework provides multi-level governance, evolves independent of the implementation technologies, and promotes agile development, namely adaptive planning, evolutionary development, early delivery, continuous improvement, and rapid and flexible response to change. The knowledge representation is captured in an ontology through a process of knowledge acquisition. Discipline experts in the role of stewards at the common, discipline, and project levels work to design and populate the ontology model. The result is a formal and consistent knowledge base that provides requirements for data representation, integrity, provenance, context, identification, and relationship. The contents of the knowledge base are translated and written to files in suitable formats to configure system software and services, provide user documentation, validate input, and support data analytics. This presentation will provide an overview of the framework, present a use case that has been adopted by an entire science discipline at the international level, and share some important lessons learned.

  10. RESEARCH ON THE PROBLEMS OF interaction BETWEEN SCIENCE AND RELIGION IN UNIVERSITY COURSE OF PHILOSOPHY (BASED ON WORKS BY RUSSIAN RELIGIOUS THINKERS

    Directory of Open Access Journals (Sweden)

    Aleksey I. Belkin

    2016-03-01

    Full Text Available Introduction: the article explores the interrelations between science and religion in the context of shaping integrated world outlook of future specialists in the framework of the competence-based approach. Axiological and ethical aspects of the interaction between the two major branches of human culture are considered using the example of works by Russian religious thinkers: Archbishop Luke (V. F. Voyno-Yasenetsky, V. S. Soloviev, N. A. Berdyaev. Materials and Methods: materials and methods: the study employed the method of original sources, i. e. works by N. A. Berdyaev, V. F. Voino-Yasenetsky, V. S. Solovyov, considering the problems of interaction between science and religion. The method of original sources was combined with methods of analysis, synthesis and generalisation. Results: attention is paid to different approaches to addressing this problem over the historical development of human thought. When analysing the works by V. S. Solovyov emphasis is made on the concept of integral knowledge, considering the true knowledge as a result of the interaction of rational, empirical and mystical aspects. Much attention is paid to the interpretation of Archbishop Luke’s thoughts (V. F. Voyno-Yasenetsky who advocated theoretically and practically the idea of the synthesis of the knowledge and belief in their inextricable link to the genuine scientific and philosophical works. When discussing N. A. Berdyaev’s ideas the focus is on the critical analysis of the three types of relationships between science and religion, established in human culture: 1 supremacy of knowledge and denial of faith, 2 supremacy of faith and denial of knowledge, and 3 the dualism of knowledge and faith. The article also gives a thorough account of the philosopher’s idea about the synthesis of knowledge, faith and intuition that contradicts traditional approach. The article presents the arguments of modern science about the importance of interaction between religious

  11. Characterizing Gaint Exoplanets through Multiwavelength Transit Observations

    Science.gov (United States)

    Kasper, David; Cole, Jackson L.; Gardner, Cristilyn N.; Garver, Bethany R.; Jarka, Kyla L.; Kar, Aman; McGough, Aylin M.; PeQueen, David J.; Rivera, Daniel Ivan; Jang-Condell, Hannah; Kobulnicky, Henry A.; Dale, Daniel A.

    2018-01-01

    Observing the characteristics of giant exoplanets is possible with ground-based telescopes and modern observational methods. We are performing characterizations of multiple giant exoplanets based on 85 allotted nights of transit observations with the 2.3 m Wyoming Infrared Observatory using Sloan filters. In particular, constraints can be made on the atmospheres of our targets from the wavelength (in)dependence in the depth of the transit observations. We present early multiwavelength photometric results on the exoplanet HD 189733 b with comparison to literature sources to exemplify the methodology employed. In total, 15 exoplanets were observed across multiple wavelengths. The majority of the observing allotted to the project was completed as part of the 2017 Summer REU at the University of Wyoming. This work will significantly contribute to the growing number of observed atmospheres and influence interpretation of future WFIRST, JWST, and TESS targets. This work is supported by the National Science Foundation under REU grant AST 1560461.

  12. The paradox of un/making science people: practicing ethico-political hesitations in science education

    Science.gov (United States)

    Wallace, Maria F. G.

    2018-03-01

    Over the years neoliberal ideology and discourse have become intricately connected to making science people. Science educators work within a complicated paradox where they are obligated to meet neoliberal demands that reinscribe dominant, hegemonic assumptions for producing a scientific workforce. Whether it is the discourse of school science, processes of being a scientist, or definitions of science particular subjects are made intelligible as others are made unintelligible. This paper resides within the messy entanglements of feminist poststructural and new materialist perspectives to provoke spaces where science educators might enact ethicopolitical hesitations. By turning to and living in theory, the un/making of certain kinds of science people reveals material effects and affects. Practicing ethicopolitical hesitations prompt science educators to consider beginning their work from ontological assumptions that begin with abundance rather than lack.

  13. Environmental science: A new opportunity for soil science

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, I.L.

    2000-01-01

    During the golden era of soil science--from the 1950s to the 1980s--the main focus of this discipline was on the role of soil in production agriculture. More recently, renewed interest in the area of environmental science has offered new opportunities to soil scientists. Thus, many soil scientists are now working in areas such as bioremediation, waste recycling, and/or contaminant transport. Environmental science has, therefore, not only changed the traditional research role of soil scientists at land grant institutions but has also influenced student enrollment, the traditional soil science curriculum, and faculty recruitment. These changes require a new breed of soil scientist, one with a background not only in soil science but also in other areas of environmental science as well.

  14. Do science coaches promote inquiry-based instruction in the elementary science classroom?

    Science.gov (United States)

    Wicker, Rosemary Knight

    The South Carolina Mathematics and Science Coaching Initiative established a school-based science coaching model that was effective in improving instruction by increasing the level of inquiry-based instruction in elementary science classrooms. Classroom learning environment data from both teacher groups indicated considerable differences in the quality of inquiry instruction for those classrooms of teachers supported by a science coach. All essential features of inquiry were demonstrated more frequently and at a higher level of open-ended inquiry in classrooms with the support of a science coach than were demonstrated in classrooms without a science coach. However, from teacher observations and interviews, it was determined that elementary schoolteacher practice of having students evaluate conclusions and connect them to current scientific knowledge was often neglected. Teachers with support of a science coach reported changes in inquiry-based instruction that were statistically significant. This mixed ethnographic study also suggested that the Mathematics and Science Coaching Initiative Theory of Action for Instructional Improvement was an effective model when examining the work of science coaches. All components of effective school infrastructure were positively impacted by a variety of science coaching strategies intended to promote inquiry. Professional development for competent teachers, implementation of researched-based curriculum, and instructional materials support were areas highly impacted by the work of science coaches.

  15. Fort Collins Science Center-Fiscal year 2009 science accomplishments

    Science.gov (United States)

    Wilson, Juliette T.

    2010-01-01

    Public land and natural resource managers in the United States are confronted with increasingly complex decisions that have important ramifications for both ecological and human systems. The scientists and technical professionals at the U.S. Geological Survey Fort Collins Science Center?many of whom are at the forefront of their fields?possess a unique blend of ecological, socioeconomic, and technological expertise. Because of this diverse talent, Fort Collins Science Center staff are able to apply a systems approach to investigating complicated ecological problems in a way that helps answer critical management questions. In addition, the Fort Collins Science Center has a long record of working closely with the academic community through cooperative agreements and other collaborations. The Fort Collins Science Center is deeply engaged with other U.S. Geological Survey science centers and partners throughout the Department of the Interior. As a regular practice, we incorporate the expertise of these partners in providing a full complement of ?the right people? to effectively tackle the multifaceted research problems of today's resource-management world. In Fiscal Year 2009, the Fort Collins Science Center's scientific and technical professionals continued research vital to Department of the Interior's science and management needs. Fort Collins Science Center work also supported the science needs of other Federal and State agencies as well as non-government organizations. Specifically, Fort Collins Science Center research and technical assistance focused on client and partner needs and goals in the areas of biological information management and delivery, enterprise information, fisheries and aquatic systems, invasive species, status and trends of biological resources (including human dimensions), terrestrial ecosystems, and wildlife resources. In the process, Fort Collins Science Center science addressed natural-science information needs identified in the U

  16. The World Science Festival

    Science.gov (United States)

    Pazmino, J.

    2012-06-01

    (Abstract only) New York City in the late 20th century rose to be a planetary capital for the sciences, not just astronomy. This growth was mainly in the academic sector but a parallel growth occurred in the public and home field. With the millennium crossing, scientists in New York agitated for a celebration of the City as a place for a thriving science culture. In 2008 they began World Science Festival. 2011 is the fourth running, on June 1-5, following the AAVSO/AAS meetings. World Science Festival was founded by Dr. Brian Greene, Columbia University, and is operated through the World Science Foundation. The Festival is "saturation science" all over Manhattan in a series of lectures, shows, exhibits, performances. It is staged in "science" venues like colleges and musea, but also in off-science spaces like theaters and galleries. It is a blend from hard science, with lectures like those by us astronomers, to science-themed works of art, dance, music. Events are fitted for the public, either for free or a modest fee. While almost all events are on Manhattan, effort has been made to geographically disperse them, even to the outer boroughs. The grand finale of World Science Festival is a street fair in Washington Square. Science centers in booths, tents, and pavilions highlight their work. In past years this fair drew 100,000 to 150,000 visitors. The entire Festival attracts about a quarter-million attendees. NYSkies is a proud participant at the Washington Square fair. It interprets the "Earth to the Universe" display, debuting during IYA-2009. Attendance at "Earth..." on just the day of the fair plausibly is half of all visitors in America. The presentation shows the scale and scope of World Science Festival, its relation to the City, and how our astronomers work with it.

  17. More than "Cool Science": Science Fiction and Fact in the Classroom

    Science.gov (United States)

    Singh, Vandana

    2014-02-01

    The unfortunate negative attitude toward physics among many students, including science majors, warrants creative approaches to teaching required physics courses. One such approach is to integrate science fiction into the curriculum, either in the form of movies or the written word. Historically this has been done since at least the 1970s, and by now many universities and colleges have courses that incorporate science fiction stories or film. The intent appears to be to a) increase student interest in physics, b) increase the imaginative grasp of the student, and c) enable a clearer understanding of physics concepts. Reports on these experiments, from Freedman and Little's classic 1980 paper to more recent work like that of Dubeck et al.,2 Dark,3 and Smith,4 indicate that such innovative approaches do work. I was curious as to whether a combination of science fiction and science fact (in the form of a science news article) might enhance the benefits of including science fiction. Below I describe how I used a science fiction story along with a science article on a related theme to pique the interest of students in a new and exciting area of research that was nevertheless connected to the course material.

  18. Why Earth Science?

    Science.gov (United States)

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  19. Understanding Science and Technology Interactions Through Ocean Science Exploration: A Summer Course for Science Teachers

    Science.gov (United States)

    Baldauf, J.; Denton, J.

    2003-12-01

    In order to replenish the national supply of science and mathematics educators, the National Science Foundation has supported the formation of the Center for Applications of Information Technology in the Teaching and Learning of Science (ITS) at Texas A&M University. The center staff and affiliated faculty work to change in fundamental ways the culture and relationships among scientists, educational researchers, and teachers. ITS is a partnership among the colleges of education, science, geosciences, agriculture and life science at Texas A&M University. Participants (teachers and graduate students) investigate how science is done and how science is taught and learned; how that learning is assessed, and how scholarly networks among all engaged in this work can be encouraged. While the center can offer graduate degrees most students apply as non-degree seekers. ITS participants are schooled on classroom technology applications, experience working on project teams, and access very current research work being conducted by scientists. ITS offers a certificate program consisting of two summer sessions over two years that results in 12 hours of graduate credit that can be applied to a degree. Interdisciplinary project teams spend three intense weeks connecting current research to classroom practices. During the past summer with the beginning of the two-year sequence, a course was implemented that introduced secondary teachers to Ocean Drilling Program (ODP) contributions to major earth science themes, using core and logging data, engineering (technology) tools and processes. Information Technology classroom applications were enhanced through hands-on laboratory exercises, web resources and online databases. The course was structured around the following objectives. 1. Distinguish the purpose and goals of the Ocean Drilling Program from the Integrated Ocean Drilling Program and describe the comparable science themes (ocean circulation, marine sedimentation, climate history

  20. Play with Science in Inquiry Based Science Education

    OpenAIRE

    Andrée, Maria; Lager-Nyqvist, Lotta; Wickman, Per-Olof

    2011-01-01

    In science education students sometimes engage in imaginary science-oriented play where ideas about science and scientists are put to use. Through play, children interpret their experiences, dramatize, give life to and transform what they know into a lived narrative. In this paper we build on the work of Vygotsky on imagination and creativity. Previous research on play in primary and secondary school has focused on play as a method for formal instruction rather than students’ spontaneous info...

  1. A study of science leadership and science standards in exemplary standards-based science programs

    Science.gov (United States)

    Carpenter, Wendy Renae

    The purpose for conducting this qualitative study was to explore best practices of exemplary standards-based science programs and instructional leadership practices in a charter high school and in a traditional high school. The focus of this study included how twelve participants aligned practices to National Science Education Standards to describe their science programs and science instructional practices. This study used a multi-site case study qualitative design. Data were obtained through a review of literature, interviews, observations, review of educational documents, and researcher's notes collected in a field log. The methodology used was a multi-site case study because of the potential, through cross analysis, for providing greater explanation of the findings in the study (Merriam, 1988). This study discovered six characteristics about the two high school's science programs that enhance the literature found in the National Science Education Standards; (a) Culture of expectations for learning-In exemplary science programs teachers are familiar with a wide range of curricula. They have the ability to examine critically and select activities to use with their students to promote the understanding of science; (b) Culture of varied experiences-In exemplary science programs students are provided different paths to learning, which help students, take in information and make sense of concepts and skills that are set forth by the standards; (c) Culture of continuous feedback-In exemplary science programs teachers and students work together to engage students in ongoing assessments of their work and that of others as prescribed in the standards; (d) Culture of Observations-In exemplary science programs students, teachers, and principals reflect on classroom instructional practices; teachers receive ongoing evaluations about their teaching and apply feedback towards improving practices as outlined in the standards; (e) Culture of continuous learning-In exemplary

  2. Science Under Attack Public Policy, Science Education, and the Emperor's New Clothes

    International Nuclear Information System (INIS)

    Krauss, Lawrence

    2005-01-01

    The popular debate about the teaching of intelligent design in public schools is but one quandary for scientists and policy makers. Given recent developments which have worked to breed a general distrust of science, it is evident that researchers and politicians alike should be wary of using popular opinion as a guide for policy and pedagogy when it comes to science in public education. Dr. Krauss will qualify this complex issue and will address how educators, policy makers and scientists can work effectively to prevent public misconceptions of science.

  3. Group Work

    Science.gov (United States)

    Wilson, Kristy J.; Brickman, Peggy; Brame, Cynthia J.

    2018-01-01

    Science, technology, engineering, and mathematics faculty are increasingly incorporating both formal and informal group work in their courses. Implementing group work can be improved by an understanding of the extensive body of educational research studies on this topic. This essay describes an online, evidence-based teaching guide published by…

  4. Unsustainable Growth, Hyper-Competition, and Worth in Life Science Research: Narrowing Evaluative Repertoires in Doctoral and Postdoctoral Scientists' Work and Lives.

    Science.gov (United States)

    Fochler, Maximilian; Felt, Ulrike; Müller, Ruth

    There is a crisis of valuation practices in the current academic life sciences, triggered by unsustainable growth and "hyper-competition." Quantitative metrics in evaluating researchers are seen as replacing deeper considerations of the quality and novelty of work, as well as substantive care for the societal implications of research. Junior researchers are frequently mentioned as those most strongly affected by these dynamics. However, their own perceptions of these issues are much less frequently considered. This paper aims at contributing to a better understanding of the interplay between how research is valued and how young researchers learn to live, work and produce knowledge within academia. We thus analyze how PhD students and postdocs in the Austrian life sciences ascribe worth to people, objects and practices as they talk about their own present and future lives in research. We draw on literature from the field of valuation studies and its interest in how actors refer to different forms of valuation to account for their actions. We explore how young researchers are socialized into different valuation practices in different stages of their growing into science. Introducing the concept of "regimes of valuation" we show that PhD students relate to a wider evaluative repertoire while postdocs base their decisions on one dominant regime of valuing research. In conclusion, we discuss the implications of these findings for the epistemic and social development of the life sciences, and for other scientific fields.

  5. Zur Rolle von Plansprachen im terminologiewissenschaftlichen Werk von Eugen Wuster (The Role of Planned Languages in Eugen Wuster's Work on Terminology Science).

    Science.gov (United States)

    Blanke, Detlev

    1998-01-01

    Discusses the relationship between planned languages and specialized technical languages, with particular reference to Esperanto, and analyzes its significance for several aspects of Eugen Wuster's (the founder of terminology science) work. (Author/VWL)

  6. Science Teachers' Misconceptions in Science and Engineering Distinctions: Reflections on Modern Research Examples

    Science.gov (United States)

    Antink-Meyer, Allison; Meyer, Daniel Z.

    2016-10-01

    The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This knowledge ultimately provides information about supporting professional development (PD) for science teachers' knowledge of engineering. Six science teachers (two elementary and four high school teachers) participated in the study as part of an online PD experience. Cunningham and Carlsen's (Journal of Science Teacher Education 25:197-210, 2014) relative emphases of science and engineering practices were used to frame the design of PD activities and the analyses of teachers' views. Analyses suggest misconceptions within the eight practices of science and engineering from the US Next Generation Science Standards in four areas. These are that: (1) the nature of the practices in both science and engineering research is determined by the long-term implications of the research regardless of the nature of the immediate work, (2) engineering and science are hierarchical, (3) creativity is inappropriate, and (4) research outcomes cannot be processes. We discuss the nature of these understandings among participants and the implications for engineering education PD for science teachers.

  7. Educating elementary-aged English learners in science: Scientists and teachers working together

    Science.gov (United States)

    Banuelos, Gloria Rodriguez

    California's K-12 schools contain 40% of the nation's English learners, the majority of them enrolled at the elementary level. Traditionally, English learners in California have difficulty performing at the same level as their native English speaking counterparts on national achievement tests, such as the National Assessment of Educational Progress. In 1998, California voters passed Proposition 227 mandating that English learners be taught "overwhelmingly" in English, thus making teachers, many without expertise, responsible for teaching multilevel English proficient students subject matter. I studied the use of scientist-teacher partnerships as a resource for teachers of English learners. University scientists (graduate students) partnered with local elementary school teachers designed and implemented integrated science and English lessons for classrooms with at least 30% English learners. The study explored two major foci. First, integrated science and language lessons implemented by six scientist-teacher partnerships were investigated. Second, the responsibilities taken on by the team members during the implementation of integrated science and language lessons were examined. Three data sources were analyzed: (1) six lesson sequences comprised of 28 lessons; (2) 18 lesson worksheet; and (3) 24 participant Retrospective interview transcripts (12 scientists and 12 teachers). Lessons across were examined according to four analytical categories which included the following: (1) nature of the science activities (e.g. hands-on); nature of language activities (e.g. speaking); (2) nature of instructional practices (e.g. student grouping); and (3) responsibilities of teachers and scientists (e.g. classroom). A micro level analysis illustrates how one scientist-teacher team innovatively used a children's story, Goldilocks and the Three Bears, to teach the measurement of length and temperature. A macro level analysis identified three characteristics of science activities

  8. The sociology of scientific work the fundamental relationship between science and society

    CERN Document Server

    Vinck, Dominique

    2010-01-01

    More than ever before, science and technology play a significant role in modern society as evidenced by the development of nanotechnologies and the controversies surrounding GMOs and climate change. This book comprehensively explores the flourishing field of science and technology studies and examines its creation, development and interaction with contemporary society. Dominique Vinck examines the various relationships between science and society including the emergence of sciences, the dynamics of innovation and technical democracy. He also investigates the principal social mechanisms of science and technology such as institutions, organizations, exchanges between researchers and the construction of scientific knowledge, expertise and innovation. The book provides a thorough overview of the field and reviews the major theoretical and methodological approaches as well as the current state of research on a range of topics. This original book will strongly appeal to students and researchers in the social scie...

  9. Philosophy of the social sciences

    Directory of Open Access Journals (Sweden)

    J. A. Kimelyev

    2014-01-01

    Full Text Available Philosophy of social science is a branch of philosophy where relations between philosophy and social sciences are traced and investigated. The main functions of philosophy of social science are: to work out social ontology, methodology and metatheory of social science.

  10. Attracting Females to Science Careers: How Well Do Special Initiatives Work?

    Science.gov (United States)

    Madill, Helen M.; Montgomerie, T. Craig; Armour, Margaret-Ann; Fitzsimmons, George W.; Stewin, Leonard L.; Tovell, Dorothy R.

    Although there is considerable anecdotal evidence concerning the success of a large number of programs for women in science in Canada, no well-controlled studies had been conducted. This publication reports on results from an outcome evaluation of the Women in Scholarship, Engineering, Science and Technology (WISEST) Summer Research Program for…

  11. Science, Society and Policy

    Science.gov (United States)

    White, K. S.; Teich, A. H.

    2010-12-01

    Apart from the journals they produce, scientific societies play an important role in communicating scientific findings and norms to the broader society. The American Association for the Advancement of Science (AAAS) includes among its goals to promote and defend the integrity of science and its use; provide a voice for science on societal issues; promote the responsible use of science in public policy; and increase public engagement with science and technology. AAAS websites and programs, including Communicating Science (www.aaas.org/communicatingscience), Working with Congress (http://www.aaas.org/spp/cstc/wwc/book.htm) and ScienceCareers.org (http://sciencecareers.sciencemag.org), provide tools for scientists to become more directly engaged in effectively communicating their findings and involved in the policy process. Education programs work to build the next generation of scientists and a science-literate public. To bridge the current communication gap between scientists, the public and policymakers, AAAS, like other scientific societies, maintains policy and outreach programs with limited budgets and staff. AAAS works to engage policymakers and provide scientific underpinning to key issues through congressional briefings, meetings, policy briefs, and media outreach. AAAS responds to challenges to accepted scientific findings and processes through op-eds, letters to government officials, resolutions, and Board statements. Some of these initiatives occur on a local level in partnership with local civic leaders, whose endorsement makes them more powerful. On a national scale, they assure that the voice of science is included in the debate. The changing media landscape presents opportunities and challenges for future AAAS endeavors.

  12. Science Divulgation: The Social Representations of Brazilian Researchers Working in the Field of Astronomy

    Science.gov (United States)

    Carneiro, Dalira Lúcia Cunha Maradei; Longhini, Marcos Daniel

    2015-12-01

    This article addresses the role of scientific divulgation in the interaction between science and society, debating the importance of Astronomy as a prime starter of the scientific divulgation. In the light of Moscovici’s Social Representations Theory, the social representations on scientific divulgation of Brazilian researchers that work in the field of Astronomy are studied. Individuals from different educational trajectories ansewered semi-structured interviews, which were analyzed according to Spink. The results indicate two representations: one for the society at large, moved by passion, based on values and beliefs, and on the satisfaction of seeing the results of their actions on people’s life; and another for their peers. In the first representation, gaps that obstruct the science divulgation emerge, such as the lack of training and the difficulty to use a plain language, the bureaucracy required for the projects’ execution and its negative representation in the media. Other inferences are that Astronomy is neither part of a systematic teaching nor a part of the media at large, and it often presents conceptual mistakes. Those representations find an echo in the theoretical framework, showing that, despite their advances, scientific divulgation and Astronomy Education are in a context of social fragility.

  13. New practices in science communication: Roles of professionals in science and technology development

    NARCIS (Netherlands)

    Wehrmann, Caroline; Dijkstra, Anne M.

    2014-01-01

    Currently, Science Communication (SC) professionals who are working in the context of science and technology development, have various jobs at universities, government agencies, NGOs and industry. Their positions have changed in recent years, due to developments in science and technology and to

  14. Organizational Climate and Work Addiction in Shahid Sadoughi University of Medical Sciences, 2014: a Case Study.

    Science.gov (United States)

    Rafiee, Noora; Bahrami, Mohammad Amin; Zare, Vahid; Mohammadi, Mahan

    2015-12-01

    The occupational nature of employees in headquarters units of the University requires them to deal with support issues. Thus, there is some pressure on these employees to complete their assignments on time so that employees in the line units can accurately and expeditiously perform their duties. As a result, work addiction behaviors are sometimes observed among the headquarters personnel. Considering the importance of work addiction and recognizing the factors that intensify it, this study investigated the relationship between organizational climate and the work addiction of headquarters personnel at the Shahid Sadoughi University of Medical Sciences. This descriptive-analytic study was conducted using stratified random sampling of 151 University employees in 2014. The data collection tool was an organizational climate questionnaire, which was supplemented by the Work Addiction Risk Test (WART). The data were analyzed using the Pearson test, Spearman test, independent t-test, Mann-Whitney test, one-way analysis of variance (ANOVA), and the Kruskal-Wallis test using IBM-SPSS version 20. The findings of this study showed that the organizational climate was at a moderate level, and employees were in the danger level in terms of work addiction. In addition, among the dimensions of organizational climate, the risk dimension had a significant relationship with work addiction (porganizational climate score was low and the work addiction score was at the high-risk level, this issue demands more attention of senior managers and human resource officers of organizations to improve the organizational climate and increase employees' awareness of work addiction.

  15. Australia at the Crossroads: A Review of School Science Practical Work

    Science.gov (United States)

    Kidman, Gillian

    2012-01-01

    In Australia we are at a crossroads in science education. We have come from a long history of adopting international curricula, through to blending international and Australian developed materials, to the present which is a thoroughly unique Australian curriculum in science. This paper documents Australia's journey over the past 200 years, as we…

  16. The Learning of Science Basic Concept by Using Scientifiq Inquiry to Improve Student’s Thinking, Working, and Scientific Attitude Abilities

    Directory of Open Access Journals (Sweden)

    Wachidatul Linda Yuhanna

    2016-03-01

    Full Text Available This research was a classroom action research which was conducted intwo cycles, each cycle consists of planning, implementing, observing, and reflecting. The data used was quantitative data on student observation sheet instruments. The Results of the study which were obtained from the first cycle showed about the students’ thinking skills and scientific works. They were categorized as excellent 18.18%, good 22.73%, enough 52.27%, and sufficiently less 6.82%. As for the scientific attitude with a very active category of 11.36%, 43.18% and less active 45.45%. It has not reached indicators of success, so it was necessary to cycle II. Cycle II demonstrated the excellent category 38.63%, 36.36% good, good enough18.18% and less 6.81%. While the scientific attitude in the cycle II was an active attitude 29.54%, active 54.54%, inactive 15.91%. These results show an increase from the cycle I to cycle II. The conclusion of this study were: 1 learning the basic concepts of science with scientific inquiry in students can be conducible applied.2 Learning the basic concepts of science with scientific inquiry can improve thinking ability and scientific work and students’ scientific attitude. 3 Learning the basic concepts of science with scientific inquiry be able to explore and develop student creativity in designing simple experiments which can be applied in primary schools.

  17. Probing the End of the IMF in NGC 2024 with NIRCam on JWST: Assessing the Impact of Nebular Emission in Galactic Star Forming Regions

    Science.gov (United States)

    Suri, Veenu; Meyer, Michael; Greenbaum, Alexandra Z.; Bell, Cameron; Beichman, Charles; Gordon, Karl D.; Greene, Thomas P.; Hodapp, K.; Horner, Scott; Johnstone, Doug; Leisenring, Jarron; Manara, Carlos; Mann, Rita; Misselt, K.; Raileanu, Roberta; Rieke, Marcia; Roellig, Thomas

    2018-01-01

    We describe observations of the embedded young cluster associated with the HII region NGC 2024 planned as part of the guaranteed time observing program for the James Webb Space Telescope with the NIRCam (Near Infrared Camera) instrument. Our goal is to obtain a census of the cluster down to 2 Jupiter masses, viewed through 10-20 magnitudes of extinction, using multi-band filter photometry, both broadband filters and intermediate band filters that are expected to be sensitive to temperature and surface gravity. The cluster contains several bright point sources as well as extended emission due to reflected light, thermal emission from warm dust, as well as nebular line emission. We first developed techniques to better understand which point sources would saturate in our target fields when viewed through several JWST NIRCam filters. Using images of the field with the WISE satellite in filters W1 and W2, as well as 2MASS (J and H) bands, we devised an algorithm that takes the K-band magnitudes of point sources in the field, and the known saturation limits of several NIRCam filters to estimate the impact of the extended emission on survey sensitivity. We provide an overview of our anticipated results, detecting the low mass end of the IMF as well as planetary mass objects likely liberated through dynamical interactions.

  18. Science and Society: The Life and Work of a Great Russian Physicist

    CERN Multimedia

    2002-01-01

    In 1934, the eminent Russian physicist and optics specialist Sergei Ivanovitch Vavilov (1891-1951) was the first, together with Pavel Cherenkov, to observe the famous radiation we now call Cherenkov radiation, a discovery commonly used in the Laboratory's detectors. His most well-known discoveries also include that of the non-linear optical effect in 1926. Vavilov founded the Lebedev Physics Institute in Moscow, which prospered under his directorship, and contributed to the rise of nuclear physics and cosmic radiation in the USSR. The highpoint of his career came in 1945, when he was appointed President of the Soviet Academy of Sciences. However, Sergei Vavilov worked under the Stalinist dictatorship, which was responsible for the death of his elder brother, the biologist Nikolai Vavilov. His own health compromised, he died two months before his 60th birthday. His remarkable life, which is interesting not only for his scientific discoveries but also in terms of its historical context, will be the subject of...

  19. New science on the Open Science Grid

    Energy Technology Data Exchange (ETDEWEB)

    Pordes, R; Altunay, M; Sehgal, C [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Avery, P [University of Florida, Gainesville, FL 32611 (United States); Bejan, A; Gardner, R; Wilde, M [University of Chicago, Chicago, IL 60607 (United States); Blackburn, K [California Institute of Technology, Pasadena, CA 91125 (United States); Blatecky, A; McGee, J [Renaissance Computing Institute, Chapel Hill, NC 27517 (United States); Kramer, B; Olson, D; Roy, A [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Livny, M [University of Wisconsin, Madison, Madison, WI 53706 (United States); Potekhin, M; Quick, R; Wenaus, T [Indiana University, Bloomington, IN 47405 (United States); Wuerthwein, F [University of California, San Diego, La Jolla, CA 92093 (United States)], E-mail: ruth@fnal.gov

    2008-07-15

    The Open Science Grid (OSG) includes work to enable new science, new scientists, and new modalities in support of computationally based research. There are frequently significant sociological and organizational changes required in transformation from the existing to the new. OSG leverages its deliverables to the large-scale physics experiment member communities to benefit new communities at all scales through activities in education, engagement, and the distributed facility. This paper gives both a brief general description and specific examples of new science enabled on the OSG. More information is available at the OSG web site: www.opensciencegrid.org.

  20. New science on the Open Science Grid

    International Nuclear Information System (INIS)

    Pordes, R; Altunay, M; Sehgal, C; Avery, P; Bejan, A; Gardner, R; Wilde, M; Blackburn, K; Blatecky, A; McGee, J; Kramer, B; Olson, D; Roy, A; Livny, M; Potekhin, M; Quick, R; Wenaus, T; Wuerthwein, F

    2008-01-01

    The Open Science Grid (OSG) includes work to enable new science, new scientists, and new modalities in support of computationally based research. There are frequently significant sociological and organizational changes required in transformation from the existing to the new. OSG leverages its deliverables to the large-scale physics experiment member communities to benefit new communities at all scales through activities in education, engagement, and the distributed facility. This paper gives both a brief general description and specific examples of new science enabled on the OSG. More information is available at the OSG web site: www.opensciencegrid.org

  1. Augmenting the Funding Sources for Space Science and the ASTRO-1 Space Telescope

    Science.gov (United States)

    Morse, Jon

    2015-08-01

    The BoldlyGo Institute was formed in 2013 to augment the planned space science portfolio through philanthropically funded robotic space missions, similar to how some U.S. medical institutes and ground-based telescopes are funded. I introduce BoldlyGo's two current projects: the SCIM mission to Mars and the ASTRO-1 space telescope. In particular, ASTRO-1 is a 1.8-meter off-axis (unobscured) ultraviolet-visible space observatory to be located in a Lagrange point or heliocentric orbit with a wide-field panchromatic camera, medium- and high-resolution spectrograph, and high-contrast imaging coronagraph and/or an accompanying starshade/occulter. It is intended for the post-Hubble Space Telescope era in the 2020s, enabling unique measurements of a broad range of celestial targets, while providing vital complementary capabilities to other ground- and space-based facilities such as the JWST, ALMA, WFIRST-AFTA, LSST, TESS, Euclid, and PLATO. The ASTRO-1 architecture simultaneously wields great scientific power while being technically viable and affordable. A wide variety of scientific programs can be accomplished, addressing topics across space astronomy, astrophysics, fundamental physics, and solar system science, as well as being technologically informative to future large-aperture programs. ASTRO-1 is intended to be a new-generation research facility serving a broad national and international community, as well as a vessel for impactful public engagement. Traditional institutional partnerships and consortia, such as are common with private ground-based observatories, may play a role in the support and governance of ASTRO-1; we are currently engaging interested international organizations. In addition to our planned open guest observer program and accessible data archive, we intend to provide a mechanism whereby individual scientists can buy in to a fraction of the gauranteed observing time. Our next step in ASTRO-1 development is to form the ASTRO-1 Requirements Team

  2. Standardization of XML Database Exchanges and the James Webb Space Telescope Experience

    Science.gov (United States)

    Gal-Edd, Jonathan; Detter, Ryan; Jones, Ron; Fatig, Curtis C.

    2007-01-01

    Personnel from the National Aeronautics and Space Administration (NASA) James Webb Space Telescope (JWST) Project have been working with various standard communities such the Object Management Group (OMG) and the Consultative Committee for Space Data Systems (CCSDS) to assist in the definition of a common extensible Markup Language (XML) for database exchange format. The CCSDS and OMG standards are intended for the exchange of core command and telemetry information, not for all database information needed to exercise a NASA space mission. The mission-specific database, containing all the information needed for a space mission, is translated from/to the standard using a translator. The standard is meant to provide a system that encompasses 90% of the information needed for command and telemetry processing. This paper will discuss standardization of the XML database exchange format, tools used, and the JWST experience, as well as future work with XML standard groups both commercial and government.

  3. ESIP Earth Sciences Data Analytics (ESDA) Cluster - Work in Progress

    Science.gov (United States)

    Kempler, Steven

    2015-01-01

    The purpose of this poster is to promote a common understanding of the usefulness of, and activities that pertain to, Data Analytics and more broadly, the Data Scientist; Facilitate collaborations to better understand the cross usage of heterogeneous datasets and to provide accommodating data analytics expertise, now and as the needs evolve into the future; Identify gaps that, once filled, will further collaborative activities. Objectives Provide a forum for Academic discussions that provides ESIP members a better understanding of the various aspects of Earth Science Data Analytics Bring in guest speakers to describe external efforts, and further teach us about the broader use of Data Analytics. Perform activities that:- Compile use cases generated from specific community needs to cross analyze heterogeneous data- Compile sources of analytics tools, in particular, to satisfy the needs of the above data users- Examine gaps between needs and sources- Examine gaps between needs and community expertise- Document specific data analytics expertise needed to perform Earth science data analytics Seek graduate data analytics Data Science student internship opportunities.

  4. Information Science and integrative Science. A sistemic approach to information units

    Directory of Open Access Journals (Sweden)

    Rita Dolores Santaella Ruiz

    2006-01-01

    Full Text Available Structured in two parts: The Documentation like integrating science and Systematics approach to the documentary units, this work understands the Documentation from a brought integrating perspective of the twinning that supposes same modus operandi in the information systems through the use of the technologies of the communication. From the General Theory of Systems, the present work interprets this science to multidiscipline like a system formed by the technical subsystems, of elements and individuals

  5. Cooperative Learning about Nature of Science with a Case from the History of Science

    Science.gov (United States)

    Wolfensberger, Balz; Canella, Claudia

    2015-01-01

    This paper reports a predominantly qualitative classroom study on cooperative learning about nature of science (NOS) using a case from the history of science. The purpose of the research was to gain insight into how students worked with the historical case study during cooperative group work, how students and teachers assessed the teaching unit,…

  6. Artificial Intelligence and Science Education.

    Science.gov (United States)

    Good, Ron

    1987-01-01

    Defines artificial intelligence (AI) in relation to intelligent computer-assisted instruction (ICAI) and science education. Provides a brief background of AI work, examples of expert systems, examples of ICAI work, and addresses problems facing AI workers that have implications for science education. Proposes a revised model of the Karplus/Renner…

  7. Information science in transition

    CERN Document Server

    Gilchrist, Alan

    2013-01-01

    Are we at a turning point in digital information? The expansion of the internet is unprecedented. Will information science become part of computer science and does rise of the term informatics demonstrate convergence of information science and information technology - a convergence that must surely develop? This work reflects on such issues.

  8. Working research codes into fluid dynamics education: a science gateway approach

    Science.gov (United States)

    Mason, Lachlan; Hetherington, James; O'Reilly, Martin; Yong, May; Jersakova, Radka; Grieve, Stuart; Perez-Suarez, David; Klapaukh, Roman; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Research codes are effective for illustrating complex concepts in educational fluid dynamics courses, compared to textbook examples, an interactive three-dimensional visualisation can bring a problem to life! Various barriers, however, prevent the adoption of research codes in teaching: codes are typically created for highly-specific `once-off' calculations and, as such, have no user interface and a steep learning curve. Moreover, a code may require access to high-performance computing resources that are not readily available in the classroom. This project allows academics to rapidly work research codes into their teaching via a minimalist `science gateway' framework. The gateway is a simple, yet flexible, web interface allowing students to construct and run simulations, as well as view and share their output. Behind the scenes, the common operations of job configuration, submission, monitoring and post-processing are customisable at the level of shell scripting. In this talk, we demonstrate the creation of an example teaching gateway connected to the Code BLUE fluid dynamics software. Student simulations can be run via a third-party cloud computing provider or a local high-performance cluster. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  9. It's Different People Who Are Down Here:  Portraits of Three Young Women of Color Who Work in a Science Museum

    OpenAIRE

    Motto, Andrea Marie

    2016-01-01

    Eldora, Neethi and Seraphina are three young women who work as science interpreters at a large metropolitan museum. Each woman began her tenure at the age of 15, as part of an employment program for low-income and minority youth, and have since grown to become leaders within the program. Using autoethnography (Ellis, 2004) and portraiture (Lawrence-Lightfoot and Hoffman Davis, 1997), I explore the rich cultures and histories that each woman brings to her work, present stories that counter the...

  10. Pure Science and Applied Science

    Directory of Open Access Journals (Sweden)

    Robert J. Aumann

    2011-01-01

    Full Text Available (Excerpt The name of my talk is Pure Science and Applied Science, and the idea I would like to sell to you today is that there is no such thing as “pure” or “applied” science. In other words, there is such a thing as science, but there is no difference between pure and applied science. Science is one entity and cannot be separated into different categories. In order to back that up, I would like to tell you a little story. As an undergraduate, I studied mathematics at City College in New York. At that time, what was called Pure Mathematics was in vogue, and the more prominent mathematicians were a little contemptuous of any kind of application. A very famous, prominent mathematician in the first half of the previous century by the name of G. H. Hardy, who was in a branch of mathematics called number theory, said that the only thing he regretted was that he unwittingly did some important work in mathematical genetics that eventually turned out to have some application. … Such was the atmosphere in the late ’40s of the previous century and, being a young man and impressionable, I was swept up in this atmosphere.

  11. A risk of science or a science of risks

    International Nuclear Information System (INIS)

    Stallen, P.

    1983-01-01

    The works of Prof. Haefele (IIASA, Austria) and Groenewald (Groningen) are compared in order to point out the relationship between the concepts of technological risk, risk acceptability and metatheoretical release about the effect of science and technology. A third outlook on science, technology and society, according to which rationality is a characteristic of society, is finally discussed. (DG) [de

  12. Science Under Attack! Public Policy, Science Education, and the Emperor's New Clothes

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Lawrence (Case Western Reserve University)

    2005-12-05

    The popular debate about the teaching of intelligent design in public schools is but one quandary for scientists and policy makers. Given recent developments which have worked to breed a general distrust of science, it is evident that researchers and politicians alike should be wary of using popular opinion as a guide for policy and pedagogy when it comes to science in public education. Dr. Krauss will qualify this complex issue and will address how educators, policy makers and scientists can work effectively to prevent public misconceptions of science.

  13. Take a scientist to the sauna: A great way to keep science and stewardship working together for another 50 years

    Science.gov (United States)

    Alan E. Watson; H. Ken Cordell

    2014-01-01

    At a workshop in Oulanka National Park in Finland, shortly after the Finnish Wilderness Act had passed in 1991, managers and scientists wrestled with how to incorporate science into protection of wildlands of northern Finland. One working group was assigned to develop a list of "why managers don't apply the information scientists provide" and another...

  14. Action research in gender issues in science education: Towards an understanding of group work with science teachers

    Science.gov (United States)

    Nyhof-Young, Joyce Marion

    Action research is emerging as a promising means of promoting individual and societal change in the context of university programmes in teacher education. However, significant gaps exist in the literature regarding the use of action research groups for the education of science teachers. Therefore, an action research group, dealing with gender issues in science education, was established within the context of a graduate course in action research at OISE. For reasons outlined in the thesis, action research was deemed an especially appropriate means for addressing issues of gender. The group met 14 times from September 1992 until May 1993 and consisted of myself and five other science teachers from the Toronto area. Two of us were in the primary panel, two in the intermediate panel, and two in the tertiary panel. Five teachers were female. One was male. The experiences of the group form the basis of this study. A methodology of participant observation supported by interviews, classroom visits, journals, group feedback and participant portfolios provides a means of examining experiences from the perspective of the participants in the group. The case study investigates the nature of the support and learning opportunities that the action research group provided for science teachers engaged in curiculum and professional development in the realm of gender issues in science education, and details the development of individuals, the whole group and myself (as group worker, researcher and participant) over the life of the project. The action research group became a resource for science teachers by providing most participants with: A place to personalize learning and research; a place for systematic reflection and research; a forum for discussion; a source of personal/professional support; a source of friendship; and a place to break down isolation and build self-confidence. This study clarifies important relational and political issues that impinge on action research in

  15. The Dissemination of Science and Science Journalism in Brazilian Universities: Analyzing Strategies that Facilitate Access to Science & Technology

    Directory of Open Access Journals (Sweden)

    Giuliana Batista Rodrigues de Queiroz

    2016-12-01

    Full Text Available This article is a mapping of Brazilian universities that maintain a structured work for Science Journalism and / or the dissemination of science. It analyses the strategies used by the top 50 Brazilian universities for including dissemination of science in their communication activities. In order to do this each institution’s website was examined for the purpose of collecting a large sample size of universities that organize and prioritize the dissemination of science and science journalism, and make their studies and projects available to the public. The dissemination of science is a priority for only 15 universities; ones that have structured science journalism programs. 11 of these universities are among the top 25 in the country which indicates that there is a direct relationship between academic quality and dissemination of science. Thus, this study lends to a deeper understanding of the field of science journalism.

  16. T. rex and Godzilla: Finding Science in Science Fiction

    Science.gov (United States)

    Engelmann, G. F.; Chure, D. J.

    2017-12-01

    Works of fiction act as a powerful vehicle for inculcating an intuitive understanding (or misunderstanding) of scientific concepts in the audience. They can communicate information about scientific phenomena or how science is done. These entertainments can contribute to scientific literacy of the public and provide valuable outreach opportunities, but scientific accuracy is rarely even a minor consideration in developing fictional stories. Science educators can still make use of popular fiction to promote science education and outreach. Varied approaches have focused on the physical science in classic space operas, but historical sciences can make use of public interest in fictional tales involving prehistoric creatures and settings. Dinosaurs like T. rex inspire awe and widespread popular appeal that can nurture an interest in fossils but also serves as a gateway to all the other sciences on which paleontology depends, and to the scientific endeavor itself. But the portrayal of dinosaurs has met with negative criticism of details that is not likely to be productive of further discussion and learning. Perhaps it is not so important that authors and film makers didn't get it right; that "correctness" of terms and reconstructions is less important than the opportunity to improve public understanding of how science works; to cultivate a habit of critical thinking and an analytical approach to interpreting the world. Dinosaurs and other long extinct creatures can provide examples of how we know what we know; what kind of evidence is available and how it can be interpreted; how creative framing of hypotheses allows imaginative conjectures to be constrained by observations. They can open informative discussions of how scientists work in gathering data and developing and testing hypotheses. For example, how do paleontologists find fossils? Monsters, unrealistic fantasy creatures like Godzilla, have great charismatic appeal, and can prompt discussions of the obstacles

  17. USGS science in Menlo Park -- a science strategy for the U.S. Geological Survey Menlo Park Science Center, 2005-2015

    Science.gov (United States)

    Brocher, Thomas M.; Carr, Michael D.; Halsing, David L.; John, David A.; Langenheim, V.E.; Mangan, Margaret T.; Marvin-DiPasquale, Mark C.; Takekawa, John Y.; Tiedeman, Claire

    2006-01-01

    In the spring of 2004, the U.S. Geological Survey (USGS) Menlo Park Center Council commissioned an interdisciplinary working group to develop a forward-looking science strategy for the USGS Menlo Park Science Center in California (hereafter also referred to as "the Center"). The Center has been the flagship research center for the USGS in the western United States for more than 50 years, and the Council recognizes that science priorities must be the primary consideration guiding critical decisions made about the future evolution of the Center. In developing this strategy, the working group consulted widely within the USGS and with external clients and collaborators, so that most stakeholders had an opportunity to influence the science goals and operational objectives.The Science Goals are to: Natural Hazards: Conduct natural-hazard research and assessments critical to effective mitigation planning, short-term forecasting, and event response. Ecosystem Change: Develop a predictive understanding of ecosystem change that advances ecosystem restoration and adaptive management. Natural Resources: Advance the understanding of natural resources in a geologic, hydrologic, economic, environmental, and global context. Modeling Earth System Processes: Increase and improve capabilities for quantitative simulation, prediction, and assessment of Earth system processes.The strategy presents seven key Operational Objectives with specific actions to achieve the scientific goals. These Operational Objectives are to:Provide a hub for technology, laboratories, and library services to support science in the Western Region. Increase advanced computing capabilities and promote sharing of these resources. Enhance the intellectual diversity, vibrancy, and capacity of the work force through improved recruitment and retention. Strengthen client and collaborative relationships in the community at an institutional level.Expand monitoring capability by increasing density, sensitivity, and

  18. A statistical test for the habitable zone concept

    Science.gov (United States)

    Checlair, J.; Abbot, D. S.

    2017-12-01

    Traditional habitable zone theory assumes that the silicate-weathering feedback regulates the atmospheric CO2 of planets within the habitable zone to maintain surface temperatures that allow for liquid water. There is some non-definitive evidence that this feedback has worked in Earth history, but it is untested in an exoplanet context. A critical prediction of the silicate-weathering feedback is that, on average, within the habitable zone planets that receive a higher stellar flux should have a lower CO2 in order to maintain liquid water at their surface. We can test this prediction directly by using a statistical approach involving low-precision CO2 measurements on many planets with future instruments such as JWST, LUVOIR, or HabEx. The purpose of this work is to carefully outline the requirements for such a test. First, we use a radiative-transfer model to compute the amount of CO2 necessary to maintain surface liquid water on planets for different values of insolation and planetary parameters. We run a large ensemble of Earth-like planets with different masses, atmospheric masses, inert atmospheric composition, cloud composition and level, and other greenhouse gases. Second, we post-process this data to determine the precision with which future instruments such as JWST, LUVOIR, and HabEx could measure the CO2. We then combine the variation due to planetary parameters and observational error to determine the number of planet measurements that would be needed to effectively marginalize over uncertainties and resolve the predicted trend in CO2 vs. stellar flux. The results of this work may influence the usage of JWST and will enhance mission planning for LUVOIR and HabEx.

  19. Constructivism in Science and Science Education: A Philosophical Critique

    Science.gov (United States)

    Nola, Robert

    This paper argues that constructivist science education works with an unsatisfactory account of knowledge which affects both its account of the nature of science and of science education. The paper begins with a brief survey of realism and anti-realism in science and the varieties of constructivism that can be found. In the second section the important conception of knowledge and teaching that Plato develops in the Meno is contrasted with constructivism. The section ends with an account of the contribution that Vico (as understood by constructivists), Kant and Piaget have made to constructivist doctrines. Section three is devoted to a critique of the theory of knowledge and the anti-realism of von Glaserfeld. The final section considers the connection, or lack of it, between the constructivist view of science and knowledge and the teaching of science.

  20. The "invention" of the working class as a discursive practice and the genesis of the empiric method of social sciences in France (1830-48

    Directory of Open Access Journals (Sweden)

    Federico Tomasello

    2016-12-01

    Full Text Available The essay explores some of the processes through which the ‘working class’ emerged both as a collective subjectivity and as a field of social science inquiry and public policies in 19th century France. Starting from the 1831 Canuts revolt, widely recognized as the stepping stone of the European workers’ movement, the first part retraces the process of the ‘making’ of a social and political subjectivity by stressing the relevance of its linguistic and discursive dimension. The second part examines the emergence of the empiric method of the modern social sciences through new strategies of inquiry on urban misery, which progressively focuses on the ‘working class’ and on labour conditions as a field of knowledge, rights, and governmental practices.

  1. Bright galaxies at z=9-11 from pure-parallel HST observations: Building a unique sample for JWST with Spitzer/IRAC

    Science.gov (United States)

    Bouwens, Rychard; Morashita, Takahiro; Stefanon, Mauro; Magee, Dan

    2018-05-01

    The combination of observations taken by Hubble and Spitzer revealed the unexpected presence of sources as bright as our own Milky Way as early as 400 Myr after the Big Bang, potentially highlighting a new highly efficient regime for star formation in L>L* galaxies at very early times. Yet, the sample of high-quality z>8 galaxies with both HST and Spitzer/IRAC imaging is still small, particularly at the highest luminosities. We propose here to remedy this situation and use Spitzer/IRAC to efficiently follow up the most promising z>8 sources from our Hubble Brightest of Reionizing Galaxies (BoRG) survey, which covers a footprint on the sky similar to CANDELS, provides a deeper search than ground-based surveys like UltraVISTA, and is robust against cosmic variance because of its 210 independent lines of sight. The proposed new 3.6 micron observations will continue our Spitzer cycle 12 and 13 BORG911 programs, targeting 15 additional fields, leveraging over 200 new HST orbits to identify a final sample of about 8 bright galaxies at z >= 8.5. For optimal time use (just 20 hours), our goal is to readily discriminate between z>8 sources (undetected or marginally detected in IRAC) and z 2 interlopers (strongly detected in IRAC) with just 1-2 hours per pointing. The high-quality candidates that we will identify with IRAC will be ideal targets for further studies investigating the ionization state of the distant universe through near-IR Keck/VLT spectroscopy. They will also be uniquely suited to measurement of the redshift and stellar population properties through JWST/NIRSPEC observations, with the potential to elucidate how the first generations of stars are assembled in the earliest stages of the epoch of reionization.

  2. Unsustainable Growth, Hyper-Competition, and Worth in Life Science Research: Narrowing Evaluative Repertoires in Doctoral and Postdoctoral Scientists' Work and Lives

    Science.gov (United States)

    Fochler, Maximilian; Felt, Ulrike; Müller, Ruth

    2016-01-01

    There is a crisis of valuation practices in the current academic life sciences, triggered by unsustainable growth and "hyper-competition." Quantitative metrics in evaluating researchers are seen as replacing deeper considerations of the quality and novelty of work, as well as substantive care for the societal implications of research.…

  3. Impact of "Grassroots on Work" (GROW) Extension Program to the Bachelor of Arts in Political Science Students' Sense of Civic Responsibility

    Science.gov (United States)

    Paga, Mark Leo Huit

    2015-01-01

    Purpose: The purpose of this study was to determine the medium term effect of service-learning program or "Grassroots on Work" extension program to civic responsibility of AB Political Science students. Methodology: This study employed an impact evaluation research design and both qualitative and quantitative. The data on goals and…

  4. The historiography of contemporary science, technology, and medicine writing recent science

    CERN Document Server

    Söderqvist, Thomas

    2006-01-01

    As historians of science increasingly turn to work on recent (post 1945) science, the historiographical and methodological problems associated with the history of contemporary science are debated with growing frequency and urgency. Bringing together authorities on the history, historiography and methodology of recent and contemporary science, this book reviews the problems facing historians of technology, contemporary science and medicine, and explores new ways forward. With contributions from key researchers in the field, the text covers topics that will be of ever increasing interest to historians of post-war science, including the difficulties of accessing and using secret archival material, the interactions between archivists, historians and scientists, and the politics of evidence and historical accounts.

  5. Science and Politics in the Philosophy of Science of Popper, Polanyi, and Kuhn

    Science.gov (United States)

    Nye, Mary Jo

    2006-05-01

    The names of Karl Popper, Michael Polanyi, and Thomas Kuhn are well-known among scientists and among historians and philosophers of science. Around 1960 they published books that excited considerable discussion because of their independent rejection of the philosophical tradition that uses simple empiricism or positivism to differentiate science from religion, metaphysics, ideology, or pseudo-science. Popper's original field of expertise was scientific education and psychology. Polanyi had a distinguished career in physical chemistry and chemical physics, while Kuhn worked briefly in solid-state physics before turning to the philosophy of science. Their descriptions of scientific practices and values have roots not only in their scientific educations and experiences, but also in the political questions of their time. This paper focuses on political dimensions in the philosophical work of these three twentieth-century figures.

  6. Science teacher orientations and PCK across science topics in grade 9 earth science

    Science.gov (United States)

    Campbell, Todd; Melville, Wayne; Goodwin, Dawne

    2017-07-01

    While the literature is replete with studies examining teacher knowledge and pedagogical content knowledge (PCK), few studies have investigated how science teacher orientations (STOs) shape classroom instruction. Therefore, this research explores the interplay between a STOs and the topic specificity of PCK across two science topics within a grade 9 earth science course. Through interviews and observations of one teacher's classroom across two sequentially taught, this research contests the notion that teachers hold a single way of conceptualising science teaching and learning. In this, we consider if multiple ontologies can provide potential explanatory power for characterising instructional enactments. In earlier work with the teacher in this study, using generic interview prompts and general discussions about science teaching and learning, we accepted the existence of a unitary STO and its promise of consistent reformed instruction in the classroom. However, upon close examination of instruction focused on different science topics, evidence was found to demonstrate the explanatory power of multiple ontologies for shaping characteristically different epistemological constructions across science topics. This research points to the need for care in generalising about teacher practice, as it reveals that a teacher's practice, and orientation, can vary, dependent on the context and science topics taught.

  7. Science | Argonne National Laboratory

    Science.gov (United States)

    Security Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Scientific Publications Researchers Postdocs Exascale Computing Institute for Molecular Engineering at Argonne Work with Us About Safety News Careers Education Community Diversity Directory Argonne National Laboratory

  8. The Science of Science Communication and Protecting the Science Communication Environment

    Science.gov (United States)

    Kahan, D.

    2012-12-01

    Promoting public comprehension of science is only one aim of the science of science communication and is likely not the most important one for the well-being of a democratic society. Ordinary citizens form quadrillions of correct beliefs on matters that turn on complicated scientific principles they cannot even identify much less understand. The reason they fail to converge on beliefs consistent with scientific evidence on certain other consequential matters—from climate change to genetically modified foods to compusory adolescent HPV vaccination—is not the failure of scientists or science communicators to speak clearly or the inability of ordinary citizens to understand what they are saying. Rather, the source of such conflict is the proliferation of antagonistic cultural meanings. When they become attached to particular facts that admit of scientific investigation, these meanings are a kind of pollution of the science communication environment that disables the faculties ordinary citizens use to reliably absorb collective knowledge from their everyday interactions. The quality of the science communication environment is thus just as critical for enlightened self-government as the quality of the natural environment is for the physical health and well-being of a society's members. Understanding how this science communication environment works, fashioning procedures to prevent it from becoming contaminated with antagonistic meanings, and formulating effective interventions to detoxify it when protective strategies fail—those are the most critical functions science communication can perform in a democratic society.

  9. History of Science and Science Museums

    Science.gov (United States)

    Faria, Cláudia; Guilherme, Elsa; Gaspar, Raquel; Boaventura, Diana

    2015-10-01

    The activities presented in this paper, which are addressed to elementary school, are focused on the pioneering work of the Portuguese King Carlos I in oceanography and involve the exploration of the exhibits belonging to two different science museums, the Aquarium Vasco da Gama and the Maritime Museum. Students were asked to study fish adaptations to deep sea, through the exploration of a fictional story, based on historical data and based on the work of the King that served as a guiding script for all the subsequent tasks. In both museums, students had access to: historical collections of organisms, oceanographic biological sampling instruments, fish gears and ships. They could also observe the characteristics and adaptations of diverse fish species characteristic of deep sea. The present study aimed to analyse the impact of these activities on students' scientific knowledge, on their understanding of the nature of science and on the development of transversal skills. All students considered the project very popular. The results obtained suggest that the activity promoted not only the understanding of scientific concepts, but also stimulated the development of knowledge about science itself and the construction of scientific knowledge, stressing the relevance of creating activities informed by the history of science. As a final remark we suggest that the partnership between elementary schools and museums should be seen as an educational project, in which the teacher has to assume a key mediating role between the school and the museums.

  10. Studying Students' Science Literacy: Non-Scientific Beliefs and Science Literacy Measures

    Science.gov (United States)

    Impey, C.; Buxner, S.

    2015-11-01

    We have been conducting a study of university students' science literacy for the past 24 years. Based on the work of the National Science Board's ongoing national survey of the US public, we have administered the same survey to undergraduate science students at the University of Arizona almost every year since 1989. Results have shown relatively little change in students' overall science literacy, descriptions of science, and knowledge of basic science topics for almost a quarter of a century despite an increase in education interventions, the rise of the internet, and increased access to knowledge. Several trends do exist in students' science literacy and descriptions of science. Students who exhibit beliefs in non-scientific phenomenon (e.g., lucky numbers, creationism) consistently have lower science literacy scores and less correct descriptions of scientific phenomenon. Although not surprising, our results support ongoing efforts to help students generate evidence based thinking.

  11. Social Work Agonistes

    Science.gov (United States)

    Stoesz, David

    2008-01-01

    Social work should be founded on a powerful network of diverse practitioners applying the social sciences to advance social welfare today. Instead, social work education operates under the guise of identity politics, reserving its highest appointments for the politically correct and members of under-represented groups, with little concern for…

  12. The Science in Science Fiction: Using Popular Entertainment as a Gateway

    Science.gov (United States)

    Basri, Gibor S.

    2011-05-01

    Science fiction on television and in movies reaches a wide audience of young people. Some of them are avid fans of particular stories, and more are enthralled by some of the special effects and other science fiction themes that have become ever more compelling as media technology improves. It actually doesn't matter whether the physics behind the science fiction is solid, the latest in speculative theory, or absolute nonsense - all provide a backdrop against which to present solid science. I'll talk about the opportunities provided by a few recent series and movies and how they can be woven into discussions of physics, astrophysics, or how science really works.

  13. Item response theory analysis of the Utrecht Work Engagement Scale for Students (UWES-S) using a sample of Japanese university and college students majoring medical science, nursing, and natural science.

    Science.gov (United States)

    Tsubakita, Takashi; Shimazaki, Kazuyo; Ito, Hiroshi; Kawazoe, Nobuo

    2017-10-30

    The Utrecht Work Engagement Scale for Students has been used internationally to assess students' academic engagement, but it has not been analyzed via item response theory. The purpose of this study was to conduct an item response theory analysis of the Japanese version of the Utrecht Work Engagement Scale for Students translated by authors. Using a two-parameter model and Samejima's graded response model, difficulty and discrimination parameters were estimated after confirming the factor structure of the scale. The 14 items on the scale were analyzed with a sample of 3214 university and college students majoring medical science, nursing, or natural science in Japan. The preliminary parameter estimation was conducted with the two parameter model, and indicated that three items should be removed because there were outlier parameters. Final parameter estimation was conducted using the survived 11 items, and indicated that all difficulty and discrimination parameters were acceptable. The test information curve suggested that the scale better assesses higher engagement than average engagement. The estimated parameters provide a basis for future comparative studies. The results also suggested that a 7-point Likert scale is too broad; thus, the scaling should be modified to fewer graded scaling structure.

  14. Incorporating Earth Science into Other High School Science Classes

    Science.gov (United States)

    Manning, C. L. B.; Holzer, M.; Colson, M.; Courtier, A. M. B.; Jacobs, B. E.

    2016-12-01

    As states begin to review their standards, some adopt or adapt the NGSS and others write their own, many basing these on the Framework for K-12 Science Education. Both the NGSS and the Frameworks have an increased emphasis on Earth Science but many high school teachers are being asked to teach these standards in traditional Biology, Chemistry and Physics courses. At the Earth Educators Rendezvous, teachers, scientists, and science education researchers worked together to find the interconnections between the sciences using the NGSS and identified ways to reference the role of Earth Sciences in the other sciences during lectures, activities and laboratory assignments. Weaving Earth and Space sciences into the other curricular areas, the teams developed relevant problems for students to solve by focusing on using current issues, media stories, and community issues. These and other lessons and units of study will be presented along with other resources used by teachers to ensure students are gaining exposure and a deeper understanding of Earth and Space Science concepts.

  15. Indian Academy of Sciences Indian National Science Academy The ...

    Indian Academy of Sciences (India)

    The three national Science Academies offer several two-month Summer Fellowships to enable students/teachers to work with scientists associated with the three Academies during 2012. A list of those who have consented to guide students/teachers to work on short-term projects is displayed on the online announcement.

  16. Vladimir Glumac - Life, Work And Opus

    International Nuclear Information System (INIS)

    Hanzek, B.; Franic, Z.

    2015-01-01

    Vladimir Glumac (1904 - 1960) has so far been completely unknown to the wider academic public, even though his work undoubtedly makes him one of the leading figures of Croatian radiation science. His field of expertise primarily covered X-ray examinations, including dosimetry of X-rays. Glumac performed one of the first projects to implement protection against X-rays (Zagreb Hospital Sisters of Charity, in 1931). Glumac was also active in popularising science, including radiation science. As a true visionary, he predicted that new devices associated with atomic technology would in the future enable the treatment of diseases that had resisted medical treatments for centuries. By searching through the available archives and known literature, we attempted to shed more light on the life and work of this distinguished expert and obtain a more systematic insight into the previously unknown details important for the history and development of radiation science, radiation protection, and medical physics. The work and opus of Vladimir Glumac show that scientists and experts who worked in Croatia not only followed the most advanced scientific knowledge in these areas from the very beginning, but also actively contributed to them. (author).

  17. Materials Science and Engineering |

    Science.gov (United States)

    Engineering? What Is Materials Science and Engineering? MSE combines engineering, physics and chemistry to solve problems in nanotechnology, biotechnology, information technology, energy, manufacturing, and more ,' which could replace steel. Materials Science and Mechanical Engineering Professors work together to

  18. Organizational Science

    Science.gov (United States)

    Beriwal, Madhu; Clegg, Stewart; Collopy, Fred; McDaniel, Reuben, Jr.; Morgan, Gareth; Sutcliffe, Kathleen; Kaufman, Roger; Marker, Anthony; Selwyn, Neil

    2013-01-01

    Scholars representing the field of organizational science, broadly defined as including many fields--organizational behavior and development, management, workplace performance, and so on--were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might…

  19. The Changing Landscape of Science News

    Science.gov (United States)

    Riordon, James

    2011-03-01

    Social media are revolutionizing the ways that people communicate and the ways they get their news. Traditional news outlets are in decline, and no subject area is declining faster than science news. Every day there are fewer professional science journalists working in traditional media. On the other hand, ever greater numbers of scientists, science enthusiasts, and online journalists are turning to blogs, podcasts, eBooks, twitter feeds, and social media sites like Facebook and Tumbler to spread news about science. I will present an overview of the state of science journalism and speculate on the likely directions it seems to be heading. I will also offer some general guidelines to help scientists understand what makes a good science news story, as well as suggesting ways that they can get their work in the news.

  20. The founding of ISOTT: the Shamattawa of engineering science and medical science.

    Science.gov (United States)

    Bruley, Duane F

    2014-01-01

    The founding of ISOTT was based upon the blending of Medical and Engineering sciences. This occurrence is portrayed by the Shamattawa, the joining of the Chippewa and Flambeau rivers. Beginning with Carl Scheele's discovery of oxygen, the medical sciences advanced the knowledge of its importance to physiological phenomena. Meanwhile, engineering science was evolving as a mathematical discipline used to define systems quantitatively from basic principles. In particular, Adolf Fick's employment of a gradient led to the formalization of transport phenomena. These two rivers of knowledge were blended to found ISOTT at Clemson/Charleston, South Carolina, USA, in 1973.The establishment of our society with a mission to support the collaborative work of medical scientists, clinicians and all disciplines of engineering was a supporting step in the evolution of bioengineering. Traditional engineers typically worked in areas not requiring knowledge of biology or the life sciences. By encouraging collaboration between medical science and traditional engineering, our society became one of the forerunners in establishing bioengineering as the fifth traditional discipline of engineering.

  1. Science as Myth in Physical Education.

    Science.gov (United States)

    Kirk, David

    Scientization is a process that refers to the mythologies that are generated around the practices of working scientists. This paper discusses how science works on popular consciousness and how particular occupational groups use science to legitimatize their discipline, specifically in physical education. Two examples are presented to illustrate…

  2. Work Integrated Learning: What do the students want? A qualitative study of Health Sciences students’ experiences of a non-competency based placement

    Directory of Open Access Journals (Sweden)

    Elizabeth Abery

    2015-08-01

    Full Text Available Work Integrated Learning (WIL offers students the opportunity to explore and expand on theoretical concepts encountered throughout their academic studies in an applied real-life context. WIL also assists students in their transition from educational to professional practice informed by experience, engagement and reflection. Traditionally, disciplines such as Medicine, Nursing, Education, and Law have incorporated WIL into their programs. Literature outlines the benefits of a WIL placement to measure learned competencies, which are integral to such fields of practice. Currently, the scope for a WIL experience is expanding into other non-clinical courses due to increasing pressure for universities to produce “work ready” graduates. However, in generalist degrees such as Health Sciences, where clinical or explicit skill competencies are not required, the WIL experience is generic. This study sought the perceptions of past Health Sciences students’ WIL experiences in order to develop appropriate resources for future students.  

  3. Radiative Feedback from Massive Stars as Traced by Multiband Imaging and Spectroscopic Mosaics

    Science.gov (United States)

    Tielens, Alexander; "PDRs4ever" team

    2018-06-01

    Massive stars disrupt their natal molecular cloud material by dissociating molecules, ionizing atoms and molecules, and heating the gas and dust. These processes drive the evolution of interstellar matter in our Galaxy and throughout the Universe from the era of vigorous star formation at redshifts of 1-3, to the present day. Much of this interaction occurs in Photo-Dissociation Regions (PDRs) where far-ultraviolet photons of these stars create a largely neutral, but warm region of gas and dust. PDR emission dominates the IR spectra of star-forming galaxies and also provides a unique tool to study in detail the physical and chemical processes that are relevant for inter- and circumstellar media including diffuse clouds, molecular cloud and protoplanetary disk surfaces, globules, planetary nebulae, and starburst galaxies.We propose to provide template datasets designed to identify key PDR characteristics in the full 1-28 μm JWST spectra in order to guide the preparation of Cycle 2 proposals on star-forming regions in our Galaxy and beyond. We plan to obtain the first spatially resolved, high spectral resolution IR observations of a PDR using NIRCam, NIRSpec and MIRI. We will observe a nearby PDR with well-defined UV illumination in a typical massive star-forming region. JWST observations will, for the first time, spatially resolve and perform a tomography of the PDR, revealing the individual IR spectral signatures from the key zones and sub-regions within the ionized gas, the PDR and the molecular cloud. These data will test widely used theoretical models and extend them into the JWST era. We will assist the community interested in JWST observations of PDRs through several science-enabling products (maps of spectral features, template spectra, calibration of narrow/broad band filters in gas lines and PAH bands, data-interpretation tools e.g. to infer gas physical conditions or PAH and dust characteristics). This project is supported by a large international team of

  4. Inspiring the Next Generation: Astronomy Catalyzes K12 STEM Education

    Science.gov (United States)

    Borders, Kareen; Thaller, Michelle; Winglee, Robert; Borders, Kyla

    2017-06-01

    K-12 educators need effective and relevant astronomy professional development. NASA's Mission Science provides innovative and accessible opportunities for K-12 teachers. Science questions involve scale and distance, including Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers can gain an understanding of basic telescopes, the history of telescopes, ground and satellite based telescopes, and models of JWST Telescope. An in-depth explanation of JWST and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. During teacher training, we taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of lenticulars and diagramming of infrared data, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars.We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development.Funding was provided by Washington STEM, NASA, and the Washington Space Grant Consortium.

  5. Science in General Education

    Science.gov (United States)

    Read, Andrew F.

    2013-01-01

    General education must develop in students an appreciation of the power of science, how it works, why it is an effective knowledge generation tool, and what it can deliver. Knowing what science has discovered is desirable but less important.

  6. Moving Towards a Science-Driven Workbench for Earth Science Solutions

    Science.gov (United States)

    Graves, S. J.; Djorgovski, S. G.; Law, E.; Yang, C. P.; Keiser, K.

    2017-12-01

    The NSF-funded EarthCube Integration and Test Environment (ECITE) prototype was proposed as a 2015 Integrated Activities project and resulted in the prototyping of an EarthCube federated cloud environment and the Integration and Testing Framework. The ECITE team has worked with EarthCube science and technology governance committees to define the types of integration, testing and evaluation necessary to achieve and demonstrate interoperability and functionality that benefit and support the objectives of the EarthCube cyber-infrastructure. The scope of ECITE also includes reaching beyond NSF and EarthCube to work with the broader Earth science community, such as the Earth Science Information Partners (ESIP) to incorporate lessons learned from other testbed activities, and ultimately provide broader community benefits. This presentation will discuss evolving ECITE ideas for a science-driven workbench that will start with documented science use cases, map the use cases to solution scenarios that identify the available technology and data resources that match the use case, the generation of solution workflows and test plans, the testing and evaluation of the solutions in a cloud environment, and finally the documentation of identified technology and data gaps that will assist with driving the development of additional EarthCube resources.

  7. Religious-Historical Sublayers in Anania Shirakatsi's Works

    Science.gov (United States)

    Yerznkyan, Nora

    2014-10-01

    This work is forward-looking with its content, because 7th century mathemetician, geographer and one of the most important representatives of natural sciences in the Middle Ages Anania Shirakatsi is mostly recognized in the frames of above-mentioned sciences and his works are mainly studied under this angle. However this article is a sort of guide to focus reader's attention not only on his works about natural sciences, but also on his religious and historical observations. Some parts of his works give clear description about some historical events in Armenia which is very important in highlighting social and economic relations. In order to prove the importance of his works, it is enough to mention that Shirakatsi in his "Khndragirq" (book of tasks) gave several examples which was later used to prove the existence of vassal living in the early feudal stages, which is an important historical fact.

  8. Systems Science

    Science.gov (United States)

    Christakis, Alexander; Hammond, Debora; Jackson, Michael; Laszlo, Alexander; Mitroff, Ian; Snowden, Dave; Troncale, Len; Carr-Chellman, Alison; Spector, J. Michael; Wilson, Brent

    2013-01-01

    Scholars representing the field of systems science were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Alexander Christakis, Debora Hammond, Michael Jackson, Alexander Laszlo, Ian Mitroff, Dave…

  9. Calibrating the Near-Infrared Tip of the Red Giant Branch with Multiwavelength Photometry

    Science.gov (United States)

    Durbin, Meredith

    2017-08-01

    The near-infrared (NIR) tip of the red giant branch (TRGB) shows outstanding promise as a distance indicator. In the JWST era, the NIR-TRGB will bridge the gap from local geometric parallax (with Gaia) out to the low-velocity Hubble flow in a single step, in all types of galaxies. However, there currently exist several impediments to JWST's using the TRGB to full advantage. Dalcanton et al. (2012) presented the most comprehensive dataset available for calibrating the TRGB absolute magnitude, with optical and NIR coverage of 23 nearby dwarf and spiral galaxies spanning a wide range of ages and metallicities. However, subtle offsets between this dataset, theoretical models, and globular clusters raise concerns about the calibration.We propose to perform a complete re-reduction and re-analysis of this dataset. We have developed a pipeline that leverages simultaneous fitting of optical and NIR data to produce NIR photometry of higher quality and completeness, with up to 1.5 mag greater depth than can be achieved with the NIR alone. With this added depth, improvements in photometric precision, and updated WFC3/IR PSFs and flux calibration, we will derive uniform, precise, and accurate NIR TRGB measurements, with which we will be able to resolve standing issues with the TRGB color-absolute magnitude relation and its behavior with changing star-formation histories. This work will lay the groundwork for extending the TRGB distance scale out to at least 37 Mpc with JWST. We will release the resulting 4-filter optical-NIR photometry as HLSPs for use by the community before the launch of JWST, to serve as a resource for proposing for stellar population observations in the NIR.

  10. Learning science in informal environments: people, places and pursuits. A review by the US National Science Council

    OpenAIRE

    Paola Rodari

    2009-01-01

    In January this year, the US saw the publication of the preview of an impressive review work on the practices and the studies concerning learning science outside schools and universities, i.e. what is referred to as informal education.The document, promoted by the National Science Council of scientific academies (National Academy of Science, National Academy of Engineering and Institute of Medicine), is the result of the work by a committee comprising 14 specialists who collected, discussed a...

  11. International space science

    International Nuclear Information System (INIS)

    Mark, H.

    1988-01-01

    The author begins his paper by noting the range of international cooperation which has occured in science since its earliest days. The brightest minds were allowed to cross international frontiers even in the face of major wars, to work on their interests and to interact with like minded scientists in other countries. There has of course been a political side to this movement at times. The author makes the point that doing science on an international basis is extemely important but it is not a way of conducting foreign policy. Even though governments may work together on scientific efforts, it is no glue which will bind them to work together on larger political or economic issues. The reason for doing science on an international basis is that it will lead to better science, not better international relations. There are a limited number of great scientists in the world, and they must be allowed to develop their talents. He then discusses two internationl space programs which have has such collaboration, the Soviet-American Space Biology Program, and the Infrared Astronomical Satellite (IRAS). He then touches on the NASA space exploration program, and the fact that its basic objectives were laid out in the 1940's and l950's. With this laid out he argues in favor of establishment of a lunar base, one of the key elements of NASA's plan, arguing for the value of this step based upon the infrared astronomical work which could be done from a stable lunar site, away from the earth's atmosphere

  12. Science-Relevant Curiosity Expression and Interest in Science: An Exploratory Study

    Science.gov (United States)

    Luce, Megan R.; Hsi, Sherry

    2015-01-01

    In efforts to understand and promote long-term interest in science, much work has focused on measuring students' interest in topics of science, typically with surveys. This approach has challenges, as interest in a topic may not necessarily indicate interest in scientific practices and pursuits. An underexplored and perhaps productive way to…

  13. Guerilla Science: Outreach at music and art festival

    Science.gov (United States)

    Rosin, Mark

    2012-10-01

    Guerilla Science a non-profit science education organization that, since 2007, has brought live events to unconventional venues for science, such as music festivals, art galleries, banquets, department stores and theaters. Guerilla Science sets science free by taking it out of the lab and into the traditional domains of the arts. By producing events that mix science with art, music and play, they create unique opportunities for adult audiences to experience science in unorthodox ways, such as interactive events, games, live experiments, demonstrations and performances by academics, artists, musicians, actors, and professional science communicators. Much of Guerilla Science's work has focused on astrophysical and terrestrial plasmas, and this presentation will provide an overview of Guerilla Science's work in this area. Guerilla Science has produced over twenty events, receiving international media coverage, and directly reached over fifteen thousand members of the public.

  14. Strengthening Science Departments

    Science.gov (United States)

    Campbell, Todd; Melville, Wayne; Bartley, Anthony

    2012-01-01

    Teachers do not work in a vacuum. They are, in most cases, part of a science department in which teachers and the chairperson have important roles in science education reform. Current reform is shaped by national standards documents that emphasize the pedagogical and conceptual importance of best practices framed by constructivism and focused on…

  15. Crowdsourcing Scientific Work: A Comparative Study of Technologies, Processes, and Outcomes in Citizen Science

    Science.gov (United States)

    Wiggins, Andrea

    2012-01-01

    Citizen science projects involve the public with scientists in collaborative research. Information and communication technologies for citizen science can enable massive virtual collaborations based on voluntary contributions by diverse participants. As the popularity of citizen science increases, scientists need a more thorough understanding of…

  16. Exposing the Science in Citizen Science: Fitness to Purpose and Intentional Design.

    Science.gov (United States)

    Parrish, Julia K; Burgess, Hillary; Weltzin, Jake F; Fortson, Lucy; Wiggins, Andrea; Simmons, Brooke

    2018-05-21

    Citizen science is a growing phenomenon. With millions of people involved and billions of in-kind dollars contributed annually, this broad extent, fine grain approach to data collection should be garnering enthusiastic support in the mainstream science and higher education communities. However, many academic researchers demonstrate distinct biases against the use of citizen science as a source of rigorous information. To engage the public in scientific research, and the research community in the practice of citizen science, a mutual understanding is needed of accepted quality standards in science, and the corresponding specifics of project design and implementation when working with a broad public base. We define a science-based typology focused on the degree to which projects deliver the type(s) and quality of data/work needed to produce valid scientific outcomes directly useful in science and natural resource management. Where project intent includes direct contribution to science and the public is actively involved either virtually or hands-on, we examine the measures of quality assurance (methods to increase data quality during the design and implementation phases of a project) and quality control (post hoc methods to increase the quality of scientific outcomes). We suggest that high quality science can be produced with massive, largely one-off, participation if data collection is simple and quality control includes algorithm voting, statistical pruning and/or computational modeling. Small to mid-scale projects engaging participants in repeated, often complex, sampling can advance quality through expert-led training and well-designed materials, and through independent verification. Both approaches - simplification at scale and complexity with care - generate more robust science outcomes.

  17. Why Do Women Leave Science and Engineering? NBER Working Paper No. 15853

    Science.gov (United States)

    Hunt, Jennifer

    2010-01-01

    I use the 1993 and 2003 National Surveys of College Graduates to examine the higher exit rate of women compared to men from science and engineering relative to other fields. I find that the higher relative exit rate is driven by engineering rather than science, and show that 60% of the gap can be explained by the relatively greater exit rate from…

  18. Are We Really the Prey? Nanotechnology as Science and Science Fiction

    Science.gov (United States)

    Bowman, Diana M.; Hodge, Graeme A.; Binks, Peter

    2007-01-01

    Popular culture can play a significant role in shaping the acceptance of evolving technologies, with nanotechnology likely to be a case in point. The most popular fiction work to date in this arena has been Michael Crichton's techno-thriller "Prey," which fuses together nanotechnology science with science fiction. Within the context of "Prey,"…

  19. Working with the Nature of Science in Physics Class: Turning "Ordinary" Classroom Situations into Nature of Science Learning Situations

    Science.gov (United States)

    Hansson, Lena; Leden, Lotta

    2016-01-01

    In the science education research field there is a large body of literature on the "nature of science" (NOS). NOS captures issues about what characterizes the research process as well as the scientific knowledge. Here we, in line with a broad body of literature, use a wide definition of NOS including also e.g. socio-cultural aspects. It…

  20. The part of cognitive science that is philosophy.

    Science.gov (United States)

    Dennett, Daniel C

    2009-04-01

    There is much good work for philosophers to do in cognitive science if they adopt the constructive attitude that prevails in science, work toward testable hypotheses, and take on the task of clarifying the relationship between the scientific concepts and the everyday concepts with which we conduct our moral lives. Copyright © 2009 Cognitive Science Society, Inc.

  1. New Roles for Scientists and Science Societies to Improve Science Communication

    Science.gov (United States)

    Schneider, S. H.

    2008-12-01

    Should North American Scientists and Science Societies continue with current communication programs or is there a need for expanded and or altered roles in Science Communication? If current practices are working, why is discourse outside of science societies so often misinformed and distorted on environmental change issues that are clearly defined and described within the science community? Climate change is one example there is virtual unanimity and overwhelming evidence from the scientific community that the Earth is warming rapidly and humans are an important cause, but there is confusion in the media and the public, in part due to disinformation campaigns by greenhouse gas polluters and privately funded "Think Tanks." A summary discussion will be presented that addresses many of the ideas and issues brought forward by colleagues in science, science communication and education. Scientists and Science Societies must re-establish objectivity in science information communication to educators, the media and the public. Recommendations on directions will be a key outcome of this presentation.

  2. Materials and Chemical Sciences Division annual report, 1987

    International Nuclear Information System (INIS)

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described

  3. Handbook of information science

    CERN Document Server

    Stock, Wolfgang G

    2013-01-01

    Dealing with information is one of the vital skills in thetwenty-first century. It takes a fair degree of information savvy to create, represent and supply information as well as to search for and retrieve relevant knowledge. This Handbook is a basic work of information science, providing a comprehensive overview of the current state of information retrieval and knowledge representation. It addresses readers from all professions and scientific disciplines, but particularly scholars, practitioners and students of Information Science, Library Science, Computer Science, Information Management, an

  4. Ghana Science Abstracts

    International Nuclear Information System (INIS)

    Entsua-Mensah, C.

    2004-01-01

    This issue of the Ghana Science Abstracts combines in one publication all the country's bibliographic output in science and technology. The objective is to provide a quick reference source to facilitate the work of information professionals, research scientists, lecturers and policy makers. It is meant to give users an idea of the depth and scope and results of the studies and projects carried out. The scope and coverage comprise research outputs, conference proceedings and periodical articles published in Ghana. It does not capture those that were published outside Ghana. Abstracts reported have been grouped under the following subject areas: Agriculture, Biochemistry, Biodiversity conservation, biological sciences, biotechnology, chemistry, dentistry, engineering, environmental management, forestry, information management, mathematics, medicine, physics, nuclear science, pharmacy, renewable energy and science education

  5. Materials and Chemical Sciences Division annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  6. Innovation in Citizen Science – Perspectives on Science-Policy Advances

    Directory of Open Access Journals (Sweden)

    Susanne Hecker

    2018-04-01

    Full Text Available Citizen science is growing as a field of research with contributions from diverse disciplines, promoting innovation in science, society, and policy. Inter- and transdisciplinary discussions and critical analyses are needed to use the current momentum to evaluate, demonstrate, and build on the advances that have been made in the past few years. This paper synthesizes results of discussions at the first international citizen science conference of the European Citizen Science Association (ECSA in 2016 in Berlin, Germany, and distills major points of the discourse into key recommendations. To enhance innovation in science, citizen science needs to clearly demonstrate its scientific benefit, branch out across disciplines, and foster active networking and new formats of collaboration, including true co-design with participants. For fostering policy advances, it is important to embrace opportunities for policy-relevant monitoring and policy development and to work with science funders to find adequate avenues and evaluation tools to support citizen science. From a society angle it is crucial to engage with societal actors in various formats that suit participants and to evaluate two-way learning outcomes as well as to develop the transformative role of science communication. We hope that these key perspectives will promote citizen science progress at the science-society-policy interface.

  7. Working in virtual knowledge

    DEFF Research Database (Denmark)

    Antonijević, Smiljana; Dormans, Stefan; Wyatt, Sally

    2012-01-01

    of routine, often rather lonely activity contrasts sharply with the much more exciting one of teams of scientists working together in a laboratory, collecting samples, analyzing data and sharing ideas. But the reality of scholarly work in the humanities and social sciences has always been otherwise. Scholars...

  8. Science fair: Is it worth the work? A qualitative study on deaf students' perceptions and experiences regarding science fair in primary and secondary school

    Science.gov (United States)

    Smith, Vivian Lee

    Science fairs have a long history in American education. They play an important role for establishing inquiry-based experiences in a science classroom. Students may be more motivated to learn science content when they are allowed to choose their own science fair topics. The purpose of this study was to examine Deaf college students' perceptions and experiences regarding science fair participation during primary and/or secondary school and determine the influence of science fair involvement on the development of language skills, writing skills, and higher order thinking skills as well as its impact on choice of a STEM major. This study examined responses from Deaf students attending Gallaudet University and National Technical Institute for the Deaf (NTID) majoring in a Science, Technology, Engineering, or Math (STEM) field. An electronic questionnaire and a semi-structured interview were used to collect data. The electronic questionnaire was divided into two strands: demographics and science fair experience. Twenty-one respondents participated in the questionnaire and ten participants were interviewed. A cross-case analysis revealed communication was the key to a successful science fair experience. Findings showed the educational background of participants influenced their perspective regarding the experience of a science fair. When communicating through American Sign Language, the science fair experience was more positive. When communicating through an interpreter or having no interpreter at all, the science fair experience was viewed in a negative light. The use of science fairs to enhance language development, writing skills, and higher order thinking skills was supported. Teachers and parents were strong influences for Deaf students participating in a science fair. Participation in a science fair did influence students to choose a STEM major but there were other considerations as well.

  9. Learning to Work with Databases in Astronomy: Quantitative Analysis of Science Educators' and Students' Pre-/Post-Tests

    Science.gov (United States)

    Schwortz, Andria C.; Burrows, Andrea C.; Myers, Adam D.

    2015-01-01

    Astronomy is increasingly moving towards working with large databases, from the state-of-the-art Sloan Digital Sky Survey Data Release 10, to the historical Digital Access to a Sky Century at Harvard. Non-astronomy fields as well tend to work with large datasets, be it in the form of warehouse inventory, health trends, or the stock market. However very few fields explicitly teach students the necessary skills to analyze such data. The authors studied a matched set of 37 participants working with 200-entry databases in astronomy using Google Spreadsheets, with limited information about a random set of quasars drawn from SDSS DR5. Here the authors present the quantitative results from an eight question pre-/post-test, with questions designed to span Bloom's taxonomy, on both the topics of the skills of using spreadsheets, and the content of quasars. Participants included both Astro 101 summer students and professionals including in-service K-12 teachers and science communicators. All groups showed statistically significant gains (as per Hake, 1998), with the greatest difference between women's gains of 0.196 and men's of 0.480.

  10. WFIRST Project Science Activities

    Science.gov (United States)

    Gehrels, Neil

    2012-01-01

    The WFIRST Project is a joint effort between GSFC and JPL. The project scientists and engineers are working with the community Science Definition Team to define the requirements and initial design of the mission. The objective is to design an observatory that meets the WFIRST science goals of the Astr02010 Decadal Survey for minimum cost. This talk will be a report of recent project activities including requirements flowdown, detector array development, science simulations, mission costing and science outreach. Details of the interim mission design relevant to scientific capabilities will be presented.

  11. Framework for Processing Citizens Science Data for Applications to NASA Earth Science Missions

    Science.gov (United States)

    Teng, William; Albayrak, Arif

    2017-01-01

    Citizen science (or crowdsourcing) has drawn much high-level recent and ongoing interest and support. It is poised to be applied, beyond the by-now fairly familiar use of, e.g., Twitter for natural hazards monitoring, to science research, such as augmenting the validation of NASA earth science mission data. This interest and support is seen in the 2014 National Plan for Civil Earth Observations, the 2015 White House forum on citizen science and crowdsourcing, the ongoing Senate Bill 2013 (Crowdsourcing and Citizen Science Act of 2015), the recent (August 2016) Open Geospatial Consortium (OGC) call for public participation in its newly-established Citizen Science Domain Working Group, and NASA's initiation of a new Citizen Science for Earth Systems Program (along with its first citizen science-focused solicitation for proposals). Over the past several years, we have been exploring the feasibility of extracting from the Twitter data stream useful information for application to NASA precipitation research, with both "passive" and "active" participation by the twitterers. The Twitter database, which recently passed its tenth anniversary, is potentially a rich source of real-time and historical global information for science applications. The time-varying set of "precipitation" tweets can be thought of as an organic network of rain gauges, potentially providing a widespread view of precipitation occurrence. The validation of satellite precipitation estimates is challenging, because many regions lack data or access to data, especially outside of the U.S. and in remote and developing areas. Mining the Twitter stream could augment these validation programs and, potentially, help tune existing algorithms. Our ongoing work, though exploratory, has resulted in key components for processing and managing tweets, including the capabilities to filter the Twitter stream in real time, to extract location information, to filter for exact phrases, and to plot tweet distributions. The

  12. Academic Work—Faster, Higher, Further? On the (Missing Proportion of Work to Spare Time in the (Cultural Sciences

    Directory of Open Access Journals (Sweden)

    Gert Dressel

    2008-01-01

    Full Text Available We make the practices of the academic production of knowledge a subject of critical discussion by focusing on the world of academic work and the academics themselves. Based on interviews with academics in the field of cultural sciences we conclude that with regard to their daily routines, their annual schedules, and their life-courses the so-called private life (family life, leisure time etc. becomes dominated by the social and cultural logics of the working sphere. Although it might appear exaggerated, we will refer to the humanities as a "total institution" which entails social, physical, and mental costs for its "inmates" as well as for those who never managed to become "inmates" (in spite of their efforts and those who don’t belong to the institution any more. URN: urn:nbn:de:0114-fqs0801385

  13. Different images of science

    DEFF Research Database (Denmark)

    Davidsson, Eva

      Within the science and technology centres (STC) movement there exists explicit aims and ambitions to enhance visitors' interest in and knowledge about science. Meanwhile, several researches question the choice of the scientific content in exhibitions when arguing that a too unproblematic view...... of science commonly is presented. But what images and aspects of science are visitors actually confronted with at STCs? How do staff members at STCs consider the scientific content and how do they choose what aspects of science to display in exhibitions? What ideas about visitors' learning do staff members....... The most common image was the usefulness of science which displays science in an unproblematic and single-dimensioned way. In order to explore what underlying assumptions and factors which affect how science is constituted, 17 staff members who worked with planning and constructing new exhibitions...

  14. Public Science Education and Outreach as a Modality for Teaching Science Communication Skills to Undergraduates

    Science.gov (United States)

    Arion, Douglas; OConnell, Christine; Lowenthal, James; Hickox, Ryan C.; Lyons, Daniel

    2018-01-01

    The Alan Alda Center for Communicating Science at Stony Brook University is working with Carthage College, Dartmouth College, and Smith College, in partnership with the Appalachian Mountain Club, to develop and disseminate curriculum to incorporate science communication education into undergraduate science programs. The public science education and outreach program operating since 2012 as a partnership between Carthage and the Appalachian Mountain Club is being used as the testbed for evaluating the training methods. This talk will review the processes that have been developed and the results from the first cohort of students trained in these methods and tested during the summer 2017 education and outreach efforts, which reached some 12,000 members of the public. A variety of evaluation and assessment tools were utilized, including surveys of public participants and video recording of the interactions of the students with the public. This work was supported by the National Science Foundation under grant number 1625316.

  15. SCIENCE FICTION IN HISTORICAL AND CULTURAL LITERARY DISCOURSE

    Directory of Open Access Journals (Sweden)

    Simona Siderevičiūtė

    2014-04-01

    Full Text Available This work intends to complement literary studies in science fiction. It discusses the history of global science fiction, overviews the most cha­racteristic features of its historical periods, and provides an introduction to Lithuanian science fiction, indicating its main features and topics. In the context of culture, science fiction is often defined as a literary genre with the emphasis on its nature as fiction. Only rarely are the history of the origin of science fiction, its variations, and the pioneers of science fiction whose works are still highly valued taken into account. Science fiction is often criticized through the filter of preconceived ideas that consider this type of literature to be “friv­olous.” This article discusses the possible reasons for such an approach. In Lithuania, this genre is still associated only with pop literature, and its expression cannot yet equal the works of foreign authors. The basic classical motifs of global science fiction found in Lithuanian science fiction include: representatives of extraterrestrial civilizations and human contact with them, scientists and inventors, agents of military institutions, and space travel. Lithuanian science fiction writers follow the tra­ditions of global science fiction when using these classical motifs; however, a general lack of original and individual themes, motifs, and manifestations may be observed.

  16. Securitization and Science

    DEFF Research Database (Denmark)

    Berling, Trine Villumsen

    2011-01-01

    /explanations can come to objectify an issue to the extent where securitization – and even politicization – becomes next to impossible. Second, science co-determines the status of a securitizing actor and thus influences the authority of the speaker in specific fields. Third, scientific facts can be mobilized......The interface between science and securitization has not been systematically addressed. This article argues from a Bourdieusian viewpoint that scientific arguments and ‘facts’ are at work in at least three distinct mechanisms within and around securitization. First, science communities...

  17. Education and Training in Forensic Science: A Guide for Forensic Science Laboratories, Educational Institutions, and Students. Special Report.

    Science.gov (United States)

    US Department of Justice, 2004

    2004-01-01

    Forensic science provides scientific and foundational information for investigators and courts, and thus plays a crucial role in the criminal justice system. This guide was developed through the work of the Technical Working Group on Education and Training in Forensic Science (TWGED) to serve as a reference on best education and training practices…

  18. Global Journal of Mathematical Sciences

    African Journals Online (AJOL)

    Global Journal of Mathematical Sciences publishes research work in all areas of ... of new theories, techniques and application to science, industry and society. The journal aims to promote the exchange of information and ideas between all ...

  19. Teacher Education that Works: Preparing Secondary-Level Math and Science Teachers for Success with English Language Learners Through Content-Based Instruction

    Directory of Open Access Journals (Sweden)

    Margo Elisabeth DelliCarpini

    2014-11-01

    Full Text Available Little research exists on effective ways to prepare secondary mathematics and science teachers to work with English language learners (ELLs in mainstream mathematics and science (subsequently referred to as STEM classrooms. Given the achievement gap that exists between ELLs and their native-speaking counterparts in STEM subjects, as well as the growing numbers of ELLs in US schools, this becomes a critical issue, as academic success for these students depends on the effectiveness of instruction they receive not only in English as a second language classes (ESL, but in mainstream classrooms as well. This article reports on the effects of a program restructuring that implemented coursework specifically designed to prepare pre-service and in-service mathematics, science, and ESL teachers to work with ELLs in their content and ESL classrooms through collaboration between mainstream STEM and ESL teachers, as well as effective content and language integration. We present findings on teachers’ attitudes and current practices related to the inclusion of ELLs in the secondary-level content classroom and their current level of knowledge and skills in collaborative practice. We further describe the rationale behind the development of the course, provide a description of the course and its requirements as they changed throughout its implementation during two semesters, and present findings from the participants enrolled. Additionally, we discuss the lessons learned; researchers’ innovative approaches to implementation of content-based instruction (CBI and teacher collaboration, which we term two-way CBI (DelliCarpini & Alonso, 2013; and implications for teacher education programs.

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The Bulletin of Materials Science began in the year 1979. ... one of the world's leading interactive databases of high quality STM journals, book series, books, reference works and online archives collection. ... Sadashivanagar, P.B. No. 8005 ...

  1. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In this paper, we provide combinatorial meanings to two generalized basic series ... These results are an extension of the work of Goyal and Agarwal (Utilitas Math. ... of Basic and Applied Sciences, University College of Engineering, Punjabi ...

  2. Communicating Your Science

    Science.gov (United States)

    Young, C. A.

    2016-12-01

    Effective science communication can open doors, accelerate your career and even make you a better scientist. Part of being an effective and productive scientist means being an effective science communicator. The scientist must communicate their work in talks, posters, peer-reviewed papers, internal reports, proposals as well as to the broader public (including law makers). Despite the importance of communication, it has traditionally not been part of our core training as scientists. Today's science students are beginning to have more opportunities to formally develop their science communication skills. Fortunately, new and even more established scientists have a range of tools and resources at their disposal. In this presentation, we will share some of these resources, share our own experiences utilizing them, and provide some practical tools to improve your own science communication skills.

  3. Explaining how the mind works: on the relation between cognitive science and philosophy.

    Science.gov (United States)

    Trigg, Jonathan; Kalish, Michael

    2011-04-01

    In this paper, we argue that under certain prevalent interpretations of the nature and aims of cognitive science, theories of cognition generate a forced choice between a conception of cognition which depends on the possibility of a private language, and a conception of cognition which depends on mereological confusions. We argue, further, that this should not pose a fundamental problem for cognitive scientists since a plausible interpretation of the nature and aims of cognitive science is available that does not generate this forced choice. The crucial difference between these interpretations is that on the one hand the aim of theories of cognition is to tell us what thinking (etc.) is, and on the other it is to tell us what is causally necessary if an intelligent creature is to be able to think. Our argument draws heavily on a Wittgensteinian conception of philosophy in which no philosophical theory can explain what thinking, perceiving, remembering, etc. are, either. The positive, strictly therapeutic, purpose of a philosophy of cognitive science should be to show that, since the traditional problems which constitute the philosophy of mind are chimerical, there is nothing for philosophical theorizing in cognitive science to achieve. Copyright © 2011 Cognitive Science Society, Inc.

  4. Here, there and everywhere: The art and science of optics at work

    Science.gov (United States)

    Ambrosini, Dario; Ferraro, Pietro

    2018-05-01

    Optics, the ancient science of vision and light [1-5] can look forward to a "bright" future [6,7], as its applications are now ubiquitous in fields as diverse as science, engineering, technology, medicine and everyday life. Optical methods play a crucial and often revolutionary role in non-destructive testing, biomedical applications, microscopy, cultural heritage protection, advanced imaging in medicine, development of self-driving cars, astronomy, remote sensing, and manufacturing to cite a few examples.

  5. Relationship between work - family conflict and marital satisfaction among nurses and midwives in hospitals of Zabol university of medical sciences

    Directory of Open Access Journals (Sweden)

    A. Mansouri

    2016-08-01

    Full Text Available Background: Work-family conflicts described as incompatibility between work and family roles. There is mutual relationship between marital satisfaction and job so that the tension in one of two areas of career and family are affected. Objective: To examine the relationship between marital satisfaction and work-family conflict among nurses and midwives. Methods: All of 289 employees of married nursing and midwifery of Zabol University of Medical Sciences hospitals participated in the study in 2014. The data were collected with questionnaires of Enrich marital satisfaction and Carlson work-family conflict and were analyzed with statistical tests including Pearson correlation coefficient, t-test and linear regression analysis. Findings: Marital satisfaction score of the staff was 168.52 which indicates the relative satisfaction of spouses from each other. The mean score of work-family conflict among employees was 3.26; it can be said that employees in terms of work-family conflict, the conflict a moderate experience. There is a significant negative correlation among marital satisfaction and work-family conflict of employees. In fact, marital satisfaction decreases when the conflict between work and family is decreased. Nursing staffs have a higher marital satisfaction and in terms of work-family conflict they experience less conflict. Conclusion: According to the findings, the managers should create conditions that minimize the role conflicts and consequently increase the level of marital satisfaction.

  6. Evidence-based creativity: Working between art and science in the field of fine dining.

    Science.gov (United States)

    Borkenhagen, Chad

    2017-10-01

    This article examines how scientific knowledge drives creativity in the small but influential culinary movement of 'modernist cuisine'. Originating in the mid-1990s, modernist cuisine began with a small group of avant-garde chefs using science to produce wildly innovative culinary creations. Since then, many of the movement's innovations, as well as its more general 'science-based' approach to cooking, have gained adoption among a diverse range of culinary professionals. But while science has enabled modernist chefs to produce a wide array of innovations and refinements, the group's embrace of scientific values poses a potential threat to the subjective, intuition-driven logic of culinary creativity. Using data gathered through interviews and participant observation, I describe how modernist chefs navigate the potential challenges of using science in a creative field. I find that advocates of modernist cuisine address these challenges by adopting two separate rhetorical repertoires - one emphasizing science-based cooking's advantages over traditional methods, and another that minimizes the differences between these approaches. Observing the strategic deployment of these repertoires illustrates the challenges to incorporating science into creative fields and reveals a complex and nuanced relationship between objectivity, evidence, and aesthetic judgement.

  7. Research Journal of Health Sciences

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... The Research Journal of Health Sciences is dedicated to promoting high quality research work in the field of health and related biological sciences. It aligns ...

  8. Tropical Journal of Health Sciences

    African Journals Online (AJOL)

    The Tropical Journal of Health Sciences (TJHS) is an international journal which ... of ideas to those engaged in work in the Health Sciences and related fields. The journal intends to publish high quality papers on original research, case ...

  9. Making science accessible through collaborative science teacher action research on feminist pedagogy

    Science.gov (United States)

    Capobianco, Brenda M.

    The underrepresentation of women and minorities in science is an extensively studied yet persistent concern of our society. Major reform movements in science education suggest that better teaching, higher standards, and sensitivity to student differences can overcome long-standing obstacles to participation among women and minorities. In response to these major reform movements, researchers have suggested teachers transform their goals, science content, and instructional practices to make science more attractive and inviting to all students, particularly young women and minorities (Barton, 1998; Brickhouse, 1994; Mayberry & Rees, 1999; Rodriguez, 1999; Roychoudhury, Tippins, & Nichols, 1995). One of the more dominant approaches currently heralded is the use of feminist pedagogy in science education. The purpose of this study was to examine the ways eleven middle and high school science teachers worked collaboratively to engage in systematic, self-critical inquiry of their own practice and join with other science teachers to engage in collaborative conversations in effort to transform their practice for a more equitable science education. Data were gathered via semi-structured interviews, whole group discussions, classroom observations, and review of supporting documents. Data analysis was based on grounded theory (Strauss & Corbin, 1990) and open coding (Miles and Huberman, 1994). This study described the collective processes the science teachers and university researcher employed to facilitate regular collaborative action research meetings over the course of six months. Findings indicated that engaging in collaborative action research allowed teachers to gain new knowledge about feminist science teaching, generate a cluster of pedagogical possibilities for inclusive pedagogy, and enhance their understanding for science teaching. Additional findings indicated dilemmas teachers experienced including resistance to a feminist agenda and concerns for validity in action

  10. The Mid-Infrared Instrument for the James Webb Space Telescope, I: Introduction

    DEFF Research Database (Denmark)

    Rieke, G. H.; Wright, G. S.; Böker, T.

    2015-01-01

    MIRI (the Mid-Infrared Instrument for the James Webb Space Telescope [JWST]) operates from 5 to 28: 5 μm and combines over this range: (1) unprecedented sensitivity levels; (2) subarcsecond angular resolution; (3) freedom from atmospheric interference; (4) the inherent stability of observing...... in space; and (5) a suite of versatile capabilities including imaging, low- and medium-resolution spectroscopy (with an integral field unit), and coronagraphy. We illustrate the potential uses of this unique combination of capabilities with various science examples: (1) imaging exoplanets; (2) transit...

  11. Discovery of the Collaborative Nature of Science with Undergraduate Science Majors and Non-Science Majors through the Identification of Microorganisms Enriched in Winogradsky Columns.

    Science.gov (United States)

    Ramirez, Jasmine; Pinedo, Catalina Arango; Forster, Brian M

    2015-12-01

    Today's science classrooms are addressing the need for non-scientists to become scientifically literate. A key aspect includes the recognition of science as a process for discovery. This process relies upon interdisciplinary collaboration. We designed a semester-long collaborative exercise that allows science majors taking a general microbiology course and non-science majors taking an introductory environmental science course to experience collaboration in science by combining their differing skill sets to identify microorganisms enriched in Winogradsky columns. These columns are self-sufficient ecosystems that allow researchers to study bacterial populations under specified environmental conditions. Non-science majors identified phototrophic bacteria enriched in the column by analyzing the signature chlorophyll absorption spectra whereas science majors used 16S rRNA gene sequencing to identify the general bacterial diversity. Students then compiled their results and worked together to generate lab reports with their final conclusions identifying the microorganisms present in their column. Surveys and lab reports were utilized to evaluate the learning objectives of this activity. In pre-surveys, nonmajors' and majors' answers diverged considerably, with majors providing responses that were more accurate and more in line with the working definition of collaboration. In post-surveys, the answers between majors and nonmajors converged, with both groups providing accurate responses. Lab reports showed that students were able to successfully identify bacteria present in the columns. These results demonstrate that laboratory exercises designed to group students across disciplinary lines can be an important tool in promoting science education across disciplines.

  12. Thinking about television science: How students understand the nature of science from different program genres

    Science.gov (United States)

    Dhingra, Koshi

    2003-02-01

    Student views on the nature of science are shaped by a variety of out-of-school forces and television-mediated science is a significant force. To attempt to achieve a science for all, we need to recognize and understand the diverse messages about science that students access and think about on a regular basis. In this work I examine how high school students think about science that is mediated by four different program genres on television: documentary, magazine-format programming, network news, and dramatic or fictional programming. The following categories of findings are discussed: the ethics and validity of science, final form science, science as portrayed by its practitioners, and school science and television science. Student perceptions of the nature of science depicted on the program sample used in this study ranged from seeing science as comprising tentative knowledge claims to seeing science as a fixed body of facts.

  13. A century of nuclear science. Important contributions of early generation Chinese physicist to nuclear science

    International Nuclear Information System (INIS)

    Zheng Chunkai; Xu Furong

    2003-01-01

    The great discoveries and applications of nuclear science have had tremendous impact on the progress and development of mankind over the last 100 years. In the 1920's to 1940's, many young Chinese who yearned to save the country through science and education went to west Europe and north America to study science, including physics. Studying and working with famous physicists throughout the world, they made many important contributions and discoveries in the development of nuclear science. This paper describes the historical contributions of the older generation of Chinese physicists to nuclear science

  14. How science teachers' concerns about school-based assessment of practical work vary with time: the Hong Kong experience

    Science.gov (United States)

    Cheung, Derek; Yip, Din-Yan

    2004-02-01

    School-based assessment of science students' practical skills has two important roles--as a complement to written papers in public examinations and as a catalyst for enriching the science curriculum in schools. This article describes a quantitative study of the concerns chemistry and biology teachers experience as they engage in the process of implementation of a school-based assessment scheme for practical work. A 23-item questionnaire was developed to measure five categories of teacher concern: evaluation, information, management, consequence and refocusing. The nature of each category of teacher concern is discussed in relation to innovation adoption and implementation. Data were collected from 400 chemistry and 412 biology teachers in Hong Kong. Teachers' information and management concerns lessened in intensity when they became experienced users of a school-based assessment scheme. However, teaching experience alone could not motivate teachers to think more about the impact of school-based assessment on student learning, their professional development in student assessment and the possible refinements in their school-based assessment scheme. Concerns-based interventions are suggested to help teachers grow professionally.

  15. The Art Of Planetary Science: An Exhibition - Bringing Together The Art And Science Communities To Engage The Public

    Science.gov (United States)

    Molaro, Jamie; Keane, Jamies; Peacock, Sarah; Schaefer, Ethan; Tanquary, Hannah

    2014-11-01

    The University of Arizona’s Lunar and Planetary Laboratory (LPL) presents the 2nd Annual The Art of Planetary Science: An Exhibition (TAPS) on 17-19 October 2014. This art exhibition and competition features artwork inspired by planetary science, alongside works created from scientific data. It is designed to connect the local art and science communities of Tucson, and engage the public together in celebration of the beauty and elegance of the universe. The exhibition is organized by a team of volunteer graduate students, with the help of LPL’s Space Imaging Center, and support from the LPL administration. Last year’s inaugural event featured over 150 works of art from 70 artists and scientists. A variety of mediums were represented, including paintings, photography, digital prints, sculpture, glasswork, textiles, film, and written word. Over 300 guests attended the opening. Art submission and event attendance are free, and open to anyone.The primary goal of the event is to present a different side of science to the public. Too often, the public sees science as dull or beyond their grasp. This event provides scientists the opportunity to demonstrate the beauty that they find in their science, by creating art out of their scientific data. These works utilized, for example, equations, simulations, visual representations of spacecraft data, and images of extra-terrestrial material samples. Viewing these works alongside more traditional artwork inspired by those same scientific ideas provided the audience a more complex, multifaceted view of the content that would not be possible viewing either alone. The event also provides a way to reach out specifically to the adult community. Most science outreach is targeted towards engaging children in STEM fields. While this is vital for the long term, adults have more immediate control over the perception of science and public policy that provides funding and research opportunities to scientists. We hope this event raises

  16. The application of science communication modes in China's nuclear and radiation safety science popularization

    International Nuclear Information System (INIS)

    Cao Yali; Wang Erqi; Wang Xiaofeng; Zhang Ying

    2014-01-01

    The studies of the application of science communication theory in the nuclear and radiation safety will help to enhance the level of science popularization work in the field of nuclear and radiation safety. This paper firstly describes the definition and the evolvement process of science communication models, then analyzes the current status of the nuclear and radiation safety science popularization, finally discusses on the suitability of science communication mode of its application in the field of nuclear and radiation safety. (authors)

  17. The effects of work-related and individual factors on the Work Ability Index: a systematic review.

    NARCIS (Netherlands)

    T.I.J. van den Berg (Tilja); L.A.M. Elders (Leo); B.C.H. Zwart, de; A. Burdorf (Alex)

    2009-01-01

    textabstractThis paper systematically reviews the scientific literature on the effects of individual and work-related factors on the Work Ability Index (WAI). Studies on work ability published from 1985 to 2006 were identified through a structured search in PubMed, and Web of Science. Studies were

  18. Satellite stories: capturing professional experiences of academic health sciences librarians working in delocalized health sciences programs

    Directory of Open Access Journals (Sweden)

    Jackie Phinney

    2018-01-01

    Conclusions: The results from this survey suggest that the role of the academic health sciences librarian at the satellite campus needs to be clearly communicated and defined. This, in turn, will enhance the experience for the librarian and provide better service to the client.

  19. An Investigation of Science and Technology Teachers’ Views on the 5th Grade Science Course

    OpenAIRE

    İkramettin Daşdemir

    2014-01-01

    This study was conducted to explore the science and technology teachers’ views on the implementation of 5th grade science course. Open-ended questions were used as a data collection tool. The study sample consisted of 28 science and technology teachers working in Erzurum in 2012-2013 education year. The data gathered were analysed via content analysis method. According to the results obtained from the open-ended questions, a great majority of science and technology teache...

  20. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  1. Data science from scratch

    CERN Document Server

    Grus, Joel

    2015-01-01

    This is a first-principles-based, practical introduction to the fundamentals of data science aimed at the mathematically-comfortable reader with some programming skills. The book covers: * The important parts of Python to know * The important parts of Math / Probability / Statistics to know * The basics of data science * How commonly-used data science techniques work (learning by implementing them) * What is Map-Reduce and how to do it in Python * Other applications such as NLP, Network Analysis, and more

  2. [Re]considering queer theories and science education

    Science.gov (United States)

    Fifield, Steve; Letts, Will

    2014-06-01

    We take Mattias Lundin's Inviting queer ideas into the science classroom: studying sexual education from a queer perspective as a point of departure to explore some enduring issues related to the use of queer theories to interrogate science education and its practices. We consider the uneasy, polygamous relationship between gay and lesbian studies and queer theories; the border surveillance that characterizes so much of science [education]; the alluring call of binaries and binary thinking; the `all' within the catchcry `science for all'; and the need to better engage the fullness of science and the curriculum, in addition to noting silences around diverse sexes, sexualities, and desires. We catalogue some of the challenges that persist in this work, and offer thoughts about how to work with and against them to enact a more just and compelling science education.

  3. Communicating Ocean Sciences to Informal Audiences (COSIA): Universities, Oceanographic Institutions, Science Centers and Aquariums Working Together to Improve Ocean Education and Public Outreach

    Science.gov (United States)

    Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.; Ingram, L.

    2007-12-01

    Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course from COSEE-California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project has leveraged these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort is one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach and promoting the broader impact of research; and provide diverse role models

  4. Launch Window Trade Analysis for the James Webb Space Telescope

    Science.gov (United States)

    Yu, Wayne H.; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is a large-scale space telescope mission designed to study fundamental astrophysical questions ranging from the formation of the universe to the origin of planetary systems and the origins of life. JWSTs orbit design is a Libration Point Orbit (LPO) around the Sun-Earth/Moon (SEM) L2 point for a planned mission lifetime of 10.5 years. The launch readiness period for JWST is from Oct 1st, 2018 November 30th, 2018. This paper presents the first launch window analysis for the JWST observatory using finite-burn modeling; previous analysis assumed a single impulsive midcourse correction to achieve the mission orbit. The physical limitations of the JWST hardware stemming primarily from propulsion, communication and thermal requirements alongside updated mission design requirements result in significant launch window within the launch readiness period. Future plans are also discussed.

  5. Theory and computational science

    International Nuclear Information System (INIS)

    Durham, P.

    1985-01-01

    The theoretical and computational science carried out at the Daresbury Laboratory in 1984/5 is detailed in the Appendix to the Daresbury Annual Report. The Theory, Computational Science and Applications Groups, provide support work for the experimental projects conducted at Daresbury. Use of the FPS-164 processor is also described. (U.K.)

  6. Creating the Deep Space Environment for Testing the James Webb Space Telescope (JWST) at NASA Johnson Space Center's Chamber A

    Science.gov (United States)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive modifications

  7. AGU Public Affairs: How to Get Involved in Science Policy

    Science.gov (United States)

    Landau, E. A.; Hankin, E. R.; Uhlenbrock, K. M.

    2012-12-01

    AGU Public Affairs offers many ways for its members to get involved in science policy at different levels of participation, whether you would love to spend a year working as a resident science expert in a congressional office in Washington, D.C., or would rather simply receive email alerts about Earth and space science policy news. How you can get involved: Sign up for AGU Science Policy Alerts to receive the most relevant Earth and space science policy information delivered to your email inbox. Participate in one of AGU's Congressional Visits Days to speak with your legislators about important science issues. Attend the next AGU Science Policy Conference in spring 2013. Participate in events happening on Capitol Hill, and watch video of past events. Learn about AGU Embassy Lectures, where countries come together to discuss important Earth and space science topics. Learn how you can comment on AGU Position Statements. Apply to be an AGU Congressional Science Fellow, where you can work in a congressional office for one year and serve as a resident science expert, or to be an AGU Public Affairs Intern, where you can work in the field of science policy for three months. The AGU Public Affairs Team will highlight ways members can be involved as well as provide information on how the team is working to shape policy and inform society about the excitement of AGU science.

  8. 75 FR 60484 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Science.gov (United States)

    2010-09-30

    ... Update. --Performance Measures Discussion. --Report from Earth Science Subcommittee Meeting. It is... to providing the following information no less than 10 working days prior to the meeting: full name; gender; date/ place of birth; citizenship; visa/green card information (number, type, expiration date...

  9. Experience in organization of soil science–biogeographical part of educational natural science practical work of students-geographers

    Directory of Open Access Journals (Sweden)

    Юлія Прасул

    2016-10-01

    Full Text Available The article considers the experience of practical field training of students- geographers, defines its role in training geographers, looks at the ways of rational organization of soil science, biogeographic section of natural science educational practices in terms of training at high school stationary practice grounds. The educational natural science practice of the 1st year-students-geographers of V.N. Karazin Kharkiv National University takes place on the educational and scientific geographical grounds «Gaidary» in Zmiiv district, Kharkiv region. The location of the base allows to explore a typical structure of the Siversky Donets river valley, select a variety of elements and components to form an understanding in students of both the knowledge of the individual components of nature, and the processes of natural complexes functioning as a whole, to introduce the elements of environmental knowledge and factors of anthropogenic impact on the environment. The soil-biogeographical section of practical work focuses on acquiring skills of field research methods of soil and ecological communities by the students; planning of the routes, taking into account the conditions and landscape features of the territory; cameral treatment of the data and samples collected in the field; identification of cause-and-effect relationships of soil and vegetation development. Landscape diversity of the territory in the area of practice allows to study the soil and vegetation within the natural systems of the watershed, its slopes, gullies and gully areas of the floodplain, the first floodplain terrace during 5-6 days of soil-biogeographic section of the practical work through the daily radial routes. During the practice traditional classical techniques of field studies of soils and ecological communities (primarily tab and a description of soil profiles and geo-botanical areas are combined with new, present-day approaches (use of GPS-navigators, GIS

  10. From science to popularization, and back--the science and journalism of the Belgian economist Gustave de Molinari.

    Science.gov (United States)

    Van Dijck, Maarten

    2008-09-01

    Sociologists and historians of science, such as Richard Whitley and Stephen Hilgartner, identified a culturally dominant discourse of science popularization in the broader society. In this dominant view, a clear distinction is maintained between scientific knowledge and popularized knowledge. Popularization of science is seen as the process of transmitting real science to a lay public. This discourse on science popularization was criticized by Whitley and Hilgartner as an inadequate simplification. Yet, the battered traditional model of popularization remains remarkably resistant to these theoretical attacks. In this paper I will argue, based on research of the output of the Belgian economist Gustave de Molinari (1819-1912), and more specifically, his opinion on the role of government in economic life, that the boundary between science and popularization in political economy is not clear and that the status of scientists fluctuates over time and in different contexts. It is therefore impossible for historians or economists to distinguish science from popularization based on the essential characteristics or intrinsic quality of the work. De Molinari's ideas are followed through the different media of science and journalism. Although de Molinari himself differentiated between his scientific and "popular" work, the boundary between science and popularization proves to be highly permeable, in both directions.

  11. Computer/Information Science

    Science.gov (United States)

    Birman, Ken; Roughgarden, Tim; Seltzer, Margo; Spohrer, Jim; Stolterman, Erik; Kearsley, Greg; Koszalka, Tiffany; de Jong, Ton

    2013-01-01

    Scholars representing the field of computer/information science were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Ken Birman, Jennifer Rexford, Tim Roughgarden, Margo Seltzer, Jim Spohrer, and…

  12. History of Science and Science Museums

    Science.gov (United States)

    Faria, Cláudia; Guilherme, Elsa; Gaspar, Raquel; Boaventura, Diana

    2015-01-01

    The activities presented in this paper, which are addressed to elementary school, are focused on the pioneering work of the Portuguese King Carlos I in oceanography and involve the exploration of the exhibits belonging to two different science museums, the Aquarium Vasco da Gama and the Maritime Museum. Students were asked to study fish…

  13. Building "Science Capital" in the Classroom

    Science.gov (United States)

    Nomikou, Effrosyni; Archer, Louise; King, Heather

    2017-01-01

    In this article we share insights from our ongoing research on the concept of "science capital"--a term that refers to an individual's science-related resources and dispositions. We have been working in collaboration with secondary teachers in England to explore the applications of the concept in science teaching practice. Underpinned by…

  14. Teaching and Assessing the Nature of Science

    Science.gov (United States)

    Clough, Michael P.

    2011-01-01

    Understanding the nature of science (NOS)--what science is and how it works, the assumptions that underlie scientific knowledge, how scientists function as a social group, and how society impacts and reacts to science--is prominent in science education reform documents (Rutherford and Ahlgren 1990; AAAS 1993; McComas and Olson 1998; NRC 1996; AAAS…

  15. To appreciate variation between scientists: A perspective for seeing science's vitality

    Science.gov (United States)

    Wong, E. David

    2002-05-01

    At the heart of theoretical and practical ideas about science education is an image of scientific work. This image draws attention to particular features of scientific work, which then guides scholarship and pedagogy in science education. In the field of science education, much discussion in this vein focuses on the question, What is the nature of science? Most images of science found in education, psychology, and philosophy emerge from conceptual and methodological perspectives that emphasize norms, conventions, and broad trends. Some groups are motivated to distinguish science from other activities while some groups work in the opposite direction and blur the lines between science and others ways of knowing. Underlying both perspectives is an implicit focus on general qualities common to groups or subgroups (e.g. believing that ideas are subject to change, explanations demand evidence, science is a complex social activities, etc.). I propose that the vital qualities of science are best illuminated by just the opposite process: by appreciating the uncommon, rather than common, features. By attending to individual variation, we are more likely to understand what makes science a creative, motivating, and deeply personal enterprise. In addition, appreciating these variations reveals judgment, creativity, adaptation - the hallmark of scientific work. Implications of this perspective for science education are discussed.

  16. Make it work! : How to facilitate knowledge work in universities

    NARCIS (Netherlands)

    Groen, B. (Brenda); Sprang, van H. (Hester)

    2012-01-01

      Purpose: This paper aims to define the influence of the physical and social dimensions of the work environment on knowledge productivity of academics in Dutch Universities of Applied Sciences. Design/methodology/approach: Literature review; a multiple case study based on literature review

  17. Specialized science.

    Science.gov (United States)

    Casadevall, Arturo; Fang, Ferric C

    2014-04-01

    As the body of scientific knowledge in a discipline increases, there is pressure for specialization. Fields spawn subfields that then become entities in themselves that promote further specialization. The process by which scientists join specialized groups has remarkable similarities to the guild system of the middle ages. The advantages of specialization of science include efficiency, the establishment of normative standards, and the potential for greater rigor in experimental research. However, specialization also carries risks of monopoly, monotony, and isolation. The current tendency to judge scientific work by the impact factor of the journal in which it is published may have roots in overspecialization, as scientists are less able to critically evaluate work outside their field than before. Scientists in particular define themselves through group identity and adopt practices that conform to the expectations and dynamics of such groups. As part of our continuing analysis of issues confronting contemporary science, we analyze the emergence and consequences of specialization in science, with a particular emphasis on microbiology, a field highly vulnerable to balkanization along microbial phylogenetic boundaries, and suggest that specialization carries significant costs. We propose measures to mitigate the detrimental effects of scientific specialism.

  18. Applying Indigenous Knowledge to Innovations in Social Work Education

    Science.gov (United States)

    Hertel, Amy Locklear

    2017-01-01

    Grounded in an indigenous holistic worldview and borrowing from the four Rs (values of relationships, responsibility, reciprocity, and redistribution), this article supports the inclusion of translational science and the integration of core metacompetencies into social work doctoral education as innovations in the field of social work science. The…

  19. Learning science in informal environments: people, places and pursuits. A review by the US National Science Council (Italian original version)

    OpenAIRE

    Paola Rodari

    2009-01-01

    In January this year, the US saw the publication of the preview of an impressive review work on the practices and the studies concerning learning science outside schools and universities, i.e. what is referred to as informal education.The document, promoted by the National Science Council of scientific academies (National Academy of Science, National Academy of Engineering and Institute of Medicine), is the result of the work by a committee comprising 14 specialists who collected, discussed a...

  20. The Los Alamos Science Pillars The Science of Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Joshua E. [Los Alamos National Laboratory; Peterson, Eugene J. [Los Alamos National Laboratory

    2012-09-13

    As a national security science laboratory, Los Alamos is often asked to detect and measure the characteristics of complex systems and to use the resulting information to quantify the system's behavior. The Science of Signatures (SoS) pillar is the broad suite of technical expertise and capability that we use to accomplish this task. With it, we discover new signatures, develop new methods for detecting or measuring signatures, and deploy new detection technologies. The breadth of work at Los Alamos National Laboratory (LANL) in SoS is impressive and spans from the initial understanding of nuclear weapon performance during the Manhattan Project, to unraveling the human genome, to deploying laser spectroscopy instrumentation on Mars. Clearly, SoS is a primary science area for the Laboratory and we foresee that as it matures, new regimes of signatures will be discovered and new ways of extracting information from existing data streams will be developed. These advances will in turn drive the development of sensing instrumentation and sensor deployment. The Science of Signatures is one of three science pillars championed by the Laboratory and vital to supporting our status as a leading national security science laboratory. As with the other two pillars, Materials for the Future and Information Science and Technology for Predictive Science (IS&T), SoS relies on the integration of technical disciplines and the multidisciplinary science and engineering that is our hallmark to tackle the most difficult national security challenges. Over nine months in 2011 and 2012, a team of science leaders from across the Laboratory has worked to develop a SoS strategy that positions us for the future. The crafting of this strategy has been championed by the Chemistry, Life, and Earth Sciences Directorate, but as you will see from this document, SoS is truly an Institution-wide effort and it has engagement from every organization at the Laboratory. This process tapped the insight and

  1. Investigating Your School's Science Teaching and Learning Culture

    Science.gov (United States)

    Sato, Mistilina; Bartiromo, Margo; Elko, Susan

    2016-01-01

    The authors report on their work with the Academy for Leadership in Science Instruction, a program targeted to help science teachers promote a science teaching and learning culture in their own schools.

  2. Science and Art

    Science.gov (United States)

    Moore, John W.

    2001-10-01

    Science and art diverge in that art usually represents a single individual's conception and viewpoint, even when many others are involved in bringing a work to fruition, whereas science progresses by extending consensus among those knowledgeable in a field. Art usually communicates at an emotional level. It values individual expression and impact on the emotions at the expense of objectivity. Science, especially in its archival record, values objectivity and reproducibility and does not express the imagination and joy of discovery inherent in its practice. This is too bad, because it does not give a realistic picture of how science is really done and because individuality and emotion are inherently more interesting than consensus. Leaving out the personal, emotional side can make science seem boring and pedestrian, when exactly the opposite is true. In teaching science we need to remember that communication always benefits from imagination and esthetic sense. If we present science artistically and imaginatively, as well as objectively and precisely, students will develop a more complete understanding of what science and scientists are about--one that is likely to capture their imaginations, emotions, and best efforts.

  3. From Covert Processes to Overt Outcomes of Refutation Text Reading: The Interplay of Science Text Structure and Working Memory Capacity through Eye Fixations

    Science.gov (United States)

    Ariasi, Nicola; Mason, Lucia

    2014-01-01

    This study extends current research on the refutation text effect by investigating it in learners with different levels of working memory capacity. The purpose is to outline the link between online processes (revealed by eye fixation indices) and off-line outcomes in these learners. In science education, unlike a standard text, a refutation text…

  4. Unique Spectroscopy and Imaging of Mars with the James Webb Space Telescope

    Science.gov (United States)

    Villanueva, Geronimo L.; Altieri, Francesca; Clancy, R. Todd; Encrenaz, Therese; Fouchet, Thierry; Hartogh, Paul; Lellouch, Emmanuel; Lopez-Valverde, Miguel A.; Mumma, Michael J.; Novak, Robert E.; hide

    2016-01-01

    In this paper, we summarize the main capabilities of the James Webb Space Telescope (JWST) for performing observations of Mars. The distinctive vantage point of JWST at the Sun-Earth Lagrange point (L2) will allow sampling the full observable disk, permitting the study of short-term phenomena, diurnal processes (across the east-west axis), and latitudinal processes between the hemispheres (including seasonal effects) with excellent spatial resolutions (0.''07 at 2 micron). Spectroscopic observations will be achievable in the 0.7-5 micron spectral region with NIRSpec at a maximum resolving power of 2700 and with 8000 in the 1-1.25 micron range. Imaging will be attainable with the Near-Infrared Camera at 4.3 micrometers and with two narrow filters near 2 micron, while the nightside will be accessible with several filters in 0.5 to 2 micron. Such a powerful suite of instruments will be a major asset for the exploration and characterization of Mars. Some science cases include the mapping of the water D/H ratio, investigations of the Martian mesosphere via the characterization of the non-local thermodynamic equilibrium CO2 emission at 4.3 micron, studies of chemical transport via observations of the O2 nightglow at 1.27 micron, high-cadence mapping of the variability dust and water-ice clouds, and sensitive searches for trace species and hydrated features on the Martian surface. In-flight characterization of the instruments may allow for additional science opportunities.

  5. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The journal covers all branches of engineering science and technology including mechanics (fluid, solid, thermal), computer science, electronics, energy, ... either because the work is fundamental or because it reflects the best in current technology; also on summaries of special projects of interest to engineering scientists.

  6. The Role of Work-Integrated Learning in Developing Students' Perceived Work Self-Efficacy

    Science.gov (United States)

    Reddan, Gregory

    2016-01-01

    The notion of work self-efficacy is significant as the self-efficacy beliefs of an individual have considerable influence on his/her level of motivation and performance in the workplace. This paper aims to determine the effects of the learning activities of a work-integrated learning course in Exercise Science in relation to students' perceived…

  7. Composing Science

    Science.gov (United States)

    Atkins, Leslie

    2015-03-01

    The course Scientific Inquiry at California State University was developed by faculty in biology, physics and English to meet ``writing proficiency'' requirements for non-science majors. Drawing from previous work in composition studies, the position that we take in this course is that we should be engaging students in writing that replicates the work that writing does in science, rather than replicating the particular structural conventions characteristic of scientific writing. That is, scientists use writing to have, remember, share, vet, challenge, and stabilize ideas, and our course requires students use writing to achieve those aims, rather than produce writing that obeys particular conventions of scientific writing. This talk will describe how we have integrated findings from composition studies with a course on scientific inquiry, and provide examples of how scientific communication has resulted from this dialogue. Funding by NSF #1140860.

  8. The backstage work of data sharing

    Energy Technology Data Exchange (ETDEWEB)

    Kervin, Karina E. [Univ. of Michigan, Ann Arbor, MI (United States); Cook, Robert B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Michener, William K. [Univ. of New Mexico, Albuquerque, NM (United States)

    2014-11-09

    Conventional wisdom makes the suggestion that there are benefits to the creation of shared repositories of scientific data. Funding agencies require that the data from sponsored projects be shared publicly, but individual researchers often see little personal benefit to offset the work of creating easily sharable data. These conflicting forces have led to the emergence of a new role to support researchers: data managers. This paper identifies key differences between the socio-technical context of data managers and other "human infrastructure" roles articulated previously in Computer Supported Cooperative Work (CSCW) literature and summarizes the challenges that data managers face when accepting data for archival and reuse. Finally, while data managers' work is critical for advancing science and science policy, their work is often invisible and under-appreciated since it takes place behind the scenes.

  9. Effect of Shift Work on the Frequency of Depression in Nursing Staff of Yazd University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Halvani

    2012-12-01

    Full Text Available Introduction: Depression as a disorder is relatively common in all societies; several factors are involved in depression development, that shift work is one of these factors. This study compared the frequency of depression in different shifts of nurses in hospitals of Yazd University of medical sciences. Materials & Methods: This study is a descriptive analytical study. Based on statistical methods, 150 nurses participated in this study. The research tool was a questionnaire that included 15 personal questions and 21 questions related to Beck test. The results were analysed by SPSS software. Results: 13.3% of all subjects were males and 86.7% were females. Results showed that, there is no significant relationship between gender, education, type of job, employment status and satisfaction levels of income with depression. Marital status (P-Value = 0.009 and F = 6.93, shift work (day working and shift work (P-Value = 0.032 and F = 1.11, job satisfaction (P-Value = 0.000 and F = 7.641 and the satisfaction of the employer (P-Value = 0.001 and F = 5.414 were significantly associated with depression. 3.49% of the nurses were in normal status, 7.26% had mild depression, 3.9% required consultation with the psychiatrist,% 7.8% suffered from moderate depression, 75.4% from severe depression and 3.1% from very severe depression. Conclusion: It seems that shift work can not cause depression alone, but depression is the result of the interaction of several factors.

  10. Exploring Attractiveness of the Basic Sciences for Female Physicians.

    Science.gov (United States)

    Yamazaki, Yuka; Fukushima, Shinji; Kozono, Yuki; Uka, Takanori; Marui, Eiji

    2018-01-01

    In Japan, traditional gender roles of women, especially the role of motherhood, may cause early career resignations in female physicians and a shortage of female researchers. Besides this gender issue, a general physician shortage is affecting basic science fields. Our previous study suggested that female physicians could be good candidates for the basic sciences because such work offers good work-life balance. However, the attractiveness for female physicians of working in the basic sciences, including work-life balance, is not known. In a 2012 nationwide cross-sectional questionnaire survey, female physicians holding tenured positions in the basic sciences at Japan's medical schools were asked an open-ended question about positive aspects of basic sciences that clinical medicine lacks, and we analyzed 58 respondents' comments. Qualitative analysis using the Kawakita Jiro method revealed four positive aspects: research attractiveness, priority on research productivity, a healthy work-life balance, and exemption from clinical duties. The most consistent positive aspect was research attractiveness, which was heightened by medical knowledge and clinical experience. The other aspects were double-edged swords; for example, while the priority on research productivity resulted in less gender segregation, it sometimes created tough competition, and while exemption from clinical duties contributed to a healthy work-life balance, it sometimes lowered motivation as a physician and provided unstable income. Overall, if female physicians lack an intrinsic interest in research and seek good work-life balance, they may drop out of research fields. Respecting and cultivating students' research interest is critical to alleviating the physician shortage in the basic sciences.

  11. Understanding Children's Science Identity through Classroom Interactions

    Science.gov (United States)

    Kim, Mijung

    2018-01-01

    Research shows that various stereotypes about science and science learning, such as science being filled with hard and dry content, laboratory experiments, and male-dominated work environments, have resulted in feelings of distance from science in students' minds. This study explores children's experiences of science learning and science identity.…

  12. University-School Partnerships: Pre-Service and In-Service Teachers Working Together to Teach Primary Science

    Science.gov (United States)

    Kenny, John Daniel

    2012-01-01

    This paper reports on a partnership approach preparing pre-service primary teachers to teach science. Partnerships involving pre-service teachers and volunteer in-service colleagues were formed to teach science in the classroom of the colleague, with support from the science education lecturer. Each pre-service teacher collaboratively planned and…

  13. Science youth action research: Promoting critical science literacy through relevance and agency

    Science.gov (United States)

    Coleman, Elizabeth R.

    This three-article dissertation presents complementary perspectives on Science Youth Action Research (Sci-YAR), a K-12 curriculum designed to emphasize relevance and agency to promote youth's science learning. In Sci-YAR, youth conduct action research projects to better understand science-related issues in their lives, schools, or communities, while they simultaneously document, analyze, and reflect upon their own practices as researchers. The first article defines Sci-YAR and argues for its potential to enhance youth's participation as citizens in a democratic society. The second article details findings from a case study of youth engaged in Sci-YAR, describing how the curriculum enabled and constrained youth's identity work in service of critical science agency. The third article provides guidance to science teachers in implementing student-driven curriculum and instruction by emphasizing Sci-YAR's key features as a way to promote student agency and relevance in school science.

  14. Discovering Science through Art-Based Activities

    Science.gov (United States)

    Alberts, Rebecca

    2010-01-01

    Art and science are intrinsically linked; the essence of art and science is discovery. Both artists and scientists work in a systematic but creative way--knowledge and understanding are built up through pieces of art or a series of labs. In the classroom, integrating science and visual art can provide students with the latitude to think, discover,…

  15. Partnering for science: proceedings of the USGS Workshop on Citizen Science

    Science.gov (United States)

    Hines, Megan; Benson, Abigail; Govoni, David; Masaki, Derek; Poore, Barbara; Simpson, Annie; Tessler, Steven

    2013-01-01

    What U.S. Geological Survey (USGS) programs use citizen science? How can projects be best designed while meeting policy requirements? What are the most effective volunteer recruitment methods? What data should be collected to ensure validation and how should data be stored? What standard protocols are most easily used by volunteers? Can data from multiple projects be integrated to support new research or existing science questions? To help answer these and other questions, the USGS Community of Data Integration (CDI) supported the development of the Citizen Science Working Group (CSWG) in August 2011 and funded the working group’s proposal to hold a USGS Citizen Science Workshop in fiscal year 2012. The stated goals for our workshop were: raise awareness of programs and projects in the USGS that incorporate citizen science, create a community of practice for the sharing of knowledge and experiences, provide a forum to discuss the challenges of—and opportunities for—incorporating citizen science into USGS projects, and educate and support scientists and managers whose projects may benefit from public participation in science.To meet these goals, the workshop brought together 50 attendees (see appendix A for participant details) representing the USGS, partners, and external citizen science practitioners from diverse backgrounds (including scientists, managers, project coordinators, and technical developers, for example) to discuss these topics at the Denver Federal Center in Colorado on September 11–12, 2012. Over two and a half days, attendees participated in four major plenary sessions (Citizen Science Policy and Challenges, Engaging the Public in Scientific Research, Data Collection and Management, and Technology and Tools) comprised of 25 invited presentations and followed by structured discussions for each session designed to address both prepared and ad hoc "big questions." A number of important community support and infrastructure needs were identified

  16. Teachers' Understanding and Operationalisation of `Science Capital'

    Science.gov (United States)

    King, Heather; Nomikou, Effrosyni; Archer, Louise; Regan, Elaine

    2015-12-01

    Across the globe, governments, industry and educationalists are in agreement that more needs to be done to increase and broaden participation in post-16 science. Schools, as well as teachers, are seen as key in this effort. Previous research has found that engagement with science, inclination to study science and understanding of the value of science strongly relates to a student's science capital. This paper reports on findings from the pilot year of a one-year professional development (PD) programme designed to work with secondary-school teachers to build students' science capital. The PD programme introduced teachers to the nature and importance of science capital and thereafter supported them to develop ways of implementing science capital-building pedagogy in their practice. The data comprise interviews with the participating teachers (n = 10), observations of classroom practices and analyses of the teachers' accounts of their practice. Our findings suggest that teachers found the concept of science capital to be compelling and to resonate with their own intuitive understandings and experiences. However, the ways in which the concept was operationalised in terms of the implementation of pedagogical practices varied. The difficulties inherent in the operationalisation are examined and recommendations for future work with teachers around the concept of science capital are developed.

  17. Guided Science Inquiry Instruction with Students with Special Education Needs. R2Ed Working Paper 2015-1

    Science.gov (United States)

    White, Andrew S.; Kunz, Gina M.; Whitham, Rebekah; Houston, Jim; Nugent, Gwen

    2015-01-01

    National and state educational mandates require students achieve proficiency in not only science content, but also "science inquiry", or those process skills associated with science (National Research Council, 2011; Next Generation Science Standards, 2013). Science inquiry instruction has been shown to improve student achievement and…

  18. Mapping Climate Science Information Needs and Networks in the Northwest, USA through Evaluating the Northwest Climate Science Center Climate Science Digest

    Science.gov (United States)

    Gergel, D. R.; Watts, L. H.; Salathe, E. P.; Mankowski, J. D.

    2017-12-01

    Climate science, already a highly interdisciplinary field, is rapidly evolving, and natural resource managers are increasingly involved in policymaking and adaptation decisions to address climate change that need to be informed by state-of-the-art climate science. Consequently, there is a strong demand for unique organizations that engender collaboration and cooperation between government, non-profit, academic and for-profit sectors that are addressing issues relating to natural resources management and climate adaptation and resilience. These organizations are often referred to as boundary organizations. The Northwest Climate Science Center (NW CSC) and the North Pacific Landscape Conservation Cooperative (NP LCC) are two such boundary organizations operating in different contexts. Together, the NW CSC and the NP LCC fulfill the need for sites of co-production between researchers and managers working on climate-related issues, and a key component of this work is a monthly climate science newsletter that includes recent climate science journal articles, reports, and climate-related events. Our study evaluates the effectiveness of the climate science digest (CSD) through a three-pronged approach: a) in-depth interviews with natural resource managers who use the CSD, b) poll questions distributed to CSD subscribers, and c) quantitative analysis of CSD effectiveness using analytics from MailChimp distribution. We aim to a) map the reach of the CSD across the Northwest and at a national level; b) understand the efficacy of the CSD at communicating climate science to diverse audiences; c) evaluate the usefulness of CSD content for diverse constituencies of subscribers; d) glean transferrable knowledge for future evaluations of boundary management tools; and e) establish a protocol for designing climate science newsletters for other agencies disseminating climate science information. We will present results from all three steps of our evaluation process and describe

  19. The Unified Astronomy Thesaurus: Semantic Metadata for Astronomy and Astrophysics

    Science.gov (United States)

    Frey, Katie; Accomazzi, Alberto

    2018-05-01

    Several controlled vocabularies have been developed and used by the astronomical community, each designed to serve a specific need and a specific group. The Unified Astronomy Thesaurus (UAT) attempts to provide a highly structured controlled vocabulary that will be relevant and useful across the entire discipline, regardless of content or platform. Because classifying articles and data will be the two major functions of the UAT, we examine the UAT in comparison with the Astronomical Subject Keywords used by major publications and the JWST Science Keywords used by STScI’s Astronomer’s Proposal Tool.

  20. Radioactivity and Nuclear Issues in Science Fiction

    International Nuclear Information System (INIS)

    Franic, Z.

    2008-01-01

    In this work are presented and reviewed science fiction narratives, films and comics that exploit radioactivity and nuclear issues. These topics to some science fiction authors serve as metaphor of evil and holocaust as well as nice instrument for elaborating various manipulations and conspiracy theories. In that context are of special interest science fiction works depicting apocalyptic post-nuclear worlds and societies, such works being closely connected with cyberpunk genre. However, other more technologically optimistic authors nuclear energy and research regarding nuclear technology and radioactivity consider as eligible and inevitable solution for world peace and prosperity Nowadays, public interest and global fears are shifted from radioactivity and nuclear issues to other catastrophic scenarios threatening future of the mankind, these for example being climate changes and global warming, asteroid impact, collapse of information infrastructure, nanotechnology, robotics and artificial intelligence etc. Consequently, these issues are as well increasingly reflected in contemporary science fiction stories.(author)

  1. Selling science to the public

    CERN Document Server

    Catapano, Paola

    1997-01-01

    Science popularization is ÒtheÓ tool to bridge the gap between society at large and the world of science. Compared to formal science communication Ð science taught in schools Ð informal science communication, made by the TV, the press, Òscience centresÓ and visits to scientific laboratories, has an important advantage: it makes the public meet science in a direct, informal way and on its own terms. The public is given an opportunity to develop a personal relationship with science, according to the needs, interests and abilities of the individual. But selling science is a tough job. The object of the sale is not a consumer good, but rather ideas and concepts that are sometimes so complex and distant from common sense that translating them into a comprehensible language and creating interest in the public without betraying the scientific truth is almost impossible. In the research work conducted for the thesis the importance of adopting a marketing approach in science communication is presented. Any scien...

  2. Obituary: Russell Makidon (1971-2009)

    Science.gov (United States)

    Sivaramakrishnan, Anand

    2009-12-01

    Russell Benjamin Makidon died at the age of 38 in Baltimore on June 22, 2009. Complications following surgery to remove a tumor cut his life tragically short. Russ was a Mission Systems Scientist at the Space Telescope Science Institute (STScI), which he joined straight out of graduate school in 1997. He brought both the force of his intellect and his superb people skills to STScI, where he served the Institute and the broader community with extraordinary effectiveness. Russ was pivotal in helping to develop the wavefront sensing and control system of the James Webb Space Telescope (JWST). He was also a member of the NSF Center for Adaptive Optics at Lick Observatory. Born to Cathy Ann and Peter Makidon, a worker at General Motors, on January 22, 1971, in Bay City, Michigan, Russ was an only child. He was raised by his mother, in Florida, and her parents, in Munger, Michigan. He is survived by his mother, his grandfather Benjamin Franklin Histed, and his father. In addition to his interest in science, Russ was a talented artist and his sketches had appeared in statewide and national competitions. Turning down a scholarship at the Savannah College of Art and Design, he studied physics and astronomy at the University of Michigan, followed by a Masters under Stephen Strom at the University of Massachusetts. He measured pre-main sequence stellar rotation in NGC 2264 and other OB associations, providing insight on the role that circumstellar disks play in setting stellar angular momentum in young stellar clusters and associations. This work, and his extraordinary skills in facilitating scientific exchange, led to his co-investigatorship on the Hubble Space Telescope (HST) Orion Treasury Project. Russ advanced the understanding of high contrast imaging, especially the relation between the properties of a wavefront control or adaptive optics systems and the physics of coronagraphic imaging. He developed a practical understanding of coronagraphy, performing timely and

  3. How Climate Science got to be in the Next Generation Science Standards (Invited)

    Science.gov (United States)

    Wysession, M. E.

    2013-12-01

    Climate science plays a prominent role in the new national K-12 Next Generation Science Standards (NGSS). This represents the culmination of a significant amount of effort by many different organizations that have worked hard to educate the public on one of the most interesting, complex, complicated, and societally important aspects of geoscience. While there are significant challenges to the full implementation of the NGSS, especially those aspects that relate to climate change, the fact that so many states are currently adopting the NGSS represents a significant milestone in geoscience education. When grade 6-12 textbooks were written ten years ago, such as Pearson's high school Physical Science: Concepts in Action (Wysession et al., 2004), very little mention of climate change was incorporated because it did not appear in state standards. Now, climate and climate change are an integral part of the middle school and high school NGSS standards, and textbook companies are fully incorporating this content into their programs. There are many factors that have helped the shift toward teaching about climate, such as the IPCC report, Al Gore's 'An Inconvenient Truth,' and the many reports on climate change published by the National Research Council (NRC). However, four major community-driven literacy documents (The Essential Principles of Ocean Science, Essential Principles and Fundamental Concepts for Atmospheric Science Literacy, The Earth Science Literacy Principles, and The Essential Principles of Climate Science) were essential in that they directly informed the construction of the Earth and Space Science (ESS) content of the NRC's 'Framework for K-12 Science Education' by the ESS Design Team. The actual performance expectations of the NGSS were then informed directly by the disciplinary core ideas of the NRC Framework, which were motivated by the community-driven literacy documents and the significant credentials these bore. The work in getting climate science

  4. Open-science projects get kickstarted at CERN

    CERN Multimedia

    Achintya Rao

    2015-01-01

    CERN is one of the host sites for the Mozilla Science Lab Global Sprint to be held on 4 and 5 June, which will see participants around the world work on projects to further open science and educational tools.   IdeaSquare will be hosting the event at CERN. The Mozilla Science Lab Global Sprint was first held in 2014 to bring together open-science practitioners and enthusiasts to collaborate on projects designed to advance science on the open web. The sprint is a loosely federated event, and CERN is participating in the 2015 edition, hosting sprinters in the hacker-friendly IdeaSquare. Five projects have been formally proposed and CERN users and staff are invited to participate in a variety of ways. A special training session will also be held to introduce the CERN community to existing open-science and collaborative tools, including ones that have been deployed at CERN. 1. GitHub Science Badges: Sprinters will work on developing a badge-style visual representation of how open a software pro...

  5. Science packages

    Science.gov (United States)

    1997-01-01

    Primary science teachers in Scotland have a new updating method at their disposal with the launch of a package of CDi (Compact Discs Interactive) materials developed by the BBC and the Scottish Office. These were a response to the claim that many primary teachers felt they had been inadequately trained in science and lacked the confidence to teach it properly. Consequently they felt the need for more in-service training to equip them with the personal understanding required. The pack contains five disks and a printed user's guide divided up as follows: disk 1 Investigations; disk 2 Developing understanding; disks 3,4,5 Primary Science staff development videos. It was produced by the Scottish Interactive Technology Centre (Moray House Institute) and is available from BBC Education at £149.99 including VAT. Free Internet distribution of science education materials has also begun as part of the Global Schoolhouse (GSH) scheme. The US National Science Teachers' Association (NSTA) and Microsoft Corporation are making available field-tested comprehensive curriculum material including 'Micro-units' on more than 80 topics in biology, chemistry, earth and space science and physics. The latter are the work of the Scope, Sequence and Coordination of High School Science project, which can be found at http://www.gsh.org/NSTA_SSandC/. More information on NSTA can be obtained from its Web site at http://www.nsta.org.

  6. How Science and Hollywood Can Work Together Is Focus of Fall Meeting Panel

    Science.gov (United States)

    Showstack, Randy

    2011-01-01

    Jon Amiel, director of the 2003 science fiction blockbuster movie The Core, told a room packed with geophysicists at the recent AGU Fall Meeting that he had a confession to make. The confession had nothing to do with what he called the “preposterous premises” of the movie, including that humans could start or stop the spinning of Earth's core. Rather, he told the crowd at the Tuesday evening presentation “Science and the Cinema: AGU Sciences Meet Hollywood” about his recurring dream of being on stage wearing nothing but a skimpy T-shirt. “This dream now has come true. Here I am, I'm talking to a whole room of geophysicists about The Core. I've never felt like the T-shirt was this short,” he said.

  7. Science A history

    CERN Document Server

    Gribbin, John

    2002-01-01

    From award-winning science writer John Gribbin, "Science: A History" is the enthralling story of the men and women who changed the way we see the world, and the turbulent times they lived in. From Galileo, tried by the Inquisition for his ideas, to Newton, who wrote his rivals out of the history books; from Marie Curie, forced to work apart from male students for fear she might excite them, to Louis Agassiz, who marched his colleagues up a mountain to prove that the ice ages had occurred. Filled with pioneers, visionaries, eccentrics and madmen, this is the history of science as it has never been told before.

  8. On the Health of Science

    Science.gov (United States)

    Cassidy, Harold G.

    1973-01-01

    Describes the present status of science as an industrialized-affluent culture resting upon a public woefully lacking in scientific background and scientists with activities taken in by nihilism. Suggests all scientists actively work together through teaching, talk, and behavior to counter the forces of anti-science and nihilism. (CC)

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Information for Authors ... A manuscript must present results of original, unpublished work. ... At this stage, JESS does not accept separate BibTeX files and does not provi de a bst file for ...

  10. Science and Mathematics Teachers Working Toward Equity Through Teacher Research: Tracing Changes Across Their Research Process and Equity Views

    Science.gov (United States)

    Brenner, Mary E.; Bianchini, Julie A.; Dwyer, Hilary A.

    2016-12-01

    We investigated secondary science and mathematics teachers engaged in a two-and-a-half-year professional development effort focused on equity. We examined how teachers conducting research on their own instructional practices—a central learning strategy of the professional development project—informed and/or constrained their views related to three strands of equity: teachers and teaching, students and learning, and students' families and communities. Data collected included recordings of professional development seminars and school-site meetings, three sets of individual interviews with teacher researchers, and drafts and final products of the classroom research teachers conducted. From our qualitative analyses of data, we found that most teachers addressed at least two of the three equity strands in researching their own practice. We also found that most transformed their understandings of teachers and students as a result of their teacher research process. However, teachers' views of families and communities changed in less substantive ways. We close with recommendations for other researchers and professional developers intent on supporting science and mathematics teachers in using teacher research to work toward equity.

  11. Situational Analysis and Engineering Work Practices

    DEFF Research Database (Denmark)

    Buch, Anders; Andersen, Vibeke

    2013-01-01

    boundaries in order to investigate the dynamics of cultural reproduction in expert work practices. The paper will propose a new research agenda that – inspired by George Marcus’ multi-sited ethnographic methodology (Marcus 1998) and Adele Clarke’s situational analysis (Clarke 2005) – analyze (and contrasts...... of analysis and allowing the situation to be scalable. Likewise, it aspires to overcome the widespread dualism of ‘text’ and ‘con-text’ that pervades contemporary social science methods. We will argue that expert work practices – although reproduced and enacted in local settings – are also enactments......Studies of work practices of scientists and engineers inspired by Science and Technology Studies (STS) provide new material for a richer understanding of expert cultures and expert work practices. However, the specific and strictly situated focus of many of these studies threatens to limit...

  12. Education in Soil Science: the Italian approach

    Science.gov (United States)

    Benedetti, Anna; Canfora, Loredana; Dazzi, Carmelo; Lo Papa, Giuseppe

    2017-04-01

    The Italian Society of Soil Science (SISS) was founded in Florence on February 18th, 1952. It is an association legally acknowledged by Decree of the President of the Italian Republic in February 1957. The Society is member of the International Union of Soil Sciences (IUSS) of the European Confederation of Soil Science Societies (ECSSS) and collaborates with several companies, institutions and organizations having similar objectives or policy aspects. SISS promotes progress, coordination and dissemination of soil science and its applications encouraging relationships and collaborations among soil lovers. Within the SISS there are Working Groups and Technical Committees for specific issues of interest. In particular: • the Working Group on Pedotechniques; • the Working Group on Hydromorphic and Subaqueous Soils and • the Technical Committee for Soil Education and Public Awareness. In this communication we wish to stress the activities developed since its foundation by SISS to spread soil awareness and education in Italy through this last Technical Committee, focusing also the aspect concerning grants for young graduates and PhD graduates to stimulate the involvement of young people in the field of soil science. Keywords: SISS, soil education and awareness.

  13. Attitudes and learning difficulties in middle school science in South Korea

    Science.gov (United States)

    Jung, Eun Sook

    The purpose of this study is to investigate the relationship between cognitive and attitudinal aspects of learning science, concentrating mainly on the influence of cognitive understanding and learning difficulty on attitudes to science. This theme is selected, in particular, because it is reported that Korean students at secondary level do not enjoy studying science and have not enough confidence, although their achievements are high. Johnstone's information processing model (1993) is used to account for cognitive aspects of science education. Learning processes are understood in terms of student's own knowledge construction through the operation of perception filters, processing in working memory space and storing in long term memory. In particular, the overload of student's working memory space is considered as the main factor causing learning difficulty and, in consequence, learning failure. The research took place in one middle school located in Seoul, the capital city in South Korea. 364 students aged 13 and 350 aged 15 participated. In order to try to find relationships between cognitive and affective factors of science learning, individual student's working memory space was measured and a questionnaire designed to gather information about students' attitudes was prepared and given to all students. To determine the working memory space capacity of the students, the Figural Intersection Test (F.I.T), designed by Pascual-Leone, was used. Two kinds of analysis, comparison and correlation, were performed with data from the Figural Intersection Test and the questionnaire applied to students. For the comparison of attitudes between age 13 and 15, the distributions of frequencies of responses were analyzed for each particular statement in a question. The Chi-square (?[2]) test was applied to judge the statistically significant differences in responses of the two groups. The levels of significance used were 0.05, 0.01 and 0.001. In order to see whether there is

  14. Bringing computational science to the public.

    Science.gov (United States)

    McDonagh, James L; Barker, Daniel; Alderson, Rosanna G

    2016-01-01

    The increasing use of computers in science allows for the scientific analyses of large datasets at an increasing pace. We provided examples and interactive demonstrations at Dundee Science Centre as part of the 2015 Women in Science festival, to present aspects of computational science to the general public. We used low-cost Raspberry Pi computers to provide hands on experience in computer programming and demonstrated the application of computers to biology. Computer games were used as a means to introduce computers to younger visitors. The success of the event was evaluated by voluntary feedback forms completed by visitors, in conjunction with our own self-evaluation. This work builds on the original work of the 4273π bioinformatics education program of Barker et al. (2013, BMC Bioinform. 14:243). 4273π provides open source education materials in bioinformatics. This work looks at the potential to adapt similar materials for public engagement events. It appears, at least in our small sample of visitors (n = 13), that basic computational science can be conveyed to people of all ages by means of interactive demonstrations. Children as young as five were able to successfully edit simple computer programs with supervision. This was, in many cases, their first experience of computer programming. The feedback is predominantly positive, showing strong support for improving computational science education, but also included suggestions for improvement. Our conclusions are necessarily preliminary. However, feedback forms suggest methods were generally well received among the participants; "Easy to follow. Clear explanation" and "Very easy. Demonstrators were very informative." Our event, held at a local Science Centre in Dundee, demonstrates that computer games and programming activities suitable for young children can be performed alongside a more specialised and applied introduction to computational science for older visitors.

  15. 77 FR 65176 - Science Advisory Board (SAB)

    Science.gov (United States)

    2012-10-25

    ... Atmospheric Administration (NOAA) science programs are of the highest quality and provide optimal support to... Portfolio Review Task Force; (3) Report from the Ecosystem Sciences and Management Working Group on...

  16. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    Science.gov (United States)

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  17. Empirical Philosophy of Science

    DEFF Research Database (Denmark)

    Mansnerus, Erika; Wagenknecht, Susann

    2015-01-01

    knowledge takes place through the integration of the empirical or historical research into the philosophical studies, as Chang, Nersessian, Thagard and Schickore argue in their work. Building upon their contributions we will develop a blueprint for an Empirical Philosophy of Science that draws upon...... qualitative methods from the social sciences in order to advance our philosophical understanding of science in practice. We will regard the relationship between philosophical conceptualization and empirical data as an iterative dialogue between theory and data, which is guided by a particular ‘feeling with......Empirical insights are proven fruitful for the advancement of Philosophy of Science, but the integration of philosophical concepts and empirical data poses considerable methodological challenges. Debates in Integrated History and Philosophy of Science suggest that the advancement of philosophical...

  18. Working around technologies

    DEFF Research Database (Denmark)

    Dupret, Katia

    2017-01-01

    in Denmark. The aim and contribution of the study is twofold. First, it attempts to revitalise the discussion on technology workaround strategies as responsible professionalism. Second, it will direct attention to and contribute to an understanding of how the normativity embedded in technological development...... expressions of professionals’ active encounter with the complexity of work situations, and can therefore be important signs of professional ethical judgement. Drawing on science and technology studies and the concept of invisible work, the study discusses workaround situations that arise in health care work......This study discusses how professionalism and work ethics influence how health care professionals work around new technologies. When people avoid using technologies, they are not necessarily ceasing to engage in their work activities. The workaround strategies presented here are rather practical...

  19. Enrolling science teachers in continual professional development

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    2010-01-01

    The theoretical paper presents a model of how science teachers working in small groups can use video to diagnose the challengees that students face when learning science content, and how they can then design and refine appropriate teaching interventions. The analysis and discussion suggest that t...... that the proposed professional development program, based around group learning, should be formatively assessed, researched and refined over time following the principles of design based research, likewise the teachers' classroom interventions.......The theoretical paper presents a model of how science teachers working in small groups can use video to diagnose the challengees that students face when learning science content, and how they can then design and refine appropriate teaching interventions. The analysis and discussion suggest...

  20. The Next Generation Science Standards

    Science.gov (United States)

    Pruitt, Stephen L.

    2015-01-01

    The Next Generation Science Standards (NGSS Lead States 2013) were released almost two years ago. Work tied to the NGSS, their adoption, and implementation continues to move forward around the country. Stephen L. Pruitt, senior vice president, science, at Achieve, an independent, nonpartisan, nonprofit education reform organization that was a lead…